1 /*
2  * Copyright (C) 1994 Linus Torvalds
3  *
4  * Pentium III FXSR, SSE support
5  * General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  * x86-64 work by Andi Kleen 2002
8  */
9 
10 #ifndef _ASM_X86_I387_H
11 #define _ASM_X86_I387_H
12 
13 #ifndef __ASSEMBLY__
14 
15 #include <linux/sched.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/regset.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <asm/asm.h>
21 #include <asm/cpufeature.h>
22 #include <asm/processor.h>
23 #include <asm/sigcontext.h>
24 #include <asm/user.h>
25 #include <asm/uaccess.h>
26 #include <asm/xsave.h>
27 
28 extern unsigned int sig_xstate_size;
29 extern void fpu_init(void);
30 extern void mxcsr_feature_mask_init(void);
31 extern int init_fpu(struct task_struct *child);
32 extern void math_state_restore(void);
33 extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
34 
35 DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
36 
37 extern user_regset_active_fn fpregs_active, xfpregs_active;
38 extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
39 				xstateregs_get;
40 extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
41 				 xstateregs_set;
42 
43 /*
44  * xstateregs_active == fpregs_active. Please refer to the comment
45  * at the definition of fpregs_active.
46  */
47 #define xstateregs_active	fpregs_active
48 
49 extern struct _fpx_sw_bytes fx_sw_reserved;
50 #ifdef CONFIG_IA32_EMULATION
51 extern unsigned int sig_xstate_ia32_size;
52 extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
53 struct _fpstate_ia32;
54 struct _xstate_ia32;
55 extern int save_i387_xstate_ia32(void __user *buf);
56 extern int restore_i387_xstate_ia32(void __user *buf);
57 #endif
58 
59 #ifdef CONFIG_MATH_EMULATION
60 extern void finit_soft_fpu(struct i387_soft_struct *soft);
61 #else
finit_soft_fpu(struct i387_soft_struct * soft)62 static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
63 #endif
64 
65 #define X87_FSW_ES (1 << 7)	/* Exception Summary */
66 
use_xsaveopt(void)67 static __always_inline __pure bool use_xsaveopt(void)
68 {
69 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
70 }
71 
use_xsave(void)72 static __always_inline __pure bool use_xsave(void)
73 {
74 	return static_cpu_has(X86_FEATURE_XSAVE);
75 }
76 
use_fxsr(void)77 static __always_inline __pure bool use_fxsr(void)
78 {
79         return static_cpu_has(X86_FEATURE_FXSR);
80 }
81 
82 extern void __sanitize_i387_state(struct task_struct *);
83 
sanitize_i387_state(struct task_struct * tsk)84 static inline void sanitize_i387_state(struct task_struct *tsk)
85 {
86 	if (!use_xsaveopt())
87 		return;
88 	__sanitize_i387_state(tsk);
89 }
90 
91 #ifdef CONFIG_X86_64
fxrstor_checking(struct i387_fxsave_struct * fx)92 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
93 {
94 	int err;
95 
96 	/* See comment in fxsave() below. */
97 #ifdef CONFIG_AS_FXSAVEQ
98 	asm volatile("1:  fxrstorq %[fx]\n\t"
99 		     "2:\n"
100 		     ".section .fixup,\"ax\"\n"
101 		     "3:  movl $-1,%[err]\n"
102 		     "    jmp  2b\n"
103 		     ".previous\n"
104 		     _ASM_EXTABLE(1b, 3b)
105 		     : [err] "=r" (err)
106 		     : [fx] "m" (*fx), "0" (0));
107 #else
108 	asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
109 		     "2:\n"
110 		     ".section .fixup,\"ax\"\n"
111 		     "3:  movl $-1,%[err]\n"
112 		     "    jmp  2b\n"
113 		     ".previous\n"
114 		     _ASM_EXTABLE(1b, 3b)
115 		     : [err] "=r" (err)
116 		     : [fx] "R" (fx), "m" (*fx), "0" (0));
117 #endif
118 	return err;
119 }
120 
fxsave_user(struct i387_fxsave_struct __user * fx)121 static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
122 {
123 	int err;
124 
125 	/*
126 	 * Clear the bytes not touched by the fxsave and reserved
127 	 * for the SW usage.
