1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned int i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned int pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned int num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 if (!pindesc->name) {
230 error = -ENOMEM;
231 goto failed;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 if (error)
240 goto failed;
241
242 pr_debug("registered pin %d (%s) on %s\n",
243 pin->number, pindesc->name, pctldev->desc->name);
244 return 0;
245
246 failed:
247 kfree(pindesc);
248 return error;
249 }
250
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_descs)251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 const struct pinctrl_pin_desc *pins,
253 unsigned int num_descs)
254 {
255 unsigned int i;
256 int ret = 0;
257
258 for (i = 0; i < num_descs; i++) {
259 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 if (ret)
261 return ret;
262 }
263
264 return 0;
265 }
266
267 /**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gc: GPIO chip structure from the GPIO subsystem
271 * @offset: hardware offset of the GPIO relative to the controller
272 *
273 * Finds the pin number for a given GPIO using the specified GPIO range
274 * as a base for translation. The distinction between linear GPIO ranges
275 * and pin list based GPIO ranges is managed correctly by this function.
276 *
277 * This function assumes the gpio is part of the specified GPIO range, use
278 * only after making sure this is the case (e.g. by calling it on the
279 * result of successful pinctrl_get_device_gpio_range calls)!
280 */
gpio_to_pin(struct pinctrl_gpio_range * range,struct gpio_chip * gc,unsigned int offset)281 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282 struct gpio_chip *gc, unsigned int offset)
283 {
284 unsigned int pin = gc->base + offset - range->base;
285 if (range->pins)
286 return range->pins[pin];
287 else
288 return range->pin_base + pin;
289 }
290
291 /**
292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293 * @pctldev: pin controller device to check
294 * @gc: GPIO chip structure from the GPIO subsystem
295 * @offset: hardware offset of the GPIO relative to the controller
296 *
297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
298 * controller, return the range or NULL
299 */
300 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,struct gpio_chip * gc,unsigned int offset)301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302 unsigned int offset)
303 {
304 struct pinctrl_gpio_range *range;
305
306 mutex_lock(&pctldev->mutex);
307 /* Loop over the ranges */
308 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 /* Check if we're in the valid range */
310 if ((gc->base + offset) >= range->base &&
311 (gc->base + offset) < range->base + range->npins) {
312 mutex_unlock(&pctldev->mutex);
313 return range;
314 }
315 }
316 mutex_unlock(&pctldev->mutex);
317 return NULL;
318 }
319
320 /**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gc: GPIO chip structure from the GPIO subsystem
324 * @offset: hardware offset of the GPIO relative to the controller
325 *
326 * This function is complement of pinctrl_match_gpio_range(). If the return
327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329 * of the same GPIO chip don't have back-end pinctrl interface.
330 * If the return value is true, it means that pinctrl device is ready & the
331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332 * is false, it means that pinctrl device may not be ready.
333 */
334 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)335 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336 unsigned int offset)
337 {
338 struct pinctrl_dev *pctldev;
339 struct pinctrl_gpio_range *range = NULL;
340
341 mutex_lock(&pinctrldev_list_mutex);
342
343 /* Loop over the pin controllers */
344 list_for_each_entry(pctldev, &pinctrldev_list, node) {
345 /* Loop over the ranges */
346 mutex_lock(&pctldev->mutex);
347 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348 /* Check if any gpio range overlapped with gpio chip */
349 if (range->base + range->npins - 1 < gc->base ||
350 range->base > gc->base + gc->ngpio - 1)
351 continue;
352 mutex_unlock(&pctldev->mutex);
353 mutex_unlock(&pinctrldev_list_mutex);
354 return true;
355 }
356 mutex_unlock(&pctldev->mutex);
357 }
358
359 mutex_unlock(&pinctrldev_list_mutex);
360
361 return false;
362 }
363 #else
364 static inline bool
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)365 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366 {
367 return true;
368 }
369 #endif
370
371 /**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gc: GPIO chip structure from the GPIO subsystem
374 * @offset: hardware offset of the GPIO relative to the controller
375 * @outdev: the pin control device if found
376 * @outrange: the GPIO range if found
377 *
378 * Find the pin controller handling a certain GPIO pin from the pinspace of
379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381 * may still have not been registered.
382 */
pinctrl_get_device_gpio_range(struct gpio_chip * gc,unsigned int offset,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)383 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384 unsigned int offset,
385 struct pinctrl_dev **outdev,
386 struct pinctrl_gpio_range **outrange)
387 {
388 struct pinctrl_dev *pctldev;
389
390 mutex_lock(&pinctrldev_list_mutex);
391
392 /* Loop over the pin controllers */
393 list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 struct pinctrl_gpio_range *range;
395
396 range = pinctrl_match_gpio_range(pctldev, gc, offset);
397 if (range) {
398 *outdev = pctldev;
399 *outrange = range;
400 mutex_unlock(&pinctrldev_list_mutex);
401 return 0;
402 }
403 }
404
405 mutex_unlock(&pinctrldev_list_mutex);
406
407 return -EPROBE_DEFER;
408 }
409
410 /**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * This adds a range of GPIOs to be handled by a certain pin controller. Call
416 * this to register handled ranges after registering your pin controller.
417 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 struct pinctrl_gpio_range *range)
420 {
421 mutex_lock(&pctldev->mutex);
422 list_add_tail(&range->node, &pctldev->gpio_ranges);
423 mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned int nranges)427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 struct pinctrl_gpio_range *ranges,
429 unsigned int nranges)
430 {
431 int i;
432
433 for (i = 0; i < nranges; i++)
434 pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 struct pinctrl_gpio_range *range)
440 {
441 struct pinctrl_dev *pctldev;
442
443 pctldev = get_pinctrl_dev_from_devname(devname);
444
445 /*
446 * If we can't find this device, let's assume that is because
447 * it has not probed yet, so the driver trying to register this
448 * range need to defer probing.
