1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/handle_exit.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23
24 #include <kvm/arm_hypercalls.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30
kvm_handle_guest_serror(struct kvm_vcpu * vcpu,u64 esr)31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33 if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34 kvm_inject_vabt(vcpu);
35 }
36
handle_hvc(struct kvm_vcpu * vcpu)37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39 trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40 kvm_vcpu_hvc_get_imm(vcpu));
41 vcpu->stat.hvc_exit_stat++;
42
43 /* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44 if (vcpu_has_nv(vcpu)) {
45 if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
46 kvm_inject_undefined(vcpu);
47 else
48 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49
50 return 1;
51 }
52
53 return kvm_smccc_call_handler(vcpu);
54 }
55
handle_smc(struct kvm_vcpu * vcpu)56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58 /*
59 * Forward this trapped smc instruction to the virtual EL2 if
60 * the guest has asked for it.
61 */
62 if (forward_smc_trap(vcpu))
63 return 1;
64
65 /*
66 * "If an SMC instruction executed at Non-secure EL1 is
67 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
68 * Trap exception, not a Secure Monitor Call exception [...]"
69 *
70 * We need to advance the PC after the trap, as it would
71 * otherwise return to the same address. Furthermore, pre-incrementing
72 * the PC before potentially exiting to userspace maintains the same
73 * abstraction for both SMCs and HVCs.
74 */
75 kvm_incr_pc(vcpu);
76
77 /*
78 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
79 * "SMC and HVC immediate value".
80 */
81 if (kvm_vcpu_hvc_get_imm(vcpu)) {
82 vcpu_set_reg(vcpu, 0, ~0UL);
83 return 1;
84 }
85
86 /*
87 * If imm is zero then it is likely an SMCCC call.
88 *
89 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
90 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
91 * being treated as UNDEFINED.
92 */
93 return kvm_smccc_call_handler(vcpu);
94 }
95
96 /*
97 * This handles the cases where the system does not support FP/ASIMD or when
98 * we are running nested virtualization and the guest hypervisor is trapping
99 * FP/ASIMD accesses by its guest guest.
100 *
101 * All other handling of guest vs. host FP/ASIMD register state is handled in
102 * fixup_guest_exit().
103 */
kvm_handle_fpasimd(struct kvm_vcpu * vcpu)104 static int kvm_handle_fpasimd(struct kvm_vcpu *vcpu)
105 {
106 if (guest_hyp_fpsimd_traps_enabled(vcpu))
107 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
108
109 /* This is the case when the system doesn't support FP/ASIMD. */
110 kvm_inject_undefined(vcpu);
111 return 1;
112 }
113
114 /**
115 * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
116 * instruction executed by a guest
117 *
118 * @vcpu: the vcpu pointer
119 *
120 * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
121 * decides to.
122 * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
123 * world-switches and schedule other host processes until there is an
124 * incoming IRQ or FIQ to the VM.
125 * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
126 *
127 * WF{I,E}T can immediately return if the deadline has already expired.
128 */
kvm_handle_wfx(struct kvm_vcpu * vcpu)129 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
130 {
131 u64 esr = kvm_vcpu_get_esr(vcpu);
132 bool is_wfe = !!(esr & ESR_ELx_WFx_ISS_WFE);
133
134 if (guest_hyp_wfx_traps_enabled(vcpu))
135 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
136
137 if (is_wfe) {
138 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
139 vcpu->stat.wfe_exit_stat++;
140 } else {
141 trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
142 vcpu->stat.wfi_exit_stat++;
143 }
144
145 if (esr & ESR_ELx_WFx_ISS_WFxT) {
146 if (esr & ESR_ELx_WFx_ISS_RV) {
147 u64 val, now;
148
149 now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
150 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
151
152 if (now >= val)
153 goto out;
154 } else {
155 /* Treat WFxT as WFx if RN is invalid */
156 esr &= ~ESR_ELx_WFx_ISS_WFxT;
157 }
158 }
159
160 if (esr & ESR_ELx_WFx_ISS_WFE) {
161 kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
162 } else {
163 if (esr & ESR_ELx_WFx_ISS_WFxT)
164 vcpu_set_flag(vcpu, IN_WFIT);
165
166 kvm_vcpu_wfi(vcpu);
167 }
168 out:
169 kvm_incr_pc(vcpu);
170
171 return 1;
172 }
173
174 /**
175 * kvm_handle_guest_debug - handle a debug exception instruction
176 *
177 * @vcpu: the vcpu pointer
178 *
179 * We route all debug exceptions through the same handler. If both the
180 * guest and host are using the same debug facilities it will be up to
181 * userspace to re-inject the correct exception for guest delivery.
