xref: /qemu/target/arm/cpu.h (revision df6fe2abf2e990f767ce755d426bc439c7bba336)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-common.h"
28 #include "exec/cpu-defs.h"
29 #include "exec/cpu-interrupt.h"
30 #include "exec/gdbstub.h"
31 #include "exec/page-protection.h"
32 #include "qapi/qapi-types-common.h"
33 #include "target/arm/multiprocessing.h"
34 #include "target/arm/gtimer.h"
35 #include "target/arm/cpu-sysregs.h"
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 #define EXCP_NMI            26
62 #define EXCP_VINMI          27
63 #define EXCP_VFNMI          28
64 #define EXCP_MON_TRAP       29   /* AArch32 trap to Monitor mode */
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* The 2nd extra word holding syndrome info for data aborts does not use
103  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
104  * help the sleb128 encoder do a better job.
105  * When restoring the CPU state, we shift it back up.
106  */
107 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
108 #define ARM_INSN_START_WORD2_SHIFT 13
109 
110 /* We currently assume float and double are IEEE single and double
111    precision respectively.
112    Doing runtime conversions is tricky because VFP registers may contain
113    integer values (eg. as the result of a FTOSI instruction).
114    s<2n> maps to the least significant half of d<n>
115    s<2n+1> maps to the most significant half of d<n>
116  */
117 
118 /**
119  * DynamicGDBFeatureInfo:
120  * @desc: Contains the feature descriptions.
121  * @data: A union with data specific to the set of registers
122  *    @cpregs_keys: Array that contains the corresponding Key of
123  *                  a given cpreg with the same order of the cpreg
124  *                  in the XML description.
125  */
126 typedef struct DynamicGDBFeatureInfo {
127     GDBFeature desc;
128     union {
129         struct {
130             uint32_t *keys;
131         } cpregs;
132     } data;
133 } DynamicGDBFeatureInfo;
134 
135 /* CPU state for each instance of a generic timer (in cp15 c14) */
136 typedef struct ARMGenericTimer {
137     uint64_t cval; /* Timer CompareValue register */
138     uint64_t ctl; /* Timer Control register */
139 } ARMGenericTimer;
140 
141 /* Define a maximum sized vector register.
142  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
143  * For 64-bit, this is a 2048-bit SVE register.
144  *
145  * Note that the mapping between S, D, and Q views of the register bank
146  * differs between AArch64 and AArch32.
147  * In AArch32:
148  *  Qn = regs[n].d[1]:regs[n].d[0]
149  *  Dn = regs[n / 2].d[n & 1]
150  *  Sn = regs[n / 4].d[n % 4 / 2],
151  *       bits 31..0 for even n, and bits 63..32 for odd n
152  *       (and regs[16] to regs[31] are inaccessible)
153  * In AArch64:
154  *  Zn = regs[n].d[*]
155  *  Qn = regs[n].d[1]:regs[n].d[0]
156  *  Dn = regs[n].d[0]
157  *  Sn = regs[n].d[0] bits 31..0
158  *  Hn = regs[n].d[0] bits 15..0
159  *
160  * This corresponds to the architecturally defined mapping between
161  * the two execution states, and means we do not need to explicitly
162  * map these registers when changing states.
163  *
164  * Align the data for use with TCG host vector operations.
165  */
166 
167 #define ARM_MAX_VQ    16
168 
169 typedef struct ARMVectorReg {
170     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
171 } ARMVectorReg;
172 
173 /* In AArch32 mode, predicate registers do not exist at all.  */
174 typedef struct ARMPredicateReg {
175     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
176 } ARMPredicateReg;
177 
178 /* In AArch32 mode, PAC keys do not exist at all.  */
179 typedef struct ARMPACKey {
180     uint64_t lo, hi;
181 } ARMPACKey;
182 
183 /* See the commentary above the TBFLAG field definitions.  */
184 typedef struct CPUARMTBFlags {
185     uint32_t flags;
186     uint64_t flags2;
187 } CPUARMTBFlags;
188 
189 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
190 
191 typedef struct NVICState NVICState;
192 
193 /*
194  * Enum for indexing vfp.fp_status[].
195  *
196  * FPST_A32: is the "normal" fp status for AArch32 insns
197  * FPST_A64: is the "normal" fp status for AArch64 insns
198  * FPST_A32_F16: used for AArch32 half-precision calculations
199  * FPST_A64_F16: used for AArch64 half-precision calculations
200  * FPST_STD: the ARM "Standard FPSCR Value"
201  * FPST_STD_F16: used for half-precision
202  *       calculations with the ARM "Standard FPSCR Value"
203  * FPST_AH: used for the A64 insns which change behaviour
204  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
205  *       and the reciprocal and square root estimate/step insns)
206  * FPST_AH_F16: used for the A64 insns which change behaviour
207  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
208  *       and the reciprocal and square root estimate/step insns);
209  *       for half-precision
210  * ZA: the "streaming sve" fp status.
211  * ZA_F16: likewise for half-precision.
212  *
213  * Half-precision operations are governed by a separate
214  * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
215  * status structure to control this.
216  *
217  * The "Standard FPSCR", ie default-NaN, flush-to-zero,
218  * round-to-nearest and is used by any operations (generally
219  * Neon) which the architecture defines as controlled by the
220  * standard FPSCR value rather than the FPSCR.
221  *
222  * The "standard FPSCR but for fp16 ops" is needed because
223  * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
224  * using a fixed value for it.
225  *
226  * FPST_AH is needed because some insns have different
227  * behaviour when FPCR.AH == 1: they don't update cumulative
228  * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and
229  * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16,
230  * which means we need an FPST_AH_F16 as well.
231  *
232  * The "ZA" float_status are for Streaming SVE operations which use
233  * default-NaN and do not generate fp exceptions, which means that they
234  * do not accumulate exception bits back into FPCR.
235  * See e.g. FPAdd vs FPAdd_ZA pseudocode functions, and the setting
236  * of fpcr.DN and fpexec parameters.
237  *
238  * To avoid having to transfer exception bits around, we simply
239  * say that the FPSCR cumulative exception flags are the logical
240  * OR of the flags in the four fp statuses. This relies on the
241  * only thing which needs to read the exception flags being
242  * an explicit FPSCR read.
243  */
244 typedef enum ARMFPStatusFlavour {
245     FPST_A32,
246     FPST_A64,
247     FPST_A32_F16,
248     FPST_A64_F16,
249     FPST_AH,
250     FPST_AH_F16,
251     FPST_ZA,
252     FPST_ZA_F16,
253     FPST_STD,
254     FPST_STD_F16,
255 } ARMFPStatusFlavour;
256 #define FPST_COUNT  10
257 
258 typedef struct CPUArchState {
259     /* Regs for current mode.  */
260     uint32_t regs[16];
261 
262     /* 32/64 switch only happens when taking and returning from
263      * exceptions so the overlap semantics are taken care of then
264      * instead of having a complicated union.
265      */
266     /* Regs for A64 mode.  */
267     uint64_t xregs[32];
268     uint64_t pc;
269     /* PSTATE isn't an architectural register for ARMv8. However, it is
270      * convenient for us to assemble the underlying state into a 32 bit format
271      * identical to the architectural format used for the SPSR. (This is also
272      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
273      * 'pstate' register are.) Of the PSTATE bits:
274      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
275      *    semantics as for AArch32, as described in the comments on each field)
276      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
277      *  DAIF (exception masks) are kept in env->daif
278      *  BTYPE is kept in env->btype
279      *  SM and ZA are kept in env->svcr
280      *  all other bits are stored in their correct places in env->pstate
281      */
282     uint32_t pstate;
283     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
284     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
285 
286     /* Cached TBFLAGS state.  See below for which bits are included.  */
287     CPUARMTBFlags hflags;
288 
289     /* Frequently accessed CPSR bits are stored separately for efficiency.
290        This contains all the other bits.  Use cpsr_{read,write} to access
291        the whole CPSR.  */
292     uint32_t uncached_cpsr;
293     uint32_t spsr;
294 
295     /* Banked registers.  */
296     uint64_t banked_spsr[8];
297     uint32_t banked_r13[8];
298     uint32_t banked_r14[8];
299 
300     /* These hold r8-r12.  */
301     uint32_t usr_regs[5];
302     uint32_t fiq_regs[5];
303 
304     /* cpsr flag cache for faster execution */
305     uint32_t CF; /* 0 or 1 */
306     uint32_t VF; /* V is the bit 31. All other bits are undefined */
307     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
308     uint32_t ZF; /* Z set if zero.  */
309     uint32_t QF; /* 0 or 1 */
310     uint32_t GE; /* cpsr[19:16] */
311     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
312     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
313     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
314     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
315 
316     uint64_t elr_el[4]; /* AArch64 exception link regs  */
317     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
318 
319     /* System control coprocessor (cp15) */
320     struct {
321         uint32_t c0_cpuid;
322         union { /* Cache size selection */
323             struct {
324                 uint64_t _unused_csselr0;
325                 uint64_t csselr_ns;
326                 uint64_t _unused_csselr1;
327                 uint64_t csselr_s;
328             };
329             uint64_t csselr_el[4];
330         };
331         union { /* System control register. */
332             struct {
333                 uint64_t _unused_sctlr;
334                 uint64_t sctlr_ns;
335                 uint64_t hsctlr;
336                 uint64_t sctlr_s;
337             };
338             uint64_t sctlr_el[4];
339         };
340         uint64_t vsctlr; /* Virtualization System control register. */
341         uint64_t cpacr_el1; /* Architectural feature access control register */
342         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
343         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
344         uint64_t sder; /* Secure debug enable register. */
345         uint32_t nsacr; /* Non-secure access control register. */
346         union { /* MMU translation table base 0. */
347             struct {
348                 uint64_t _unused_ttbr0_0;
349                 uint64_t ttbr0_ns;
350                 uint64_t _unused_ttbr0_1;
351                 uint64_t ttbr0_s;
352             };
353             uint64_t ttbr0_el[4];
354         };
355         union { /* MMU translation table base 1. */
356             struct {
357                 uint64_t _unused_ttbr1_0;
358                 uint64_t ttbr1_ns;
359                 uint64_t _unused_ttbr1_1;
360                 uint64_t ttbr1_s;
361             };
362             uint64_t ttbr1_el[4];
363         };
364         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
365         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
366         /* MMU translation table base control. */
367         uint64_t tcr_el[4];
368         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
369         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
370         uint32_t c2_data; /* MPU data cacheable bits.  */
371         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
372         union { /* MMU domain access control register
373                  * MPU write buffer control.