449 */
450 if (!pctldev)
451 return ERR_PTR(-EPROBE_DEFER);
452
453 pinctrl_add_gpio_range(pctldev, range);
454
455 return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned int ** pins,unsigned int * num_pins)459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
460 const unsigned int **pins, unsigned int *num_pins)
461 {
462 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
463 int gs;
464
465 if (!pctlops->get_group_pins)
466 return -EINVAL;
467
468 gs = pinctrl_get_group_selector(pctldev, pin_group);
469 if (gs < 0)
470 return gs;
471
472 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
473 }
474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
475
476 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
478 unsigned int pin)
479 {
480 struct pinctrl_gpio_range *range;
481
482 /* Loop over the ranges */
483 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
484 /* Check if we're in the valid range */
485 if (range->pins) {
486 int a;
487 for (a = 0; a < range->npins; a++) {
488 if (range->pins[a] == pin)
489 return range;
490 }
491 } else if (pin >= range->pin_base &&
492 pin < range->pin_base + range->npins)
493 return range;
494 }
495
496 return NULL;
497 }
498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
499
500 /**
501 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
502 * @pctldev: the pin controller device to look in
503 * @pin: a controller-local number to find the range for
504 */
505 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
507 unsigned int pin)
508 {
509 struct pinctrl_gpio_range *range;
510
511 mutex_lock(&pctldev->mutex);
512 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
513 mutex_unlock(&pctldev->mutex);
514
515 return range;
516 }
517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
518
519 /**
520 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
521 * @pctldev: pin controller device to remove the range from
522 * @range: the GPIO range to remove
523 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
525 struct pinctrl_gpio_range *range)
526 {
527 mutex_lock(&pctldev->mutex);
528 list_del(&range->node);
529 mutex_unlock(&pctldev->mutex);
530 }
531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
532
533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
534
535 /**
536 * pinctrl_generic_get_group_count() - returns the number of pin groups
537 * @pctldev: pin controller device
538 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
540 {
541 return pctldev->num_groups;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
544
545 /**
546 * pinctrl_generic_get_group_name() - returns the name of a pin group
547 * @pctldev: pin controller device
548 * @selector: group number
549 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
551 unsigned int selector)
552 {
553 struct group_desc *group;
554
555 group = radix_tree_lookup(&pctldev->pin_group_tree,
556 selector);
557 if (!group)
558 return NULL;
559
560 return group->grp.name;
561 }
562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
563
564 /**
565 * pinctrl_generic_get_group_pins() - gets the pin group pins
566 * @pctldev: pin controller device
567 * @selector: group number
568 * @pins: pins in the group
569 * @num_pins: number of pins in the group
570 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
572 unsigned int selector,
573 const unsigned int **pins,
574 unsigned int *num_pins)
575 {
576 struct group_desc *group;
577
578 group = radix_tree_lookup(&pctldev->pin_group_tree,
579 selector);
580 if (!group) {
581 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
582 __func__, selector);
583 return -EINVAL;
584 }
585
586 *pins = group->grp.pins;
587 *num_pins = group->grp.npins;
588
589 return 0;
590 }
591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
592
593 /**
594 * pinctrl_generic_get_group() - returns a pin group based on the number
595 * @pctldev: pin controller device
596 * @selector: group number
597 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
599 unsigned int selector)
600 {
601 struct group_desc *group;
602
603 group = radix_tree_lookup(&pctldev->pin_group_tree,
604 selector);
605 if (!group)
606 return NULL;
607
608 return group;
609 }
610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
611
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
613 const char *function)
614 {
615 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
616 int ngroups = ops->get_groups_count(pctldev);
617 int selector = 0;
618
619 /* See if this pctldev has this group */
620 while (selector < ngroups) {
621 const char *gname = ops->get_group_name(pctldev, selector);
622
623 if (gname && !strcmp(function, gname))
624 return selector;
625
626 selector++;
627 }
628
629 return -EINVAL;
630 }
631
632 /**
633 * pinctrl_generic_add_group() - adds a new pin group
634 * @pctldev: pin controller device
635 * @name: name of the pin group
636 * @pins: pins in the pin group
637 * @num_pins: number of pins in the pin group
638 * @data: pin controller driver specific data
639 *
640 * Note that the caller must take care of locking.
641 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,const unsigned int * pins,int num_pins,void * data)642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
643 const unsigned int *pins, int num_pins, void *data)
644 {
645 struct group_desc *group;
646 int selector, error;
647
648 if (!name)
649 return -EINVAL;
650
651 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
652 if (selector >= 0)
653 return selector;
654
655 selector = pctldev->num_groups;
656
657 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
658 if (!group)
659 return -ENOMEM;
660
661 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
662
663 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
664 if (error)
665 return error;
666
667 pctldev->num_groups++;
668
669 return selector;
670 }
671 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
672
673 /**
674 * pinctrl_generic_remove_group() - removes a numbered pin group
675 * @pctldev: pin controller device
676 * @selector: group number
677 *
678 * Note that the caller must take care of locking.
679 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)680 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
681 unsigned int selector)
682 {
683 struct group_desc *group;
684
685 group = radix_tree_lookup(&pctldev->pin_group_tree,
686 selector);
687 if (!group)
688 return -ENOENT;
689
690 radix_tree_delete(&pctldev->pin_group_tree, selector);
691 devm_kfree(pctldev->dev, group);
692
693 pctldev->num_groups--;
694
695 return 0;
696 }
697 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
698
699 /**
700 * pinctrl_generic_free_groups() - removes all pin groups
701 * @pctldev: pin controller device
702 *
703 * Note that the caller must take care of locking. The pinctrl groups
704 * are allocated with devm_kzalloc() so no need to free them here.
705 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)706 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
707 {
708 struct radix_tree_iter iter;
709 void __rcu **slot;
710
711 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
712 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
713
714 pctldev->num_groups = 0;
715 }
716
717 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)718 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
719 {
720 }
721 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
722
723 /**
724 * pinctrl_get_group_selector() - returns the group selector for a group
725 * @pctldev: the pin controller handling the group
726 * @pin_group: the pin group to look up
727 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)728 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
729 const char *pin_group)
730 {
731 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
732 unsigned int ngroups = pctlops->get_groups_count(pctldev);
733 unsigned int group_selector = 0;
734
735 while (group_selector < ngroups) {
736 const char *gname = pctlops->get_group_name(pctldev,
737 group_selector);
738 if (gname && !strcmp(gname, pin_group)) {
739 dev_dbg(pctldev->dev,
740 "found group selector %u for %s\n",
741 group_selector,
742 pin_group);
743 return group_selector;
744 }
745
746 group_selector++;
747 }
748
749 dev_err(pctldev->dev, "does not have pin group %s\n",
750 pin_group);
751
752 return -EINVAL;
753 }
754
pinctrl_gpio_can_use_line(struct gpio_chip * gc,unsigned int offset)755 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
756 {
757 struct pinctrl_dev *pctldev;
758 struct pinctrl_gpio_range *range;
759 bool result;
760 int pin;
761
762 /*
763 * Try to obtain GPIO range, if it fails
764 * we're probably dealing with GPIO driver
765 * without a backing pin controller - bail out.
766 */
767 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
768 return true;
769
770 mutex_lock(&pctldev->mutex);
771
772 /* Convert to the pin controllers number space */
773 pin = gpio_to_pin(range, gc, offset);
774
775 result = pinmux_can_be_used_for_gpio(pctldev, pin);
776
777 mutex_unlock(&pctldev->mutex);
778
779 return result;
780 }
781 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
782
783 /**
784 * pinctrl_gpio_request() - request a single pin to be used as GPIO
785 * @gc: GPIO chip structure from the GPIO subsystem
786 * @offset: hardware offset of the GPIO relative to the controller
787 *
788 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789 * as part of their gpio_request() semantics, platforms and individual drivers
790 * shall *NOT* request GPIO pins to be muxed in.
791 */
pinctrl_gpio_request(struct gpio_chip * gc,unsigned int offset)792 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
793 {
794 struct pinctrl_gpio_range *range;
795 struct pinctrl_dev *pctldev;
796 int ret, pin;
797
798 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
799 if (ret) {
800 if (pinctrl_ready_for_gpio_range(gc, offset))
801 ret = 0;
802 return ret;
803 }
804
805 mutex_lock(&pctldev->mutex);
806
807 /* Convert to the pin controllers number space */
808 pin = gpio_to_pin(range, gc, offset);
809
810 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
811
812 mutex_unlock(&pctldev->mutex);
813
814 return ret;
815 }
816 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
817
818 /**
819 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
820 * @gc: GPIO chip structure from the GPIO subsystem
821 * @offset: hardware offset of the GPIO relative to the controller
822 *
823 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
824 * as part of their gpio_request() semantics, platforms and individual drivers
825 * shall *NOT* request GPIO pins to be muxed in.
