1 /*
2 * Copyright (c) 2016 Hisilicon Limited.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/vmalloc.h>
35 #include <linux/count_zeros.h>
36 #include <rdma/ib_umem.h>
37 #include <linux/math.h>
38 #include "hns_roce_device.h"
39 #include "hns_roce_cmd.h"
40 #include "hns_roce_hem.h"
41 #include "hns_roce_trace.h"
42
hw_index_to_key(int ind)43 static u32 hw_index_to_key(int ind)
44 {
45 return ((u32)ind >> 24) | ((u32)ind << 8);
46 }
47
key_to_hw_index(u32 key)48 unsigned long key_to_hw_index(u32 key)
49 {
50 return (key << 24) | (key >> 8);
51 }
52
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)53 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
54 {
55 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
56 struct ib_device *ibdev = &hr_dev->ib_dev;
57 int err;
58 int id;
59
60 /* Allocate a key for mr from mr_table */
61 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
62 GFP_KERNEL);
63 if (id < 0) {
64 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
65 return -ENOMEM;
66 }
67
68 mr->key = hw_index_to_key(id); /* MR key */
69
70 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
71 (unsigned long)id);
72 if (err) {
73 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
74 goto err_free_bitmap;
75 }
76
77 return 0;
78 err_free_bitmap:
79 ida_free(&mtpt_ida->ida, id);
80 return err;
81 }
82
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)83 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
84 {
85 unsigned long obj = key_to_hw_index(mr->key);
86
87 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
88 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
89 }
90
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)91 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
92 struct ib_udata *udata, u64 start)
93 {
94 struct ib_device *ibdev = &hr_dev->ib_dev;
95 bool is_fast = mr->type == MR_TYPE_FRMR;
96 struct hns_roce_buf_attr buf_attr = {};
97 int err;
98
99 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
100 buf_attr.page_shift = is_fast ? PAGE_SHIFT :
101 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
102 buf_attr.region[0].size = mr->size;
103 buf_attr.region[0].hopnum = mr->pbl_hop_num;
104 buf_attr.region_count = 1;
105 buf_attr.user_access = mr->access;
106 /* fast MR's buffer is alloced before mapping, not at creation */
107 buf_attr.mtt_only = is_fast;
108 buf_attr.iova = mr->iova;
109 /* pagesize and hopnum is fixed for fast MR */
110 buf_attr.adaptive = !is_fast;
111 buf_attr.type = MTR_PBL;
112
113 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
114 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
115 udata, start);
116 if (err) {
117 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
118 return err;
119 }
120
121 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
122 mr->pbl_hop_num = buf_attr.region[0].hopnum;
123
124 return err;
125 }
126
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)127 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
128 {
129 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
130 }
131
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)132 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
133 {
134 struct ib_device *ibdev = &hr_dev->ib_dev;
135 int ret;
136
137 if (mr->enabled) {
138 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
139 key_to_hw_index(mr->key) &
140 (hr_dev->caps.num_mtpts - 1));
141 if (ret)
142 ibdev_warn_ratelimited(ibdev, "failed to destroy mpt, ret = %d.\n",
143 ret);
144 }
145
146 free_mr_pbl(hr_dev, mr);
147 free_mr_key(hr_dev, mr);
148 }
149
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)150 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
151 struct hns_roce_mr *mr)
152 {
153 unsigned long mtpt_idx = key_to_hw_index(mr->key);
154 struct hns_roce_cmd_mailbox *mailbox;
155 struct device *dev = hr_dev->dev;
156 int ret;
157
158 /* Allocate mailbox memory */
159 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
160 if (IS_ERR(mailbox))
161 return PTR_ERR(mailbox);
162
163 trace_hns_mr(mr);
164 if (mr->type != MR_TYPE_FRMR)
165 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
166 else
167 ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr);
168 if (ret) {
169 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
170 goto err_page;
171 }
172
173 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
174 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
175 if (ret) {
176 dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
177 goto err_page;
178 }
179
180 mr->enabled = 1;
181
182 err_page:
183 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
184
