1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2023 Intel Corporation
4 */
5
6 #include <linux/hwmon-sysfs.h>
7 #include <linux/hwmon.h>
8 #include <linux/jiffies.h>
9 #include <linux/types.h>
10 #include <linux/units.h>
11
12 #include <drm/drm_managed.h>
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_mchbar_regs.h"
15 #include "regs/xe_pcode_regs.h"
16 #include "xe_device.h"
17 #include "xe_hwmon.h"
18 #include "xe_mmio.h"
19 #include "xe_pcode.h"
20 #include "xe_pcode_api.h"
21 #include "xe_sriov.h"
22 #include "xe_pm.h"
23 #include "xe_vsec.h"
24 #include "regs/xe_pmt.h"
25
26 enum xe_hwmon_reg {
27 REG_TEMP,
28 REG_PKG_RAPL_LIMIT,
29 REG_PKG_POWER_SKU,
30 REG_PKG_POWER_SKU_UNIT,
31 REG_GT_PERF_STATUS,
32 REG_PKG_ENERGY_STATUS,
33 REG_FAN_SPEED,
34 };
35
36 enum xe_hwmon_reg_operation {
37 REG_READ32,
38 REG_RMW32,
39 REG_READ64,
40 };
41
42 enum xe_hwmon_channel {
43 CHANNEL_CARD,
44 CHANNEL_PKG,
45 CHANNEL_VRAM,
46 CHANNEL_MAX,
47 };
48
49 enum xe_fan_channel {
50 FAN_1,
51 FAN_2,
52 FAN_3,
53 FAN_MAX,
54 };
55
56 /* Attribute index for powerX_xxx_interval sysfs entries */
57 enum sensor_attr_power {
58 SENSOR_INDEX_PSYS_PL1,
59 SENSOR_INDEX_PKG_PL1,
60 SENSOR_INDEX_PSYS_PL2,
61 SENSOR_INDEX_PKG_PL2,
62 };
63
64 /*
65 * For platforms that support mailbox commands for power limits, REG_PKG_POWER_SKU_UNIT is
66 * not supported and below are SKU units to be used.
67 */
68 #define PWR_UNIT 0x3
69 #define ENERGY_UNIT 0xe
70 #define TIME_UNIT 0xa
71
72 /*
73 * SF_* - scale factors for particular quantities according to hwmon spec.
74 */
75 #define SF_POWER 1000000 /* microwatts */
76 #define SF_CURR 1000 /* milliamperes */
77 #define SF_VOLTAGE 1000 /* millivolts */
78 #define SF_ENERGY 1000000 /* microjoules */
79 #define SF_TIME 1000 /* milliseconds */
80
81 /*
82 * PL*_HWMON_ATTR - mapping of hardware power limits to corresponding hwmon power attribute.
83 */
84 #define PL1_HWMON_ATTR hwmon_power_max
85 #define PL2_HWMON_ATTR hwmon_power_cap
86
87 #define PWR_ATTR_TO_STR(attr) (((attr) == hwmon_power_max) ? "PL1" : "PL2")
88
89 /*
90 * Timeout for power limit write mailbox command.
91 */
92 #define PL_WRITE_MBX_TIMEOUT_MS (1)
93
94 /**
95 * struct xe_hwmon_energy_info - to accumulate energy
96 */
97 struct xe_hwmon_energy_info {
98 /** @reg_val_prev: previous energy reg val */
99 u32 reg_val_prev;
100 /** @accum_energy: accumulated energy */
101 long accum_energy;
102 };
103
104 /**
105 * struct xe_hwmon_fan_info - to cache previous fan reading
106 */
107 struct xe_hwmon_fan_info {
108 /** @reg_val_prev: previous fan reg val */
109 u32 reg_val_prev;
110 /** @time_prev: previous timestamp */
111 u64 time_prev;
112 };
113
114 /**
115 * struct xe_hwmon - xe hwmon data structure
116 */
117 struct xe_hwmon {
118 /** @hwmon_dev: hwmon device for xe */
119 struct device *hwmon_dev;
120 /** @xe: Xe device */
121 struct xe_device *xe;
122 /** @hwmon_lock: lock for rw attributes*/
123 struct mutex hwmon_lock;
124 /** @scl_shift_power: pkg power unit */
125 int scl_shift_power;
126 /** @scl_shift_energy: pkg energy unit */
127 int scl_shift_energy;
128 /** @scl_shift_time: pkg time unit */
129 int scl_shift_time;
130 /** @ei: Energy info for energyN_input */
131 struct xe_hwmon_energy_info ei[CHANNEL_MAX];
132 /** @fi: Fan info for fanN_input */
133 struct xe_hwmon_fan_info fi[FAN_MAX];
134 /** @boot_power_limit_read: is boot power limits read */
135 bool boot_power_limit_read;
136 /** @pl1_on_boot: power limit PL1 on boot */
137 u32 pl1_on_boot[CHANNEL_MAX];
138 /** @pl2_on_boot: power limit PL2 on boot */
139 u32 pl2_on_boot[CHANNEL_MAX];
140
141 };
142
xe_hwmon_pcode_read_power_limit(const struct xe_hwmon * hwmon,u32 attr,int channel,u32 * uval)143 static int xe_hwmon_pcode_read_power_limit(const struct xe_hwmon *hwmon, u32 attr, int channel,
144 u32 *uval)
145 {
146 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
147 u32 val0 = 0, val1 = 0;
148 int ret = 0;
149
150 ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
151 (channel == CHANNEL_CARD) ?
152 READ_PSYSGPU_POWER_LIMIT :
153 READ_PACKAGE_POWER_LIMIT,
154 hwmon->boot_power_limit_read ?
155 READ_PL_FROM_PCODE : READ_PL_FROM_FW),
156 &val0, &val1);
157
158 if (ret) {
159 drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
160 channel, val0, val1, ret);
161 *uval = 0;
162 return ret;
163 }
164
165 /* return the value only if limit is enabled */
166 if (attr == PL1_HWMON_ATTR)
167 *uval = (val0 & PWR_LIM_EN) ? val0 : 0;
168 else if (attr == PL2_HWMON_ATTR)
169 *uval = (val1 & PWR_LIM_EN) ? val1 : 0;
170 else if (attr == hwmon_power_label)
171 *uval = (val0 & PWR_LIM_EN) ? 1 : (val1 & PWR_LIM_EN) ? 1 : 0;
172 else
173 *uval = 0;
174
175 return ret;
176 }
177
xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon * hwmon,u32 attr,u8 channel,u32 clr,u32 set)178 static int xe_hwmon_pcode_rmw_power_limit(const struct xe_hwmon *hwmon, u32 attr, u8 channel,
179 u32 clr, u32 set)
180 {
181 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
182 u32 val0, val1;
183 int ret = 0;
184
185 ret = xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
186 (channel == CHANNEL_CARD) ?
