1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23 {
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91 {
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159 dma_fail:
160 return -1;
161 }
162
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
i40e_add_del_fdir_udpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176 {
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234 }
235
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
i40e_add_del_fdir_tcpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248 {
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312 }
313
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
i40e_add_del_fdir_sctpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327 {
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386 }
387
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
i40e_add_del_fdir_ipv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401 {
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460 }
461
462 /**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471 {
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519 }
520
521 /**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 u64 qword1, u8 prog_id)
533 {
534 struct i40e_pf *pf = rx_ring->vsi->back;
535 struct pci_dev *pdev = pf->pdev;
536 struct i40e_16b_rx_wb_qw0 *qw0;
537 u32 fcnt_prog, fcnt_avail;
538 u32 error;
539
540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 if (qw0->hi_dword.fd_id != 0 ||
547 (I40E_DEBUG_FD & pf->hw.debug_mask))
548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 pf->fd_inv);
550
551 /* Check if the programming error is for ATR.
552 * If so, auto disable ATR and set a state for
553 * flush in progress. Next time we come here if flush is in
554 * progress do nothing, once flush is complete the state will
555 * be cleared.
556 */
557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 return;
559
560 pf->fd_add_err++;
561 /* store the current atr filter count */
562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564 if (qw0->hi_dword.fd_id == 0 &&
565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 /* These set_bit() calls aren't atomic with the
567 * test_bit() here, but worse case we potentially
568 * disable ATR and queue a flush right after SB
569 * support is re-enabled. That shouldn't cause an
570 * issue in practice
571 */
572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 }
575
576 /* filter programming failed most likely due to table full */
577 fcnt_prog = i40e_get_global_fd_count(pf);
578 fcnt_avail = pf->fdir_pf_filter_count;
579 /* If ATR is running fcnt_prog can quickly change,
580 * if we are very close to full, it makes sense to disable
581 * FD ATR/SB and then re-enable it when there is room.
582 */
583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 pf->state))
587 if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 }
590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 qw0->hi_dword.fd_id);
594 }
595 }
596
597 /**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring: the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 struct i40e_tx_buffer *tx_buffer)
604 {
605 if (tx_buffer->skb) {
606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 kfree(tx_buffer->raw_buf);
608 else if (ring_is_xdp(ring))
609 xdp_return_frame(tx_buffer->xdpf);
610 else
611 dev_kfree_skb_any(tx_buffer->skb);
612 if (dma_unmap_len(tx_buffer, len))
613 dma_unmap_single(ring->dev,
614 dma_unmap_addr(tx_buffer, dma),
615 dma_unmap_len(tx_buffer, len),
616 DMA_TO_DEVICE);
617 } else if (dma_unmap_len(tx_buffer, len)) {
618 dma_unmap_page(ring->dev,
619 dma_unmap_addr(tx_buffer, dma),
620 dma_unmap_len(tx_buffer, len),
621 DMA_TO_DEVICE);
622 }
623
624 tx_buffer->next_to_watch = NULL;
625 tx_buffer->skb = NULL;
626 dma_unmap_len_set(tx_buffer, len, 0);
627 /* tx_buffer must be completely set up in the transmit path */
628 }
629
630 /**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 unsigned long bi_size;
637 u16 i;
638
639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 i40e_xsk_clean_tx_ring(tx_ring);
641 } else {
642 /* ring already cleared, nothing to do */
643 if (!tx_ring->tx_bi)
644 return;
645
646 /* Free all the Tx ring sk_buffs */
647 for (i = 0; i < tx_ring->count; i++)
648 i40e_unmap_and_free_tx_resource(tx_ring,
649 &tx_ring->tx_bi[i]);
650 }
651
652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 memset(tx_ring->tx_bi, 0, bi_size);
654
655 /* Zero out the descriptor ring */
656 memset(tx_ring->desc, 0, tx_ring->size);
657
658 tx_ring->next_to_use = 0;
659 tx_ring->next_to_clean = 0;
660
661 if (!tx_ring->netdev)
662 return;
663
664 /* cleanup Tx queue statistics */
665 netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667
668 /**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 i40e_clean_tx_ring(tx_ring);
677 kfree(tx_ring->tx_bi);
678 tx_ring->tx_bi = NULL;
679
680 if (tx_ring->desc) {
681 dma_free_coherent(tx_ring->dev, tx_ring->size,
682 tx_ring->desc, tx_ring->dma);
683 tx_ring->desc = NULL;
684 }
685 }
686
687 /**
688 * i40e_get_tx_pending - how many tx descriptors not processed
689 * @ring: the ring of descriptors
690 * @in_sw: use SW variables
691 *
692 * Since there is no access to the ring head register
693 * in XL710, we need to use our local copies
694 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 u32 head, tail;
698
699 if (!in_sw) {
700 head = i40e_get_head(ring);
701 tail = readl(ring->tail);
702 } else {
703 head = ring->next_to_clean;
704 tail = ring->next_to_use;
705 }
706
707 if (head != tail)
708 return (head < tail) ?
709 tail - head : (tail + ring->count - head);
710
711 return 0;
712 }
713
714 /**
715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
716 * @vsi: pointer to vsi struct with tx queues
717 *
718 * VSI has netdev and netdev has TX queues. This function is to check each of
719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 struct i40e_ring *tx_ring = NULL;
724 struct net_device *netdev;
725 unsigned int i;
726 int packets;
727
728 if (!vsi)
729 return;
730
731 if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 return;
733
734 netdev = vsi->netdev;
735 if (!netdev)
736 return;
737
738 if (!netif_carrier_ok(netdev))
739 return;
740
741 for (i = 0; i < vsi->num_queue_pairs; i++) {
742 tx_ring = vsi->tx_rings[i];
743 if (tx_ring && tx_ring->desc) {
744 /* If packet counter has not changed the queue is
745 * likely stalled, so force an interrupt for this
746 * queue.
747 *
748 * prev_pkt_ctr would be negative if there was no
749 * pending work.
750 */
751 packets = tx_ring->stats.packets & INT_MAX;
752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 i40e_force_wb(vsi, tx_ring->q_vector);
754 continue;
755 }
756
757 /* Memory barrier between read of packet count and call
758 * to i40e_get_tx_pending()
759 */
760 smp_rmb();
761 tx_ring->tx_stats.prev_pkt_ctr =
762 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 }
764 }
765 }
766
767 /**
768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
769 * @vsi: the VSI we care about
770 * @tx_ring: Tx ring to clean
771 * @napi_budget: Used to determine if we are in netpoll
772 *
773 * Returns true if there's any budget left (e.g. the clean is finished)
774 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 struct i40e_ring *tx_ring, int napi_budget)
777 {
778 int i = tx_ring->next_to_clean;
779 struct i40e_tx_buffer *tx_buf;
780 struct i40e_tx_desc *tx_head;
781 struct i40e_tx_desc *tx_desc;
782 unsigned int total_bytes = 0, total_packets = 0;
783 unsigned int budget = vsi->work_limit;
784
785 tx_buf = &tx_ring->tx_bi[i];
786 tx_desc = I40E_TX_DESC(tx_ring, i);
787 i -= tx_ring->count;
788
789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790
791 do {
792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793
794 /* if next_to_watch is not set then there is no work pending */
795 if (!eop_desc)
796 break;
797
798 /* prevent any other reads prior to eop_desc */
799 smp_rmb();
800
801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 /* we have caught up to head, no work left to do */
803 if (tx_head == tx_desc)
804 break;
805
806 /* clear next_to_watch to prevent false hangs */
807 tx_buf->next_to_watch = NULL;
808
809 /* update the statistics for this packet */
810 total_bytes += tx_buf->bytecount;
811 total_packets += tx_buf->gso_segs;
812
813 /* free the skb/XDP data */
814 if (ring_is_xdp(tx_ring))
815 xdp_return_frame(tx_buf->xdpf);
816 else
817 napi_consume_skb(tx_buf->skb, napi_budget);
818
819 /* unmap skb header data */
820 dma_unmap_single(tx_ring->dev,
821 dma_unmap_addr(tx_buf, dma),
822 dma_unmap_len(tx_buf, len),
823 DMA_TO_DEVICE);
824
825 /* clear tx_buffer data */
826 tx_buf->skb = NULL;
827 dma_unmap_len_set(tx_buf, len, 0);
828
829 /* unmap remaining buffers */
830 while (tx_desc != eop_desc) {
831 i40e_trace(clean_tx_irq_unmap,
832 tx_ring, tx_desc, tx_buf);
833
834 tx_buf++;
835 tx_desc++;
836 i++;
837 if (unlikely(!i)) {
838 i -= tx_ring->count;
839 tx_buf = tx_ring->tx_bi;
840 tx_desc = I40E_TX_DESC(tx_ring, 0);
841 }
842
843 /* unmap any remaining paged data */
844 if (dma_unmap_len(tx_buf, len)) {
845 dma_unmap_page(tx_ring->dev,
846 dma_unmap_addr(tx_buf, dma),
847 dma_unmap_len(tx_buf, len),
848 DMA_TO_DEVICE);
849 dma_unmap_len_set(tx_buf, len, 0);
850 }
851 }
852
853 /* move us one more past the eop_desc for start of next pkt */
854 tx_buf++;
855 tx_desc++;
856 i++;
857 if (unlikely(!i)) {
858 i -= tx_ring->count;
859 tx_buf = tx_ring->tx_bi;
860 tx_desc = I40E_TX_DESC(tx_ring, 0);
861 }
862
863 prefetch(tx_desc);
864
865 /* update budget accounting */
866 budget--;
867 } while (likely(budget));
868
869 i += tx_ring->count;
870 tx_ring->next_to_clean = i;
871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 i40e_arm_wb(tx_ring, vsi, budget);
873
874 if (ring_is_xdp(tx_ring))
875 return !!budget;
876
877 /* notify netdev of completed buffers */
878 netdev_tx_completed_queue(txring_txq(tx_ring),
879 total_packets, total_bytes);
880
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 /* Make sure that anybody stopping the queue after this
885 * sees the new next_to_clean.
886 */
887 smp_mb();
888 if (__netif_subqueue_stopped(tx_ring->netdev,
889 tx_ring->queue_index) &&
890 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 netif_wake_subqueue(tx_ring->netdev,
892 tx_ring->queue_index);
893 ++tx_ring->tx_stats.restart_queue;
894 }
895 }
896
897 return !!budget;
898 }
899
900 /**
901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902 * @vsi: the VSI we care about
903 * @q_vector: the vector on which to enable writeback
904 *
905 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 struct i40e_q_vector *q_vector)
908 {
909 u16 flags = q_vector->tx.ring[0].flags;
910 u32 val;
911
912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 return;
914
915 if (q_vector->arm_wb_state)
916 return;
917
918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921
922 wr32(&vsi->back->hw,
923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 val);
925 } else {
926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928
929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 }
931 q_vector->arm_wb_state = true;
932 }
933
934 /**
935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
936 * @vsi: the VSI we care about
937 * @q_vector: the vector on which to force writeback
938 *
939 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 /* allow 00 to be written to the index */
948
949 wr32(&vsi->back->hw,
950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 } else {
952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 /* allow 00 to be written to the index */
957
958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 }
960 }
961
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 struct i40e_ring_container *rc)
964 {
965 return &q_vector->rx == rc;
966 }
967
i40e_itr_divisor(struct i40e_q_vector * q_vector)968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 unsigned int divisor;
971
972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 case I40E_LINK_SPEED_40GB:
974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 break;
976 case I40E_LINK_SPEED_25GB:
977 case I40E_LINK_SPEED_20GB:
978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 break;
980 default:
981 case I40E_LINK_SPEED_10GB:
982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 break;
984 case I40E_LINK_SPEED_1GB:
985 case I40E_LINK_SPEED_100MB:
986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 break;
988 }
989
990 return divisor;
991 }
992
993 /**
994 * i40e_update_itr - update the dynamic ITR value based on statistics
995 * @q_vector: structure containing interrupt and ring information
996 * @rc: structure containing ring performance data
997 *
998 * Stores a new ITR value based on packets and byte
999 * counts during the last interrupt. The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern. Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 struct i40e_ring_container *rc)
1008 {
1009 unsigned int avg_wire_size, packets, bytes, itr;
1010 unsigned long next_update = jiffies;
1011
1012 /* If we don't have any rings just leave ourselves set for maximum
1013 * possible latency so we take ourselves out of the equation.
