xref: /linux/drivers/infiniband/hw/hns/hns_roce_mr.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright (c) 2016 Hisilicon Limited.
3  * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/vmalloc.h>
35 #include <linux/count_zeros.h>
36 #include <rdma/ib_umem.h>
37 #include <linux/math.h>
38 #include "hns_roce_device.h"
39 #include "hns_roce_cmd.h"
40 #include "hns_roce_hem.h"
41 #include "hns_roce_trace.h"
42 
hw_index_to_key(int ind)43 static u32 hw_index_to_key(int ind)
44 {
45 	return ((u32)ind >> 24) | ((u32)ind << 8);
46 }
47 
key_to_hw_index(u32 key)48 unsigned long key_to_hw_index(u32 key)
49 {
50 	return (key << 24) | (key >> 8);
51 }
52 
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)53 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
54 {
55 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
56 	struct ib_device *ibdev = &hr_dev->ib_dev;
57 	int err;
58 	int id;
59 
60 	/* Allocate a key for mr from mr_table */
61 	id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
62 			     GFP_KERNEL);
63 	if (id < 0) {
64 		ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
65 		return -ENOMEM;
66 	}
67 
68 	mr->key = hw_index_to_key(id); /* MR key */
69 
70 	err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
71 				 (unsigned long)id);
72 	if (err) {
73 		ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
74 		goto err_free_bitmap;
75 	}
76 
77 	return 0;
78 err_free_bitmap:
79 	ida_free(&mtpt_ida->ida, id);
80 	return err;
81 }
82 
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)83 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
84 {
85 	unsigned long obj = key_to_hw_index(mr->key);
86 
87 	hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
88 	ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
89 }
90 
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)91 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
92 			struct ib_udata *udata, u64 start)
93 {
94 	struct ib_device *ibdev = &hr_dev->ib_dev;
95 	bool is_fast = mr->type == MR_TYPE_FRMR;
96 	struct hns_roce_buf_attr buf_attr = {};
97 	int err;
98 
99 	mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
100 	buf_attr.page_shift = is_fast ? PAGE_SHIFT :
101 			      hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
102 	buf_attr.region[0].size = mr->size;
103 	buf_attr.region[0].hopnum = mr->pbl_hop_num;
104 	buf_attr.region_count = 1;
105 	buf_attr.user_access = mr->access;
106 	/* fast MR's buffer is alloced before mapping, not at creation */
107 	buf_attr.mtt_only = is_fast;
108 	buf_attr.iova = mr->iova;
109 	/* pagesize and hopnum is fixed for fast MR */
110 	buf_attr.adaptive = !is_fast;
111 	buf_attr.type = MTR_PBL;
112 
113 	err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
114 				  hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
115 				  udata, start);
116 	if (err) {
117 		ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
118 		return err;
119 	}
120 
121 	mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
122 	mr->pbl_hop_num = buf_attr.region[0].hopnum;
123 
124 	return err;
125 }
126 
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)127 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
128 {
129 	hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
130 }
131 
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)132 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
133 {
134 	struct ib_device *ibdev = &hr_dev->ib_dev;
135 	int ret;
136 
137 	if (mr->enabled) {
138 		ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
139 					      key_to_hw_index(mr->key) &
140 					      (hr_dev->caps.num_mtpts - 1));
141 		if (ret)
142 			ibdev_warn_ratelimited(ibdev, "failed to destroy mpt, ret = %d.\n",
143 					       ret);
144 	}
145 
146 	free_mr_pbl(hr_dev, mr);
147 	free_mr_key(hr_dev, mr);
148 }
149 
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)150 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
151 			      struct hns_roce_mr *mr)
152 {
153 	unsigned long mtpt_idx = key_to_hw_index(mr->key);
154 	struct hns_roce_cmd_mailbox *mailbox;
155 	struct device *dev = hr_dev->dev;
156 	int ret;
157 
158 	/* Allocate mailbox memory */
