1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36 
37 #include "power.h"
38 
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42 
43 /*
44  * Number of bytes to reserve for memory allocations made by device drivers
45  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46  * cause image creation to fail (tunable via /sys/power/reserved_size).
47  */
48 unsigned long reserved_size;
49 
hibernate_reserved_size_init(void)50 void __init hibernate_reserved_size_init(void)
51 {
52 	reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54 
55 /*
56  * Preferred image size in bytes (tunable via /sys/power/image_size).
57  * When it is set to N, swsusp will do its best to ensure the image
58  * size will not exceed N bytes, but if that is impossible, it will
59  * try to create the smallest image possible.
60  */
61 unsigned long image_size;
62 
hibernate_image_size_init(void)63 void __init hibernate_image_size_init(void)
64 {
65 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67 
68 /* List of PBEs needed for restoring the pages that were allocated before
69  * the suspend and included in the suspend image, but have also been
70  * allocated by the "resume" kernel, so their contents cannot be written
71  * directly to their "original" page frames.
72  */
73 struct pbe *restore_pblist;
74 
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77 
78 /**
79  *	@safe_needed - on resume, for storing the PBE list and the image,
80  *	we can only use memory pages that do not conflict with the pages
81  *	used before suspend.  The unsafe pages have PageNosaveFree set
82  *	and we count them using unsafe_pages.
83  *
84  *	Each allocated image page is marked as PageNosave and PageNosaveFree
85  *	so that swsusp_free() can release it.
86  */
87 
88 #define PG_ANY		0
89 #define PG_SAFE		1
90 #define PG_UNSAFE_CLEAR	1
91 #define PG_UNSAFE_KEEP	0
92 
93 static unsigned int allocated_unsafe_pages;
94 
get_image_page(gfp_t gfp_mask,int safe_needed)95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 	void *res;
98 
99 	res = (void *)get_zeroed_page(gfp_mask);
100 	if (safe_needed)
101 		while (res && swsusp_page_is_free(virt_to_page(res))) {
102 			/* The page is unsafe, mark it for swsusp_free() */
103 			swsusp_set_page_forbidden(virt_to_page(res));
104 			allocated_unsafe_pages++;
105 			res = (void *)get_zeroed_page(gfp_mask);
106 		}
107 	if (res) {
108 		swsusp_set_page_forbidden(virt_to_page(res));
109 		swsusp_set_page_free(virt_to_page(res));
110 	}
111 	return res;
112 }
113 
get_safe_page(gfp_t gfp_mask)114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118 
alloc_image_page(gfp_t gfp_mask)119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 	struct page *page;
122 
123 	page = alloc_page(gfp_mask);
124 	if (page) {
125 		swsusp_set_page_forbidden(page);
126 		swsusp_set_page_free(page);
127 	}
128 	return page;
129 }
130 
131 /**
132  *	free_image_page - free page represented by @addr, allocated with
133  *	get_image_page (page flags set by it must be cleared)
134  */
135 
free_image_page(void * addr,int clear_nosave_free)136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 	struct page *page;
139 
140 	BUG_ON(!virt_addr_valid(addr));
141 
142 	page = virt_to_page(addr);
143 
144 	swsusp_unset_page_forbidden(page);
145 	if (clear_nosave_free)
146 		swsusp_unset_page_free(page);
147 
148 	__free_page(page);
149 }
150 
151 /* struct linked_page is used to build chains of pages */
152 
153 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
154 
155 struct linked_page {
156 	struct linked_page *next;
157 	char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159 
160 static inline void
free_list_of_pages(struct linked_page * list,int clear_page_nosave)161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 	while (list) {
164 		struct linked_page *lp = list->next;
165 
166 		free_image_page(list, clear_page_nosave);
167 		list = lp;
168 	}
169 }
170 
171 /**
172   *	struct chain_allocator is used for allocating small objects out of
173   *	a linked list of pages called 'the chain'.
174   *
175   *	The chain grows each time when there is no room for a new object in
176   *	the current page.  The allocated objects cannot be freed individually.
177   *	It is only possible to free them all at once, by freeing the entire
178   *	chain.
179   *
180   *	NOTE: The chain allocator may be inefficient if the allocated objects
181   *	are not much smaller than PAGE_SIZE.
182   */
183 
184 struct chain_allocator {
185 	struct linked_page *chain;	/* the chain */
186 	unsigned int used_space;	/* total size of objects allocated out
187 					 * of the current page
188 					 */
189 	gfp_t gfp_mask;		/* mask for allocating pages */
190 	int safe_needed;	/* if set, only "safe" pages are allocated */
191 };
192 
193 static void
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 	ca->chain = NULL;
197 	ca->used_space = LINKED_PAGE_DATA_SIZE;
198 	ca->gfp_mask = gfp_mask;
199 	ca->safe_needed = safe_needed;
200 }
201 
chain_alloc(struct chain_allocator * ca,unsigned int size)202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 	void *ret;
205 
206 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 		struct linked_page *lp;
208 
209 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 		if (!lp)
211 			return NULL;
212 
213 		lp->next = ca->chain;
214 		ca->chain = lp;
215 		ca->used_space = 0;
216 	}
217 	ret = ca->chain->data + ca->used_space;
218 	ca->used_space += size;
219 	return ret;
220 }
221 
222 /**
223  *	Data types related to memory bitmaps.
224  *
225  *	Memory bitmap is a structure consiting of many linked lists of
226  *	objects.  The main list's elements are of type struct zone_bitmap
227  *	and each of them corresonds to one zone.  For each zone bitmap
228  *	object there is a list of objects of type struct bm_block that
229  *	represent each blocks of bitmap in which information is stored.
230  *
231  *	struct memory_bitmap contains a pointer to the main list of zone
232  *	bitmap objects, a struct bm_position used for browsing the bitmap,
233  *	and a pointer to the list of pages used for allocating all of the
234  *	zone bitmap objects and bitmap block objects.
235  *
236  *	NOTE: It has to be possible to lay out the bitmap in memory
237  *	using only allocations of order 0.  Additionally, the bitmap is
238  *	designed to work with arbitrary number of zones (this is over the
239  *	top for now, but let's avoid making unnecessary assumptions ;-).
240  *
241  *	struct zone_bitmap contains a pointer to a list of bitmap block
242  *	objects and a pointer to the bitmap block object that has been
243  *	most recently used for setting bits.  Additionally, it contains the
244  *	pfns that correspond to the start and end of the represented zone.
245  *
246  *	struct bm_block contains a pointer to the memory page in which
247  *	information is stored (in the form of a block of bitmap)
248  *	It also contains the pfns that correspond to the start and end of
249  *	the represented memory area.