187 READ_PSYSGPU_POWER_LIMIT :
188 READ_PACKAGE_POWER_LIMIT,
189 hwmon->boot_power_limit_read ?
190 READ_PL_FROM_PCODE : READ_PL_FROM_FW),
191 &val0, &val1);
192
193 if (ret)
194 drm_dbg(&hwmon->xe->drm, "read failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
195 channel, val0, val1, ret);
196
197 if (attr == PL1_HWMON_ATTR)
198 val0 = (val0 & ~clr) | set;
199 else if (attr == PL2_HWMON_ATTR)
200 val1 = (val1 & ~clr) | set;
201 else
202 return -EIO;
203
204 ret = xe_pcode_write64_timeout(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
205 (channel == CHANNEL_CARD) ?
206 WRITE_PSYSGPU_POWER_LIMIT :
207 WRITE_PACKAGE_POWER_LIMIT, 0),
208 val0, val1, PL_WRITE_MBX_TIMEOUT_MS);
209 if (ret)
210 drm_dbg(&hwmon->xe->drm, "write failed ch %d val0 0x%08x, val1 0x%08x, ret %d\n",
211 channel, val0, val1, ret);
212 return ret;
213 }
214
xe_hwmon_get_reg(struct xe_hwmon * hwmon,enum xe_hwmon_reg hwmon_reg,int channel)215 static struct xe_reg xe_hwmon_get_reg(struct xe_hwmon *hwmon, enum xe_hwmon_reg hwmon_reg,
216 int channel)
217 {
218 struct xe_device *xe = hwmon->xe;
219
220 switch (hwmon_reg) {
221 case REG_TEMP:
222 if (xe->info.platform == XE_BATTLEMAGE) {
223 if (channel == CHANNEL_PKG)
224 return BMG_PACKAGE_TEMPERATURE;
225 else if (channel == CHANNEL_VRAM)
226 return BMG_VRAM_TEMPERATURE;
227 } else if (xe->info.platform == XE_DG2) {
228 if (channel == CHANNEL_PKG)
229 return PCU_CR_PACKAGE_TEMPERATURE;
230 else if (channel == CHANNEL_VRAM)
231 return BMG_VRAM_TEMPERATURE;
232 }
233 break;
234 case REG_PKG_RAPL_LIMIT:
235 if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
236 return PVC_GT0_PACKAGE_RAPL_LIMIT;
237 else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
238 return PCU_CR_PACKAGE_RAPL_LIMIT;
239 break;
240 case REG_PKG_POWER_SKU:
241 if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG)
242 return PVC_GT0_PACKAGE_POWER_SKU;
243 else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG))
244 return PCU_CR_PACKAGE_POWER_SKU;
245 break;
246 case REG_PKG_POWER_SKU_UNIT:
247 if (xe->info.platform == XE_PVC)
248 return PVC_GT0_PACKAGE_POWER_SKU_UNIT;
249 else if (xe->info.platform == XE_DG2)
250 return PCU_CR_PACKAGE_POWER_SKU_UNIT;
251 break;
252 case REG_GT_PERF_STATUS:
253 if (xe->info.platform == XE_DG2 && channel == CHANNEL_PKG)
254 return GT_PERF_STATUS;
255 break;
256 case REG_PKG_ENERGY_STATUS:
257 if (xe->info.platform == XE_PVC && channel == CHANNEL_PKG) {
258 return PVC_GT0_PLATFORM_ENERGY_STATUS;
259 } else if ((xe->info.platform == XE_DG2) && (channel == CHANNEL_PKG)) {
260 return PCU_CR_PACKAGE_ENERGY_STATUS;
261 }
262 break;
263 case REG_FAN_SPEED:
264 if (channel == FAN_1)
265 return BMG_FAN_1_SPEED;
266 else if (channel == FAN_2)
267 return BMG_FAN_2_SPEED;
268 else if (channel == FAN_3)
269 return BMG_FAN_3_SPEED;
270 break;
271 default:
272 drm_warn(&xe->drm, "Unknown xe hwmon reg id: %d\n", hwmon_reg);
273 break;
274 }
275
276 return XE_REG(0);
277 }
278
279 #define PL_DISABLE 0
280
281 /*
282 * HW allows arbitrary PL1 limits to be set but silently clamps these values to
283 * "typical but not guaranteed" min/max values in REG_PKG_POWER_SKU. Follow the
284 * same pattern for sysfs, allow arbitrary PL1 limits to be set but display
285 * clamped values when read.
286 */
xe_hwmon_power_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)287 static void xe_hwmon_power_max_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *value)
288 {
289 u64 reg_val = 0, min, max;
290 struct xe_device *xe = hwmon->xe;
291 struct xe_reg rapl_limit, pkg_power_sku;
292 struct xe_mmio *mmio = xe_root_tile_mmio(xe);
293
294 mutex_lock(&hwmon->hwmon_lock);
295
296 if (hwmon->xe->info.has_mbx_power_limits) {
297 xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, (u32 *)®_val);
298 } else {
299 rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
300 pkg_power_sku = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
301 reg_val = xe_mmio_read32(mmio, rapl_limit);
302 }
303
304 /* Check if PL limits are disabled. */
305 if (!(reg_val & PWR_LIM_EN)) {
306 *value = PL_DISABLE;
307 drm_info(&hwmon->xe->drm, "%s disabled for channel %d, val 0x%016llx\n",
308 PWR_ATTR_TO_STR(attr), channel, reg_val);
309 goto unlock;
310 }
311
312 reg_val = REG_FIELD_GET(PWR_LIM_VAL, reg_val);
313 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
314
315 /* For platforms with mailbox power limit support clamping would be done by pcode. */
316 if (!hwmon->xe->info.has_mbx_power_limits) {
317 reg_val = xe_mmio_read64_2x32(mmio, pkg_power_sku);
318 min = REG_FIELD_GET(PKG_MIN_PWR, reg_val);
319 max = REG_FIELD_GET(PKG_MAX_PWR, reg_val);
320 min = mul_u64_u32_shr(min, SF_POWER, hwmon->scl_shift_power);
321 max = mul_u64_u32_shr(max, SF_POWER, hwmon->scl_shift_power);
322 if (min && max)
323 *value = clamp_t(u64, *value, min, max);
324 }
325 unlock:
326 mutex_unlock(&hwmon->hwmon_lock);
327 }
328
xe_hwmon_power_max_write(struct xe_hwmon * hwmon,u32 attr,int channel,long value)329 static int xe_hwmon_power_max_write(struct xe_hwmon *hwmon, u32 attr, int channel, long value)
330 {
331 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
332 int ret = 0;
333 u32 reg_val, max;
334 struct xe_reg rapl_limit;
335 u64 max_supp_power_limit = 0;
336
337 mutex_lock(&hwmon->hwmon_lock);
338
339 rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
340
341 /* Disable Power Limit and verify, as limit cannot be disabled on all platforms. */
342 if (value == PL_DISABLE) {
343 if (hwmon->xe->info.has_mbx_power_limits) {
344 drm_dbg(&hwmon->xe->drm, "disabling %s on channel %d\n",
345 PWR_ATTR_TO_STR(attr), channel);
346 xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM_EN, 0);
347 xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, ®_val);
348 } else {
349 reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM_EN, 0);
350 reg_val = xe_mmio_read32(mmio, rapl_limit);
351 }
352
353 if (reg_val & PWR_LIM_EN) {
354 drm_warn(&hwmon->xe->drm, "Power limit disable is not supported!\n");
355 ret = -EOPNOTSUPP;
356 }
357 goto unlock;
358 }
359
360 /*
361 * If the sysfs value exceeds the maximum pcode supported power limit value, clamp it to
362 * the supported maximum (U12.3 format).