159 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
160 	if (IS_ERR(mailbox))
161 		return PTR_ERR(mailbox);
162 
163 	trace_hns_mr(mr);
164 	if (mr->type != MR_TYPE_FRMR)
165 		ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
166 	else
167 		ret = hr_dev->hw->frmr_write_mtpt(mailbox->buf, mr);
168 	if (ret) {
169 		dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
170 		goto err_page;
171 	}
172 
173 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
174 				     mtpt_idx & (hr_dev->caps.num_mtpts - 1));
175 	if (ret) {
176 		dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
177 		goto err_page;
178 	}
179 
180 	mr->enabled = 1;
181 
182 err_page:
183 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
184 
185 	return ret;
186 }
187 
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)188 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
189 {
190 	struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
191 
192 	ida_init(&mtpt_ida->ida);
193 	mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
194 	mtpt_ida->min = hr_dev->caps.reserved_mrws;
195 }
196 
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)197 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
198 {
199 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
200 	struct hns_roce_mr *mr;
201 	int ret;
202 
203 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
204 	if (!mr)
205 		return  ERR_PTR(-ENOMEM);
206 
207 	mr->type = MR_TYPE_DMA;
208 	mr->pd = to_hr_pd(pd)->pdn;
209 	mr->access = acc;
210 
211 	/* Allocate memory region key */
212 	hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
213 	ret = alloc_mr_key(hr_dev, mr);
214 	if (ret)
215 		goto err_free;
216 
217 	ret = hns_roce_mr_enable(hr_dev, mr);
218 	if (ret)
219 		goto err_mr;
220 
221 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
222 
223 	return &mr->ibmr;
224 err_mr:
225 	free_mr_key(hr_dev, mr);
226 
227 err_free:
228 	kfree(mr);
229 	return ERR_PTR(ret);
230 }
231 
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_dmah * dmah,struct ib_udata * udata)232 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
233 				   u64 virt_addr, int access_flags,
234 				   struct ib_dmah *dmah,
235 				   struct ib_udata *udata)
236 {
237 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
238 	struct hns_roce_mr *mr;
239 	int ret;
240 
241 	if (dmah) {
242 		ret = -EOPNOTSUPP;
243 		goto err_out;
244 	}
245 
246 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
247 	if (!mr) {
248 		ret = -ENOMEM;
249 		goto err_out;
250 	}
251 
252 	mr->iova = virt_addr;
253 	mr->size = length;
254 	mr->pd = to_hr_pd(pd)->pdn;
255 	mr->access = access_flags;
256 	mr->type = MR_TYPE_MR;
257 
258 	ret = alloc_mr_key(hr_dev, mr);
259 	if (ret)
260 		goto err_alloc_mr;
261 
262 	ret = alloc_mr_pbl(hr_dev, mr, udata, start);
263 	if (ret)
264 		goto err_alloc_key;
265 
266 	ret = hns_roce_mr_enable(hr_dev, mr);
267 	if (ret)
268 		goto err_alloc_pbl;
269 
270 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
271 
272 	return &mr->ibmr;
273 
274 err_alloc_pbl:
275 	free_mr_pbl(hr_dev, mr);
276 err_alloc_key:
277 	free_mr_key(hr_dev, mr);
278 err_alloc_mr:
279 	kfree(mr);
280 err_out:
281 	atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REG_ERR_CNT]);
282 
283 	return ERR_PTR(ret);
284 }
285 
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)286 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
287 				     u64 length, u64 virt_addr,
288 				     int mr_access_flags, struct ib_pd *pd,
289 				     struct ib_udata *udata)
290 {
291 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
292 	struct ib_device *ib_dev = &hr_dev->ib_dev;
293 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
294 	struct hns_roce_cmd_mailbox *mailbox;
295 	unsigned long mtpt_idx;
296 	int ret;
297 
298 	if (!mr->enabled) {
299 		ret = -EINVAL;
300 		goto err_out;
301 	}
302 
303 	mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
304 	ret = PTR_ERR_OR_ZERO(mailbox);
305 	if (ret)
306 		goto err_out;
307 
308 	mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
309 
310 	ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