250  */
251 
252 #define BM_END_OF_MAP	(~0UL)
253 
254 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
255 
256 struct bm_block {
257 	struct list_head hook;	/* hook into a list of bitmap blocks */
258 	unsigned long start_pfn;	/* pfn represented by the first bit */
259 	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
260 	unsigned long *data;	/* bitmap representing pages */
261 };
262 
bm_block_bits(struct bm_block * bb)263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 	return bb->end_pfn - bb->start_pfn;
266 }
267 
268 /* strcut bm_position is used for browsing memory bitmaps */
269 
270 struct bm_position {
271 	struct bm_block *block;
272 	int bit;
273 };
274 
275 struct memory_bitmap {
276 	struct list_head blocks;	/* list of bitmap blocks */
277 	struct linked_page *p_list;	/* list of pages used to store zone
278 					 * bitmap objects and bitmap block
279 					 * objects
280 					 */
281 	struct bm_position cur;	/* most recently used bit position */
282 };
283 
284 /* Functions that operate on memory bitmaps */
285 
memory_bm_position_reset(struct memory_bitmap * bm)286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 	bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 	bm->cur.bit = 0;
290 }
291 
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293 
294 /**
295  *	create_bm_block_list - create a list of block bitmap objects
296  *	@pages - number of pages to track
297  *	@list - list to put the allocated blocks into
298  *	@ca - chain allocator to be used for allocating memory
299  */
create_bm_block_list(unsigned long pages,struct list_head * list,struct chain_allocator * ca)300 static int create_bm_block_list(unsigned long pages,
301 				struct list_head *list,
302 				struct chain_allocator *ca)
303 {
304 	unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305 
306 	while (nr_blocks-- > 0) {
307 		struct bm_block *bb;
308 
309 		bb = chain_alloc(ca, sizeof(struct bm_block));
310 		if (!bb)
311 			return -ENOMEM;
312 		list_add(&bb->hook, list);
313 	}
314 
315 	return 0;
316 }
317 
318 struct mem_extent {
319 	struct list_head hook;
320 	unsigned long start;
321 	unsigned long end;
322 };
323 
324 /**
325  *	free_mem_extents - free a list of memory extents
326  *	@list - list of extents to empty
327  */
free_mem_extents(struct list_head * list)328 static void free_mem_extents(struct list_head *list)
329 {
330 	struct mem_extent *ext, *aux;
331 
332 	list_for_each_entry_safe(ext, aux, list, hook) {
333 		list_del(&ext->hook);
334 		kfree(ext);
335 	}
336 }
337 
338 /**
339  *	create_mem_extents - create a list of memory extents representing
340  *	                     contiguous ranges of PFNs
341  *	@list - list to put the extents into
342  *	@gfp_mask - mask to use for memory allocations
343  */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 	struct zone *zone;
347 
348 	INIT_LIST_HEAD(list);
349 
350 	for_each_populated_zone(zone) {
351 		unsigned long zone_start, zone_end;
352 		struct mem_extent *ext, *cur, *aux;
353 
354 		zone_start = zone->zone_start_pfn;
355 		zone_end = zone->zone_start_pfn + zone->spanned_pages;
356 
357 		list_for_each_entry(ext, list, hook)
358 			if (zone_start <= ext->end)
359 				break;
360 
361 		if (&ext->hook == list || zone_end < ext->start) {
362 			/* New extent is necessary */
363 			struct mem_extent *new_ext;
364 
365 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 			if (!new_ext) {
367 				free_mem_extents(list);
368 				return -ENOMEM;
369 			}
370 			new_ext->start = zone_start;
371 			new_ext->end = zone_end;
372 			list_add_tail(&new_ext->hook, &ext->hook);
373 			continue;
374 		}
375 
376 		/* Merge this zone's range of PFNs with the existing one */
377 		if (zone_start < ext->start)
378 			ext->start = zone_start;
379 		if (zone_end > ext->end)
380 			ext->end = zone_end;
381 
382 		/* More merging may be possible */
383 		cur = ext;
384 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 			if (zone_end < cur->start)
386 				break;
387 			if (zone_end < cur->end)
388 				ext->end = cur->end;
389 			list_del(&cur->hook);
390 			kfree(cur);
391 		}
392 	}
393 
394 	return 0;
395 }
396 
397 /**
398   *	memory_bm_create - allocate memory for a memory bitmap
399   */
400 static int
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 	struct chain_allocator ca;
404 	struct list_head mem_extents;
405 	struct mem_extent *ext;
406 	int error;
407 
408 	chain_init(&ca, gfp_mask, safe_needed);
409 	INIT_LIST_HEAD(&bm->blocks);
410 
411 	error = create_mem_extents(&mem_extents, gfp_mask);
412 	if (error)
413 		return error;
414 
415 	list_for_each_entry(ext, &mem_extents, hook) {
416 		struct bm_block *bb;
417 		unsigned long pfn = ext->start;
418 		unsigned long pages = ext->end - ext->start;
419 
420 		bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421 
422 		error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 		if (error)
424 			goto Error;
425 
426 		list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 			bb->data = get_image_page(gfp_mask, safe_needed);
428 			if (!bb->data) {
429 				error = -ENOMEM;
430 				goto Error;
431 			}
432 
433 			bb->start_pfn = pfn;
434 			if (pages >= BM_BITS_PER_BLOCK) {
435 				pfn += BM_BITS_PER_BLOCK;
436 				pages -= BM_BITS_PER_BLOCK;
437 			} else {
438 				/* This is executed only once in the loop */
439 				pfn += pages;
440 			}
441 			bb->end_pfn = pfn;
442 		}
443 	}
444 
445 	bm->p_list = ca.chain;
446 	memory_bm_position_reset(bm);
447  Exit:
448 	free_mem_extents(&mem_extents);
449 	return error;
450 
451  Error:
452 	bm->p_list = ca.chain;
453 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 	goto Exit;
455 }
456 
457 /**
458   *	memory_bm_free - free memory occupied by the memory bitmap @bm
459   */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 	struct bm_block *bb;
463 
464 	list_for_each_entry(bb, &bm->blocks, hook)
465 		if (bb->data)
466 			free_image_page(bb->data, clear_nosave_free);
467 
468 	free_list_of_pages(bm->p_list, clear_nosave_free);
469 
470 	INIT_LIST_HEAD(&bm->blocks);
471 }
472 
473 /**
474  *	memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475  *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
476  *	of @bm->cur_zone_bm are updated.
477  */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 				void **addr, unsigned int *bit_nr)
480 {
481 	struct bm_block *bb;
482 
483 	/*
484 	 * Check if the pfn corresponds to the current bitmap block and find
485 	 * the block where it fits if this is not the case.
486 	 */
487 	bb = bm->cur.block;
488 	if (pfn < bb->start_pfn)
489 		list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 			if (pfn >= bb->start_pfn)
491 				break;
492 
493 	if (pfn >= bb->end_pfn)
494 		list_for_each_entry_continue(bb, &bm->blocks, hook)
495 			if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 				break;
497 
498 	if (&bb->hook == &bm->blocks)
499 		return -EFAULT;
500 
501 	/* The block has been found */
502 	bm->cur.block = bb;
503 	pfn -= bb->start_pfn;
504 	bm->cur.bit = pfn + 1;
505 	*bit_nr = pfn;
506 	*addr = bb->data;
507 	return 0;
508 }
509 
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 	void *addr;
513 	unsigned int bit;
514 	int error;
515 
516 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 	BUG_ON(error);
518 	set_bit(bit, addr);
519 }
520 
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 	void *addr;
524 	unsigned int bit;
525 	int error;
526 
527 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 	if (!error)
529 		set_bit(bit, addr);
530 	return error;
531 }
532 
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 	void *addr;
536 	unsigned int bit;
537 	int error;
538 
539 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 	BUG_ON(error);
541 	clear_bit(bit, addr);
542 }
543 
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 	void *addr;
547 	unsigned int bit;
548 	int error;
549 
550 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 	BUG_ON(error);
552 	return test_bit(bit, addr);
553 }
554 
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 	void *addr;
558 	unsigned int bit;
559 
560 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562 
563 /**
564  *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565  *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
566  *	returned.
567  *
568  *	It is required to run memory_bm_position_reset() before the first call to
569  *	this function.
570  */
571 
memory_bm_next_pfn(struct memory_bitmap * bm)572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 	struct bm_block *bb;
575 	int bit;
576 
577 	bb = bm->cur.block;
578 	do {
579 		bit = bm->cur.bit;
580 		bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 		if (bit < bm_block_bits(bb))
582 			goto Return_pfn;
583 
584 		bb = list_entry(bb->hook.next, struct bm_block, hook);
585 		bm->cur.block = bb;
586 		bm->cur.bit = 0;
587 	} while (&bb->hook != &bm->blocks);
588 
589 	memory_bm_position_reset(bm);
590 	return BM_END_OF_MAP;
591 
592  Return_pfn:
593 	bm->cur.bit = bit + 1;
594 	return bb->start_pfn + bit;
595 }
596 
597 /**
598  *	This structure represents a range of page frames the contents of which
599  *	should not be saved during the suspend.
600  */
601 
602 struct nosave_region {
603 	struct list_head list;
604 	unsigned long start_pfn;
605 	unsigned long end_pfn;
606 };
607 
608 static LIST_HEAD(nosave_regions);
609 
610 /**
611  *	register_nosave_region - register a range of page frames the contents
612  *	of which should not be saved during the suspend (to be used in the early
613  *	initialization code)
614  */
615 
616 void __init
__register_nosave_region(unsigned long start_pfn,unsigned long end_pfn,int use_kmalloc)617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 			 int use_kmalloc)
619 {
620 	struct nosave_region *region;
621 
622 	if (start_pfn >= end_pfn)
623 		return;
624 
625 	if (!list_empty(&nosave_regions)) {
626 		/* Try to extend the previous region (they should be sorted) */
627 		region = list_entry(nosave_regions.prev,
628 					struct nosave_region, list);
629 		if (region->end_pfn == start_pfn) {
630 			region->end_pfn = end_pfn;
631 			goto Report;
632 		}
633 	}
634 	if (use_kmalloc) {
635 		/* during init, this shouldn't fail */
636 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 		BUG_ON(!region);
638 	} else
639 		/* This allocation cannot fail */
640 		region = alloc_bootmem(sizeof(struct nosave_region));
641 	region->start_pfn = start_pfn;
642 	region->end_pfn = end_pfn;
643 	list_add_tail(&region->list, &nosave_regions);
644  Report:
645 	printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 		start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648 
649 /*
650  * Set bits in this map correspond to the page frames the contents of which
651  * should not be saved during the suspend.
652  */
653 static struct memory_bitmap *forbidden_pages_map;
654 
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657 
658 /*
659  * Each page frame allocated for creating the image is marked by setting the
660  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661  */
662 
swsusp_set_page_free(struct page * page)663 void swsusp_set_page_free(struct page *page)
664 {
665 	if (free_pages_map)
666 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668 
swsusp_page_is_free(struct page * page)669 static int swsusp_page_is_free(struct page *page)
670 {
671 	return free_pages_map ?