128 	 */
129 	err = __clear_user(&fx->sw_reserved,
130 			   sizeof(struct _fpx_sw_bytes));
131 	if (unlikely(err))
132 		return -EFAULT;
133 
134 	/* See comment in fxsave() below. */
135 #ifdef CONFIG_AS_FXSAVEQ
136 	asm volatile("1:  fxsaveq %[fx]\n\t"
137 		     "2:\n"
138 		     ".section .fixup,\"ax\"\n"
139 		     "3:  movl $-1,%[err]\n"
140 		     "    jmp  2b\n"
141 		     ".previous\n"
142 		     _ASM_EXTABLE(1b, 3b)
143 		     : [err] "=r" (err), [fx] "=m" (*fx)
144 		     : "0" (0));
145 #else
146 	asm volatile("1:  rex64/fxsave (%[fx])\n\t"
147 		     "2:\n"
148 		     ".section .fixup,\"ax\"\n"
149 		     "3:  movl $-1,%[err]\n"
150 		     "    jmp  2b\n"
151 		     ".previous\n"
152 		     _ASM_EXTABLE(1b, 3b)
153 		     : [err] "=r" (err), "=m" (*fx)
154 		     : [fx] "R" (fx), "0" (0));
155 #endif
156 	if (unlikely(err) &&
157 	    __clear_user(fx, sizeof(struct i387_fxsave_struct)))
158 		err = -EFAULT;
159 	/* No need to clear here because the caller clears USED_MATH */
160 	return err;
161 }
162 
fpu_fxsave(struct fpu * fpu)163 static inline void fpu_fxsave(struct fpu *fpu)
164 {
165 	/* Using "rex64; fxsave %0" is broken because, if the memory operand
166 	   uses any extended registers for addressing, a second REX prefix
167 	   will be generated (to the assembler, rex64 followed by semicolon
168 	   is a separate instruction), and hence the 64-bitness is lost. */
169 
170 #ifdef CONFIG_AS_FXSAVEQ
171 	/* Using "fxsaveq %0" would be the ideal choice, but is only supported
172 	   starting with gas 2.16. */
173 	__asm__ __volatile__("fxsaveq %0"
174 			     : "=m" (fpu->state->fxsave));
175 #else
176 	/* Using, as a workaround, the properly prefixed form below isn't
177 	   accepted by any binutils version so far released, complaining that
178 	   the same type of prefix is used twice if an extended register is
179 	   needed for addressing (fix submitted to mainline 2005-11-21).
180 	asm volatile("rex64/fxsave %0"
181 		     : "=m" (fpu->state->fxsave));
182 	   This, however, we can work around by forcing the compiler to select
183 	   an addressing mode that doesn't require extended registers. */
184 	asm volatile("rex64/fxsave (%[fx])"
185 		     : "=m" (fpu->state->fxsave)
186 		     : [fx] "R" (&fpu->state->fxsave));
187 #endif
188 }
189 
190 #else  /* CONFIG_X86_32 */
191 
192 /* perform fxrstor iff the processor has extended states, otherwise frstor */
fxrstor_checking(struct i387_fxsave_struct * fx)193 static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
194 {
195 	/*
196 	 * The "nop" is needed to make the instructions the same
197 	 * length.