182 *
183 * @return: 0 (while setting vcpu->run->exit_reason)
184 */
kvm_handle_guest_debug(struct kvm_vcpu * vcpu)185 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
186 {
187 struct kvm_run *run = vcpu->run;
188 u64 esr = kvm_vcpu_get_esr(vcpu);
189
190 if (!vcpu->guest_debug && forward_debug_exception(vcpu))
191 return 1;
192
193 run->exit_reason = KVM_EXIT_DEBUG;
194 run->debug.arch.hsr = lower_32_bits(esr);
195 run->debug.arch.hsr_high = upper_32_bits(esr);
196 run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
197
198 switch (ESR_ELx_EC(esr)) {
199 case ESR_ELx_EC_WATCHPT_LOW:
200 run->debug.arch.far = vcpu->arch.fault.far_el2;
201 break;
202 case ESR_ELx_EC_SOFTSTP_LOW:
203 *vcpu_cpsr(vcpu) |= DBG_SPSR_SS;
204 break;
205 }
206
207 return 0;
208 }
209
kvm_handle_unknown_ec(struct kvm_vcpu * vcpu)210 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
211 {
212 u64 esr = kvm_vcpu_get_esr(vcpu);
213
214 kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
215 esr, esr_get_class_string(esr));
216
217 kvm_inject_undefined(vcpu);
218 return 1;
219 }
220
221 /*
222 * Guest access to SVE registers should be routed to this handler only
223 * when the system doesn't support SVE.
224 */
handle_sve(struct kvm_vcpu * vcpu)225 static int handle_sve(struct kvm_vcpu *vcpu)
226 {
227 if (guest_hyp_sve_traps_enabled(vcpu))
228 return kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
229
230 kvm_inject_undefined(vcpu);
231 return 1;
232 }
233
234 /*
235 * Two possibilities to handle a trapping ptrauth instruction:
236 *
237 * - Guest usage of a ptrauth instruction (which the guest EL1 did not
238 * turn into a NOP). If we get here, it is because we didn't enable
239 * ptrauth for the guest. This results in an UNDEF, as it isn't
240 * supposed to use ptrauth without being told it could.
241 *
242 * - Running an L2 NV guest while L1 has left HCR_EL2.API==0, and for
243 * which we reinject the exception into L1.
244 *
245 * Anything else is an emulation bug (hence the WARN_ON + UNDEF).
246 */
kvm_handle_ptrauth(struct kvm_vcpu * vcpu)247 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
248 {
249 if (!vcpu_has_ptrauth(vcpu)) {
250 kvm_inject_undefined(vcpu);
251 return 1;
252 }
253
254 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
255 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
256 return 1;
257 }
258
259 /* Really shouldn't be here! */
260 WARN_ON_ONCE(1);
261 kvm_inject_undefined(vcpu);
262 return 1;
263 }
264
kvm_handle_eret(struct kvm_vcpu * vcpu)265 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
266 {
267 if (esr_iss_is_eretax(kvm_vcpu_get_esr(vcpu)) &&
268 !vcpu_has_ptrauth(vcpu))
269 return kvm_handle_ptrauth(vcpu);
270
271 /*
272 * If we got here, two possibilities:
273 *
274 * - the guest is in EL2, and we need to fully emulate ERET
275 *
276 * - the guest is in EL1, and we need to reinject the
277 * exception into the L1 hypervisor.
278 *
279 * If KVM ever traps ERET for its own use, we'll have to
280 * revisit this.