363 * This is to avoid truncation during reg_val calculation below and ensure the valid
364 * power limit is sent for pcode which would clamp it to card-supported value.
365 */
366 max_supp_power_limit = ((PWR_LIM_VAL) >> hwmon->scl_shift_power) * SF_POWER;
367 if (value > max_supp_power_limit) {
368 value = max_supp_power_limit;
369 drm_info(&hwmon->xe->drm,
370 "Power limit clamped as selected %s exceeds channel %d limit\n",
371 PWR_ATTR_TO_STR(attr), channel);
372 }
373
374 /* Computation in 64-bits to avoid overflow. Round to nearest. */
375 reg_val = DIV_ROUND_CLOSEST_ULL((u64)value << hwmon->scl_shift_power, SF_POWER);
376
377 /*
378 * Clamp power limit to GPU firmware default as maximum, as an additional protection to
379 * pcode clamp.
380 */
381 if (hwmon->xe->info.has_mbx_power_limits) {
382 max = (attr == PL1_HWMON_ATTR) ?
383 hwmon->pl1_on_boot[channel] : hwmon->pl2_on_boot[channel];
384 max = REG_FIELD_PREP(PWR_LIM_VAL, max);
385 if (reg_val > max) {
386 reg_val = max;
387 drm_dbg(&hwmon->xe->drm,
388 "Clamping power limit to GPU firmware default 0x%x\n",
389 reg_val);
390 }
391 }
392
393 reg_val = PWR_LIM_EN | REG_FIELD_PREP(PWR_LIM_VAL, reg_val);
394
395 if (hwmon->xe->info.has_mbx_power_limits)
396 ret = xe_hwmon_pcode_rmw_power_limit(hwmon, attr, channel, PWR_LIM, reg_val);
397 else
398 reg_val = xe_mmio_rmw32(mmio, rapl_limit, PWR_LIM, reg_val);
399 unlock:
400 mutex_unlock(&hwmon->hwmon_lock);
401 return ret;
402 }
403
xe_hwmon_power_rated_max_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * value)404 static void xe_hwmon_power_rated_max_read(struct xe_hwmon *hwmon, u32 attr, int channel,
405 long *value)
406 {
407 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
408 u32 reg_val;
409
410 if (hwmon->xe->info.has_mbx_power_limits) {
411 /* PL1 is rated max if supported. */
412 xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, channel, ®_val);
413 } else {
414 /*
415 * This sysfs file won't be visible if REG_PKG_POWER_SKU is invalid, so valid check
416 * for this register can be skipped.
417 * See xe_hwmon_power_is_visible.
418 */
419 struct xe_reg reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
420
421 reg_val = xe_mmio_read32(mmio, reg);
422 }
423
424 reg_val = REG_FIELD_GET(PKG_TDP, reg_val);
425 *value = mul_u64_u32_shr(reg_val, SF_POWER, hwmon->scl_shift_power);
426 }
427
428 /*
429 * xe_hwmon_energy_get - Obtain energy value
430 *
431 * The underlying energy hardware register is 32-bits and is subject to
432 * overflow. How long before overflow? For example, with an example
433 * scaling bit shift of 14 bits (see register *PACKAGE_POWER_SKU_UNIT) and
434 * a power draw of 1000 watts, the 32-bit counter will overflow in
435 * approximately 4.36 minutes.
436 *
437 * Examples:
438 * 1 watt: (2^32 >> 14) / 1 W / (60 * 60 * 24) secs/day -> 3 days
439 * 1000 watts: (2^32 >> 14) / 1000 W / 60 secs/min -> 4.36 minutes
440 *
441 * The function significantly increases overflow duration (from 4.36
442 * minutes) by accumulating the energy register into a 'long' as allowed by
443 * the hwmon API. Using x86_64 128 bit arithmetic (see mul_u64_u32_shr()),
444 * a 'long' of 63 bits, SF_ENERGY of 1e6 (~20 bits) and
445 * hwmon->scl_shift_energy of 14 bits we have 57 (63 - 20 + 14) bits before
446 * energyN_input overflows. This at 1000 W is an overflow duration of 278 years.
447 */
448 static void
xe_hwmon_energy_get(struct xe_hwmon * hwmon,int channel,long * energy)449 xe_hwmon_energy_get(struct xe_hwmon *hwmon, int channel, long *energy)
450 {
451 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
452 struct xe_hwmon_energy_info *ei = &hwmon->ei[channel];
453 u32 reg_val;
454 int ret = 0;
455
456 /* Energy is supported only for card and pkg */
457 if (channel > CHANNEL_PKG) {
458 *energy = 0;
459 return;
460 }
461
462 if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
463 u64 pmt_val;
464
465 ret = xe_pmt_telem_read(to_pci_dev(hwmon->xe->drm.dev),
466 xe_mmio_read32(mmio, PUNIT_TELEMETRY_GUID),
467 &pmt_val, BMG_ENERGY_STATUS_PMT_OFFSET, sizeof(pmt_val));
468 if (ret != sizeof(pmt_val)) {
469 drm_warn(&hwmon->xe->drm, "energy read from pmt failed, ret %d\n", ret);
470 *energy = 0;
471 return;
472 }
473
474 if (channel == CHANNEL_PKG)
475 reg_val = REG_FIELD_GET64(ENERGY_PKG, pmt_val);
476 else
477 reg_val = REG_FIELD_GET64(ENERGY_CARD, pmt_val);
478 } else {
479 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
480 channel));
481 }
482
483 ei->accum_energy += reg_val - ei->reg_val_prev;
484 ei->reg_val_prev = reg_val;
485
486 *energy = mul_u64_u32_shr(ei->accum_energy, SF_ENERGY,
487 hwmon->scl_shift_energy);
488 }
489
490 static ssize_t
xe_hwmon_power_max_interval_show(struct device * dev,struct device_attribute * attr,char * buf)491 xe_hwmon_power_max_interval_show(struct device *dev, struct device_attribute *attr,
492 char *buf)
493 {
494 struct xe_hwmon *hwmon = dev_get_drvdata(dev);