826 */
pinctrl_gpio_free(struct gpio_chip * gc,unsigned int offset)827 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
828 {
829 struct pinctrl_gpio_range *range;
830 struct pinctrl_dev *pctldev;
831 int ret, pin;
832
833 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
834 if (ret)
835 return;
836
837 mutex_lock(&pctldev->mutex);
838
839 /* Convert to the pin controllers number space */
840 pin = gpio_to_pin(range, gc, offset);
841
842 pinmux_free_gpio(pctldev, pin, range);
843
844 mutex_unlock(&pctldev->mutex);
845 }
846 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
847
pinctrl_gpio_direction(struct gpio_chip * gc,unsigned int offset,bool input)848 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
849 bool input)
850 {
851 struct pinctrl_dev *pctldev;
852 struct pinctrl_gpio_range *range;
853 int ret;
854 int pin;
855
856 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
857 if (ret) {
858 return ret;
859 }
860
861 mutex_lock(&pctldev->mutex);
862
863 /* Convert to the pin controllers number space */
864 pin = gpio_to_pin(range, gc, offset);
865 ret = pinmux_gpio_direction(pctldev, range, pin, input);
866
867 mutex_unlock(&pctldev->mutex);
868
869 return ret;
870 }
871
872 /**
873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
874 * @gc: GPIO chip structure from the GPIO subsystem
875 * @offset: hardware offset of the GPIO relative to the controller
876 *
877 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
878 * as part of their gpio_direction_input() semantics, platforms and individual
879 * drivers shall *NOT* touch pin control GPIO calls.
880 */
pinctrl_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)881 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
882 {
883 return pinctrl_gpio_direction(gc, offset, true);
884 }
885 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
886
887 /**
888 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
889 * @gc: GPIO chip structure from the GPIO subsystem
890 * @offset: hardware offset of the GPIO relative to the controller
891 *
892 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
893 * as part of their gpio_direction_output() semantics, platforms and individual
894 * drivers shall *NOT* touch pin control GPIO calls.
895 */
pinctrl_gpio_direction_output(struct gpio_chip * gc,unsigned int offset)896 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
897 {
898 return pinctrl_gpio_direction(gc, offset, false);
899 }
900 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
901
902 /**
903 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
904 * @gc: GPIO chip structure from the GPIO subsystem
905 * @offset: hardware offset of the GPIO relative to the controller
906 * @config: the configuration to apply to the GPIO
907 *
908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
909 * they need to call the underlying pin controller to change GPIO config
910 * (for example set debounce time).
911 */
pinctrl_gpio_set_config(struct gpio_chip * gc,unsigned int offset,unsigned long config)912 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
913 unsigned long config)
914 {
915 unsigned long configs[] = { config };
916 struct pinctrl_gpio_range *range;
917 struct pinctrl_dev *pctldev;
918 int ret, pin;
919
920 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
921 if (ret)
922 return ret;
923
924 mutex_lock(&pctldev->mutex);
925 pin = gpio_to_pin(range, gc, offset);
926 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
927 mutex_unlock(&pctldev->mutex);
928
929 return ret;
930 }
931 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
932
find_state(struct pinctrl * p,const char * name)933 static struct pinctrl_state *find_state(struct pinctrl *p,
934 const char *name)
935 {
936 struct pinctrl_state *state;
937
938 list_for_each_entry(state, &p->states, node)
939 if (!strcmp(state->name, name))
940 return state;
941
942 return NULL;
943 }
944
create_state(struct pinctrl * p,const char * name)945 static struct pinctrl_state *create_state(struct pinctrl *p,
946 const char *name)
947 {
948 struct pinctrl_state *state;
949
950 state = kzalloc(sizeof(*state), GFP_KERNEL);
951 if (!state)
952 return ERR_PTR(-ENOMEM);
953
954 state->name = name;
955 INIT_LIST_HEAD(&state->settings);
956
957 list_add_tail(&state->node, &p->states);
958
959 return state;
960 }
961
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)962 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
963 const struct pinctrl_map *map)
964 {
965 struct pinctrl_state *state;
966 struct pinctrl_setting *setting;
967 int ret;
968
969 state = find_state(p, map->name);
970 if (!state)
971 state = create_state(p, map->name);
972 if (IS_ERR(state))
973 return PTR_ERR(state);
974
975 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
976 return 0;
977
978 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
979 if (!setting)
980 return -ENOMEM;
981
982 setting->type = map->type;
983
984 if (pctldev)
985 setting->pctldev = pctldev;
986 else
987 setting->pctldev =
988 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
989 if (!setting->pctldev) {
990 kfree(setting);
991 /* Do not defer probing of hogs (circular loop) */
992 if (!strcmp(map->ctrl_dev_name, map->dev_name))
993 return -ENODEV;
994 /*
995 * OK let us guess that the driver is not there yet, and
996 * let's defer obtaining this pinctrl handle to later...
997 */
998 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
999 map->ctrl_dev_name);
1000 return -EPROBE_DEFER;
1001 }
1002
1003 setting->dev_name = map->dev_name;
1004
1005 switch (map->type) {
1006 case PIN_MAP_TYPE_MUX_GROUP:
1007 ret = pinmux_map_to_setting(map, setting);
1008 break;
1009 case PIN_MAP_TYPE_CONFIGS_PIN:
1010 case PIN_MAP_TYPE_CONFIGS_GROUP:
1011 ret = pinconf_map_to_setting(map, setting);
1012 break;
1013 default:
1014 ret = -EINVAL;
1015 break;
1016 }
1017 if (ret < 0) {
1018 kfree(setting);
1019 return ret;
1020 }
1021
1022 list_add_tail(&setting->node, &state->settings);
1023
1024 return 0;
1025 }
1026
find_pinctrl(struct device * dev)1027 static struct pinctrl *find_pinctrl(struct device *dev)
1028 {
1029 struct pinctrl *p;
1030
1031 mutex_lock(&pinctrl_list_mutex);
1032 list_for_each_entry(p, &pinctrl_list, node)
1033 if (p->dev == dev) {
1034 mutex_unlock(&pinctrl_list_mutex);
1035 return p;
1036 }
1037
1038 mutex_unlock(&pinctrl_list_mutex);
1039 return NULL;
1040 }
1041
1042 static void pinctrl_free(struct pinctrl *p, bool inlist);
1043
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1044 static struct pinctrl *create_pinctrl(struct device *dev,
1045 struct pinctrl_dev *pctldev)
1046 {
1047 struct pinctrl *p;
1048 const char *devname;
1049 struct pinctrl_maps *maps_node;
1050 const struct pinctrl_map *map;
1051 int ret;
1052
1053 /*
1054 * create the state cookie holder struct pinctrl for each
1055 * mapping, this is what consumers will get when requesting
1056 * a pin control handle with pinctrl_get()
1057 */
1058 p = kzalloc(sizeof(*p), GFP_KERNEL);
1059 if (!p)
1060 return ERR_PTR(-ENOMEM);
1061 p->dev = dev;
1062 INIT_LIST_HEAD(&p->states);
1063 INIT_LIST_HEAD(&p->dt_maps);
1064
1065 ret = pinctrl_dt_to_map(p, pctldev);
1066 if (ret < 0) {
1067 kfree(p);
1068 return ERR_PTR(ret);
1069 }
1070
1071 devname = dev_name(dev);
1072
1073 mutex_lock(&pinctrl_maps_mutex);
1074 /* Iterate over the pin control maps to locate the right ones */
1075 for_each_pin_map(maps_node, map) {
1076 /* Map must be for this device */
1077 if (strcmp(map->dev_name, devname))
1078 continue;
1079 /*
1080 * If pctldev is not null, we are claiming hog for it,
1081 * that means, setting that is served by pctldev by itself.
1082 *
1083 * Thus we must skip map that is for this device but is served
1084 * by other device.
1085 */
1086 if (pctldev &&
1087 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1088 continue;
1089
1090 ret = add_setting(p, pctldev, map);
1091 /*
1092 * At this point the adding of a setting may:
1093 *
1094 * - Defer, if the pinctrl device is not yet available
1095 * - Fail, if the pinctrl device is not yet available,
1096 * AND the setting is a hog. We cannot defer that, since
1097 * the hog will kick in immediately after the device
1098 * is registered.