374                  */
375             struct {
376                 uint64_t dacr_ns;
377                 uint64_t dacr_s;
378             };
379             struct {
380                 uint64_t dacr32_el2;
381             };
382         };
383         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
384         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
385         uint64_t hcr_el2; /* Hypervisor configuration register */
386         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
387         uint64_t scr_el3; /* Secure configuration register.  */
388         union { /* Fault status registers.  */
389             struct {
390                 uint64_t ifsr_ns;
391                 uint64_t ifsr_s;
392             };
393             struct {
394                 uint64_t ifsr32_el2;
395             };
396         };
397         union {
398             struct {
399                 uint64_t _unused_dfsr;
400                 uint64_t dfsr_ns;
401                 uint64_t hsr;
402                 uint64_t dfsr_s;
403             };
404             uint64_t esr_el[4];
405         };
406         uint32_t c6_region[8]; /* MPU base/size registers.  */
407         union { /* Fault address registers. */
408             struct {
409                 uint64_t _unused_far0;
410 #if HOST_BIG_ENDIAN
411                 uint32_t ifar_ns;
412                 uint32_t dfar_ns;
413                 uint32_t ifar_s;
414                 uint32_t dfar_s;
415 #else
416                 uint32_t dfar_ns;
417                 uint32_t ifar_ns;
418                 uint32_t dfar_s;
419                 uint32_t ifar_s;
420 #endif
421                 uint64_t _unused_far3;
422             };
423             uint64_t far_el[4];
424         };
425         uint64_t hpfar_el2;
426         uint64_t hstr_el2;
427         union { /* Translation result. */
428             struct {
429                 uint64_t _unused_par_0;
430                 uint64_t par_ns;
431                 uint64_t _unused_par_1;
432                 uint64_t par_s;
433             };
434             uint64_t par_el[4];
435         };
436 
437         uint32_t c9_insn; /* Cache lockdown registers.  */
438         uint32_t c9_data;
439         uint64_t c9_pmcr; /* performance monitor control register */
440         uint64_t c9_pmcnten; /* perf monitor counter enables */
441         uint64_t c9_pmovsr; /* perf monitor overflow status */
442         uint64_t c9_pmuserenr; /* perf monitor user enable */
443         uint64_t c9_pmselr; /* perf monitor counter selection register */
444         uint64_t c9_pminten; /* perf monitor interrupt enables */
445         union { /* Memory attribute redirection */
446             struct {
447 #if HOST_BIG_ENDIAN
448                 uint64_t _unused_mair_0;
449                 uint32_t mair1_ns;
450                 uint32_t mair0_ns;
451                 uint64_t _unused_mair_1;
452                 uint32_t mair1_s;
453                 uint32_t mair0_s;
454 #else
455                 uint64_t _unused_mair_0;
456                 uint32_t mair0_ns;
457                 uint32_t mair1_ns;
458                 uint64_t _unused_mair_1;
459                 uint32_t mair0_s;
460                 uint32_t mair1_s;
461 #endif
462             };
463             uint64_t mair_el[4];
464         };
465         union { /* vector base address register */
466             struct {
467                 uint64_t _unused_vbar;
468                 uint64_t vbar_ns;
469                 uint64_t hvbar;
470                 uint64_t vbar_s;
471             };
472             uint64_t vbar_el[4];
473         };
474         uint32_t mvbar; /* (monitor) vector base address register */
475         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
476         struct { /* FCSE PID. */
477             uint32_t fcseidr_ns;
478             uint32_t fcseidr_s;
479         };
480         union { /* Context ID. */
481             struct {
482                 uint64_t _unused_contextidr_0;
483                 uint64_t contextidr_ns;
484                 uint64_t _unused_contextidr_1;
485                 uint64_t contextidr_s;
486             };
487             uint64_t contextidr_el[4];
488         };
489         union { /* User RW Thread register. */
490             struct {
491                 uint64_t tpidrurw_ns;
492                 uint64_t tpidrprw_ns;
493                 uint64_t htpidr;
494                 uint64_t _tpidr_el3;
495             };
496             uint64_t tpidr_el[4];
497         };
498         uint64_t tpidr2_el0;
499         /* The secure banks of these registers don't map anywhere */
500         uint64_t tpidrurw_s;
501         uint64_t tpidrprw_s;
502         uint64_t tpidruro_s;
503 
504         union { /* User RO Thread register. */
505             uint64_t tpidruro_ns;
506             uint64_t tpidrro_el[1];
507         };
508         uint64_t c14_cntfrq; /* Counter Frequency register */
509         uint64_t c14_cntkctl; /* Timer Control register */
510         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
511         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
512         uint64_t cntpoff_el2; /* Counter Physical Offset register */
513         ARMGenericTimer c14_timer[NUM_GTIMERS];
514         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
515         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
516         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
517         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
518         uint32_t c15_threadid; /* TI debugger thread-ID.  */
519         uint32_t c15_config_base_address; /* SCU base address.  */
520         uint32_t c15_diagnostic; /* diagnostic register */
521         uint32_t c15_power_diagnostic;
522         uint32_t c15_power_control; /* power control */
523         uint64_t dbgbvr[16]; /* breakpoint value registers */
524         uint64_t dbgbcr[16]; /* breakpoint control registers */
525         uint64_t dbgwvr[16]; /* watchpoint value registers */
526         uint64_t dbgwcr[16]; /* watchpoint control registers */
527         uint64_t dbgclaim;   /* DBGCLAIM bits */
528         uint64_t mdscr_el1;
529         uint64_t oslsr_el1; /* OS Lock Status */
530         uint64_t osdlr_el1; /* OS DoubleLock status */
531         uint64_t mdcr_el2;
532         uint64_t mdcr_el3;
533         /* Stores the architectural value of the counter *the last time it was
534          * updated* by pmccntr_op_start. Accesses should always be surrounded
535          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
536          * architecturally-correct value is being read/set.
537          */
538         uint64_t c15_ccnt;
539         /* Stores the delta between the architectural value and the underlying
540          * cycle count during normal operation. It is used to update c15_ccnt
541          * to be the correct architectural value before accesses. During
542          * accesses, c15_ccnt_delta contains the underlying count being used
543          * for the access, after which it reverts to the delta value in
544          * pmccntr_op_finish.
545          */
546         uint64_t c15_ccnt_delta;
547         uint64_t c14_pmevcntr[31];
548         uint64_t c14_pmevcntr_delta[31];
549         uint64_t c14_pmevtyper[31];
550         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
551         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
552         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
553         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
554         uint64_t gcr_el1;
555         uint64_t rgsr_el1;
556 
557         /* Minimal RAS registers */
558         uint64_t disr_el1;
559         uint64_t vdisr_el2;
560         uint64_t vsesr_el2;
561 
562         /*
563          * Fine-Grained Trap registers. We store these as arrays so the
564          * access checking code doesn't have to manually select
565          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
566          * FEAT_FGT2 will add more elements to these arrays.
567          */
568         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
569         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
570         uint64_t fgt_exec[1]; /* HFGITR */
571 
572         /* RME registers */
573         uint64_t gpccr_el3;
574         uint64_t gptbr_el3;
575         uint64_t mfar_el3;
576 
577         /* NV2 register */
578         uint64_t vncr_el2;
579     } cp15;
580 
581     struct {
582         /* M profile has up to 4 stack pointers:
583          * a Main Stack Pointer and a Process Stack Pointer for each
584          * of the Secure and Non-Secure states. (If the CPU doesn't support
585          * the security extension then it has only two SPs.)
586          * In QEMU we always store the currently active SP in regs[13],
587          * and the non-active SP for the current security state in
588          * v7m.other_sp. The stack pointers for the inactive security state
589          * are stored in other_ss_msp and other_ss_psp.
590          * switch_v7m_security_state() is responsible for rearranging them
591          * when we change security state.
592          */
593         uint32_t other_sp;
594         uint32_t other_ss_msp;
595         uint32_t other_ss_psp;
596         uint32_t vecbase[M_REG_NUM_BANKS];
597         uint32_t basepri[M_REG_NUM_BANKS];
598         uint32_t control[M_REG_NUM_BANKS];
599         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
600         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
601         uint32_t hfsr; /* HardFault Status */
602         uint32_t dfsr; /* Debug Fault Status Register */
603         uint32_t sfsr; /* Secure Fault Status Register */
604         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
605         uint32_t bfar; /* BusFault Address */
606         uint32_t sfar; /* Secure Fault Address Register */
607         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
608         int exception;
609         uint32_t primask[M_REG_NUM_BANKS];
610         uint32_t faultmask[M_REG_NUM_BANKS];
611         uint32_t aircr; /* only holds r/w state if security extn implemented */
612         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
613         uint32_t csselr[M_REG_NUM_BANKS];
614         uint32_t scr[M_REG_NUM_BANKS];
615         uint32_t msplim[M_REG_NUM_BANKS];
616         uint32_t psplim[M_REG_NUM_BANKS];
617         uint32_t fpcar[M_REG_NUM_BANKS];
618         uint32_t fpccr[M_REG_NUM_BANKS];
619         uint32_t fpdscr[M_REG_NUM_BANKS];
620         uint32_t cpacr[M_REG_NUM_BANKS];
621         uint32_t nsacr;
622         uint32_t ltpsize;
623         uint32_t vpr;
624     } v7m;
625 
626     /* Information associated with an exception about to be taken:
627      * code which raises an exception must set cs->exception_index and
628      * the relevant parts of this structure; the cpu_do_interrupt function
629      * will then set the guest-visible registers as part of the exception
630      * entry process.
631      */
632     struct {
633         uint32_t syndrome; /* AArch64 format syndrome register */
634         uint32_t fsr; /* AArch32 format fault status register info */
635         uint64_t vaddress; /* virtual addr associated with exception, if any */
636         uint32_t target_el; /* EL the exception should be targeted for */
637         /* If we implement EL2 we will also need to store information
638          * about the intermediate physical address for stage 2 faults.
639          */
640     } exception;
641 
642     /* Information associated with an SError */
643     struct {
644         uint8_t pending;
645         uint8_t has_esr;
646         uint64_t esr;
647     } serror;
648 
649     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
650 
651     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
652     uint32_t irq_line_state;
653 
654     /* Thumb-2 EE state.  */
655     uint32_t teecr;
656     uint32_t teehbr;
657 
658     /* VFP coprocessor state.  */
659     struct {
660         ARMVectorReg zregs[32];
661 
662         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
663 #define FFR_PRED_NUM 16
664         ARMPredicateReg pregs[17];
665         /* Scratch space for aa64 sve predicate temporary.  */
666         ARMPredicateReg preg_tmp;
667 
668         /* We store these fpcsr fields separately for convenience.  */
669         uint32_t qc[4] QEMU_ALIGNED(16);
670         int vec_len;
671         int vec_stride;
672 
673         /*
674          * Floating point status and control registers. Some bits are
675          * stored separately in other fields or in the float_status below.
676          */
677         uint64_t fpsr;
678         uint64_t fpcr;
679 
680         uint32_t xregs[16];
681 
682         /* There are a number of distinct float control structures. */
683         float_status fp_status[FPST_COUNT];
684 
685         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
686         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
687     } vfp;
688 
689     uint64_t exclusive_addr;
690     uint64_t exclusive_val;
691     /*
692      * Contains the 'val' for the second 64-bit register of LDXP, which comes
693      * from the higher address, not the high part of a complete 128-bit value.
694      * In some ways it might be more convenient to record the exclusive value
695      * as the low and high halves of a 128 bit data value, but the current
696      * semantics of these fields are baked into the migration format.
697      */
698     uint64_t exclusive_high;
699 
700     /* iwMMXt coprocessor state.  */
701     struct {
702         uint64_t regs[16];
703         uint64_t val;
704 
705         uint32_t cregs[16];
706     } iwmmxt;
707 
708     struct {
709         ARMPACKey apia;
710         ARMPACKey apib;
711         ARMPACKey apda;
712         ARMPACKey apdb;
713         ARMPACKey apga;
714     } keys;
715 
716     uint64_t scxtnum_el[4];
717 
718     struct {
719         /* SME2 ZT0 -- 512 bit array, with data ordered like ARMVectorReg. */
720         uint64_t zt0[512 / 64] QEMU_ALIGNED(16);
721 
722         /*
723          * SME ZA storage -- 256 x 256 byte array, with bytes in host
724          * word order, as we do with vfp.zregs[].  This corresponds to
725          * the architectural ZA array, where ZA[N] is in the least
726          * significant bytes of env->za_state.za[N].
727          *
728          * When SVL is less than the architectural maximum, the accessible
729          * storage is restricted, such that if the SVL is X bytes the guest
730          * can see only the bottom X elements of zarray[], and only the least
731          * significant X bytes of each element of the array. (In other words,
732          * the observable part is always square.)
733          *
734          * The ZA storage can also be considered as a set of square tiles of
735          * elements of different sizes. The mapping from tiles to the ZA array
736          * is architecturally defined, such that for tiles of elements of esz
737          * bytes, the Nth row (or "horizontal slice") of tile T is in
738          * ZA[T + N * esz]. Note that this means that each tile is not
739          * contiguous in the ZA storage, because its rows are striped through
740          * the ZA array.
741          *
742          * Because this is so large, keep this toward the end of the
743          * reset area, to keep the offsets into the rest of the structure
744          * smaller.
745          */
746         ARMVectorReg za[ARM_MAX_VQ * 16];
747     } za_state;
748 
749     struct CPUBreakpoint *cpu_breakpoint[16];
750     struct CPUWatchpoint *cpu_watchpoint[16];
751 
752     /* Optional fault info across tlb lookup. */
753     ARMMMUFaultInfo *tlb_fi;
754 
755     /* Fields up to this point are cleared by a CPU reset */
756     struct {} end_reset_fields;
757 
758     /* Fields after this point are preserved across CPU reset. */
759 
760     /* Internal CPU feature flags.  */
761     uint64_t features;
762 
763     /* PMSAv7 MPU */
764     struct {
765         uint32_t *drbar;
766         uint32_t *drsr;
767         uint32_t *dracr;
768         uint32_t rnr[M_REG_NUM_BANKS];
769     } pmsav7;
770 
771     /* PMSAv8 MPU */
772     struct {
773         /* The PMSAv8 implementation also shares some PMSAv7 config
774          * and state:
775          *  pmsav7.rnr (region number register)
776          *  pmsav7_dregion (number of configured regions)
777          */
778         uint32_t *rbar[M_REG_NUM_BANKS];
779         uint32_t *rlar[M_REG_NUM_BANKS];
780         uint32_t *hprbar;
781         uint32_t *hprlar;
782         uint32_t mair0[M_REG_NUM_BANKS];
783         uint32_t mair1[M_REG_NUM_BANKS];
784         uint32_t hprselr;
785     } pmsav8;
786 
787     /* v8M SAU */
788     struct {
789         uint32_t *rbar;
790         uint32_t *rlar;
791         uint32_t rnr;
792         uint32_t ctrl;
793     } sau;
794 
795 #if !defined(CONFIG_USER_ONLY)
796     NVICState *nvic;
797     const struct arm_boot_info *boot_info;
798     /* Store GICv3CPUState to access from this struct */
799     void *gicv3state;
800 #else /* CONFIG_USER_ONLY */
801     /* For usermode syscall translation.  */
802     bool eabi;
803     /* Linux syscall tagged address support */
804     bool tagged_addr_enable;
805 #endif /* CONFIG_USER_ONLY */
806 } CPUARMState;
807 
808 static inline void set_feature(CPUARMState *env, int feature)
809 {
810     env->features |= 1ULL << feature;
811 }
812 
813 static inline void unset_feature(CPUARMState *env, int feature)
814 {
815     env->features &= ~(1ULL << feature);
816 }
817 
818 /**
819  * ARMELChangeHookFn:
820  * type of a function which can be registered via arm_register_el_change_hook()
821  * to get callbacks when the CPU changes its exception level or mode.