198 	 */
199 	alternative_input(
200 		"nop ; frstor %1",
201 		"fxrstor %1",
202 		X86_FEATURE_FXSR,
203 		"m" (*fx));
204 
205 	return 0;
206 }
207 
fpu_fxsave(struct fpu * fpu)208 static inline void fpu_fxsave(struct fpu *fpu)
209 {
210 	asm volatile("fxsave %[fx]"
211 		     : [fx] "=m" (fpu->state->fxsave));
212 }
213 
214 #endif	/* CONFIG_X86_64 */
215 
216 /*
217  * These must be called with preempt disabled. Returns
218  * 'true' if the FPU state is still intact.
219  */
fpu_save_init(struct fpu * fpu)220 static inline int fpu_save_init(struct fpu *fpu)
221 {
222 	if (use_xsave()) {
223 		fpu_xsave(fpu);
224 
225 		/*
226 		 * xsave header may indicate the init state of the FP.
227 		 */
228 		if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
229 			return 1;
230 	} else if (use_fxsr()) {
231 		fpu_fxsave(fpu);
232 	} else {
233 		asm volatile("fnsave %[fx]; fwait"
234 			     : [fx] "=m" (fpu->state->fsave));
235 		return 0;
236 	}
237 
238 	/*
239 	 * If exceptions are pending, we need to clear them so
240 	 * that we don't randomly get exceptions later.
241 	 *
242 	 * FIXME! Is this perhaps only true for the old-style
243 	 * irq13 case? Maybe we could leave the x87 state
244 	 * intact otherwise?
245 	 */
246 	if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
247 		asm volatile("fnclex");
248 		return 0;
249 	}
250 	return 1;
251 }
252 
__save_init_fpu(struct task_struct * tsk)253 static inline int __save_init_fpu(struct task_struct *tsk)
254 {
255 	return fpu_save_init(&tsk->thread.fpu);
256 }
257 
fpu_fxrstor_checking(struct fpu * fpu)258 static inline int fpu_fxrstor_checking(struct fpu *fpu)
259 {
260 	return fxrstor_checking(&fpu->state->fxsave);
261 }
262 
fpu_restore_checking(struct fpu * fpu)263 static inline int fpu_restore_checking(struct fpu *fpu)
264 {
265 	if (use_xsave())
266 		return fpu_xrstor_checking(fpu);
267 	else
268 		return fpu_fxrstor_checking(fpu);
269 }
270 
restore_fpu_checking(struct task_struct * tsk)271 static inline int restore_fpu_checking(struct task_struct *tsk)
272 {
273 	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
274 	   is pending.  Clear the x87 state here by setting it to fixed
275 	   values. "m" is a random variable that should be in L1 */
276 	alternative_input(
277 		ASM_NOP8 ASM_NOP2,
278 		"emms\n\t"	  	/* clear stack tags */
279 		"fildl %P[addr]",	/* set F?P to defined value */
280 		X86_FEATURE_FXSAVE_LEAK,
281 		[addr] "m" (tsk->thread.fpu.has_fpu));
282 
283 	return fpu_restore_checking(&tsk->thread.fpu);
284 }
285 
286 /*
287  * Software FPU state helpers. Careful: these need to
288  * be preemption protection *and* they need to be
289  * properly paired with the CR0.TS changes!
290  */
__thread_has_fpu(struct task_struct * tsk)291 static inline int __thread_has_fpu(struct task_struct *tsk)
292 {
293 	return tsk->thread.fpu.has_fpu;
294 }
295 
296 /* Must be paired with an 'stts' after! */
__thread_clear_has_fpu(struct task_struct * tsk)297 static inline void __thread_clear_has_fpu(struct task_struct *tsk)
298 {
299 	tsk->thread.fpu.has_fpu = 0;
300 	percpu_write(fpu_owner_task, NULL);
301 }
302 
303 /* Must be paired with a 'clts' before! */
__thread_set_has_fpu(struct task_struct * tsk)304 static inline void __thread_set_has_fpu(struct task_struct *tsk)
305 {
306 	tsk->thread.fpu.has_fpu = 1;
307 	percpu_write(fpu_owner_task, tsk);
308 }
309 
310 /*
311  * Encapsulate the CR0.TS handling together with the
312  * software flag.