185 return ret;
186 }
187
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)188 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
189 {
190 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
191
192 ida_init(&mtpt_ida->ida);
193 mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
194 mtpt_ida->min = hr_dev->caps.reserved_mrws;
195 }
196
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)197 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
198 {
199 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
200 struct hns_roce_mr *mr;
201 int ret;
202
203 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
204 if (!mr)
205 return ERR_PTR(-ENOMEM);
206
207 mr->type = MR_TYPE_DMA;
208 mr->pd = to_hr_pd(pd)->pdn;
209 mr->access = acc;
210
211 /* Allocate memory region key */
212 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
213 ret = alloc_mr_key(hr_dev, mr);
214 if (ret)
215 goto err_free;
216
217 ret = hns_roce_mr_enable(hr_dev, mr);
218 if (ret)
219 goto err_mr;
220
221 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
222
223 return &mr->ibmr;
224 err_mr:
225 free_mr_key(hr_dev, mr);
226
227 err_free:
228 kfree(mr);
229 return ERR_PTR(ret);
230 }
231
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_dmah * dmah,struct ib_udata * udata)232 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
233 u64 virt_addr, int access_flags,
234 struct ib_dmah *dmah,
235 struct ib_udata *udata)
236 {
237 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
238 struct hns_roce_mr *mr;
239 int ret;
240
241 if (dmah) {
242 ret = -EOPNOTSUPP;
243 goto err_out;
244 }
245
246 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
247 if (!mr) {
248 ret = -ENOMEM;
249 goto err_out;
250 }
251
252 mr->iova = virt_addr;
253 mr->size = length;
254 mr->pd = to_hr_pd(pd)->pdn;
255 mr->access = access_flags;
256 mr->type = MR_TYPE_MR;
257
258 ret = alloc_mr_key(hr_dev, mr);
259 if (ret)
260 goto err_alloc_mr;
261
262 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
263 if (ret)
264 goto err_alloc_key;
265
266 ret = hns_roce_mr_enable(hr_dev, mr);
267 if (ret)
268 goto err_alloc_pbl;
269
270 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
271
272 return &mr->ibmr;
273
274 err_alloc_pbl:
275 free_mr_pbl(hr_dev, mr);
276 err_alloc_key:
277 free_mr_key(hr_dev, mr);
278 err_alloc_mr:
279 kfree(mr);
280 err_out:
281 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
282
283 return ERR_PTR(ret);
284 }
285
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)286 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
287 u64 length, u64 virt_addr,
288 int mr_access_flags, struct ib_pd *pd,
289 struct ib_udata *udata)
290 {
291 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
292 struct ib_device *ib_dev = &hr_dev->ib_dev;
293 struct hns_roce_mr *mr = to_hr_mr(ibmr);
294 struct hns_roce_cmd_mailbox *mailbox;
295 unsigned long mtpt_idx;
296 int ret;
297
298 if (!mr->enabled) {
299 ret = -EINVAL;
300 goto err_out;
301 }
302
303 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
304 ret = PTR_ERR_OR_ZERO(mailbox);
305 if (ret)
306 goto err_out;
307
308 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
309
310 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
311 mtpt_idx);
312 if (ret)
313 goto free_cmd_mbox;
314
315 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
316 mtpt_idx);
317 if (ret)
318 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
319
320 mr->enabled = 0;
321 mr->iova = virt_addr;
322 mr->size = length;
323
324 if (flags & IB_MR_REREG_PD)
325 mr->pd = to_hr_pd(pd)->pdn;
326
327 if (flags & IB_MR_REREG_ACCESS)
328 mr->access = mr_access_flags;
329
330 if (flags & IB_MR_REREG_TRANS) {
331 free_mr_pbl(hr_dev, mr);
332 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
333 if (ret) {
334 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
335 ret);
336 goto free_cmd_mbox;
337 }
338 }
339
340 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
341 if (ret) {
342 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
343 goto free_cmd_mbox;
344 }
345
346 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
347 mtpt_idx);
348 if (ret) {
349 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
350 goto free_cmd_mbox;
351 }
352
353 mr->enabled = 1;
354
355 free_cmd_mbox:
356 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
357
358 err_out:
359 if (ret) {
360 atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
361 return ERR_PTR(ret);
362 }
363
364 return NULL;
365 }
366
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)367 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
368 {