1099 *
1100 * If the error returned was not -EPROBE_DEFER then we
1101 * accumulate the errors to see if we end up with
1102 * an -EPROBE_DEFER later, as that is the worst case.
1103 */
1104 if (ret == -EPROBE_DEFER) {
1105 pinctrl_free(p, false);
1106 mutex_unlock(&pinctrl_maps_mutex);
1107 return ERR_PTR(ret);
1108 }
1109 }
1110 mutex_unlock(&pinctrl_maps_mutex);
1111
1112 if (ret < 0) {
1113 /* If some other error than deferral occurred, return here */
1114 pinctrl_free(p, false);
1115 return ERR_PTR(ret);
1116 }
1117
1118 kref_init(&p->users);
1119
1120 /* Add the pinctrl handle to the global list */
1121 mutex_lock(&pinctrl_list_mutex);
1122 list_add_tail(&p->node, &pinctrl_list);
1123 mutex_unlock(&pinctrl_list_mutex);
1124
1125 return p;
1126 }
1127
1128 /**
1129 * pinctrl_get() - retrieves the pinctrl handle for a device
1130 * @dev: the device to obtain the handle for
1131 */
pinctrl_get(struct device * dev)1132 struct pinctrl *pinctrl_get(struct device *dev)
1133 {
1134 struct pinctrl *p;
1135
1136 if (WARN_ON(!dev))
1137 return ERR_PTR(-EINVAL);
1138
1139 /*
1140 * See if somebody else (such as the device core) has already
1141 * obtained a handle to the pinctrl for this device. In that case,
1142 * return another pointer to it.
1143 */
1144 p = find_pinctrl(dev);
1145 if (p) {
1146 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1147 kref_get(&p->users);
1148 return p;
1149 }
1150
1151 return create_pinctrl(dev, NULL);
1152 }
1153 EXPORT_SYMBOL_GPL(pinctrl_get);
1154
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1155 static void pinctrl_free_setting(bool disable_setting,
1156 struct pinctrl_setting *setting)
1157 {
1158 switch (setting->type) {
1159 case PIN_MAP_TYPE_MUX_GROUP:
1160 if (disable_setting)
1161 pinmux_disable_setting(setting);
1162 pinmux_free_setting(setting);
1163 break;
1164 case PIN_MAP_TYPE_CONFIGS_PIN:
1165 case PIN_MAP_TYPE_CONFIGS_GROUP:
1166 pinconf_free_setting(setting);
1167 break;
1168 default:
1169 break;
1170 }
1171 }
1172
pinctrl_free(struct pinctrl * p,bool inlist)1173 static void pinctrl_free(struct pinctrl *p, bool inlist)
1174 {
1175 struct pinctrl_state *state, *n1;
1176 struct pinctrl_setting *setting, *n2;
1177
1178 mutex_lock(&pinctrl_list_mutex);
1179 list_for_each_entry_safe(state, n1, &p->states, node) {
1180 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1181 pinctrl_free_setting(state == p->state, setting);
1182 list_del(&setting->node);
1183 kfree(setting);
1184 }
1185 list_del(&state->node);
1186 kfree(state);
1187 }
1188
1189 pinctrl_dt_free_maps(p);
1190
1191 if (inlist)
1192 list_del(&p->node);
1193 kfree(p);
1194 mutex_unlock(&pinctrl_list_mutex);
1195 }
1196
1197 /**
1198 * pinctrl_release() - release the pinctrl handle
1199 * @kref: the kref in the pinctrl being released
1200 */
pinctrl_release(struct kref * kref)1201 static void pinctrl_release(struct kref *kref)
1202 {
1203 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1204
1205 pinctrl_free(p, true);
1206 }
1207
1208 /**
1209 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1210 * @p: the pinctrl handle to release
1211 */
pinctrl_put(struct pinctrl * p)1212 void pinctrl_put(struct pinctrl *p)
1213 {
1214 kref_put(&p->users, pinctrl_release);
1215 }
1216 EXPORT_SYMBOL_GPL(pinctrl_put);
1217
1218 /**
1219 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1220 * @p: the pinctrl handle to retrieve the state from
1221 * @name: the state name to retrieve
1222 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1223 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1224 const char *name)
1225 {
1226 struct pinctrl_state *state;
1227
1228 state = find_state(p, name);
1229 if (!state) {
1230 if (pinctrl_dummy_state) {
1231 /* create dummy state */
1232 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1233 name);
1234 state = create_state(p, name);
1235 } else
1236 state = ERR_PTR(-ENODEV);
1237 }
1238
1239 return state;
1240 }
1241 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1242
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1243 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1244 struct device *consumer)
1245 {
1246 if (pctldev->desc->link_consumers)
1247 device_link_add(consumer, pctldev->dev,
1248 DL_FLAG_PM_RUNTIME |
1249 DL_FLAG_AUTOREMOVE_CONSUMER);
1250 }
1251
1252 /**
1253 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1254 * @p: the pinctrl handle for the device that requests configuration
1255 * @state: the state handle to select/activate/program
1256 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1257 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1258 {
1259 struct pinctrl_setting *setting, *setting2;
1260 struct pinctrl_state *old_state = READ_ONCE(p->state);
1261 int ret;
1262
1263 if (old_state) {
1264 /*
1265 * For each pinmux setting in the old state, forget SW's record
1266 * of mux owner for that pingroup. Any pingroups which are
1267 * still owned by the new state will be re-acquired by the call
1268 * to pinmux_enable_setting() in the loop below.
1269 */
1270 list_for_each_entry(setting, &old_state->settings, node) {
1271 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1272 continue;
1273 pinmux_disable_setting(setting);
1274 }
1275 }
1276
1277 p->state = NULL;
1278
1279 /* Apply all the settings for the new state - pinmux first */
1280 list_for_each_entry(setting, &state->settings, node) {
1281 switch (setting->type) {
1282 case PIN_MAP_TYPE_MUX_GROUP:
1283 ret = pinmux_enable_setting(setting);
1284 break;
1285 case PIN_MAP_TYPE_CONFIGS_PIN:
1286 case PIN_MAP_TYPE_CONFIGS_GROUP:
1287 ret = 0;
1288 break;
1289 default:
1290 ret = -EINVAL;
1291 break;
1292 }
1293
1294 if (ret < 0)
1295 goto unapply_new_state;
1296
1297 /* Do not link hogs (circular dependency) */
1298 if (p != setting->pctldev->p)
1299 pinctrl_link_add(setting->pctldev, p->dev);
1300 }
1301
1302 /* Apply all the settings for the new state - pinconf after */
1303 list_for_each_entry(setting, &state->settings, node) {
1304 switch (setting->type) {
1305 case PIN_MAP_TYPE_MUX_GROUP:
1306 ret = 0;
1307 break;
1308 case PIN_MAP_TYPE_CONFIGS_PIN:
1309 case PIN_MAP_TYPE_CONFIGS_GROUP:
1310 ret = pinconf_apply_setting(setting);
1311 break;
1312 default:
1313 ret = -EINVAL;
1314 break;
1315 }
1316
1317 if (ret < 0) {
1318 goto unapply_new_state;
1319 }
1320
1321 /* Do not link hogs (circular dependency) */
1322 if (p != setting->pctldev->p)
1323 pinctrl_link_add(setting->pctldev, p->dev);
1324 }
1325
1326 p->state = state;
1327
1328 return 0;
1329
1330 unapply_new_state:
1331 dev_err(p->dev, "Error applying setting, reverse things back\n");
1332
1333 list_for_each_entry(setting2, &state->settings, node) {
1334 if (&setting2->node == &setting->node)
1335 break;
1336 /*
1337 * All we can do here is pinmux_disable_setting.