672 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674 
swsusp_unset_page_free(struct page * page)675 void swsusp_unset_page_free(struct page *page)
676 {
677 	if (free_pages_map)
678 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680 
swsusp_set_page_forbidden(struct page * page)681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 	if (forbidden_pages_map)
684 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686 
swsusp_page_is_forbidden(struct page * page)687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 	return forbidden_pages_map ?
690 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692 
swsusp_unset_page_forbidden(struct page * page)693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 	if (forbidden_pages_map)
696 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698 
699 /**
700  *	mark_nosave_pages - set bits corresponding to the page frames the
701  *	contents of which should not be saved in a given bitmap.
702  */
703 
mark_nosave_pages(struct memory_bitmap * bm)704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 	struct nosave_region *region;
707 
708 	if (list_empty(&nosave_regions))
709 		return;
710 
711 	list_for_each_entry(region, &nosave_regions, list) {
712 		unsigned long pfn;
713 
714 		pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 				region->start_pfn << PAGE_SHIFT,
716 				region->end_pfn << PAGE_SHIFT);
717 
718 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 			if (pfn_valid(pfn)) {
720 				/*
721 				 * It is safe to ignore the result of
722 				 * mem_bm_set_bit_check() here, since we won't
723 				 * touch the PFNs for which the error is
724 				 * returned anyway.
725 				 */
726 				mem_bm_set_bit_check(bm, pfn);
727 			}
728 	}
729 }
730 
731 /**
732  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
733  *	frames that should not be saved and free page frames.  The pointers
734  *	forbidden_pages_map and free_pages_map are only modified if everything
735  *	goes well, because we don't want the bits to be used before both bitmaps
736  *	are set up.
737  */
738 
create_basic_memory_bitmaps(void)739 int create_basic_memory_bitmaps(void)
740 {
741 	struct memory_bitmap *bm1, *bm2;
742 	int error = 0;
743 
744 	BUG_ON(forbidden_pages_map || free_pages_map);
745 
746 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 	if (!bm1)
748 		return -ENOMEM;
749 
750 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 	if (error)
752 		goto Free_first_object;
753 
754 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 	if (!bm2)
756 		goto Free_first_bitmap;
757 
758 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 	if (error)
760 		goto Free_second_object;
761 
762 	forbidden_pages_map = bm1;
763 	free_pages_map = bm2;
764 	mark_nosave_pages(forbidden_pages_map);
765 
766 	pr_debug("PM: Basic memory bitmaps created\n");
767 
768 	return 0;
769 
770  Free_second_object:
771 	kfree(bm2);
772  Free_first_bitmap:
773  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774  Free_first_object:
775 	kfree(bm1);
776 	return -ENOMEM;
777 }
778 
779 /**
780  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
781  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
782  *	so that the bitmaps themselves are not referred to while they are being
783  *	freed.
784  */
785 
free_basic_memory_bitmaps(void)786 void free_basic_memory_bitmaps(void)
787 {
788 	struct memory_bitmap *bm1, *bm2;
789 
790 	BUG_ON(!(forbidden_pages_map && free_pages_map));
791 
792 	bm1 = forbidden_pages_map;
793 	bm2 = free_pages_map;
794 	forbidden_pages_map = NULL;
795 	free_pages_map = NULL;
796 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 	kfree(bm1);
798 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 	kfree(bm2);
800 
801 	pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803 
804 /**
805  *	snapshot_additional_pages - estimate the number of additional pages
806  *	be needed for setting up the suspend image data structures for given
807  *	zone (usually the returned value is greater than the exact number)
808  */
809 
snapshot_additional_pages(struct zone * zone)810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812 	unsigned int res;
813 
814 	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 	res += DIV_ROUND_UP(res * sizeof(struct bm_block),
816 			    LINKED_PAGE_DATA_SIZE);
817 	return 2 * res;
818 }
819 
820 #ifdef CONFIG_HIGHMEM
821 /**
822  *	count_free_highmem_pages - compute the total number of free highmem
823  *	pages, system-wide.
824  */
825 
count_free_highmem_pages(void)826 static unsigned int count_free_highmem_pages(void)
827 {
828 	struct zone *zone;
829 	unsigned int cnt = 0;
830 
831 	for_each_populated_zone(zone)
832 		if (is_highmem(zone))
833 			cnt += zone_page_state(zone, NR_FREE_PAGES);
834 
835 	return cnt;
836 }
837 
838 /**
839  *	saveable_highmem_page - Determine whether a highmem page should be
840  *	included in the suspend image.
841  *
842  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
843  *	and it isn't a part of a free chunk of pages.
844  */
saveable_highmem_page(struct zone * zone,unsigned long pfn)845 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
846 {
847 	struct page *page;
848 
849 	if (!pfn_valid(pfn))
850 		return NULL;
851 
852 	page = pfn_to_page(pfn);
853 	if (page_zone(page) != zone)
854 		return NULL;
855 
856 	BUG_ON(!PageHighMem(page));
857 
858 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
859 	    PageReserved(page))
860 		return NULL;
861 
862 	if (page_is_guard(page))
863 		return NULL;
864 
865 	return page;
866 }
867 
868 /**
869  *	count_highmem_pages - compute the total number of saveable highmem
870  *	pages.
871  */
872 
count_highmem_pages(void)873 static unsigned int count_highmem_pages(void)
874 {
875 	struct zone *zone;
876 	unsigned int n = 0;
877 
878 	for_each_populated_zone(zone) {
879 		unsigned long pfn, max_zone_pfn;
880 
881 		if (!is_highmem(zone))
882 			continue;
883 
884 		mark_free_pages(zone);
885 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
886 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
887 			if (saveable_highmem_page(zone, pfn))
888 				n++;
889 	}
890 	return n;
891 }
892 #else
saveable_highmem_page(struct zone * z,unsigned long p)893 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
894 {
895 	return NULL;
896 }
897 #endif /* CONFIG_HIGHMEM */
898 
899 /**
900  *	saveable_page - Determine whether a non-highmem page should be included
901  *	in the suspend image.
902  *
903  *	We should save the page if it isn't Nosave, and is not in the range
904  *	of pages statically defined as 'unsaveable', and it isn't a part of
905  *	a free chunk of pages.
906  */
saveable_page(struct zone * zone,unsigned long pfn)907 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
908 {
909 	struct page *page;
910 
911 	if (!pfn_valid(pfn))
912 		return NULL;
913 
914 	page = pfn_to_page(pfn);
915 	if (page_zone(page) != zone)
916 		return NULL;
917 
918 	BUG_ON(PageHighMem(page));
919 
920 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
921 		return NULL;
922 
923 	if (PageReserved(page)
924 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
925 		return NULL;
926 
927 	if (page_is_guard(page))
928 		return NULL;
929 
930 	return page;
931 }
932 
933 /**
934  *	count_data_pages - compute the total number of saveable non-highmem
935  *	pages.
936  */
937 
count_data_pages(void)938 static unsigned int count_data_pages(void)
939 {
940 	struct zone *zone;
941 	unsigned long pfn, max_zone_pfn;
942 	unsigned int n = 0;
943 
944 	for_each_populated_zone(zone) {
945 		if (is_highmem(zone))
946 			continue;
947 
948 		mark_free_pages(zone);
949 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
950 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
951 			if (saveable_page(zone, pfn))
952 				n++;
953 	}
954 	return n;
955 }
956 
957 /* This is needed, because copy_page and memcpy are not usable for copying
958  * task structs.
959  */
do_copy_page(long * dst,long * src)960 static inline void do_copy_page(long *dst, long *src)
961 {
962 	int n;
963 
964 	for (n = PAGE_SIZE / sizeof(long); n; n--)
965 		*dst++ = *src++;
966 }
967 
968 
969 /**
970  *	safe_copy_page - check if the page we are going to copy is marked as
971  *		present in the kernel page tables (this always is the case if
972  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
973  *		kernel_page_present() always returns 'true').
974  */
safe_copy_page(void * dst,struct page * s_page)975 static void safe_copy_page(void *dst, struct page *s_page)
976 {
977 	if (kernel_page_present(s_page)) {
978 		do_copy_page(dst, page_address(s_page));
979 	} else {
980 		kernel_map_pages(s_page, 1, 1);
981 		do_copy_page(dst, page_address(s_page));
982 		kernel_map_pages(s_page, 1, 0);
983 	}
984 }
985 
986 
987 #ifdef CONFIG_HIGHMEM
988 static inline struct page *
page_is_saveable(struct zone * zone,unsigned long pfn)989 page_is_saveable(struct zone *zone, unsigned long pfn)
990 {
991 	return is_highmem(zone) ?