495 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
496 u32 x, y, x_w = 2; /* 2 bits */
497 u64 r, tau4, out;
498 int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
499 u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
500
501 int ret = 0;
502
503 xe_pm_runtime_get(hwmon->xe);
504
505 mutex_lock(&hwmon->hwmon_lock);
506
507 if (hwmon->xe->info.has_mbx_power_limits) {
508 ret = xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, (u32 *)&r);
509 if (ret) {
510 drm_err(&hwmon->xe->drm,
511 "power interval read fail, ch %d, attr %d, r 0%llx, ret %d\n",
512 channel, power_attr, r, ret);
513 r = 0;
514 }
515 } else {
516 r = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel));
517 }
518
519 mutex_unlock(&hwmon->hwmon_lock);
520
521 xe_pm_runtime_put(hwmon->xe);
522
523 x = REG_FIELD_GET(PWR_LIM_TIME_X, r);
524 y = REG_FIELD_GET(PWR_LIM_TIME_Y, r);
525
526 /*
527 * tau = (1 + (x / 4)) * power(2,y), x = bits(23:22), y = bits(21:17)
528 * = (4 | x) << (y - 2)
529 *
530 * Here (y - 2) ensures a 1.x fixed point representation of 1.x
531 * As x is 2 bits so 1.x can be 1.0, 1.25, 1.50, 1.75
532 *
533 * As y can be < 2, we compute tau4 = (4 | x) << y
534 * and then add 2 when doing the final right shift to account for units
535 */
536 tau4 = (u64)((1 << x_w) | x) << y;
537
538 /* val in hwmon interface units (millisec) */
539 out = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
540
541 return sysfs_emit(buf, "%llu\n", out);
542 }
543
544 static ssize_t
xe_hwmon_power_max_interval_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)545 xe_hwmon_power_max_interval_store(struct device *dev, struct device_attribute *attr,
546 const char *buf, size_t count)
547 {
548 struct xe_hwmon *hwmon = dev_get_drvdata(dev);
549 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
550 u32 x, y, rxy, x_w = 2; /* 2 bits */
551 u64 tau4, r, max_win;
552 unsigned long val;
553 int channel = (to_sensor_dev_attr(attr)->index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
554 u32 power_attr = (to_sensor_dev_attr(attr)->index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
555 int ret;
556
557 ret = kstrtoul(buf, 0, &val);
558 if (ret)
559 return ret;
560
561 /*
562 * Max HW supported tau in '(1 + (x / 4)) * power(2,y)' format, x = 0, y = 0x12.
563 * The hwmon->scl_shift_time default of 0xa results in a max tau of 256 seconds.
564 *
565 * The ideal scenario is for PKG_MAX_WIN to be read from the PKG_PWR_SKU register.
566 * However, it is observed that existing discrete GPUs does not provide correct
567 * PKG_MAX_WIN value, therefore a using default constant value. For future discrete GPUs
568 * this may get resolved, in which case PKG_MAX_WIN should be obtained from PKG_PWR_SKU.
569 */
570 #define PKG_MAX_WIN_DEFAULT 0x12ull
571
572 /*
573 * val must be < max in hwmon interface units. The steps below are
574 * explained in xe_hwmon_power_max_interval_show()
575 */
576 r = FIELD_PREP(PKG_MAX_WIN, PKG_MAX_WIN_DEFAULT);
577 x = REG_FIELD_GET(PKG_MAX_WIN_X, r);
578 y = REG_FIELD_GET(PKG_MAX_WIN_Y, r);
579 tau4 = (u64)((1 << x_w) | x) << y;
580 max_win = mul_u64_u32_shr(tau4, SF_TIME, hwmon->scl_shift_time + x_w);
581
582 if (val > max_win)
583 return -EINVAL;
584
585 /* val in hw units */
586 val = DIV_ROUND_CLOSEST_ULL((u64)val << hwmon->scl_shift_time, SF_TIME) + 1;
587
588 /*
589 * Convert val to 1.x * power(2,y)
590 * y = ilog2(val)
591 * x = (val - (1 << y)) >> (y - 2)
592 */
593 if (!val) {
594 y = 0;
595 x = 0;
596 } else {
597 y = ilog2(val);
598 x = (val - (1ul << y)) << x_w >> y;
599 }
600
601 rxy = REG_FIELD_PREP(PWR_LIM_TIME_X, x) |
602 REG_FIELD_PREP(PWR_LIM_TIME_Y, y);
603
604 xe_pm_runtime_get(hwmon->xe);
605
606 mutex_lock(&hwmon->hwmon_lock);
607
608 if (hwmon->xe->info.has_mbx_power_limits)
609 xe_hwmon_pcode_rmw_power_limit(hwmon, power_attr, channel, PWR_LIM_TIME, rxy);
610 else
611 r = xe_mmio_rmw32(mmio, xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel),
612 PWR_LIM_TIME, rxy);
613
614 mutex_unlock(&hwmon->hwmon_lock);
615
616 xe_pm_runtime_put(hwmon->xe);
617
618 return count;
619 }
620
621 /* PSYS PL1 */
622 static SENSOR_DEVICE_ATTR(power1_max_interval, 0664,
623 xe_hwmon_power_max_interval_show,
624 xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL1);
625 /* PKG PL1 */
626 static SENSOR_DEVICE_ATTR(power2_max_interval, 0664,
627 xe_hwmon_power_max_interval_show,
628 xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL1);
629 /* PSYS PL2 */
630 static SENSOR_DEVICE_ATTR(power1_cap_interval, 0664,
631 xe_hwmon_power_max_interval_show,
632 xe_hwmon_power_max_interval_store, SENSOR_INDEX_PSYS_PL2);
633 /* PKG PL2 */
634 static SENSOR_DEVICE_ATTR(power2_cap_interval, 0664,
635 xe_hwmon_power_max_interval_show,
636 xe_hwmon_power_max_interval_store, SENSOR_INDEX_PKG_PL2);
637
638 static struct attribute *hwmon_attributes[] = {