1338 * That means that some pins are muxed differently now
1339 * than they were before applying the setting (We can't
1340 * "unmux a pin"!), but it's not a big deal since the pins
1341 * are free to be muxed by another apply_setting.
1342 */
1343 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1344 pinmux_disable_setting(setting2);
1345 }
1346
1347 /* There's no infinite recursive loop here because p->state is NULL */
1348 if (old_state)
1349 pinctrl_select_state(p, old_state);
1350
1351 return ret;
1352 }
1353
1354 /**
1355 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1356 * @p: the pinctrl handle for the device that requests configuration
1357 * @state: the state handle to select/activate/program
1358 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1359 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1360 {
1361 if (p->state == state)
1362 return 0;
1363
1364 return pinctrl_commit_state(p, state);
1365 }
1366 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1367
devm_pinctrl_release(struct device * dev,void * res)1368 static void devm_pinctrl_release(struct device *dev, void *res)
1369 {
1370 pinctrl_put(*(struct pinctrl **)res);
1371 }
1372
1373 /**
1374 * devm_pinctrl_get() - Resource managed pinctrl_get()
1375 * @dev: the device to obtain the handle for
1376 *
1377 * If there is a need to explicitly destroy the returned struct pinctrl,
1378 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1379 */
devm_pinctrl_get(struct device * dev)1380 struct pinctrl *devm_pinctrl_get(struct device *dev)
1381 {
1382 struct pinctrl **ptr, *p;
1383
1384 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1385 if (!ptr)
1386 return ERR_PTR(-ENOMEM);
1387
1388 p = pinctrl_get(dev);
1389 if (!IS_ERR(p)) {
1390 *ptr = p;
1391 devres_add(dev, ptr);
1392 } else {
1393 devres_free(ptr);
1394 }
1395
1396 return p;
1397 }
1398 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1399
devm_pinctrl_match(struct device * dev,void * res,void * data)1400 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1401 {
1402 struct pinctrl **p = res;
1403
1404 return *p == data;
1405 }
1406
1407 /**
1408 * devm_pinctrl_put() - Resource managed pinctrl_put()
1409 * @p: the pinctrl handle to release
1410 *
1411 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1412 * this function will not need to be called and the resource management
1413 * code will ensure that the resource is freed.
1414 */
devm_pinctrl_put(struct pinctrl * p)1415 void devm_pinctrl_put(struct pinctrl *p)
1416 {
1417 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1418 devm_pinctrl_match, p));
1419 }
1420 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1421
1422 /**
1423 * pinctrl_register_mappings() - register a set of pin controller mappings
1424 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1425 * keeps a reference to the passed in maps, so they should _not_ be
1426 * marked with __initdata.
1427 * @num_maps: the number of maps in the mapping table
1428 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned int num_maps)1429 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1430 unsigned int num_maps)
1431 {
1432 int i, ret;
1433 struct pinctrl_maps *maps_node;
1434
1435 pr_debug("add %u pinctrl maps\n", num_maps);
1436
1437 /* First sanity check the new mapping */
1438 for (i = 0; i < num_maps; i++) {
1439 if (!maps[i].dev_name) {
1440 pr_err("failed to register map %s (%d): no device given\n",
1441 maps[i].name, i);
1442 return -EINVAL;
1443 }
1444
1445 if (!maps[i].name) {
1446 pr_err("failed to register map %d: no map name given\n",
1447 i);
1448 return -EINVAL;
1449 }
1450
1451 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1452 !maps[i].ctrl_dev_name) {
1453 pr_err("failed to register map %s (%d): no pin control device given\n",
1454 maps[i].name, i);
1455 return -EINVAL;
1456 }
1457
1458 switch (maps[i].type) {
1459 case PIN_MAP_TYPE_DUMMY_STATE:
1460 break;
1461 case PIN_MAP_TYPE_MUX_GROUP:
1462 ret = pinmux_validate_map(&maps[i], i);
1463 if (ret < 0)
1464 return ret;
1465 break;
1466 case PIN_MAP_TYPE_CONFIGS_PIN:
1467 case PIN_MAP_TYPE_CONFIGS_GROUP:
1468 ret = pinconf_validate_map(&maps[i], i);
1469 if (ret < 0)
1470 return ret;
1471 break;
1472 default:
1473 pr_err("failed to register map %s (%d): invalid type given\n",
1474 maps[i].name, i);
1475 return -EINVAL;
1476 }
1477 }
1478
1479 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1480 if (!maps_node)
1481 return -ENOMEM;
1482
1483 maps_node->maps = maps;
1484 maps_node->num_maps = num_maps;
1485
1486 mutex_lock(&pinctrl_maps_mutex);
1487 list_add_tail(&maps_node->node, &pinctrl_maps);
1488 mutex_unlock(&pinctrl_maps_mutex);
1489
1490 return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1493
1494 /**
1495 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1496 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1497 * when registering the mappings.
1498 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1499 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1500 {
1501 struct pinctrl_maps *maps_node;
1502
1503 mutex_lock(&pinctrl_maps_mutex);
1504 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1505 if (maps_node->maps == map) {
1506 list_del(&maps_node->node);
1507 kfree(maps_node);
1508 mutex_unlock(&pinctrl_maps_mutex);
1509 return;
1510 }
1511 }
1512 mutex_unlock(&pinctrl_maps_mutex);
1513 }
1514 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1515
1516 /**
1517 * pinctrl_force_sleep() - turn a given controller device into sleep state
1518 * @pctldev: pin controller device
1519 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1520 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1521 {
1522 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1523 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1524 return 0;
1525 }
1526 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1527
1528 /**
1529 * pinctrl_force_default() - turn a given controller device into default state
1530 * @pctldev: pin controller device
1531 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1532 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1533 {
1534 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1535 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1536 return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1539
1540 /**
1541 * pinctrl_init_done() - tell pinctrl probe is done
1542 *
1543 * We'll use this time to switch the pins from "init" to "default" unless the
1544 * driver selected some other state.