281 */
282 if (is_hyp_ctxt(vcpu))
283 kvm_emulate_nested_eret(vcpu);
284 else
285 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
286
287 return 1;
288 }
289
handle_svc(struct kvm_vcpu * vcpu)290 static int handle_svc(struct kvm_vcpu *vcpu)
291 {
292 /*
293 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
294 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
295 * we should only have to deal with a 64 bit exception.
296 */
297 kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
298 return 1;
299 }
300
301 static exit_handle_fn arm_exit_handlers[] = {
302 [0 ... ESR_ELx_EC_MAX] = kvm_handle_unknown_ec,
303 [ESR_ELx_EC_WFx] = kvm_handle_wfx,
304 [ESR_ELx_EC_CP15_32] = kvm_handle_cp15_32,
305 [ESR_ELx_EC_CP15_64] = kvm_handle_cp15_64,
306 [ESR_ELx_EC_CP14_MR] = kvm_handle_cp14_32,
307 [ESR_ELx_EC_CP14_LS] = kvm_handle_cp14_load_store,
308 [ESR_ELx_EC_CP10_ID] = kvm_handle_cp10_id,
309 [ESR_ELx_EC_CP14_64] = kvm_handle_cp14_64,
310 [ESR_ELx_EC_HVC32] = handle_hvc,
311 [ESR_ELx_EC_SMC32] = handle_smc,
312 [ESR_ELx_EC_HVC64] = handle_hvc,
313 [ESR_ELx_EC_SMC64] = handle_smc,
314 [ESR_ELx_EC_SVC64] = handle_svc,
315 [ESR_ELx_EC_SYS64] = kvm_handle_sys_reg,
316 [ESR_ELx_EC_SVE] = handle_sve,
317 [ESR_ELx_EC_ERET] = kvm_handle_eret,
318 [ESR_ELx_EC_IABT_LOW] = kvm_handle_guest_abort,
319 [ESR_ELx_EC_DABT_LOW] = kvm_handle_guest_abort,
320 [ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
321 [ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
322 [ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
323 [ESR_ELx_EC_BKPT32] = kvm_handle_guest_debug,
324 [ESR_ELx_EC_BRK64] = kvm_handle_guest_debug,
325 [ESR_ELx_EC_FP_ASIMD] = kvm_handle_fpasimd,
326 [ESR_ELx_EC_PAC] = kvm_handle_ptrauth,
327 };
328
kvm_get_exit_handler(struct kvm_vcpu * vcpu)329 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
330 {
331 u64 esr = kvm_vcpu_get_esr(vcpu);
332 u8 esr_ec = ESR_ELx_EC(esr);
333
334 return arm_exit_handlers[esr_ec];
335 }
336
337 /*
338 * We may be single-stepping an emulated instruction. If the emulation
339 * has been completed in the kernel, we can return to userspace with a
340 * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
341 * emulation first.
342 */
handle_trap_exceptions(struct kvm_vcpu * vcpu)343 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
344 {
345 int handled;
346
347 /*
348 * See ARM ARM B1.14.1: "Hyp traps on instructions
349 * that fail their condition code check"
350 */
351 if (!kvm_condition_valid(vcpu)) {
352 kvm_incr_pc(vcpu);
353 handled = 1;
354 } else {
355 exit_handle_fn exit_handler;
356
357 exit_handler = kvm_get_exit_handler(vcpu);
358 handled = exit_handler(vcpu);
359 }
360
361 return handled;
362 }
363
364 /*
365 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
366 * proper exit to userspace.
367 */
handle_exit(struct kvm_vcpu * vcpu,int exception_index)368 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
369 {
370 struct kvm_run *run = vcpu->run;
371
372 if (ARM_SERROR_PENDING(exception_index)) {
373 /*
374 * The SError is handled by handle_exit_early(). If the guest
375 * survives it will re-execute the original instruction.
376 */
377 return 1;
378 }
379
380 exception_index = ARM_EXCEPTION_CODE(exception_index);
381
382 switch (exception_index) {
383 case ARM_EXCEPTION_IRQ:
384 return 1;
385 case ARM_EXCEPTION_EL1_SERROR:
386 return 1;
387 case ARM_EXCEPTION_TRAP:
388 return handle_trap_exceptions(vcpu);
389 case ARM_EXCEPTION_HYP_GONE:
390 /*
391 * EL2 has been reset to the hyp-stub. This happens when a guest
392 * is pre-emptied by kvm_reboot()'s shutdown call.