311 				mtpt_idx);
312 	if (ret)
313 		goto free_cmd_mbox;
314 
315 	ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
316 				      mtpt_idx);
317 	if (ret)
318 		ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
319 
320 	mr->enabled = 0;
321 	mr->iova = virt_addr;
322 	mr->size = length;
323 
324 	if (flags & IB_MR_REREG_PD)
325 		mr->pd = to_hr_pd(pd)->pdn;
326 
327 	if (flags & IB_MR_REREG_ACCESS)
328 		mr->access = mr_access_flags;
329 
330 	if (flags & IB_MR_REREG_TRANS) {
331 		free_mr_pbl(hr_dev, mr);
332 		ret = alloc_mr_pbl(hr_dev, mr, udata, start);
333 		if (ret) {
334 			ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
335 				  ret);
336 			goto free_cmd_mbox;
337 		}
338 	}
339 
340 	ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
341 	if (ret) {
342 		ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
343 		goto free_cmd_mbox;
344 	}
345 
346 	ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
347 				     mtpt_idx);
348 	if (ret) {
349 		ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
350 		goto free_cmd_mbox;
351 	}
352 
353 	mr->enabled = 1;
354 
355 free_cmd_mbox:
356 	hns_roce_free_cmd_mailbox(hr_dev, mailbox);
357 
358 err_out:
359 	if (ret) {
360 		atomic64_inc(&hr_dev->dfx_cnt[HNS_ROCE_DFX_MR_REREG_ERR_CNT]);
361 		return ERR_PTR(ret);
362 	}
363 
364 	return NULL;
365 }
366 
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)367 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
368 {
369 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
370 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
371 
372 	if (hr_dev->hw->dereg_mr)
373 		hr_dev->hw->dereg_mr(hr_dev);
374 
375 	hns_roce_mr_free(hr_dev, mr);
376 	kfree(mr);
377 
378 	return 0;
379 }
380 
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)381 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
382 				u32 max_num_sg)
383 {
384 	struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
385 	struct device *dev = hr_dev->dev;
386 	struct hns_roce_mr *mr;
387 	int ret;
388 
389 	if (mr_type != IB_MR_TYPE_MEM_REG)
390 		return ERR_PTR(-EINVAL);
391 
392 	if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
393 		dev_err(dev, "max_num_sg larger than %d\n",
394 			HNS_ROCE_FRMR_MAX_PA);
395 		return ERR_PTR(-EINVAL);
396 	}
397 
398 	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
399 	if (!mr)
400 		return ERR_PTR(-ENOMEM);
401 
402 	mr->type = MR_TYPE_FRMR;
403 	mr->pd = to_hr_pd(pd)->pdn;
404 	mr->size = max_num_sg * (1 << PAGE_SHIFT);
405 
406 	/* Allocate memory region key */
407 	ret = alloc_mr_key(hr_dev, mr);
408 	if (ret)
409 		goto err_free;
410 
411 	ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
412 	if (ret)
413 		goto err_key;
414 
415 	ret = hns_roce_mr_enable(hr_dev, mr);
416 	if (ret)
417 		goto err_pbl;
418 
419 	mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
420 	mr->ibmr.length = mr->size;
421 
422 	return &mr->ibmr;
423 
424 err_pbl:
425 	free_mr_pbl(hr_dev, mr);
426 err_key:
427 	free_mr_key(hr_dev, mr);
428 err_free:
429 	kfree(mr);
430 	return ERR_PTR(ret);
431 }
432 
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)433 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
434 {
435 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
436 
437 	if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
438 		mr->page_list[mr->npages++] = addr;
439 		return 0;
440 	}
441 
442 	return -ENOBUFS;
443 }
444 
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset_p)445 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
446 		       unsigned int *sg_offset_p)
447 {
448 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
449 	struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
450 	struct ib_device *ibdev = &hr_dev->ib_dev;
451 	struct hns_roce_mr *mr = to_hr_mr(ibmr);
452 	struct hns_roce_mtr *mtr = &mr->pbl_mtr;
453 	int ret, sg_num = 0;
454 
455 	if (!IS_ALIGNED(sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) ||
456 	    ibmr->page_size < HNS_HW_PAGE_SIZE ||
457 	    ibmr->page_size > HNS_HW_MAX_PAGE_SIZE)
458 		return sg_num;
459 
460 	mr->npages = 0;
461 	mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