992 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
993 }
994 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)995 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
996 {
997 	struct page *s_page, *d_page;
998 	void *src, *dst;
999 
1000 	s_page = pfn_to_page(src_pfn);
1001 	d_page = pfn_to_page(dst_pfn);
1002 	if (PageHighMem(s_page)) {
1003 		src = kmap_atomic(s_page, KM_USER0);
1004 		dst = kmap_atomic(d_page, KM_USER1);
1005 		do_copy_page(dst, src);
1006 		kunmap_atomic(dst, KM_USER1);
1007 		kunmap_atomic(src, KM_USER0);
1008 	} else {
1009 		if (PageHighMem(d_page)) {
1010 			/* Page pointed to by src may contain some kernel
1011 			 * data modified by kmap_atomic()
1012 			 */
1013 			safe_copy_page(buffer, s_page);
1014 			dst = kmap_atomic(d_page, KM_USER0);
1015 			copy_page(dst, buffer);
1016 			kunmap_atomic(dst, KM_USER0);
1017 		} else {
1018 			safe_copy_page(page_address(d_page), s_page);
1019 		}
1020 	}
1021 }
1022 #else
1023 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1024 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1025 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1026 {
1027 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1028 				pfn_to_page(src_pfn));
1029 }
1030 #endif /* CONFIG_HIGHMEM */
1031 
1032 static void
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1033 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1034 {
1035 	struct zone *zone;
1036 	unsigned long pfn;
1037 
1038 	for_each_populated_zone(zone) {
1039 		unsigned long max_zone_pfn;
1040 
1041 		mark_free_pages(zone);
1042 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1043 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1044 			if (page_is_saveable(zone, pfn))
1045 				memory_bm_set_bit(orig_bm, pfn);
1046 	}
1047 	memory_bm_position_reset(orig_bm);
1048 	memory_bm_position_reset(copy_bm);
1049 	for(;;) {
1050 		pfn = memory_bm_next_pfn(orig_bm);
1051 		if (unlikely(pfn == BM_END_OF_MAP))
1052 			break;
1053 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1054 	}
1055 }
1056 
1057 /* Total number of image pages */
1058 static unsigned int nr_copy_pages;
1059 /* Number of pages needed for saving the original pfns of the image pages */
1060 static unsigned int nr_meta_pages;
1061 /*
1062  * Numbers of normal and highmem page frames allocated for hibernation image
1063  * before suspending devices.
1064  */
1065 unsigned int alloc_normal, alloc_highmem;
1066 /*
1067  * Memory bitmap used for marking saveable pages (during hibernation) or
1068  * hibernation image pages (during restore)
1069  */
1070 static struct memory_bitmap orig_bm;
1071 /*
1072  * Memory bitmap used during hibernation for marking allocated page frames that
1073  * will contain copies of saveable pages.  During restore it is initially used
1074  * for marking hibernation image pages, but then the set bits from it are
1075  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1076  * used for marking "safe" highmem pages, but it has to be reinitialized for
1077  * this purpose.
1078  */
1079 static struct memory_bitmap copy_bm;
1080 
1081 /**
1082  *	swsusp_free - free pages allocated for the suspend.
1083  *
1084  *	Suspend pages are alocated before the atomic copy is made, so we
1085  *	need to release them after the resume.
1086  */
1087 
swsusp_free(void)1088 void swsusp_free(void)
1089 {
1090 	struct zone *zone;
1091 	unsigned long pfn, max_zone_pfn;
1092 
1093 	for_each_populated_zone(zone) {
1094 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1095 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1096 			if (pfn_valid(pfn)) {
1097 				struct page *page = pfn_to_page(pfn);
1098 
1099 				if (swsusp_page_is_forbidden(page) &&
1100 				    swsusp_page_is_free(page)) {
1101 					swsusp_unset_page_forbidden(page);
1102 					swsusp_unset_page_free(page);
1103 					__free_page(page);
1104 				}
1105 			}
1106 	}
1107 	nr_copy_pages = 0;
1108 	nr_meta_pages = 0;
1109 	restore_pblist = NULL;
1110 	buffer = NULL;
1111 	alloc_normal = 0;
1112 	alloc_highmem = 0;
1113 }
1114 
1115 /* Helper functions used for the shrinking of memory. */
1116 
1117 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1118 
1119 /**
1120  * preallocate_image_pages - Allocate a number of pages for hibernation image
1121  * @nr_pages: Number of page frames to allocate.
1122  * @mask: GFP flags to use for the allocation.
1123  *
1124  * Return value: Number of page frames actually allocated
1125  */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1126 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1127 {
1128 	unsigned long nr_alloc = 0;
1129 
1130 	while (nr_pages > 0) {
1131 		struct page *page;
1132 
1133 		page = alloc_image_page(mask);
1134 		if (!page)
1135 			break;
1136 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1137 		if (PageHighMem(page))
1138 			alloc_highmem++;
1139 		else
1140 			alloc_normal++;
1141 		nr_pages--;
1142 		nr_alloc++;
1143 	}
1144 
1145 	return nr_alloc;
1146 }
1147 
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1148 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1149 					      unsigned long avail_normal)
1150 {
1151 	unsigned long alloc;
1152 
1153 	if (avail_normal <= alloc_normal)
1154 		return 0;
1155 
1156 	alloc = avail_normal - alloc_normal;
1157 	if (nr_pages < alloc)
1158 		alloc = nr_pages;
1159 
1160 	return preallocate_image_pages(alloc, GFP_IMAGE);
1161 }
1162 
1163 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1164 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1165 {
1166 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1167 }
1168 
1169 /**
1170  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1171  */
__fraction(u64 x,u64 multiplier,u64 base)1172 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1173 {
1174 	x *= multiplier;
1175 	do_div(x, base);
1176 	return (unsigned long)x;
1177 }
1178 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1179 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1180 						unsigned long highmem,
1181 						unsigned long total)
1182 {
1183 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1184 
1185 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1186 }
1187 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1188 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1189 {
1190 	return 0;
1191 }
1192 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1193 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1194 						unsigned long highmem,
1195 						unsigned long total)
1196 {
1197 	return 0;
1198 }
1199 #endif /* CONFIG_HIGHMEM */
1200 
1201 /**
1202  * free_unnecessary_pages - Release preallocated pages not needed for the image
1203  */
free_unnecessary_pages(void)1204 static void free_unnecessary_pages(void)
1205 {
1206 	unsigned long save, to_free_normal, to_free_highmem;
1207 
1208 	save = count_data_pages();
1209 	if (alloc_normal >= save) {
1210 		to_free_normal = alloc_normal - save;
1211 		save = 0;
1212 	} else {
1213 		to_free_normal = 0;
1214 		save -= alloc_normal;
1215 	}
1216 	save += count_highmem_pages();
1217 	if (alloc_highmem >= save) {
1218 		to_free_highmem = alloc_highmem - save;
1219 	} else {
1220 		to_free_highmem = 0;
1221 		save -= alloc_highmem;
1222 		if (to_free_normal > save)
1223 			to_free_normal -= save;
1224 		else
1225 			to_free_normal = 0;
1226 	}
1227 
1228 	memory_bm_position_reset(&copy_bm);
1229 
1230 	while (to_free_normal > 0 || to_free_highmem > 0) {
1231 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1232 		struct page *page = pfn_to_page(pfn);
1233 
1234 		if (PageHighMem(page)) {
1235 			if (!to_free_highmem)
1236 				continue;
1237 			to_free_highmem--;
1238 			alloc_highmem--;
1239 		} else {
1240 			if (!to_free_normal)
1241 				continue;
1242 			to_free_normal--;
1243 			alloc_normal--;
1244 		}
1245 		memory_bm_clear_bit(&copy_bm, pfn);
1246 		swsusp_unset_page_forbidden(page);
1247 		swsusp_unset_page_free(page);
1248 		__free_page(page);
1249 	}
1250 }
1251 
1252 /**
1253  * minimum_image_size - Estimate the minimum acceptable size of an image
1254  * @saveable: Number of saveable pages in the system.
1255  *
1256  * We want to avoid attempting to free too much memory too hard, so estimate the
1257  * minimum acceptable size of a hibernation image to use as the lower limit for
1258  * preallocating memory.
1259  *
1260  * We assume that the minimum image size should be proportional to
1261  *
1262  * [number of saveable pages] - [number of pages that can be freed in theory]
1263  *
1264  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1265  * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1266  * minus mapped file pages.
1267  */
minimum_image_size(unsigned long saveable)1268 static unsigned long minimum_image_size(unsigned long saveable)
1269 {
1270 	unsigned long size;
1271 
1272 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1273 		+ global_page_state(NR_ACTIVE_ANON)
1274 		+ global_page_state(NR_INACTIVE_ANON)
1275 		+ global_page_state(NR_ACTIVE_FILE)
1276 		+ global_page_state(NR_INACTIVE_FILE)
1277 		- global_page_state(NR_FILE_MAPPED);
1278 
1279 	return saveable <= size ? 0 : saveable - size;
1280 }
1281 
1282 /**
1283  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1284  *
1285  * To create a hibernation image it is necessary to make a copy of every page
1286  * frame in use.  We also need a number of page frames to be free during
1287  * hibernation for allocations made while saving the image and for device
1288  * drivers, in case they need to allocate memory from their hibernation
1289  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1290  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1291  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1292  * total number of available page frames and allocate at least
1293  *
1294  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1295  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1296  *
1297  * of them, which corresponds to the maximum size of a hibernation image.