822  */
823 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
824 typedef struct ARMELChangeHook ARMELChangeHook;
825 struct ARMELChangeHook {
826     ARMELChangeHookFn *hook;
827     void *opaque;
828     QLIST_ENTRY(ARMELChangeHook) node;
829 };
830 
831 /* These values map onto the return values for
832  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
833 typedef enum ARMPSCIState {
834     PSCI_ON = 0,
835     PSCI_OFF = 1,
836     PSCI_ON_PENDING = 2
837 } ARMPSCIState;
838 
839 typedef struct ARMISARegisters ARMISARegisters;
840 
841 /*
842  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
843  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
844  *
845  * While processing properties during initialization, corresponding init bits
846  * are set for bits in sve_vq_map that have been set by properties.
847  *
848  * Bits set in supported represent valid vector lengths for the CPU type.
849  */
850 typedef struct {
851     uint32_t map, init, supported;
852 } ARMVQMap;
853 
854 /* REG is ID_XXX */
855 #define FIELD_DP64_IDREG(ISAR, REG, FIELD, VALUE)                       \
856     ({                                                                  \
857         ARMISARegisters *i_ = (ISAR);                                   \
858         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
859         regval = FIELD_DP64(regval, REG, FIELD, VALUE);                 \
860         i_->idregs[REG ## _EL1_IDX] = regval;                           \
861     })
862 
863 #define FIELD_DP32_IDREG(ISAR, REG, FIELD, VALUE)                       \
864     ({                                                                  \
865         ARMISARegisters *i_ = (ISAR);                                   \
866         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
867         regval = FIELD_DP32(regval, REG, FIELD, VALUE);                 \
868         i_->idregs[REG ## _EL1_IDX] = regval;                           \
869     })
870 
871 #define FIELD_EX64_IDREG(ISAR, REG, FIELD)                              \
872     ({                                                                  \
873         const ARMISARegisters *i_ = (ISAR);                             \
874         FIELD_EX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
875     })
876 
877 #define FIELD_EX32_IDREG(ISAR, REG, FIELD)                              \
878     ({                                                                  \
879         const ARMISARegisters *i_ = (ISAR);                             \
880         FIELD_EX32(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
881     })
882 
883 #define FIELD_SEX64_IDREG(ISAR, REG, FIELD)                             \
884     ({                                                                  \
885         const ARMISARegisters *i_ = (ISAR);                             \
886         FIELD_SEX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);           \
887     })
888 
889 #define SET_IDREG(ISAR, REG, VALUE)                                     \
890     ({                                                                  \
891         ARMISARegisters *i_ = (ISAR);                                   \
892         i_->idregs[REG ## _EL1_IDX] = VALUE;                            \
893     })
894 
895 #define GET_IDREG(ISAR, REG)                                            \
896     ({                                                                  \
897         const ARMISARegisters *i_ = (ISAR);                             \
898         i_->idregs[REG ## _EL1_IDX];                                    \
899     })
900 
901 /**
902  * ARMCPU:
903  * @env: #CPUARMState
904  *
905  * An ARM CPU core.
906  */
907 struct ArchCPU {
908     CPUState parent_obj;
909 
910     CPUARMState env;
911 
912     /* Coprocessor information */
913     GHashTable *cp_regs;
914     /* For marshalling (mostly coprocessor) register state between the
915      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
916      * we use these arrays.
917      */
918     /* List of register indexes managed via these arrays; (full KVM style
919      * 64 bit indexes, not CPRegInfo 32 bit indexes)
920      */
921     uint64_t *cpreg_indexes;
922     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
923     uint64_t *cpreg_values;
924     /* Length of the indexes, values, reset_values arrays */
925     int32_t cpreg_array_len;
926     /* These are used only for migration: incoming data arrives in
927      * these fields and is sanity checked in post_load before copying
928      * to the working data structures above.
929      */
930     uint64_t *cpreg_vmstate_indexes;
931     uint64_t *cpreg_vmstate_values;
932     int32_t cpreg_vmstate_array_len;
933 
934     DynamicGDBFeatureInfo dyn_sysreg_feature;
935     DynamicGDBFeatureInfo dyn_svereg_feature;
936     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
937     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
938 
939     /* Timers used by the generic (architected) timer */
940     QEMUTimer *gt_timer[NUM_GTIMERS];
941     /*
942      * Timer used by the PMU. Its state is restored after migration by
943      * pmu_op_finish() - it does not need other handling during migration
944      */
945     QEMUTimer *pmu_timer;
946     /* Timer used for WFxT timeouts */
947     QEMUTimer *wfxt_timer;
948 
949     /* GPIO outputs for generic timer */
950     qemu_irq gt_timer_outputs[NUM_GTIMERS];
951     /* GPIO output for GICv3 maintenance interrupt signal */
952     qemu_irq gicv3_maintenance_interrupt;
953     /* GPIO output for the PMU interrupt */
954     qemu_irq pmu_interrupt;
955 
956     /* MemoryRegion to use for secure physical accesses */
957     MemoryRegion *secure_memory;
958 
959     /* MemoryRegion to use for allocation tag accesses */
960     MemoryRegion *tag_memory;
961     MemoryRegion *secure_tag_memory;
962 
963     /* For v8M, pointer to the IDAU interface provided by board/SoC */
964     Object *idau;
965 
966     /* 'compatible' string for this CPU for Linux device trees */
967     const char *dtb_compatible;
968 
969     /* PSCI version for this CPU
970      * Bits[31:16] = Major Version
971      * Bits[15:0] = Minor Version
972      */
973     uint32_t psci_version;
974 
975     /* Current power state, access guarded by BQL */
976     ARMPSCIState power_state;
977 
978     /* CPU has virtualization extension */
979     bool has_el2;
980     /* CPU has security extension */
981     bool has_el3;
982     /* CPU has PMU (Performance Monitor Unit) */
983     bool has_pmu;
984     /* CPU has VFP */
985     bool has_vfp;
986     /* CPU has 32 VFP registers */
987     bool has_vfp_d32;
988     /* CPU has Neon */
989     bool has_neon;
990     /* CPU has M-profile DSP extension */
991     bool has_dsp;
992 
993     /* CPU has memory protection unit */
994     bool has_mpu;
995     /* CPU has MTE enabled in KVM mode */
996     bool kvm_mte;
997     /* PMSAv7 MPU number of supported regions */
998     uint32_t pmsav7_dregion;
999     /* PMSAv8 MPU number of supported hyp regions */
1000     uint32_t pmsav8r_hdregion;
1001     /* v8M SAU number of supported regions */
1002     uint32_t sau_sregion;
1003 
1004     /* PSCI conduit used to invoke PSCI methods
1005      * 0 - disabled, 1 - smc, 2 - hvc
1006      */
1007     uint32_t psci_conduit;
1008 
1009     /* For v8M, initial value of the Secure VTOR */
1010     uint32_t init_svtor;
1011     /* For v8M, initial value of the Non-secure VTOR */
1012     uint32_t init_nsvtor;
1013 
1014     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
1015      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
1016      */
1017     uint32_t kvm_target;
1018 
1019     /* KVM init features for this CPU */
1020     uint32_t kvm_init_features[7];
1021 
1022     /* KVM CPU state */
1023 
1024     /* KVM virtual time adjustment */
1025     bool kvm_adjvtime;
1026     bool kvm_vtime_dirty;
1027     uint64_t kvm_vtime;
1028 
1029     /* KVM steal time */
1030     OnOffAuto kvm_steal_time;
1031 
1032     /* Uniprocessor system with MP extensions */
1033     bool mp_is_up;
1034 
1035     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
1036      * and the probe failed (so we need to report the error in realize)
1037      */
1038     bool host_cpu_probe_failed;
1039 
1040     /* QOM property to indicate we should use the back-compat CNTFRQ default */
1041     bool backcompat_cntfrq;
1042 
1043     /* QOM property to indicate we should use the back-compat QARMA5 default */
1044     bool backcompat_pauth_default_use_qarma5;
1045 
1046     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
1047      * register.
1048      */
1049     int32_t core_count;
1050 
1051     /* The instance init functions for implementation-specific subclasses
1052      * set these fields to specify the implementation-dependent values of
1053      * various constant registers and reset values of non-constant
1054      * registers.
1055      * Some of these might become QOM properties eventually.
1056      * Field names match the official register names as defined in the
1057      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
1058      * is used for reset values of non-constant registers; no reset_
1059      * prefix means a constant register.
1060      * Some of these registers are split out into a substructure that
1061      * is shared with the translators to control the ISA.
1062      *
1063      * Note that if you add an ID register to the ARMISARegisters struct
1064      * you need to also update the 32-bit and 64-bit versions of the
1065      * kvm_arm_get_host_cpu_features() function to correctly populate the
1066      * field by reading the value from the KVM vCPU.
1067      */
1068     struct ARMISARegisters {
1069         uint32_t mvfr0;
1070         uint32_t mvfr1;
1071         uint32_t mvfr2;
1072         uint32_t dbgdidr;
1073         uint32_t dbgdevid;
1074         uint32_t dbgdevid1;
1075         uint64_t reset_pmcr_el0;
1076         uint64_t idregs[NUM_ID_IDX];
1077     } isar;
1078     uint64_t midr;
1079     uint32_t revidr;
1080     uint32_t reset_fpsid;
1081     uint64_t ctr;
1082     uint32_t reset_sctlr;
1083     uint64_t pmceid0;
1084     uint64_t pmceid1;
1085     uint32_t id_afr0;
1086     uint64_t id_aa64afr0;
1087     uint64_t id_aa64afr1;
1088     uint64_t clidr;
1089     uint64_t mp_affinity; /* MP ID without feature bits */
1090     /* The elements of this array are the CCSIDR values for each cache,
1091      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1092      */
1093     uint64_t ccsidr[16];
1094     uint64_t reset_cbar;
1095     uint32_t reset_auxcr;
1096     bool reset_hivecs;
1097     uint8_t reset_l0gptsz;
1098 
1099     /*
1100      * Intermediate values used during property parsing.
1101      * Once finalized, the values should be read from ID_AA64*.
1102      */
1103     bool prop_pauth;
1104     bool prop_pauth_impdef;
1105     bool prop_pauth_qarma3;
1106     bool prop_pauth_qarma5;
1107     bool prop_lpa2;
1108 
1109     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1110     uint8_t dcz_blocksize;
1111     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1112     uint8_t gm_blocksize;
1113 
1114     uint64_t rvbar_prop; /* Property/input signals.  */
1115 
1116     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1117     int gic_num_lrs; /* number of list registers */
1118     int gic_vpribits; /* number of virtual priority bits */
1119     int gic_vprebits; /* number of virtual preemption bits */
1120     int gic_pribits; /* number of physical priority bits */
1121 
1122     /* Whether the cfgend input is high (i.e. this CPU should reset into
1123      * big-endian mode).  This setting isn't used directly: instead it modifies
1124      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1125      * architecture version.
1126      */
1127     bool cfgend;
1128 
1129     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1130     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1131 
1132     int32_t node_id; /* NUMA node this CPU belongs to */
1133 
1134     /* Used to synchronize KVM and QEMU in-kernel device levels */
1135     uint8_t device_irq_level;
1136 
1137     /* Used to set the maximum vector length the cpu will support.  */
1138     uint32_t sve_max_vq;
1139     uint32_t sme_max_vq;
1140 
1141 #ifdef CONFIG_USER_ONLY
1142     /* Used to set the default vector length at process start. */
1143     uint32_t sve_default_vq;
1144     uint32_t sme_default_vq;
1145 #endif
1146 
1147     ARMVQMap sve_vq;
1148     ARMVQMap sme_vq;
1149 
1150     /* Generic timer counter frequency, in Hz */
1151     uint64_t gt_cntfrq_hz;
1152 };
1153 
1154 typedef struct ARMCPUInfo {
1155     const char *name;
1156     const char *deprecation_note;
1157     void (*initfn)(Object *obj);
1158     void (*class_init)(ObjectClass *oc, const void *data);
1159 } ARMCPUInfo;
1160 
1161 /**
1162  * ARMCPUClass:
1163  * @parent_realize: The parent class' realize handler.
1164  * @parent_phases: The parent class' reset phase handlers.
1165  *
1166  * An ARM CPU model.