313  *
314  * These generally need preemption protection to work,
315  * do try to avoid using these on their own.
316  */
__thread_fpu_end(struct task_struct * tsk)317 static inline void __thread_fpu_end(struct task_struct *tsk)
318 {
319 	__thread_clear_has_fpu(tsk);
320 	stts();
321 }
322 
__thread_fpu_begin(struct task_struct * tsk)323 static inline void __thread_fpu_begin(struct task_struct *tsk)
324 {
325 	clts();
326 	__thread_set_has_fpu(tsk);
327 }
328 
329 /*
330  * FPU state switching for scheduling.
331  *
332  * This is a two-stage process:
333  *
334  *  - switch_fpu_prepare() saves the old state and
335  *    sets the new state of the CR0.TS bit. This is
336  *    done within the context of the old process.
337  *
338  *  - switch_fpu_finish() restores the new state as
339  *    necessary.
340  */
341 typedef struct { int preload; } fpu_switch_t;
342 
343 /*
344  * FIXME! We could do a totally lazy restore, but we need to
345  * add a per-cpu "this was the task that last touched the FPU
346  * on this CPU" variable, and the task needs to have a "I last
347  * touched the FPU on this CPU" and check them.
348  *
349  * We don't do that yet, so "fpu_lazy_restore()" always returns
350  * false, but some day..
351  */
fpu_lazy_restore(struct task_struct * new,unsigned int cpu)352 static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
353 {
354 	return new == percpu_read_stable(fpu_owner_task) &&
355 		cpu == new->thread.fpu.last_cpu;
356 }
357 
switch_fpu_prepare(struct task_struct * old,struct task_struct * new,int cpu)358 static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
359 {
360 	fpu_switch_t fpu;
361 
362 	fpu.preload = tsk_used_math(new) && new->fpu_counter > 5;
363 	if (__thread_has_fpu(old)) {
364 		if (!__save_init_fpu(old))
365 			cpu = ~0;
366 		old->thread.fpu.last_cpu = cpu;
367 		old->thread.fpu.has_fpu = 0;	/* But leave fpu_owner_task! */
368 
369 		/* Don't change CR0.TS if we just switch! */
370 		if (fpu.preload) {
371 			new->fpu_counter++;
372 			__thread_set_has_fpu(new);
373 			prefetch(new->thread.fpu.state);
374 		} else
375 			stts();
376 	} else {
377 		old->fpu_counter = 0;
378 		old->thread.fpu.last_cpu = ~0;
379 		if (fpu.preload) {
380 			new->fpu_counter++;
381 			if (fpu_lazy_restore(new, cpu))
382 				fpu.preload = 0;
383 			else
384 				prefetch(new->thread.fpu.state);
385 			__thread_fpu_begin(new);
386 		}
387 	}
388 	return fpu;
389 }
390 
391 /*
392  * By the time this gets called, we've already cleared CR0.TS and
393  * given the process the FPU if we are going to preload the FPU
394  * state - all we need to do is to conditionally restore the register
395  * state itself.
396  */
switch_fpu_finish(struct task_struct * new,fpu_switch_t fpu)397 static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
398 {
399 	if (fpu.preload) {
400 		if (unlikely(restore_fpu_checking(new)))
401 			__thread_fpu_end(new);
402 	}
403 }
404 
405 /*
406  * Signal frame handlers...
407  */
408 extern int save_i387_xstate(void __user *buf);
409 extern int restore_i387_xstate(void __user *buf);
410 
__clear_fpu(struct task_struct * tsk)411 static inline void __clear_fpu(struct task_struct *tsk)
412 {
413 	if (__thread_has_fpu(tsk)) {
414 		/* Ignore delayed exceptions from user space */
415 		asm volatile("1: fwait\n"
416 			     "2:\n"
417 			     _ASM_EXTABLE(1b, 2b));
418 		__thread_fpu_end(tsk);
419 	}
420 }
421 
422 /*
423  * Were we in an interrupt that interrupted kernel mode?