393 */
394 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
395 return 0;
396 case ARM_EXCEPTION_IL:
397 /*
398 * We attempted an illegal exception return. Guest state must
399 * have been corrupted somehow. Give up.
400 */
401 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
402 return -EINVAL;
403 default:
404 kvm_pr_unimpl("Unsupported exception type: %d",
405 exception_index);
406 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
407 return 0;
408 }
409 }
410
411 /* For exit types that need handling before we can be preempted */
handle_exit_early(struct kvm_vcpu * vcpu,int exception_index)412 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
413 {
414 if (ARM_SERROR_PENDING(exception_index)) {
415 if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
416 u64 disr = kvm_vcpu_get_disr(vcpu);
417
418 kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
419 } else {
420 kvm_inject_vabt(vcpu);
421 }
422
423 return;
424 }
425
426 exception_index = ARM_EXCEPTION_CODE(exception_index);
427
428 if (exception_index == ARM_EXCEPTION_EL1_SERROR)
429 kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
430 }
431
print_nvhe_hyp_panic(const char * name,u64 panic_addr)432 static void print_nvhe_hyp_panic(const char *name, u64 panic_addr)
433 {
434 kvm_err("nVHE hyp %s at: [<%016llx>] %pB!\n", name, panic_addr,
435 (void *)(panic_addr + kaslr_offset()));
436 }
437
kvm_nvhe_report_cfi_failure(u64 panic_addr)438 static void kvm_nvhe_report_cfi_failure(u64 panic_addr)
439 {
440 print_nvhe_hyp_panic("CFI failure", panic_addr);
441
442 if (IS_ENABLED(CONFIG_CFI_PERMISSIVE))
443 kvm_err(" (CONFIG_CFI_PERMISSIVE ignored for hyp failures)\n");
444 }
445
nvhe_hyp_panic_handler(u64 esr,u64 spsr,u64 elr_virt,u64 elr_phys,u64 par,uintptr_t vcpu,u64 far,u64 hpfar)446 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
447 u64 elr_virt, u64 elr_phys,
448 u64 par, uintptr_t vcpu,
449 u64 far, u64 hpfar) {
450 u64 elr_in_kimg = __phys_to_kimg(elr_phys);
451 u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
452 u64 mode = spsr & PSR_MODE_MASK;
453 u64 panic_addr = elr_virt + hyp_offset;
454
455 if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
456 kvm_err("Invalid host exception to nVHE hyp!\n");
457 } else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
458 esr_brk_comment(esr) == BUG_BRK_IMM) {
459 const char *file = NULL;
460 unsigned int line = 0;
461
462 /* All hyp bugs, including warnings, are treated as fatal. */
463 if (!is_protected_kvm_enabled() ||
464 IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
465 struct bug_entry *bug = find_bug(elr_in_kimg);
466
467 if (bug)
468 bug_get_file_line(bug, &file, &line);
469 }
470
471 if (file)
472 kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
473 else
474 print_nvhe_hyp_panic("BUG", panic_addr);
475 } else if (IS_ENABLED(CONFIG_CFI_CLANG) && esr_is_cfi_brk(esr)) {
476 kvm_nvhe_report_cfi_failure(panic_addr);
477 } else {
478 print_nvhe_hyp_panic("panic", panic_addr);
479 }
480
481 /* Dump the nVHE hypervisor backtrace */
482 kvm_nvhe_dump_backtrace(hyp_offset);
483
484 /*
485 * Hyp has panicked and we're going to handle that by panicking the
486 * kernel. The kernel offset will be revealed in the panic so we're
487 * also safe to reveal the hyp offset as a debugging aid for translating
488 * hyp VAs to vmlinux addresses.
489 */
490 kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
491
492 panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
493 spsr, elr_virt, esr, far, hpfar, par, vcpu);
494 }
495