1167  */
1168 struct ARMCPUClass {
1169     CPUClass parent_class;
1170 
1171     const ARMCPUInfo *info;
1172     DeviceRealize parent_realize;
1173     ResettablePhases parent_phases;
1174 };
1175 
1176 /* Callback functions for the generic timer's timers. */
1177 void arm_gt_ptimer_cb(void *opaque);
1178 void arm_gt_vtimer_cb(void *opaque);
1179 void arm_gt_htimer_cb(void *opaque);
1180 void arm_gt_stimer_cb(void *opaque);
1181 void arm_gt_hvtimer_cb(void *opaque);
1182 void arm_gt_sel2timer_cb(void *opaque);
1183 void arm_gt_sel2vtimer_cb(void *opaque);
1184 
1185 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1186 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1187 
1188 #define ARM_AFF0_SHIFT 0
1189 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1190 #define ARM_AFF1_SHIFT 8
1191 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1192 #define ARM_AFF2_SHIFT 16
1193 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1194 #define ARM_AFF3_SHIFT 32
1195 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1196 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1197 
1198 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1199 #define ARM64_AFFINITY_MASK \
1200     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1201 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1202 
1203 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1204 
1205 #ifndef CONFIG_USER_ONLY
1206 extern const VMStateDescription vmstate_arm_cpu;
1207 
1208 void arm_cpu_do_interrupt(CPUState *cpu);
1209 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1210 
1211 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1212                                          MemTxAttrs *attrs);
1213 #endif /* !CONFIG_USER_ONLY */
1214 
1215 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1216 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1217 
1218 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1219                              int cpuid, DumpState *s);
1220 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1221                              int cpuid, DumpState *s);
1222 
1223 /**
1224  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1225  * @cpu: CPU (which must have been freshly reset)
1226  * @target_el: exception level to put the CPU into
1227  * @secure: whether to put the CPU in secure state
1228  *
1229  * When QEMU is directly running a guest kernel at a lower level than
1230  * EL3 it implicitly emulates some aspects of the guest firmware.
1231  * This includes that on reset we need to configure the parts of the
1232  * CPU corresponding to EL3 so that the real guest code can run at its
1233  * lower exception level. This function does that post-reset CPU setup,
1234  * for when we do direct boot of a guest kernel, and for when we
1235  * emulate PSCI and similar firmware interfaces starting a CPU at a
1236  * lower exception level.
1237  *
1238  * @target_el must be an EL implemented by the CPU between 1 and 3.
1239  * We do not support dropping into a Secure EL other than 3.
1240  *
1241  * It is the responsibility of the caller to call arm_rebuild_hflags().
1242  */
1243 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1244 
1245 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1246 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1247 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1248 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1249                            int new_el, bool el0_a64);
1250 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1251 
1252 /*
1253  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1254  * The byte at offset i from the start of the in-memory representation contains
1255  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1256  * lowest offsets are stored in the lowest memory addresses, then that nearly
1257  * matches QEMU's representation, which is to use an array of host-endian
1258  * uint64_t's, where the lower offsets are at the lower indices. To complete
1259  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1260  */
1261 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1262 {
1263 #if HOST_BIG_ENDIAN
1264     int i;
1265 
1266     for (i = 0; i < nr; ++i) {
1267         dst[i] = bswap64(src[i]);
1268     }
1269 
1270     return dst;
1271 #else
1272     return src;
1273 #endif
1274 }
1275 
1276 void aarch64_sync_32_to_64(CPUARMState *env);
1277 void aarch64_sync_64_to_32(CPUARMState *env);
1278 
1279 int fp_exception_el(CPUARMState *env, int cur_el);
1280 int sve_exception_el(CPUARMState *env, int cur_el);
1281 int sme_exception_el(CPUARMState *env, int cur_el);
1282 
1283 /**
1284  * sve_vqm1_for_el_sm:
1285  * @env: CPUARMState
1286  * @el: exception level
1287  * @sm: streaming mode
1288  *
1289  * Compute the current vector length for @el & @sm, in units of
1290  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1291  * If @sm, compute for SVL, otherwise NVL.
1292  */
1293 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1294 
1295 /* Likewise, but using @sm = PSTATE.SM. */
1296 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1297 
1298 static inline bool is_a64(CPUARMState *env)
1299 {
1300     return env->aarch64;
1301 }
1302 
1303 /**
1304  * pmu_op_start/finish
1305  * @env: CPUARMState
1306  *
1307  * Convert all PMU counters between their delta form (the typical mode when
1308  * they are enabled) and the guest-visible values. These two calls must
1309  * surround any action which might affect the counters.
1310  */
1311 void pmu_op_start(CPUARMState *env);
1312 void pmu_op_finish(CPUARMState *env);
1313 
1314 /*
1315  * Called when a PMU counter is due to overflow
1316  */
1317 void arm_pmu_timer_cb(void *opaque);
1318 
1319 /**
1320  * Functions to register as EL change hooks for PMU mode filtering
1321  */
1322 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1323 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1324 
1325 /*
1326  * pmu_init
1327  * @cpu: ARMCPU
1328  *
1329  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1330  * for the current configuration
1331  */
1332 void pmu_init(ARMCPU *cpu);
1333 
1334 /* SCTLR bit meanings. Several bits have been reused in newer
1335  * versions of the architecture; in that case we define constants
1336  * for both old and new bit meanings. Code which tests against those
1337  * bits should probably check or otherwise arrange that the CPU
1338  * is the architectural version it expects.
1339  */
1340 #define SCTLR_M       (1U << 0)
1341 #define SCTLR_A       (1U << 1)
1342 #define SCTLR_C       (1U << 2)
1343 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1344 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1345 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1346 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1347 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1348 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1349 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1350 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1351 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1352 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1353 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1354 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1355 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1356 #define SCTLR_SED     (1U << 8) /* v8 onward */
1357 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1358 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1359 #define SCTLR_F       (1U << 10) /* up to v6 */
1360 #define SCTLR_SW      (1U << 10) /* v7 */
1361 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1362 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1363 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1364 #define SCTLR_I       (1U << 12)
1365 #define SCTLR_V       (1U << 13) /* AArch32 only */
1366 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1367 #define SCTLR_RR      (1U << 14) /* up to v7 */
1368 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1369 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1370 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1371 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1372 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1373 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1374 #define SCTLR_BR      (1U << 17) /* PMSA only */
1375 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1376 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1377 #define SCTLR_WXN     (1U << 19)
1378 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1379 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1380 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1381 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1382 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1383 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1384 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1385 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1386 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1387 #define SCTLR_VE      (1U << 24) /* up to v7 */
1388 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1389 #define SCTLR_EE      (1U << 25)
1390 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1391 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1392 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1393 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1394 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1395 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1396 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1397 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1398 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1399 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1400 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1401 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1402 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1403 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1404 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1405 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1406 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1407 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1408 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1409 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1410 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1411 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1412 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1413 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1414 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1415 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1416 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1417 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1418 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1419 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1420 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1421 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1422 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1423 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1424 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1425 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1426 
1427 #define CPSR_M (0x1fU)
1428 #define CPSR_T (1U << 5)
1429 #define CPSR_F (1U << 6)
1430 #define CPSR_I (1U << 7)
1431 #define CPSR_A (1U << 8)
1432 #define CPSR_E (1U << 9)
1433 #define CPSR_IT_2_7 (0xfc00U)
1434 #define CPSR_GE (0xfU << 16)
1435 #define CPSR_IL (1U << 20)
1436 #define CPSR_DIT (1U << 21)
1437 #define CPSR_PAN (1U << 22)
1438 #define CPSR_SSBS (1U << 23)
1439 #define CPSR_J (1U << 24)
1440 #define CPSR_IT_0_1 (3U << 25)
1441 #define CPSR_Q (1U << 27)
1442 #define CPSR_V (1U << 28)
1443 #define CPSR_C (1U << 29)
1444 #define CPSR_Z (1U << 30)
1445 #define CPSR_N (1U << 31)
1446 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1447 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1448 #define ISR_FS (1U << 9)
1449 #define ISR_IS (1U << 10)
1450 
1451 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1452 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1453     | CPSR_NZCV)
1454 /* Bits writable in user mode.  */
1455 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1456 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1457 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1458 
1459 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1460 #define XPSR_EXCP 0x1ffU
1461 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1462 #define XPSR_IT_2_7 CPSR_IT_2_7
1463 #define XPSR_GE CPSR_GE
1464 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1465 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1466 #define XPSR_IT_0_1 CPSR_IT_0_1
1467 #define XPSR_Q CPSR_Q
1468 #define XPSR_V CPSR_V
1469 #define XPSR_C CPSR_C
1470 #define XPSR_Z CPSR_Z
1471 #define XPSR_N CPSR_N
1472 #define XPSR_NZCV CPSR_NZCV
1473 #define XPSR_IT CPSR_IT
1474 
1475 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1476  * Only these are valid when in AArch64 mode; in
1477  * AArch32 mode SPSRs are basically CPSR-format.
1478  */
1479 #define PSTATE_SP (1U)
1480 #define PSTATE_M (0xFU)
1481 #define PSTATE_nRW (1U << 4)
1482 #define PSTATE_F (1U << 6)
1483 #define PSTATE_I (1U << 7)
1484 #define PSTATE_A (1U << 8)
1485 #define PSTATE_D (1U << 9)
1486 #define PSTATE_BTYPE (3U << 10)
1487 #define PSTATE_SSBS (1U << 12)
1488 #define PSTATE_ALLINT (1U << 13)
1489 #define PSTATE_IL (1U << 20)
1490 #define PSTATE_SS (1U << 21)
1491 #define PSTATE_PAN (1U << 22)
1492 #define PSTATE_UAO (1U << 23)
1493 #define PSTATE_DIT (1U << 24)
1494 #define PSTATE_TCO (1U << 25)
1495 #define PSTATE_V (1U << 28)
1496 #define PSTATE_C (1U << 29)
1497 #define PSTATE_Z (1U << 30)
1498 #define PSTATE_N (1U << 31)
1499 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1500 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1501 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1502 /* Mode values for AArch64 */
1503 #define PSTATE_MODE_EL3h 13
1504 #define PSTATE_MODE_EL3t 12
1505 #define PSTATE_MODE_EL2h 9
1506 #define PSTATE_MODE_EL2t 8
1507 #define PSTATE_MODE_EL1h 5
1508 #define PSTATE_MODE_EL1t 4
1509 #define PSTATE_MODE_EL0t 0
1510 
1511 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1512 FIELD(SVCR, SM, 0, 1)
1513 FIELD(SVCR, ZA, 1, 1)
1514 
1515 /* Fields for SMCR_ELx. */
1516 FIELD(SMCR, LEN, 0, 4)
1517 FIELD(SMCR, EZT0, 30, 1)
1518 FIELD(SMCR, FA64, 31, 1)
1519 
1520 /* Write a new value to v7m.exception, thus transitioning into or out
1521  * of Handler mode; this may result in a change of active stack pointer.
1522  */
1523 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1524 
1525 /* Map EL and handler into a PSTATE_MODE.  */
1526 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1527 {
1528     return (el << 2) | handler;
1529 }
1530 
1531 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1532  * interprocessing, so we don't attempt to sync with the cpsr state used by
1533  * the 32 bit decoder.
1534  */
1535 static inline uint32_t pstate_read(CPUARMState *env)
1536 {
1537     int ZF;
1538 
1539     ZF = (env->ZF == 0);
1540     return (env->NF & 0x80000000) | (ZF << 30)
1541         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1542         | env->pstate | env->daif | (env->btype << 10);
1543 }
1544 
1545 static inline void pstate_write(CPUARMState *env, uint32_t val)
1546 {
1547     env->ZF = (~val) & PSTATE_Z;
1548     env->NF = val;
1549     env->CF = (val >> 29) & 1;
1550     env->VF = (val << 3) & 0x80000000;
1551     env->daif = val & PSTATE_DAIF;
1552     env->btype = (val >> 10) & 3;
1553     env->pstate = val & ~CACHED_PSTATE_BITS;
1554 }
1555 
1556 /* Return the current CPSR value.  */
1557 uint32_t cpsr_read(CPUARMState *env);
1558 
1559 typedef enum CPSRWriteType {
1560     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1561     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1562     CPSRWriteRaw = 2,
1563         /* trust values, no reg bank switch, no hflags rebuild */
1564     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1565 } CPSRWriteType;
1566 
1567 /*
1568  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1569  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1570  * correspond to TB flags bits cached in the hflags, unless @write_type
1571  * is CPSRWriteRaw.
