xref: /linux/arch/x86/kvm/vmx/tdx.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/cleanup.h>
3 #include <linux/cpu.h>
4 #include <asm/cpufeature.h>
5 #include <asm/fpu/xcr.h>
6 #include <linux/misc_cgroup.h>
7 #include <linux/mmu_context.h>
8 #include <asm/tdx.h>
9 #include "capabilities.h"
10 #include "mmu.h"
11 #include "x86_ops.h"
12 #include "lapic.h"
13 #include "tdx.h"
14 #include "vmx.h"
15 #include "mmu/spte.h"
16 #include "common.h"
17 #include "posted_intr.h"
18 #include "irq.h"
19 #include <trace/events/kvm.h>
20 #include "trace.h"
21 
22 #pragma GCC poison to_vmx
23 
24 #undef pr_fmt
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #define pr_tdx_error(__fn, __err)	\
28 	pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err)
29 
30 #define __pr_tdx_error_N(__fn_str, __err, __fmt, ...)		\
31 	pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt,  __err,  __VA_ARGS__)
32 
33 #define pr_tdx_error_1(__fn, __err, __rcx)		\
34 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx)
35 
36 #define pr_tdx_error_2(__fn, __err, __rcx, __rdx)	\
37 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx)
38 
39 #define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8)	\
40 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8)
41 
42 bool enable_tdx __ro_after_init;
43 module_param_named(tdx, enable_tdx, bool, 0444);
44 
45 #define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51))
46 #define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47))
47 
48 static enum cpuhp_state tdx_cpuhp_state;
49 
50 static const struct tdx_sys_info *tdx_sysinfo;
51 
tdh_vp_rd_failed(struct vcpu_tdx * tdx,char * uclass,u32 field,u64 err)52 void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err)
53 {
54 	KVM_BUG_ON(1, tdx->vcpu.kvm);
55 	pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err);
56 }
57 
tdh_vp_wr_failed(struct vcpu_tdx * tdx,char * uclass,char * op,u32 field,u64 val,u64 err)58 void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field,
59 		      u64 val, u64 err)
60 {
61 	KVM_BUG_ON(1, tdx->vcpu.kvm);
62 	pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err);
63 }
64 
65 #define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE)
66 
to_kvm_tdx(struct kvm * kvm)67 static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm)
68 {
69 	return container_of(kvm, struct kvm_tdx, kvm);
70 }
71 
to_tdx(struct kvm_vcpu * vcpu)72 static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu)
73 {
74 	return container_of(vcpu, struct vcpu_tdx, vcpu);
75 }
76 
tdx_get_supported_attrs(const struct tdx_sys_info_td_conf * td_conf)77 static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf)
78 {
79 	u64 val = KVM_SUPPORTED_TD_ATTRS;
80 
81 	if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1)
82 		return 0;
83 
84 	val &= td_conf->attributes_fixed0;
85 
86 	return val;
87 }
88 
tdx_get_supported_xfam(const struct tdx_sys_info_td_conf * td_conf)89 static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf)
90 {
91 	u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss;
92 
93 	if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1)
94 		return 0;
95 
96 	val &= td_conf->xfam_fixed0;
97 
98 	return val;
99 }
100 
tdx_get_guest_phys_addr_bits(const u32 eax)101 static int tdx_get_guest_phys_addr_bits(const u32 eax)
102 {
103 	return (eax & GENMASK(23, 16)) >> 16;
104 }
105 
tdx_set_guest_phys_addr_bits(const u32 eax,int addr_bits)106 static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits)
107 {
108 	return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16;
109 }
110 
111 #define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM))
112 
has_tsx(const struct kvm_cpuid_entry2 * entry)113 static bool has_tsx(const struct kvm_cpuid_entry2 *entry)
114 {
115 	return entry->function == 7 && entry->index == 0 &&
116 	       (entry->ebx & TDX_FEATURE_TSX);
117 }
118 
clear_tsx(struct kvm_cpuid_entry2 * entry)119 static void clear_tsx(struct kvm_cpuid_entry2 *entry)
120 {
121 	entry->ebx &= ~TDX_FEATURE_TSX;
122 }
123 
has_waitpkg(const struct kvm_cpuid_entry2 * entry)124 static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry)
125 {
126 	return entry->function == 7 && entry->index == 0 &&
127 	       (entry->ecx & __feature_bit(X86_FEATURE_WAITPKG));
128 }
129 
clear_waitpkg(struct kvm_cpuid_entry2 * entry)130 static void clear_waitpkg(struct kvm_cpuid_entry2 *entry)
131 {
132 	entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG);
133 }
134 
tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 * entry)135 static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry)
136 {
137 	if (has_tsx(entry))
138 		clear_tsx(entry);
139 
140 	if (has_waitpkg(entry))
141 		clear_waitpkg(entry);
142 }
143 
tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 * entry)144 static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry)
145 {
146 	return has_tsx(entry) || has_waitpkg(entry);
147 }
148 
149 #define KVM_TDX_CPUID_NO_SUBLEAF	((__u32)-1)
150 
td_init_cpuid_entry2(struct kvm_cpuid_entry2 * entry,unsigned char idx)151 static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx)
152 {
153 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
154 
155 	entry->function = (u32)td_conf->cpuid_config_leaves[idx];
156 	entry->index = td_conf->cpuid_config_leaves[idx] >> 32;
157 	entry->eax = (u32)td_conf->cpuid_config_values[idx][0];
158 	entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32;
159 	entry->ecx = (u32)td_conf->cpuid_config_values[idx][1];
160 	entry->edx = td_conf->cpuid_config_values[idx][1] >> 32;
161 
162 	if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF)
163 		entry->index = 0;
164 
165 	/*
166 	 * The TDX module doesn't allow configuring the guest phys addr bits
167 	 * (EAX[23:16]).  However, KVM uses it as an interface to the userspace
168 	 * to configure the GPAW.  Report these bits as configurable.
169 	 */
170 	if (entry->function == 0x80000008)
171 		entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff);
172 
173 	tdx_clear_unsupported_cpuid(entry);
174 }
175 
176 #define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT	BIT(1)
177 
init_kvm_tdx_caps(const struct tdx_sys_info_td_conf * td_conf,struct kvm_tdx_capabilities * caps)178 static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf,
179 			     struct kvm_tdx_capabilities *caps)
180 {
181 	int i;
182 
183 	caps->supported_attrs = tdx_get_supported_attrs(td_conf);
184 	if (!caps->supported_attrs)
185 		return -EIO;
186 
187 	caps->supported_xfam = tdx_get_supported_xfam(td_conf);
188 	if (!caps->supported_xfam)
189 		return -EIO;
190 
191 	caps->cpuid.nent = td_conf->num_cpuid_config;
192 
193 	caps->user_tdvmcallinfo_1_r11 =
194 		TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT;
195 
196 	for (i = 0; i < td_conf->num_cpuid_config; i++)
197 		td_init_cpuid_entry2(&caps->cpuid.entries[i], i);
198 
199 	return 0;
200 }
201 
202 /*
203  * Some SEAMCALLs acquire the TDX module globally, and can fail with
204  * TDX_OPERAND_BUSY.  Use a global mutex to serialize these SEAMCALLs.
205  */
206 static DEFINE_MUTEX(tdx_lock);
207 
208 static atomic_t nr_configured_hkid;
209 
tdx_operand_busy(u64 err)210 static bool tdx_operand_busy(u64 err)
211 {
212 	return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY;
213 }
214 
215 
216 /*
217  * A per-CPU list of TD vCPUs associated with a given CPU.
218  * Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU
219  * list.
220  * - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of
221  *   the old CPU during the IPI callback running on the old CPU, and then added
222  *   to the per-CPU list of the new CPU.
223  * - When a TD is tearing down, all vCPUs are disassociated from their current
224  *   running CPUs and removed from the per-CPU list during the IPI callback
225  *   running on those CPUs.
226  * - When a CPU is brought down, traverse the per-CPU list to disassociate all
227  *   associated TD vCPUs and remove them from the per-CPU list.
228  */
229 static DEFINE_PER_CPU(struct list_head, associated_tdvcpus);
230 
tdvmcall_exit_type(struct kvm_vcpu * vcpu)231 static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu)
232 {
233 	return to_tdx(vcpu)->vp_enter_args.r10;
234 }
235 
tdvmcall_leaf(struct kvm_vcpu * vcpu)236 static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu)
237 {
238 	return to_tdx(vcpu)->vp_enter_args.r11;
239 }
240 
tdvmcall_set_return_code(struct kvm_vcpu * vcpu,long val)241 static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu,
242 						     long val)
243 {
244 	to_tdx(vcpu)->vp_enter_args.r10 = val;
245 }
246 
tdvmcall_set_return_val(struct kvm_vcpu * vcpu,unsigned long val)247 static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu,
248 						    unsigned long val)
249 {
250 	to_tdx(vcpu)->vp_enter_args.r11 = val;
251 }
252 
tdx_hkid_free(struct kvm_tdx * kvm_tdx)253 static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx)
254 {
255 	tdx_guest_keyid_free(kvm_tdx->hkid);
256 	kvm_tdx->hkid = -1;
257 	atomic_dec(&nr_configured_hkid);
258 	misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
259 	put_misc_cg(kvm_tdx->misc_cg);
260 	kvm_tdx->misc_cg = NULL;
261 }
262 
is_hkid_assigned(struct kvm_tdx * kvm_tdx)263 static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx)
264 {
265 	return kvm_tdx->hkid > 0;
266 }
267 
tdx_disassociate_vp(struct kvm_vcpu * vcpu)268 static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu)
269 {
270 	lockdep_assert_irqs_disabled();
271 
272 	list_del(&to_tdx(vcpu)->cpu_list);
273 
274 	/*
275 	 * Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1,
276 	 * otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU
277 	 * to its list before it's deleted from this CPU's list.
278 	 */
279 	smp_wmb();
280 
281 	vcpu->cpu = -1;
282 }
283 
tdx_clear_page(struct page * page)284 static void tdx_clear_page(struct page *page)
285 {
286 	const void *zero_page = (const void *) page_to_virt(ZERO_PAGE(0));
287 	void *dest = page_to_virt(page);
288 	unsigned long i;
289 
290 	/*
291 	 * The page could have been poisoned.  MOVDIR64B also clears
292 	 * the poison bit so the kernel can safely use the page again.
293 	 */
294 	for (i = 0; i < PAGE_SIZE; i += 64)
295 		movdir64b(dest + i, zero_page);
296 	/*
297 	 * MOVDIR64B store uses WC buffer.  Prevent following memory reads
298 	 * from seeing potentially poisoned cache.
299 	 */
300 	__mb();
301 }
302 
tdx_no_vcpus_enter_start(struct kvm * kvm)303 static void tdx_no_vcpus_enter_start(struct kvm *kvm)
304 {
305 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
306 
307 	lockdep_assert_held_write(&kvm->mmu_lock);
308 
309 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true);
310 
311 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
312 }
313 
tdx_no_vcpus_enter_stop(struct kvm * kvm)314 static void tdx_no_vcpus_enter_stop(struct kvm *kvm)
315 {
316 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
317 
318 	lockdep_assert_held_write(&kvm->mmu_lock);
319 
320 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false);
321 }
322 
323 /* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */
__tdx_reclaim_page(struct page * page)324 static int __tdx_reclaim_page(struct page *page)
325 {
326 	u64 err, rcx, rdx, r8;
327 
328 	err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8);
329 
330 	/*
331 	 * No need to check for TDX_OPERAND_BUSY; all TD pages are freed
332 	 * before the HKID is released and control pages have also been
333 	 * released at this point, so there is no possibility of contention.
334 	 */
335 	if (WARN_ON_ONCE(err)) {
336 		pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8);
337 		return -EIO;
338 	}
339 	return 0;
340 }
341 
tdx_reclaim_page(struct page * page)342 static int tdx_reclaim_page(struct page *page)
343 {
344 	int r;
345 
346 	r = __tdx_reclaim_page(page);
347 	if (!r)
348 		tdx_clear_page(page);
349 	return r;
350 }
351 
352 
353 /*
354  * Reclaim the TD control page(s) which are crypto-protected by TDX guest's
355  * private KeyID.  Assume the cache associated with the TDX private KeyID has
356  * been flushed.
357  */
tdx_reclaim_control_page(struct page * ctrl_page)358 static void tdx_reclaim_control_page(struct page *ctrl_page)
359 {
360 	/*
361 	 * Leak the page if the kernel failed to reclaim the page.
362 	 * The kernel cannot use it safely anymore.
363 	 */
364 	if (tdx_reclaim_page(ctrl_page))
365 		return;
366 
367 	__free_page(ctrl_page);
368 }
369 
370 struct tdx_flush_vp_arg {
371 	struct kvm_vcpu *vcpu;
372 	u64 err;
373 };
374 
tdx_flush_vp(void * _arg)375 static void tdx_flush_vp(void *_arg)
376 {
377 	struct tdx_flush_vp_arg *arg = _arg;
378 	struct kvm_vcpu *vcpu = arg->vcpu;
379 	u64 err;
380 
381 	arg->err = 0;
382 	lockdep_assert_irqs_disabled();
383 
384 	/* Task migration can race with CPU offlining. */
385 	if (unlikely(vcpu->cpu != raw_smp_processor_id()))
386 		return;
387 
388 	/*
389 	 * No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized.  The
390 	 * list tracking still needs to be updated so that it's correct if/when
391 	 * the vCPU does get initialized.
392 	 */
393 	if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) {
394 		/*
395 		 * No need to retry.  TDX Resources needed for TDH.VP.FLUSH are:
396 		 * TDVPR as exclusive, TDR as shared, and TDCS as shared.  This
397 		 * vp flush function is called when destructing vCPU/TD or vCPU
398 		 * migration.  No other thread uses TDVPR in those cases.
399 		 */
400 		err = tdh_vp_flush(&to_tdx(vcpu)->vp);
401 		if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) {
402 			/*
403 			 * This function is called in IPI context. Do not use
404 			 * printk to avoid console semaphore.
405 			 * The caller prints out the error message, instead.
406 			 */
407 			if (err)
408 				arg->err = err;
409 		}
410 	}
411 
412 	tdx_disassociate_vp(vcpu);
413 }
414 
tdx_flush_vp_on_cpu(struct kvm_vcpu * vcpu)415 static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu)
416 {
417 	struct tdx_flush_vp_arg arg = {
418 		.vcpu = vcpu,
419 	};
420 	int cpu = vcpu->cpu;
421 
422 	if (unlikely(cpu == -1))
423 		return;
424 
425 	smp_call_function_single(cpu, tdx_flush_vp, &arg, 1);
426 	if (KVM_BUG_ON(arg.err, vcpu->kvm))
427 		pr_tdx_error(TDH_VP_FLUSH, arg.err);
428 }
429 
tdx_disable_virtualization_cpu(void)430 void tdx_disable_virtualization_cpu(void)
431 {
432 	int cpu = raw_smp_processor_id();
433 	struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu);
434 	struct tdx_flush_vp_arg arg;
435 	struct vcpu_tdx *tdx, *tmp;
436 	unsigned long flags;
437 
438 	local_irq_save(flags);
439 	/* Safe variant needed as tdx_disassociate_vp() deletes the entry. */
440 	list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) {
441 		arg.vcpu = &tdx->vcpu;
442 		tdx_flush_vp(&arg);
443 	}
444 	local_irq_restore(flags);
445 }
446 
447 #define TDX_SEAMCALL_RETRIES 10000
448 
smp_func_do_phymem_cache_wb(void * unused)449 static void smp_func_do_phymem_cache_wb(void *unused)
450 {
451 	u64 err = 0;
452 	bool resume;
453 	int i;
454 
455 	/*
456 	 * TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private
457 	 * KeyID on the package or core.  The TDX module may not finish the
458 	 * cache flush but return TDX_INTERRUPTED_RESUMEABLE instead.  The
459 	 * kernel should retry it until it returns success w/o rescheduling.