1014 */
1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 return;
1017
1018 /* For Rx we want to push the delay up and default to low latency.
1019 * for Tx we want to pull the delay down and default to high latency.
1020 */
1021 itr = i40e_container_is_rx(q_vector, rc) ?
1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025 /* If we didn't update within up to 1 - 2 jiffies we can assume
1026 * that either packets are coming in so slow there hasn't been
1027 * any work, or that there is so much work that NAPI is dealing
1028 * with interrupt moderation and we don't need to do anything.
1029 */
1030 if (time_after(next_update, rc->next_update))
1031 goto clear_counts;
1032
1033 /* If itr_countdown is set it means we programmed an ITR within
1034 * the last 4 interrupt cycles. This has a side effect of us
1035 * potentially firing an early interrupt. In order to work around
1036 * this we need to throw out any data received for a few
1037 * interrupts following the update.
1038 */
1039 if (q_vector->itr_countdown) {
1040 itr = rc->target_itr;
1041 goto clear_counts;
1042 }
1043
1044 packets = rc->total_packets;
1045 bytes = rc->total_bytes;
1046
1047 if (i40e_container_is_rx(q_vector, rc)) {
1048 /* If Rx there are 1 to 4 packets and bytes are less than
1049 * 9000 assume insufficient data to use bulk rate limiting
1050 * approach unless Tx is already in bulk rate limiting. We
1051 * are likely latency driven.
1052 */
1053 if (packets && packets < 4 && bytes < 9000 &&
1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 goto adjust_by_size;
1057 }
1058 } else if (packets < 4) {
1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 * bulk mode and we are receiving 4 or fewer packets just
1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 * that the Rx can relax.
1063 */
1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 I40E_ITR_ADAPTIVE_MAX_USECS)
1067 goto clear_counts;
1068 } else if (packets > 32) {
1069 /* If we have processed over 32 packets in a single interrupt
1070 * for Tx assume we need to switch over to "bulk" mode.
1071 */
1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 }
1074
1075 /* We have no packets to actually measure against. This means
1076 * either one of the other queues on this vector is active or
1077 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 *
1079 * Between 4 and 56 we can assume that our current interrupt delay
1080 * is only slightly too low. As such we should increase it by a small
1081 * fixed amount.
1082 */
1083 if (packets < 56) {
1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 }
1089 goto clear_counts;
1090 }
1091
1092 if (packets <= 256) {
1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 itr &= I40E_ITR_MASK;
1095
1096 /* Between 56 and 112 is our "goldilocks" zone where we are
1097 * working out "just right". Just report that our current
1098 * ITR is good for us.
1099 */
1100 if (packets <= 112)
1101 goto clear_counts;
1102
1103 /* If packet count is 128 or greater we are likely looking
1104 * at a slight overrun of the delay we want. Try halving
1105 * our delay to see if that will cut the number of packets
1106 * in half per interrupt.
1107 */
1108 itr /= 2;
1109 itr &= I40E_ITR_MASK;
1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113 goto clear_counts;
1114 }
1115
1116 /* The paths below assume we are dealing with a bulk ITR since
1117 * number of packets is greater than 256. We are just going to have
1118 * to compute a value and try to bring the count under control,
1119 * though for smaller packet sizes there isn't much we can do as
1120 * NAPI polling will likely be kicking in sooner rather than later.
1121 */
1122 itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124 adjust_by_size:
1125 /* If packet counts are 256 or greater we can assume we have a gross
1126 * overestimation of what the rate should be. Instead of trying to fine
1127 * tune it just use the formula below to try and dial in an exact value
1128 * give the current packet size of the frame.
1129 */
1130 avg_wire_size = bytes / packets;
1131
1132 /* The following is a crude approximation of:
1133 * wmem_default / (size + overhead) = desired_pkts_per_int
1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 *
1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 * formula down to
1140 *
1141 * (170 * (size + 24)) / (size + 640) = ITR
1142 *
1143 * We first do some math on the packet size and then finally bitshift
1144 * by 8 after rounding up. We also have to account for PCIe link speed
1145 * difference as ITR scales based on this.
1146 */
1147 if (avg_wire_size <= 60) {
1148 /* Start at 250k ints/sec */
1149 avg_wire_size = 4096;
1150 } else if (avg_wire_size <= 380) {
1151 /* 250K ints/sec to 60K ints/sec */
1152 avg_wire_size *= 40;
1153 avg_wire_size += 1696;
1154 } else if (avg_wire_size <= 1084) {
1155 /* 60K ints/sec to 36K ints/sec */
1156 avg_wire_size *= 15;
1157 avg_wire_size += 11452;
1158 } else if (avg_wire_size <= 1980) {
1159 /* 36K ints/sec to 30K ints/sec */
1160 avg_wire_size *= 5;
1161 avg_wire_size += 22420;
1162 } else {
1163 /* plateau at a limit of 30K ints/sec */
1164 avg_wire_size = 32256;
1165 }
1166
1167 /* If we are in low latency mode halve our delay which doubles the
1168 * rate to somewhere between 100K to 16K ints/sec
1169 */
1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 avg_wire_size /= 2;
1172
1173 /* Resultant value is 256 times larger than it needs to be. This
1174 * gives us room to adjust the value as needed to either increase
1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 *
1177 * Use addition as we have already recorded the new latency flag
1178 * for the ITR value.
1179 */
1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 }
1187
1188 clear_counts:
1189 /* write back value */
1190 rc->target_itr = itr;
1191
1192 /* next update should occur within next jiffy */
1193 rc->next_update = next_update + 1;
1194
1195 rc->total_bytes = 0;
1196 rc->total_packets = 0;
1197 }
1198
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 return &rx_ring->rx_bi[idx];
1202 }
1203
1204 /**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 struct i40e_rx_buffer *old_buff)
1213 {
1214 struct i40e_rx_buffer *new_buff;
1215 u16 nta = rx_ring->next_to_alloc;
1216
1217 new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219 /* update, and store next to alloc */
1220 nta++;
1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223 /* transfer page from old buffer to new buffer */
1224 new_buff->dma = old_buff->dma;
1225 new_buff->page = old_buff->page;
1226 new_buff->page_offset = old_buff->page_offset;
1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1228
1229 rx_ring->rx_stats.page_reuse_count++;
1230
1231 /* clear contents of buffer_info */
1232 old_buff->page = NULL;
1233 }
1234
1235 /**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 u64 qword1)
1249 {
1250 u8 id;
1251
1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258
1259 /**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 struct device *dev = tx_ring->dev;
1268 int bi_size;
1269
1270 if (!dev)
1271 return -ENOMEM;
1272
1273 /* warn if we are about to overwrite the pointer */
1274 WARN_ON(tx_ring->tx_bi);
1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 if (!tx_ring->tx_bi)
1278 goto err;
1279
1280 u64_stats_init(&tx_ring->syncp);
1281
1282 /* round up to nearest 4K */
1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 /* add u32 for head writeback, align after this takes care of
1285 * guaranteeing this is at least one cache line in size
1286 */
1287 tx_ring->size += sizeof(u32);
1288 tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 &tx_ring->dma, GFP_KERNEL);
1291 if (!tx_ring->desc) {
1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 tx_ring->size);
1294 goto err;
1295 }
1296
1297 tx_ring->next_to_use = 0;
1298 tx_ring->next_to_clean = 0;
1299 tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 return 0;
1301
1302 err:
1303 kfree(tx_ring->tx_bi);
1304 tx_ring->tx_bi = NULL;
1305 return -ENOMEM;
1306 }
1307
i40e_alloc_rx_bi(struct i40e_ring * rx_ring)1308 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1311
1312 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1313 return rx_ring->rx_bi ? 0 : -ENOMEM;
1314 }
1315
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1316 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1317 {
1318 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1319 }
1320
1321 /**
1322 * i40e_clean_rx_ring - Free Rx buffers
1323 * @rx_ring: ring to be cleaned
1324 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1325 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1326 {
1327 u16 i;
1328
1329 /* ring already cleared, nothing to do */
1330 if (!rx_ring->rx_bi)
1331 return;
1332
1333 if (rx_ring->skb) {
1334 dev_kfree_skb(rx_ring->skb);
1335 rx_ring->skb = NULL;
1336 }
1337
1338 if (rx_ring->xsk_pool) {
1339 i40e_xsk_clean_rx_ring(rx_ring);
1340 goto skip_free;
1341 }
1342
1343 /* Free all the Rx ring sk_buffs */
1344 for (i = 0; i < rx_ring->count; i++) {
1345 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1346
1347 if (!rx_bi->page)
1348 continue;
1349
1350 /* Invalidate cache lines that may have been written to by
1351 * device so that we avoid corrupting memory.
1352 */
1353 dma_sync_single_range_for_cpu(rx_ring->dev,
1354 rx_bi->dma,
1355 rx_bi->page_offset,
1356 rx_ring->rx_buf_len,
1357 DMA_FROM_DEVICE);
1358
1359 /* free resources associated with mapping */
1360 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1361 i40e_rx_pg_size(rx_ring),
1362 DMA_FROM_DEVICE,
1363 I40E_RX_DMA_ATTR);
1364
1365 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1366
1367 rx_bi->page = NULL;
1368 rx_bi->page_offset = 0;
1369 }
1370
1371 skip_free:
1372 if (rx_ring->xsk_pool)
1373 i40e_clear_rx_bi_zc(rx_ring);
1374 else
1375 i40e_clear_rx_bi(rx_ring);
1376
1377 /* Zero out the descriptor ring */
1378 memset(rx_ring->desc, 0, rx_ring->size);
1379
1380 rx_ring->next_to_alloc = 0;
1381 rx_ring->next_to_clean = 0;
1382 rx_ring->next_to_use = 0;
1383 }
1384
1385 /**
1386 * i40e_free_rx_resources - Free Rx resources
1387 * @rx_ring: ring to clean the resources from
1388 *
1389 * Free all receive software resources
1390 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1391 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1392 {
1393 i40e_clean_rx_ring(rx_ring);
1394 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1395 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1396 rx_ring->xdp_prog = NULL;
1397 kfree(rx_ring->rx_bi);
1398 rx_ring->rx_bi = NULL;
1399
1400 if (rx_ring->desc) {
1401 dma_free_coherent(rx_ring->dev, rx_ring->size,
1402 rx_ring->desc, rx_ring->dma);
1403 rx_ring->desc = NULL;
1404 }
1405 }
1406
1407 /**
1408 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1409 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1410 *
1411 * Returns 0 on success, negative on failure
1412 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1413 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1414 {
1415 struct device *dev = rx_ring->dev;
1416 int err;
1417
1418 u64_stats_init(&rx_ring->syncp);
1419
1420 /* Round up to nearest 4K */
1421 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1422 rx_ring->size = ALIGN(rx_ring->size, 4096);
1423 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1424 &rx_ring->dma, GFP_KERNEL);
1425
1426 if (!rx_ring->desc) {
1427 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1428 rx_ring->size);
1429 return -ENOMEM;
1430 }
1431
1432 rx_ring->next_to_alloc = 0;
1433 rx_ring->next_to_clean = 0;
1434 rx_ring->next_to_use = 0;
1435
1436 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1437 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1438 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1439 rx_ring->queue_index);
1440 if (err < 0)
1441 return err;
1442 }
1443
1444 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * i40e_release_rx_desc - Store the new tail and head values
1451 * @rx_ring: ring to bump
1452 * @val: new head index
1453 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1454 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1455 {
1456 rx_ring->next_to_use = val;
1457
1458 /* update next to alloc since we have filled the ring */
1459 rx_ring->next_to_alloc = val;
1460
1461 /* Force memory writes to complete before letting h/w
1462 * know there are new descriptors to fetch. (Only
1463 * applicable for weak-ordered memory model archs,
1464 * such as IA-64).