1572  */
1573 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1574                 CPSRWriteType write_type);
1575 
1576 /* Return the current xPSR value.  */
1577 static inline uint32_t xpsr_read(CPUARMState *env)
1578 {
1579     int ZF;
1580     ZF = (env->ZF == 0);
1581     return (env->NF & 0x80000000) | (ZF << 30)
1582         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1583         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1584         | ((env->condexec_bits & 0xfc) << 8)
1585         | (env->GE << 16)
1586         | env->v7m.exception;
1587 }
1588 
1589 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1590 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1591 {
1592     if (mask & XPSR_NZCV) {
1593         env->ZF = (~val) & XPSR_Z;
1594         env->NF = val;
1595         env->CF = (val >> 29) & 1;
1596         env->VF = (val << 3) & 0x80000000;
1597     }
1598     if (mask & XPSR_Q) {
1599         env->QF = ((val & XPSR_Q) != 0);
1600     }
1601     if (mask & XPSR_GE) {
1602         env->GE = (val & XPSR_GE) >> 16;
1603     }
1604 #ifndef CONFIG_USER_ONLY
1605     if (mask & XPSR_T) {
1606         env->thumb = ((val & XPSR_T) != 0);
1607     }
1608     if (mask & XPSR_IT_0_1) {
1609         env->condexec_bits &= ~3;
1610         env->condexec_bits |= (val >> 25) & 3;
1611     }
1612     if (mask & XPSR_IT_2_7) {
1613         env->condexec_bits &= 3;
1614         env->condexec_bits |= (val >> 8) & 0xfc;
1615     }
1616     if (mask & XPSR_EXCP) {
1617         /* Note that this only happens on exception exit */
1618         write_v7m_exception(env, val & XPSR_EXCP);
1619     }
1620 #endif
1621 }
1622 
1623 #define HCR_VM        (1ULL << 0)
1624 #define HCR_SWIO      (1ULL << 1)
1625 #define HCR_PTW       (1ULL << 2)
1626 #define HCR_FMO       (1ULL << 3)
1627 #define HCR_IMO       (1ULL << 4)
1628 #define HCR_AMO       (1ULL << 5)
1629 #define HCR_VF        (1ULL << 6)
1630 #define HCR_VI        (1ULL << 7)
1631 #define HCR_VSE       (1ULL << 8)
1632 #define HCR_FB        (1ULL << 9)
1633 #define HCR_BSU_MASK  (3ULL << 10)
1634 #define HCR_DC        (1ULL << 12)
1635 #define HCR_TWI       (1ULL << 13)
1636 #define HCR_TWE       (1ULL << 14)
1637 #define HCR_TID0      (1ULL << 15)
1638 #define HCR_TID1      (1ULL << 16)
1639 #define HCR_TID2      (1ULL << 17)
1640 #define HCR_TID3      (1ULL << 18)
1641 #define HCR_TSC       (1ULL << 19)
1642 #define HCR_TIDCP     (1ULL << 20)
1643 #define HCR_TACR      (1ULL << 21)
1644 #define HCR_TSW       (1ULL << 22)
1645 #define HCR_TPCP      (1ULL << 23)
1646 #define HCR_TPU       (1ULL << 24)
1647 #define HCR_TTLB      (1ULL << 25)
1648 #define HCR_TVM       (1ULL << 26)
1649 #define HCR_TGE       (1ULL << 27)
1650 #define HCR_TDZ       (1ULL << 28)
1651 #define HCR_HCD       (1ULL << 29)
1652 #define HCR_TRVM      (1ULL << 30)
1653 #define HCR_RW        (1ULL << 31)
1654 #define HCR_CD        (1ULL << 32)
1655 #define HCR_ID        (1ULL << 33)
1656 #define HCR_E2H       (1ULL << 34)
1657 #define HCR_TLOR      (1ULL << 35)
1658 #define HCR_TERR      (1ULL << 36)
1659 #define HCR_TEA       (1ULL << 37)
1660 #define HCR_MIOCNCE   (1ULL << 38)
1661 #define HCR_TME       (1ULL << 39)
1662 #define HCR_APK       (1ULL << 40)
1663 #define HCR_API       (1ULL << 41)
1664 #define HCR_NV        (1ULL << 42)
1665 #define HCR_NV1       (1ULL << 43)
1666 #define HCR_AT        (1ULL << 44)
1667 #define HCR_NV2       (1ULL << 45)
1668 #define HCR_FWB       (1ULL << 46)
1669 #define HCR_FIEN      (1ULL << 47)
1670 #define HCR_GPF       (1ULL << 48)
1671 #define HCR_TID4      (1ULL << 49)
1672 #define HCR_TICAB     (1ULL << 50)
1673 #define HCR_AMVOFFEN  (1ULL << 51)
1674 #define HCR_TOCU      (1ULL << 52)
1675 #define HCR_ENSCXT    (1ULL << 53)
1676 #define HCR_TTLBIS    (1ULL << 54)
1677 #define HCR_TTLBOS    (1ULL << 55)
1678 #define HCR_ATA       (1ULL << 56)
1679 #define HCR_DCT       (1ULL << 57)
1680 #define HCR_TID5      (1ULL << 58)
1681 #define HCR_TWEDEN    (1ULL << 59)
1682 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1683 
1684 #define SCR_NS                (1ULL << 0)
1685 #define SCR_IRQ               (1ULL << 1)
1686 #define SCR_FIQ               (1ULL << 2)
1687 #define SCR_EA                (1ULL << 3)
1688 #define SCR_FW                (1ULL << 4)
1689 #define SCR_AW                (1ULL << 5)
1690 #define SCR_NET               (1ULL << 6)
1691 #define SCR_SMD               (1ULL << 7)
1692 #define SCR_HCE               (1ULL << 8)
1693 #define SCR_SIF               (1ULL << 9)
1694 #define SCR_RW                (1ULL << 10)
1695 #define SCR_ST                (1ULL << 11)
1696 #define SCR_TWI               (1ULL << 12)
1697 #define SCR_TWE               (1ULL << 13)
1698 #define SCR_TLOR              (1ULL << 14)
1699 #define SCR_TERR              (1ULL << 15)
1700 #define SCR_APK               (1ULL << 16)
1701 #define SCR_API               (1ULL << 17)
1702 #define SCR_EEL2              (1ULL << 18)
1703 #define SCR_EASE              (1ULL << 19)
1704 #define SCR_NMEA              (1ULL << 20)
1705 #define SCR_FIEN              (1ULL << 21)
1706 #define SCR_ENSCXT            (1ULL << 25)
1707 #define SCR_ATA               (1ULL << 26)
1708 #define SCR_FGTEN             (1ULL << 27)
1709 #define SCR_ECVEN             (1ULL << 28)
1710 #define SCR_TWEDEN            (1ULL << 29)
1711 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1712 #define SCR_TME               (1ULL << 34)
1713 #define SCR_AMVOFFEN          (1ULL << 35)
1714 #define SCR_ENAS0             (1ULL << 36)
1715 #define SCR_ADEN              (1ULL << 37)
1716 #define SCR_HXEN              (1ULL << 38)
1717 #define SCR_TRNDR             (1ULL << 40)
1718 #define SCR_ENTP2             (1ULL << 41)
1719 #define SCR_GPF               (1ULL << 48)
1720 #define SCR_NSE               (1ULL << 62)
1721 
1722 /* Return the current FPSCR value.  */
1723 uint32_t vfp_get_fpscr(CPUARMState *env);
1724 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1725 
1726 /*
1727  * FPCR, Floating Point Control Register
1728  * FPSR, Floating Point Status Register
1729  *
1730  * For A64 floating point control and status bits are stored in
1731  * two logically distinct registers, FPCR and FPSR. We store these
1732  * in QEMU in vfp.fpcr and vfp.fpsr.
1733  * For A32 there was only one register, FPSCR. The bits are arranged
1734  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1735  * so we can use appropriate masking to handle FPSCR reads and writes.
1736  * Note that the FPCR has some bits which are not visible in the
1737  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1738  */
1739 
1740 /* FPCR bits */
1741 #define FPCR_FIZ    (1 << 0)    /* Flush Inputs to Zero (FEAT_AFP) */
1742 #define FPCR_AH     (1 << 1)    /* Alternate Handling (FEAT_AFP) */
1743 #define FPCR_NEP    (1 << 2)    /* SIMD scalar ops preserve elts (FEAT_AFP) */
1744 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1745 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1746 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1747 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1748 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1749 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1750 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1751 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1752 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1753 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1754 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1755 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1756 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1757 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1758 
1759 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1760 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1761 #define FPCR_LTPSIZE_LENGTH 3
1762 
1763 /* Cumulative exception trap enable bits */
1764 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1765 
1766 /* FPSR bits */
1767 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1768 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1769 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1770 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1771 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1772 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1773 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1774 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1775 #define FPSR_C      (1 << 29)   /* FP carry flag */
1776 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1777 #define FPSR_N      (1 << 31)   /* FP negative flag */
1778 
1779 /* Cumulative exception status bits */
1780 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1781 
1782 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1783 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1784 
1785 /* A32 FPSCR bits which architecturally map to FPSR bits */
1786 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1787 /* A32 FPSCR bits which architecturally map to FPCR bits */
1788 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1789                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1790                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1791 /* These masks don't overlap: each bit lives in only one place */
1792 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1793 
1794 /**
1795  * vfp_get_fpsr: read the AArch64 FPSR
1796  * @env: CPU context
1797  *
1798  * Return the current AArch64 FPSR value
1799  */
1800 uint32_t vfp_get_fpsr(CPUARMState *env);
1801 
1802 /**
1803  * vfp_get_fpcr: read the AArch64 FPCR
1804  * @env: CPU context
1805  *
1806  * Return the current AArch64 FPCR value
1807  */
1808 uint32_t vfp_get_fpcr(CPUARMState *env);
1809 
1810 /**
1811  * vfp_set_fpsr: write the AArch64 FPSR
1812  * @env: CPU context
1813  * @value: new value
1814  */
1815 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1816 
1817 /**
1818  * vfp_set_fpcr: write the AArch64 FPCR
1819  * @env: CPU context
1820  * @value: new value
1821  */
1822 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1823 
1824 enum arm_cpu_mode {
1825   ARM_CPU_MODE_USR = 0x10,
1826   ARM_CPU_MODE_FIQ = 0x11,
1827   ARM_CPU_MODE_IRQ = 0x12,
1828   ARM_CPU_MODE_SVC = 0x13,
1829   ARM_CPU_MODE_MON = 0x16,
1830   ARM_CPU_MODE_ABT = 0x17,
1831   ARM_CPU_MODE_HYP = 0x1a,
1832   ARM_CPU_MODE_UND = 0x1b,
1833   ARM_CPU_MODE_SYS = 0x1f
1834 };
1835 
1836 /* VFP system registers.  */
1837 #define ARM_VFP_FPSID   0
1838 #define ARM_VFP_FPSCR   1
1839 #define ARM_VFP_MVFR2   5
1840 #define ARM_VFP_MVFR1   6
1841 #define ARM_VFP_MVFR0   7
1842 #define ARM_VFP_FPEXC   8
1843 #define ARM_VFP_FPINST  9
1844 #define ARM_VFP_FPINST2 10
1845 /* These ones are M-profile only */
1846 #define ARM_VFP_FPSCR_NZCVQC 2
1847 #define ARM_VFP_VPR 12
1848 #define ARM_VFP_P0 13
1849 #define ARM_VFP_FPCXT_NS 14
1850 #define ARM_VFP_FPCXT_S 15
1851 
1852 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1853 #define QEMU_VFP_FPSCR_NZCV 0xffff
1854 
1855 /* iwMMXt coprocessor control registers.  */
1856 #define ARM_IWMMXT_wCID  0
1857 #define ARM_IWMMXT_wCon  1
1858 #define ARM_IWMMXT_wCSSF 2
1859 #define ARM_IWMMXT_wCASF 3
1860 #define ARM_IWMMXT_wCGR0 8
1861 #define ARM_IWMMXT_wCGR1 9
1862 #define ARM_IWMMXT_wCGR2 10
1863 #define ARM_IWMMXT_wCGR3 11
1864 
1865 /* V7M CCR bits */
1866 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1867 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1868 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1869 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1870 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1871 FIELD(V7M_CCR, STKALIGN, 9, 1)
1872 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1873 FIELD(V7M_CCR, DC, 16, 1)
1874 FIELD(V7M_CCR, IC, 17, 1)
1875 FIELD(V7M_CCR, BP, 18, 1)
1876 FIELD(V7M_CCR, LOB, 19, 1)
1877 FIELD(V7M_CCR, TRD, 20, 1)
1878 
1879 /* V7M SCR bits */
1880 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1881 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1882 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1883 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1884 
1885 /* V7M AIRCR bits */
1886 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1887 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1888 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1889 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1890 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1891 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1892 FIELD(V7M_AIRCR, PRIS, 14, 1)
1893 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1894 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1895 
1896 /* V7M CFSR bits for MMFSR */
1897 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1898 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1899 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1900 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1901 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1902 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1903 
1904 /* V7M CFSR bits for BFSR */
1905 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1906 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1907 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1908 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1909 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1910 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1911 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1912 
1913 /* V7M CFSR bits for UFSR */
1914 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1915 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1916 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1917 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1918 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1919 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1920 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1921 
1922 /* V7M CFSR bit masks covering all of the subregister bits */
1923 FIELD(V7M_CFSR, MMFSR, 0, 8)
1924 FIELD(V7M_CFSR, BFSR, 8, 8)
1925 FIELD(V7M_CFSR, UFSR, 16, 16)
1926 
1927 /* V7M HFSR bits */
1928 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1929 FIELD(V7M_HFSR, FORCED, 30, 1)
1930 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1931 
1932 /* V7M DFSR bits */
1933 FIELD(V7M_DFSR, HALTED, 0, 1)
1934 FIELD(V7M_DFSR, BKPT, 1, 1)
1935 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1936 FIELD(V7M_DFSR, VCATCH, 3, 1)
1937 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1938 
1939 /* V7M SFSR bits */
1940 FIELD(V7M_SFSR, INVEP, 0, 1)
1941 FIELD(V7M_SFSR, INVIS, 1, 1)
1942 FIELD(V7M_SFSR, INVER, 2, 1)
1943 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1944 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1945 FIELD(V7M_SFSR, LSPERR, 5, 1)
1946 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1947 FIELD(V7M_SFSR, LSERR, 7, 1)
1948 
1949 /* v7M MPU_CTRL bits */
1950 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1951 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1952 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1953 
1954 /* v7M CLIDR bits */
1955 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1956 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1957 FIELD(V7M_CLIDR, LOC, 24, 3)
1958 FIELD(V7M_CLIDR, LOUU, 27, 3)
1959 FIELD(V7M_CLIDR, ICB, 30, 2)
1960 
1961 FIELD(V7M_CSSELR, IND, 0, 1)
1962 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1963 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1964  * define a mask for this and check that it doesn't permit running off
1965  * the end of the array.