424  *
425  * We can do a kernel_fpu_begin/end() pair *ONLY* if that
426  * pair does nothing at all: the thread must not have fpu (so
427  * that we don't try to save the FPU state), and TS must
428  * be set (so that the clts/stts pair does nothing that is
429  * visible in the interrupted kernel thread).
430  */
interrupted_kernel_fpu_idle(void)431 static inline bool interrupted_kernel_fpu_idle(void)
432 {
433 	return !__thread_has_fpu(current) &&
434 		(read_cr0() & X86_CR0_TS);
435 }
436 
437 /*
438  * Were we in user mode (or vm86 mode) when we were
439  * interrupted?
440  *
441  * Doing kernel_fpu_begin/end() is ok if we are running
442  * in an interrupt context from user mode - we'll just
443  * save the FPU state as required.
444  */
interrupted_user_mode(void)445 static inline bool interrupted_user_mode(void)
446 {
447 	struct pt_regs *regs = get_irq_regs();
448 	return regs && user_mode_vm(regs);
449 }
450 
451 /*
452  * Can we use the FPU in kernel mode with the
453  * whole "kernel_fpu_begin/end()" sequence?
454  *
455  * It's always ok in process context (ie "not interrupt")
456  * but it is sometimes ok even from an irq.
457  */
irq_fpu_usable(void)458 static inline bool irq_fpu_usable(void)
459 {
460 	return !in_interrupt() ||
461 		interrupted_user_mode() ||
462 		interrupted_kernel_fpu_idle();
463 }
464 
kernel_fpu_begin(void)465 static inline void kernel_fpu_begin(void)
466 {
467 	struct task_struct *me = current;
468 
469 	WARN_ON_ONCE(!irq_fpu_usable());
470 	preempt_disable();
471 	if (__thread_has_fpu(me)) {
472 		__save_init_fpu(me);
473 		__thread_clear_has_fpu(me);
474 		/* We do 'stts()' in kernel_fpu_end() */
475 	} else {
476 		percpu_write(fpu_owner_task, NULL);
477 		clts();
478 	}
479 }
480 
kernel_fpu_end(void)481 static inline void kernel_fpu_end(void)
482 {
483 	stts();
484 	preempt_enable();
485 }
486 
487 /*
488  * Some instructions like VIA's padlock instructions generate a spurious
489  * DNA fault but don't modify SSE registers. And these instructions
490  * get used from interrupt context as well. To prevent these kernel instructions
491  * in interrupt context interacting wrongly with other user/kernel fpu usage, we
492  * should use them only in the context of irq_ts_save/restore()
493  */
irq_ts_save(void)494 static inline int irq_ts_save(void)
495 {
496 	/*
497 	 * If in process context and not atomic, we can take a spurious DNA fault.
498 	 * Otherwise, doing clts() in process context requires disabling preemption
499 	 * or some heavy lifting like kernel_fpu_begin()
500 	 */
501 	if (!in_atomic())
502 		return 0;
503 
504 	if (read_cr0() & X86_CR0_TS) {
505 		clts();
506 		return 1;
507 	}
508 
509 	return 0;
510 }
511 
irq_ts_restore(int TS_state)512 static inline void irq_ts_restore(int TS_state)
513 {
514 	if (TS_state)
515 		stts();
516 }
517 
518 /*
519  * The question "does this thread have fpu access?"
520  * is slightly racy, since preemption could come in
521  * and revoke it immediately after the test.
522  *
523  * However, even in that very unlikely scenario,
524  * we can just assume we have FPU access - typically
525  * to save the FP state - we'll just take a #NM
526  * fault and get the FPU access back.
527  *
528  * The actual user_fpu_begin/end() functions
529  * need to be preemption-safe, though.