460 	 */
461 	for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) {
462 		resume = !!err;
463 		err = tdh_phymem_cache_wb(resume);
464 		switch (err) {
465 		case TDX_INTERRUPTED_RESUMABLE:
466 			continue;
467 		case TDX_NO_HKID_READY_TO_WBCACHE:
468 			err = TDX_SUCCESS; /* Already done by other thread */
469 			fallthrough;
470 		default:
471 			goto out;
472 		}
473 	}
474 
475 out:
476 	if (WARN_ON_ONCE(err))
477 		pr_tdx_error(TDH_PHYMEM_CACHE_WB, err);
478 }
479 
tdx_mmu_release_hkid(struct kvm * kvm)480 void tdx_mmu_release_hkid(struct kvm *kvm)
481 {
482 	bool packages_allocated, targets_allocated;
483 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
484 	cpumask_var_t packages, targets;
485 	struct kvm_vcpu *vcpu;
486 	unsigned long j;
487 	int i;
488 	u64 err;
489 
490 	if (!is_hkid_assigned(kvm_tdx))
491 		return;
492 
493 	packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL);
494 	targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL);
495 	cpus_read_lock();
496 
497 	kvm_for_each_vcpu(j, vcpu, kvm)
498 		tdx_flush_vp_on_cpu(vcpu);
499 
500 	/*
501 	 * TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock
502 	 * and can fail with TDX_OPERAND_BUSY when it fails to get the lock.
503 	 * Multiple TDX guests can be destroyed simultaneously. Take the
504 	 * mutex to prevent it from getting error.
505 	 */
506 	mutex_lock(&tdx_lock);
507 
508 	/*
509 	 * Releasing HKID is in vm_destroy().
510 	 * After the above flushing vps, there should be no more vCPU
511 	 * associations, as all vCPU fds have been released at this stage.
512 	 */
513 	err = tdh_mng_vpflushdone(&kvm_tdx->td);
514 	if (err == TDX_FLUSHVP_NOT_DONE)
515 		goto out;
516 	if (KVM_BUG_ON(err, kvm)) {
517 		pr_tdx_error(TDH_MNG_VPFLUSHDONE, err);
518 		pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n",
519 		       kvm_tdx->hkid);
520 		goto out;
521 	}
522 
523 	for_each_online_cpu(i) {
524 		if (packages_allocated &&
525 		    cpumask_test_and_set_cpu(topology_physical_package_id(i),
526 					     packages))
527 			continue;
528 		if (targets_allocated)
529 			cpumask_set_cpu(i, targets);
530 	}
531 	if (targets_allocated)
532 		on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true);
533 	else
534 		on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true);
535 	/*
536 	 * In the case of error in smp_func_do_phymem_cache_wb(), the following
537 	 * tdh_mng_key_freeid() will fail.
538 	 */
539 	err = tdh_mng_key_freeid(&kvm_tdx->td);
540 	if (KVM_BUG_ON(err, kvm)) {
541 		pr_tdx_error(TDH_MNG_KEY_FREEID, err);
542 		pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n",
543 		       kvm_tdx->hkid);
544 	} else {
545 		tdx_hkid_free(kvm_tdx);
546 	}
547 
548 out:
549 	mutex_unlock(&tdx_lock);
550 	cpus_read_unlock();
551 	free_cpumask_var(targets);
552 	free_cpumask_var(packages);
553 }
554 
tdx_reclaim_td_control_pages(struct kvm * kvm)555 static void tdx_reclaim_td_control_pages(struct kvm *kvm)
556 {
557 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
558 	u64 err;
559 	int i;
560 
561 	/*
562 	 * tdx_mmu_release_hkid() failed to reclaim HKID.  Something went wrong
563 	 * heavily with TDX module.  Give up freeing TD pages.  As the function
564 	 * already warned, don't warn it again.
565 	 */
566 	if (is_hkid_assigned(kvm_tdx))
567 		return;
568 
569 	if (kvm_tdx->td.tdcs_pages) {
570 		for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
571 			if (!kvm_tdx->td.tdcs_pages[i])
572 				continue;
573 
574 			tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]);
575 		}
576 		kfree(kvm_tdx->td.tdcs_pages);
577 		kvm_tdx->td.tdcs_pages = NULL;
578 	}
579 
580 	if (!kvm_tdx->td.tdr_page)
581 		return;
582 
583 	if (__tdx_reclaim_page(kvm_tdx->td.tdr_page))
584 		return;
585 
586 	/*
587 	 * Use a SEAMCALL to ask the TDX module to flush the cache based on the
588 	 * KeyID. TDX module may access TDR while operating on TD (Especially
589 	 * when it is reclaiming TDCS).
590 	 */
591 	err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td);
592 	if (KVM_BUG_ON(err, kvm)) {
593 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
594 		return;
595 	}
596 	tdx_clear_page(kvm_tdx->td.tdr_page);
597 
598 	__free_page(kvm_tdx->td.tdr_page);
599 	kvm_tdx->td.tdr_page = NULL;
600 }
601 
tdx_vm_destroy(struct kvm * kvm)602 void tdx_vm_destroy(struct kvm *kvm)
603 {
604 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
605 
606 	tdx_reclaim_td_control_pages(kvm);
607 
608 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
609 }
610 
tdx_do_tdh_mng_key_config(void * param)611 static int tdx_do_tdh_mng_key_config(void *param)
612 {
613 	struct kvm_tdx *kvm_tdx = param;
614 	u64 err;
615 
616 	/* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */
617 	err = tdh_mng_key_config(&kvm_tdx->td);
618 
619 	if (KVM_BUG_ON(err, &kvm_tdx->kvm)) {
620 		pr_tdx_error(TDH_MNG_KEY_CONFIG, err);
621 		return -EIO;
622 	}
623 
624 	return 0;
625 }
626 
tdx_vm_init(struct kvm * kvm)627 int tdx_vm_init(struct kvm *kvm)
628 {
629 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
630 
631 	kvm->arch.has_protected_state = true;
632 	kvm->arch.has_private_mem = true;
633 	kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT;
634 
635 	/*
636 	 * Because guest TD is protected, VMM can't parse the instruction in TD.
637 	 * Instead, guest uses MMIO hypercall.  For unmodified device driver,
638 	 * #VE needs to be injected for MMIO and #VE handler in TD converts MMIO
639 	 * instruction into MMIO hypercall.
640 	 *
641 	 * SPTE value for MMIO needs to be setup so that #VE is injected into
642 	 * TD instead of triggering EPT MISCONFIG.
643 	 * - RWX=0 so that EPT violation is triggered.
644 	 * - suppress #VE bit is cleared to inject #VE.
645 	 */
646 	kvm_mmu_set_mmio_spte_value(kvm, 0);
647 
648 	/*
649 	 * TDX has its own limit of maximum vCPUs it can support for all
650 	 * TDX guests in addition to KVM_MAX_VCPUS.  TDX module reports
651 	 * such limit via the MAX_VCPU_PER_TD global metadata.  In
652 	 * practice, it reflects the number of logical CPUs that ALL
653 	 * platforms that the TDX module supports can possibly have.
654 	 *
655 	 * Limit TDX guest's maximum vCPUs to the number of logical CPUs
656 	 * the platform has.  Simply forwarding the MAX_VCPU_PER_TD to
657 	 * userspace would result in an unpredictable ABI.
658 	 */
659 	kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus());
660 
661 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
662 
663 	return 0;
664 }
665 
tdx_vcpu_create(struct kvm_vcpu * vcpu)666 int tdx_vcpu_create(struct kvm_vcpu *vcpu)
667 {
668 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
669 	struct vcpu_tdx *tdx = to_tdx(vcpu);
670 
671 	if (kvm_tdx->state != TD_STATE_INITIALIZED)
672 		return -EIO;
673 
674 	/*
675 	 * TDX module mandates APICv, which requires an in-kernel local APIC.
676 	 * Disallow an in-kernel I/O APIC, because level-triggered interrupts
677 	 * and thus the I/O APIC as a whole can't be faithfully emulated in KVM.
678 	 */
679 	if (!irqchip_split(vcpu->kvm))
680 		return -EINVAL;
681 
682 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
683 	vcpu->arch.apic->guest_apic_protected = true;
684 	INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list);
685 
686 	vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX;
687 
688 	vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH;
689 	vcpu->arch.cr0_guest_owned_bits = -1ul;
690 	vcpu->arch.cr4_guest_owned_bits = -1ul;
691 
692 	/* KVM can't change TSC offset/multiplier as TDX module manages them. */
693 	vcpu->arch.guest_tsc_protected = true;
694 	vcpu->arch.tsc_offset = kvm_tdx->tsc_offset;
695 	vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset;
696 	vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
697 	vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
698 
699 	vcpu->arch.guest_state_protected =
700 		!(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG);
701 
702 	if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE)
703 		vcpu->arch.xfd_no_write_intercept = true;
704 
705 	tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
706 	__pi_set_sn(&tdx->vt.pi_desc);
707 
708 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
709 
710 	return 0;
711 }
712 
tdx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)713 void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
714 {
715 	struct vcpu_tdx *tdx = to_tdx(vcpu);
716 
717 	vmx_vcpu_pi_load(vcpu, cpu);
718 	if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm)))
719 		return;
720 
721 	tdx_flush_vp_on_cpu(vcpu);
722 
723 	KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm);
724 	local_irq_disable();
725 	/*
726 	 * Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure
727 	 * vcpu->cpu is read before tdx->cpu_list.
728 	 */
729 	smp_rmb();
730 
731 	list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu));
732 	local_irq_enable();
733 }
734 
tdx_interrupt_allowed(struct kvm_vcpu * vcpu)735 bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu)
736 {
737 	/*
738 	 * KVM can't get the interrupt status of TDX guest and it assumes
739 	 * interrupt is always allowed unless TDX guest calls TDVMCALL with HLT,
740 	 * which passes the interrupt blocked flag.
741 	 */
742 	return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
743 	       !to_tdx(vcpu)->vp_enter_args.r12;
744 }
745 
tdx_protected_apic_has_interrupt(struct kvm_vcpu * vcpu)746 static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
747 {
748 	u64 vcpu_state_details;
749 
750 	if (pi_has_pending_interrupt(vcpu))
751 		return true;
752 
753 	/*
754 	 * Only check RVI pending for HALTED case with IRQ enabled.
755 	 * For non-HLT cases, KVM doesn't care about STI/SS shadows.  And if the
756 	 * interrupt was pending before TD exit, then it _must_ be blocked,
757 	 * otherwise the interrupt would have been serviced at the instruction
758 	 * boundary.
759 	 */
760 	if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
761 	    to_tdx(vcpu)->vp_enter_args.r12)
762 		return false;
763 
764 	vcpu_state_details =
765 		td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH);
766 
767 	return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
768 }
769 
770 /*
771  * Compared to vmx_prepare_switch_to_guest(), there is not much to do
772  * as SEAMCALL/SEAMRET calls take care of most of save and restore.
773  */
tdx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)774 void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
775 {
776 	struct vcpu_vt *vt = to_vt(vcpu);
777 
778 	if (vt->guest_state_loaded)
779 		return;
780 
781 	if (likely(is_64bit_mm(current->mm)))
782 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
783 	else
784 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
785 
786 	vt->guest_state_loaded = true;
787 }
788 
789 struct tdx_uret_msr {
790 	u32 msr;
791 	unsigned int slot;
792 	u64 defval;
793 };
794 
795 static struct tdx_uret_msr tdx_uret_msrs[] = {
796 	{.msr = MSR_SYSCALL_MASK, .defval = 0x20200 },
797 	{.msr = MSR_STAR,},
798 	{.msr = MSR_LSTAR,},
799 	{.msr = MSR_TSC_AUX,},
800 };
801 
tdx_user_return_msr_update_cache(void)802 static void tdx_user_return_msr_update_cache(void)
803 {
804 	int i;
805 
806 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
807 		kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
808 						 tdx_uret_msrs[i].defval);
809 }
810 
tdx_prepare_switch_to_host(struct kvm_vcpu * vcpu)811 static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
812 {
813 	struct vcpu_vt *vt = to_vt(vcpu);
814 	struct vcpu_tdx *tdx = to_tdx(vcpu);
815 
816 	if (!vt->guest_state_loaded)
817 		return;
818 
819 	++vcpu->stat.host_state_reload;
820 	wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
821 
822 	if (tdx->guest_entered) {
823 		tdx_user_return_msr_update_cache();
824 		tdx->guest_entered = false;
825 	}
826 
827 	vt->guest_state_loaded = false;
828 }
829 
tdx_vcpu_put(struct kvm_vcpu * vcpu)830 void tdx_vcpu_put(struct kvm_vcpu *vcpu)
831 {
832 	vmx_vcpu_pi_put(vcpu);
833 	tdx_prepare_switch_to_host(vcpu);
834 }
835 
tdx_vcpu_free(struct kvm_vcpu * vcpu)836 void tdx_vcpu_free(struct kvm_vcpu *vcpu)
837 {
838 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
839 	struct vcpu_tdx *tdx = to_tdx(vcpu);
840 	int i;
841 
842 	/*
843 	 * It is not possible to reclaim pages while hkid is assigned. It might
844 	 * be assigned if:
845 	 * 1. the TD VM is being destroyed but freeing hkid failed, in which
846 	 * case the pages are leaked
847 	 * 2. TD VCPU creation failed and this on the error path, in which case
848 	 * there is nothing to do anyway
849 	 */
850 	if (is_hkid_assigned(kvm_tdx))
851 		return;
852 
853 	if (tdx->vp.tdcx_pages) {
854 		for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
855 			if (tdx->vp.tdcx_pages[i])
856 				tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]);
857 		}
858 		kfree(tdx->vp.tdcx_pages);
859 		tdx->vp.tdcx_pages = NULL;
860 	}
861 	if (tdx->vp.tdvpr_page) {
862 		tdx_reclaim_control_page(tdx->vp.tdvpr_page);
863 		tdx->vp.tdvpr_page = 0;
864 	}
865 
866 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
867 }
868 
tdx_vcpu_pre_run(struct kvm_vcpu * vcpu)869 int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu)
870 {
871 	if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED ||
872 		     to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE))
873 		return -EINVAL;
874 
875 	return 1;
876 }
877 
tdcall_to_vmx_exit_reason(struct kvm_vcpu * vcpu)878 static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
879 {
880 	switch (tdvmcall_leaf(vcpu)) {
881 	case EXIT_REASON_CPUID:
882 	case EXIT_REASON_HLT:
883 	case EXIT_REASON_IO_INSTRUCTION:
884 	case EXIT_REASON_MSR_READ:
885 	case EXIT_REASON_MSR_WRITE:
886 		return tdvmcall_leaf(vcpu);
887 	case EXIT_REASON_EPT_VIOLATION:
888 		return EXIT_REASON_EPT_MISCONFIG;
889 	default:
890 		break;
891 	}
892 
893 	return EXIT_REASON_TDCALL;
894 }
895 
tdx_to_vmx_exit_reason(struct kvm_vcpu * vcpu)896 static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
897 {
898 	struct vcpu_tdx *tdx = to_tdx(vcpu);
899 	u32 exit_reason;
900 
901 	switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) {
902 	case TDX_SUCCESS:
903 	case TDX_NON_RECOVERABLE_VCPU:
904 	case TDX_NON_RECOVERABLE_TD:
905 	case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE:
906 	case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE:
907 		break;
908 	default:
909 		return -1u;
910 	}
911 
912 	exit_reason = tdx->vp_enter_ret;
913 
914 	switch (exit_reason) {
915 	case EXIT_REASON_TDCALL:
916 		if (tdvmcall_exit_type(vcpu))
917 			return EXIT_REASON_VMCALL;
918 
919 		return tdcall_to_vmx_exit_reason(vcpu);
920 	case EXIT_REASON_EPT_MISCONFIG:
921 		/*
922 		 * Defer KVM_BUG_ON() until tdx_handle_exit() because this is in
923 		 * non-instrumentable code with interrupts disabled.