1465 */
1466 wmb();
1467 writel(val, rx_ring->tail);
1468 }
1469
1470 /**
1471 * i40e_rx_offset - Return expected offset into page to access data
1472 * @rx_ring: Ring we are requesting offset of
1473 *
1474 * Returns the offset value for ring into the data buffer.
1475 */
i40e_rx_offset(struct i40e_ring * rx_ring)1476 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1477 {
1478 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1479 }
1480
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1481 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1482 unsigned int size)
1483 {
1484 unsigned int truesize;
1485
1486 #if (PAGE_SIZE < 8192)
1487 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1488 #else
1489 truesize = i40e_rx_offset(rx_ring) ?
1490 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1491 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1492 SKB_DATA_ALIGN(size);
1493 #endif
1494 return truesize;
1495 }
1496
1497 /**
1498 * i40e_alloc_mapped_page - recycle or make a new page
1499 * @rx_ring: ring to use
1500 * @bi: rx_buffer struct to modify
1501 *
1502 * Returns true if the page was successfully allocated or
1503 * reused.
1504 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1505 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1506 struct i40e_rx_buffer *bi)
1507 {
1508 struct page *page = bi->page;
1509 dma_addr_t dma;
1510
1511 /* since we are recycling buffers we should seldom need to alloc */
1512 if (likely(page)) {
1513 rx_ring->rx_stats.page_reuse_count++;
1514 return true;
1515 }
1516
1517 /* alloc new page for storage */
1518 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1519 if (unlikely(!page)) {
1520 rx_ring->rx_stats.alloc_page_failed++;
1521 return false;
1522 }
1523
1524 /* map page for use */
1525 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1526 i40e_rx_pg_size(rx_ring),
1527 DMA_FROM_DEVICE,
1528 I40E_RX_DMA_ATTR);
1529
1530 /* if mapping failed free memory back to system since
1531 * there isn't much point in holding memory we can't use
1532 */
1533 if (dma_mapping_error(rx_ring->dev, dma)) {
1534 __free_pages(page, i40e_rx_pg_order(rx_ring));
1535 rx_ring->rx_stats.alloc_page_failed++;
1536 return false;
1537 }
1538
1539 bi->dma = dma;
1540 bi->page = page;
1541 bi->page_offset = i40e_rx_offset(rx_ring);
1542 page_ref_add(page, USHRT_MAX - 1);
1543 bi->pagecnt_bias = USHRT_MAX;
1544
1545 return true;
1546 }
1547
1548 /**
1549 * i40e_alloc_rx_buffers - Replace used receive buffers
1550 * @rx_ring: ring to place buffers on
1551 * @cleaned_count: number of buffers to replace
1552 *
1553 * Returns false if all allocations were successful, true if any fail
1554 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1555 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1556 {
1557 u16 ntu = rx_ring->next_to_use;
1558 union i40e_rx_desc *rx_desc;
1559 struct i40e_rx_buffer *bi;
1560
1561 /* do nothing if no valid netdev defined */
1562 if (!rx_ring->netdev || !cleaned_count)
1563 return false;
1564
1565 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1566 bi = i40e_rx_bi(rx_ring, ntu);
1567
1568 do {
1569 if (!i40e_alloc_mapped_page(rx_ring, bi))
1570 goto no_buffers;
1571
1572 /* sync the buffer for use by the device */
1573 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1574 bi->page_offset,
1575 rx_ring->rx_buf_len,
1576 DMA_FROM_DEVICE);
1577
1578 /* Refresh the desc even if buffer_addrs didn't change
1579 * because each write-back erases this info.
1580 */
1581 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1582
1583 rx_desc++;
1584 bi++;
1585 ntu++;
1586 if (unlikely(ntu == rx_ring->count)) {
1587 rx_desc = I40E_RX_DESC(rx_ring, 0);
1588 bi = i40e_rx_bi(rx_ring, 0);
1589 ntu = 0;
1590 }
1591
1592 /* clear the status bits for the next_to_use descriptor */
1593 rx_desc->wb.qword1.status_error_len = 0;
1594
1595 cleaned_count--;
1596 } while (cleaned_count);
1597
1598 if (rx_ring->next_to_use != ntu)
1599 i40e_release_rx_desc(rx_ring, ntu);
1600
1601 return false;
1602
1603 no_buffers:
1604 if (rx_ring->next_to_use != ntu)
1605 i40e_release_rx_desc(rx_ring, ntu);
1606
1607 /* make sure to come back via polling to try again after
1608 * allocation failure
1609 */
1610 return true;
1611 }
1612
1613 /**
1614 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1615 * @vsi: the VSI we care about
1616 * @skb: skb currently being received and modified
1617 * @rx_desc: the receive descriptor
1618 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1619 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1620 struct sk_buff *skb,
1621 union i40e_rx_desc *rx_desc)
1622 {
1623 struct i40e_rx_ptype_decoded decoded;
1624 u32 rx_error, rx_status;
1625 bool ipv4, ipv6;
1626 u8 ptype;
1627 u64 qword;
1628
1629 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1630 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1631 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1632 I40E_RXD_QW1_ERROR_SHIFT;
1633 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1634 I40E_RXD_QW1_STATUS_SHIFT;
1635 decoded = decode_rx_desc_ptype(ptype);
1636
1637 skb->ip_summed = CHECKSUM_NONE;
1638
1639 skb_checksum_none_assert(skb);
1640
1641 /* Rx csum enabled and ip headers found? */
1642 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1643 return;
1644
1645 /* did the hardware decode the packet and checksum? */
1646 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1647 return;
1648
1649 /* both known and outer_ip must be set for the below code to work */
1650 if (!(decoded.known && decoded.outer_ip))
1651 return;
1652
1653 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1654 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1655 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1656 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1657
1658 if (ipv4 &&
1659 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1660 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1661 goto checksum_fail;
1662
1663 /* likely incorrect csum if alternate IP extension headers found */
1664 if (ipv6 &&
1665 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1666 /* don't increment checksum err here, non-fatal err */
1667 return;
1668
1669 /* there was some L4 error, count error and punt packet to the stack */
1670 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1671 goto checksum_fail;
1672
1673 /* handle packets that were not able to be checksummed due
1674 * to arrival speed, in this case the stack can compute
1675 * the csum.
1676 */
1677 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1678 return;
1679
1680 /* If there is an outer header present that might contain a checksum
1681 * we need to bump the checksum level by 1 to reflect the fact that
1682 * we are indicating we validated the inner checksum.
1683 */
1684 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1685 skb->csum_level = 1;
1686
1687 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1688 switch (decoded.inner_prot) {
1689 case I40E_RX_PTYPE_INNER_PROT_TCP:
1690 case I40E_RX_PTYPE_INNER_PROT_UDP:
1691 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1692 skb->ip_summed = CHECKSUM_UNNECESSARY;
1693 fallthrough;
1694 default:
1695 break;
1696 }
1697
1698 return;
1699
1700 checksum_fail:
1701 vsi->back->hw_csum_rx_error++;
1702 }
1703
1704 /**
1705 * i40e_ptype_to_htype - get a hash type
1706 * @ptype: the ptype value from the descriptor
1707 *
1708 * Returns a hash type to be used by skb_set_hash
1709 **/
i40e_ptype_to_htype(u8 ptype)1710 static inline int i40e_ptype_to_htype(u8 ptype)
1711 {
1712 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1713
1714 if (!decoded.known)
1715 return PKT_HASH_TYPE_NONE;
1716
1717 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1719 return PKT_HASH_TYPE_L4;
1720 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1721 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1722 return PKT_HASH_TYPE_L3;
1723 else
1724 return PKT_HASH_TYPE_L2;
1725 }
1726
1727 /**
1728 * i40e_rx_hash - set the hash value in the skb
1729 * @ring: descriptor ring
1730 * @rx_desc: specific descriptor
1731 * @skb: skb currently being received and modified
1732 * @rx_ptype: Rx packet type
1733 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1734 static inline void i40e_rx_hash(struct i40e_ring *ring,
1735 union i40e_rx_desc *rx_desc,
1736 struct sk_buff *skb,
1737 u8 rx_ptype)
1738 {
1739 u32 hash;
1740 const __le64 rss_mask =
1741 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1742 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1743
1744 if (!(ring->netdev->features & NETIF_F_RXHASH))
1745 return;
1746
1747 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1748 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1749 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1750 }
1751 }
1752
1753 /**
1754 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1755 * @rx_ring: rx descriptor ring packet is being transacted on
1756 * @rx_desc: pointer to the EOP Rx descriptor
1757 * @skb: pointer to current skb being populated
1758 *
1759 * This function checks the ring, descriptor, and packet information in
1760 * order to populate the hash, checksum, VLAN, protocol, and
1761 * other fields within the skb.
1762 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1763 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1764 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1765 {
1766 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1767 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1768 I40E_RXD_QW1_STATUS_SHIFT;
1769 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1770 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1771 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1772 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1773 I40E_RXD_QW1_PTYPE_SHIFT;
1774
1775 if (unlikely(tsynvalid))
1776 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1777
1778 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1779
1780 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1781
1782 skb_record_rx_queue(skb, rx_ring->queue_index);
1783
1784 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1785 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1786
1787 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1788 le16_to_cpu(vlan_tag));
1789 }
1790
1791 /* modifies the skb - consumes the enet header */
1792 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1793 }
1794
1795 /**
1796 * i40e_cleanup_headers - Correct empty headers
1797 * @rx_ring: rx descriptor ring packet is being transacted on
1798 * @skb: pointer to current skb being fixed
1799 * @rx_desc: pointer to the EOP Rx descriptor
1800 *
1801 * Also address the case where we are pulling data in on pages only
1802 * and as such no data is present in the skb header.
1803 *
1804 * In addition if skb is not at least 60 bytes we need to pad it so that
1805 * it is large enough to qualify as a valid Ethernet frame.
1806 *
1807 * Returns true if an error was encountered and skb was freed.
1808 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1809 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1810 union i40e_rx_desc *rx_desc)
1811
1812 {
1813 /* XDP packets use error pointer so abort at this point */
1814 if (IS_ERR(skb))
1815 return true;
1816
1817 /* ERR_MASK will only have valid bits if EOP set, and
1818 * what we are doing here is actually checking
1819 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1820 * the error field
1821 */
1822 if (unlikely(i40e_test_staterr(rx_desc,
1823 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1824 dev_kfree_skb_any(skb);
1825 return true;
1826 }
1827
1828 /* if eth_skb_pad returns an error the skb was freed */
1829 if (eth_skb_pad(skb))
1830 return true;
1831
1832 return false;
1833 }
1834
1835 /**
1836 * i40e_page_is_reusable - check if any reuse is possible
1837 * @page: page struct to check
1838 *
1839 * A page is not reusable if it was allocated under low memory
1840 * conditions, or it's not in the same NUMA node as this CPU.
1841 */
i40e_page_is_reusable(struct page * page)1842 static inline bool i40e_page_is_reusable(struct page *page)
1843 {
1844 return (page_to_nid(page) == numa_mem_id()) &&
1845 !page_is_pfmemalloc(page);
1846 }
1847
1848 /**
1849 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1850 * the adapter for another receive
1851 *
1852 * @rx_buffer: buffer containing the page
1853 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1854 *
1855 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1856 * an unused region in the page.