1298  *
1299  * If image_size is set below the number following from the above formula,
1300  * the preallocation of memory is continued until the total number of saveable
1301  * pages in the system is below the requested image size or the minimum
1302  * acceptable image size returned by minimum_image_size(), whichever is greater.
1303  */
hibernate_preallocate_memory(void)1304 int hibernate_preallocate_memory(void)
1305 {
1306 	struct zone *zone;
1307 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1308 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1309 	struct timeval start, stop;
1310 	int error;
1311 
1312 	printk(KERN_INFO "PM: Preallocating image memory... ");
1313 	do_gettimeofday(&start);
1314 
1315 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1316 	if (error)
1317 		goto err_out;
1318 
1319 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1320 	if (error)
1321 		goto err_out;
1322 
1323 	alloc_normal = 0;
1324 	alloc_highmem = 0;
1325 
1326 	/* Count the number of saveable data pages. */
1327 	save_highmem = count_highmem_pages();
1328 	saveable = count_data_pages();
1329 
1330 	/*
1331 	 * Compute the total number of page frames we can use (count) and the
1332 	 * number of pages needed for image metadata (size).
1333 	 */
1334 	count = saveable;
1335 	saveable += save_highmem;
1336 	highmem = save_highmem;
1337 	size = 0;
1338 	for_each_populated_zone(zone) {
1339 		size += snapshot_additional_pages(zone);
1340 		if (is_highmem(zone))
1341 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1342 		else
1343 			count += zone_page_state(zone, NR_FREE_PAGES);
1344 	}
1345 	avail_normal = count;
1346 	count += highmem;
1347 	count -= totalreserve_pages;
1348 
1349 	/* Add number of pages required for page keys (s390 only). */
1350 	size += page_key_additional_pages(saveable);
1351 
1352 	/* Compute the maximum number of saveable pages to leave in memory. */
1353 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1354 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1355 	/* Compute the desired number of image pages specified by image_size. */
1356 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1357 	if (size > max_size)
1358 		size = max_size;
1359 	/*
1360 	 * If the desired number of image pages is at least as large as the
1361 	 * current number of saveable pages in memory, allocate page frames for
1362 	 * the image and we're done.
1363 	 */
1364 	if (size >= saveable) {
1365 		pages = preallocate_image_highmem(save_highmem);
1366 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1367 		goto out;
1368 	}
1369 
1370 	/* Estimate the minimum size of the image. */
1371 	pages = minimum_image_size(saveable);
1372 	/*
1373 	 * To avoid excessive pressure on the normal zone, leave room in it to
1374 	 * accommodate an image of the minimum size (unless it's already too
1375 	 * small, in which case don't preallocate pages from it at all).
1376 	 */
1377 	if (avail_normal > pages)
1378 		avail_normal -= pages;
1379 	else
1380 		avail_normal = 0;
1381 	if (size < pages)
1382 		size = min_t(unsigned long, pages, max_size);
1383 
1384 	/*
1385 	 * Let the memory management subsystem know that we're going to need a
1386 	 * large number of page frames to allocate and make it free some memory.
1387 	 * NOTE: If this is not done, performance will be hurt badly in some
1388 	 * test cases.
1389 	 */
1390 	shrink_all_memory(saveable - size);
1391 
1392 	/*
1393 	 * The number of saveable pages in memory was too high, so apply some
1394 	 * pressure to decrease it.  First, make room for the largest possible
1395 	 * image and fail if that doesn't work.  Next, try to decrease the size
1396 	 * of the image as much as indicated by 'size' using allocations from
1397 	 * highmem and non-highmem zones separately.
1398 	 */
1399 	pages_highmem = preallocate_image_highmem(highmem / 2);
1400 	alloc = (count - max_size) - pages_highmem;
1401 	pages = preallocate_image_memory(alloc, avail_normal);
1402 	if (pages < alloc) {
1403 		/* We have exhausted non-highmem pages, try highmem. */
1404 		alloc -= pages;
1405 		pages += pages_highmem;
1406 		pages_highmem = preallocate_image_highmem(alloc);
1407 		if (pages_highmem < alloc)
1408 			goto err_out;
1409 		pages += pages_highmem;
1410 		/*
1411 		 * size is the desired number of saveable pages to leave in
1412 		 * memory, so try to preallocate (all memory - size) pages.
1413 		 */
1414 		alloc = (count - pages) - size;
1415 		pages += preallocate_image_highmem(alloc);
1416 	} else {
1417 		/*
1418 		 * There are approximately max_size saveable pages at this point
1419 		 * and we want to reduce this number down to size.
1420 		 */
1421 		alloc = max_size - size;
1422 		size = preallocate_highmem_fraction(alloc, highmem, count);
1423 		pages_highmem += size;
1424 		alloc -= size;
1425 		size = preallocate_image_memory(alloc, avail_normal);
1426 		pages_highmem += preallocate_image_highmem(alloc - size);
1427 		pages += pages_highmem + size;
1428 	}
1429 
1430 	/*
1431 	 * We only need as many page frames for the image as there are saveable
1432 	 * pages in memory, but we have allocated more.  Release the excessive
1433 	 * ones now.
1434 	 */
1435 	free_unnecessary_pages();
1436 
1437  out:
1438 	do_gettimeofday(&stop);
1439 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1440 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1441 
1442 	return 0;
1443 
1444  err_out:
1445 	printk(KERN_CONT "\n");
1446 	swsusp_free();
1447 	return -ENOMEM;
1448 }
1449 
1450 #ifdef CONFIG_HIGHMEM
1451 /**
1452   *	count_pages_for_highmem - compute the number of non-highmem pages
1453   *	that will be necessary for creating copies of highmem pages.
1454   */
1455 
count_pages_for_highmem(unsigned int nr_highmem)1456 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1457 {
1458 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1459 
1460 	if (free_highmem >= nr_highmem)
1461 		nr_highmem = 0;
1462 	else
1463 		nr_highmem -= free_highmem;
1464 
1465 	return nr_highmem;
1466 }
1467 #else
1468 static unsigned int
count_pages_for_highmem(unsigned int nr_highmem)1469 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1470 #endif /* CONFIG_HIGHMEM */
1471 
1472 /**
1473  *	enough_free_mem - Make sure we have enough free memory for the
1474  *	snapshot image.
1475  */
1476 
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1477 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1478 {
1479 	struct zone *zone;
1480 	unsigned int free = alloc_normal;
1481 
1482 	for_each_populated_zone(zone)
1483 		if (!is_highmem(zone))
1484 			free += zone_page_state(zone, NR_FREE_PAGES);
1485 
1486 	nr_pages += count_pages_for_highmem(nr_highmem);
1487 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1488 		nr_pages, PAGES_FOR_IO, free);
1489 
1490 	return free > nr_pages + PAGES_FOR_IO;
1491 }
1492 
1493 #ifdef CONFIG_HIGHMEM
1494 /**
1495  *	get_highmem_buffer - if there are some highmem pages in the suspend
1496  *	image, we may need the buffer to copy them and/or load their data.
1497  */
1498 
get_highmem_buffer(int safe_needed)1499 static inline int get_highmem_buffer(int safe_needed)
1500 {
1501 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1502 	return buffer ? 0 : -ENOMEM;
1503 }
1504 
1505 /**
1506  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1507  *	Try to allocate as many pages as needed, but if the number of free
1508  *	highmem pages is lesser than that, allocate them all.
1509  */
1510 
1511 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1512 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1513 {
1514 	unsigned int to_alloc = count_free_highmem_pages();
1515 
1516 	if (to_alloc > nr_highmem)
1517 		to_alloc = nr_highmem;
1518 
1519 	nr_highmem -= to_alloc;
1520 	while (to_alloc-- > 0) {
1521 		struct page *page;
1522 
1523 		page = alloc_image_page(__GFP_HIGHMEM);
1524 		memory_bm_set_bit(bm, page_to_pfn(page));
1525 	}
1526 	return nr_highmem;
1527 }
1528 #else
get_highmem_buffer(int safe_needed)1529 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1530 
1531 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1532 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1533 #endif /* CONFIG_HIGHMEM */
1534 
1535 /**
1536  *	swsusp_alloc - allocate memory for the suspend image
1537  *
1538  *	We first try to allocate as many highmem pages as there are
1539  *	saveable highmem pages in the system.  If that fails, we allocate
1540  *	non-highmem pages for the copies of the remaining highmem ones.
1541  *
1542  *	In this approach it is likely that the copies of highmem pages will
1543  *	also be located in the high memory, because of the way in which
1544  *	copy_data_pages() works.