924 		 */
925 		return -1u;
926 	default:
927 		break;
928 	}
929 
930 	return exit_reason;
931 }
932 
tdx_vcpu_enter_exit(struct kvm_vcpu * vcpu)933 static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu)
934 {
935 	struct vcpu_tdx *tdx = to_tdx(vcpu);
936 	struct vcpu_vt *vt = to_vt(vcpu);
937 
938 	guest_state_enter_irqoff();
939 
940 	tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args);
941 
942 	vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu);
943 
944 	vt->exit_qualification = tdx->vp_enter_args.rcx;
945 	tdx->ext_exit_qualification = tdx->vp_enter_args.rdx;
946 	tdx->exit_gpa = tdx->vp_enter_args.r8;
947 	vt->exit_intr_info = tdx->vp_enter_args.r9;
948 
949 	vmx_handle_nmi(vcpu);
950 
951 	guest_state_exit_irqoff();
952 }
953 
tdx_failed_vmentry(struct kvm_vcpu * vcpu)954 static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu)
955 {
956 	return vmx_get_exit_reason(vcpu).failed_vmentry &&
957 	       vmx_get_exit_reason(vcpu).full != -1u;
958 }
959 
tdx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)960 static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
961 {
962 	u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret;
963 
964 	/*
965 	 * TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation
966 	 * or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER.
967 	 *
968 	 * When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both
969 	 * KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target
970 	 * vCPUs leaving fastpath so that interrupt can be enabled to ensure the
971 	 * IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of
972 	 * EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the
973 	 * requester may be blocked endlessly.
974 	 */
975 	if (unlikely(tdx_operand_busy(vp_enter_ret)))
976 		return EXIT_FASTPATH_EXIT_HANDLED;
977 
978 	return EXIT_FASTPATH_NONE;
979 }
980 
981 #define TDX_REGS_AVAIL_SET	(BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \
982 				 BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \
983 				 BIT_ULL(VCPU_REGS_RAX) | \
984 				 BIT_ULL(VCPU_REGS_RBX) | \
985 				 BIT_ULL(VCPU_REGS_RCX) | \
986 				 BIT_ULL(VCPU_REGS_RDX) | \
987 				 BIT_ULL(VCPU_REGS_RBP) | \
988 				 BIT_ULL(VCPU_REGS_RSI) | \
989 				 BIT_ULL(VCPU_REGS_RDI) | \
990 				 BIT_ULL(VCPU_REGS_R8) | \
991 				 BIT_ULL(VCPU_REGS_R9) | \
992 				 BIT_ULL(VCPU_REGS_R10) | \
993 				 BIT_ULL(VCPU_REGS_R11) | \
994 				 BIT_ULL(VCPU_REGS_R12) | \
995 				 BIT_ULL(VCPU_REGS_R13) | \
996 				 BIT_ULL(VCPU_REGS_R14) | \
997 				 BIT_ULL(VCPU_REGS_R15))
998 
tdx_load_host_xsave_state(struct kvm_vcpu * vcpu)999 static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu)
1000 {
1001 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
1002 
1003 	/*
1004 	 * All TDX hosts support PKRU; but even if they didn't,
1005 	 * vcpu->arch.host_pkru would be 0 and the wrpkru would be
1006 	 * skipped.
1007 	 */
1008 	if (vcpu->arch.host_pkru != 0)
1009 		wrpkru(vcpu->arch.host_pkru);
1010 
1011 	if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0))
1012 		xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1013 
1014 	/*
1015 	 * Likewise, even if a TDX hosts didn't support XSS both arms of
1016 	 * the comparison would be 0 and the wrmsrl would be skipped.
1017 	 */
1018 	if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss))
1019 		wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1020 }
1021 
1022 #define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \
1023 				DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \
1024 				DEBUGCTLMSR_FREEZE_IN_SMM)
1025 
tdx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)1026 fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
1027 {
1028 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1029 	struct vcpu_vt *vt = to_vt(vcpu);
1030 
1031 	/*
1032 	 * WARN if KVM wants to force an immediate exit, as the TDX module does
1033 	 * not guarantee entry into the guest, i.e. it's possible for KVM to
1034 	 * _think_ it completed entry to the guest and forced an immediate exit
1035 	 * without actually having done so.  Luckily, KVM never needs to force
1036 	 * an immediate exit for TDX (KVM can't do direct event injection, so
1037 	 * just WARN and continue on.
1038 	 */
1039 	WARN_ON_ONCE(run_flags);
1040 
1041 	/*
1042 	 * Wait until retry of SEPT-zap-related SEAMCALL completes before
1043 	 * allowing vCPU entry to avoid contention with tdh_vp_enter() and
1044 	 * TDCALLs.
1045 	 */
1046 	if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap)))
1047 		return EXIT_FASTPATH_EXIT_HANDLED;
1048 
1049 	trace_kvm_entry(vcpu, run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT);
1050 
1051 	if (pi_test_on(&vt->pi_desc)) {
1052 		apic->send_IPI_self(POSTED_INTR_VECTOR);
1053 
1054 		if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) &
1055 			       APIC_VECTOR_MASK, &vt->pi_desc))
1056 			kvm_wait_lapic_expire(vcpu);
1057 	}
1058 
1059 	tdx_vcpu_enter_exit(vcpu);
1060 
1061 	if (vcpu->arch.host_debugctl & ~TDX_DEBUGCTL_PRESERVED)
1062 		update_debugctlmsr(vcpu->arch.host_debugctl);
1063 
1064 	tdx_load_host_xsave_state(vcpu);
1065 	tdx->guest_entered = true;
1066 
1067 	vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
1068 
1069 	if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG))
1070 		return EXIT_FASTPATH_NONE;
1071 
1072 	if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
1073 		return EXIT_FASTPATH_NONE;
1074 
1075 	if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
1076 		kvm_machine_check();
1077 
1078 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
1079 
1080 	if (unlikely(tdx_failed_vmentry(vcpu)))
1081 		return EXIT_FASTPATH_NONE;
1082 
1083 	return tdx_exit_handlers_fastpath(vcpu);
1084 }
1085 
tdx_inject_nmi(struct kvm_vcpu * vcpu)1086 void tdx_inject_nmi(struct kvm_vcpu *vcpu)
1087 {
1088 	++vcpu->stat.nmi_injections;
1089 	td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1);
1090 	/*
1091 	 * From KVM's perspective, NMI injection is completed right after
1092 	 * writing to PEND_NMI.  KVM doesn't care whether an NMI is injected by
1093 	 * the TDX module or not.
1094 	 */
1095 	vcpu->arch.nmi_injected = false;
1096 	/*
1097 	 * TDX doesn't support KVM to request NMI window exit.  If there is
1098 	 * still a pending vNMI, KVM is not able to inject it along with the
1099 	 * one pending in TDX module in a back-to-back way.  Since the previous
1100 	 * vNMI is still pending in TDX module, i.e. it has not been delivered
1101 	 * to TDX guest yet, it's OK to collapse the pending vNMI into the
1102 	 * previous one.  The guest is expected to handle all the NMI sources
1103 	 * when handling the first vNMI.
1104 	 */
1105 	vcpu->arch.nmi_pending = 0;
1106 }
1107 
tdx_handle_exception_nmi(struct kvm_vcpu * vcpu)1108 static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu)
1109 {
1110 	u32 intr_info = vmx_get_intr_info(vcpu);
1111 
1112 	/*
1113 	 * Machine checks are handled by handle_exception_irqoff(), or by
1114 	 * tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on
1115 	 * VM-Entry.  NMIs are handled by tdx_vcpu_enter_exit().
1116 	 */
1117 	if (is_nmi(intr_info) || is_machine_check(intr_info))
1118 		return 1;
1119 
1120 	vcpu->run->exit_reason = KVM_EXIT_EXCEPTION;
1121 	vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1122 	vcpu->run->ex.error_code = 0;
1123 
1124 	return 0;
1125 }
1126 
complete_hypercall_exit(struct kvm_vcpu * vcpu)1127 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
1128 {
1129 	tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret);
1130 	return 1;
1131 }
1132 
tdx_emulate_vmcall(struct kvm_vcpu * vcpu)1133 static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu)
1134 {
1135 	kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10);
1136 	kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11);
1137 	kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12);
1138 	kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13);
1139 	kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14);
1140 
1141 	return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit);
1142 }
1143 
1144 /*
1145  * Split into chunks and check interrupt pending between chunks.  This allows
1146  * for timely injection of interrupts to prevent issues with guest lockup
1147  * detection.
1148  */
1149 #define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024)
1150 static void __tdx_map_gpa(struct vcpu_tdx *tdx);
1151 
tdx_complete_vmcall_map_gpa(struct kvm_vcpu * vcpu)1152 static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu)
1153 {
1154 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1155 
1156 	if (vcpu->run->hypercall.ret) {
1157 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1158 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1159 		return 1;
1160 	}
1161 
1162 	tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN;
1163 	if (tdx->map_gpa_next >= tdx->map_gpa_end)
1164 		return 1;
1165 
1166 	/*
1167 	 * Stop processing the remaining part if there is a pending interrupt,
1168 	 * which could be qualified to deliver.  Skip checking pending RVI for
1169 	 * TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt().
1170 	 */
1171 	if (kvm_vcpu_has_events(vcpu)) {
1172 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY);
1173 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1174 		return 1;
1175 	}
1176 
1177 	__tdx_map_gpa(tdx);
1178 	return 0;
1179 }
1180 
__tdx_map_gpa(struct vcpu_tdx * tdx)1181 static void __tdx_map_gpa(struct vcpu_tdx *tdx)
1182 {
1183 	u64 gpa = tdx->map_gpa_next;
1184 	u64 size = tdx->map_gpa_end - tdx->map_gpa_next;
1185 
1186 	if (size > TDX_MAP_GPA_MAX_LEN)
1187 		size = TDX_MAP_GPA_MAX_LEN;
1188 
1189 	tdx->vcpu.run->exit_reason       = KVM_EXIT_HYPERCALL;
1190 	tdx->vcpu.run->hypercall.nr      = KVM_HC_MAP_GPA_RANGE;
1191 	/*
1192 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
1193 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
1194 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
1195 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
1196 	 */
1197 	tdx->vcpu.run->hypercall.ret = 0;
1198 	tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1199 	tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE;
1200 	tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ?
1201 					   KVM_MAP_GPA_RANGE_ENCRYPTED :
1202 					   KVM_MAP_GPA_RANGE_DECRYPTED;
1203 	tdx->vcpu.run->hypercall.flags   = KVM_EXIT_HYPERCALL_LONG_MODE;
1204 
1205 	tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa;
1206 }
1207 
tdx_map_gpa(struct kvm_vcpu * vcpu)1208 static int tdx_map_gpa(struct kvm_vcpu *vcpu)
1209 {
1210 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1211 	u64 gpa = tdx->vp_enter_args.r12;
1212 	u64 size = tdx->vp_enter_args.r13;
1213 	u64 ret;
1214 
1215 	/*
1216 	 * Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires
1217 	 * userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE
1218 	 * bit set.  This is a base call so it should always be supported, but
1219 	 * KVM has no way to ensure that userspace implements the GHCI correctly.
1220 	 * So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error
1221 	 * to the guest.
1222 	 */
1223 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
1224 		ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1225 		goto error;
1226 	}
1227 
1228 	if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) ||
1229 	    !kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) ||
1230 	    (vt_is_tdx_private_gpa(vcpu->kvm, gpa) !=
1231 	     vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) {
1232 		ret = TDVMCALL_STATUS_INVALID_OPERAND;
1233 		goto error;
1234 	}
1235 
1236 	if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) {
1237 		ret = TDVMCALL_STATUS_ALIGN_ERROR;
1238 		goto error;
1239 	}
1240 
1241 	tdx->map_gpa_end = gpa + size;
1242 	tdx->map_gpa_next = gpa;
1243 
1244 	__tdx_map_gpa(tdx);
1245 	return 0;
1246 
1247 error:
1248 	tdvmcall_set_return_code(vcpu, ret);
1249 	tdx->vp_enter_args.r11 = gpa;
1250 	return 1;
1251 }
1252 
tdx_report_fatal_error(struct kvm_vcpu * vcpu)1253 static int tdx_report_fatal_error(struct kvm_vcpu *vcpu)
1254 {
1255 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1256 	u64 *regs = vcpu->run->system_event.data;
1257 	u64 *module_regs = &tdx->vp_enter_args.r8;
1258 	int index = VCPU_REGS_RAX;
1259 
1260 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1261 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL;
1262 	vcpu->run->system_event.ndata = 16;
1263 
1264 	/* Dump 16 general-purpose registers to userspace in ascending order. */
1265 	regs[index++] = tdx->vp_enter_ret;
1266 	regs[index++] = tdx->vp_enter_args.rcx;
1267 	regs[index++] = tdx->vp_enter_args.rdx;
1268 	regs[index++] = tdx->vp_enter_args.rbx;
1269 	regs[index++] = 0;
1270 	regs[index++] = 0;
1271 	regs[index++] = tdx->vp_enter_args.rsi;
1272 	regs[index] = tdx->vp_enter_args.rdi;
1273 	for (index = 0; index < 8; index++)
1274 		regs[VCPU_REGS_R8 + index] = module_regs[index];
1275 
1276 	return 0;
1277 }
1278 
tdx_emulate_cpuid(struct kvm_vcpu * vcpu)1279 static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu)
1280 {
1281 	u32 eax, ebx, ecx, edx;
1282 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1283 
1284 	/* EAX and ECX for cpuid is stored in R12 and R13. */
1285 	eax = tdx->vp_enter_args.r12;
1286 	ecx = tdx->vp_enter_args.r13;
1287 
1288 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1289 
1290 	tdx->vp_enter_args.r12 = eax;
1291 	tdx->vp_enter_args.r13 = ebx;
1292 	tdx->vp_enter_args.r14 = ecx;
1293 	tdx->vp_enter_args.r15 = edx;
1294 
1295 	return 1;
1296 }
1297 
tdx_complete_pio_out(struct kvm_vcpu * vcpu)1298 static int tdx_complete_pio_out(struct kvm_vcpu *vcpu)
1299 {
1300 	vcpu->arch.pio.count = 0;
1301 	return 1;
1302 }
1303 
tdx_complete_pio_in(struct kvm_vcpu * vcpu)1304 static int tdx_complete_pio_in(struct kvm_vcpu *vcpu)
1305 {
1306 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1307 	unsigned long val = 0;
1308 	int ret;
1309 
1310 	ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size,
1311 					 vcpu->arch.pio.port, &val, 1);
1312 
1313 	WARN_ON_ONCE(!ret);
1314 
1315 	tdvmcall_set_return_val(vcpu, val);
1316 
1317 	return 1;
1318 }
1319 
tdx_emulate_io(struct kvm_vcpu * vcpu)1320 static int tdx_emulate_io(struct kvm_vcpu *vcpu)
1321 {
1322 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1323 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1324 	unsigned long val = 0;
1325 	unsigned int port;
1326 	u64 size, write;
1327 	int ret;
1328 
1329 	++vcpu->stat.io_exits;
1330 
1331 	size = tdx->vp_enter_args.r12;
1332 	write = tdx->vp_enter_args.r13;
1333 	port = tdx->vp_enter_args.r14;
1334 
1335 	if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) {
1336 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1337 		return 1;
1338 	}
1339 
1340 	if (write) {
1341 		val = tdx->vp_enter_args.r15;
1342 		ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1);
1343 	} else {
1344 		ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1);
1345 	}
1346 
1347 	if (!ret)
1348 		vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out :
1349 							   tdx_complete_pio_in;
1350 	else if (!write)
1351 		tdvmcall_set_return_val(vcpu, val);
1352 
1353 	return ret;
1354 }
1355 
tdx_complete_mmio_read(struct kvm_vcpu * vcpu)1356 static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu)
1357 {
1358 	unsigned long val = 0;
1359 	gpa_t gpa;
1360 	int size;
1361 
1362 	gpa = vcpu->mmio_fragments[0].gpa;
1363 	size = vcpu->mmio_fragments[0].len;
1364 
1365 	memcpy(&val, vcpu->run->mmio.data, size);
1366 	tdvmcall_set_return_val(vcpu, val);
1367 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1368 	return 1;
1369 }
1370 
tdx_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,int size,unsigned long val)1371 static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size,
1372 				 unsigned long val)
1373 {
1374 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
1375 		trace_kvm_fast_mmio(gpa);
1376 		return 0;
1377 	}
1378 
1379 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val);
1380 	if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1381 		return -EOPNOTSUPP;
1382 
1383 	return 0;
1384 }
1385 
tdx_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,int size)1386 static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size)
1387 {
1388 	unsigned long val;
1389 
1390 	if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1391 		return -EOPNOTSUPP;
1392 
1393 	tdvmcall_set_return_val(vcpu, val);
1394 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1395 	return 0;
1396 }
1397 
tdx_emulate_mmio(struct kvm_vcpu * vcpu)1398 static int tdx_emulate_mmio(struct kvm_vcpu *vcpu)
1399 {
1400 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1401 	int size, write, r;
1402 	unsigned long val;
1403 	gpa_t gpa;
1404 
1405 	size = tdx->vp_enter_args.r12;
1406 	write = tdx->vp_enter_args.r13;
1407 	gpa = tdx->vp_enter_args.r14;
1408 	val = write ? tdx->vp_enter_args.r15 : 0;
1409 
1410 	if (size != 1 && size != 2 && size != 4 && size != 8)
1411 		goto error;
1412 	if (write != 0 && write != 1)
1413 		goto error;
1414 
1415 	/*
1416 	 * TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to
1417 	 * do MMIO emulation for private GPA.