462 				 sizeof(dma_addr_t), GFP_KERNEL);
463 	if (!mr->page_list)
464 		return sg_num;
465 
466 	sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset_p, hns_roce_set_page);
467 	if (sg_num < 1) {
468 		ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
469 			  mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
470 		goto err_page_list;
471 	}
472 
473 	mtr->hem_cfg.region[0].offset = 0;
474 	mtr->hem_cfg.region[0].count = mr->npages;
475 	mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
476 	mtr->hem_cfg.region_count = 1;
477 	ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
478 	if (ret) {
479 		ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
480 		sg_num = 0;
481 	} else {
482 		mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
483 	}
484 
485 err_page_list:
486 	kvfree(mr->page_list);
487 	mr->page_list = NULL;
488 
489 	return sg_num;
490 }
491 
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)492 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
493 			  struct hns_roce_buf_region *region, dma_addr_t *pages,
494 			  int max_count)
495 {
496 	int count, npage;
497 	int offset, end;
498 	__le64 *mtts;
499 	u64 addr;
500 	int i;
501 
502 	offset = region->offset;
503 	end = offset + region->count;
504 	npage = 0;
505 	while (offset < end && npage < max_count) {
506 		count = 0;
507 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
508 						  offset, &count);
509 		if (!mtts)
510 			return -ENOBUFS;
511 
512 		for (i = 0; i < count && npage < max_count; i++) {
513 			addr = pages[npage];
514 
515 			mtts[i] = cpu_to_le64(addr);
516 			npage++;
517 		}
518 		offset += count;
519 	}
520 
521 	return npage;
522 }
523 
mtr_has_mtt(struct hns_roce_buf_attr * attr)524 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
525 {
526 	int i;
527 
528 	for (i = 0; i < attr->region_count; i++)
529 		if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
530 		    attr->region[i].hopnum > 0)
531 			return true;
532 
533 	/* because the mtr only one root base address, when hopnum is 0 means
534 	 * root base address equals the first buffer address, thus all alloced
535 	 * memory must in a continuous space accessed by direct mode.
536 	 */
537 	return false;
538 }
539 
mtr_bufs_size(struct hns_roce_buf_attr * attr)540 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
541 {
542 	size_t size = 0;
543 	int i;
544 
545 	for (i = 0; i < attr->region_count; i++)
546 		size += attr->region[i].size;
547 
548 	return size;
549 }
550 
551 /*
552  * check the given pages in continuous address space
553  * Returns 0 on success, or the error page num.
554  */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)555 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
556 					 unsigned int page_shift)
557 {
558 	size_t page_size = 1 << page_shift;
559 	int i;
560 
561 	for (i = 1; i < page_count; i++)
562 		if (pages[i] - pages[i - 1] != page_size)
563 			return i;
564 
565 	return 0;
566 }
567 
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)568 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
569 {
570 	/* release user buffers */
571 	if (mtr->umem) {
572 		ib_umem_release(mtr->umem);
573 		mtr->umem = NULL;
574 	}
575 
576 	/* release kernel buffers */
577 	if (mtr->kmem) {
578 		hns_roce_buf_free(hr_dev, mtr->kmem);
579 		mtr->kmem = NULL;
580 	}
581 }
582 
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)583 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
584 			  struct hns_roce_buf_attr *buf_attr,
585 			  struct ib_udata *udata, unsigned long user_addr)
586 {
587 	struct ib_device *ibdev = &hr_dev->ib_dev;
588 	size_t total_size;
589 
590 	total_size = mtr_bufs_size(buf_attr);
591 
592 	if (udata) {
593 		mtr->kmem = NULL;
594 		mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
595 					buf_attr->user_access);
596 		if (IS_ERR(mtr->umem)) {
597 			ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
598 				  PTR_ERR(mtr->umem));
599 			return -ENOMEM;
600 		}
601 	} else {
602 		mtr->umem = NULL;
603 		mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
604 					       buf_attr->page_shift,
605 					       !mtr_has_mtt(buf_attr) ?