1857 *
1858 * For small pages, @truesize will be a constant value, half the size
1859 * of the memory at page. We'll attempt to alternate between high and
1860 * low halves of the page, with one half ready for use by the hardware
1861 * and the other half being consumed by the stack. We use the page
1862 * ref count to determine whether the stack has finished consuming the
1863 * portion of this page that was passed up with a previous packet. If
1864 * the page ref count is >1, we'll assume the "other" half page is
1865 * still busy, and this page cannot be reused.
1866 *
1867 * For larger pages, @truesize will be the actual space used by the
1868 * received packet (adjusted upward to an even multiple of the cache
1869 * line size). This will advance through the page by the amount
1870 * actually consumed by the received packets while there is still
1871 * space for a buffer. Each region of larger pages will be used at
1872 * most once, after which the page will not be reused.
1873 *
1874 * In either case, if the page is reusable its refcount is increased.
1875 **/
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1876 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1877 int rx_buffer_pgcnt)
1878 {
1879 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1880 struct page *page = rx_buffer->page;
1881
1882 /* Is any reuse possible? */
1883 if (unlikely(!i40e_page_is_reusable(page)))
1884 return false;
1885
1886 #if (PAGE_SIZE < 8192)
1887 /* if we are only owner of page we can reuse it */
1888 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1889 return false;
1890 #else
1891 #define I40E_LAST_OFFSET \
1892 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1893 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1894 return false;
1895 #endif
1896
1897 /* If we have drained the page fragment pool we need to update
1898 * the pagecnt_bias and page count so that we fully restock the
1899 * number of references the driver holds.
1900 */
1901 if (unlikely(pagecnt_bias == 1)) {
1902 page_ref_add(page, USHRT_MAX - 1);
1903 rx_buffer->pagecnt_bias = USHRT_MAX;
1904 }
1905
1906 return true;
1907 }
1908
1909 /**
1910 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1911 * @rx_ring: rx descriptor ring to transact packets on
1912 * @rx_buffer: buffer containing page to add
1913 * @skb: sk_buff to place the data into
1914 * @size: packet length from rx_desc
1915 *
1916 * This function will add the data contained in rx_buffer->page to the skb.
1917 * It will just attach the page as a frag to the skb.
1918 *
1919 * The function will then update the page offset.
1920 **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1921 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1922 struct i40e_rx_buffer *rx_buffer,
1923 struct sk_buff *skb,
1924 unsigned int size)
1925 {
1926 #if (PAGE_SIZE < 8192)
1927 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1928 #else
1929 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1930 #endif
1931
1932 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1933 rx_buffer->page_offset, size, truesize);
1934
1935 /* page is being used so we must update the page offset */
1936 #if (PAGE_SIZE < 8192)
1937 rx_buffer->page_offset ^= truesize;
1938 #else
1939 rx_buffer->page_offset += truesize;
1940 #endif
1941 }
1942
1943 /**
1944 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1945 * @rx_ring: rx descriptor ring to transact packets on
1946 * @size: size of buffer to add to skb
1947 * @rx_buffer_pgcnt: buffer page refcount
1948 *
1949 * This function will pull an Rx buffer from the ring and synchronize it
1950 * for use by the CPU.
1951 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1952 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1953 const unsigned int size,
1954 int *rx_buffer_pgcnt)
1955 {
1956 struct i40e_rx_buffer *rx_buffer;
1957
1958 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1959 *rx_buffer_pgcnt =
1960 #if (PAGE_SIZE < 8192)
1961 page_count(rx_buffer->page);
1962 #else
1963 0;
1964 #endif
1965 prefetch_page_address(rx_buffer->page);
1966
1967 /* we are reusing so sync this buffer for CPU use */
1968 dma_sync_single_range_for_cpu(rx_ring->dev,
1969 rx_buffer->dma,
1970 rx_buffer->page_offset,
1971 size,
1972 DMA_FROM_DEVICE);
1973
1974 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1975 rx_buffer->pagecnt_bias--;
1976
1977 return rx_buffer;
1978 }
1979
1980 /**
1981 * i40e_construct_skb - Allocate skb and populate it
1982 * @rx_ring: rx descriptor ring to transact packets on
1983 * @rx_buffer: rx buffer to pull data from
1984 * @xdp: xdp_buff pointing to the data
1985 *
1986 * This function allocates an skb. It then populates it with the page
1987 * data from the current receive descriptor, taking care to set up the
1988 * skb correctly.
1989 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)1990 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1991 struct i40e_rx_buffer *rx_buffer,
1992 struct xdp_buff *xdp)
1993 {
1994 unsigned int size = xdp->data_end - xdp->data;
1995 #if (PAGE_SIZE < 8192)
1996 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1997 #else
1998 unsigned int truesize = SKB_DATA_ALIGN(size);
1999 #endif
2000 unsigned int headlen;
2001 struct sk_buff *skb;
2002
2003 /* prefetch first cache line of first page */
2004 net_prefetch(xdp->data);
2005
2006 /* Note, we get here by enabling legacy-rx via:
2007 *
2008 * ethtool --set-priv-flags <dev> legacy-rx on
2009 *
2010 * In this mode, we currently get 0 extra XDP headroom as
2011 * opposed to having legacy-rx off, where we process XDP
2012 * packets going to stack via i40e_build_skb(). The latter
2013 * provides us currently with 192 bytes of headroom.
2014 *
2015 * For i40e_construct_skb() mode it means that the
2016 * xdp->data_meta will always point to xdp->data, since
2017 * the helper cannot expand the head. Should this ever
2018 * change in future for legacy-rx mode on, then lets also
2019 * add xdp->data_meta handling here.
2020 */
2021
2022 /* allocate a skb to store the frags */
2023 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2024 I40E_RX_HDR_SIZE,
2025 GFP_ATOMIC | __GFP_NOWARN);
2026 if (unlikely(!skb))
2027 return NULL;
2028
2029 /* Determine available headroom for copy */
2030 headlen = size;
2031 if (headlen > I40E_RX_HDR_SIZE)
2032 headlen = eth_get_headlen(skb->dev, xdp->data,
2033 I40E_RX_HDR_SIZE);
2034
2035 /* align pull length to size of long to optimize memcpy performance */
2036 memcpy(__skb_put(skb, headlen), xdp->data,
2037 ALIGN(headlen, sizeof(long)));
2038
2039 /* update all of the pointers */
2040 size -= headlen;
2041 if (size) {
2042 skb_add_rx_frag(skb, 0, rx_buffer->page,
2043 rx_buffer->page_offset + headlen,
2044 size, truesize);
2045
2046 /* buffer is used by skb, update page_offset */
2047 #if (PAGE_SIZE < 8192)
2048 rx_buffer->page_offset ^= truesize;
2049 #else
2050 rx_buffer->page_offset += truesize;
2051 #endif
2052 } else {
2053 /* buffer is unused, reset bias back to rx_buffer */
2054 rx_buffer->pagecnt_bias++;
2055 }
2056
2057 return skb;
2058 }
2059
2060 /**
2061 * i40e_build_skb - Build skb around an existing buffer
2062 * @rx_ring: Rx descriptor ring to transact packets on
2063 * @rx_buffer: Rx buffer to pull data from
2064 * @xdp: xdp_buff pointing to the data
2065 *
2066 * This function builds an skb around an existing Rx buffer, taking care
2067 * to set up the skb correctly and avoid any memcpy overhead.
2068 */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2069 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2070 struct i40e_rx_buffer *rx_buffer,
2071 struct xdp_buff *xdp)
2072 {
2073 unsigned int metasize = xdp->data - xdp->data_meta;
2074 #if (PAGE_SIZE < 8192)
2075 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2076 #else
2077 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2078 SKB_DATA_ALIGN(xdp->data_end -
2079 xdp->data_hard_start);
2080 #endif
2081 struct sk_buff *skb;
2082
2083 /* Prefetch first cache line of first page. If xdp->data_meta
2084 * is unused, this points exactly as xdp->data, otherwise we
2085 * likely have a consumer accessing first few bytes of meta
2086 * data, and then actual data.
2087 */
2088 net_prefetch(xdp->data_meta);
2089
2090 /* build an skb around the page buffer */
2091 skb = build_skb(xdp->data_hard_start, truesize);
2092 if (unlikely(!skb))
2093 return NULL;
2094
2095 /* update pointers within the skb to store the data */
2096 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2097 __skb_put(skb, xdp->data_end - xdp->data);
2098 if (metasize)
2099 skb_metadata_set(skb, metasize);
2100
2101 /* buffer is used by skb, update page_offset */
2102 #if (PAGE_SIZE < 8192)
2103 rx_buffer->page_offset ^= truesize;
2104 #else
2105 rx_buffer->page_offset += truesize;
2106 #endif
2107
2108 return skb;
2109 }
2110
2111 /**
2112 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2113 * @rx_ring: rx descriptor ring to transact packets on
2114 * @rx_buffer: rx buffer to pull data from
2115 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2116 *
2117 * This function will clean up the contents of the rx_buffer. It will
2118 * either recycle the buffer or unmap it and free the associated resources.
2119 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2120 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2121 struct i40e_rx_buffer *rx_buffer,
2122 int rx_buffer_pgcnt)
2123 {
2124 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2125 /* hand second half of page back to the ring */
2126 i40e_reuse_rx_page(rx_ring, rx_buffer);
2127 } else {
2128 /* we are not reusing the buffer so unmap it */
2129 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2130 i40e_rx_pg_size(rx_ring),
2131 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2132 __page_frag_cache_drain(rx_buffer->page,
2133 rx_buffer->pagecnt_bias);
2134 /* clear contents of buffer_info */
2135 rx_buffer->page = NULL;
2136 }
2137 }
2138
2139 /**
2140 * i40e_is_non_eop - process handling of non-EOP buffers
2141 * @rx_ring: Rx ring being processed
2142 * @rx_desc: Rx descriptor for current buffer
2143 * @skb: Current socket buffer containing buffer in progress
2144 *
2145 * This function updates next to clean. If the buffer is an EOP buffer
2146 * this function exits returning false, otherwise it will place the
2147 * sk_buff in the next buffer to be chained and return true indicating
2148 * that this is in fact a non-EOP buffer.
2149 **/
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)2150 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2151 union i40e_rx_desc *rx_desc,
2152 struct sk_buff *skb)
2153 {
2154 u32 ntc = rx_ring->next_to_clean + 1;
2155
2156 /* fetch, update, and store next to clean */
2157 ntc = (ntc < rx_ring->count) ? ntc : 0;
2158 rx_ring->next_to_clean = ntc;
2159
2160 prefetch(I40E_RX_DESC(rx_ring, ntc));
2161
2162 /* if we are the last buffer then there is nothing else to do */
2163 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2164 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2165 return false;
2166
2167 rx_ring->rx_stats.non_eop_descs++;
2168
2169 return true;
2170 }
2171
2172 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2173 struct i40e_ring *xdp_ring);
2174
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2175 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2176 {
2177 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2178
2179 if (unlikely(!xdpf))
2180 return I40E_XDP_CONSUMED;
2181
2182 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2183 }
2184
2185 /**
2186 * i40e_run_xdp - run an XDP program
2187 * @rx_ring: Rx ring being processed
2188 * @xdp: XDP buffer containing the frame
2189 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2190 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2191 struct xdp_buff *xdp)
2192 {
2193 int err, result = I40E_XDP_PASS;
2194 struct i40e_ring *xdp_ring;
2195 struct bpf_prog *xdp_prog;
2196 u32 act;
2197
2198 rcu_read_lock();
2199 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2200
2201 if (!xdp_prog)
2202 goto xdp_out;
2203
2204 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2205
2206 act = bpf_prog_run_xdp(xdp_prog, xdp);
2207 switch (act) {
2208 case XDP_PASS:
2209 break;
2210 case XDP_TX:
2211 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2212 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2213 break;
2214 case XDP_REDIRECT:
2215 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2216 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2217 break;
2218 default:
2219 bpf_warn_invalid_xdp_action(act);
2220 fallthrough;
2221 case XDP_ABORTED:
2222 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2223 fallthrough; /* handle aborts by dropping packet */
2224 case XDP_DROP:
2225 result = I40E_XDP_CONSUMED;
2226 break;
2227 }
2228 xdp_out:
2229 rcu_read_unlock();
2230 return ERR_PTR(-result);
2231 }
2232
2233 /**
2234 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2235 * @rx_ring: Rx ring
2236 * @rx_buffer: Rx buffer to adjust
2237 * @size: Size of adjustment
2238 **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2239 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2240 struct i40e_rx_buffer *rx_buffer,
2241 unsigned int size)
2242 {
2243 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2244
2245 #if (PAGE_SIZE < 8192)
2246 rx_buffer->page_offset ^= truesize;
2247 #else
2248 rx_buffer->page_offset += truesize;
2249 #endif
2250 }
2251
2252 /**
2253 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2254 * @xdp_ring: XDP Tx ring
2255 *
2256 * This function updates the XDP Tx ring tail register.
