1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events callchain code, extracted from core.c:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/uprobes.h>
15
16 #include "internal.h"
17
18 struct callchain_cpus_entries {
19 struct rcu_head rcu_head;
20 struct perf_callchain_entry *cpu_entries[];
21 };
22
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25 static const int six_hundred_forty_kb = 640 * 1024;
26
perf_callchain_entry__sizeof(void)27 static inline size_t perf_callchain_entry__sizeof(void)
28 {
29 return (sizeof(struct perf_callchain_entry) +
30 sizeof(__u64) * (sysctl_perf_event_max_stack +
31 sysctl_perf_event_max_contexts_per_stack));
32 }
33
34 static DEFINE_PER_CPU(u8, callchain_recursion[PERF_NR_CONTEXTS]);
35 static atomic_t nr_callchain_events;
36 static DEFINE_MUTEX(callchain_mutex);
37 static struct callchain_cpus_entries *callchain_cpus_entries;
38
39
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)40 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
41 struct pt_regs *regs)
42 {
43 }
44
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)45 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
46 struct pt_regs *regs)
47 {
48 }
49
release_callchain_buffers_rcu(struct rcu_head * head)50 static void release_callchain_buffers_rcu(struct rcu_head *head)
51 {
52 struct callchain_cpus_entries *entries;
53 int cpu;
54
55 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
56
57 for_each_possible_cpu(cpu)
58 kfree(entries->cpu_entries[cpu]);
59
60 kfree(entries);
61 }
62
release_callchain_buffers(void)63 static void release_callchain_buffers(void)
64 {
65 struct callchain_cpus_entries *entries;
66
67 entries = callchain_cpus_entries;
68 RCU_INIT_POINTER(callchain_cpus_entries, NULL);
69 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
70 }
71
alloc_callchain_buffers(void)72 static int alloc_callchain_buffers(void)
73 {
74 int cpu;
75 int size;
76 struct callchain_cpus_entries *entries;
77
78 /*
79 * We can't use the percpu allocation API for data that can be
80 * accessed from NMI. Use a temporary manual per cpu allocation
81 * until that gets sorted out.
82 */
83 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
84
85 entries = kzalloc(size, GFP_KERNEL);
86 if (!entries)
87 return -ENOMEM;
88
89 size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
90
91 for_each_possible_cpu(cpu) {
92 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
93 cpu_to_node(cpu));
94 if (!entries->cpu_entries[cpu])
95 goto fail;
96 }
97
98 rcu_assign_pointer(callchain_cpus_entries, entries);
99
100 return 0;
101
102 fail:
103 for_each_possible_cpu(cpu)
104 kfree(entries->cpu_entries[cpu]);
105 kfree(entries);
106
107 return -ENOMEM;
108 }
109
get_callchain_buffers(int event_max_stack)110 int get_callchain_buffers(int event_max_stack)
111 {
112 int err = 0;
113 int count;
114
115 mutex_lock(&callchain_mutex);
116
117 count = atomic_inc_return(&nr_callchain_events);
118 if (WARN_ON_ONCE(count < 1)) {
119 err = -EINVAL;
120 goto exit;
121 }
122
123 /*
124 * If requesting per event more than the global cap,
125 * return a different error to help userspace figure
126 * this out.
127 *
128 * And also do it here so that we have &callchain_mutex held.
129 */
130 if (event_max_stack > sysctl_perf_event_max_stack) {
131 err = -EOVERFLOW;
132 goto exit;
133 }
134
135 if (count == 1)
136 err = alloc_callchain_buffers();
137 exit:
138 if (err)
139 atomic_dec(&nr_callchain_events);
140
141 mutex_unlock(&callchain_mutex);
142
143 return err;
144 }
145
put_callchain_buffers(void)146 void put_callchain_buffers(void)
147 {
148 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
149 release_callchain_buffers();
150 mutex_unlock(&callchain_mutex);
151 }
152 }
153
get_callchain_entry(int * rctx)154 struct perf_callchain_entry *get_callchain_entry(int *rctx)
155 {
156 int cpu;
157 struct callchain_cpus_entries *entries;
158
159 *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
160 if (*rctx == -1)
161 return NULL;
162
163 entries = rcu_dereference(callchain_cpus_entries);
164 if (!entries) {
165 put_recursion_context(this_cpu_ptr(callchain_recursion), *rctx);
166 return NULL;
167 }
168
169 cpu = smp_processor_id();
170
171 return (((void *)entries->cpu_entries[cpu]) +
172 (*rctx * perf_callchain_entry__sizeof()));
173 }
174
175 void
put_callchain_entry(int rctx)176 put_callchain_entry(int rctx)
177 {
178 put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
179 }
180
fixup_uretprobe_trampoline_entries(struct perf_callchain_entry * entry,int start_entry_idx)181 static void fixup_uretprobe_trampoline_entries(struct perf_callchain_entry *entry,
182 int start_entry_idx)
183 {
184 #ifdef CONFIG_UPROBES
185 struct uprobe_task *utask = current->utask;
186 struct return_instance *ri;
187 __u64 *cur_ip, *last_ip, tramp_addr;
188
189 if (likely(!utask || !utask->return_instances))
190 return;
191
192 cur_ip = &entry->ip[start_entry_idx];
193 last_ip = &entry->ip[entry->nr - 1];
194 ri = utask->return_instances;
195 tramp_addr = uprobe_get_trampoline_vaddr();
196
197 /*
198 * If there are pending uretprobes for the current thread, they are
199 * recorded in a list inside utask->return_instances; each such
200 * pending uretprobe replaces traced user function's return address on
201 * the stack, so when stack trace is captured, instead of seeing
202 * actual function's return address, we'll have one or many uretprobe
203 * trampoline addresses in the stack trace, which are not helpful and
204 * misleading to users.