369 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
370 struct hns_roce_mr *mr = to_hr_mr(ibmr);
371
372 if (hr_dev->hw->dereg_mr)
373 hr_dev->hw->dereg_mr(hr_dev);
374
375 hns_roce_mr_free(hr_dev, mr);
376 kfree(mr);
377
378 return 0;
379 }
380
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)381 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
382 u32 max_num_sg)
383 {
384 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
385 struct device *dev = hr_dev->dev;
386 struct hns_roce_mr *mr;
387 int ret;
388
389 if (mr_type != IB_MR_TYPE_MEM_REG)
390 return ERR_PTR(-EINVAL);
391
392 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
393 dev_err(dev, "max_num_sg larger than %d\n",
394 HNS_ROCE_FRMR_MAX_PA);
395 return ERR_PTR(-EINVAL);
396 }
397
398 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
399 if (!mr)
400 return ERR_PTR(-ENOMEM);
401
402 mr->type = MR_TYPE_FRMR;
403 mr->pd = to_hr_pd(pd)->pdn;
404 mr->size = max_num_sg * (1 << PAGE_SHIFT);
405
406 /* Allocate memory region key */
407 ret = alloc_mr_key(hr_dev, mr);
408 if (ret)
409 goto err_free;
410
411 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
412 if (ret)
413 goto err_key;
414
415 ret = hns_roce_mr_enable(hr_dev, mr);
416 if (ret)
417 goto err_pbl;
418
419 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
420 mr->ibmr.length = mr->size;
421
422 return &mr->ibmr;
423
424 err_pbl:
425 free_mr_pbl(hr_dev, mr);
426 err_key:
427 free_mr_key(hr_dev, mr);
428 err_free:
429 kfree(mr);
430 return ERR_PTR(ret);
431 }
432
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)433 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
434 {
435 struct hns_roce_mr *mr = to_hr_mr(ibmr);
436
437 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
438 mr->page_list[mr->npages++] = addr;
439 return 0;
440 }
441
442 return -ENOBUFS;
443 }
444
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset_p)445 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
446 unsigned int *sg_offset_p)
447 {
448 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
449 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
450 struct ib_device *ibdev = &hr_dev->ib_dev;
451 struct hns_roce_mr *mr = to_hr_mr(ibmr);
452 struct hns_roce_mtr *mtr = &mr->pbl_mtr;
453 int ret, sg_num = 0;
454
455 if (!IS_ALIGNED(sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) ||
456 ibmr->page_size < HNS_HW_PAGE_SIZE ||
457 ibmr->page_size > HNS_HW_MAX_PAGE_SIZE)
458 return sg_num;
459
460 mr->npages = 0;
461 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
462 sizeof(dma_addr_t), GFP_KERNEL);
463 if (!mr->page_list)
464 return sg_num;
465
466 sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset_p, hns_roce_set_page);
467 if (sg_num < 1) {
468 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
469 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
470 goto err_page_list;
471 }
472
473 mtr->hem_cfg.region[0].offset = 0;
474 mtr->hem_cfg.region[0].count = mr->npages;
475 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
476 mtr->hem_cfg.region_count = 1;
477 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
478 if (ret) {
479 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
480 sg_num = 0;
481 } else {
482 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
483 }
484
485 err_page_list:
486 kvfree(mr->page_list);
487 mr->page_list = NULL;
488
489 return sg_num;
490 }
491
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)492 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
493 struct hns_roce_buf_region *region, dma_addr_t *pages,
494 int max_count)
495 {
496 int count, npage;
497 int offset, end;
498 __le64 *mtts;
499 u64 addr;
500 int i;
501
502 offset = region->offset;
503 end = offset + region->count;
504 npage = 0;
505 while (offset < end && npage < max_count) {
506 count = 0;
507 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
508 offset, &count);
509 if (!mtts)
510 return -ENOBUFS;
511
512 for (i = 0; i < count && npage < max_count; i++) {
513 addr = pages[npage];
514
515 mtts[i] = cpu_to_le64(addr);
516 npage++;
517 }
518 offset += count;
519 }
520
521 return npage;
522 }
523
mtr_has_mtt(struct hns_roce_buf_attr * attr)524 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
525 {
526 int i;
527
528 for (i = 0; i < attr->region_count; i++)
529 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
530 attr->region[i].hopnum > 0)
531 return true;
532
533 /* because the mtr only one root base address, when hopnum is 0 means
534 * root base address equals the first buffer address, thus all alloced
535 * memory must in a continuous space accessed by direct mode.