2257 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2258 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2259 {
2260 /* Force memory writes to complete before letting h/w
2261 * know there are new descriptors to fetch.
2262 */
2263 wmb();
2264 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2265 }
2266
2267 /**
2268 * i40e_update_rx_stats - Update Rx ring statistics
2269 * @rx_ring: rx descriptor ring
2270 * @total_rx_bytes: number of bytes received
2271 * @total_rx_packets: number of packets received
2272 *
2273 * This function updates the Rx ring statistics.
2274 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2275 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2276 unsigned int total_rx_bytes,
2277 unsigned int total_rx_packets)
2278 {
2279 u64_stats_update_begin(&rx_ring->syncp);
2280 rx_ring->stats.packets += total_rx_packets;
2281 rx_ring->stats.bytes += total_rx_bytes;
2282 u64_stats_update_end(&rx_ring->syncp);
2283 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2284 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2285 }
2286
2287 /**
2288 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2289 * @rx_ring: Rx ring
2290 * @xdp_res: Result of the receive batch
2291 *
2292 * This function bumps XDP Tx tail and/or flush redirect map, and
2293 * should be called when a batch of packets has been processed in the
2294 * napi loop.
2295 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2296 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2297 {
2298 if (xdp_res & I40E_XDP_REDIR)
2299 xdp_do_flush_map();
2300
2301 if (xdp_res & I40E_XDP_TX) {
2302 struct i40e_ring *xdp_ring =
2303 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2304
2305 i40e_xdp_ring_update_tail(xdp_ring);
2306 }
2307 }
2308
2309 /**
2310 * i40e_inc_ntc: Advance the next_to_clean index
2311 * @rx_ring: Rx ring
2312 **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2313 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2314 {
2315 u32 ntc = rx_ring->next_to_clean + 1;
2316
2317 ntc = (ntc < rx_ring->count) ? ntc : 0;
2318 rx_ring->next_to_clean = ntc;
2319 prefetch(I40E_RX_DESC(rx_ring, ntc));
2320 }
2321
2322 /**
2323 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2324 * @rx_ring: rx descriptor ring to transact packets on
2325 * @budget: Total limit on number of packets to process
2326 *
2327 * This function provides a "bounce buffer" approach to Rx interrupt
2328 * processing. The advantage to this is that on systems that have
2329 * expensive overhead for IOMMU access this provides a means of avoiding
2330 * it by maintaining the mapping of the page to the system.
2331 *
2332 * Returns amount of work completed
2333 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2334 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2335 {
2336 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2337 struct sk_buff *skb = rx_ring->skb;
2338 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2339 unsigned int xdp_xmit = 0;
2340 bool failure = false;
2341 struct xdp_buff xdp;
2342
2343 #if (PAGE_SIZE < 8192)
2344 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2345 #endif
2346 xdp.rxq = &rx_ring->xdp_rxq;
2347
2348 while (likely(total_rx_packets < (unsigned int)budget)) {
2349 struct i40e_rx_buffer *rx_buffer;
2350 union i40e_rx_desc *rx_desc;
2351 int rx_buffer_pgcnt;
2352 unsigned int size;
2353 u64 qword;
2354
2355 /* return some buffers to hardware, one at a time is too slow */
2356 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2357 failure = failure ||
2358 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2359 cleaned_count = 0;
2360 }
2361
2362 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2363
2364 /* status_error_len will always be zero for unused descriptors
2365 * because it's cleared in cleanup, and overlaps with hdr_addr
2366 * which is always zero because packet split isn't used, if the
2367 * hardware wrote DD then the length will be non-zero
2368 */
2369 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2370
2371 /* This memory barrier is needed to keep us from reading
2372 * any other fields out of the rx_desc until we have
2373 * verified the descriptor has been written back.
2374 */
2375 dma_rmb();
2376
2377 if (i40e_rx_is_programming_status(qword)) {
2378 i40e_clean_programming_status(rx_ring,
2379 rx_desc->raw.qword[0],
2380 qword);
2381 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2382 i40e_inc_ntc(rx_ring);
2383 i40e_reuse_rx_page(rx_ring, rx_buffer);
2384 cleaned_count++;
2385 continue;
2386 }
2387
2388 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2389 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2390 if (!size)
2391 break;
2392
2393 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2394 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2395
2396 /* retrieve a buffer from the ring */
2397 if (!skb) {
2398 xdp.data = page_address(rx_buffer->page) +
2399 rx_buffer->page_offset;
2400 xdp.data_meta = xdp.data;
2401 xdp.data_hard_start = xdp.data -
2402 i40e_rx_offset(rx_ring);
2403 xdp.data_end = xdp.data + size;
2404 #if (PAGE_SIZE > 4096)
2405 /* At larger PAGE_SIZE, frame_sz depend on len size */
2406 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2407 #endif
2408 skb = i40e_run_xdp(rx_ring, &xdp);
2409 }
2410
2411 if (IS_ERR(skb)) {
2412 unsigned int xdp_res = -PTR_ERR(skb);
2413
2414 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2415 xdp_xmit |= xdp_res;
2416 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2417 } else {
2418 rx_buffer->pagecnt_bias++;
2419 }
2420 total_rx_bytes += size;
2421 total_rx_packets++;
2422 } else if (skb) {
2423 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2424 } else if (ring_uses_build_skb(rx_ring)) {
2425 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2426 } else {
2427 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2428 }
2429
2430 /* exit if we failed to retrieve a buffer */
2431 if (!skb) {
2432 rx_ring->rx_stats.alloc_buff_failed++;
2433 rx_buffer->pagecnt_bias++;
2434 break;
2435 }
2436
2437 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2438 cleaned_count++;
2439
2440 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2441 continue;
2442
2443 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2444 skb = NULL;
2445 continue;
2446 }
2447
2448 /* probably a little skewed due to removing CRC */
2449 total_rx_bytes += skb->len;
2450
2451 /* populate checksum, VLAN, and protocol */
2452 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2453
2454 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2455 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2456 skb = NULL;
2457
2458 /* update budget accounting */
2459 total_rx_packets++;
2460 }
2461
2462 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2463 rx_ring->skb = skb;
2464
2465 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2466
2467 /* guarantee a trip back through this routine if there was a failure */
2468 return failure ? budget : (int)total_rx_packets;
2469 }
2470
i40e_buildreg_itr(const int type,u16 itr)2471 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2472 {
2473 u32 val;
2474
2475 /* We don't bother with setting the CLEARPBA bit as the data sheet
2476 * points out doing so is "meaningless since it was already
2477 * auto-cleared". The auto-clearing happens when the interrupt is
2478 * asserted.
2479 *
2480 * Hardware errata 28 for also indicates that writing to a
2481 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2482 * an event in the PBA anyway so we need to rely on the automask
2483 * to hold pending events for us until the interrupt is re-enabled
2484 *
2485 * The itr value is reported in microseconds, and the register
2486 * value is recorded in 2 microsecond units. For this reason we
2487 * only need to shift by the interval shift - 1 instead of the
2488 * full value.
2489 */
2490 itr &= I40E_ITR_MASK;
2491
2492 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2493 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2494 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2495
2496 return val;
2497 }
2498
2499 /* a small macro to shorten up some long lines */
2500 #define INTREG I40E_PFINT_DYN_CTLN
2501
2502 /* The act of updating the ITR will cause it to immediately trigger. In order
2503 * to prevent this from throwing off adaptive update statistics we defer the
2504 * update so that it can only happen so often. So after either Tx or Rx are
2505 * updated we make the adaptive scheme wait until either the ITR completely
2506 * expires via the next_update expiration or we have been through at least
2507 * 3 interrupts.
2508 */
2509 #define ITR_COUNTDOWN_START 3
2510
2511 /**
2512 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2513 * @vsi: the VSI we care about
2514 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2515 *
2516 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2517 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2518 struct i40e_q_vector *q_vector)
2519 {
2520 struct i40e_hw *hw = &vsi->back->hw;
2521 u32 intval;
2522
2523 /* If we don't have MSIX, then we only need to re-enable icr0 */
2524 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2525 i40e_irq_dynamic_enable_icr0(vsi->back);
2526 return;
2527 }
2528
2529 /* These will do nothing if dynamic updates are not enabled */
2530 i40e_update_itr(q_vector, &q_vector->tx);
2531 i40e_update_itr(q_vector, &q_vector->rx);
2532
2533 /* This block of logic allows us to get away with only updating
2534 * one ITR value with each interrupt. The idea is to perform a
2535 * pseudo-lazy update with the following criteria.
2536 *
2537 * 1. Rx is given higher priority than Tx if both are in same state
2538 * 2. If we must reduce an ITR that is given highest priority.
2539 * 3. We then give priority to increasing ITR based on amount.
2540 */
2541 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2542 /* Rx ITR needs to be reduced, this is highest priority */
2543 intval = i40e_buildreg_itr(I40E_RX_ITR,
2544 q_vector->rx.target_itr);
2545 q_vector->rx.current_itr = q_vector->rx.target_itr;
2546 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2547 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2548 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2549 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2550 /* Tx ITR needs to be reduced, this is second priority
2551 * Tx ITR needs to be increased more than Rx, fourth priority
2552 */
2553 intval = i40e_buildreg_itr(I40E_TX_ITR,
2554 q_vector->tx.target_itr);
2555 q_vector->tx.current_itr = q_vector->tx.target_itr;
2556 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2557 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2558 /* Rx ITR needs to be increased, third priority */
2559 intval = i40e_buildreg_itr(I40E_RX_ITR,
2560 q_vector->rx.target_itr);
2561 q_vector->rx.current_itr = q_vector->rx.target_itr;
2562 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2563 } else {
2564 /* No ITR update, lowest priority */
2565 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2566 if (q_vector->itr_countdown)
2567 q_vector->itr_countdown--;
2568 }
2569
2570 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2571 wr32(hw, INTREG(q_vector->reg_idx), intval);
2572 }
2573
2574 /**
2575 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2576 * @napi: napi struct with our devices info in it
2577 * @budget: amount of work driver is allowed to do this pass, in packets
2578 *
2579 * This function will clean all queues associated with a q_vector.
2580 *
2581 * Returns the amount of work done
2582 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2583 int i40e_napi_poll(struct napi_struct *napi, int budget)
2584 {
2585 struct i40e_q_vector *q_vector =
2586 container_of(napi, struct i40e_q_vector, napi);
2587 struct i40e_vsi *vsi = q_vector->vsi;
2588 struct i40e_ring *ring;
2589 bool clean_complete = true;
2590 bool arm_wb = false;
2591 int budget_per_ring;
2592 int work_done = 0;
2593
2594 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2595 napi_complete(napi);
2596 return 0;
2597 }
2598
2599 /* Since the actual Tx work is minimal, we can give the Tx a larger
2600 * budget and be more aggressive about cleaning up the Tx descriptors.