639 &sensor_dev_attr_power1_max_interval.dev_attr.attr,
640 &sensor_dev_attr_power2_max_interval.dev_attr.attr,
641 &sensor_dev_attr_power1_cap_interval.dev_attr.attr,
642 &sensor_dev_attr_power2_cap_interval.dev_attr.attr,
643 NULL
644 };
645
xe_hwmon_attributes_visible(struct kobject * kobj,struct attribute * attr,int index)646 static umode_t xe_hwmon_attributes_visible(struct kobject *kobj,
647 struct attribute *attr, int index)
648 {
649 struct device *dev = kobj_to_dev(kobj);
650 struct xe_hwmon *hwmon = dev_get_drvdata(dev);
651 int ret = 0;
652 int channel = (index % 2) ? CHANNEL_PKG : CHANNEL_CARD;
653 u32 power_attr = (index > 1) ? PL2_HWMON_ATTR : PL1_HWMON_ATTR;
654 u32 uval = 0;
655 struct xe_reg rapl_limit;
656 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
657
658 xe_pm_runtime_get(hwmon->xe);
659
660 if (hwmon->xe->info.has_mbx_power_limits) {
661 xe_hwmon_pcode_read_power_limit(hwmon, power_attr, channel, &uval);
662 } else if (power_attr != PL2_HWMON_ATTR) {
663 rapl_limit = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
664 if (xe_reg_is_valid(rapl_limit))
665 uval = xe_mmio_read32(mmio, rapl_limit);
666 }
667 ret = (uval & PWR_LIM_EN) ? attr->mode : 0;
668
669 xe_pm_runtime_put(hwmon->xe);
670
671 return ret;
672 }
673
674 static const struct attribute_group hwmon_attrgroup = {
675 .attrs = hwmon_attributes,
676 .is_visible = xe_hwmon_attributes_visible,
677 };
678
679 static const struct attribute_group *hwmon_groups[] = {
680 &hwmon_attrgroup,
681 NULL
682 };
683
684 static const struct hwmon_channel_info * const hwmon_info[] = {
685 HWMON_CHANNEL_INFO(temp, HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_LABEL,
686 HWMON_T_INPUT | HWMON_T_LABEL),
687 HWMON_CHANNEL_INFO(power, HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CRIT |
688 HWMON_P_CAP,
689 HWMON_P_MAX | HWMON_P_RATED_MAX | HWMON_P_LABEL | HWMON_P_CAP),
690 HWMON_CHANNEL_INFO(curr, HWMON_C_LABEL, HWMON_C_CRIT | HWMON_C_LABEL),
691 HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL, HWMON_I_INPUT | HWMON_I_LABEL),
692 HWMON_CHANNEL_INFO(energy, HWMON_E_INPUT | HWMON_E_LABEL, HWMON_E_INPUT | HWMON_E_LABEL),
693 HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT, HWMON_F_INPUT, HWMON_F_INPUT),
694 NULL
695 };
696
697 /* I1 is exposed as power_crit or as curr_crit depending on bit 31 */
xe_hwmon_pcode_read_i1(const struct xe_hwmon * hwmon,u32 * uval)698 static int xe_hwmon_pcode_read_i1(const struct xe_hwmon *hwmon, u32 *uval)
699 {
700 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
701
702 /* Avoid Illegal Subcommand error */
703 if (hwmon->xe->info.platform == XE_DG2)
704 return -ENXIO;
705
706 return xe_pcode_read(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
707 POWER_SETUP_SUBCOMMAND_READ_I1, 0),
708 uval, NULL);
709 }
710
xe_hwmon_pcode_write_i1(const struct xe_hwmon * hwmon,u32 uval)711 static int xe_hwmon_pcode_write_i1(const struct xe_hwmon *hwmon, u32 uval)
712 {
713 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
714
715 return xe_pcode_write(root_tile, PCODE_MBOX(PCODE_POWER_SETUP,
716 POWER_SETUP_SUBCOMMAND_WRITE_I1, 0),
717 (uval & POWER_SETUP_I1_DATA_MASK));
718 }
719
xe_hwmon_pcode_read_fan_control(const struct xe_hwmon * hwmon,u32 subcmd,u32 * uval)720 static int xe_hwmon_pcode_read_fan_control(const struct xe_hwmon *hwmon, u32 subcmd, u32 *uval)
721 {
722 struct xe_tile *root_tile = xe_device_get_root_tile(hwmon->xe);
723
724 /* Platforms that don't return correct value */
725 if (hwmon->xe->info.platform == XE_DG2 && subcmd == FSC_READ_NUM_FANS) {
726 *uval = 2;
727 return 0;
728 }
729
730 return xe_pcode_read(root_tile, PCODE_MBOX(FAN_SPEED_CONTROL, subcmd, 0), uval, NULL);
731 }
732
xe_hwmon_power_curr_crit_read(struct xe_hwmon * hwmon,int channel,long * value,u32 scale_factor)733 static int xe_hwmon_power_curr_crit_read(struct xe_hwmon *hwmon, int channel,
734 long *value, u32 scale_factor)
735 {
736 int ret;
737 u32 uval;
738
739 mutex_lock(&hwmon->hwmon_lock);
740
741 ret = xe_hwmon_pcode_read_i1(hwmon, &uval);
742 if (ret)
743 goto unlock;
744
745 *value = mul_u64_u32_shr(REG_FIELD_GET(POWER_SETUP_I1_DATA_MASK, uval),
746 scale_factor, POWER_SETUP_I1_SHIFT);
747 unlock:
748 mutex_unlock(&hwmon->hwmon_lock);
749 return ret;
750 }
751
xe_hwmon_power_curr_crit_write(struct xe_hwmon * hwmon,int channel,long value,u32 scale_factor)752 static int xe_hwmon_power_curr_crit_write(struct xe_hwmon *hwmon, int channel,
753 long value, u32 scale_factor)
754 {
755 int ret;
756 u32 uval;
757 u64 max_crit_power_curr = 0;
758
759 mutex_lock(&hwmon->hwmon_lock);
760
761 /*
762 * If the sysfs value exceeds the pcode mailbox cmd POWER_SETUP_SUBCOMMAND_WRITE_I1
763 * max supported value, clamp it to the command's max (U10.6 format).
764 * This is to avoid truncation during uval calculation below and ensure the valid power
765 * limit is sent for pcode which would clamp it to card-supported value.