1418 	 */
1419 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) ||
1420 	    vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))
1421 		goto error;
1422 
1423 	gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
1424 
1425 	if (write)
1426 		r = tdx_mmio_write(vcpu, gpa, size, val);
1427 	else
1428 		r = tdx_mmio_read(vcpu, gpa, size);
1429 	if (!r)
1430 		/* Kernel completed device emulation. */
1431 		return 1;
1432 
1433 	/* Request the device emulation to userspace device model. */
1434 	vcpu->mmio_is_write = write;
1435 	if (!write)
1436 		vcpu->arch.complete_userspace_io = tdx_complete_mmio_read;
1437 
1438 	vcpu->run->mmio.phys_addr = gpa;
1439 	vcpu->run->mmio.len = size;
1440 	vcpu->run->mmio.is_write = write;
1441 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
1442 
1443 	if (write) {
1444 		memcpy(vcpu->run->mmio.data, &val, size);
1445 	} else {
1446 		vcpu->mmio_fragments[0].gpa = gpa;
1447 		vcpu->mmio_fragments[0].len = size;
1448 		trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL);
1449 	}
1450 	return 0;
1451 
1452 error:
1453 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1454 	return 1;
1455 }
1456 
tdx_complete_get_td_vm_call_info(struct kvm_vcpu * vcpu)1457 static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1458 {
1459 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1460 
1461 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret);
1462 
1463 	/*
1464 	 * For now, there is no TDVMCALL beyond GHCI base API supported by KVM
1465 	 * directly without the support from userspace, just set the value
1466 	 * returned from userspace.
1467 	 */
1468 	tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11;
1469 	tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12;
1470 	tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13;
1471 	tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14;
1472 
1473 	return 1;
1474 }
1475 
tdx_get_td_vm_call_info(struct kvm_vcpu * vcpu)1476 static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1477 {
1478 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1479 
1480 	switch (tdx->vp_enter_args.r12) {
1481 	case 0:
1482 		tdx->vp_enter_args.r11 = 0;
1483 		tdx->vp_enter_args.r12 = 0;
1484 		tdx->vp_enter_args.r13 = 0;
1485 		tdx->vp_enter_args.r14 = 0;
1486 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS);
1487 		return 1;
1488 	case 1:
1489 		vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12;
1490 		vcpu->run->exit_reason = KVM_EXIT_TDX;
1491 		vcpu->run->tdx.flags = 0;
1492 		vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO;
1493 		vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS;
1494 		vcpu->run->tdx.get_tdvmcall_info.r11 = 0;
1495 		vcpu->run->tdx.get_tdvmcall_info.r12 = 0;
1496 		vcpu->run->tdx.get_tdvmcall_info.r13 = 0;
1497 		vcpu->run->tdx.get_tdvmcall_info.r14 = 0;
1498 		vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info;
1499 		return 0;
1500 	default:
1501 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1502 		return 1;
1503 	}
1504 }
1505 
tdx_complete_simple(struct kvm_vcpu * vcpu)1506 static int tdx_complete_simple(struct kvm_vcpu *vcpu)
1507 {
1508 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret);
1509 	return 1;
1510 }
1511 
tdx_get_quote(struct kvm_vcpu * vcpu)1512 static int tdx_get_quote(struct kvm_vcpu *vcpu)
1513 {
1514 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1515 	u64 gpa = tdx->vp_enter_args.r12;
1516 	u64 size = tdx->vp_enter_args.r13;
1517 
1518 	/* The gpa of buffer must have shared bit set. */
1519 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1520 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1521 		return 1;
1522 	}
1523 
1524 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1525 	vcpu->run->tdx.flags = 0;
1526 	vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE;
1527 	vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1528 	vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1529 	vcpu->run->tdx.get_quote.size = size;
1530 
1531 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1532 
1533 	return 0;
1534 }
1535 
tdx_setup_event_notify_interrupt(struct kvm_vcpu * vcpu)1536 static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu)
1537 {
1538 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1539 	u64 vector = tdx->vp_enter_args.r12;
1540 
1541 	if (vector < 32 || vector > 255) {
1542 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1543 		return 1;
1544 	}
1545 
1546 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1547 	vcpu->run->tdx.flags = 0;
1548 	vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT;
1549 	vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1550 	vcpu->run->tdx.setup_event_notify.vector = vector;
1551 
1552 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1553 
1554 	return 0;
1555 }
1556 
handle_tdvmcall(struct kvm_vcpu * vcpu)1557 static int handle_tdvmcall(struct kvm_vcpu *vcpu)
1558 {
1559 	switch (tdvmcall_leaf(vcpu)) {
1560 	case TDVMCALL_MAP_GPA:
1561 		return tdx_map_gpa(vcpu);
1562 	case TDVMCALL_REPORT_FATAL_ERROR:
1563 		return tdx_report_fatal_error(vcpu);
1564 	case TDVMCALL_GET_TD_VM_CALL_INFO:
1565 		return tdx_get_td_vm_call_info(vcpu);
1566 	case TDVMCALL_GET_QUOTE:
1567 		return tdx_get_quote(vcpu);
1568 	case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
1569 		return tdx_setup_event_notify_interrupt(vcpu);
1570 	default:
1571 		break;
1572 	}
1573 
1574 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED);
1575 	return 1;
1576 }
1577 
tdx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int pgd_level)1578 void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level)
1579 {
1580 	u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 :
1581 			  TDX_SHARED_BIT_PWL_4;
1582 
1583 	if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm))
1584 		return;
1585 
1586 	td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa);
1587 }
1588 
tdx_unpin(struct kvm * kvm,struct page * page)1589 static void tdx_unpin(struct kvm *kvm, struct page *page)
1590 {
1591 	put_page(page);
1592 }
1593 
tdx_mem_page_aug(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1594 static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn,
1595 			    enum pg_level level, struct page *page)
1596 {
1597 	int tdx_level = pg_level_to_tdx_sept_level(level);
1598 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1599 	gpa_t gpa = gfn_to_gpa(gfn);
1600 	u64 entry, level_state;
1601 	u64 err;
1602 
1603 	err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state);
1604 	if (unlikely(tdx_operand_busy(err))) {
1605 		tdx_unpin(kvm, page);
1606 		return -EBUSY;
1607 	}
1608 
1609 	if (KVM_BUG_ON(err, kvm)) {
1610 		pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state);
1611 		tdx_unpin(kvm, page);
1612 		return -EIO;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 /*
1619  * KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the
1620  * callback tdx_gmem_post_populate() then maps pages into private memory.
1621  * through the a seamcall TDH.MEM.PAGE.ADD().  The SEAMCALL also requires the
1622  * private EPT structures for the page to have been built before, which is
1623  * done via kvm_tdp_map_page(). nr_premapped counts the number of pages that
1624  * were added to the EPT structures but not added with TDH.MEM.PAGE.ADD().
1625  * The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there
1626  * are no half-initialized shared EPT pages.
1627  */
tdx_mem_page_record_premap_cnt(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1628 static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn,
1629 					  enum pg_level level, kvm_pfn_t pfn)
1630 {
1631 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1632 
1633 	if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm))
1634 		return -EINVAL;
1635 
1636 	/* nr_premapped will be decreased when tdh_mem_page_add() is called. */
1637 	atomic64_inc(&kvm_tdx->nr_premapped);
1638 	return 0;
1639 }
1640 
tdx_sept_set_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1641 static int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn,
1642 				     enum pg_level level, kvm_pfn_t pfn)
1643 {
1644 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1645 	struct page *page = pfn_to_page(pfn);
1646 
1647 	/* TODO: handle large pages. */
1648 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1649 		return -EINVAL;
1650 
1651 	/*
1652 	 * Because guest_memfd doesn't support page migration with
1653 	 * a_ops->migrate_folio (yet), no callback is triggered for KVM on page
1654 	 * migration.  Until guest_memfd supports page migration, prevent page
1655 	 * migration.
1656 	 * TODO: Once guest_memfd introduces callback on page migration,
1657 	 * implement it and remove get_page/put_page().
1658 	 */
1659 	get_page(page);
1660 
1661 	/*
1662 	 * Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching
1663 	 * barrier in tdx_td_finalize().
1664 	 */
1665 	smp_rmb();
1666 	if (likely(kvm_tdx->state == TD_STATE_RUNNABLE))
1667 		return tdx_mem_page_aug(kvm, gfn, level, page);
1668 
1669 	return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn);
1670 }
1671 
tdx_sept_drop_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1672 static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn,
1673 				      enum pg_level level, struct page *page)
1674 {
1675 	int tdx_level = pg_level_to_tdx_sept_level(level);
1676 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1677 	gpa_t gpa = gfn_to_gpa(gfn);
1678 	u64 err, entry, level_state;
1679 
1680 	/* TODO: handle large pages. */
1681 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1682 		return -EINVAL;
1683 
1684 	if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm))
1685 		return -EINVAL;
1686 
1687 	/*
1688 	 * When zapping private page, write lock is held. So no race condition
1689 	 * with other vcpu sept operation.
1690 	 * Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs.
1691 	 */
1692 	err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1693 				  &level_state);
1694 
1695 	if (unlikely(tdx_operand_busy(err))) {
1696 		/*
1697 		 * The second retry is expected to succeed after kicking off all
1698 		 * other vCPUs and prevent them from invoking TDH.VP.ENTER.
1699 		 */
1700 		tdx_no_vcpus_enter_start(kvm);
1701 		err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1702 					  &level_state);
1703 		tdx_no_vcpus_enter_stop(kvm);
1704 	}
1705 
1706 	if (KVM_BUG_ON(err, kvm)) {
1707 		pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state);
1708 		return -EIO;
1709 	}
1710 
1711 	err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page);
1712 
1713 	if (KVM_BUG_ON(err, kvm)) {
1714 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
1715 		return -EIO;
1716 	}
1717 	tdx_clear_page(page);
1718 	tdx_unpin(kvm, page);
1719 	return 0;
1720 }
1721 
tdx_sept_link_private_spt(struct kvm * kvm,gfn_t gfn,enum pg_level level,void * private_spt)1722 static int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn,
1723 				     enum pg_level level, void *private_spt)
1724 {
1725 	int tdx_level = pg_level_to_tdx_sept_level(level);
1726 	gpa_t gpa = gfn_to_gpa(gfn);
1727 	struct page *page = virt_to_page(private_spt);
1728 	u64 err, entry, level_state;
1729 
1730 	err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry,
1731 			       &level_state);
1732 	if (unlikely(tdx_operand_busy(err)))
1733 		return -EBUSY;
1734 
1735 	if (KVM_BUG_ON(err, kvm)) {
1736 		pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state);
1737 		return -EIO;
1738 	}
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * Check if the error returned from a SEPT zap SEAMCALL is due to that a page is
1745  * mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called
1746  * successfully.
1747  *
1748  * Since tdh_mem_sept_add() must have been invoked successfully before a
1749  * non-leaf entry present in the mirrored page table, the SEPT ZAP related
1750  * SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead
1751  * find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the
1752  * SEPT.
1753  *
1754  * Further check if the returned entry from SEPT walking is with RWX permissions
1755  * to filter out anything unexpected.
1756  *
1757  * Note: @level is pg_level, not the tdx_level. The tdx_level extracted from
1758  * level_state returned from a SEAMCALL error is the same as that passed into
1759  * the SEAMCALL.
1760  */
tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx * kvm_tdx,u64 err,u64 entry,int level)1761 static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err,
1762 					     u64 entry, int level)
1763 {
1764 	if (!err || kvm_tdx->state == TD_STATE_RUNNABLE)
1765 		return false;
1766 
1767 	if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX))
1768 		return false;
1769 
1770 	if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK)))
1771 		return false;
1772 
1773 	return true;
1774 }
1775 
tdx_sept_zap_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,struct page * page)1776 static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn,
1777 				     enum pg_level level, struct page *page)
1778 {
1779 	int tdx_level = pg_level_to_tdx_sept_level(level);
1780 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1781 	gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level);
1782 	u64 err, entry, level_state;
1783 
1784 	/* For now large page isn't supported yet. */
1785 	WARN_ON_ONCE(level != PG_LEVEL_4K);
1786 
1787 	err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1788 
1789 	if (unlikely(tdx_operand_busy(err))) {
1790 		/* After no vCPUs enter, the second retry is expected to succeed */
1791 		tdx_no_vcpus_enter_start(kvm);
1792 		err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1793 		tdx_no_vcpus_enter_stop(kvm);
1794 	}
1795 	if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) &&
1796 	    !KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) {
1797 		atomic64_dec(&kvm_tdx->nr_premapped);
1798 		tdx_unpin(kvm, page);
1799 		return 0;
1800 	}
1801 
1802 	if (KVM_BUG_ON(err, kvm)) {
1803 		pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state);
1804 		return -EIO;
1805 	}
1806 	return 1;
1807 }
1808 
1809 /*
1810  * Ensure shared and private EPTs to be flushed on all vCPUs.
1811  * tdh_mem_track() is the only caller that increases TD epoch. An increase in
1812  * the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are
1813  * running in guest mode with the value "N - 1".
1814  *
1815  * A successful execution of tdh_mem_track() ensures that vCPUs can only run in
1816  * guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch
1817  * being increased to "N + 1".
1818  *
1819  * Kicking off all vCPUs after that further results in no vCPUs can run in guest
1820  * mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g.
1821  * to increase TD epoch to "N + 2").
1822  *
1823  * TDX module will flush EPT on the next TD enter and make vCPUs to run in
1824  * guest mode with TD epoch value "N + 1".
1825  *
1826  * kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by
1827  * waiting empty IPI handler ack_kick().
1828  *
1829  * No action is required to the vCPUs being kicked off since the kicking off
1830  * occurs certainly after TD epoch increment and before the next
1831  * tdh_mem_track().