606 					       HNS_ROCE_BUF_DIRECT : 0);
607 		if (IS_ERR(mtr->kmem)) {
608 			ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
609 				  PTR_ERR(mtr->kmem));
610 			return PTR_ERR(mtr->kmem);
611 		}
612 	}
613 
614 	return 0;
615 }
616 
cal_mtr_pg_cnt(struct hns_roce_mtr * mtr)617 static int cal_mtr_pg_cnt(struct hns_roce_mtr *mtr)
618 {
619 	struct hns_roce_buf_region *region;
620 	int page_cnt = 0;
621 	int i;
622 
623 	for (i = 0; i < mtr->hem_cfg.region_count; i++) {
624 		region = &mtr->hem_cfg.region[i];
625 		page_cnt += region->count;
626 	}
627 
628 	return page_cnt;
629 }
630 
need_split_huge_page(struct hns_roce_mtr * mtr)631 static bool need_split_huge_page(struct hns_roce_mtr *mtr)
632 {
633 	/* When HEM buffer uses 0-level addressing, the page size is
634 	 * equal to the whole buffer size. If the current MTR has multiple
635 	 * regions, we split the buffer into small pages(4k, required by hns
636 	 * ROCEE). These pages will be used in multiple regions.
637 	 */
638 	return mtr->hem_cfg.is_direct && mtr->hem_cfg.region_count > 1;
639 }
640 
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)641 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
642 {
643 	struct ib_device *ibdev = &hr_dev->ib_dev;
644 	int page_count = cal_mtr_pg_cnt(mtr);
645 	unsigned int page_shift;
646 	dma_addr_t *pages;
647 	int npage;
648 	int ret;
649 
650 	page_shift = need_split_huge_page(mtr) ? HNS_HW_PAGE_SHIFT :
651 						 mtr->hem_cfg.buf_pg_shift;
652 	/* alloc a tmp array to store buffer's dma address */
653 	pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
654 	if (!pages)
655 		return -ENOMEM;
656 
657 	if (mtr->umem)
658 		npage = hns_roce_get_umem_bufs(pages, page_count,
659 					       mtr->umem, page_shift);
660 	else
661 		npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
662 					       mtr->kmem, page_shift);
663 
664 	if (npage != page_count) {
665 		ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
666 			  page_count);
667 		ret = -ENOBUFS;
668 		goto err_alloc_list;
669 	}
670 
671 	if (need_split_huge_page(mtr) && npage > 1) {
672 		ret = mtr_check_direct_pages(pages, npage, page_shift);
673 		if (ret) {
674 			ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
675 				  mtr->umem ? "umtr" : "kmtr", ret, npage);
676 			ret = -ENOBUFS;
677 			goto err_alloc_list;
678 		}
679 	}
680 
681 	ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
682 	if (ret)
683 		ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
684 
685 err_alloc_list:
686 	kvfree(pages);
687 
688 	return ret;
689 }
690 
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)691 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
692 		     dma_addr_t *pages, unsigned int page_cnt)
693 {
694 	struct ib_device *ibdev = &hr_dev->ib_dev;
695 	struct hns_roce_buf_region *r;
696 	unsigned int i, mapped_cnt;
697 	int ret = 0;
698 
699 	/*
700 	 * Only use the first page address as root ba when hopnum is 0, this
701 	 * is because the addresses of all pages are consecutive in this case.