1545  */
1546 
1547 static int
swsusp_alloc(struct memory_bitmap * orig_bm,struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1548 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1549 		unsigned int nr_pages, unsigned int nr_highmem)
1550 {
1551 	if (nr_highmem > 0) {
1552 		if (get_highmem_buffer(PG_ANY))
1553 			goto err_out;
1554 		if (nr_highmem > alloc_highmem) {
1555 			nr_highmem -= alloc_highmem;
1556 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1557 		}
1558 	}
1559 	if (nr_pages > alloc_normal) {
1560 		nr_pages -= alloc_normal;
1561 		while (nr_pages-- > 0) {
1562 			struct page *page;
1563 
1564 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1565 			if (!page)
1566 				goto err_out;
1567 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1568 		}
1569 	}
1570 
1571 	return 0;
1572 
1573  err_out:
1574 	swsusp_free();
1575 	return -ENOMEM;
1576 }
1577 
swsusp_save(void)1578 asmlinkage int swsusp_save(void)
1579 {
1580 	unsigned int nr_pages, nr_highmem;
1581 
1582 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1583 
1584 	drain_local_pages(NULL);
1585 	nr_pages = count_data_pages();
1586 	nr_highmem = count_highmem_pages();
1587 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1588 
1589 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1590 		printk(KERN_ERR "PM: Not enough free memory\n");
1591 		return -ENOMEM;
1592 	}
1593 
1594 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1595 		printk(KERN_ERR "PM: Memory allocation failed\n");
1596 		return -ENOMEM;
1597 	}
1598 
1599 	/* During allocating of suspend pagedir, new cold pages may appear.
1600 	 * Kill them.
1601 	 */
1602 	drain_local_pages(NULL);
1603 	copy_data_pages(&copy_bm, &orig_bm);
1604 
1605 	/*
1606 	 * End of critical section. From now on, we can write to memory,
1607 	 * but we should not touch disk. This specially means we must _not_
1608 	 * touch swap space! Except we must write out our image of course.
1609 	 */
1610 
1611 	nr_pages += nr_highmem;
1612 	nr_copy_pages = nr_pages;
1613 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1614 
1615 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1616 		nr_pages);
1617 
1618 	return 0;
1619 }
1620 
1621 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)1622 static int init_header_complete(struct swsusp_info *info)
1623 {
1624 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1625 	info->version_code = LINUX_VERSION_CODE;
1626 	return 0;
1627 }
1628 
check_image_kernel(struct swsusp_info * info)1629 static char *check_image_kernel(struct swsusp_info *info)
1630 {
1631 	if (info->version_code != LINUX_VERSION_CODE)
1632 		return "kernel version";
1633 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1634 		return "system type";
1635 	if (strcmp(info->uts.release,init_utsname()->release))
1636 		return "kernel release";
1637 	if (strcmp(info->uts.version,init_utsname()->version))
1638 		return "version";
1639 	if (strcmp(info->uts.machine,init_utsname()->machine))
1640 		return "machine";
1641 	return NULL;
1642 }
1643 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1644 
snapshot_get_image_size(void)1645 unsigned long snapshot_get_image_size(void)
1646 {
1647 	return nr_copy_pages + nr_meta_pages + 1;
1648 }
1649 
init_header(struct swsusp_info * info)1650 static int init_header(struct swsusp_info *info)
1651 {
1652 	memset(info, 0, sizeof(struct swsusp_info));
1653 	info->num_physpages = num_physpages;
1654 	info->image_pages = nr_copy_pages;
1655 	info->pages = snapshot_get_image_size();
1656 	info->size = info->pages;
1657 	info->size <<= PAGE_SHIFT;
1658 	return init_header_complete(info);
1659 }
1660 
1661 /**
1662  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1663  *	are stored in the array @buf[] (1 page at a time)
1664  */
1665 
1666 static inline void
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)1667 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1668 {
1669 	int j;
1670 
1671 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1672 		buf[j] = memory_bm_next_pfn(bm);
1673 		if (unlikely(buf[j] == BM_END_OF_MAP))
1674 			break;
1675 		/* Save page key for data page (s390 only). */
1676 		page_key_read(buf + j);
1677 	}
1678 }
1679 
1680 /**
1681  *	snapshot_read_next - used for reading the system memory snapshot.
1682  *
1683  *	On the first call to it @handle should point to a zeroed
1684  *	snapshot_handle structure.  The structure gets updated and a pointer
1685  *	to it should be passed to this function every next time.
1686  *
1687  *	On success the function returns a positive number.  Then, the caller
1688  *	is allowed to read up to the returned number of bytes from the memory
1689  *	location computed by the data_of() macro.
1690  *
1691  *	The function returns 0 to indicate the end of data stream condition,
1692  *	and a negative number is returned on error.  In such cases the
1693  *	structure pointed to by @handle is not updated and should not be used
1694  *	any more.
1695  */
1696 
snapshot_read_next(struct snapshot_handle * handle)1697 int snapshot_read_next(struct snapshot_handle *handle)
1698 {
1699 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1700 		return 0;
1701 
1702 	if (!buffer) {
1703 		/* This makes the buffer be freed by swsusp_free() */
1704 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1705 		if (!buffer)
1706 			return -ENOMEM;
1707 	}
1708 	if (!handle->cur) {
1709 		int error;
1710 
1711 		error = init_header((struct swsusp_info *)buffer);
1712 		if (error)
1713 			return error;
1714 		handle->buffer = buffer;
1715 		memory_bm_position_reset(&orig_bm);
1716 		memory_bm_position_reset(&copy_bm);
1717 	} else if (handle->cur <= nr_meta_pages) {
1718 		clear_page(buffer);
1719 		pack_pfns(buffer, &orig_bm);
1720 	} else {
1721 		struct page *page;
1722 
1723 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1724 		if (PageHighMem(page)) {
1725 			/* Highmem pages are copied to the buffer,
1726 			 * because we can't return with a kmapped
1727 			 * highmem page (we may not be called again).
1728 			 */
1729 			void *kaddr;
1730 
1731 			kaddr = kmap_atomic(page, KM_USER0);
1732 			copy_page(buffer, kaddr);
1733 			kunmap_atomic(kaddr, KM_USER0);
1734 			handle->buffer = buffer;
1735 		} else {
1736 			handle->buffer = page_address(page);
1737 		}
1738 	}
1739 	handle->cur++;
1740 	return PAGE_SIZE;
1741 }
1742 
1743 /**
1744  *	mark_unsafe_pages - mark the pages that cannot be used for storing
1745  *	the image during resume, because they conflict with the pages that
1746  *	had been used before suspend
1747  */
1748 
mark_unsafe_pages(struct memory_bitmap * bm)1749 static int mark_unsafe_pages(struct memory_bitmap *bm)
1750 {
1751 	struct zone *zone;
1752 	unsigned long pfn, max_zone_pfn;
1753 
1754 	/* Clear page flags */
1755 	for_each_populated_zone(zone) {
1756 		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1757 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1758 			if (pfn_valid(pfn))
1759 				swsusp_unset_page_free(pfn_to_page(pfn));
1760 	}
1761 
1762 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
1763 	memory_bm_position_reset(bm);
1764 	do {
1765 		pfn = memory_bm_next_pfn(bm);
1766 		if (likely(pfn != BM_END_OF_MAP)) {
1767 			if (likely(pfn_valid(pfn)))
1768 				swsusp_set_page_free(pfn_to_page(pfn));
1769 			else
1770 				return -EFAULT;
1771 		}
1772 	} while (pfn != BM_END_OF_MAP);
1773 
1774 	allocated_unsafe_pages = 0;
1775 
1776 	return 0;
1777 }
1778 
1779 static void
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)1780 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1781 {
1782 	unsigned long pfn;
1783 
1784 	memory_bm_position_reset(src);
1785 	pfn = memory_bm_next_pfn(src);
1786 	while (pfn != BM_END_OF_MAP) {
1787 		memory_bm_set_bit(dst, pfn);
1788 		pfn = memory_bm_next_pfn(src);
1789 	}
1790 }
1791 
check_header(struct swsusp_info * info)1792 static int check_header(struct swsusp_info *info)
1793 {
1794 	char *reason;
1795 
1796 	reason = check_image_kernel(info);
1797 	if (!reason && info->num_physpages != num_physpages)
1798 		reason = "memory size";
1799 	if (reason) {
1800 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1801 		return -EPERM;
1802 	}
1803 	return 0;
1804 }
1805 
1806 /**
1807  *	load header - check the image header and copy data from it
1808  */
1809 
1810 static int
load_header(struct swsusp_info * info)1811 load_header(struct swsusp_info *info)
1812 {
1813 	int error;
1814 
1815 	restore_pblist = NULL;
1816 	error = check_header(info);
1817 	if (!error) {
1818 		nr_copy_pages = info->image_pages;
1819 		nr_meta_pages = info->pages - info->image_pages - 1;
1820 	}
1821 	return error;
1822 }
1823 
1824 /**
1825  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1826  *	the corresponding bit in the memory bitmap @bm
1827  */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)1828 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1829 {
1830 	int j;
1831 
1832 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1833 		if (unlikely(buf[j] == BM_END_OF_MAP))
1834 			break;
1835 
1836 		/* Extract and buffer page key for data page (s390 only). */
1837 		page_key_memorize(buf + j);
1838 
1839 		if (memory_bm_pfn_present(bm, buf[j]))
1840 			memory_bm_set_bit(bm, buf[j]);
1841 		else
1842 			return -EFAULT;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 /* List of "safe" pages that may be used to store data loaded from the suspend
1849  * image
1850  */
1851 static struct linked_page *safe_pages_list;
1852 
1853 #ifdef CONFIG_HIGHMEM
1854 /* struct highmem_pbe is used for creating the list of highmem pages that
1855  * should be restored atomically during the resume from disk, because the page
1856  * frames they have occupied before the suspend are in use.