1966  */
1967 FIELD(V7M_CSSELR, INDEX, 0, 4)
1968 
1969 /* v7M FPCCR bits */
1970 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1971 FIELD(V7M_FPCCR, USER, 1, 1)
1972 FIELD(V7M_FPCCR, S, 2, 1)
1973 FIELD(V7M_FPCCR, THREAD, 3, 1)
1974 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1975 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1976 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1977 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1978 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1979 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1980 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1981 FIELD(V7M_FPCCR, RES0, 11, 15)
1982 FIELD(V7M_FPCCR, TS, 26, 1)
1983 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1984 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1985 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1986 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1987 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1988 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1989 #define R_V7M_FPCCR_BANKED_MASK                 \
1990     (R_V7M_FPCCR_LSPACT_MASK |                  \
1991      R_V7M_FPCCR_USER_MASK |                    \
1992      R_V7M_FPCCR_THREAD_MASK |                  \
1993      R_V7M_FPCCR_MMRDY_MASK |                   \
1994      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1995      R_V7M_FPCCR_UFRDY_MASK |                   \
1996      R_V7M_FPCCR_ASPEN_MASK)
1997 
1998 /* v7M VPR bits */
1999 FIELD(V7M_VPR, P0, 0, 16)
2000 FIELD(V7M_VPR, MASK01, 16, 4)
2001 FIELD(V7M_VPR, MASK23, 20, 4)
2002 
2003 /*
2004  * System register ID fields.
2005  */
2006 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2007 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2008 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2009 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2010 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2011 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2012 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2013 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2014 FIELD(CLIDR_EL1, LOC, 24, 3)
2015 FIELD(CLIDR_EL1, LOUU, 27, 3)
2016 FIELD(CLIDR_EL1, ICB, 30, 3)
2017 
2018 /* When FEAT_CCIDX is implemented */
2019 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2020 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2021 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2022 
2023 /* When FEAT_CCIDX is not implemented */
2024 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2025 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2026 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2027 
2028 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2029 FIELD(CTR_EL0,  L1IP, 14, 2)
2030 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2031 FIELD(CTR_EL0,  ERG, 20, 4)
2032 FIELD(CTR_EL0,  CWG, 24, 4)
2033 FIELD(CTR_EL0,  IDC, 28, 1)
2034 FIELD(CTR_EL0,  DIC, 29, 1)
2035 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2036 
2037 FIELD(MIDR_EL1, REVISION, 0, 4)
2038 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2039 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2040 FIELD(MIDR_EL1, VARIANT, 20, 4)
2041 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2042 
2043 FIELD(ID_ISAR0, SWAP, 0, 4)
2044 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2045 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2046 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2047 FIELD(ID_ISAR0, COPROC, 16, 4)
2048 FIELD(ID_ISAR0, DEBUG, 20, 4)
2049 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2050 
2051 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2052 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2053 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2054 FIELD(ID_ISAR1, EXTEND, 12, 4)
2055 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2056 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2057 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2058 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2059 
2060 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2061 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2062 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2063 FIELD(ID_ISAR2, MULT, 12, 4)
2064 FIELD(ID_ISAR2, MULTS, 16, 4)
2065 FIELD(ID_ISAR2, MULTU, 20, 4)
2066 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2067 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2068 
2069 FIELD(ID_ISAR3, SATURATE, 0, 4)
2070 FIELD(ID_ISAR3, SIMD, 4, 4)
2071 FIELD(ID_ISAR3, SVC, 8, 4)
2072 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2073 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2074 FIELD(ID_ISAR3, T32COPY, 20, 4)
2075 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2076 FIELD(ID_ISAR3, T32EE, 28, 4)
2077 
2078 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2079 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2080 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2081 FIELD(ID_ISAR4, SMC, 12, 4)
2082 FIELD(ID_ISAR4, BARRIER, 16, 4)
2083 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2084 FIELD(ID_ISAR4, PSR_M, 24, 4)
2085 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2086 
2087 FIELD(ID_ISAR5, SEVL, 0, 4)
2088 FIELD(ID_ISAR5, AES, 4, 4)
2089 FIELD(ID_ISAR5, SHA1, 8, 4)
2090 FIELD(ID_ISAR5, SHA2, 12, 4)
2091 FIELD(ID_ISAR5, CRC32, 16, 4)
2092 FIELD(ID_ISAR5, RDM, 24, 4)
2093 FIELD(ID_ISAR5, VCMA, 28, 4)
2094 
2095 FIELD(ID_ISAR6, JSCVT, 0, 4)
2096 FIELD(ID_ISAR6, DP, 4, 4)
2097 FIELD(ID_ISAR6, FHM, 8, 4)
2098 FIELD(ID_ISAR6, SB, 12, 4)
2099 FIELD(ID_ISAR6, SPECRES, 16, 4)
2100 FIELD(ID_ISAR6, BF16, 20, 4)
2101 FIELD(ID_ISAR6, I8MM, 24, 4)
2102 
2103 FIELD(ID_MMFR0, VMSA, 0, 4)
2104 FIELD(ID_MMFR0, PMSA, 4, 4)
2105 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2106 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2107 FIELD(ID_MMFR0, TCM, 16, 4)
2108 FIELD(ID_MMFR0, AUXREG, 20, 4)
2109 FIELD(ID_MMFR0, FCSE, 24, 4)
2110 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2111 
2112 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2113 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2114 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2115 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2116 FIELD(ID_MMFR1, L1HVD, 16, 4)
2117 FIELD(ID_MMFR1, L1UNI, 20, 4)
2118 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2119 FIELD(ID_MMFR1, BPRED, 28, 4)
2120 
2121 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2122 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2123 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2124 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2125 FIELD(ID_MMFR2, UNITLB, 16, 4)
2126 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2127 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2128 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2129 
2130 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2131 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2132 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2133 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2134 FIELD(ID_MMFR3, PAN, 16, 4)
2135 FIELD(ID_MMFR3, COHWALK, 20, 4)
2136 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2137 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2138 
2139 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2140 FIELD(ID_MMFR4, AC2, 4, 4)
2141 FIELD(ID_MMFR4, XNX, 8, 4)
2142 FIELD(ID_MMFR4, CNP, 12, 4)
2143 FIELD(ID_MMFR4, HPDS, 16, 4)
2144 FIELD(ID_MMFR4, LSM, 20, 4)
2145 FIELD(ID_MMFR4, CCIDX, 24, 4)
2146 FIELD(ID_MMFR4, EVT, 28, 4)
2147 
2148 FIELD(ID_MMFR5, ETS, 0, 4)
2149 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2150 
2151 FIELD(ID_PFR0, STATE0, 0, 4)
2152 FIELD(ID_PFR0, STATE1, 4, 4)
2153 FIELD(ID_PFR0, STATE2, 8, 4)
2154 FIELD(ID_PFR0, STATE3, 12, 4)
2155 FIELD(ID_PFR0, CSV2, 16, 4)
2156 FIELD(ID_PFR0, AMU, 20, 4)
2157 FIELD(ID_PFR0, DIT, 24, 4)
2158 FIELD(ID_PFR0, RAS, 28, 4)
2159 
2160 FIELD(ID_PFR1, PROGMOD, 0, 4)
2161 FIELD(ID_PFR1, SECURITY, 4, 4)
2162 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2163 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2164 FIELD(ID_PFR1, GENTIMER, 16, 4)
2165 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2166 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2167 FIELD(ID_PFR1, GIC, 28, 4)
2168 
2169 FIELD(ID_PFR2, CSV3, 0, 4)
2170 FIELD(ID_PFR2, SSBS, 4, 4)
2171 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2172 
2173 FIELD(ID_AA64ISAR0, AES, 4, 4)
2174 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2175 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2176 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2177 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2178 FIELD(ID_AA64ISAR0, TME, 24, 4)
2179 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2180 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2181 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2182 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2183 FIELD(ID_AA64ISAR0, DP, 44, 4)
2184 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2185 FIELD(ID_AA64ISAR0, TS, 52, 4)
2186 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2187 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2188 
2189 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2190 FIELD(ID_AA64ISAR1, APA, 4, 4)
2191 FIELD(ID_AA64ISAR1, API, 8, 4)
2192 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2193 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2194 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2195 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2196 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2197 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2198 FIELD(ID_AA64ISAR1, SB, 36, 4)
2199 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2200 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2201 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2202 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2203 FIELD(ID_AA64ISAR1, XS, 56, 4)
2204 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2205 
2206 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2207 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2208 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2209 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2210 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2211 FIELD(ID_AA64ISAR2, BC, 20, 4)
2212 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2213 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2214 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2215 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2216 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2217 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2218 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2219 FIELD(ID_AA64ISAR2, LUT, 56, 4)
2220 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2221 
2222 FIELD(ID_AA64PFR0, EL0, 0, 4)
2223 FIELD(ID_AA64PFR0, EL1, 4, 4)
2224 FIELD(ID_AA64PFR0, EL2, 8, 4)
2225 FIELD(ID_AA64PFR0, EL3, 12, 4)
2226 FIELD(ID_AA64PFR0, FP, 16, 4)
2227 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2228 FIELD(ID_AA64PFR0, GIC, 24, 4)
2229 FIELD(ID_AA64PFR0, RAS, 28, 4)
2230 FIELD(ID_AA64PFR0, SVE, 32, 4)
2231 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2232 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2233 FIELD(ID_AA64PFR0, AMU, 44, 4)
2234 FIELD(ID_AA64PFR0, DIT, 48, 4)
2235 FIELD(ID_AA64PFR0, RME, 52, 4)
2236 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2237 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2238 
2239 FIELD(ID_AA64PFR1, BT, 0, 4)
2240 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2241 FIELD(ID_AA64PFR1, MTE, 8, 4)
2242 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2243 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2244 FIELD(ID_AA64PFR1, SME, 24, 4)
2245 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2246 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2247 FIELD(ID_AA64PFR1, NMI, 36, 4)
2248 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2249 FIELD(ID_AA64PFR1, GCS, 44, 4)
2250 FIELD(ID_AA64PFR1, THE, 48, 4)
2251 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2252 FIELD(ID_AA64PFR1, DF2, 56, 4)
2253 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2254 
2255 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2256 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2257 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2258 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2259 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2260 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2261 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2262 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2263 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2264 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2265 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2266 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2267 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2268 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2269 
2270 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2271 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2272 FIELD(ID_AA64MMFR1, VH, 8, 4)
2273 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2274 FIELD(ID_AA64MMFR1, LO, 16, 4)
2275 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2276 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2277 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2278 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2279 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2280 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2281 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2282 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2283 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2284 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2285 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2286 
2287 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2288 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2289 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2290 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2291 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2292 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2293 FIELD(ID_AA64MMFR2, NV, 24, 4)
2294 FIELD(ID_AA64MMFR2, ST, 28, 4)
2295 FIELD(ID_AA64MMFR2, AT, 32, 4)
2296 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2297 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2298 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2299 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2300 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2301 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2302 
2303 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2304 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2305 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2306 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2307 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2308 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2309 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2310 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2311 FIELD(ID_AA64MMFR3, D128, 32, 4)
2312 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2313 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2314 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2315 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2316 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2317 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2318 
2319 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2320 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2321 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2322 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2323 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2324 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2325 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2326 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2327 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2328 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2329 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2330 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2331 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2332 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2333 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2334 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2335 
2336 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2337 FIELD(ID_AA64ZFR0, AES, 4, 4)
2338 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2339 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2340 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2341 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2342 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2343 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2344 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2345 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2346 
2347 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2348 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2349 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2350 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2351 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2352 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2353 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2354 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2355 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2356 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2357 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2358 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2359 
2360 FIELD(ID_DFR0, COPDBG, 0, 4)
2361 FIELD(ID_DFR0, COPSDBG, 4, 4)
2362 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2363 FIELD(ID_DFR0, COPTRC, 12, 4)
2364 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2365 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2366 FIELD(ID_DFR0, PERFMON, 24, 4)
2367 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2368 
2369 FIELD(ID_DFR1, MTPMU, 0, 4)
2370 FIELD(ID_DFR1, HPMN0, 4, 4)
2371 
2372 FIELD(DBGDIDR, SE_IMP, 12, 1)
2373 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2374 FIELD(DBGDIDR, VERSION, 16, 4)
2375 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2376 FIELD(DBGDIDR, BRPS, 24, 4)
2377 FIELD(DBGDIDR, WRPS, 28, 4)
2378 
2379 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2380 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2381 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2382 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2383 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2384 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2385 FIELD(DBGDEVID, AUXREGS, 24, 4)
2386 FIELD(DBGDEVID, CIDMASK, 28, 4)
2387 
2388 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2389 
2390 FIELD(MVFR0, SIMDREG, 0, 4)
2391 FIELD(MVFR0, FPSP, 4, 4)
2392 FIELD(MVFR0, FPDP, 8, 4)
2393 FIELD(MVFR0, FPTRAP, 12, 4)
2394 FIELD(MVFR0, FPDIVIDE, 16, 4)
2395 FIELD(MVFR0, FPSQRT, 20, 4)
2396 FIELD(MVFR0, FPSHVEC, 24, 4)
2397 FIELD(MVFR0, FPROUND, 28, 4)
2398 
2399 FIELD(MVFR1, FPFTZ, 0, 4)
2400 FIELD(MVFR1, FPDNAN, 4, 4)
2401 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2402 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2403 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2404 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2405 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2406 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2407 FIELD(MVFR1, FPHP, 24, 4)
2408 FIELD(MVFR1, SIMDFMAC, 28, 4)
2409 
2410 FIELD(MVFR2, SIMDMISC, 0, 4)
2411 FIELD(MVFR2, FPMISC, 4, 4)
2412 
2413 FIELD(GPCCR, PPS, 0, 3)
2414 FIELD(GPCCR, IRGN, 8, 2)
2415 FIELD(GPCCR, ORGN, 10, 2)
2416 FIELD(GPCCR, SH, 12, 2)
2417 FIELD(GPCCR, PGS, 14, 2)
2418 FIELD(GPCCR, GPC, 16, 1)
2419 FIELD(GPCCR, GPCP, 17, 1)
2420 FIELD(GPCCR, L0GPTSZ, 20, 4)
2421 
2422 FIELD(MFAR, FPA, 12, 40)
2423 FIELD(MFAR, NSE, 62, 1)
2424 FIELD(MFAR, NS, 63, 1)
2425 
2426 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2427 
2428 /* If adding a feature bit which corresponds to a Linux ELF
2429  * HWCAP bit, remember to update the feature-bit-to-hwcap
2430  * mapping in linux-user/elfload.c:get_elf_hwcap().