2601 */
2602 i40e_for_each_ring(ring, q_vector->tx) {
2603 bool wd = ring->xsk_pool ?
2604 i40e_clean_xdp_tx_irq(vsi, ring) :
2605 i40e_clean_tx_irq(vsi, ring, budget);
2606
2607 if (!wd) {
2608 clean_complete = false;
2609 continue;
2610 }
2611 arm_wb |= ring->arm_wb;
2612 ring->arm_wb = false;
2613 }
2614
2615 /* Handle case where we are called by netpoll with a budget of 0 */
2616 if (budget <= 0)
2617 goto tx_only;
2618
2619 /* normally we have 1 Rx ring per q_vector */
2620 if (unlikely(q_vector->num_ringpairs > 1))
2621 /* We attempt to distribute budget to each Rx queue fairly, but
2622 * don't allow the budget to go below 1 because that would exit
2623 * polling early.
2624 */
2625 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2626 else
2627 /* Max of 1 Rx ring in this q_vector so give it the budget */
2628 budget_per_ring = budget;
2629
2630 i40e_for_each_ring(ring, q_vector->rx) {
2631 int cleaned = ring->xsk_pool ?
2632 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2633 i40e_clean_rx_irq(ring, budget_per_ring);
2634
2635 work_done += cleaned;
2636 /* if we clean as many as budgeted, we must not be done */
2637 if (cleaned >= budget_per_ring)
2638 clean_complete = false;
2639 }
2640
2641 /* If work not completed, return budget and polling will return */
2642 if (!clean_complete) {
2643 int cpu_id = smp_processor_id();
2644
2645 /* It is possible that the interrupt affinity has changed but,
2646 * if the cpu is pegged at 100%, polling will never exit while
2647 * traffic continues and the interrupt will be stuck on this
2648 * cpu. We check to make sure affinity is correct before we
2649 * continue to poll, otherwise we must stop polling so the
2650 * interrupt can move to the correct cpu.
2651 */
2652 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2653 /* Tell napi that we are done polling */
2654 napi_complete_done(napi, work_done);
2655
2656 /* Force an interrupt */
2657 i40e_force_wb(vsi, q_vector);
2658
2659 /* Return budget-1 so that polling stops */
2660 return budget - 1;
2661 }
2662 tx_only:
2663 if (arm_wb) {
2664 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2665 i40e_enable_wb_on_itr(vsi, q_vector);
2666 }
2667 return budget;
2668 }
2669
2670 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2671 q_vector->arm_wb_state = false;
2672
2673 /* Exit the polling mode, but don't re-enable interrupts if stack might
2674 * poll us due to busy-polling
2675 */
2676 if (likely(napi_complete_done(napi, work_done)))
2677 i40e_update_enable_itr(vsi, q_vector);
2678
2679 return min(work_done, budget - 1);
2680 }
2681
2682 /**
2683 * i40e_atr - Add a Flow Director ATR filter
2684 * @tx_ring: ring to add programming descriptor to
2685 * @skb: send buffer
2686 * @tx_flags: send tx flags
2687 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2688 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2689 u32 tx_flags)
2690 {
2691 struct i40e_filter_program_desc *fdir_desc;
2692 struct i40e_pf *pf = tx_ring->vsi->back;
2693 union {
2694 unsigned char *network;
2695 struct iphdr *ipv4;
2696 struct ipv6hdr *ipv6;
2697 } hdr;
2698 struct tcphdr *th;
2699 unsigned int hlen;
2700 u32 flex_ptype, dtype_cmd;
2701 int l4_proto;
2702 u16 i;
2703
2704 /* make sure ATR is enabled */
2705 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2706 return;
2707
2708 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2709 return;
2710
2711 /* if sampling is disabled do nothing */
2712 if (!tx_ring->atr_sample_rate)
2713 return;
2714
2715 /* Currently only IPv4/IPv6 with TCP is supported */
2716 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2717 return;
2718
2719 /* snag network header to get L4 type and address */
2720 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2721 skb_inner_network_header(skb) : skb_network_header(skb);
2722
2723 /* Note: tx_flags gets modified to reflect inner protocols in
2724 * tx_enable_csum function if encap is enabled.
2725 */
2726 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2727 /* access ihl as u8 to avoid unaligned access on ia64 */
2728 hlen = (hdr.network[0] & 0x0F) << 2;
2729 l4_proto = hdr.ipv4->protocol;
2730 } else {
2731 /* find the start of the innermost ipv6 header */
2732 unsigned int inner_hlen = hdr.network - skb->data;
2733 unsigned int h_offset = inner_hlen;
2734
2735 /* this function updates h_offset to the end of the header */
2736 l4_proto =
2737 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2738 /* hlen will contain our best estimate of the tcp header */
2739 hlen = h_offset - inner_hlen;
2740 }
2741
2742 if (l4_proto != IPPROTO_TCP)
2743 return;
2744
2745 th = (struct tcphdr *)(hdr.network + hlen);
2746
2747 /* Due to lack of space, no more new filters can be programmed */
2748 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2749 return;
2750 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2751 /* HW ATR eviction will take care of removing filters on FIN
2752 * and RST packets.
2753 */
2754 if (th->fin || th->rst)
2755 return;
2756 }
2757
2758 tx_ring->atr_count++;
2759
2760 /* sample on all syn/fin/rst packets or once every atr sample rate */
2761 if (!th->fin &&
2762 !th->syn &&
2763 !th->rst &&
2764 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2765 return;
2766
2767 tx_ring->atr_count = 0;
2768
2769 /* grab the next descriptor */
2770 i = tx_ring->next_to_use;
2771 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2772
2773 i++;
2774 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2775
2776 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2777 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2778 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2779 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2780 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2781 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2782 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2783
2784 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2785
2786 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2787
2788 dtype_cmd |= (th->fin || th->rst) ?
2789 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2790 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2791 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2792 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2793
2794 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2795 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2796
2797 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2798 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2799
2800 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2801 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2802 dtype_cmd |=
2803 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2804 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2805 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2806 else
2807 dtype_cmd |=
2808 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2809 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2810 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2811
2812 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2813 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2814
2815 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2816 fdir_desc->rsvd = cpu_to_le32(0);
2817 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2818 fdir_desc->fd_id = cpu_to_le32(0);
2819 }
2820
2821 /**
2822 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2823 * @skb: send buffer
2824 * @tx_ring: ring to send buffer on
2825 * @flags: the tx flags to be set
2826 *
2827 * Checks the skb and set up correspondingly several generic transmit flags
2828 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2829 *
2830 * Returns error code indicate the frame should be dropped upon error and the
2831 * otherwise returns 0 to indicate the flags has been set properly.
2832 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2833 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2834 struct i40e_ring *tx_ring,
2835 u32 *flags)
2836 {
2837 __be16 protocol = skb->protocol;
2838 u32 tx_flags = 0;
2839
2840 if (protocol == htons(ETH_P_8021Q) &&
2841 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2842 /* When HW VLAN acceleration is turned off by the user the
2843 * stack sets the protocol to 8021q so that the driver
2844 * can take any steps required to support the SW only
2845 * VLAN handling. In our case the driver doesn't need
2846 * to take any further steps so just set the protocol
2847 * to the encapsulated ethertype.
2848 */
2849 skb->protocol = vlan_get_protocol(skb);
2850 goto out;
2851 }
2852
2853 /* if we have a HW VLAN tag being added, default to the HW one */
2854 if (skb_vlan_tag_present(skb)) {
2855 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2856 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2857 /* else if it is a SW VLAN, check the next protocol and store the tag */
2858 } else if (protocol == htons(ETH_P_8021Q)) {
2859 struct vlan_hdr *vhdr, _vhdr;
2860
2861 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2862 if (!vhdr)
2863 return -EINVAL;
2864
2865 protocol = vhdr->h_vlan_encapsulated_proto;
2866 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2867 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2868 }
2869
2870 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2871 goto out;
2872
2873 /* Insert 802.1p priority into VLAN header */
2874 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2875 (skb->priority != TC_PRIO_CONTROL)) {
2876 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2877 tx_flags |= (skb->priority & 0x7) <<
2878 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2879 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2880 struct vlan_ethhdr *vhdr;
2881 int rc;
2882
2883 rc = skb_cow_head(skb, 0);
2884 if (rc < 0)
2885 return rc;
2886 vhdr = (struct vlan_ethhdr *)skb->data;
2887 vhdr->h_vlan_TCI = htons(tx_flags >>
2888 I40E_TX_FLAGS_VLAN_SHIFT);
2889 } else {
2890 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2891 }
2892 }
2893
2894 out:
2895 *flags = tx_flags;
2896 return 0;
2897 }
2898
2899 /**
2900 * i40e_tso - set up the tso context descriptor
2901 * @first: pointer to first Tx buffer for xmit
2902 * @hdr_len: ptr to the size of the packet header
2903 * @cd_type_cmd_tso_mss: Quad Word 1
2904 *
2905 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2906 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)2907 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2908 u64 *cd_type_cmd_tso_mss)
2909 {
2910 struct sk_buff *skb = first->skb;
2911 u64 cd_cmd, cd_tso_len, cd_mss;
2912 union {
2913 struct iphdr *v4;
2914 struct ipv6hdr *v6;
2915 unsigned char *hdr;
2916 } ip;
2917 union {
2918 struct tcphdr *tcp;
2919 struct udphdr *udp;
2920 unsigned char *hdr;
2921 } l4;
2922 u32 paylen, l4_offset;
2923 u16 gso_segs, gso_size;
2924 int err;
2925
2926 if (skb->ip_summed != CHECKSUM_PARTIAL)
2927 return 0;
2928
2929 if (!skb_is_gso(skb))
2930 return 0;
2931
2932 err = skb_cow_head(skb, 0);
2933 if (err < 0)
2934 return err;
2935
2936 ip.hdr = skb_network_header(skb);
2937 l4.hdr = skb_transport_header(skb);
2938
2939 /* initialize outer IP header fields */
2940 if (ip.v4->version == 4) {
2941 ip.v4->tot_len = 0;
2942 ip.v4->check = 0;
2943 } else {
2944 ip.v6->payload_len = 0;
2945 }
2946
2947 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2948 SKB_GSO_GRE_CSUM |
2949 SKB_GSO_IPXIP4 |
2950 SKB_GSO_IPXIP6 |
2951 SKB_GSO_UDP_TUNNEL |
2952 SKB_GSO_UDP_TUNNEL_CSUM)) {
2953 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2954 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2955 l4.udp->len = 0;
2956
2957 /* determine offset of outer transport header */
2958 l4_offset = l4.hdr - skb->data;
2959
2960 /* remove payload length from outer checksum */
2961 paylen = skb->len - l4_offset;
2962 csum_replace_by_diff(&l4.udp->check,
2963 (__force __wsum)htonl(paylen));
2964 }
2965
2966 /* reset pointers to inner headers */
2967 ip.hdr = skb_inner_network_header(skb);
2968 l4.hdr = skb_inner_transport_header(skb);
2969
2970 /* initialize inner IP header fields */
2971 if (ip.v4->version == 4) {
2972 ip.v4->tot_len = 0;
2973 ip.v4->check = 0;
2974 } else {