1857  */
1858 struct highmem_pbe {
1859 	struct page *copy_page;	/* data is here now */
1860 	struct page *orig_page;	/* data was here before the suspend */
1861 	struct highmem_pbe *next;
1862 };
1863 
1864 /* List of highmem PBEs needed for restoring the highmem pages that were
1865  * allocated before the suspend and included in the suspend image, but have
1866  * also been allocated by the "resume" kernel, so their contents cannot be
1867  * written directly to their "original" page frames.
1868  */
1869 static struct highmem_pbe *highmem_pblist;
1870 
1871 /**
1872  *	count_highmem_image_pages - compute the number of highmem pages in the
1873  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
1874  *	image pages are assumed to be set.
1875  */
1876 
count_highmem_image_pages(struct memory_bitmap * bm)1877 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1878 {
1879 	unsigned long pfn;
1880 	unsigned int cnt = 0;
1881 
1882 	memory_bm_position_reset(bm);
1883 	pfn = memory_bm_next_pfn(bm);
1884 	while (pfn != BM_END_OF_MAP) {
1885 		if (PageHighMem(pfn_to_page(pfn)))
1886 			cnt++;
1887 
1888 		pfn = memory_bm_next_pfn(bm);
1889 	}
1890 	return cnt;
1891 }
1892 
1893 /**
1894  *	prepare_highmem_image - try to allocate as many highmem pages as
1895  *	there are highmem image pages (@nr_highmem_p points to the variable
1896  *	containing the number of highmem image pages).  The pages that are
1897  *	"safe" (ie. will not be overwritten when the suspend image is
1898  *	restored) have the corresponding bits set in @bm (it must be
1899  *	unitialized).
1900  *
1901  *	NOTE: This function should not be called if there are no highmem
1902  *	image pages.
1903  */
1904 
1905 static unsigned int safe_highmem_pages;
1906 
1907 static struct memory_bitmap *safe_highmem_bm;
1908 
1909 static int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)1910 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1911 {
1912 	unsigned int to_alloc;
1913 
1914 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1915 		return -ENOMEM;
1916 
1917 	if (get_highmem_buffer(PG_SAFE))
1918 		return -ENOMEM;
1919 
1920 	to_alloc = count_free_highmem_pages();
1921 	if (to_alloc > *nr_highmem_p)
1922 		to_alloc = *nr_highmem_p;
1923 	else
1924 		*nr_highmem_p = to_alloc;
1925 
1926 	safe_highmem_pages = 0;
1927 	while (to_alloc-- > 0) {
1928 		struct page *page;
1929 
1930 		page = alloc_page(__GFP_HIGHMEM);
1931 		if (!swsusp_page_is_free(page)) {
1932 			/* The page is "safe", set its bit the bitmap */
1933 			memory_bm_set_bit(bm, page_to_pfn(page));
1934 			safe_highmem_pages++;
1935 		}
1936 		/* Mark the page as allocated */
1937 		swsusp_set_page_forbidden(page);
1938 		swsusp_set_page_free(page);
1939 	}
1940 	memory_bm_position_reset(bm);
1941 	safe_highmem_bm = bm;
1942 	return 0;
1943 }
1944 
1945 /**
1946  *	get_highmem_page_buffer - for given highmem image page find the buffer
1947  *	that suspend_write_next() should set for its caller to write to.
1948  *
1949  *	If the page is to be saved to its "original" page frame or a copy of
1950  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
1951  *	the copy of the page is to be made in normal memory, so the address of
1952  *	the copy is returned.
1953  *
1954  *	If @buffer is returned, the caller of suspend_write_next() will write
1955  *	the page's contents to @buffer, so they will have to be copied to the
1956  *	right location on the next call to suspend_write_next() and it is done
1957  *	with the help of copy_last_highmem_page().  For this purpose, if
1958  *	@buffer is returned, @last_highmem page is set to the page to which
1959  *	the data will have to be copied from @buffer.
1960  */
1961 
1962 static struct page *last_highmem_page;
1963 
1964 static void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)1965 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1966 {
1967 	struct highmem_pbe *pbe;
1968 	void *kaddr;
1969 
1970 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1971 		/* We have allocated the "original" page frame and we can
1972 		 * use it directly to store the loaded page.
1973 		 */
1974 		last_highmem_page = page;
1975 		return buffer;
1976 	}
1977 	/* The "original" page frame has not been allocated and we have to
1978 	 * use a "safe" page frame to store the loaded page.
1979 	 */
1980 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1981 	if (!pbe) {
1982 		swsusp_free();
1983 		return ERR_PTR(-ENOMEM);
1984 	}
1985 	pbe->orig_page = page;
1986 	if (safe_highmem_pages > 0) {
1987 		struct page *tmp;
1988 
1989 		/* Copy of the page will be stored in high memory */
1990 		kaddr = buffer;
1991 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1992 		safe_highmem_pages--;
1993 		last_highmem_page = tmp;
1994 		pbe->copy_page = tmp;
1995 	} else {
1996 		/* Copy of the page will be stored in normal memory */
1997 		kaddr = safe_pages_list;
1998 		safe_pages_list = safe_pages_list->next;
1999 		pbe->copy_page = virt_to_page(kaddr);
2000 	}
2001 	pbe->next = highmem_pblist;
2002 	highmem_pblist = pbe;
2003 	return kaddr;
2004 }
2005 
2006 /**
2007  *	copy_last_highmem_page - copy the contents of a highmem image from
2008  *	@buffer, where the caller of snapshot_write_next() has place them,
2009  *	to the right location represented by @last_highmem_page .
2010  */
2011 
copy_last_highmem_page(void)2012 static void copy_last_highmem_page(void)
2013 {
2014 	if (last_highmem_page) {
2015 		void *dst;
2016 
2017 		dst = kmap_atomic(last_highmem_page, KM_USER0);
2018 		copy_page(dst, buffer);
2019 		kunmap_atomic(dst, KM_USER0);
2020 		last_highmem_page = NULL;
2021 	}
2022 }
2023 
last_highmem_page_copied(void)2024 static inline int last_highmem_page_copied(void)
2025 {
2026 	return !last_highmem_page;
2027 }
2028 
free_highmem_data(void)2029 static inline void free_highmem_data(void)
2030 {
2031 	if (safe_highmem_bm)
2032 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2033 
2034 	if (buffer)
2035 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2036 }
2037 #else
get_safe_write_buffer(void)2038 static inline int get_safe_write_buffer(void) { return 0; }
2039 
2040 static unsigned int
count_highmem_image_pages(struct memory_bitmap * bm)2041 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2042 
2043 static inline int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2044 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2045 {
2046 	return 0;
2047 }
2048 
2049 static inline void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2050 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2051 {
2052 	return ERR_PTR(-EINVAL);
2053 }
2054 
copy_last_highmem_page(void)2055 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2056 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2057 static inline void free_highmem_data(void) {}
2058 #endif /* CONFIG_HIGHMEM */
2059 
2060 /**
2061  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2062  *	be overwritten in the process of restoring the system memory state
2063  *	from the suspend image ("unsafe" pages) and allocate memory for the
2064  *	image.
2065  *
2066  *	The idea is to allocate a new memory bitmap first and then allocate
2067  *	as many pages as needed for the image data, but not to assign these
2068  *	pages to specific tasks initially.  Instead, we just mark them as
2069  *	allocated and create a lists of "safe" pages that will be used
2070  *	later.  On systems with high memory a list of "safe" highmem pages is
2071  *	also created.