1545 *
1546 * @dev: device to that's done probing
1547 */
pinctrl_init_done(struct device * dev)1548 int pinctrl_init_done(struct device *dev)
1549 {
1550 struct dev_pin_info *pins = dev->pins;
1551 int ret;
1552
1553 if (!pins)
1554 return 0;
1555
1556 if (IS_ERR(pins->init_state))
1557 return 0; /* No such state */
1558
1559 if (pins->p->state != pins->init_state)
1560 return 0; /* Not at init anyway */
1561
1562 if (IS_ERR(pins->default_state))
1563 return 0; /* No default state */
1564
1565 ret = pinctrl_select_state(pins->p, pins->default_state);
1566 if (ret)
1567 dev_err(dev, "failed to activate default pinctrl state\n");
1568
1569 return ret;
1570 }
1571
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1572 static int pinctrl_select_bound_state(struct device *dev,
1573 struct pinctrl_state *state)
1574 {
1575 struct dev_pin_info *pins = dev->pins;
1576 int ret;
1577
1578 if (IS_ERR(state))
1579 return 0; /* No such state */
1580 ret = pinctrl_select_state(pins->p, state);
1581 if (ret)
1582 dev_err(dev, "failed to activate pinctrl state %s\n",
1583 state->name);
1584 return ret;
1585 }
1586
1587 /**
1588 * pinctrl_select_default_state() - select default pinctrl state
1589 * @dev: device to select default state for
1590 */
pinctrl_select_default_state(struct device * dev)1591 int pinctrl_select_default_state(struct device *dev)
1592 {
1593 if (!dev->pins)
1594 return 0;
1595
1596 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1597 }
1598 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1599
1600 #ifdef CONFIG_PM
1601
1602 /**
1603 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1604 * @dev: device to select default state for
1605 */
pinctrl_pm_select_default_state(struct device * dev)1606 int pinctrl_pm_select_default_state(struct device *dev)
1607 {
1608 return pinctrl_select_default_state(dev);
1609 }
1610 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1611
1612 /**
1613 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1614 * @dev: device to select sleep state for
1615 */
pinctrl_pm_select_sleep_state(struct device * dev)1616 int pinctrl_pm_select_sleep_state(struct device *dev)
1617 {
1618 if (!dev->pins)
1619 return 0;
1620
1621 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1622 }
1623 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1624
1625 /**
1626 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1627 * @dev: device to select idle state for
1628 */
pinctrl_pm_select_idle_state(struct device * dev)1629 int pinctrl_pm_select_idle_state(struct device *dev)
1630 {
1631 if (!dev->pins)
1632 return 0;
1633
1634 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1635 }
1636 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1637 #endif
1638
1639 #ifdef CONFIG_DEBUG_FS
1640
pinctrl_pins_show(struct seq_file * s,void * what)1641 static int pinctrl_pins_show(struct seq_file *s, void *what)
1642 {
1643 struct pinctrl_dev *pctldev = s->private;
1644 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1645 unsigned int i, pin;
1646 #ifdef CONFIG_GPIOLIB
1647 struct gpio_device *gdev = NULL;
1648 struct pinctrl_gpio_range *range;
1649 int gpio_num;
1650 #endif
1651
1652 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1653
1654 mutex_lock(&pctldev->mutex);
1655
1656 /* The pin number can be retrived from the pin controller descriptor */
1657 for (i = 0; i < pctldev->desc->npins; i++) {
1658 struct pin_desc *desc;
1659
1660 pin = pctldev->desc->pins[i].number;
1661 desc = pin_desc_get(pctldev, pin);
1662 /* Pin space may be sparse */
1663 if (!desc)
1664 continue;
1665
1666 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1667
1668 #ifdef CONFIG_GPIOLIB
1669 gpio_num = -1;
1670 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1671 if ((pin >= range->pin_base) &&
1672 (pin < (range->pin_base + range->npins))) {
1673 gpio_num = range->base + (pin - range->pin_base);
1674 break;
1675 }
1676 }
1677 if (gpio_num >= 0)
1678 /*
1679 * FIXME: gpio_num comes from the global GPIO numberspace.
1680 * we need to get rid of the range->base eventually and
1681 * get the descriptor directly from the gpio_chip.
1682 */
1683 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1684 if (gdev)
1685 seq_printf(s, "%u:%s ",
1686 gpio_num - gpio_device_get_base(gdev),
1687 gpio_device_get_label(gdev));
1688 else
1689 seq_puts(s, "0:? ");
1690 #endif
1691
1692 /* Driver-specific info per pin */
1693 if (ops->pin_dbg_show)
1694 ops->pin_dbg_show(pctldev, s, pin);
1695
1696 seq_puts(s, "\n");
1697 }
1698
1699 mutex_unlock(&pctldev->mutex);
1700
1701 return 0;
1702 }
1703 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1704
pinctrl_groups_show(struct seq_file * s,void * what)1705 static int pinctrl_groups_show(struct seq_file *s, void *what)
1706 {
1707 struct pinctrl_dev *pctldev = s->private;
1708 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1709 unsigned int ngroups, selector = 0;
1710
1711 mutex_lock(&pctldev->mutex);
1712
1713 ngroups = ops->get_groups_count(pctldev);
1714
1715 seq_puts(s, "registered pin groups:\n");
1716 while (selector < ngroups) {
1717 const unsigned int *pins = NULL;
1718 unsigned int num_pins = 0;
1719 const char *gname = ops->get_group_name(pctldev, selector);
1720 const char *pname;
1721 int ret = 0;
1722 int i;
1723
1724 if (ops->get_group_pins)
1725 ret = ops->get_group_pins(pctldev, selector,
1726 &pins, &num_pins);
1727 if (ret)
1728 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1729 gname);
1730 else {
1731 seq_printf(s, "group: %s\n", gname);
1732 for (i = 0; i < num_pins; i++) {
1733 pname = pin_get_name(pctldev, pins[i]);
1734 if (WARN_ON(!pname)) {
1735 mutex_unlock(&pctldev->mutex);
1736 return -EINVAL;
1737 }
1738 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1739 }
1740 seq_puts(s, "\n");
1741 }
1742 selector++;
1743 }
1744
1745 mutex_unlock(&pctldev->mutex);
1746
1747 return 0;
1748 }
1749 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1750
pinctrl_gpioranges_show(struct seq_file * s,void * what)1751 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1752 {
1753 struct pinctrl_dev *pctldev = s->private;
1754 struct pinctrl_gpio_range *range;
1755
1756 seq_puts(s, "GPIO ranges handled:\n");
1757
1758 mutex_lock(&pctldev->mutex);
1759
1760 /* Loop over the ranges */
1761 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1762 if (range->pins) {
1763 int a;
1764 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1765 range->id, range->name,
1766 range->base, (range->base + range->npins - 1));
1767 for (a = 0; a < range->npins - 1; a++)
1768 seq_printf(s, "%u, ", range->pins[a]);
1769 seq_printf(s, "%u}\n", range->pins[a]);
1770 }
1771 else
1772 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1773 range->id, range->name,
1774 range->base, (range->base + range->npins - 1),
1775 range->pin_base,
1776 (range->pin_base + range->npins - 1));
1777 }
1778
1779 mutex_unlock(&pctldev->mutex);
1780
1781 return 0;
1782 }
1783 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1784
pinctrl_devices_show(struct seq_file * s,void * what)1785 static int pinctrl_devices_show(struct seq_file *s, void *what)
1786 {
1787 struct pinctrl_dev *pctldev;
1788
1789 seq_puts(s, "name [pinmux] [pinconf]\n");
1790
1791 mutex_lock(&pinctrldev_list_mutex);
1792
1793 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1794 seq_printf(s, "%s ", pctldev->desc->name);
1795 if (pctldev->desc->pmxops)
1796 seq_puts(s, "yes ");
1797 else
1798 seq_puts(s, "no ");
1799 if (pctldev->desc->confops)
1800 seq_puts(s, "yes");
1801 else
1802 seq_puts(s, "no");
1803 seq_puts(s, "\n");
1804 }
1805
1806 mutex_unlock(&pinctrldev_list_mutex);
1807
1808 return 0;
1809 }
1810 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1811
map_type(enum pinctrl_map_type type)1812 static inline const char *map_type(enum pinctrl_map_type type)
1813 {
1814 static const char * const names[] = {
1815 "INVALID",
1816 "DUMMY_STATE",
1817 "MUX_GROUP",
1818 "CONFIGS_PIN",
1819 "CONFIGS_GROUP",
1820 };
1821
1822 if (type >= ARRAY_SIZE(names))
1823 return "UNKNOWN";
1824
1825 return names[type];
1826 }
1827
pinctrl_maps_show(struct seq_file * s,void * what)1828 static int pinctrl_maps_show(struct seq_file *s, void *what)
1829 {
1830 struct pinctrl_maps *maps_node;
1831 const struct pinctrl_map *map;
1832
1833 seq_puts(s, "Pinctrl maps:\n");
1834
1835 mutex_lock(&pinctrl_maps_mutex);
1836 for_each_pin_map(maps_node, map) {
1837 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1838 map->dev_name, map->name, map_type(map->type),
1839 map->type);
1840
1841 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1842 seq_printf(s, "controlling device %s\n",
1843 map->ctrl_dev_name);
1844
1845 switch (map->type) {
1846 case PIN_MAP_TYPE_MUX_GROUP:
1847 pinmux_show_map(s, map);
1848 break;
1849 case PIN_MAP_TYPE_CONFIGS_PIN:
1850 case PIN_MAP_TYPE_CONFIGS_GROUP:
1851 pinconf_show_map(s, map);
1852 break;
1853 default:
1854 break;
1855 }
1856
1857 seq_putc(s, '\n');
1858 }
1859 mutex_unlock(&pinctrl_maps_mutex);
1860
1861 return 0;
1862 }
1863 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1864
pinctrl_show(struct seq_file * s,void * what)1865 static int pinctrl_show(struct seq_file *s, void *what)
1866 {
1867 struct pinctrl *p;
1868 struct pinctrl_state *state;
1869 struct pinctrl_setting *setting;
1870
1871 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1872
1873 mutex_lock(&pinctrl_list_mutex);
1874
1875 list_for_each_entry(p, &pinctrl_list, node) {
1876 seq_printf(s, "device: %s current state: %s\n",
1877 dev_name(p->dev),
1878 p->state ? p->state->name : "none");
1879
1880 list_for_each_entry(state, &p->states, node) {
1881 seq_printf(s, " state: %s\n", state->name);
1882
1883 list_for_each_entry(setting, &state->settings, node) {
1884 struct pinctrl_dev *pctldev = setting->pctldev;
1885
1886 seq_printf(s, " type: %s controller %s ",
1887 map_type(setting->type),
1888 pinctrl_dev_get_name(pctldev));
1889
1890 switch (setting->type) {
1891 case PIN_MAP_TYPE_MUX_GROUP:
1892 pinmux_show_setting(s, setting);
1893 break;
1894 case PIN_MAP_TYPE_CONFIGS_PIN:
1895 case PIN_MAP_TYPE_CONFIGS_GROUP:
1896 pinconf_show_setting(s, setting);
1897 break;
1898 default:
1899 break;
1900 }
1901 }
1902 }
1903 }
1904
1905 mutex_unlock(&pinctrl_list_mutex);
1906
1907 return 0;
1908 }
1909 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1910
1911 static struct dentry *debugfs_root;
1912
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1913 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1914 {
1915 struct dentry *device_root;
1916 const char *debugfs_name;
1917
1918 if (pctldev->desc->name &&
1919 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1920 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1921 "%s-%s", dev_name(pctldev->dev),
1922 pctldev->desc->name);
1923 if (!debugfs_name) {
1924 pr_warn("failed to determine debugfs dir name for %s\n",
1925 dev_name(pctldev->dev));
1926 return;
1927 }
1928 } else {
1929 debugfs_name = dev_name(pctldev->dev);
1930 }
1931
1932 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1933 pctldev->device_root = device_root;
1934
1935 if (IS_ERR(device_root) || !device_root) {
1936 pr_warn("failed to create debugfs directory for %s\n",
1937 dev_name(pctldev->dev));
1938 return;
1939 }
1940 debugfs_create_file("pins", 0444,
1941 device_root, pctldev, &pinctrl_pins_fops);
1942 debugfs_create_file("pingroups", 0444,
1943 device_root, pctldev, &pinctrl_groups_fops);
1944 debugfs_create_file("gpio-ranges", 0444,
1945 device_root, pctldev, &pinctrl_gpioranges_fops);
1946 if (pctldev->desc->pmxops)
1947 pinmux_init_device_debugfs(device_root, pctldev);
1948 if (pctldev->desc->confops)
1949 pinconf_init_device_debugfs(device_root, pctldev);
1950 }
1951
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1952 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1953 {
1954 debugfs_remove_recursive(pctldev->device_root);
1955 }
1956
pinctrl_init_debugfs(void)1957 static void pinctrl_init_debugfs(void)
1958 {
1959 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1960 if (IS_ERR(debugfs_root) || !debugfs_root) {
1961 pr_warn("failed to create debugfs directory\n");
1962 debugfs_root = NULL;
1963 return;
1964 }
1965
1966 debugfs_create_file("pinctrl-devices", 0444,
1967 debugfs_root, NULL, &pinctrl_devices_fops);
1968 debugfs_create_file("pinctrl-maps", 0444,
1969 debugfs_root, NULL, &pinctrl_maps_fops);
1970 debugfs_create_file("pinctrl-handles", 0444,
1971 debugfs_root, NULL, &pinctrl_fops);
1972 }
1973
1974 #else /* CONFIG_DEBUG_FS */
1975
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1976 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1977 {
1978 }
1979
pinctrl_init_debugfs(void)1980 static void pinctrl_init_debugfs(void)
1981 {
1982 }
1983
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1984 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1985 {
1986 }
1987
1988 #endif
1989
pinctrl_check_ops(struct pinctrl_dev * pctldev)1990 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1991 {
1992 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1993
1994 if (!ops ||
1995 !ops->get_groups_count ||
1996 !ops->get_group_name)
1997 return -EINVAL;
1998
1999 return 0;
2000 }
2001
2002 /**
2003 * pinctrl_init_controller() - init a pin controller device
2004 * @pctldesc: descriptor for this pin controller
2005 * @dev: parent device for this pin controller
2006 * @driver_data: private pin controller data for this pin controller
2007 */
2008 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2009 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2010 void *driver_data)
2011 {
2012 struct pinctrl_dev *pctldev;
2013 int ret;
2014
2015 if (!pctldesc)
2016 return ERR_PTR(-EINVAL);
2017 if (!pctldesc->name)
2018 return ERR_PTR(-EINVAL);
2019
2020 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2021 if (!pctldev)
2022 return ERR_PTR(-ENOMEM);
2023
2024 /* Initialize pin control device struct */
2025 pctldev->owner = pctldesc->owner;
2026 pctldev->desc = pctldesc;
2027 pctldev->driver_data = driver_data;
2028 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2029 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2030 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2031 #endif
2032 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2033 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2034 #endif
2035 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2036 INIT_LIST_HEAD(&pctldev->node);
2037 pctldev->dev = dev;
2038 mutex_init(&pctldev->mutex);
2039
2040 /* check core ops for sanity */
2041 ret = pinctrl_check_ops(pctldev);
2042 if (ret) {
2043 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2044 goto out_err;
2045 }
2046
2047 /* If we're implementing pinmuxing, check the ops for sanity */
2048 if (pctldesc->pmxops) {
2049 ret = pinmux_check_ops(pctldev);
2050 if (ret)
2051 goto out_err;
2052 }
2053
2054 /* If we're implementing pinconfig, check the ops for sanity */
2055 if (pctldesc->confops) {
2056 ret = pinconf_check_ops(pctldev);
2057 if (ret)
2058 goto out_err;
2059 }
2060
2061 /* Register all the pins */
2062 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2063 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2064 if (ret) {
2065 dev_err(dev, "error during pin registration\n");
2066 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2067 pctldesc->npins);
2068 goto out_err;
2069 }
2070
2071 return pctldev;
2072
2073 out_err:
2074 mutex_destroy(&pctldev->mutex);
2075 kfree(pctldev);
2076 return ERR_PTR(ret);
2077 }
2078
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2079 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2080 {
2081 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2082 if (PTR_ERR(pctldev->p) == -ENODEV) {
2083 dev_dbg(pctldev->dev, "no hogs found\n");
2084
2085 return 0;
2086 }
2087
2088 if (IS_ERR(pctldev->p)) {
2089 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2090 PTR_ERR(pctldev->p));
2091
2092 return PTR_ERR(pctldev->p);
2093 }
2094
2095 pctldev->hog_default =
2096 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2097 if (IS_ERR(pctldev->hog_default)) {
2098 dev_dbg(pctldev->dev,
2099 "failed to lookup the default state\n");
2100 } else {
2101 if (pinctrl_select_state(pctldev->p,
2102 pctldev->hog_default))
2103 dev_err(pctldev->dev,
2104 "failed to select default state\n");
2105 }
2106
2107 pctldev->hog_sleep =
2108 pinctrl_lookup_state(pctldev->p,
2109 PINCTRL_STATE_SLEEP);
2110 if (IS_ERR(pctldev->hog_sleep))
2111 dev_dbg(pctldev->dev,
2112 "failed to lookup the sleep state\n");
2113
2114 return 0;
2115 }
2116
pinctrl_enable(struct pinctrl_dev * pctldev)2117 int pinctrl_enable(struct pinctrl_dev *pctldev)
2118 {
2119 int error;
2120
2121 error = pinctrl_claim_hogs(pctldev);
2122 if (error) {
2123 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2124 error);
2125 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2126 pctldev->desc->npins);
2127 mutex_destroy(&pctldev->mutex);
2128 kfree(pctldev);
2129
2130 return error;
2131 }
2132
2133 mutex_lock(&pinctrldev_list_mutex);
2134 list_add_tail(&pctldev->node, &pinctrldev_list);
2135 mutex_unlock(&pinctrldev_list_mutex);
2136
2137 pinctrl_init_device_debugfs(pctldev);
2138
2139 return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(pinctrl_enable);
2142
2143 /**
2144 * pinctrl_register() - register a pin controller device
2145 * @pctldesc: descriptor for this pin controller
2146 * @dev: parent device for this pin controller
2147 * @driver_data: private pin controller data for this pin controller
2148 *
2149 * Note that pinctrl_register() is known to have problems as the pin
2150 * controller driver functions are called before the driver has a
2151 * struct pinctrl_dev handle. To avoid issues later on, please use the
2152 * new pinctrl_register_and_init() below instead.