2975 ip.v6->payload_len = 0;
2976 }
2977 }
2978
2979 /* determine offset of inner transport header */
2980 l4_offset = l4.hdr - skb->data;
2981
2982 /* remove payload length from inner checksum */
2983 paylen = skb->len - l4_offset;
2984
2985 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2986 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2987 /* compute length of segmentation header */
2988 *hdr_len = sizeof(*l4.udp) + l4_offset;
2989 } else {
2990 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2991 /* compute length of segmentation header */
2992 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2993 }
2994
2995 /* pull values out of skb_shinfo */
2996 gso_size = skb_shinfo(skb)->gso_size;
2997 gso_segs = skb_shinfo(skb)->gso_segs;
2998
2999 /* update GSO size and bytecount with header size */
3000 first->gso_segs = gso_segs;
3001 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3002
3003 /* find the field values */
3004 cd_cmd = I40E_TX_CTX_DESC_TSO;
3005 cd_tso_len = skb->len - *hdr_len;
3006 cd_mss = gso_size;
3007 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3008 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3009 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3010 return 1;
3011 }
3012
3013 /**
3014 * i40e_tsyn - set up the tsyn context descriptor
3015 * @tx_ring: ptr to the ring to send
3016 * @skb: ptr to the skb we're sending
3017 * @tx_flags: the collected send information
3018 * @cd_type_cmd_tso_mss: Quad Word 1
3019 *
3020 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3021 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3022 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3023 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3024 {
3025 struct i40e_pf *pf;
3026
3027 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3028 return 0;
3029
3030 /* Tx timestamps cannot be sampled when doing TSO */
3031 if (tx_flags & I40E_TX_FLAGS_TSO)
3032 return 0;
3033
3034 /* only timestamp the outbound packet if the user has requested it and
3035 * we are not already transmitting a packet to be timestamped
3036 */
3037 pf = i40e_netdev_to_pf(tx_ring->netdev);
3038 if (!(pf->flags & I40E_FLAG_PTP))
3039 return 0;
3040
3041 if (pf->ptp_tx &&
3042 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3043 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3044 pf->ptp_tx_start = jiffies;
3045 pf->ptp_tx_skb = skb_get(skb);
3046 } else {
3047 pf->tx_hwtstamp_skipped++;
3048 return 0;
3049 }
3050
3051 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3052 I40E_TXD_CTX_QW1_CMD_SHIFT;
3053
3054 return 1;
3055 }
3056
3057 /**
3058 * i40e_tx_enable_csum - Enable Tx checksum offloads
3059 * @skb: send buffer
3060 * @tx_flags: pointer to Tx flags currently set
3061 * @td_cmd: Tx descriptor command bits to set
3062 * @td_offset: Tx descriptor header offsets to set
3063 * @tx_ring: Tx descriptor ring
3064 * @cd_tunneling: ptr to context desc bits
3065 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3066 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3067 u32 *td_cmd, u32 *td_offset,
3068 struct i40e_ring *tx_ring,
3069 u32 *cd_tunneling)
3070 {
3071 union {
3072 struct iphdr *v4;
3073 struct ipv6hdr *v6;
3074 unsigned char *hdr;
3075 } ip;
3076 union {
3077 struct tcphdr *tcp;
3078 struct udphdr *udp;
3079 unsigned char *hdr;
3080 } l4;
3081 unsigned char *exthdr;
3082 u32 offset, cmd = 0;
3083 __be16 frag_off;
3084 u8 l4_proto = 0;
3085
3086 if (skb->ip_summed != CHECKSUM_PARTIAL)
3087 return 0;
3088
3089 ip.hdr = skb_network_header(skb);
3090 l4.hdr = skb_transport_header(skb);
3091
3092 /* compute outer L2 header size */
3093 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3094
3095 if (skb->encapsulation) {
3096 u32 tunnel = 0;
3097 /* define outer network header type */
3098 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3099 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3100 I40E_TX_CTX_EXT_IP_IPV4 :
3101 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3102
3103 l4_proto = ip.v4->protocol;
3104 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3105 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3106
3107 exthdr = ip.hdr + sizeof(*ip.v6);
3108 l4_proto = ip.v6->nexthdr;
3109 if (l4.hdr != exthdr)
3110 ipv6_skip_exthdr(skb, exthdr - skb->data,
3111 &l4_proto, &frag_off);
3112 }
3113
3114 /* define outer transport */
3115 switch (l4_proto) {
3116 case IPPROTO_UDP:
3117 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3118 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3119 break;
3120 case IPPROTO_GRE:
3121 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3122 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3123 break;
3124 case IPPROTO_IPIP:
3125 case IPPROTO_IPV6:
3126 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3127 l4.hdr = skb_inner_network_header(skb);
3128 break;
3129 default:
3130 if (*tx_flags & I40E_TX_FLAGS_TSO)
3131 return -1;
3132
3133 skb_checksum_help(skb);
3134 return 0;
3135 }
3136
3137 /* compute outer L3 header size */
3138 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3139 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3140
3141 /* switch IP header pointer from outer to inner header */
3142 ip.hdr = skb_inner_network_header(skb);
3143
3144 /* compute tunnel header size */
3145 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3146 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3147
3148 /* indicate if we need to offload outer UDP header */
3149 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3150 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3151 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3152 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3153
3154 /* record tunnel offload values */
3155 *cd_tunneling |= tunnel;
3156
3157 /* switch L4 header pointer from outer to inner */
3158 l4.hdr = skb_inner_transport_header(skb);
3159 l4_proto = 0;
3160
3161 /* reset type as we transition from outer to inner headers */
3162 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3163 if (ip.v4->version == 4)
3164 *tx_flags |= I40E_TX_FLAGS_IPV4;
3165 if (ip.v6->version == 6)
3166 *tx_flags |= I40E_TX_FLAGS_IPV6;
3167 }
3168
3169 /* Enable IP checksum offloads */
3170 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3171 l4_proto = ip.v4->protocol;
3172 /* the stack computes the IP header already, the only time we
3173 * need the hardware to recompute it is in the case of TSO.
3174 */
3175 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3176 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3177 I40E_TX_DESC_CMD_IIPT_IPV4;
3178 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3179 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3180
3181 exthdr = ip.hdr + sizeof(*ip.v6);
3182 l4_proto = ip.v6->nexthdr;
3183 if (l4.hdr != exthdr)
3184 ipv6_skip_exthdr(skb, exthdr - skb->data,
3185 &l4_proto, &frag_off);
3186 }
3187
3188 /* compute inner L3 header size */
3189 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3190
3191 /* Enable L4 checksum offloads */
3192 switch (l4_proto) {
3193 case IPPROTO_TCP:
3194 /* enable checksum offloads */
3195 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3196 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3197 break;
3198 case IPPROTO_SCTP:
3199 /* enable SCTP checksum offload */
3200 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3201 offset |= (sizeof(struct sctphdr) >> 2) <<
3202 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3203 break;
3204 case IPPROTO_UDP:
3205 /* enable UDP checksum offload */
3206 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3207 offset |= (sizeof(struct udphdr) >> 2) <<
3208 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3209 break;
3210 default:
3211 if (*tx_flags & I40E_TX_FLAGS_TSO)
3212 return -1;
3213 skb_checksum_help(skb);
3214 return 0;
3215 }
3216
3217 *td_cmd |= cmd;
3218 *td_offset |= offset;
3219
3220 return 1;
3221 }
3222
3223 /**
3224 * i40e_create_tx_ctx Build the Tx context descriptor
3225 * @tx_ring: ring to create the descriptor on
3226 * @cd_type_cmd_tso_mss: Quad Word 1
3227 * @cd_tunneling: Quad Word 0 - bits 0-31
3228 * @cd_l2tag2: Quad Word 0 - bits 32-63
3229 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3230 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3231 const u64 cd_type_cmd_tso_mss,
3232 const u32 cd_tunneling, const u32 cd_l2tag2)
3233 {
3234 struct i40e_tx_context_desc *context_desc;
3235 int i = tx_ring->next_to_use;
3236
3237 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3238 !cd_tunneling && !cd_l2tag2)
3239 return;
3240
3241 /* grab the next descriptor */
3242 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3243
3244 i++;
3245 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3246
3247 /* cpu_to_le32 and assign to struct fields */
3248 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3249 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3250 context_desc->rsvd = cpu_to_le16(0);
3251 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3252 }
3253
3254 /**
3255 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3256 * @tx_ring: the ring to be checked
3257 * @size: the size buffer we want to assure is available
3258 *
3259 * Returns -EBUSY if a stop is needed, else 0
3260 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3261 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3262 {
3263 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3264 /* Memory barrier before checking head and tail */
3265 smp_mb();
3266
3267 /* Check again in a case another CPU has just made room available. */
3268 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3269 return -EBUSY;
3270
3271 /* A reprieve! - use start_queue because it doesn't call schedule */
3272 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3273 ++tx_ring->tx_stats.restart_queue;
3274 return 0;
3275 }
3276
3277 /**
3278 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3279 * @skb: send buffer
3280 *
3281 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3282 * and so we need to figure out the cases where we need to linearize the skb.
3283 *
3284 * For TSO we need to count the TSO header and segment payload separately.
3285 * As such we need to check cases where we have 7 fragments or more as we
3286 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3287 * the segment payload in the first descriptor, and another 7 for the
3288 * fragments.
3289 **/
__i40e_chk_linearize(struct sk_buff * skb)3290 bool __i40e_chk_linearize(struct sk_buff *skb)
3291 {
3292 const skb_frag_t *frag, *stale;
3293 int nr_frags, sum;
3294
3295 /* no need to check if number of frags is less than 7 */
3296 nr_frags = skb_shinfo(skb)->nr_frags;
3297 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3298 return false;
3299
3300 /* We need to walk through the list and validate that each group
3301 * of 6 fragments totals at least gso_size.
3302 */
3303 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3304 frag = &skb_shinfo(skb)->frags[0];
3305
3306 /* Initialize size to the negative value of gso_size minus 1. We
3307 * use this as the worst case scenerio in which the frag ahead
3308 * of us only provides one byte which is why we are limited to 6
3309 * descriptors for a single transmit as the header and previous
3310 * fragment are already consuming 2 descriptors.
3311 */
3312 sum = 1 - skb_shinfo(skb)->gso_size;
3313
3314 /* Add size of frags 0 through 4 to create our initial sum */
3315 sum += skb_frag_size(frag++);
3316 sum += skb_frag_size(frag++);
3317 sum += skb_frag_size(frag++);
3318 sum += skb_frag_size(frag++);
3319 sum += skb_frag_size(frag++);
3320
3321 /* Walk through fragments adding latest fragment, testing it, and
3322 * then removing stale fragments from the sum.
3323 */
3324 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3325 int stale_size = skb_frag_size(stale);
3326
3327 sum += skb_frag_size(frag++);
3328
3329 /* The stale fragment may present us with a smaller
3330 * descriptor than the actual fragment size. To account
3331 * for that we need to remove all the data on the front and
3332 * figure out what the remainder would be in the last
3333 * descriptor associated with the fragment.