205 * So here we go over the pending list of uretprobes, and each
206 * encountered trampoline address is replaced with actual return
207 * address.
208 */
209 while (ri && cur_ip <= last_ip) {
210 if (*cur_ip == tramp_addr) {
211 *cur_ip = ri->orig_ret_vaddr;
212 ri = ri->next;
213 }
214 cur_ip++;
215 }
216 #endif
217 }
218
219 struct perf_callchain_entry *
get_perf_callchain(struct pt_regs * regs,u32 init_nr,bool kernel,bool user,u32 max_stack,bool crosstask,bool add_mark)220 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
221 u32 max_stack, bool crosstask, bool add_mark)
222 {
223 struct perf_callchain_entry *entry;
224 struct perf_callchain_entry_ctx ctx;
225 int rctx, start_entry_idx;
226
227 entry = get_callchain_entry(&rctx);
228 if (!entry)
229 return NULL;
230
231 ctx.entry = entry;
232 ctx.max_stack = max_stack;
233 ctx.nr = entry->nr = init_nr;
234 ctx.contexts = 0;
235 ctx.contexts_maxed = false;
236
237 if (kernel && !user_mode(regs)) {
238 if (add_mark)
239 perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
240 perf_callchain_kernel(&ctx, regs);
241 }
242
243 if (user) {
244 if (!user_mode(regs)) {
245 if (current->mm)
246 regs = task_pt_regs(current);
247 else
248 regs = NULL;
249 }
250
251 if (regs) {
252 if (crosstask)
253 goto exit_put;
254
255 if (add_mark)
256 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
257
258 start_entry_idx = entry->nr;
259 perf_callchain_user(&ctx, regs);
260 fixup_uretprobe_trampoline_entries(entry, start_entry_idx);
261 }
262 }
263
264 exit_put:
265 put_callchain_entry(rctx);
266
267 return entry;
268 }
269
perf_event_max_stack_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)270 static int perf_event_max_stack_handler(const struct ctl_table *table, int write,
271 void *buffer, size_t *lenp, loff_t *ppos)
272 {
273 int *value = table->data;
274 int new_value = *value, ret;
275 struct ctl_table new_table = *table;
276
277 new_table.data = &new_value;
278 ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
279 if (ret || !write)
280 return ret;
281
282 mutex_lock(&callchain_mutex);
283 if (atomic_read(&nr_callchain_events))
284 ret = -EBUSY;
285 else
286 *value = new_value;
287
288 mutex_unlock(&callchain_mutex);
289
290 return ret;
291 }
292
293 static const struct ctl_table callchain_sysctl_table[] = {
294 {
295 .procname = "perf_event_max_stack",
296 .data = &sysctl_perf_event_max_stack,
297 .maxlen = sizeof(sysctl_perf_event_max_stack),
298 .mode = 0644,
299 .proc_handler = perf_event_max_stack_handler,
300 .extra1 = SYSCTL_ZERO,
301 .extra2 = (void *)&six_hundred_forty_kb,
302 },
303 {
304 .procname = "perf_event_max_contexts_per_stack",
305 .data = &sysctl_perf_event_max_contexts_per_stack,
306 .maxlen = sizeof(sysctl_perf_event_max_contexts_per_stack),
307 .mode = 0644,
308 .proc_handler = perf_event_max_stack_handler,
309 .extra1 = SYSCTL_ZERO,
310 .extra2 = SYSCTL_ONE_THOUSAND,
311 },
312 };
313
init_callchain_sysctls(void)314 static int __init init_callchain_sysctls(void)
315 {
316 register_sysctl_init("kernel", callchain_sysctl_table);
317 return 0;
318 }
319 core_initcall(init_callchain_sysctls);
320
321