536 */
537 return false;
538 }
539
mtr_bufs_size(struct hns_roce_buf_attr * attr)540 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
541 {
542 size_t size = 0;
543 int i;
544
545 for (i = 0; i < attr->region_count; i++)
546 size += attr->region[i].size;
547
548 return size;
549 }
550
551 /*
552 * check the given pages in continuous address space
553 * Returns 0 on success, or the error page num.
554 */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)555 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
556 unsigned int page_shift)
557 {
558 size_t page_size = 1 << page_shift;
559 int i;
560
561 for (i = 1; i < page_count; i++)
562 if (pages[i] - pages[i - 1] != page_size)
563 return i;
564
565 return 0;
566 }
567
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)568 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
569 {
570 /* release user buffers */
571 if (mtr->umem) {
572 ib_umem_release(mtr->umem);
573 mtr->umem = NULL;
574 }
575
576 /* release kernel buffers */
577 if (mtr->kmem) {
578 hns_roce_buf_free(hr_dev, mtr->kmem);
579 mtr->kmem = NULL;
580 }
581 }
582
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)583 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
584 struct hns_roce_buf_attr *buf_attr,
585 struct ib_udata *udata, unsigned long user_addr)
586 {
587 struct ib_device *ibdev = &hr_dev->ib_dev;
588 size_t total_size;
589
590 total_size = mtr_bufs_size(buf_attr);
591
592 if (udata) {
593 mtr->kmem = NULL;
594 mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
595 buf_attr->user_access);
596 if (IS_ERR(mtr->umem)) {
597 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
598 PTR_ERR(mtr->umem));
599 return -ENOMEM;
600 }
601 } else {
602 mtr->umem = NULL;
603 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
604 buf_attr->page_shift,
605 !mtr_has_mtt(buf_attr) ?
606 HNS_ROCE_BUF_DIRECT : 0);
607 if (IS_ERR(mtr->kmem)) {
608 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
609 PTR_ERR(mtr->kmem));
610 return PTR_ERR(mtr->kmem);
611 }
612 }
613
614 return 0;
615 }
616
cal_mtr_pg_cnt(struct hns_roce_mtr * mtr)617 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr)
618 {
619 struct hns_roce_buf_region *region;
620 int page_cnt = 0;
621 int i;
622
623 for (i = 0; i < mtr->hem_cfg.region_count; i++) {
624 region = &mtr->hem_cfg.region[i];
625 page_cnt += region->count;
626 }
627
628 return page_cnt;
629 }
630
need_split_huge_page(struct hns_roce_mtr * mtr)631 static bool need_split_huge_page(struct hns_roce_mtr *mtr)
632 {
633 /* When HEM buffer uses 0-level addressing, the page size is
634 * equal to the whole buffer size. If the current MTR has multiple
635 * regions, we split the buffer into small pages(4k, required by hns
636 * ROCEE). These pages will be used in multiple regions.
637 */
638 return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1;
639 }
640
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)641 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
642 {
643 struct ib_device *ibdev = &hr_dev->ib_dev;
644 int page_count = cal_mtr_pg_cnt(mtr);
645 unsigned int page_shift;
646 dma_addr_t *pages;
647 int npage;
648 int ret;
649
650 page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT :
651 mtr->hem_cfg.buf_pg_shift;
652 /* alloc a tmp array to store buffer's dma address */
653 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
654 if (!pages)
655 return -ENOMEM;
656
657 if (mtr->umem)
658 npage = hns_roce_get_umem_bufs(pages, page_count,
659 mtr->umem, page_shift);
660 else
661 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
662 mtr->kmem, page_shift);
663
664 if (npage != page_count) {
665 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
666 page_count);
667 ret = -ENOBUFS;
668 goto err_alloc_list;
669 }
670
671 if (need_split_huge_page(mtr) && npage > 1) {
672 ret = mtr_check_direct_pages(pages, npage, page_shift);
673 if (ret) {
674 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
675 mtr->umem ? "umtr" : "kmtr", ret, npage);
676 ret = -ENOBUFS;
677 goto err_alloc_list;
678 }
679 }
680
681 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
682 if (ret)
683 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
684
685 err_alloc_list:
686 kvfree(pages);
687
688 return ret;
689 }
690
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)691 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
692 dma_addr_t *pages, unsigned int page_cnt)
693 {
694 struct ib_device *ibdev = &hr_dev->ib_dev;
695 struct hns_roce_buf_region *r;
696 unsigned int i, mapped_cnt;
697 int ret = 0;
698
699 /*
700 * Only use the first page address as root ba when hopnum is 0, this
701 * is because the addresses of all pages are consecutive in this case.