2431  */
2432 enum arm_features {
2433     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2434     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2435     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2436     ARM_FEATURE_V6,
2437     ARM_FEATURE_V6K,
2438     ARM_FEATURE_V7,
2439     ARM_FEATURE_THUMB2,
2440     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2441     ARM_FEATURE_NEON,
2442     ARM_FEATURE_M, /* Microcontroller profile.  */
2443     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2444     ARM_FEATURE_THUMB2EE,
2445     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2446     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2447     ARM_FEATURE_V4T,
2448     ARM_FEATURE_V5,
2449     ARM_FEATURE_STRONGARM,
2450     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2451     ARM_FEATURE_GENERIC_TIMER,
2452     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2453     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2454     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2455     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2456     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2457     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2458     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2459     ARM_FEATURE_V8,
2460     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2461     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2462     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2463     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2464     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2465     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2466     ARM_FEATURE_PMU, /* has PMU support */
2467     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2468     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2469     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2470     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2471     /*
2472      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2473      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2474      * compatibility and used only with CPU definitions that were already
2475      * in QEMU before we changed the default. It should not be set on any
2476      * CPU types added in future.
2477      */
2478     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2479 };
2480 
2481 static inline int arm_feature(CPUARMState *env, int feature)
2482 {
2483     return (env->features & (1ULL << feature)) != 0;
2484 }
2485 
2486 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2487 
2488 /*
2489  * ARM v9 security states.
2490  * The ordering of the enumeration corresponds to the low 2 bits
2491  * of the GPI value, and (except for Root) the concat of NSE:NS.
2492  */
2493 
2494 typedef enum ARMSecuritySpace {
2495     ARMSS_Secure     = 0,
2496     ARMSS_NonSecure  = 1,
2497     ARMSS_Root       = 2,
2498     ARMSS_Realm      = 3,
2499 } ARMSecuritySpace;
2500 
2501 /* Return true if @space is secure, in the pre-v9 sense. */
2502 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2503 {
2504     return space == ARMSS_Secure || space == ARMSS_Root;
2505 }
2506 
2507 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2508 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2509 {
2510     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2511 }
2512 
2513 #if !defined(CONFIG_USER_ONLY)
2514 /**
2515  * arm_security_space_below_el3:
2516  * @env: cpu context
2517  *
2518  * Return the security space of exception levels below EL3, following
2519  * an exception return to those levels.  Unlike arm_security_space,
2520  * this doesn't care about the current EL.
2521  */
2522 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2523 
2524 /**
2525  * arm_is_secure_below_el3:
2526  * @env: cpu context
2527  *
2528  * Return true if exception levels below EL3 are in secure state,
2529  * or would be following an exception return to those levels.
2530  */
2531 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2532 {
2533     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2534     return ss == ARMSS_Secure;
2535 }
2536 
2537 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2538 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2539 {
2540     assert(!arm_feature(env, ARM_FEATURE_M));
2541     if (arm_feature(env, ARM_FEATURE_EL3)) {
2542         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2543             /* CPU currently in AArch64 state and EL3 */
2544             return true;
2545         } else if (!is_a64(env) &&
2546                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2547             /* CPU currently in AArch32 state and monitor mode */
2548             return true;
2549         }
2550     }
2551     return false;
2552 }
2553 
2554 /**
2555  * arm_security_space:
2556  * @env: cpu context
2557  *
2558  * Return the current security space of the cpu.
2559  */
2560 ARMSecuritySpace arm_security_space(CPUARMState *env);
2561 
2562 /**
2563  * arm_is_secure:
2564  * @env: cpu context
2565  *
2566  * Return true if the processor is in secure state.
2567  */
2568 static inline bool arm_is_secure(CPUARMState *env)
2569 {
2570     return arm_space_is_secure(arm_security_space(env));
2571 }
2572 
2573 /*
2574  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2575  * This corresponds to the pseudocode EL2Enabled().
2576  */
2577 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2578                                                ARMSecuritySpace space)
2579 {
2580     assert(space != ARMSS_Root);
2581     return arm_feature(env, ARM_FEATURE_EL2)
2582            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2583 }
2584 
2585 static inline bool arm_is_el2_enabled(CPUARMState *env)
2586 {
2587     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2588 }
2589 
2590 #else
2591 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2592 {
2593     return ARMSS_NonSecure;
2594 }
2595 
2596 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2597 {
2598     return false;
2599 }
2600 
2601 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2602 {
2603     return false;
2604 }
2605 
2606 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2607 {
2608     return ARMSS_NonSecure;
2609 }
2610 
2611 static inline bool arm_is_secure(CPUARMState *env)
2612 {
2613     return false;
2614 }
2615 
2616 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2617                                                ARMSecuritySpace space)
2618 {
2619     return false;
2620 }
2621 
2622 static inline bool arm_is_el2_enabled(CPUARMState *env)
2623 {
2624     return false;
2625 }
2626 #endif
2627 
2628 /**
2629  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2630  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2631  * "for all purposes other than a direct read or write access of HCR_EL2."
2632  * Not included here is HCR_RW.
2633  */
2634 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2635 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2636 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2637 
2638 /*
2639  * Function for determining whether guest cp register reads and writes should
2640  * access the secure or non-secure bank of a cp register.  When EL3 is
2641  * operating in AArch32 state, the NS-bit determines whether the secure
2642  * instance of a cp register should be used. When EL3 is AArch64 (or if
2643  * it doesn't exist at all) then there is no register banking, and all
2644  * accesses are to the non-secure version.
2645  */
2646 bool access_secure_reg(CPUARMState *env);
2647 
2648 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2649                                  uint32_t cur_el, bool secure);
2650 
2651 /* Return the highest implemented Exception Level */
2652 static inline int arm_highest_el(CPUARMState *env)
2653 {
2654     if (arm_feature(env, ARM_FEATURE_EL3)) {
2655         return 3;
2656     }
2657     if (arm_feature(env, ARM_FEATURE_EL2)) {
2658         return 2;
2659     }
2660     return 1;
2661 }
2662 
2663 /* Return true if a v7M CPU is in Handler mode */
2664 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2665 {
2666     return env->v7m.exception != 0;
2667 }
2668 
2669 /**
2670  * write_list_to_cpustate
2671  * @cpu: ARMCPU
2672  *
2673  * For each register listed in the ARMCPU cpreg_indexes list, write
2674  * its value from the cpreg_values list into the ARMCPUState structure.
2675  * This updates TCG's working data structures from KVM data or
2676  * from incoming migration state.
2677  *
2678  * Returns: true if all register values were updated correctly,
2679  * false if some register was unknown or could not be written.
2680  * Note that we do not stop early on failure -- we will attempt
2681  * writing all registers in the list.
2682  */
2683 bool write_list_to_cpustate(ARMCPU *cpu);
2684 
2685 /**
2686  * write_cpustate_to_list:
2687  * @cpu: ARMCPU
2688  * @kvm_sync: true if this is for syncing back to KVM
2689  *
2690  * For each register listed in the ARMCPU cpreg_indexes list, write
2691  * its value from the ARMCPUState structure into the cpreg_values list.
2692  * This is used to copy info from TCG's working data structures into
2693  * KVM or for outbound migration.
2694  *
2695  * @kvm_sync is true if we are doing this in order to sync the
2696  * register state back to KVM. In this case we will only update
2697  * values in the list if the previous list->cpustate sync actually
2698  * successfully wrote the CPU state. Otherwise we will keep the value
2699  * that is in the list.
2700  *
2701  * Returns: true if all register values were read correctly,
2702  * false if some register was unknown or could not be read.
2703  * Note that we do not stop early on failure -- we will attempt
2704  * reading all registers in the list.
2705  */
2706 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2707 
2708 #define ARM_CPUID_TI915T      0x54029152
2709 #define ARM_CPUID_TI925T      0x54029252
2710 
2711 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2712 
2713 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2714 
2715 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2716  *
2717  * If EL3 is 64-bit:
2718  *  + NonSecure EL1 & 0 stage 1
2719  *  + NonSecure EL1 & 0 stage 2
2720  *  + NonSecure EL2
2721  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2722  *  + Secure EL1 & 0 stage 1
2723  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2724  *  + Secure EL2 (FEAT_SEL2)
2725  *  + Secure EL2 & 0 (FEAT_SEL2)
2726  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2727  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2728  *  + Realm EL2 (FEAT_RME)
2729  *  + EL3
2730  * If EL3 is 32-bit:
2731  *  + NonSecure PL1 & 0 stage 1
2732  *  + NonSecure PL1 & 0 stage 2
2733  *  + NonSecure PL2
2734  *  + Secure PL1 & 0
2735  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2736  *
2737  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2738  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2739  *     because they may differ in access permissions even if the VA->PA map is
2740  *     the same
2741  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2742  *     translation, which means that we have one mmu_idx that deals with two
2743  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2744  *     architecturally permitted]
2745  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2746  *     handling via the TLB. The only way to do a stage 1 translation without
2747  *     the immediate stage 2 translation is via the ATS or AT system insns,
2748  *     which can be slow-pathed and always do a page table walk.
2749  *     The only use of stage 2 translations is either as part of an s1+2
2750  *     lookup or when loading the descriptors during a stage 1 page table walk,
2751  *     and in both those cases we don't use the TLB.
2752  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2753  *     translation regimes, because they map reasonably well to each other
2754  *     and they can't both be active at the same time.
2755  *  5. we want to be able to use the TLB for accesses done as part of a
2756  *     stage1 page table walk, rather than having to walk the stage2 page
2757  *     table over and over.
2758  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2759  *     Never (PAN) bit within PSTATE.
2760  *  7. we fold together most secure and non-secure regimes for A-profile,
2761  *     because there are no banked system registers for aarch64, so the
2762  *     process of switching between secure and non-secure is
2763  *     already heavyweight.
2764  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2765  *     because both are in use simultaneously for Secure EL2.
2766  *
2767  * This gives us the following list of cases:
2768  *
2769  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2770  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2771  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2772  * EL0 EL2&0
2773  * EL2 EL2&0
2774  * EL2 EL2&0 +PAN
2775  * EL2 (aka NS PL2)
2776  * EL3 (aka AArch32 S PL1 PL1&0)
2777  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2778  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2779  * Stage2 Secure
2780  * Stage2 NonSecure
2781  * plus one TLB per Physical address space: S, NS, Realm, Root
2782  *
2783  * for a total of 16 different mmu_idx.
2784  *
2785  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2786  * as A profile. They only need to distinguish EL0 and EL1 (and
2787  * EL2 for cores like the Cortex-R52).
2788  *
2789  * M profile CPUs are rather different as they do not have a true MMU.
2790  * They have the following different MMU indexes:
2791  *  User
2792  *  Privileged
2793  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2794  *  Privileged, execution priority negative (ditto)
2795  * If the CPU supports the v8M Security Extension then there are also:
2796  *  Secure User
2797  *  Secure Privileged
2798  *  Secure User, execution priority negative
2799  *  Secure Privileged, execution priority negative
2800  *
2801  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2802  * are not quite the same -- different CPU types (most notably M profile
2803  * vs A/R profile) would like to use MMU indexes with different semantics,
2804  * but since we don't ever need to use all of those in a single CPU we
2805  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2806  * modes + total number of M profile MMU modes". The lower bits of
2807  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2808  * the same for any particular CPU.