702 	 */
703 	if (mtr->hem_cfg.is_direct) {
704 		mtr->hem_cfg.root_ba = pages[0];
705 		return 0;
706 	}
707 
708 	for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
709 	     mapped_cnt < page_cnt; i++) {
710 		r = &mtr->hem_cfg.region[i];
711 
712 		if (r->offset + r->count > page_cnt) {
713 			ret = -EINVAL;
714 			ibdev_err(ibdev,
715 				  "failed to check mtr%u count %u + %u > %u.\n",
716 				  i, r->offset, r->count, page_cnt);
717 			return ret;
718 		}
719 
720 		ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
721 				     page_cnt - mapped_cnt);
722 		if (ret < 0) {
723 			ibdev_err(ibdev,
724 				  "failed to map mtr%u offset %u, ret = %d.\n",
725 				  i, r->offset, ret);
726 			return ret;
727 		}
728 		mapped_cnt += ret;
729 		ret = 0;
730 	}
731 
732 	if (mapped_cnt < page_cnt) {
733 		ret = -ENOBUFS;
734 		ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
735 			  mapped_cnt, page_cnt);
736 	}
737 
738 	return ret;
739 }
740 
hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg * cfg,u32 start_index,u64 * mtt_buf,int mtt_cnt)741 static int hns_roce_get_direct_addr_mtt(struct hns_roce_hem_cfg *cfg,
742 					u32 start_index, u64 *mtt_buf,
743 					int mtt_cnt)
744 {
745 	int mtt_count;
746 	int total = 0;
747 	u32 npage;
748 	u64 addr;
749 
750 	if (mtt_cnt > cfg->region_count)
751 		return -EINVAL;
752 
753 	for (mtt_count = 0; mtt_count < cfg->region_count && total < mtt_cnt;
754 	     mtt_count++) {
755 		npage = cfg->region[mtt_count].offset;
756 		if (npage < start_index)
757 			continue;
758 
759 		addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
760 		mtt_buf[total] = addr;
761 
762 		total++;
763 	}
764 
765 	if (!total)
766 		return -ENOENT;
767 
768 	return 0;
769 }
770 
hns_roce_get_mhop_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 start_index,u64 * mtt_buf,int mtt_cnt)771 static int hns_roce_get_mhop_mtt(struct hns_roce_dev *hr_dev,
772 				 struct hns_roce_mtr *mtr, u32 start_index,
773 				 u64 *mtt_buf, int mtt_cnt)
774 {
775 	int left = mtt_cnt;
776 	int total = 0;
777 	int mtt_count;
778 	__le64 *mtts;
779 	u32 npage;
780 
781 	while (left > 0) {
782 		mtt_count = 0;
783 		mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
784 						  start_index + total,
785 						  &mtt_count);
786 		if (!mtts || !mtt_count)
787 			break;
788 
789 		npage = min(mtt_count, left);
790 		left -= npage;
791 		for (mtt_count = 0; mtt_count < npage; mtt_count++)
792 			mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
793 	}
794 
795 	if (!total)
796 		return -ENOENT;
797 
798 	return 0;
799 }
800 
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max)801 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
802 		      u32 offset, u64 *mtt_buf, int mtt_max)
803 {
804 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
805 	u32 start_index;
806 	int ret;
807 
808 	if (!mtt_buf || mtt_max < 1)
809 		return -EINVAL;
810 
811 	/* no mtt memory in direct mode, so just return the buffer address */
812 	if (cfg->is_direct) {
813 		start_index = offset >> HNS_HW_PAGE_SHIFT;
814 		ret = hns_roce_get_direct_addr_mtt(cfg, start_index,
815 						   mtt_buf, mtt_max);
816 	} else {
817 		start_index = offset >> cfg->buf_pg_shift;
818 		ret = hns_roce_get_mhop_mtt(hr_dev, mtr, start_index,
819 					    mtt_buf, mtt_max);
820 	}
821 	return ret;
822 }
823 
get_best_page_shift(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr)824 static int get_best_page_shift(struct hns_roce_dev *hr_dev,
825 			       struct hns_roce_mtr *mtr,
826 			       struct hns_roce_buf_attr *buf_attr)
827 {
828 	unsigned int page_sz;
829 