702 */
703 if (mtr->hem_cfg.is_direct) {
704 mtr->hem_cfg.root_ba = pages[0];
705 return 0;
706 }
707
708 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
709 mapped_cnt < page_cnt; i++) {
710 r = &mtr->hem_cfg.region[i];
711
712 if (r->offset + r->count > page_cnt) {
713 ret = -EINVAL;
714 ibdev_err(ibdev,
715 "failed to check mtr%u count %u + %u > %u.\n",
716 i, r->offset, r->count, page_cnt);
717 return ret;
718 }
719
720 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
721 page_cnt - mapped_cnt);
722 if (ret < 0) {
723 ibdev_err(ibdev,
724 "failed to map mtr%u offset %u, ret = %d.\n",
725 i, r->offset, ret);
726 return ret;
727 }
728 mapped_cnt += ret;
729 ret = 0;
730 }
731
732 if (mapped_cnt < page_cnt) {
733 ret = -ENOBUFS;
734 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
735 mapped_cnt, page_cnt);
736 }
737
738 return ret;
739 }
740
hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg * cfg,u32 start_index,u64 * mtt_buf,int mtt_cnt)741 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg,
742 u32 start_index, u64 *mtt_buf,
743 int mtt_cnt)
744 {
745 int mtt_count;
746 int total = 0;
747 u32 npage;
748 u64 addr;
749
750 if (mtt_cnt > cfg->region_count)
751 return -EINVAL;
752
753 for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt;
754 mtt_count++) {
755 npage = cfg->region[mtt_count].offset;
756 if (npage < start_index)
757 continue;
758
759 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
760 mtt_buf[total] = addr;
761
762 total++;
763 }
764
765 if (!total)
766 return -ENOENT;
767
768 return 0;
769 }
770
hns_roce_get_mhop_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 start_index,u64 * mtt_buf,int mtt_cnt)771 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev,
772 struct hns_roce_mtr *mtr, u32 start_index,
773 u64 *mtt_buf, int mtt_cnt)
774 {
775 int left = mtt_cnt;
776 int total = 0;
777 int mtt_count;
778 __le64 *mtts;
779 u32 npage;
780
781 while (left > 0) {
782 mtt_count = 0;
783 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
784 start_index + total,
785 &mtt_count);
786 if (!mtts || !mtt_count)
787 break;
788
789 npage = min(mtt_count, left);
790 left -= npage;
791 for (mtt_count = 0; mtt_count < npage; mtt_count++)
792 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
793 }
794
795 if (!total)
796 return -ENOENT;
797
798 return 0;
799 }
800
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max)801 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
802 u32 offset, u64 *mtt_buf, int mtt_max)
803 {
804 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
805 u32 start_index;
806 int ret;
807
808 if (!mtt_buf || mtt_max < 1)
809 return -EINVAL;
810
811 /* no mtt memory in direct mode, so just return the buffer address */
812 if (cfg->is_direct) {
813 start_index = offset >> HNS_HW_PAGE_SHIFT;
814 ret = hns_roce_get_direct_addr_mtt(cfg, start_index,
815 mtt_buf, mtt_max);
816 } else {
817 start_index = offset >> cfg->buf_pg_shift;
818 ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index,
819 mtt_buf, mtt_max);
820 }
821 return ret;
822 }
823
get_best_page_shift(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr)824 static int get_best_page_shift(struct hns_roce_dev *hr_dev,
825 struct hns_roce_mtr *mtr,
826 struct hns_roce_buf_attr *buf_attr)
827 {
828 unsigned int page_sz;
829
830 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem)