766 */
767 max_crit_power_curr = (POWER_SETUP_I1_DATA_MASK >> POWER_SETUP_I1_SHIFT) * scale_factor;
768 if (value > max_crit_power_curr) {
769 value = max_crit_power_curr;
770 drm_info(&hwmon->xe->drm,
771 "Power limit clamped as selected exceeds channel %d limit\n",
772 channel);
773 }
774 uval = DIV_ROUND_CLOSEST_ULL(value << POWER_SETUP_I1_SHIFT, scale_factor);
775 ret = xe_hwmon_pcode_write_i1(hwmon, uval);
776
777 mutex_unlock(&hwmon->hwmon_lock);
778 return ret;
779 }
780
xe_hwmon_get_voltage(struct xe_hwmon * hwmon,int channel,long * value)781 static void xe_hwmon_get_voltage(struct xe_hwmon *hwmon, int channel, long *value)
782 {
783 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
784 u64 reg_val;
785
786 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS, channel));
787 /* HW register value in units of 2.5 millivolt */
788 *value = DIV_ROUND_CLOSEST(REG_FIELD_GET(VOLTAGE_MASK, reg_val) * 2500, SF_VOLTAGE);
789 }
790
791 static umode_t
xe_hwmon_temp_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)792 xe_hwmon_temp_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
793 {
794 switch (attr) {
795 case hwmon_temp_input:
796 case hwmon_temp_label:
797 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_TEMP, channel)) ? 0444 : 0;
798 default:
799 return 0;
800 }
801 }
802
803 static int
xe_hwmon_temp_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)804 xe_hwmon_temp_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
805 {
806 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
807 u64 reg_val;
808
809 switch (attr) {
810 case hwmon_temp_input:
811 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_TEMP, channel));
812
813 /* HW register value is in degrees Celsius, convert to millidegrees. */
814 *val = REG_FIELD_GET(TEMP_MASK, reg_val) * MILLIDEGREE_PER_DEGREE;
815 return 0;
816 default:
817 return -EOPNOTSUPP;
818 }
819 }
820
821 static umode_t
xe_hwmon_power_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)822 xe_hwmon_power_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
823 {
824 u32 uval = 0;
825 struct xe_reg reg;
826 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
827
828 switch (attr) {
829 case hwmon_power_max:
830 case hwmon_power_cap:
831 if (hwmon->xe->info.has_mbx_power_limits) {
832 xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
833 } else if (attr != PL2_HWMON_ATTR) {
834 reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
835 if (xe_reg_is_valid(reg))
836 uval = xe_mmio_read32(mmio, reg);
837 }
838 if (uval & PWR_LIM_EN) {
839 drm_info(&hwmon->xe->drm, "%s is supported on channel %d\n",
840 PWR_ATTR_TO_STR(attr), channel);
841 return 0664;
842 }
843 drm_dbg(&hwmon->xe->drm, "%s is unsupported on channel %d\n",
844 PWR_ATTR_TO_STR(attr), channel);
845 return 0;
846 case hwmon_power_rated_max:
847 if (hwmon->xe->info.has_mbx_power_limits) {
848 return 0;
849 } else {
850 reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
851 if (xe_reg_is_valid(reg))
852 uval = xe_mmio_read32(mmio, reg);
853 return uval ? 0444 : 0;
854 }
855 case hwmon_power_crit:
856 if (channel == CHANNEL_CARD) {
857 xe_hwmon_pcode_read_i1(hwmon, &uval);
858 return (uval & POWER_SETUP_I1_WATTS) ? 0644 : 0;
859 }
860 break;
861 case hwmon_power_label:
862 if (hwmon->xe->info.has_mbx_power_limits) {
863 xe_hwmon_pcode_read_power_limit(hwmon, attr, channel, &uval);
864 } else {
865 reg = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU, channel);
866 if (xe_reg_is_valid(reg))
867 uval = xe_mmio_read32(mmio, reg);
868
869 if (!uval) {
870 reg = xe_hwmon_get_reg(hwmon, REG_PKG_RAPL_LIMIT, channel);
871 if (xe_reg_is_valid(reg))
872 uval = xe_mmio_read32(mmio, reg);
873 }
874 }
875 if ((!(uval & PWR_LIM_EN)) && channel == CHANNEL_CARD) {
876 xe_hwmon_pcode_read_i1(hwmon, &uval);
877 return (uval & POWER_SETUP_I1_WATTS) ? 0444 : 0;
878 }
879 return (uval) ? 0444 : 0;
880 default:
881 return 0;
882 }
883 return 0;
884 }
885
886 static int
xe_hwmon_power_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)887 xe_hwmon_power_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
888 {
889 switch (attr) {
890 case hwmon_power_max:
891 case hwmon_power_cap:
892 xe_hwmon_power_max_read(hwmon, attr, channel, val);
893 return 0;
894 case hwmon_power_rated_max:
895 xe_hwmon_power_rated_max_read(hwmon, attr, channel, val);
896 return 0;
897 case hwmon_power_crit:
898 return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_POWER);
899 default:
900 return -EOPNOTSUPP;
901 }
902 }
903
904 static int
xe_hwmon_power_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)905 xe_hwmon_power_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
906 {
907 switch (attr) {
908 case hwmon_power_cap:
909 case hwmon_power_max:
910 return xe_hwmon_power_max_write(hwmon, attr, channel, val);
911 case hwmon_power_crit:
912 return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_POWER);
913 default:
914 return -EOPNOTSUPP;
915 }
916 }
917
918 static umode_t
xe_hwmon_curr_is_visible(const struct xe_hwmon * hwmon,u32 attr,int channel)919 xe_hwmon_curr_is_visible(const struct xe_hwmon *hwmon, u32 attr, int channel)
920 {
921 u32 uval;
922
923 /* hwmon sysfs attribute of current available only for package */
924 if (channel != CHANNEL_PKG)
925 return 0;
926
927 switch (attr) {
928 case hwmon_curr_crit:
929 return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
930 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0644;
931 case hwmon_curr_label:
932 return (xe_hwmon_pcode_read_i1(hwmon, &uval) ||
933 (uval & POWER_SETUP_I1_WATTS)) ? 0 : 0444;
934 break;
935 default:
936 return 0;
937 }
938 return 0;
939 }
940
941 static int
xe_hwmon_curr_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)942 xe_hwmon_curr_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
943 {
944 switch (attr) {
945 case hwmon_curr_crit:
946 return xe_hwmon_power_curr_crit_read(hwmon, channel, val, SF_CURR);
947 default:
948 return -EOPNOTSUPP;
949 }
950 }
951
952 static int
xe_hwmon_curr_write(struct xe_hwmon * hwmon,u32 attr,int channel,long val)953 xe_hwmon_curr_write(struct xe_hwmon *hwmon, u32 attr, int channel, long val)
954 {
955 switch (attr) {
956 case hwmon_curr_crit:
957 return xe_hwmon_power_curr_crit_write(hwmon, channel, val, SF_CURR);
958 default:
959 return -EOPNOTSUPP;
960 }
961 }
962
963 static umode_t
xe_hwmon_in_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)964 xe_hwmon_in_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
965 {
966 switch (attr) {
967 case hwmon_in_input:
968 case hwmon_in_label:
969 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_GT_PERF_STATUS,
970 channel)) ? 0444 : 0;
971 default:
972 return 0;
973 }
974 }
975
976 static int
xe_hwmon_in_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)977 xe_hwmon_in_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
978 {
979 switch (attr) {
980 case hwmon_in_input:
981 xe_hwmon_get_voltage(hwmon, channel, val);
982 return 0;
983 default:
984 return -EOPNOTSUPP;
985 }
986 }
987
988 static umode_t
xe_hwmon_energy_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)989 xe_hwmon_energy_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
990 {
991 long energy = 0;
992
993 switch (attr) {
994 case hwmon_energy_input:
995 case hwmon_energy_label:
996 if (hwmon->xe->info.platform == XE_BATTLEMAGE) {
997 xe_hwmon_energy_get(hwmon, channel, &energy);
998 return energy ? 0444 : 0;
999 } else {
1000 return xe_reg_is_valid(xe_hwmon_get_reg(hwmon, REG_PKG_ENERGY_STATUS,
1001 channel)) ? 0444 : 0;
1002 }
1003 default:
1004 return 0;
1005 }
1006 }
1007
1008 static int
xe_hwmon_energy_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)1009 xe_hwmon_energy_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
1010 {
1011 switch (attr) {
1012 case hwmon_energy_input:
1013 xe_hwmon_energy_get(hwmon, channel, val);
1014 return 0;
1015 default:
1016 return -EOPNOTSUPP;
1017 }
1018 }
1019
1020 static umode_t
xe_hwmon_fan_is_visible(struct xe_hwmon * hwmon,u32 attr,int channel)1021 xe_hwmon_fan_is_visible(struct xe_hwmon *hwmon, u32 attr, int channel)
1022 {
1023 u32 uval;
1024
1025 if (!hwmon->xe->info.has_fan_control)
1026 return 0;
1027
1028 switch (attr) {
1029 case hwmon_fan_input:
1030 if (xe_hwmon_pcode_read_fan_control(hwmon, FSC_READ_NUM_FANS, &uval))
1031 return 0;
1032
1033 return channel < uval ? 0444 : 0;
1034 default:
1035 return 0;
1036 }
1037 }
1038
1039 static int
xe_hwmon_fan_input_read(struct xe_hwmon * hwmon,int channel,long * val)1040 xe_hwmon_fan_input_read(struct xe_hwmon *hwmon, int channel, long *val)
1041 {
1042 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1043 struct xe_hwmon_fan_info *fi = &hwmon->fi[channel];
1044 u64 rotations, time_now, time;
1045 u32 reg_val;
1046 int ret = 0;
1047
1048 mutex_lock(&hwmon->hwmon_lock);
1049
1050 reg_val = xe_mmio_read32(mmio, xe_hwmon_get_reg(hwmon, REG_FAN_SPEED, channel));
1051 time_now = get_jiffies_64();
1052
1053 /*
1054 * HW register value is accumulated count of pulses from PWM fan with the scale
1055 * of 2 pulses per rotation.