3334 */
3335 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3336 int align_pad = -(skb_frag_off(stale)) &
3337 (I40E_MAX_READ_REQ_SIZE - 1);
3338
3339 sum -= align_pad;
3340 stale_size -= align_pad;
3341
3342 do {
3343 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3344 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3345 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3346 }
3347
3348 /* if sum is negative we failed to make sufficient progress */
3349 if (sum < 0)
3350 return true;
3351
3352 if (!nr_frags--)
3353 break;
3354
3355 sum -= stale_size;
3356 }
3357
3358 return false;
3359 }
3360
3361 /**
3362 * i40e_tx_map - Build the Tx descriptor
3363 * @tx_ring: ring to send buffer on
3364 * @skb: send buffer
3365 * @first: first buffer info buffer to use
3366 * @tx_flags: collected send information
3367 * @hdr_len: size of the packet header
3368 * @td_cmd: the command field in the descriptor
3369 * @td_offset: offset for checksum or crc
3370 *
3371 * Returns 0 on success, -1 on failure to DMA
3372 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3373 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3374 struct i40e_tx_buffer *first, u32 tx_flags,
3375 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3376 {
3377 unsigned int data_len = skb->data_len;
3378 unsigned int size = skb_headlen(skb);
3379 skb_frag_t *frag;
3380 struct i40e_tx_buffer *tx_bi;
3381 struct i40e_tx_desc *tx_desc;
3382 u16 i = tx_ring->next_to_use;
3383 u32 td_tag = 0;
3384 dma_addr_t dma;
3385 u16 desc_count = 1;
3386
3387 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3388 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3389 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3390 I40E_TX_FLAGS_VLAN_SHIFT;
3391 }
3392
3393 first->tx_flags = tx_flags;
3394
3395 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3396
3397 tx_desc = I40E_TX_DESC(tx_ring, i);
3398 tx_bi = first;
3399
3400 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3401 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3402
3403 if (dma_mapping_error(tx_ring->dev, dma))
3404 goto dma_error;
3405
3406 /* record length, and DMA address */
3407 dma_unmap_len_set(tx_bi, len, size);
3408 dma_unmap_addr_set(tx_bi, dma, dma);
3409
3410 /* align size to end of page */
3411 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3412 tx_desc->buffer_addr = cpu_to_le64(dma);
3413
3414 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3415 tx_desc->cmd_type_offset_bsz =
3416 build_ctob(td_cmd, td_offset,
3417 max_data, td_tag);
3418
3419 tx_desc++;
3420 i++;
3421 desc_count++;
3422
3423 if (i == tx_ring->count) {
3424 tx_desc = I40E_TX_DESC(tx_ring, 0);
3425 i = 0;
3426 }
3427
3428 dma += max_data;
3429 size -= max_data;
3430
3431 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3432 tx_desc->buffer_addr = cpu_to_le64(dma);
3433 }
3434
3435 if (likely(!data_len))
3436 break;
3437
3438 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3439 size, td_tag);
3440
3441 tx_desc++;
3442 i++;
3443 desc_count++;
3444
3445 if (i == tx_ring->count) {
3446 tx_desc = I40E_TX_DESC(tx_ring, 0);
3447 i = 0;
3448 }
3449
3450 size = skb_frag_size(frag);
3451 data_len -= size;
3452
3453 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3454 DMA_TO_DEVICE);
3455
3456 tx_bi = &tx_ring->tx_bi[i];
3457 }
3458
3459 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3460
3461 i++;
3462 if (i == tx_ring->count)
3463 i = 0;
3464
3465 tx_ring->next_to_use = i;
3466
3467 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3468
3469 /* write last descriptor with EOP bit */
3470 td_cmd |= I40E_TX_DESC_CMD_EOP;
3471
3472 /* We OR these values together to check both against 4 (WB_STRIDE)
3473 * below. This is safe since we don't re-use desc_count afterwards.
3474 */
3475 desc_count |= ++tx_ring->packet_stride;
3476
3477 if (desc_count >= WB_STRIDE) {
3478 /* write last descriptor with RS bit set */
3479 td_cmd |= I40E_TX_DESC_CMD_RS;
3480 tx_ring->packet_stride = 0;
3481 }
3482
3483 tx_desc->cmd_type_offset_bsz =
3484 build_ctob(td_cmd, td_offset, size, td_tag);
3485
3486 skb_tx_timestamp(skb);
3487
3488 /* Force memory writes to complete before letting h/w know there
3489 * are new descriptors to fetch.
3490 *
3491 * We also use this memory barrier to make certain all of the
3492 * status bits have been updated before next_to_watch is written.
3493 */
3494 wmb();
3495
3496 /* set next_to_watch value indicating a packet is present */
3497 first->next_to_watch = tx_desc;
3498
3499 /* notify HW of packet */
3500 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3501 writel(i, tx_ring->tail);
3502 }
3503
3504 return 0;
3505
3506 dma_error:
3507 dev_info(tx_ring->dev, "TX DMA map failed\n");
3508
3509 /* clear dma mappings for failed tx_bi map */
3510 for (;;) {
3511 tx_bi = &tx_ring->tx_bi[i];
3512 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3513 if (tx_bi == first)
3514 break;
3515 if (i == 0)
3516 i = tx_ring->count;
3517 i--;
3518 }
3519
3520 tx_ring->next_to_use = i;
3521
3522 return -1;
3523 }
3524
3525 /**
3526 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3527 * @xdpf: data to transmit
3528 * @xdp_ring: XDP Tx ring
3529 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3530 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3531 struct i40e_ring *xdp_ring)
3532 {
3533 u16 i = xdp_ring->next_to_use;
3534 struct i40e_tx_buffer *tx_bi;
3535 struct i40e_tx_desc *tx_desc;
3536 void *data = xdpf->data;
3537 u32 size = xdpf->len;
3538 dma_addr_t dma;
3539
3540 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3541 xdp_ring->tx_stats.tx_busy++;
3542 return I40E_XDP_CONSUMED;
3543 }
3544 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3545 if (dma_mapping_error(xdp_ring->dev, dma))
3546 return I40E_XDP_CONSUMED;
3547
3548 tx_bi = &xdp_ring->tx_bi[i];
3549 tx_bi->bytecount = size;
3550 tx_bi->gso_segs = 1;
3551 tx_bi->xdpf = xdpf;
3552
3553 /* record length, and DMA address */
3554 dma_unmap_len_set(tx_bi, len, size);
3555 dma_unmap_addr_set(tx_bi, dma, dma);
3556
3557 tx_desc = I40E_TX_DESC(xdp_ring, i);
3558 tx_desc->buffer_addr = cpu_to_le64(dma);
3559 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3560 | I40E_TXD_CMD,
3561 0, size, 0);
3562
3563 /* Make certain all of the status bits have been updated
3564 * before next_to_watch is written.
3565 */
3566 smp_wmb();
3567
3568 xdp_ring->xdp_tx_active++;
3569 i++;
3570 if (i == xdp_ring->count)
3571 i = 0;
3572
3573 tx_bi->next_to_watch = tx_desc;
3574 xdp_ring->next_to_use = i;
3575
3576 return I40E_XDP_TX;
3577 }
3578
3579 /**
3580 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3581 * @skb: send buffer
3582 * @tx_ring: ring to send buffer on
3583 *
3584 * Returns NETDEV_TX_OK if sent, else an error code
3585 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3586 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3587 struct i40e_ring *tx_ring)
3588 {
3589 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3590 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3591 struct i40e_tx_buffer *first;
3592 u32 td_offset = 0;
3593 u32 tx_flags = 0;
3594 __be16 protocol;
3595 u32 td_cmd = 0;
3596 u8 hdr_len = 0;
3597 int tso, count;
3598 int tsyn;
3599
3600 /* prefetch the data, we'll need it later */
3601 prefetch(skb->data);
3602
3603 i40e_trace(xmit_frame_ring, skb, tx_ring);
3604
3605 count = i40e_xmit_descriptor_count(skb);
3606 if (i40e_chk_linearize(skb, count)) {
3607 if (__skb_linearize(skb)) {
3608 dev_kfree_skb_any(skb);
3609 return NETDEV_TX_OK;
3610 }
3611 count = i40e_txd_use_count(skb->len);
3612 tx_ring->tx_stats.tx_linearize++;
3613 }
3614
3615 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3616 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3617 * + 4 desc gap to avoid the cache line where head is,
3618 * + 1 desc for context descriptor,
3619 * otherwise try next time
3620 */
3621 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3622 tx_ring->tx_stats.tx_busy++;
3623 return NETDEV_TX_BUSY;
3624 }
3625
3626 /* record the location of the first descriptor for this packet */
3627 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3628 first->skb = skb;
3629 first->bytecount = skb->len;
3630 first->gso_segs = 1;
3631
3632 /* prepare the xmit flags */
3633 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3634 goto out_drop;
3635
3636 /* obtain protocol of skb */
3637 protocol = vlan_get_protocol(skb);
3638
3639 /* setup IPv4/IPv6 offloads */
3640 if (protocol == htons(ETH_P_IP))
3641 tx_flags |= I40E_TX_FLAGS_IPV4;
3642 else if (protocol == htons(ETH_P_IPV6))
3643 tx_flags |= I40E_TX_FLAGS_IPV6;
3644
3645 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3646
3647 if (tso < 0)
3648 goto out_drop;
3649 else if (tso)
3650 tx_flags |= I40E_TX_FLAGS_TSO;
3651
3652 /* Always offload the checksum, since it's in the data descriptor */
3653 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3654 tx_ring, &cd_tunneling);
3655 if (tso < 0)
3656 goto out_drop;
3657
3658 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3659
3660 if (tsyn)
3661 tx_flags |= I40E_TX_FLAGS_TSYN;
3662
3663 /* always enable CRC insertion offload */
3664 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3665
3666 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3667 cd_tunneling, cd_l2tag2);
3668
3669 /* Add Flow Director ATR if it's enabled.
3670 *
3671 * NOTE: this must always be directly before the data descriptor.
3672 */
3673 i40e_atr(tx_ring, skb, tx_flags);
3674
3675 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3676 td_cmd, td_offset))
3677 goto cleanup_tx_tstamp;
3678
3679 return NETDEV_TX_OK;
3680
3681 out_drop:
3682 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3683 dev_kfree_skb_any(first->skb);
3684 first->skb = NULL;
3685 cleanup_tx_tstamp:
3686 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3687 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3688
3689 dev_kfree_skb_any(pf->ptp_tx_skb);
3690 pf->ptp_tx_skb = NULL;
3691 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3692 }
3693
3694 return NETDEV_TX_OK;
3695 }
3696
3697 /**
3698 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3699 * @skb: send buffer
3700 * @netdev: network interface device structure
3701 *
3702 * Returns NETDEV_TX_OK if sent, else an error code
3703 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3704 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3705 {
3706 struct i40e_netdev_priv *np = netdev_priv(netdev);
3707 struct i40e_vsi *vsi = np->vsi;
3708 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3709
3710 /* hardware can't handle really short frames, hardware padding works
3711 * beyond this point
3712 */
3713 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3714 return NETDEV_TX_OK;
3715
3716 return i40e_xmit_frame_ring(skb, tx_ring);
3717 }
3718
3719 /**
3720 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3721 * @dev: netdev
3722 * @n: number of frames
3723 * @frames: array of XDP buffer pointers
3724 * @flags: XDP extra info
3725 *
3726 * Returns number of frames successfully sent. Frames that fail are
3727 * free'ed via XDP return API.
3728 *
3729 * For error cases, a negative errno code is returned and no-frames
3730 * are transmitted (caller must handle freeing frames).
3731 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3732 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3733 u32 flags)
3734 {
3735 struct i40e_netdev_priv *np = netdev_priv(dev);
3736 unsigned int queue_index = smp_processor_id();
3737 struct i40e_vsi *vsi = np->vsi;
3738 struct i40e_pf *pf = vsi->back;
3739 struct i40e_ring *xdp_ring;
3740 int drops = 0;
3741 int i;
3742
3743 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3744 return -ENETDOWN;
3745
3746 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3747 test_bit(__I40E_CONFIG_BUSY, pf->state))
3748 return -ENXIO;
3749
3750 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3751 return -EINVAL;
3752
3753 xdp_ring = vsi->xdp_rings[queue_index];
3754
3755 for (i = 0; i < n; i++) {
3756 struct xdp_frame *xdpf = frames[i];
3757 int err;
3758
3759 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3760 if (err != I40E_XDP_TX) {
3761 xdp_return_frame_rx_napi(xdpf);
3762 drops++;
3763 }
3764 }
3765
3766 if (unlikely(flags & XDP_XMIT_FLUSH))
3767 i40e_xdp_ring_update_tail(xdp_ring);
3768
3769 return n - drops;
3770 }
3771