1832  */
tdx_track(struct kvm * kvm)1833 static void tdx_track(struct kvm *kvm)
1834 {
1835 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1836 	u64 err;
1837 
1838 	/* If TD isn't finalized, it's before any vcpu running. */
1839 	if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE))
1840 		return;
1841 
1842 	lockdep_assert_held_write(&kvm->mmu_lock);
1843 
1844 	err = tdh_mem_track(&kvm_tdx->td);
1845 	if (unlikely(tdx_operand_busy(err))) {
1846 		/* After no vCPUs enter, the second retry is expected to succeed */
1847 		tdx_no_vcpus_enter_start(kvm);
1848 		err = tdh_mem_track(&kvm_tdx->td);
1849 		tdx_no_vcpus_enter_stop(kvm);
1850 	}
1851 
1852 	if (KVM_BUG_ON(err, kvm))
1853 		pr_tdx_error(TDH_MEM_TRACK, err);
1854 
1855 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
1856 }
1857 
tdx_sept_free_private_spt(struct kvm * kvm,gfn_t gfn,enum pg_level level,void * private_spt)1858 static int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn,
1859 				     enum pg_level level, void *private_spt)
1860 {
1861 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1862 
1863 	/*
1864 	 * free_external_spt() is only called after hkid is freed when TD is
1865 	 * tearing down.
1866 	 * KVM doesn't (yet) zap page table pages in mirror page table while
1867 	 * TD is active, though guest pages mapped in mirror page table could be
1868 	 * zapped during TD is active, e.g. for shared <-> private conversion
1869 	 * and slot move/deletion.
1870 	 */
1871 	if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm))
1872 		return -EINVAL;
1873 
1874 	/*
1875 	 * The HKID assigned to this TD was already freed and cache was
1876 	 * already flushed. We don't have to flush again.
1877 	 */
1878 	return tdx_reclaim_page(virt_to_page(private_spt));
1879 }
1880 
tdx_sept_remove_private_spte(struct kvm * kvm,gfn_t gfn,enum pg_level level,kvm_pfn_t pfn)1881 static int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn,
1882 					enum pg_level level, kvm_pfn_t pfn)
1883 {
1884 	struct page *page = pfn_to_page(pfn);
1885 	int ret;
1886 
1887 	/*
1888 	 * HKID is released after all private pages have been removed, and set
1889 	 * before any might be populated. Warn if zapping is attempted when
1890 	 * there can't be anything populated in the private EPT.
1891 	 */
1892 	if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm))
1893 		return -EINVAL;
1894 
1895 	ret = tdx_sept_zap_private_spte(kvm, gfn, level, page);
1896 	if (ret <= 0)
1897 		return ret;
1898 
1899 	/*
1900 	 * TDX requires TLB tracking before dropping private page.  Do
1901 	 * it here, although it is also done later.
1902 	 */
1903 	tdx_track(kvm);
1904 
1905 	return tdx_sept_drop_private_spte(kvm, gfn, level, page);
1906 }
1907 
tdx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)1908 void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
1909 			   int trig_mode, int vector)
1910 {
1911 	struct kvm_vcpu *vcpu = apic->vcpu;
1912 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1913 
1914 	/* TDX supports only posted interrupt.  No lapic emulation. */
1915 	__vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector);
1916 
1917 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
1918 }
1919 
tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu * vcpu)1920 static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu)
1921 {
1922 	u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK;
1923 	u64 eq = vmx_get_exit_qual(vcpu);
1924 
1925 	if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION)
1926 		return false;
1927 
1928 	return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN);
1929 }
1930 
tdx_handle_ept_violation(struct kvm_vcpu * vcpu)1931 static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu)
1932 {
1933 	unsigned long exit_qual;
1934 	gpa_t gpa = to_tdx(vcpu)->exit_gpa;
1935 	bool local_retry = false;
1936 	int ret;
1937 
1938 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1939 		if (tdx_is_sept_violation_unexpected_pending(vcpu)) {
1940 			pr_warn("Guest access before accepting 0x%llx on vCPU %d\n",
1941 				gpa, vcpu->vcpu_id);
1942 			kvm_vm_dead(vcpu->kvm);
1943 			return -EIO;
1944 		}
1945 		/*
1946 		 * Always treat SEPT violations as write faults.  Ignore the
1947 		 * EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations.
1948 		 * TD private pages are always RWX in the SEPT tables,
1949 		 * i.e. they're always mapped writable.  Just as importantly,
1950 		 * treating SEPT violations as write faults is necessary to
1951 		 * avoid COW allocations, which will cause TDAUGPAGE failures
1952 		 * due to aliasing a single HPA to multiple GPAs.
1953 		 */
1954 		exit_qual = EPT_VIOLATION_ACC_WRITE;
1955 
1956 		/* Only private GPA triggers zero-step mitigation */
1957 		local_retry = true;
1958 	} else {
1959 		exit_qual = vmx_get_exit_qual(vcpu);
1960 		/*
1961 		 * EPT violation due to instruction fetch should never be
1962 		 * triggered from shared memory in TDX guest.  If such EPT
1963 		 * violation occurs, treat it as broken hardware.
1964 		 */
1965 		if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm))
1966 			return -EIO;
1967 	}
1968 
1969 	trace_kvm_page_fault(vcpu, gpa, exit_qual);
1970 
1971 	/*
1972 	 * To minimize TDH.VP.ENTER invocations, retry locally for private GPA
1973 	 * mapping in TDX.
1974 	 *
1975 	 * KVM may return RET_PF_RETRY for private GPA due to
1976 	 * - contentions when atomically updating SPTEs of the mirror page table
1977 	 * - in-progress GFN invalidation or memslot removal.
1978 	 * - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD,
1979 	 *   caused by contentions with TDH.VP.ENTER (with zero-step mitigation)
1980 	 *   or certain TDCALLs.
1981 	 *
1982 	 * If TDH.VP.ENTER is invoked more times than the threshold set by the
1983 	 * TDX module before KVM resolves the private GPA mapping, the TDX
1984 	 * module will activate zero-step mitigation during TDH.VP.ENTER. This
1985 	 * process acquires an SEPT tree lock in the TDX module, leading to
1986 	 * further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD
1987 	 * operations on other vCPUs.
1988 	 *
1989 	 * Breaking out of local retries for kvm_vcpu_has_events() is for
1990 	 * interrupt injection. kvm_vcpu_has_events() should not see pending
1991 	 * events for TDX. Since KVM can't determine if IRQs (or NMIs) are
1992 	 * blocked by TDs, false positives are inevitable i.e., KVM may re-enter
1993 	 * the guest even if the IRQ/NMI can't be delivered.
1994 	 *
1995 	 * Note: even without breaking out of local retries, zero-step
1996 	 * mitigation may still occur due to
1997 	 * - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT,
1998 	 * - a single RIP causing EPT violations for more GFNs than the
1999 	 *   threshold count.
2000 	 * This is safe, as triggering zero-step mitigation only introduces
2001 	 * contentions to page installation SEAMCALLs on other vCPUs, which will
2002 	 * handle retries locally in their EPT violation handlers.
2003 	 */
2004 	while (1) {
2005 		ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual);
2006 
2007 		if (ret != RET_PF_RETRY || !local_retry)
2008 			break;
2009 
2010 		if (kvm_vcpu_has_events(vcpu) || signal_pending(current))
2011 			break;
2012 
2013 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
2014 			ret = -EIO;
2015 			break;
2016 		}
2017 
2018 		cond_resched();
2019 	}
2020 	return ret;
2021 }
2022 
tdx_complete_emulated_msr(struct kvm_vcpu * vcpu,int err)2023 int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2024 {
2025 	if (err) {
2026 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
2027 		return 1;
2028 	}
2029 
2030 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ)
2031 		tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu));
2032 
2033 	return 1;
2034 }
2035 
2036 
tdx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t fastpath)2037 int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
2038 {
2039 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2040 	u64 vp_enter_ret = tdx->vp_enter_ret;
2041 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
2042 
2043 	if (fastpath != EXIT_FASTPATH_NONE)
2044 		return 1;
2045 
2046 	if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) {
2047 		KVM_BUG_ON(1, vcpu->kvm);
2048 		return -EIO;
2049 	}
2050 
2051 	/*
2052 	 * Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and
2053 	 * TDX_SEAMCALL_VMFAILINVALID.
2054 	 */
2055 	if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) {
2056 		KVM_BUG_ON(!kvm_rebooting, vcpu->kvm);
2057 		goto unhandled_exit;
2058 	}
2059 
2060 	if (unlikely(tdx_failed_vmentry(vcpu))) {
2061 		/*
2062 		 * If the guest state is protected, that means off-TD debug is
2063 		 * not enabled, TDX_NON_RECOVERABLE must be set.
2064 		 */
2065 		WARN_ON_ONCE(vcpu->arch.guest_state_protected &&
2066 				!(vp_enter_ret & TDX_NON_RECOVERABLE));
2067 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2068 		vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full;
2069 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2070 		return 0;
2071 	}
2072 
2073 	if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) &&
2074 		exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) {
2075 		kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret);
2076 		goto unhandled_exit;
2077 	}
2078 
2079 	WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT &&
2080 		     (vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS);
2081 
2082 	switch (exit_reason.basic) {
2083 	case EXIT_REASON_TRIPLE_FAULT:
2084 		vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2085 		vcpu->mmio_needed = 0;
2086 		return 0;
2087 	case EXIT_REASON_EXCEPTION_NMI:
2088 		return tdx_handle_exception_nmi(vcpu);
2089 	case EXIT_REASON_EXTERNAL_INTERRUPT:
2090 		++vcpu->stat.irq_exits;
2091 		return 1;
2092 	case EXIT_REASON_CPUID:
2093 		return tdx_emulate_cpuid(vcpu);
2094 	case EXIT_REASON_HLT:
2095 		return kvm_emulate_halt_noskip(vcpu);
2096 	case EXIT_REASON_TDCALL:
2097 		return handle_tdvmcall(vcpu);
2098 	case EXIT_REASON_VMCALL:
2099 		return tdx_emulate_vmcall(vcpu);
2100 	case EXIT_REASON_IO_INSTRUCTION:
2101 		return tdx_emulate_io(vcpu);
2102 	case EXIT_REASON_MSR_READ:
2103 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2104 		return kvm_emulate_rdmsr(vcpu);
2105 	case EXIT_REASON_MSR_WRITE:
2106 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2107 		kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u);
2108 		kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32);
2109 		return kvm_emulate_wrmsr(vcpu);
2110 	case EXIT_REASON_EPT_MISCONFIG:
2111 		return tdx_emulate_mmio(vcpu);
2112 	case EXIT_REASON_EPT_VIOLATION:
2113 		return tdx_handle_ept_violation(vcpu);
2114 	case EXIT_REASON_OTHER_SMI:
2115 		/*
2116 		 * Unlike VMX, SMI in SEAM non-root mode (i.e. when
2117 		 * TD guest vCPU is running) will cause VM exit to TDX module,
2118 		 * then SEAMRET to KVM.  Once it exits to KVM, SMI is delivered
2119 		 * and handled by kernel handler right away.
2120 		 *
2121 		 * The Other SMI exit can also be caused by the SEAM non-root
2122 		 * machine check delivered via Machine Check System Management
2123 		 * Interrupt (MSMI), but it has already been handled by the
2124 		 * kernel machine check handler, i.e., the memory page has been
2125 		 * marked as poisoned and it won't be freed to the free list
2126 		 * when the TDX guest is terminated (the TDX module marks the
2127 		 * guest as dead and prevent it from further running when
2128 		 * machine check happens in SEAM non-root).
2129 		 *
2130 		 * - A MSMI will not reach here, it's handled as non_recoverable
2131 		 *   case above.
2132 		 * - If it's not an MSMI, no need to do anything here.
2133 		 */
2134 		return 1;
2135 	default:
2136 		break;
2137 	}
2138 
2139 unhandled_exit:
2140 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2141 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2142 	vcpu->run->internal.ndata = 2;
2143 	vcpu->run->internal.data[0] = vp_enter_ret;
2144 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2145 	return 0;
2146 }
2147 
tdx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)2148 void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
2149 		u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
2150 {
2151 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2152 
2153 	*reason = tdx->vt.exit_reason.full;
2154 	if (*reason != -1u) {
2155 		*info1 = vmx_get_exit_qual(vcpu);
2156 		*info2 = tdx->ext_exit_qualification;
2157 		*intr_info = vmx_get_intr_info(vcpu);
2158 	} else {
2159 		*info1 = 0;
2160 		*info2 = 0;
2161 		*intr_info = 0;
2162 	}
2163 
2164 	*error_code = 0;
2165 }
2166 
tdx_has_emulated_msr(u32 index)2167 bool tdx_has_emulated_msr(u32 index)
2168 {
2169 	switch (index) {
2170 	case MSR_IA32_UCODE_REV:
2171 	case MSR_IA32_ARCH_CAPABILITIES:
2172 	case MSR_IA32_POWER_CTL:
2173 	case MSR_IA32_CR_PAT:
2174 	case MSR_MTRRcap:
2175 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
2176 	case MSR_MTRRdefType:
2177 	case MSR_IA32_TSC_DEADLINE:
2178 	case MSR_IA32_MISC_ENABLE:
2179 	case MSR_PLATFORM_INFO:
2180 	case MSR_MISC_FEATURES_ENABLES:
2181 	case MSR_IA32_APICBASE:
2182 	case MSR_EFER:
2183 	case MSR_IA32_FEAT_CTL:
2184 	case MSR_IA32_MCG_CAP:
2185 	case MSR_IA32_MCG_STATUS:
2186 	case MSR_IA32_MCG_CTL:
2187 	case MSR_IA32_MCG_EXT_CTL:
2188 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2189 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
2190 		/* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */
2191 	case MSR_KVM_POLL_CONTROL:
2192 		return true;
2193 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2194 		/*
2195 		 * x2APIC registers that are virtualized by the CPU can't be
2196 		 * emulated, KVM doesn't have access to the virtual APIC page.
2197 		 */
2198 		switch (index) {
2199 		case X2APIC_MSR(APIC_TASKPRI):
2200 		case X2APIC_MSR(APIC_PROCPRI):
2201 		case X2APIC_MSR(APIC_EOI):
2202 		case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR):
2203 		case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR):
2204 		case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR):
2205 			return false;
2206 		default:
2207 			return true;
2208 		}
2209 	default:
2210 		return false;
2211 	}
2212 }
2213 
tdx_is_read_only_msr(u32 index)2214 static bool tdx_is_read_only_msr(u32 index)
2215 {
2216 	return  index == MSR_IA32_APICBASE || index == MSR_EFER ||
2217 		index == MSR_IA32_FEAT_CTL;
2218 }
2219 
tdx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2220 int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2221 {
2222 	switch (msr->index) {
2223 	case MSR_IA32_FEAT_CTL:
2224 		/*
2225 		 * MCE and MCA are advertised via cpuid. Guest kernel could
2226 		 * check if LMCE is enabled or not.