831 return 0;
832
833 page_sz = ib_umem_find_best_pgsz(mtr->umem,
834 hr_dev->caps.page_size_cap,
835 buf_attr->iova);
836 if (!page_sz)
837 return -EINVAL;
838
839 buf_attr->page_shift = order_base_2(page_sz);
840 return 0;
841 }
842
get_best_hop_num(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_pg_shift)843 static int get_best_hop_num(struct hns_roce_dev *hr_dev,
844 struct hns_roce_mtr *mtr,
845 struct hns_roce_buf_attr *buf_attr,
846 unsigned int ba_pg_shift)
847 {
848 #define INVALID_HOPNUM -1
849 #define MIN_BA_CNT 1
850 size_t buf_pg_sz = 1 << buf_attr->page_shift;
851 struct ib_device *ibdev = &hr_dev->ib_dev;
852 size_t ba_pg_sz = 1 << ba_pg_shift;
853 int hop_num = INVALID_HOPNUM;
854 size_t unit = MIN_BA_CNT;
855 size_t ba_cnt;
856 int j;
857
858 if (!buf_attr->adaptive || buf_attr->type != MTR_PBL)
859 return 0;
860
861 /* Caculating the number of buf pages, each buf page need a BA */
862 if (mtr->umem)
863 ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
864 else
865 ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz);
866
867 for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) {
868 if (ba_cnt <= unit) {
869 hop_num = j;
870 break;
871 }
872 /* Number of BAs can be represented at per hop */
873 unit *= ba_pg_sz / BA_BYTE_LEN;
874 }
875
876 if (hop_num < 0) {
877 ibdev_err(ibdev,
878 "failed to calculate a valid hopnum.\n");
879 return -EINVAL;
880 }
881
882 buf_attr->region[0].hopnum = hop_num;
883
884 return 0;
885 }
886
is_buf_attr_valid(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr)887 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev,
888 struct hns_roce_buf_attr *attr)
889 {
890 struct ib_device *ibdev = &hr_dev->ib_dev;
891
892 if (attr->region_count > ARRAY_SIZE(attr->region) ||
893 attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) {
894 ibdev_err(ibdev,
895 "invalid buf attr, region count %u, page shift %u.\n",
896 attr->region_count, attr->page_shift);
897 return false;
898 }
899
900 return true;
901 }
902
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * attr)903 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
904 struct hns_roce_mtr *mtr,
905 struct hns_roce_buf_attr *attr)
906 {
907 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
908 struct hns_roce_buf_region *r;
909 size_t buf_pg_sz;
910 size_t buf_size;
911 int page_cnt, i;
912 u64 pgoff = 0;
913
914 if (!is_buf_attr_valid(hr_dev, attr))
915 return -EINVAL;
916
917 /* If mtt is disabled, all pages must be within a continuous range */
918 cfg->is_direct = !mtr_has_mtt(attr);
919 cfg->region_count = attr->region_count;
920 buf_size = mtr_bufs_size(attr);
921 if (need_split_huge_page(mtr)) {
922 buf_pg_sz = HNS_HW_PAGE_SIZE;
923 cfg->buf_pg_count = 1;
924 /* The ROCEE requires the page size to be 4K * 2 ^ N. */
925 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
926 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
927 } else {
928 buf_pg_sz = 1 << attr->page_shift;
929 cfg->buf_pg_count = mtr->umem ?
930 ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) :
931 DIV_ROUND_UP(buf_size, buf_pg_sz);
932 cfg->buf_pg_shift = attr->page_shift;
933 pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0;
934 }
935
936 /* Convert buffer size to page index and page count for each region and
937 * the buffer's offset needs to be appended to the first region.