2809  * Variables of type ARMMUIdx are always full values, and the core
2810  * index values are in variables of type 'int'.
2811  *
2812  * Our enumeration includes at the end some entries which are not "true"
2813  * mmu_idx values in that they don't have corresponding TLBs and are only
2814  * valid for doing slow path page table walks.
2815  *
2816  * The constant names here are patterned after the general style of the names
2817  * of the AT/ATS operations.
2818  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2819  * For M profile we arrange them to have a bit for priv, a bit for negpri
2820  * and a bit for secure.
2821  */
2822 #define ARM_MMU_IDX_A     0x10  /* A profile */
2823 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2824 #define ARM_MMU_IDX_M     0x40  /* M profile */
2825 
2826 /* Meanings of the bits for M profile mmu idx values */
2827 #define ARM_MMU_IDX_M_PRIV   0x1
2828 #define ARM_MMU_IDX_M_NEGPRI 0x2
2829 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2830 
2831 #define ARM_MMU_IDX_TYPE_MASK \
2832     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2833 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2834 
2835 typedef enum ARMMMUIdx {
2836     /*
2837      * A-profile.
2838      */
2839     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2840     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2841     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2842     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2843     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2844     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2845     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2846     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2847     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2848     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2849 
2850     /*
2851      * Used for second stage of an S12 page table walk, or for descriptor
2852      * loads during first stage of an S1 page table walk.  Note that both
2853      * are in use simultaneously for SecureEL2: the security state for
2854      * the S2 ptw is selected by the NS bit from the S1 ptw.
2855      */
2856     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2857     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2858 
2859     /* TLBs with 1-1 mapping to the physical address spaces. */
2860     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2861     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2862     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2863     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2864 
2865     /*
2866      * These are not allocated TLBs and are used only for AT system
2867      * instructions or for the first stage of an S12 page table walk.
2868      */
2869     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2870     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2871     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2872 
2873     /*
2874      * M-profile.
2875      */
2876     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2877     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2878     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2879     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2880     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2881     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2882     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2883     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2884 } ARMMMUIdx;
2885 
2886 /*
2887  * Bit macros for the core-mmu-index values for each index,
2888  * for use when calling tlb_flush_by_mmuidx() and friends.
2889  */
2890 #define TO_CORE_BIT(NAME) \
2891     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2892 
2893 typedef enum ARMMMUIdxBit {
2894     TO_CORE_BIT(E10_0),
2895     TO_CORE_BIT(E20_0),
2896     TO_CORE_BIT(E10_1),
2897     TO_CORE_BIT(E10_1_PAN),
2898     TO_CORE_BIT(E2),
2899     TO_CORE_BIT(E20_2),
2900     TO_CORE_BIT(E20_2_PAN),
2901     TO_CORE_BIT(E3),
2902     TO_CORE_BIT(E30_0),
2903     TO_CORE_BIT(E30_3_PAN),
2904     TO_CORE_BIT(Stage2),
2905     TO_CORE_BIT(Stage2_S),
2906 
2907     TO_CORE_BIT(MUser),
2908     TO_CORE_BIT(MPriv),
2909     TO_CORE_BIT(MUserNegPri),
2910     TO_CORE_BIT(MPrivNegPri),
2911     TO_CORE_BIT(MSUser),
2912     TO_CORE_BIT(MSPriv),
2913     TO_CORE_BIT(MSUserNegPri),
2914     TO_CORE_BIT(MSPrivNegPri),
2915 } ARMMMUIdxBit;
2916 
2917 #undef TO_CORE_BIT
2918 
2919 #define MMU_USER_IDX 0
2920 
2921 /* Indexes used when registering address spaces with cpu_address_space_init */
2922 typedef enum ARMASIdx {
2923     ARMASIdx_NS = 0,
2924     ARMASIdx_S = 1,
2925     ARMASIdx_TagNS = 2,
2926     ARMASIdx_TagS = 3,
2927 } ARMASIdx;
2928 
2929 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2930 {
2931     /* Assert the relative order of the physical mmu indexes. */
2932     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2933     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2934     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2935     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2936 
2937     return ARMMMUIdx_Phys_S + space;
2938 }
2939 
2940 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2941 {
2942     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2943     return idx - ARMMMUIdx_Phys_S;
2944 }
2945 
2946 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2947 {
2948     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2949      * CSSELR is RAZ/WI.
2950      */
2951     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2952 }
2953 
2954 static inline bool arm_sctlr_b(CPUARMState *env)
2955 {
2956     return
2957         /* We need not implement SCTLR.ITD in user-mode emulation, so
2958          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2959          * This lets people run BE32 binaries with "-cpu any".
2960          */
2961 #ifndef CONFIG_USER_ONLY
2962         !arm_feature(env, ARM_FEATURE_V7) &&
2963 #endif
2964         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2965 }
2966 
2967 uint64_t arm_sctlr(CPUARMState *env, int el);
2968 
2969 /*
2970  * We have more than 32-bits worth of state per TB, so we split the data
2971  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2972  * We collect these two parts in CPUARMTBFlags where they are named
2973  * flags and flags2 respectively.
2974  *
2975  * The flags that are shared between all execution modes, TBFLAG_ANY, are stored
2976  * in flags. The flags that are specific to a given mode are stored in flags2.
2977  * flags2 always has 64-bits, even though only 32-bits are used for A32 and M32.
2978  *
2979  * The bits for 32-bit A-profile and M-profile partially overlap:
2980  *
2981  *  31         23         11 10             0
2982  * +-------------+----------+----------------+
2983  * |             |          |   TBFLAG_A32   |
2984  * | TBFLAG_AM32 |          +-----+----------+
2985  * |             |                |TBFLAG_M32|
2986  * +-------------+----------------+----------+
2987  *  31         23                6 5        0
2988  *
2989  * Unless otherwise noted, these bits are cached in env->hflags.
2990  */
2991 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2992 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2993 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2994 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2995 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2996 /* Target EL if we take a floating-point-disabled exception */
2997 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2998 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2999 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3000 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3001 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3002 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3003 
3004 /*
3005  * Bit usage when in AArch32 state, both A- and M-profile.
3006  */
3007 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3008 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3009 
3010 /*
3011  * Bit usage when in AArch32 state, for A-profile only.
3012  */
3013 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3014 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3015 /*
3016  * We store the bottom two bits of the CPAR as TB flags and handle
3017  * checks on the other bits at runtime. This shares the same bits as
3018  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3019  * Not cached, because VECLEN+VECSTRIDE are not cached.
3020  */
3021 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3022 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3023 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3024 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3025 /*
3026  * Indicates whether cp register reads and writes by guest code should access
3027  * the secure or nonsecure bank of banked registers; note that this is not
3028  * the same thing as the current security state of the processor!
3029  */
3030 FIELD(TBFLAG_A32, NS, 10, 1)
3031 /*
3032  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3033  * This requires an SME trap from AArch32 mode when using NEON.
3034  */
3035 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3036 
3037 /*
3038  * Bit usage when in AArch32 state, for M-profile only.
3039  */
3040 /* Handler (ie not Thread) mode */
3041 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3042 /* Whether we should generate stack-limit checks */
3043 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3044 /* Set if FPCCR.LSPACT is set */
3045 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3046 /* Set if we must create a new FP context */
3047 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3048 /* Set if FPCCR.S does not match current security state */
3049 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3050 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3051 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3052 /* Set if in secure mode */
3053 FIELD(TBFLAG_M32, SECURE, 6, 1)
3054 
3055 /*
3056  * Bit usage when in AArch64 state
3057  */
3058 FIELD(TBFLAG_A64, TBII, 0, 2)
3059 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3060 /* The current vector length, either NVL or SVL. */
3061 FIELD(TBFLAG_A64, VL, 4, 4)
3062 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3063 FIELD(TBFLAG_A64, BT, 9, 1)
3064 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3065 FIELD(TBFLAG_A64, TBID, 12, 2)
3066 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3067 FIELD(TBFLAG_A64, ATA, 15, 1)
3068 FIELD(TBFLAG_A64, TCMA, 16, 2)
3069 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3070 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3071 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3072 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3073 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3074 FIELD(TBFLAG_A64, SVL, 24, 4)
3075 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3076 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3077 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3078 FIELD(TBFLAG_A64, NAA, 30, 1)
3079 FIELD(TBFLAG_A64, ATA0, 31, 1)
3080 FIELD(TBFLAG_A64, NV, 32, 1)
3081 FIELD(TBFLAG_A64, NV1, 33, 1)
3082 FIELD(TBFLAG_A64, NV2, 34, 1)
3083 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3084 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3085 /* Set if FEAT_NV2 RAM accesses are big-endian */
3086 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3087 FIELD(TBFLAG_A64, AH, 37, 1)   /* FPCR.AH */
3088 FIELD(TBFLAG_A64, NEP, 38, 1)   /* FPCR.NEP */
3089 FIELD(TBFLAG_A64, ZT0EXC_EL, 39, 2)
3090 
3091 /*
3092  * Helpers for using the above. Note that only the A64 accessors use
3093  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3094  * word either is or might be 32 bits only.
3095  */
3096 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3097     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3098 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3099     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3100 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3101     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3102 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3103     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3104 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3105     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3106 
3107 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3108 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3109 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3110 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3111 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3112 
3113 /**
3114  * sve_vq
3115  * @env: the cpu context
3116  *
3117  * Return the VL cached within env->hflags, in units of quadwords.
3118  */
3119 static inline int sve_vq(CPUARMState *env)
3120 {
3121     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3122 }
3123 
3124 /**
3125  * sme_vq
3126  * @env: the cpu context
3127  *
3128  * Return the SVL cached within env->hflags, in units of quadwords.
3129  */
3130 static inline int sme_vq(CPUARMState *env)
3131 {
3132     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3133 }
3134 
3135 static inline bool bswap_code(bool sctlr_b)
3136 {
3137 #ifdef CONFIG_USER_ONLY
3138     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3139      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3140      * would also end up as a mixed-endian mode with BE code, LE data.
3141      */
3142     return TARGET_BIG_ENDIAN ^ sctlr_b;
3143 #else
3144     /* All code access in ARM is little endian, and there are no loaders
3145      * doing swaps that need to be reversed
3146      */
3147     return 0;
3148 #endif
3149 }
3150 
3151 enum {
3152     QEMU_PSCI_CONDUIT_DISABLED = 0,
3153     QEMU_PSCI_CONDUIT_SMC = 1,
3154     QEMU_PSCI_CONDUIT_HVC = 2,
3155 };
3156 
3157 #ifndef CONFIG_USER_ONLY
3158 /* Return the address space index to use for a memory access */
3159 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3160 {
3161     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3162 }
3163 
3164 /* Return the AddressSpace to use for a memory access
3165  * (which depends on whether the access is S or NS, and whether
3166  * the board gave us a separate AddressSpace for S accesses).
3167  */
3168 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3169 {
3170     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3171 }
3172 #endif
3173 
3174 /**
3175  * arm_register_pre_el_change_hook:
3176  * Register a hook function which will be called immediately before this
3177  * CPU changes exception level or mode. The hook function will be
3178  * passed a pointer to the ARMCPU and the opaque data pointer passed
3179  * to this function when the hook was registered.
3180  *
3181  * Note that if a pre-change hook is called, any registered post-change hooks
3182  * are guaranteed to subsequently be called.
3183  */
3184 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3185                                  void *opaque);
3186 /**
3187  * arm_register_el_change_hook:
3188  * Register a hook function which will be called immediately after this
3189  * CPU changes exception level or mode. The hook function will be
3190  * passed a pointer to the ARMCPU and the opaque data pointer passed
3191  * to this function when the hook was registered.
3192  *
3193  * Note that any registered hooks registered here are guaranteed to be called
3194  * if pre-change hooks have been.
3195  */
3196 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3197         *opaque);
3198 
3199 /**
3200  * arm_rebuild_hflags:
3201  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3202  */
3203 void arm_rebuild_hflags(CPUARMState *env);
3204 
3205 /**
3206  * aa32_vfp_dreg:
3207  * Return a pointer to the Dn register within env in 32-bit mode.
3208  */
3209 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3210 {
3211     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3212 }
3213 
3214 /**
3215  * aa32_vfp_qreg:
3216  * Return a pointer to the Qn register within env in 32-bit mode.
3217  */
3218 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3219 {
3220     return &env->vfp.zregs[regno].d[0];
3221 }
3222 
3223 /**
3224  * aa64_vfp_qreg:
3225  * Return a pointer to the Qn register within env in 64-bit mode.
3226  */
3227 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3228 {
3229     return &env->vfp.zregs[regno].d[0];
3230 }
3231 
3232 /* Shared between translate-sve.c and sve_helper.c.  */
3233 extern const uint64_t pred_esz_masks[5];
3234 
3235 /*
3236  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3237  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3238  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3239  */
3240 #define PAGE_BTI            PAGE_TARGET_1
3241 #define PAGE_MTE            PAGE_TARGET_2
3242 #define PAGE_TARGET_STICKY  PAGE_MTE
3243 
3244 /* We associate one allocation tag per 16 bytes, the minimum.  */
3245 #define LOG2_TAG_GRANULE 4
3246 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3247 
3248 #endif
3249