1056 */
1057 rotations = (reg_val - fi->reg_val_prev) / 2;
1058
1059 time = jiffies_delta_to_msecs(time_now - fi->time_prev);
1060 if (unlikely(!time)) {
1061 ret = -EAGAIN;
1062 goto unlock;
1063 }
1064
1065 /*
1066 * Calculate fan speed in RPM by time averaging two subsequent readings in minutes.
1067 * RPM = number of rotations * msecs per minute / time in msecs
1068 */
1069 *val = DIV_ROUND_UP_ULL(rotations * (MSEC_PER_SEC * 60), time);
1070
1071 fi->reg_val_prev = reg_val;
1072 fi->time_prev = time_now;
1073 unlock:
1074 mutex_unlock(&hwmon->hwmon_lock);
1075 return ret;
1076 }
1077
1078 static int
xe_hwmon_fan_read(struct xe_hwmon * hwmon,u32 attr,int channel,long * val)1079 xe_hwmon_fan_read(struct xe_hwmon *hwmon, u32 attr, int channel, long *val)
1080 {
1081 switch (attr) {
1082 case hwmon_fan_input:
1083 return xe_hwmon_fan_input_read(hwmon, channel, val);
1084 default:
1085 return -EOPNOTSUPP;
1086 }
1087 }
1088
1089 static umode_t
xe_hwmon_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)1090 xe_hwmon_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1091 u32 attr, int channel)
1092 {
1093 struct xe_hwmon *hwmon = (struct xe_hwmon *)drvdata;
1094 int ret;
1095
1096 xe_pm_runtime_get(hwmon->xe);
1097
1098 switch (type) {
1099 case hwmon_temp:
1100 ret = xe_hwmon_temp_is_visible(hwmon, attr, channel);
1101 break;
1102 case hwmon_power:
1103 ret = xe_hwmon_power_is_visible(hwmon, attr, channel);
1104 break;
1105 case hwmon_curr:
1106 ret = xe_hwmon_curr_is_visible(hwmon, attr, channel);
1107 break;
1108 case hwmon_in:
1109 ret = xe_hwmon_in_is_visible(hwmon, attr, channel);
1110 break;
1111 case hwmon_energy:
1112 ret = xe_hwmon_energy_is_visible(hwmon, attr, channel);
1113 break;
1114 case hwmon_fan:
1115 ret = xe_hwmon_fan_is_visible(hwmon, attr, channel);
1116 break;
1117 default:
1118 ret = 0;
1119 break;
1120 }
1121
1122 xe_pm_runtime_put(hwmon->xe);
1123
1124 return ret;
1125 }
1126
1127 static int
xe_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1128 xe_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1129 int channel, long *val)
1130 {
1131 struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1132 int ret;
1133
1134 xe_pm_runtime_get(hwmon->xe);
1135
1136 switch (type) {
1137 case hwmon_temp:
1138 ret = xe_hwmon_temp_read(hwmon, attr, channel, val);
1139 break;
1140 case hwmon_power:
1141 ret = xe_hwmon_power_read(hwmon, attr, channel, val);
1142 break;
1143 case hwmon_curr:
1144 ret = xe_hwmon_curr_read(hwmon, attr, channel, val);
1145 break;
1146 case hwmon_in:
1147 ret = xe_hwmon_in_read(hwmon, attr, channel, val);
1148 break;
1149 case hwmon_energy:
1150 ret = xe_hwmon_energy_read(hwmon, attr, channel, val);
1151 break;
1152 case hwmon_fan:
1153 ret = xe_hwmon_fan_read(hwmon, attr, channel, val);
1154 break;
1155 default:
1156 ret = -EOPNOTSUPP;
1157 break;
1158 }
1159
1160 xe_pm_runtime_put(hwmon->xe);
1161
1162 return ret;
1163 }
1164
1165 static int
xe_hwmon_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1166 xe_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
1167 int channel, long val)
1168 {
1169 struct xe_hwmon *hwmon = dev_get_drvdata(dev);
1170 int ret;
1171
1172 xe_pm_runtime_get(hwmon->xe);
1173
1174 switch (type) {
1175 case hwmon_power:
1176 ret = xe_hwmon_power_write(hwmon, attr, channel, val);
1177 break;
1178 case hwmon_curr:
1179 ret = xe_hwmon_curr_write(hwmon, attr, channel, val);
1180 break;
1181 default:
1182 ret = -EOPNOTSUPP;
1183 break;
1184 }
1185
1186 xe_pm_runtime_put(hwmon->xe);
1187
1188 return ret;
1189 }
1190
xe_hwmon_read_label(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1191 static int xe_hwmon_read_label(struct device *dev,
1192 enum hwmon_sensor_types type,
1193 u32 attr, int channel, const char **str)
1194 {
1195 switch (type) {
1196 case hwmon_temp:
1197 if (channel == CHANNEL_PKG)
1198 *str = "pkg";
1199 else if (channel == CHANNEL_VRAM)
1200 *str = "vram";
1201 return 0;
1202 case hwmon_power:
1203 case hwmon_energy:
1204 case hwmon_curr:
1205 case hwmon_in:
1206 if (channel == CHANNEL_CARD)
1207 *str = "card";
1208 else if (channel == CHANNEL_PKG)
1209 *str = "pkg";
1210 return 0;
1211 default:
1212 return -EOPNOTSUPP;
1213 }
1214 }
1215
1216 static const struct hwmon_ops hwmon_ops = {
1217 .is_visible = xe_hwmon_is_visible,
1218 .read = xe_hwmon_read,
1219 .write = xe_hwmon_write,
1220 .read_string = xe_hwmon_read_label,
1221 };
1222
1223 static const struct hwmon_chip_info hwmon_chip_info = {
1224 .ops = &hwmon_ops,
1225 .info = hwmon_info,
1226 };
1227
1228 static void