938 */
939 for (page_cnt = 0, i = 0; i < attr->region_count; i++) {
940 r = &cfg->region[i];
941 r->offset = page_cnt;
942 buf_size = hr_hw_page_align(attr->region[i].size + pgoff);
943 if (attr->type == MTR_PBL && mtr->umem)
944 r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
945 else
946 r->count = DIV_ROUND_UP(buf_size, buf_pg_sz);
947
948 pgoff = 0;
949 page_cnt += r->count;
950 r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count);
951 }
952
953 return 0;
954 }
955
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)956 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
957 {
958 return int_pow(ba_per_bt, hopnum - 1);
959 }
960
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)961 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
962 struct hns_roce_mtr *mtr,
963 unsigned int pg_shift)
964 {
965 unsigned long cap = hr_dev->caps.page_size_cap;
966 struct hns_roce_buf_region *re;
967 unsigned int pgs_per_l1ba;
968 unsigned int ba_per_bt;
969 unsigned int ba_num;
970 int i;
971
972 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
973 if (!(BIT(pg_shift) & cap))
974 continue;
975
976 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
977 ba_num = 0;
978 for (i = 0; i < mtr->hem_cfg.region_count; i++) {
979 re = &mtr->hem_cfg.region[i];
980 if (re->hopnum == 0)
981 continue;
982
983 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
984 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
985 }
986
987 if (ba_num <= ba_per_bt)
988 return pg_shift;
989 }
990
991 return 0;
992 }
993
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)994 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
995 unsigned int ba_page_shift)
996 {
997 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
998 int ret;
999
1000 hns_roce_hem_list_init(&mtr->hem_list);
1001 if (!cfg->is_direct) {
1002 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
1003 if (!ba_page_shift)
1004 return -ERANGE;
1005
1006 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1007 cfg->region, cfg->region_count,
1008 ba_page_shift);
1009 if (ret)
1010 return ret;
1011 cfg->root_ba = mtr->hem_list.root_ba;
1012 cfg->ba_pg_shift = ba_page_shift;
1013 } else {
1014 cfg->ba_pg_shift = cfg->buf_pg_shift;
1015 }
1016
1017 return 0;
1018 }
1019
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1020 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1021 {
1022 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1023 }
1024
1025 /**
1026 * hns_roce_mtr_create - Create hns memory translate region.
1027 *
1028 * @hr_dev: RoCE device struct pointer
1029 * @mtr: memory translate region
1030 * @buf_attr: buffer attribute for creating mtr
1031 * @ba_page_shift: page shift for multi-hop base address table
1032 * @udata: user space context, if it's NULL, means kernel space
1033 * @user_addr: userspace virtual address to start at
1034 */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)1035 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1036 struct hns_roce_buf_attr *buf_attr,
1037 unsigned int ba_page_shift, struct ib_udata *udata,
1038 unsigned long user_addr)
1039 {
1040 struct ib_device *ibdev = &hr_dev->ib_dev;
1041 int ret;
1042
1043 trace_hns_buf_attr(buf_attr);
1044 /* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1045 * to finish the MTT configuration.
1046 */
1047 if (buf_attr->mtt_only) {
1048 mtr->umem = NULL;
1049 mtr->kmem = NULL;
1050 } else {
1051 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1052 if (ret) {
1053 ibdev_err(ibdev,
1054 "failed to alloc mtr bufs, ret = %d.\n", ret);
1055 return ret;
1056 }
1057
1058 ret = get_best_page_shift(hr_dev, mtr, buf_attr);
1059 if (ret)
1060 goto err_init_buf;
1061
1062 ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift);
1063 if (ret)
1064 goto err_init_buf;
1065 }
1066
1067 ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr);
1068 if (ret)
1069 goto err_init_buf;
1070
1071 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1072 if (ret) {
1073 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1074 goto err_init_buf;
1075 }
1076
1077 if (buf_attr->mtt_only)
1078 return 0;
1079
1080 /* Write buffer's dma address to MTT */
1081 ret = mtr_map_bufs(hr_dev, mtr);
1082 if (ret) {
1083 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1084 goto err_alloc_mtt;
1085 }
1086
1087 return 0;
1088
1089 err_alloc_mtt:
1090 mtr_free_mtt(hr_dev, mtr);
1091 err_init_buf:
1092 mtr_free_bufs(hr_dev, mtr);
1093
1094 return ret;
1095 }
1096
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1097 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1098 {
1099 /* release multi-hop addressing resource */
1100 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1101
1102 /* free buffers */
1103 mtr_free_bufs(hr_dev, mtr);
1104 }
1105