2227 		 */
2228 		msr->data = FEAT_CTL_LOCKED;
2229 		if (vcpu->arch.mcg_cap & MCG_LMCE_P)
2230 			msr->data |= FEAT_CTL_LMCE_ENABLED;
2231 		return 0;
2232 	case MSR_IA32_MCG_EXT_CTL:
2233 		if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P))
2234 			return 1;
2235 		msr->data = vcpu->arch.mcg_ext_ctl;
2236 		return 0;
2237 	default:
2238 		if (!tdx_has_emulated_msr(msr->index))
2239 			return 1;
2240 
2241 		return kvm_get_msr_common(vcpu, msr);
2242 	}
2243 }
2244 
tdx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2245 int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2246 {
2247 	switch (msr->index) {
2248 	case MSR_IA32_MCG_EXT_CTL:
2249 		if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) ||
2250 		    (msr->data & ~MCG_EXT_CTL_LMCE_EN))
2251 			return 1;
2252 		vcpu->arch.mcg_ext_ctl = msr->data;
2253 		return 0;
2254 	default:
2255 		if (tdx_is_read_only_msr(msr->index))
2256 			return 1;
2257 
2258 		if (!tdx_has_emulated_msr(msr->index))
2259 			return 1;
2260 
2261 		return kvm_set_msr_common(vcpu, msr);
2262 	}
2263 }
2264 
tdx_get_capabilities(struct kvm_tdx_cmd * cmd)2265 static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd)
2266 {
2267 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2268 	struct kvm_tdx_capabilities __user *user_caps;
2269 	struct kvm_tdx_capabilities *caps = NULL;
2270 	u32 nr_user_entries;
2271 	int ret = 0;
2272 
2273 	/* flags is reserved for future use */
2274 	if (cmd->flags)
2275 		return -EINVAL;
2276 
2277 	caps = kzalloc(sizeof(*caps) +
2278 		       sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config,
2279 		       GFP_KERNEL);
2280 	if (!caps)
2281 		return -ENOMEM;
2282 
2283 	user_caps = u64_to_user_ptr(cmd->data);
2284 	if (get_user(nr_user_entries, &user_caps->cpuid.nent)) {
2285 		ret = -EFAULT;
2286 		goto out;
2287 	}
2288 
2289 	if (nr_user_entries < td_conf->num_cpuid_config) {
2290 		ret = -E2BIG;
2291 		goto out;
2292 	}
2293 
2294 	ret = init_kvm_tdx_caps(td_conf, caps);
2295 	if (ret)
2296 		goto out;
2297 
2298 	if (copy_to_user(user_caps, caps, sizeof(*caps))) {
2299 		ret = -EFAULT;
2300 		goto out;
2301 	}
2302 
2303 	if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries,
2304 			 caps->cpuid.nent *
2305 			 sizeof(caps->cpuid.entries[0])))
2306 		ret = -EFAULT;
2307 
2308 out:
2309 	/* kfree() accepts NULL. */
2310 	kfree(caps);
2311 	return ret;
2312 }
2313 
2314 /*
2315  * KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is
2316  * similar to TDX's GPAW. Use this field as the interface for userspace to
2317  * configure the GPAW and EPT level for TDs.
2318  *
2319  * Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level
2320  * 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always
2321  * supported. Value 52 is only supported when the platform supports 5 level
2322  * EPT.
2323  */
setup_tdparams_eptp_controls(struct kvm_cpuid2 * cpuid,struct td_params * td_params)2324 static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid,
2325 					struct td_params *td_params)
2326 {
2327 	const struct kvm_cpuid_entry2 *entry;
2328 	int guest_pa;
2329 
2330 	entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0);
2331 	if (!entry)
2332 		return -EINVAL;
2333 
2334 	guest_pa = tdx_get_guest_phys_addr_bits(entry->eax);
2335 
2336 	if (guest_pa != 48 && guest_pa != 52)
2337 		return -EINVAL;
2338 
2339 	if (guest_pa == 52 && !cpu_has_vmx_ept_5levels())
2340 		return -EINVAL;
2341 
2342 	td_params->eptp_controls = VMX_EPTP_MT_WB;
2343 	if (guest_pa == 52) {
2344 		td_params->eptp_controls |= VMX_EPTP_PWL_5;
2345 		td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW;
2346 	} else {
2347 		td_params->eptp_controls |= VMX_EPTP_PWL_4;
2348 	}
2349 
2350 	return 0;
2351 }
2352 
setup_tdparams_cpuids(struct kvm_cpuid2 * cpuid,struct td_params * td_params)2353 static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid,
2354 				 struct td_params *td_params)
2355 {
2356 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2357 	const struct kvm_cpuid_entry2 *entry;
2358 	struct tdx_cpuid_value *value;
2359 	int i, copy_cnt = 0;
2360 
2361 	/*
2362 	 * td_params.cpuid_values: The number and the order of cpuid_value must
2363 	 * be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs}
2364 	 * It's assumed that td_params was zeroed.
2365 	 */
2366 	for (i = 0; i < td_conf->num_cpuid_config; i++) {
2367 		struct kvm_cpuid_entry2 tmp;
2368 
2369 		td_init_cpuid_entry2(&tmp, i);
2370 
2371 		entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent,
2372 					      tmp.function, tmp.index);
2373 		if (!entry)
2374 			continue;
2375 
2376 		if (tdx_unsupported_cpuid(entry))
2377 			return -EINVAL;
2378 
2379 		copy_cnt++;
2380 
2381 		value = &td_params->cpuid_values[i];
2382 		value->eax = entry->eax;
2383 		value->ebx = entry->ebx;
2384 		value->ecx = entry->ecx;
2385 		value->edx = entry->edx;
2386 
2387 		/*
2388 		 * TDX module does not accept nonzero bits 16..23 for the
2389 		 * CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls().
2390 		 */
2391 		if (tmp.function == 0x80000008)
2392 			value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0);
2393 	}
2394 
2395 	/*
2396 	 * Rely on the TDX module to reject invalid configuration, but it can't
2397 	 * check of leafs that don't have a proper slot in td_params->cpuid_values
2398 	 * to stick then. So fail if there were entries that didn't get copied to
2399 	 * td_params.
2400 	 */
2401 	if (copy_cnt != cpuid->nent)
2402 		return -EINVAL;
2403 
2404 	return 0;
2405 }
2406 
setup_tdparams(struct kvm * kvm,struct td_params * td_params,struct kvm_tdx_init_vm * init_vm)2407 static int setup_tdparams(struct kvm *kvm, struct td_params *td_params,
2408 			struct kvm_tdx_init_vm *init_vm)
2409 {
2410 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2411 	struct kvm_cpuid2 *cpuid = &init_vm->cpuid;
2412 	int ret;
2413 
2414 	if (kvm->created_vcpus)
2415 		return -EBUSY;
2416 
2417 	if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf))
2418 		return -EINVAL;
2419 
2420 	if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf))
2421 		return -EINVAL;
2422 
2423 	td_params->max_vcpus = kvm->max_vcpus;
2424 	td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1;
2425 	td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1;
2426 
2427 	td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD;
2428 	td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz);
2429 
2430 	ret = setup_tdparams_eptp_controls(cpuid, td_params);
2431 	if (ret)
2432 		return ret;
2433 
2434 	ret = setup_tdparams_cpuids(cpuid, td_params);
2435 	if (ret)
2436 		return ret;
2437 
2438 #define MEMCPY_SAME_SIZE(dst, src)				\
2439 	do {							\
2440 		BUILD_BUG_ON(sizeof(dst) != sizeof(src));	\
2441 		memcpy((dst), (src), sizeof(dst));		\
2442 	} while (0)
2443 
2444 	MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid);
2445 	MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner);
2446 	MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig);
2447 
2448 	return 0;
2449 }
2450 
__tdx_td_init(struct kvm * kvm,struct td_params * td_params,u64 * seamcall_err)2451 static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params,
2452 			 u64 *seamcall_err)
2453 {
2454 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2455 	cpumask_var_t packages;
2456 	struct page **tdcs_pages = NULL;
2457 	struct page *tdr_page;
2458 	int ret, i;
2459 	u64 err, rcx;
2460 
2461 	*seamcall_err = 0;
2462 	ret = tdx_guest_keyid_alloc();
2463 	if (ret < 0)
2464 		return ret;
2465 	kvm_tdx->hkid = ret;
2466 	kvm_tdx->misc_cg = get_current_misc_cg();
2467 	ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
2468 	if (ret)
2469 		goto free_hkid;
2470 
2471 	ret = -ENOMEM;
2472 
2473 	atomic_inc(&nr_configured_hkid);
2474 
2475 	tdr_page = alloc_page(GFP_KERNEL);
2476 	if (!tdr_page)
2477 		goto free_hkid;
2478 
2479 	kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE;
2480 	/* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */
2481 	kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1;
2482 	tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages),
2483 			     GFP_KERNEL | __GFP_ZERO);
2484 	if (!tdcs_pages)
2485 		goto free_tdr;
2486 
2487 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2488 		tdcs_pages[i] = alloc_page(GFP_KERNEL);
2489 		if (!tdcs_pages[i])
2490 			goto free_tdcs;
2491 	}
2492 
2493 	if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
2494 		goto free_tdcs;
2495 
2496 	cpus_read_lock();
2497 
2498 	/*
2499 	 * Need at least one CPU of the package to be online in order to
2500 	 * program all packages for host key id.  Check it.
2501 	 */
2502 	for_each_present_cpu(i)
2503 		cpumask_set_cpu(topology_physical_package_id(i), packages);
2504 	for_each_online_cpu(i)
2505 		cpumask_clear_cpu(topology_physical_package_id(i), packages);
2506 	if (!cpumask_empty(packages)) {
2507 		ret = -EIO;
2508 		/*
2509 		 * Because it's hard for human operator to figure out the
2510 		 * reason, warn it.
2511 		 */
2512 #define MSG_ALLPKG	"All packages need to have online CPU to create TD. Online CPU and retry.\n"
2513 		pr_warn_ratelimited(MSG_ALLPKG);
2514 		goto free_packages;
2515 	}
2516 
2517 	/*
2518 	 * TDH.MNG.CREATE tries to grab the global TDX module and fails
2519 	 * with TDX_OPERAND_BUSY when it fails to grab.  Take the global
2520 	 * lock to prevent it from failure.
2521 	 */
2522 	mutex_lock(&tdx_lock);
2523 	kvm_tdx->td.tdr_page = tdr_page;
2524 	err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid);
2525 	mutex_unlock(&tdx_lock);
2526 
2527 	if (err == TDX_RND_NO_ENTROPY) {
2528 		ret = -EAGAIN;
2529 		goto free_packages;
2530 	}
2531 
2532 	if (WARN_ON_ONCE(err)) {
2533 		pr_tdx_error(TDH_MNG_CREATE, err);
2534 		ret = -EIO;
2535 		goto free_packages;
2536 	}
2537 
2538 	for_each_online_cpu(i) {
2539 		int pkg = topology_physical_package_id(i);
2540 
2541 		if (cpumask_test_and_set_cpu(pkg, packages))
2542 			continue;
2543 
2544 		/*
2545 		 * Program the memory controller in the package with an
2546 		 * encryption key associated to a TDX private host key id
2547 		 * assigned to this TDR.  Concurrent operations on same memory
2548 		 * controller results in TDX_OPERAND_BUSY. No locking needed
2549 		 * beyond the cpus_read_lock() above as it serializes against
2550 		 * hotplug and the first online CPU of the package is always
2551 		 * used. We never have two CPUs in the same socket trying to
2552 		 * program the key.
2553 		 */
2554 		ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config,
2555 				      kvm_tdx, true);
2556 		if (ret)
2557 			break;
2558 	}
2559 	cpus_read_unlock();
2560 	free_cpumask_var(packages);
2561 	if (ret) {
2562 		i = 0;
2563 		goto teardown;
2564 	}
2565 
2566 	kvm_tdx->td.tdcs_pages = tdcs_pages;
2567 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2568 		err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]);
2569 		if (err == TDX_RND_NO_ENTROPY) {
2570 			/* Here it's hard to allow userspace to retry. */
2571 			ret = -EAGAIN;
2572 			goto teardown;
2573 		}
2574 		if (WARN_ON_ONCE(err)) {
2575 			pr_tdx_error(TDH_MNG_ADDCX, err);
2576 			ret = -EIO;
2577 			goto teardown;
2578 		}
2579 	}
2580 
2581 	err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx);
2582 	if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) {
2583 		/*
2584 		 * Because a user gives operands, don't warn.
2585 		 * Return a hint to the user because it's sometimes hard for the
2586 		 * user to figure out which operand is invalid.  SEAMCALL status
2587 		 * code includes which operand caused invalid operand error.
2588 		 */
2589 		*seamcall_err = err;
2590 		ret = -EINVAL;
2591 		goto teardown;
2592 	} else if (WARN_ON_ONCE(err)) {
2593 		pr_tdx_error_1(TDH_MNG_INIT, err, rcx);
2594 		ret = -EIO;
2595 		goto teardown;
2596 	}
2597 
2598 	return 0;
2599 
2600 	/*
2601 	 * The sequence for freeing resources from a partially initialized TD
2602 	 * varies based on where in the initialization flow failure occurred.
2603 	 * Simply use the full teardown and destroy, which naturally play nice
2604 	 * with partial initialization.
2605 	 */
2606 teardown:
2607 	/* Only free pages not yet added, so start at 'i' */
2608 	for (; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2609 		if (tdcs_pages[i]) {
2610 			__free_page(tdcs_pages[i]);
2611 			tdcs_pages[i] = NULL;
2612 		}
2613 	}
2614 	if (!kvm_tdx->td.tdcs_pages)
2615 		kfree(tdcs_pages);
2616 
2617 	tdx_mmu_release_hkid(kvm);
2618 	tdx_reclaim_td_control_pages(kvm);
2619 
2620 	return ret;
2621 
2622 free_packages:
2623 	cpus_read_unlock();
2624 	free_cpumask_var(packages);
2625 
2626 free_tdcs:
2627 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2628 		if (tdcs_pages[i])
2629 			__free_page(tdcs_pages[i]);
2630 	}
2631 	kfree(tdcs_pages);
2632 	kvm_tdx->td.tdcs_pages = NULL;
2633 
2634 free_tdr:
2635 	if (tdr_page)
2636 		__free_page(tdr_page);
2637 	kvm_tdx->td.tdr_page = 0;
2638 
2639 free_hkid:
2640 	tdx_hkid_free(kvm_tdx);
2641 
2642 	return ret;
2643 }
2644 
tdx_td_metadata_field_read(struct kvm_tdx * tdx,u64 field_id,u64 * data)2645 static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id,
2646 				      u64 *data)
2647 {
2648 	u64 err;
2649 
2650 	err = tdh_mng_rd(&tdx->td, field_id, data);
2651 
2652 	return err;
2653 }
2654 
2655 #define TDX_MD_UNREADABLE_LEAF_MASK	GENMASK(30, 7)
2656 #define TDX_MD_UNREADABLE_SUBLEAF_MASK	GENMASK(31, 7)
2657 
tdx_read_cpuid(struct kvm_vcpu * vcpu,u32 leaf,u32 sub_leaf,bool sub_leaf_set,int * entry_index,struct kvm_cpuid_entry2 * out)2658 static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf,
2659 			  bool sub_leaf_set, int *entry_index,
2660 			  struct kvm_cpuid_entry2 *out)
2661 {
2662 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2663 	u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES;
2664 	u64 ebx_eax, edx_ecx;
2665 	u64 err = 0;
2666 
2667 	if (sub_leaf > 0b1111111)
2668 		return -EINVAL;
2669 
2670 	if (*entry_index >= KVM_MAX_CPUID_ENTRIES)
2671 		return -EINVAL;
2672 
2673 	if (leaf & TDX_MD_UNREADABLE_LEAF_MASK ||
2674 	    sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK)
2675 		return -EINVAL;
2676 
2677 	/*
2678 	 * bit 23:17, REVSERVED: reserved, must be 0;
2679 	 * bit 16,    LEAF_31: leaf number bit 31;
2680 	 * bit 15:9,  LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are
2681 	 *                      implicitly 0;
2682 	 * bit 8,     SUBLEAF_NA: sub-leaf not applicable flag;
2683 	 * bit 7:1,   SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1,
2684 	 *                         the SUBLEAF_6_0 is all-1.
2685 	 *                         sub-leaf bits 31:7 are implicitly 0;
2686 	 * bit 0,     ELEMENT_I: Element index within field;
2687 	 */
2688 	field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16;
2689 	field_id |= (leaf & 0x7f) << 9;
2690 	if (sub_leaf_set)
2691 		field_id |= (sub_leaf & 0x7f) << 1;
2692 	else
2693 		field_id |= 0x1fe;
2694 
2695 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax);
2696 	if (err) //TODO check for specific errors
2697 		goto err_out;
2698 
2699 	out->eax = (u32) ebx_eax;
2700 	out->ebx = (u32) (ebx_eax >> 32);
2701 
2702 	field_id++;
2703 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx);
2704 	/*
2705 	 * It's weird that reading edx_ecx fails while reading ebx_eax
2706 	 * succeeded.