830 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL || !mtr->umem)
831 		return 0;
832 
833 	page_sz = ib_umem_find_best_pgsz(mtr->umem,
834 					 hr_dev->caps.page_size_cap,
835 					 buf_attr->iova);
836 	if (!page_sz)
837 		return -EINVAL;
838 
839 	buf_attr->page_shift = order_base_2(page_sz);
840 	return 0;
841 }
842 
get_best_hop_num(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_pg_shift)843 static int get_best_hop_num(struct hns_roce_dev *hr_dev,
844 			    struct hns_roce_mtr *mtr,
845 			    struct hns_roce_buf_attr *buf_attr,
846 			    unsigned int ba_pg_shift)
847 {
848 #define INVALID_HOPNUM -1
849 #define MIN_BA_CNT 1
850 	size_t buf_pg_sz = 1 << buf_attr->page_shift;
851 	struct ib_device *ibdev = &hr_dev->ib_dev;
852 	size_t ba_pg_sz = 1 << ba_pg_shift;
853 	int hop_num = INVALID_HOPNUM;
854 	size_t unit = MIN_BA_CNT;
855 	size_t ba_cnt;
856 	int j;
857 
858 	if (!buf_attr->adaptive || buf_attr->type != MTR_PBL)
859 		return 0;
860 
861 	/* Caculating the number of buf pages, each buf page need a BA */
862 	if (mtr->umem)
863 		ba_cnt = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
864 	else
865 		ba_cnt = DIV_ROUND_UP(buf_attr->region[0].size, buf_pg_sz);
866 
867 	for (j = 0; j <= HNS_ROCE_MAX_HOP_NUM; j++) {
868 		if (ba_cnt <= unit) {
869 			hop_num = j;
870 			break;
871 		}
872 		/* Number of BAs can be represented at per hop */
873 		unit *= ba_pg_sz / BA_BYTE_LEN;
874 	}
875 
876 	if (hop_num < 0) {
877 		ibdev_err(ibdev,
878 			  "failed to calculate a valid hopnum.\n");
879 		return -EINVAL;
880 	}
881 
882 	buf_attr->region[0].hopnum = hop_num;
883 
884 	return 0;
885 }
886 
is_buf_attr_valid(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr)887 static bool is_buf_attr_valid(struct hns_roce_dev *hr_dev,
888 			      struct hns_roce_buf_attr *attr)
889 {
890 	struct ib_device *ibdev = &hr_dev->ib_dev;
891 
892 	if (attr->region_count > ARRAY_SIZE(attr->region) ||
893 	    attr->region_count < 1 || attr->page_shift < HNS_HW_PAGE_SHIFT) {
894 		ibdev_err(ibdev,
895 			  "invalid buf attr, region count %u, page shift %u.\n",
896 			  attr->region_count, attr->page_shift);
897 		return false;
898 	}
899 
900 	return true;
901 }
902 
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * attr)903 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
904 			    struct hns_roce_mtr *mtr,
905 			    struct hns_roce_buf_attr *attr)
906 {
907 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
908 	struct hns_roce_buf_region *r;
909 	size_t buf_pg_sz;
910 	size_t buf_size;
911 	int page_cnt, i;
912 	u64 pgoff = 0;
913 
914 	if (!is_buf_attr_valid(hr_dev, attr))
915 		return -EINVAL;
916 
917 	/* If mtt is disabled, all pages must be within a continuous range */
918 	cfg->is_direct = !mtr_has_mtt(attr);
919 	cfg->region_count = attr->region_count;
920 	buf_size = mtr_bufs_size(attr);
921 	if (need_split_huge_page(mtr)) {
922 		buf_pg_sz = HNS_HW_PAGE_SIZE;
923 		cfg->buf_pg_count = 1;
924 		/* The ROCEE requires the page size to be 4K * 2 ^ N. */
925 		cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
926 			order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
927 	} else {
928 		buf_pg_sz = 1 << attr->page_shift;
929 		cfg->buf_pg_count = mtr->umem ?
930 			ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz) :
931 			DIV_ROUND_UP(buf_size, buf_pg_sz);
932 		cfg->buf_pg_shift = attr->page_shift;
933 		pgoff = mtr->umem ? mtr->umem->address & ~PAGE_MASK : 0;
934 	}
935 
936 	/* Convert buffer size to page index and page count for each region and
937 	 * the buffer's offset needs to be appended to the first region.