xe_hwmon_get_preregistration_info(struct xe_hwmon * hwmon)1229 xe_hwmon_get_preregistration_info(struct xe_hwmon *hwmon)
1230 {
1231 struct xe_mmio *mmio = xe_root_tile_mmio(hwmon->xe);
1232 long energy, fan_speed;
1233 u64 val_sku_unit = 0;
1234 int channel;
1235 struct xe_reg pkg_power_sku_unit;
1236
1237 if (hwmon->xe->info.has_mbx_power_limits) {
1238 /* Check if GPU firmware support mailbox power limits commands. */
1239 if (xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_CARD,
1240 &hwmon->pl1_on_boot[CHANNEL_CARD]) |
1241 xe_hwmon_pcode_read_power_limit(hwmon, PL1_HWMON_ATTR, CHANNEL_PKG,
1242 &hwmon->pl1_on_boot[CHANNEL_PKG]) |
1243 xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_CARD,
1244 &hwmon->pl2_on_boot[CHANNEL_CARD]) |
1245 xe_hwmon_pcode_read_power_limit(hwmon, PL2_HWMON_ATTR, CHANNEL_PKG,
1246 &hwmon->pl2_on_boot[CHANNEL_PKG])) {
1247 drm_warn(&hwmon->xe->drm,
1248 "Failed to read power limits, check GPU firmware !\n");
1249 } else {
1250 drm_info(&hwmon->xe->drm, "Using mailbox commands for power limits\n");
1251 /* Write default limits to read from pcode from now on. */
1252 xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1253 CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1254 hwmon->pl1_on_boot[CHANNEL_CARD]);
1255 xe_hwmon_pcode_rmw_power_limit(hwmon, PL1_HWMON_ATTR,
1256 CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1257 hwmon->pl1_on_boot[CHANNEL_PKG]);
1258 xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1259 CHANNEL_CARD, PWR_LIM | PWR_LIM_TIME,
1260 hwmon->pl2_on_boot[CHANNEL_CARD]);
1261 xe_hwmon_pcode_rmw_power_limit(hwmon, PL2_HWMON_ATTR,
1262 CHANNEL_PKG, PWR_LIM | PWR_LIM_TIME,
1263 hwmon->pl2_on_boot[CHANNEL_PKG]);
1264 hwmon->scl_shift_power = PWR_UNIT;
1265 hwmon->scl_shift_energy = ENERGY_UNIT;
1266 hwmon->scl_shift_time = TIME_UNIT;
1267 hwmon->boot_power_limit_read = true;
1268 }
1269 } else {
1270 drm_info(&hwmon->xe->drm, "Using register for power limits\n");
1271 /*
1272 * The contents of register PKG_POWER_SKU_UNIT do not change,
1273 * so read it once and store the shift values.
1274 */
1275 pkg_power_sku_unit = xe_hwmon_get_reg(hwmon, REG_PKG_POWER_SKU_UNIT, 0);
1276 if (xe_reg_is_valid(pkg_power_sku_unit)) {
1277 val_sku_unit = xe_mmio_read32(mmio, pkg_power_sku_unit);
1278 hwmon->scl_shift_power = REG_FIELD_GET(PKG_PWR_UNIT, val_sku_unit);
1279 hwmon->scl_shift_energy = REG_FIELD_GET(PKG_ENERGY_UNIT, val_sku_unit);
1280 hwmon->scl_shift_time = REG_FIELD_GET(PKG_TIME_UNIT, val_sku_unit);
1281 }
1282 }
1283 /*
1284 * Initialize 'struct xe_hwmon_energy_info', i.e. set fields to the
1285 * first value of the energy register read
1286 */
1287 for (channel = 0; channel < CHANNEL_MAX; channel++)
1288 if (xe_hwmon_is_visible(hwmon, hwmon_energy, hwmon_energy_input, channel))
1289 xe_hwmon_energy_get(hwmon, channel, &energy);
1290
1291 /* Initialize 'struct xe_hwmon_fan_info' with initial fan register reading. */
1292 for (channel = 0; channel < FAN_MAX; channel++)
1293 if (xe_hwmon_is_visible(hwmon, hwmon_fan, hwmon_fan_input, channel))
1294 xe_hwmon_fan_input_read(hwmon, channel, &fan_speed);
1295 }
1296
xe_hwmon_mutex_destroy(void * arg)1297 static void xe_hwmon_mutex_destroy(void *arg)
1298 {
1299 struct xe_hwmon *hwmon = arg;
1300
1301 mutex_destroy(&hwmon->hwmon_lock);
1302 }
1303
xe_hwmon_register(struct xe_device * xe)1304 int xe_hwmon_register(struct xe_device *xe)
1305 {
1306 struct device *dev = xe->drm.dev;
1307 struct xe_hwmon *hwmon;
1308 int ret;
1309
1310 /* hwmon is available only for dGfx */
1311 if (!IS_DGFX(xe))
1312 return 0;
1313
1314 /* hwmon is not available on VFs */
1315 if (IS_SRIOV_VF(xe))
1316 return 0;
1317
1318 hwmon = devm_kzalloc(dev, sizeof(*hwmon), GFP_KERNEL);
1319 if (!hwmon)
1320 return -ENOMEM;
1321
1322 mutex_init(&hwmon->hwmon_lock);
1323 ret = devm_add_action_or_reset(dev, xe_hwmon_mutex_destroy, hwmon);
1324 if (ret)
1325 return ret;
1326
1327 /* There's only one instance of hwmon per device */
1328 hwmon->xe = xe;
1329 xe->hwmon = hwmon;
1330
1331 xe_hwmon_get_preregistration_info(hwmon);
1332
1333 drm_dbg(&xe->drm, "Register xe hwmon interface\n");
1334
1335 /* hwmon_dev points to device hwmon<i> */
1336 hwmon->hwmon_dev = devm_hwmon_device_register_with_info(dev, "xe", hwmon,
1337 &hwmon_chip_info,
1338 hwmon_groups);
1339 if (IS_ERR(hwmon->hwmon_dev)) {
1340 drm_err(&xe->drm, "Failed to register xe hwmon (%pe)\n", hwmon->hwmon_dev);
1341 xe->hwmon = NULL;
1342 return PTR_ERR(hwmon->hwmon_dev);
1343 }
1344
1345 return 0;
1346 }
1347 MODULE_IMPORT_NS("INTEL_PMT_TELEMETRY");
1348