2707 	 */
2708 	if (WARN_ON_ONCE(err))
2709 		goto err_out;
2710 
2711 	out->ecx = (u32) edx_ecx;
2712 	out->edx = (u32) (edx_ecx >> 32);
2713 
2714 	out->function = leaf;
2715 	out->index = sub_leaf;
2716 	out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0;
2717 
2718 	/*
2719 	 * Work around missing support on old TDX modules, fetch
2720 	 * guest maxpa from gfn_direct_bits.
2721 	 */
2722 	if (leaf == 0x80000008) {
2723 		gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
2724 		unsigned int g_maxpa = __ffs(gpa_bits) + 1;
2725 
2726 		out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa);
2727 	}
2728 
2729 	(*entry_index)++;
2730 
2731 	return 0;
2732 
2733 err_out:
2734 	out->eax = 0;
2735 	out->ebx = 0;
2736 	out->ecx = 0;
2737 	out->edx = 0;
2738 
2739 	return -EIO;
2740 }
2741 
tdx_td_init(struct kvm * kvm,struct kvm_tdx_cmd * cmd)2742 static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2743 {
2744 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2745 	struct kvm_tdx_init_vm *init_vm;
2746 	struct td_params *td_params = NULL;
2747 	int ret;
2748 
2749 	BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid));
2750 	BUILD_BUG_ON(sizeof(struct td_params) != 1024);
2751 
2752 	if (kvm_tdx->state != TD_STATE_UNINITIALIZED)
2753 		return -EINVAL;
2754 
2755 	if (cmd->flags)
2756 		return -EINVAL;
2757 
2758 	init_vm = kmalloc(sizeof(*init_vm) +
2759 			  sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES,
2760 			  GFP_KERNEL);
2761 	if (!init_vm)
2762 		return -ENOMEM;
2763 
2764 	if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) {
2765 		ret = -EFAULT;
2766 		goto out;
2767 	}
2768 
2769 	if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) {
2770 		ret = -E2BIG;
2771 		goto out;
2772 	}
2773 
2774 	if (copy_from_user(init_vm->cpuid.entries,
2775 			   u64_to_user_ptr(cmd->data) + sizeof(*init_vm),
2776 			   flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) {
2777 		ret = -EFAULT;
2778 		goto out;
2779 	}
2780 
2781 	if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) {
2782 		ret = -EINVAL;
2783 		goto out;
2784 	}
2785 
2786 	if (init_vm->cpuid.padding) {
2787 		ret = -EINVAL;
2788 		goto out;
2789 	}
2790 
2791 	td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL);
2792 	if (!td_params) {
2793 		ret = -ENOMEM;
2794 		goto out;
2795 	}
2796 
2797 	ret = setup_tdparams(kvm, td_params, init_vm);
2798 	if (ret)
2799 		goto out;
2800 
2801 	ret = __tdx_td_init(kvm, td_params, &cmd->hw_error);
2802 	if (ret)
2803 		goto out;
2804 
2805 	kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET);
2806 	kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER);
2807 	kvm_tdx->attributes = td_params->attributes;
2808 	kvm_tdx->xfam = td_params->xfam;
2809 
2810 	if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW)
2811 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5;
2812 	else
2813 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4;
2814 
2815 	kvm_tdx->state = TD_STATE_INITIALIZED;
2816 out:
2817 	/* kfree() accepts NULL. */
2818 	kfree(init_vm);
2819 	kfree(td_params);
2820 
2821 	return ret;
2822 }
2823 
tdx_flush_tlb_current(struct kvm_vcpu * vcpu)2824 void tdx_flush_tlb_current(struct kvm_vcpu *vcpu)
2825 {
2826 	/*
2827 	 * flush_tlb_current() is invoked when the first time for the vcpu to
2828 	 * run or when root of shared EPT is invalidated.
2829 	 * KVM only needs to flush shared EPT because the TDX module handles TLB
2830 	 * invalidation for private EPT in tdh_vp_enter();
2831 	 *
2832 	 * A single context invalidation for shared EPT can be performed here.
2833 	 * However, this single context invalidation requires the private EPTP
2834 	 * rather than the shared EPTP to flush shared EPT, as shared EPT uses
2835 	 * private EPTP as its ASID for TLB invalidation.
2836 	 *
2837 	 * To avoid reading back private EPTP, perform a global invalidation for
2838 	 * shared EPT instead to keep this function simple.
2839 	 */
2840 	ept_sync_global();
2841 }
2842 
tdx_flush_tlb_all(struct kvm_vcpu * vcpu)2843 void tdx_flush_tlb_all(struct kvm_vcpu *vcpu)
2844 {
2845 	/*
2846 	 * TDX has called tdx_track() in tdx_sept_remove_private_spte() to
2847 	 * ensure that private EPT will be flushed on the next TD enter. No need
2848 	 * to call tdx_track() here again even when this callback is a result of
2849 	 * zapping private EPT.
2850 	 *
2851 	 * Due to the lack of the context to determine which EPT has been
2852 	 * affected by zapping, invoke invept() directly here for both shared
2853 	 * EPT and private EPT for simplicity, though it's not necessary for
2854 	 * private EPT.
2855 	 */
2856 	ept_sync_global();
2857 }
2858 
tdx_td_finalize(struct kvm * kvm,struct kvm_tdx_cmd * cmd)2859 static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2860 {
2861 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2862 
2863 	guard(mutex)(&kvm->slots_lock);
2864 
2865 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
2866 		return -EINVAL;
2867 	/*
2868 	 * Pages are pending for KVM_TDX_INIT_MEM_REGION to issue
2869 	 * TDH.MEM.PAGE.ADD().
2870 	 */
2871 	if (atomic64_read(&kvm_tdx->nr_premapped))
2872 		return -EINVAL;
2873 
2874 	cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td);
2875 	if (tdx_operand_busy(cmd->hw_error))
2876 		return -EBUSY;
2877 	if (KVM_BUG_ON(cmd->hw_error, kvm)) {
2878 		pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error);
2879 		return -EIO;
2880 	}
2881 
2882 	kvm_tdx->state = TD_STATE_RUNNABLE;
2883 	/* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */
2884 	smp_wmb();
2885 	kvm->arch.pre_fault_allowed = true;
2886 	return 0;
2887 }
2888 
tdx_vm_ioctl(struct kvm * kvm,void __user * argp)2889 int tdx_vm_ioctl(struct kvm *kvm, void __user *argp)
2890 {
2891 	struct kvm_tdx_cmd tdx_cmd;
2892 	int r;
2893 
2894 	if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd)))
2895 		return -EFAULT;
2896 
2897 	/*
2898 	 * Userspace should never set hw_error. It is used to fill
2899 	 * hardware-defined error by the kernel.
2900 	 */
2901 	if (tdx_cmd.hw_error)
2902 		return -EINVAL;
2903 
2904 	mutex_lock(&kvm->lock);
2905 
2906 	switch (tdx_cmd.id) {
2907 	case KVM_TDX_CAPABILITIES:
2908 		r = tdx_get_capabilities(&tdx_cmd);
2909 		break;
2910 	case KVM_TDX_INIT_VM:
2911 		r = tdx_td_init(kvm, &tdx_cmd);
2912 		break;
2913 	case KVM_TDX_FINALIZE_VM:
2914 		r = tdx_td_finalize(kvm, &tdx_cmd);
2915 		break;
2916 	default:
2917 		r = -EINVAL;
2918 		goto out;
2919 	}
2920 
2921 	if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd)))
2922 		r = -EFAULT;
2923 
2924 out:
2925 	mutex_unlock(&kvm->lock);
2926 	return r;
2927 }
2928 
2929 /* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */
tdx_td_vcpu_init(struct kvm_vcpu * vcpu,u64 vcpu_rcx)2930 static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx)
2931 {
2932 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2933 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2934 	struct page *page;
2935 	int ret, i;
2936 	u64 err;
2937 
2938 	page = alloc_page(GFP_KERNEL);
2939 	if (!page)
2940 		return -ENOMEM;
2941 	tdx->vp.tdvpr_page = page;
2942 
2943 	tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages),
2944 			       	     GFP_KERNEL);
2945 	if (!tdx->vp.tdcx_pages) {
2946 		ret = -ENOMEM;
2947 		goto free_tdvpr;
2948 	}
2949 
2950 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2951 		page = alloc_page(GFP_KERNEL);
2952 		if (!page) {
2953 			ret = -ENOMEM;
2954 			goto free_tdcx;
2955 		}
2956 		tdx->vp.tdcx_pages[i] = page;
2957 	}
2958 
2959 	err = tdh_vp_create(&kvm_tdx->td, &tdx->vp);
2960 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2961 		ret = -EIO;
2962 		pr_tdx_error(TDH_VP_CREATE, err);
2963 		goto free_tdcx;
2964 	}
2965 
2966 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2967 		err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]);
2968 		if (KVM_BUG_ON(err, vcpu->kvm)) {
2969 			pr_tdx_error(TDH_VP_ADDCX, err);
2970 			/*
2971 			 * Pages already added are reclaimed by the vcpu_free
2972 			 * method, but the rest are freed here.
2973 			 */
2974 			for (; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2975 				__free_page(tdx->vp.tdcx_pages[i]);
2976 				tdx->vp.tdcx_pages[i] = NULL;
2977 			}
2978 			return -EIO;
2979 		}
2980 	}
2981 
2982 	err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id);
2983 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2984 		pr_tdx_error(TDH_VP_INIT, err);
2985 		return -EIO;
2986 	}
2987 
2988 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2989 
2990 	return 0;
2991 
2992 free_tdcx:
2993 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2994 		if (tdx->vp.tdcx_pages[i])
2995 			__free_page(tdx->vp.tdcx_pages[i]);
2996 		tdx->vp.tdcx_pages[i] = NULL;
2997 	}
2998 	kfree(tdx->vp.tdcx_pages);
2999 	tdx->vp.tdcx_pages = NULL;
3000 
3001 free_tdvpr:
3002 	if (tdx->vp.tdvpr_page)
3003 		__free_page(tdx->vp.tdvpr_page);
3004 	tdx->vp.tdvpr_page = 0;
3005 
3006 	return ret;
3007 }
3008 
3009 /* Sometimes reads multipple subleafs. Return how many enties were written. */
tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu * vcpu,u32 leaf,int * entry_index,struct kvm_cpuid_entry2 * output_e)3010 static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index,
3011 				   struct kvm_cpuid_entry2 *output_e)
3012 {
3013 	int sub_leaf = 0;
3014 	int ret;
3015 
3016 	/* First try without a subleaf */
3017 	ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e);
3018 
3019 	/* If success, or invalid leaf, just give up */
3020 	if (ret != -EIO)
3021 		return ret;
3022 
3023 	/*
3024 	 * If the try without a subleaf failed, try reading subleafs until
3025 	 * failure. The TDX module only supports 6 bits of subleaf index.
3026 	 */
3027 	while (1) {
3028 		/* Keep reading subleafs until there is a failure. */
3029 		if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e))
3030 			return !sub_leaf;
3031 
3032 		sub_leaf++;
3033 		output_e++;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
tdx_vcpu_get_cpuid(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3039 static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3040 {
3041 	struct kvm_cpuid2 __user *output, *td_cpuid;
3042 	int r = 0, i = 0, leaf;
3043 	u32 level;
3044 
3045 	output = u64_to_user_ptr(cmd->data);
3046 	td_cpuid = kzalloc(sizeof(*td_cpuid) +
3047 			sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES,
3048 			GFP_KERNEL);
3049 	if (!td_cpuid)
3050 		return -ENOMEM;
3051 
3052 	if (copy_from_user(td_cpuid, output, sizeof(*output))) {
3053 		r = -EFAULT;
3054 		goto out;
3055 	}
3056 
3057 	/* Read max CPUID for normal range */
3058 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) {
3059 		r = -EIO;
3060 		goto out;
3061 	}
3062 	level = td_cpuid->entries[0].eax;
3063 
3064 	for (leaf = 1; leaf <= level; leaf++)
3065 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3066 
3067 	/* Read max CPUID for extended range */
3068 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) {
3069 		r = -EIO;
3070 		goto out;
3071 	}
3072 	level = td_cpuid->entries[i - 1].eax;
3073 
3074 	for (leaf = 0x80000001; leaf <= level; leaf++)
3075 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3076 
3077 	if (td_cpuid->nent < i)
3078 		r = -E2BIG;
3079 	td_cpuid->nent = i;
3080 
3081 	if (copy_to_user(output, td_cpuid, sizeof(*output))) {
3082 		r = -EFAULT;
3083 		goto out;
3084 	}
3085 
3086 	if (r == -E2BIG)
3087 		goto out;
3088 
3089 	if (copy_to_user(output->entries, td_cpuid->entries,
3090 			 td_cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
3091 		r = -EFAULT;
3092 
3093 out:
3094 	kfree(td_cpuid);
3095 
3096 	return r;
3097 }
3098 
tdx_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3099 static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3100 {
3101 	u64 apic_base;
3102 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3103 	int ret;
3104 
3105 	if (cmd->flags)
3106 		return -EINVAL;
3107 
3108 	if (tdx->state != VCPU_TD_STATE_UNINITIALIZED)
3109 		return -EINVAL;
3110 
3111 	/*
3112 	 * TDX requires X2APIC, userspace is responsible for configuring guest
3113 	 * CPUID accordingly.
3114 	 */
3115 	apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC |
3116 		(kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0);
3117 	if (kvm_apic_set_base(vcpu, apic_base, true))
3118 		return -EINVAL;
3119 
3120 	ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data);
3121 	if (ret)
3122 		return ret;
3123 
3124 	td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR);
3125 	td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc));
3126 	td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR);
3127 
3128 	tdx->state = VCPU_TD_STATE_INITIALIZED;
3129 
3130 	return 0;
3131 }
3132 
tdx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)3133 void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
3134 {
3135 	/*
3136 	 * Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all
3137 	 * INIT events.
3138 	 *
3139 	 * Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as
3140 	 * userspace needs to define the vCPU model before KVM can initialize
3141 	 * vCPU state, e.g. to enable x2APIC.
3142 	 */
3143 	WARN_ON_ONCE(init_event);
3144 }
3145 
3146 struct tdx_gmem_post_populate_arg {
3147 	struct kvm_vcpu *vcpu;
3148 	__u32 flags;
3149 };
3150 
tdx_gmem_post_populate(struct kvm * kvm,gfn_t gfn,kvm_pfn_t pfn,void __user * src,int order,void * _arg)3151 static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
3152 				  void __user *src, int order, void *_arg)
3153 {
3154 	u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS;
3155 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3156 	struct tdx_gmem_post_populate_arg *arg = _arg;
3157 	struct kvm_vcpu *vcpu = arg->vcpu;
3158 	gpa_t gpa = gfn_to_gpa(gfn);
3159 	u8 level = PG_LEVEL_4K;
3160 	struct page *src_page;
3161 	int ret, i;
3162 	u64 err, entry, level_state;
3163 
3164 	/*
3165 	 * Get the source page if it has been faulted in. Return failure if the
3166 	 * source page has been swapped out or unmapped in primary memory.
3167 	 */
3168 	ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page);
3169 	if (ret < 0)
3170 		return ret;
3171 	if (ret != 1)
3172 		return -ENOMEM;
3173 
3174 	ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level);
3175 	if (ret < 0)
3176 		goto out;
3177 
3178 	/*
3179 	 * The private mem cannot be zapped after kvm_tdp_map_page()
3180 	 * because all paths are covered by slots_lock and the
3181 	 * filemap invalidate lock.  Check that they are indeed enough.