938 	 */
939 	for (page_cnt = 0, i = 0; i < attr->region_count; i++) {
940 		r = &cfg->region[i];
941 		r->offset = page_cnt;
942 		buf_size = hr_hw_page_align(attr->region[i].size + pgoff);
943 		if (attr->type == MTR_PBL && mtr->umem)
944 			r->count = ib_umem_num_dma_blocks(mtr->umem, buf_pg_sz);
945 		else
946 			r->count = DIV_ROUND_UP(buf_size, buf_pg_sz);
947 
948 		pgoff = 0;
949 		page_cnt += r->count;
950 		r->hopnum = to_hr_hem_hopnum(attr->region[i].hopnum, r->count);
951 	}
952 
953 	return 0;
954 }
955 
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)956 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
957 {
958 	return int_pow(ba_per_bt, hopnum - 1);
959 }
960 
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)961 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
962 				      struct hns_roce_mtr *mtr,
963 				      unsigned int pg_shift)
964 {
965 	unsigned long cap = hr_dev->caps.page_size_cap;
966 	struct hns_roce_buf_region *re;
967 	unsigned int pgs_per_l1ba;
968 	unsigned int ba_per_bt;
969 	unsigned int ba_num;
970 	int i;
971 
972 	for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
973 		if (!(BIT(pg_shift) & cap))
974 			continue;
975 
976 		ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
977 		ba_num = 0;
978 		for (i = 0; i < mtr->hem_cfg.region_count; i++) {
979 			re = &mtr->hem_cfg.region[i];
980 			if (re->hopnum == 0)
981 				continue;
982 
983 			pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
984 			ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
985 		}
986 
987 		if (ba_num <= ba_per_bt)
988 			return pg_shift;
989 	}
990 
991 	return 0;
992 }
993 
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)994 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
995 			 unsigned int ba_page_shift)
996 {
997 	struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
998 	int ret;
999 
1000 	hns_roce_hem_list_init(&mtr->hem_list);
1001 	if (!cfg->is_direct) {
1002 		ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
1003 		if (!ba_page_shift)
1004 			return -ERANGE;
1005 
1006 		ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
1007 						cfg->region, cfg->region_count,
1008 						ba_page_shift);
1009 		if (ret)
1010 			return ret;
1011 		cfg->root_ba = mtr->hem_list.root_ba;
1012 		cfg->ba_pg_shift = ba_page_shift;
1013 	} else {
1014 		cfg->ba_pg_shift = cfg->buf_pg_shift;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1020 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1021 {
1022 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1023 }
1024 
1025 /**
1026  * hns_roce_mtr_create - Create hns memory translate region.
1027  *
1028  * @hr_dev: RoCE device struct pointer
1029  * @mtr: memory translate region
1030  * @buf_attr: buffer attribute for creating mtr
1031  * @ba_page_shift: page shift for multi-hop base address table
1032  * @udata: user space context, if it's NULL, means kernel space
1033  * @user_addr: userspace virtual address to start at
1034  */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)1035 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
1036 			struct hns_roce_buf_attr *buf_attr,
1037 			unsigned int ba_page_shift, struct ib_udata *udata,
1038 			unsigned long user_addr)
1039 {
1040 	struct ib_device *ibdev = &hr_dev->ib_dev;
1041 	int ret;
1042 
1043 	trace_hns_buf_attr(buf_attr);
1044 	/* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1045 	 * to finish the MTT configuration.
1046 	 */
1047 	if (buf_attr->mtt_only) {
1048 		mtr->umem = NULL;
1049 		mtr->kmem = NULL;
1050 	} else {
1051 		ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1052 		if (ret) {
1053 			ibdev_err(ibdev,
1054 				  "failed to alloc mtr bufs, ret = %d.\n", ret);
1055 			return ret;
1056 		}
1057 
1058 		ret = get_best_page_shift(hr_dev, mtr, buf_attr);
1059 		if (ret)
1060 			goto err_init_buf;
1061 
1062 		ret = get_best_hop_num(hr_dev, mtr, buf_attr, ba_page_shift);
1063 		if (ret)
1064 			goto err_init_buf;
1065 	}
1066 
1067 	ret = mtr_init_buf_cfg(hr_dev, mtr, buf_attr);
1068 	if (ret)
1069 		goto err_init_buf;
1070 
1071 	ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1072 	if (ret) {
1073 		ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1074 		goto err_init_buf;
1075 	}
1076 
1077 	if (buf_attr->mtt_only)
1078 		return 0;
1079 
1080 	/* Write buffer's dma address to MTT */
1081 	ret = mtr_map_bufs(hr_dev, mtr);
1082 	if (ret) {
1083 		ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1084 		goto err_alloc_mtt;
1085 	}
1086 
1087 	return 0;
1088 
1089 err_alloc_mtt:
1090 	mtr_free_mtt(hr_dev, mtr);
1091 err_init_buf:
1092 	mtr_free_bufs(hr_dev, mtr);
1093 
1094 	return ret;
1095 }
1096 
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1097 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1098 {
1099 	/* release multi-hop addressing resource */
1100 	hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1101 
1102 	/* free buffers */
1103 	mtr_free_bufs(hr_dev, mtr);
1104 }
1105