2153 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2154 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2155 struct device *dev, void *driver_data)
2156 {
2157 struct pinctrl_dev *pctldev;
2158 int error;
2159
2160 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2161 if (IS_ERR(pctldev))
2162 return pctldev;
2163
2164 error = pinctrl_enable(pctldev);
2165 if (error)
2166 return ERR_PTR(error);
2167
2168 return pctldev;
2169 }
2170 EXPORT_SYMBOL_GPL(pinctrl_register);
2171
2172 /**
2173 * pinctrl_register_and_init() - register and init pin controller device
2174 * @pctldesc: descriptor for this pin controller
2175 * @dev: parent device for this pin controller
2176 * @driver_data: private pin controller data for this pin controller
2177 * @pctldev: pin controller device
2178 *
2179 * Note that pinctrl_enable() still needs to be manually called after
2180 * this once the driver is ready.
2181 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2182 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2183 struct device *dev, void *driver_data,
2184 struct pinctrl_dev **pctldev)
2185 {
2186 struct pinctrl_dev *p;
2187
2188 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2189 if (IS_ERR(p))
2190 return PTR_ERR(p);
2191
2192 /*
2193 * We have pinctrl_start() call functions in the pin controller
2194 * driver with create_pinctrl() for at least dt_node_to_map(). So
2195 * let's make sure pctldev is properly initialized for the
2196 * pin controller driver before we do anything.
2197 */
2198 *pctldev = p;
2199
2200 return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2203
2204 /**
2205 * pinctrl_unregister() - unregister pinmux
2206 * @pctldev: pin controller to unregister
2207 *
2208 * Called by pinmux drivers to unregister a pinmux.
2209 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2210 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2211 {
2212 struct pinctrl_gpio_range *range, *n;
2213
2214 if (!pctldev)
2215 return;
2216
2217 mutex_lock(&pctldev->mutex);
2218 pinctrl_remove_device_debugfs(pctldev);
2219 mutex_unlock(&pctldev->mutex);
2220
2221 if (!IS_ERR_OR_NULL(pctldev->p))
2222 pinctrl_put(pctldev->p);
2223
2224 mutex_lock(&pinctrldev_list_mutex);
2225 mutex_lock(&pctldev->mutex);
2226 /* TODO: check that no pinmuxes are still active? */
2227 list_del(&pctldev->node);
2228 pinmux_generic_free_functions(pctldev);
2229 pinctrl_generic_free_groups(pctldev);
2230 /* Destroy descriptor tree */
2231 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2232 pctldev->desc->npins);
2233 /* remove gpio ranges map */
2234 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2235 list_del(&range->node);
2236
2237 mutex_unlock(&pctldev->mutex);
2238 mutex_destroy(&pctldev->mutex);
2239 kfree(pctldev);
2240 mutex_unlock(&pinctrldev_list_mutex);
2241 }
2242 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2243
devm_pinctrl_dev_release(struct device * dev,void * res)2244 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2245 {
2246 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2247
2248 pinctrl_unregister(pctldev);
2249 }
2250
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2251 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2252 {
2253 struct pctldev **r = res;
2254
2255 if (WARN_ON(!r || !*r))
2256 return 0;
2257
2258 return *r == data;
2259 }
2260
2261 /**
2262 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2263 * @dev: parent device for this pin controller
2264 * @pctldesc: descriptor for this pin controller
2265 * @driver_data: private pin controller data for this pin controller
2266 *
2267 * Returns an error pointer if pincontrol register failed. Otherwise
2268 * it returns valid pinctrl handle.
2269 *
2270 * The pinctrl device will be automatically released when the device is unbound.
2271 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2272 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2273 struct pinctrl_desc *pctldesc,
2274 void *driver_data)
2275 {
2276 struct pinctrl_dev **ptr, *pctldev;
2277
2278 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2279 if (!ptr)
2280 return ERR_PTR(-ENOMEM);
2281
2282 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2283 if (IS_ERR(pctldev)) {
2284 devres_free(ptr);
2285 return pctldev;
2286 }
2287
2288 *ptr = pctldev;
2289 devres_add(dev, ptr);
2290
2291 return pctldev;
2292 }
2293 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2294
2295 /**
2296 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2297 * @dev: parent device for this pin controller
2298 * @pctldesc: descriptor for this pin controller
2299 * @driver_data: private pin controller data for this pin controller
2300 * @pctldev: pin controller device
2301 *
2302 * Returns zero on success or an error number on failure.
2303 *
2304 * The pinctrl device will be automatically released when the device is unbound.
2305 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2306 int devm_pinctrl_register_and_init(struct device *dev,
2307 struct pinctrl_desc *pctldesc,
2308 void *driver_data,
2309 struct pinctrl_dev **pctldev)
2310 {
2311 struct pinctrl_dev **ptr;
2312 int error;
2313
2314 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2315 if (!ptr)
2316 return -ENOMEM;
2317
2318 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2319 if (error) {
2320 devres_free(ptr);
2321 return error;
2322 }
2323
2324 *ptr = *pctldev;
2325 devres_add(dev, ptr);
2326
2327 return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2330
2331 /**
2332 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2333 * @dev: device for which resource was allocated
2334 * @pctldev: the pinctrl device to unregister.
2335 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2336 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2337 {
2338 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2339 devm_pinctrl_dev_match, pctldev));
2340 }
2341 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2342
pinctrl_init(void)2343 static int __init pinctrl_init(void)
2344 {
2345 pr_info("initialized pinctrl subsystem\n");
2346 pinctrl_init_debugfs();
2347 return 0;
2348 }
2349
2350 /* init early since many drivers really need to initialized pinmux early */
2351 core_initcall(pinctrl_init);
2352