2072  */
2073 
2074 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2075 
2076 static int
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2077 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2078 {
2079 	unsigned int nr_pages, nr_highmem;
2080 	struct linked_page *sp_list, *lp;
2081 	int error;
2082 
2083 	/* If there is no highmem, the buffer will not be necessary */
2084 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2085 	buffer = NULL;
2086 
2087 	nr_highmem = count_highmem_image_pages(bm);
2088 	error = mark_unsafe_pages(bm);
2089 	if (error)
2090 		goto Free;
2091 
2092 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2093 	if (error)
2094 		goto Free;
2095 
2096 	duplicate_memory_bitmap(new_bm, bm);
2097 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2098 	if (nr_highmem > 0) {
2099 		error = prepare_highmem_image(bm, &nr_highmem);
2100 		if (error)
2101 			goto Free;
2102 	}
2103 	/* Reserve some safe pages for potential later use.
2104 	 *
2105 	 * NOTE: This way we make sure there will be enough safe pages for the
2106 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2107 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2108 	 */
2109 	sp_list = NULL;
2110 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2111 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2112 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2113 	while (nr_pages > 0) {
2114 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2115 		if (!lp) {
2116 			error = -ENOMEM;
2117 			goto Free;
2118 		}
2119 		lp->next = sp_list;
2120 		sp_list = lp;
2121 		nr_pages--;
2122 	}
2123 	/* Preallocate memory for the image */
2124 	safe_pages_list = NULL;
2125 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2126 	while (nr_pages > 0) {
2127 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2128 		if (!lp) {
2129 			error = -ENOMEM;
2130 			goto Free;
2131 		}
2132 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2133 			/* The page is "safe", add it to the list */
2134 			lp->next = safe_pages_list;
2135 			safe_pages_list = lp;
2136 		}
2137 		/* Mark the page as allocated */
2138 		swsusp_set_page_forbidden(virt_to_page(lp));
2139 		swsusp_set_page_free(virt_to_page(lp));
2140 		nr_pages--;
2141 	}
2142 	/* Free the reserved safe pages so that chain_alloc() can use them */
2143 	while (sp_list) {
2144 		lp = sp_list->next;
2145 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2146 		sp_list = lp;
2147 	}
2148 	return 0;
2149 
2150  Free:
2151 	swsusp_free();
2152 	return error;
2153 }
2154 
2155 /**
2156  *	get_buffer - compute the address that snapshot_write_next() should
2157  *	set for its caller to write to.
2158  */
2159 
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2160 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2161 {
2162 	struct pbe *pbe;
2163 	struct page *page;
2164 	unsigned long pfn = memory_bm_next_pfn(bm);
2165 
2166 	if (pfn == BM_END_OF_MAP)
2167 		return ERR_PTR(-EFAULT);
2168 
2169 	page = pfn_to_page(pfn);
2170 	if (PageHighMem(page))
2171 		return get_highmem_page_buffer(page, ca);
2172 
2173 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2174 		/* We have allocated the "original" page frame and we can
2175 		 * use it directly to store the loaded page.
2176 		 */
2177 		return page_address(page);
2178 
2179 	/* The "original" page frame has not been allocated and we have to
2180 	 * use a "safe" page frame to store the loaded page.
2181 	 */
2182 	pbe = chain_alloc(ca, sizeof(struct pbe));
2183 	if (!pbe) {
2184 		swsusp_free();
2185 		return ERR_PTR(-ENOMEM);
2186 	}
2187 	pbe->orig_address = page_address(page);
2188 	pbe->address = safe_pages_list;
2189 	safe_pages_list = safe_pages_list->next;
2190 	pbe->next = restore_pblist;
2191 	restore_pblist = pbe;
2192 	return pbe->address;
2193 }
2194 
2195 /**
2196  *	snapshot_write_next - used for writing the system memory snapshot.
2197  *
2198  *	On the first call to it @handle should point to a zeroed
2199  *	snapshot_handle structure.  The structure gets updated and a pointer
2200  *	to it should be passed to this function every next time.
2201  *
2202  *	On success the function returns a positive number.  Then, the caller
2203  *	is allowed to write up to the returned number of bytes to the memory
2204  *	location computed by the data_of() macro.
2205  *
2206  *	The function returns 0 to indicate the "end of file" condition,
2207  *	and a negative number is returned on error.  In such cases the
2208  *	structure pointed to by @handle is not updated and should not be used
2209  *	any more.
2210  */
2211 
snapshot_write_next(struct snapshot_handle * handle)2212 int snapshot_write_next(struct snapshot_handle *handle)
2213 {
2214 	static struct chain_allocator ca;
2215 	int error = 0;
2216 
2217 	/* Check if we have already loaded the entire image */
2218 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2219 		return 0;
2220 
2221 	handle->sync_read = 1;
2222 
2223 	if (!handle->cur) {
2224 		if (!buffer)
2225 			/* This makes the buffer be freed by swsusp_free() */
2226 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2227 
2228 		if (!buffer)
2229 			return -ENOMEM;
2230 
2231 		handle->buffer = buffer;
2232 	} else if (handle->cur == 1) {
2233 		error = load_header(buffer);
2234 		if (error)
2235 			return error;
2236 
2237 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2238 		if (error)
2239 			return error;
2240 
2241 		/* Allocate buffer for page keys. */
2242 		error = page_key_alloc(nr_copy_pages);
2243 		if (error)
2244 			return error;
2245 
2246 	} else if (handle->cur <= nr_meta_pages + 1) {
2247 		error = unpack_orig_pfns(buffer, &copy_bm);
2248 		if (error)
2249 			return error;
2250 
2251 		if (handle->cur == nr_meta_pages + 1) {
2252 			error = prepare_image(&orig_bm, &copy_bm);
2253 			if (error)
2254 				return error;
2255 
2256 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2257 			memory_bm_position_reset(&orig_bm);
2258 			restore_pblist = NULL;
2259 			handle->buffer = get_buffer(&orig_bm, &ca);
2260 			handle->sync_read = 0;
2261 			if (IS_ERR(handle->buffer))
2262 				return PTR_ERR(handle->buffer);
2263 		}
2264 	} else {
2265 		copy_last_highmem_page();
2266 		/* Restore page key for data page (s390 only). */
2267 		page_key_write(handle->buffer);
2268 		handle->buffer = get_buffer(&orig_bm, &ca);
2269 		if (IS_ERR(handle->buffer))
2270 			return PTR_ERR(handle->buffer);
2271 		if (handle->buffer != buffer)
2272 			handle->sync_read = 0;
2273 	}
2274 	handle->cur++;
2275 	return PAGE_SIZE;
2276 }
2277 
2278 /**
2279  *	snapshot_write_finalize - must be called after the last call to
2280  *	snapshot_write_next() in case the last page in the image happens
2281  *	to be a highmem page and its contents should be stored in the
2282  *	highmem.  Additionally, it releases the memory that will not be
2283  *	used any more.
2284  */
2285 
snapshot_write_finalize(struct snapshot_handle * handle)2286 void snapshot_write_finalize(struct snapshot_handle *handle)
2287 {
2288 	copy_last_highmem_page();
2289 	/* Restore page key for data page (s390 only). */
2290 	page_key_write(handle->buffer);
2291 	page_key_free();
2292 	/* Free only if we have loaded the image entirely */
2293 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2294 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2295 		free_highmem_data();
2296 	}
2297 }
2298 
snapshot_image_loaded(struct snapshot_handle * handle)2299 int snapshot_image_loaded(struct snapshot_handle *handle)
2300 {
2301 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2302 			handle->cur <= nr_meta_pages + nr_copy_pages);
2303 }
2304 
2305 #ifdef CONFIG_HIGHMEM
2306 /* Assumes that @buf is ready and points to a "safe" page */
2307 static inline void
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2308 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2309 {
2310 	void *kaddr1, *kaddr2;
2311 
2312 	kaddr1 = kmap_atomic(p1, KM_USER0);
2313 	kaddr2 = kmap_atomic(p2, KM_USER1);
2314 	copy_page(buf, kaddr1);
2315 	copy_page(kaddr1, kaddr2);
2316 	copy_page(kaddr2, buf);
2317 	kunmap_atomic(kaddr2, KM_USER1);
2318 	kunmap_atomic(kaddr1, KM_USER0);
2319 }
2320 
2321 /**
2322  *	restore_highmem - for each highmem page that was allocated before
2323  *	the suspend and included in the suspend image, and also has been
2324  *	allocated by the "resume" kernel swap its current (ie. "before
2325  *	resume") contents with the previous (ie. "before suspend") one.
2326  *
2327  *	If the resume eventually fails, we can call this function once
2328  *	again and restore the "before resume" highmem state.
2329  */
2330 
restore_highmem(void)2331 int restore_highmem(void)
2332 {
2333 	struct highmem_pbe *pbe = highmem_pblist;
2334 	void *buf;
2335 
2336 	if (!pbe)
2337 		return 0;
2338 
2339 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2340 	if (!buf)
2341 		return -ENOMEM;
2342 
2343 	while (pbe) {
2344 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2345 		pbe = pbe->next;
2346 	}
2347 	free_image_page(buf, PG_UNSAFE_CLEAR);
2348 	return 0;
2349 }
2350 #endif /* CONFIG_HIGHMEM */
2351