3182 	 */
3183 	if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
3184 		scoped_guard(read_lock, &kvm->mmu_lock) {
3185 			if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) {
3186 				ret = -EIO;
3187 				goto out;
3188 			}
3189 		}
3190 	}
3191 
3192 	ret = 0;
3193 	err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn),
3194 			       src_page, &entry, &level_state);
3195 	if (err) {
3196 		ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO;
3197 		goto out;
3198 	}
3199 
3200 	if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm))
3201 		atomic64_dec(&kvm_tdx->nr_premapped);
3202 
3203 	if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) {
3204 		for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) {
3205 			err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry,
3206 					    &level_state);
3207 			if (err) {
3208 				ret = -EIO;
3209 				break;
3210 			}
3211 		}
3212 	}
3213 
3214 out:
3215 	put_page(src_page);
3216 	return ret;
3217 }
3218 
tdx_vcpu_init_mem_region(struct kvm_vcpu * vcpu,struct kvm_tdx_cmd * cmd)3219 static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3220 {
3221 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3222 	struct kvm *kvm = vcpu->kvm;
3223 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3224 	struct kvm_tdx_init_mem_region region;
3225 	struct tdx_gmem_post_populate_arg arg;
3226 	long gmem_ret;
3227 	int ret;
3228 
3229 	if (tdx->state != VCPU_TD_STATE_INITIALIZED)
3230 		return -EINVAL;
3231 
3232 	guard(mutex)(&kvm->slots_lock);
3233 
3234 	/* Once TD is finalized, the initial guest memory is fixed. */
3235 	if (kvm_tdx->state == TD_STATE_RUNNABLE)
3236 		return -EINVAL;
3237 
3238 	if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION)
3239 		return -EINVAL;
3240 
3241 	if (copy_from_user(&region, u64_to_user_ptr(cmd->data), sizeof(region)))
3242 		return -EFAULT;
3243 
3244 	if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) ||
3245 	    !region.nr_pages ||
3246 	    region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa ||
3247 	    !vt_is_tdx_private_gpa(kvm, region.gpa) ||
3248 	    !vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1))
3249 		return -EINVAL;
3250 
3251 	kvm_mmu_reload(vcpu);
3252 	ret = 0;
3253 	while (region.nr_pages) {
3254 		if (signal_pending(current)) {
3255 			ret = -EINTR;
3256 			break;
3257 		}
3258 
3259 		arg = (struct tdx_gmem_post_populate_arg) {
3260 			.vcpu = vcpu,
3261 			.flags = cmd->flags,
3262 		};
3263 		gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa),
3264 					     u64_to_user_ptr(region.source_addr),
3265 					     1, tdx_gmem_post_populate, &arg);
3266 		if (gmem_ret < 0) {
3267 			ret = gmem_ret;
3268 			break;
3269 		}
3270 
3271 		if (gmem_ret != 1) {
3272 			ret = -EIO;
3273 			break;
3274 		}
3275 
3276 		region.source_addr += PAGE_SIZE;
3277 		region.gpa += PAGE_SIZE;
3278 		region.nr_pages--;
3279 
3280 		cond_resched();
3281 	}
3282 
3283 	if (copy_to_user(u64_to_user_ptr(cmd->data), &region, sizeof(region)))
3284 		ret = -EFAULT;
3285 	return ret;
3286 }
3287 
tdx_vcpu_ioctl(struct kvm_vcpu * vcpu,void __user * argp)3288 int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
3289 {
3290 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
3291 	struct kvm_tdx_cmd cmd;
3292 	int ret;
3293 
3294 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
3295 		return -EINVAL;
3296 
3297 	if (copy_from_user(&cmd, argp, sizeof(cmd)))
3298 		return -EFAULT;
3299 
3300 	if (cmd.hw_error)
3301 		return -EINVAL;
3302 
3303 	switch (cmd.id) {
3304 	case KVM_TDX_INIT_VCPU:
3305 		ret = tdx_vcpu_init(vcpu, &cmd);
3306 		break;
3307 	case KVM_TDX_INIT_MEM_REGION:
3308 		ret = tdx_vcpu_init_mem_region(vcpu, &cmd);
3309 		break;
3310 	case KVM_TDX_GET_CPUID:
3311 		ret = tdx_vcpu_get_cpuid(vcpu, &cmd);
3312 		break;
3313 	default:
3314 		ret = -EINVAL;
3315 		break;
3316 	}
3317 
3318 	return ret;
3319 }
3320 
tdx_gmem_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)3321 int tdx_gmem_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
3322 {
3323 	return PG_LEVEL_4K;
3324 }
3325 
tdx_online_cpu(unsigned int cpu)3326 static int tdx_online_cpu(unsigned int cpu)
3327 {
3328 	unsigned long flags;
3329 	int r;
3330 
3331 	/* Sanity check CPU is already in post-VMXON */
3332 	WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE));
3333 
3334 	local_irq_save(flags);
3335 	r = tdx_cpu_enable();
3336 	local_irq_restore(flags);
3337 
3338 	return r;
3339 }
3340 
tdx_offline_cpu(unsigned int cpu)3341 static int tdx_offline_cpu(unsigned int cpu)
3342 {
3343 	int i;
3344 
3345 	/* No TD is running.  Allow any cpu to be offline. */
3346 	if (!atomic_read(&nr_configured_hkid))
3347 		return 0;
3348 
3349 	/*
3350 	 * In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to
3351 	 * call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory
3352 	 * controller with pconfig.  If we have active TDX HKID, refuse to
3353 	 * offline the last online cpu.
3354 	 */
3355 	for_each_online_cpu(i) {
3356 		/*
3357 		 * Found another online cpu on the same package.
3358 		 * Allow to offline.
3359 		 */
3360 		if (i != cpu && topology_physical_package_id(i) ==
3361 				topology_physical_package_id(cpu))
3362 			return 0;
3363 	}
3364 
3365 	/*
3366 	 * This is the last cpu of this package.  Don't offline it.
3367 	 *
3368 	 * Because it's hard for human operator to understand the
3369 	 * reason, warn it.
3370 	 */
3371 #define MSG_ALLPKG_ONLINE \
3372 	"TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n"
3373 	pr_warn_ratelimited(MSG_ALLPKG_ONLINE);
3374 	return -EBUSY;
3375 }
3376 
__do_tdx_cleanup(void)3377 static void __do_tdx_cleanup(void)
3378 {
3379 	/*
3380 	 * Once TDX module is initialized, it cannot be disabled and
3381 	 * re-initialized again w/o runtime update (which isn't
3382 	 * supported by kernel).  Only need to remove the cpuhp here.
3383 	 * The TDX host core code tracks TDX status and can handle
3384 	 * 'multiple enabling' scenario.
3385 	 */
3386 	WARN_ON_ONCE(!tdx_cpuhp_state);
3387 	cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state);
3388 	tdx_cpuhp_state = 0;
3389 }
3390 
__tdx_cleanup(void)3391 static void __tdx_cleanup(void)
3392 {
3393 	cpus_read_lock();
3394 	__do_tdx_cleanup();
3395 	cpus_read_unlock();
3396 }
3397 
__do_tdx_bringup(void)3398 static int __init __do_tdx_bringup(void)
3399 {
3400 	int r;
3401 
3402 	/*
3403 	 * TDX-specific cpuhp callback to call tdx_cpu_enable() on all
3404 	 * online CPUs before calling tdx_enable(), and on any new
3405 	 * going-online CPU to make sure it is ready for TDX guest.
3406 	 */
3407 	r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
3408 					 "kvm/cpu/tdx:online",
3409 					 tdx_online_cpu, tdx_offline_cpu);
3410 	if (r < 0)
3411 		return r;
3412 
3413 	tdx_cpuhp_state = r;
3414 
3415 	r = tdx_enable();
3416 	if (r)
3417 		__do_tdx_cleanup();
3418 
3419 	return r;
3420 }
3421 
__tdx_bringup(void)3422 static int __init __tdx_bringup(void)
3423 {
3424 	const struct tdx_sys_info_td_conf *td_conf;
3425 	int r, i;
3426 
3427 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) {
3428 		/*
3429 		 * Check if MSRs (tdx_uret_msrs) can be saved/restored
3430 		 * before returning to user space.
3431 		 *
3432 		 * this_cpu_ptr(user_return_msrs)->registered isn't checked
3433 		 * because the registration is done at vcpu runtime by
3434 		 * tdx_user_return_msr_update_cache().
3435 		 */
3436 		tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
3437 		if (tdx_uret_msrs[i].slot == -1) {
3438 			/* If any MSR isn't supported, it is a KVM bug */
3439 			pr_err("MSR %x isn't included by kvm_find_user_return_msr\n",
3440 				tdx_uret_msrs[i].msr);
3441 			return -EIO;
3442 		}
3443 	}
3444 
3445 	/*
3446 	 * Enabling TDX requires enabling hardware virtualization first,
3447 	 * as making SEAMCALLs requires CPU being in post-VMXON state.
3448 	 */
3449 	r = kvm_enable_virtualization();
3450 	if (r)
3451 		return r;
3452 
3453 	cpus_read_lock();
3454 	r = __do_tdx_bringup();
3455 	cpus_read_unlock();
3456 
3457 	if (r)
3458 		goto tdx_bringup_err;
3459 
3460 	/* Get TDX global information for later use */
3461 	tdx_sysinfo = tdx_get_sysinfo();
3462 	if (WARN_ON_ONCE(!tdx_sysinfo)) {
3463 		r = -EINVAL;
3464 		goto get_sysinfo_err;
3465 	}
3466 
3467 	/* Check TDX module and KVM capabilities */
3468 	if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) ||
3469 	    !tdx_get_supported_xfam(&tdx_sysinfo->td_conf))
3470 		goto get_sysinfo_err;
3471 
3472 	if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM))
3473 		goto get_sysinfo_err;
3474 
3475 	/*
3476 	 * TDX has its own limit of maximum vCPUs it can support for all
3477 	 * TDX guests in addition to KVM_MAX_VCPUS.  Userspace needs to
3478 	 * query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU
3479 	 * extension on per-VM basis.
3480 	 *
3481 	 * TDX module reports such limit via the MAX_VCPU_PER_TD global
3482 	 * metadata.  Different modules may report different values.
3483 	 * Some old module may also not support this metadata (in which
3484 	 * case this limit is U16_MAX).
3485 	 *
3486 	 * In practice, the reported value reflects the maximum logical
3487 	 * CPUs that ALL the platforms that the module supports can
3488 	 * possibly have.
3489 	 *
3490 	 * Simply forwarding the MAX_VCPU_PER_TD to userspace could
3491 	 * result in an unpredictable ABI.  KVM instead always advertise
3492 	 * the number of logical CPUs the platform has as the maximum
3493 	 * vCPUs for TDX guests.
3494 	 *
3495 	 * Make sure MAX_VCPU_PER_TD reported by TDX module is not
3496 	 * smaller than the number of logical CPUs, otherwise KVM will
3497 	 * report an unsupported value to userspace.
3498 	 *
3499 	 * Note, a platform with TDX enabled in the BIOS cannot support
3500 	 * physical CPU hotplug, and TDX requires the BIOS has marked
3501 	 * all logical CPUs in MADT table as enabled.  Just use
3502 	 * num_present_cpus() for the number of logical CPUs.
3503 	 */
3504 	td_conf = &tdx_sysinfo->td_conf;
3505 	if (td_conf->max_vcpus_per_td < num_present_cpus()) {
3506 		pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n",
3507 				td_conf->max_vcpus_per_td, num_present_cpus());
3508 		r = -EINVAL;
3509 		goto get_sysinfo_err;
3510 	}
3511 
3512 	if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids())) {
3513 		r = -EINVAL;
3514 		goto get_sysinfo_err;
3515 	}
3516 
3517 	/*
3518 	 * Leave hardware virtualization enabled after TDX is enabled
3519 	 * successfully.  TDX CPU hotplug depends on this.
3520 	 */
3521 	return 0;
3522 
3523 get_sysinfo_err:
3524 	__tdx_cleanup();
3525 tdx_bringup_err:
3526 	kvm_disable_virtualization();
3527 	return r;
3528 }
3529 
tdx_cleanup(void)3530 void tdx_cleanup(void)
3531 {
3532 	if (enable_tdx) {
3533 		misc_cg_set_capacity(MISC_CG_RES_TDX, 0);
3534 		__tdx_cleanup();
3535 		kvm_disable_virtualization();
3536 	}
3537 }
3538 
tdx_bringup(void)3539 int __init tdx_bringup(void)
3540 {
3541 	int r, i;
3542 
3543 	/* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */
3544 	for_each_possible_cpu(i)
3545 		INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i));
3546 
3547 	if (!enable_tdx)
3548 		return 0;
3549 
3550 	if (!enable_ept) {
3551 		pr_err("EPT is required for TDX\n");
3552 		goto success_disable_tdx;
3553 	}
3554 
3555 	if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) {
3556 		pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n");
3557 		goto success_disable_tdx;
3558 	}
3559 
3560 	if (!enable_apicv) {
3561 		pr_err("APICv is required for TDX\n");
3562 		goto success_disable_tdx;
3563 	}
3564 
3565 	if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) {
3566 		pr_err("tdx: OSXSAVE is required for TDX\n");
3567 		goto success_disable_tdx;
3568 	}
3569 
3570 	if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) {
3571 		pr_err("tdx: MOVDIR64B is required for TDX\n");
3572 		goto success_disable_tdx;
3573 	}
3574 
3575 	if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) {
3576 		pr_err("Self-snoop is required for TDX\n");
3577 		goto success_disable_tdx;
3578 	}
3579 
3580 	if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) {
3581 		pr_err("tdx: no TDX private KeyIDs available\n");
3582 		goto success_disable_tdx;
3583 	}
3584 
3585 	if (!enable_virt_at_load) {
3586 		pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n");
3587 		goto success_disable_tdx;
3588 	}
3589 
3590 	/*
3591 	 * Ideally KVM should probe whether TDX module has been loaded
3592 	 * first and then try to bring it up.  But TDX needs to use SEAMCALL
3593 	 * to probe whether the module is loaded (there is no CPUID or MSR
3594 	 * for that), and making SEAMCALL requires enabling virtualization
3595 	 * first, just like the rest steps of bringing up TDX module.
3596 	 *
3597 	 * So, for simplicity do everything in __tdx_bringup(); the first
3598 	 * SEAMCALL will return -ENODEV when the module is not loaded.  The
3599 	 * only complication is having to make sure that initialization
3600 	 * SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other
3601 	 * cases.
3602 	 */
3603 	r = __tdx_bringup();
3604 	if (r) {
3605 		/*
3606 		 * Disable TDX only but don't fail to load module if the TDX
3607 		 * module could not be loaded.  No need to print message saying
3608 		 * "module is not loaded" because it was printed when the first
3609 		 * SEAMCALL failed.  Don't bother unwinding the S-EPT hooks or
3610 		 * vm_size, as kvm_x86_ops have already been finalized (and are
3611 		 * intentionally not exported).  The S-EPT code is unreachable,
3612 		 * and allocating a few more bytes per VM in a should-be-rare
3613 		 * failure scenario is a non-issue.
3614 		 */
3615 		if (r == -ENODEV)
3616 			goto success_disable_tdx;
3617 
3618 		enable_tdx = 0;
3619 	}
3620 
3621 	return r;
3622 
3623 success_disable_tdx:
3624 	enable_tdx = 0;
3625 	return 0;
3626 }
3627 
tdx_hardware_setup(void)3628 void __init tdx_hardware_setup(void)
3629 {
3630 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_tdx);
3631 
3632 	/*
3633 	 * Note, if the TDX module can't be loaded, KVM TDX support will be
3634 	 * disabled but KVM will continue loading (see tdx_bringup()).
3635 	 */
3636 	vt_x86_ops.vm_size = max_t(unsigned int, vt_x86_ops.vm_size, sizeof(struct kvm_tdx));
3637 
3638 	vt_x86_ops.link_external_spt = tdx_sept_link_private_spt;
3639 	vt_x86_ops.set_external_spte = tdx_sept_set_private_spte;
3640 	vt_x86_ops.free_external_spt = tdx_sept_free_private_spt;
3641 	vt_x86_ops.remove_external_spte = tdx_sept_remove_private_spte;
3642 	vt_x86_ops.protected_apic_has_interrupt = tdx_protected_apic_has_interrupt;
3643 }
3644