530  *
531  * NOTE! user_fpu_end() must be used only after you
532  * have saved the FP state, and user_fpu_begin() must
533  * be used only immediately before restoring it.
534  * These functions do not do any save/restore on
535  * their own.
536  */
user_has_fpu(void)537 static inline int user_has_fpu(void)
538 {
539 	return __thread_has_fpu(current);
540 }
541 
user_fpu_end(void)542 static inline void user_fpu_end(void)
543 {
544 	preempt_disable();
545 	__thread_fpu_end(current);
546 	preempt_enable();
547 }
548 
user_fpu_begin(void)549 static inline void user_fpu_begin(void)
550 {
551 	preempt_disable();
552 	if (!user_has_fpu())
553 		__thread_fpu_begin(current);
554 	preempt_enable();
555 }
556 
557 /*
558  * These disable preemption on their own and are safe
559  */
save_init_fpu(struct task_struct * tsk)560 static inline void save_init_fpu(struct task_struct *tsk)
561 {
562 	WARN_ON_ONCE(!__thread_has_fpu(tsk));
563 	preempt_disable();
564 	__save_init_fpu(tsk);
565 	__thread_fpu_end(tsk);
566 	preempt_enable();
567 }
568 
unlazy_fpu(struct task_struct * tsk)569 static inline void unlazy_fpu(struct task_struct *tsk)
570 {
571 	preempt_disable();
572 	if (__thread_has_fpu(tsk)) {
573 		__save_init_fpu(tsk);
574 		__thread_fpu_end(tsk);
575 	} else
576 		tsk->fpu_counter = 0;
577 	preempt_enable();
578 }
579 
clear_fpu(struct task_struct * tsk)580 static inline void clear_fpu(struct task_struct *tsk)
581 {
582 	preempt_disable();
583 	__clear_fpu(tsk);
584 	preempt_enable();
585 }
586 
587 /*
588  * i387 state interaction
589  */
get_fpu_cwd(struct task_struct * tsk)590 static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
591 {
592 	if (cpu_has_fxsr) {
593 		return tsk->thread.fpu.state->fxsave.cwd;
594 	} else {
595 		return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
596 	}
597 }
598 
get_fpu_swd(struct task_struct * tsk)599 static inline unsigned short get_fpu_swd(struct task_struct *tsk)
600 {
601 	if (cpu_has_fxsr) {
602 		return tsk->thread.fpu.state->fxsave.swd;
603 	} else {
604 		return (unsigned short)tsk->thread.fpu.state->fsave.swd;
605 	}
606 }
607 
get_fpu_mxcsr(struct task_struct * tsk)608 static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
609 {
610 	if (cpu_has_xmm) {
611 		return tsk->thread.fpu.state->fxsave.mxcsr;
612 	} else {
613 		return MXCSR_DEFAULT;
614 	}
615 }
616 
fpu_allocated(struct fpu * fpu)617 static bool fpu_allocated(struct fpu *fpu)
618 {
619 	return fpu->state != NULL;
620 }
621 
fpu_alloc(struct fpu * fpu)622 static inline int fpu_alloc(struct fpu *fpu)
623 {
624 	if (fpu_allocated(fpu))
625 		return 0;
626 	fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
627 	if (!fpu->state)
628 		return -ENOMEM;
629 	WARN_ON((unsigned long)fpu->state & 15);
630 	return 0;
631 }
632 
fpu_free(struct fpu * fpu)633 static inline void fpu_free(struct fpu *fpu)
634 {
635 	if (fpu->state) {
636 		kmem_cache_free(task_xstate_cachep, fpu->state);
637 		fpu->state = NULL;
638 	}
639 }
640 
fpu_copy(struct fpu * dst,struct fpu * src)641 static inline void fpu_copy(struct fpu *dst, struct fpu *src)
642 {
643 	memcpy(dst->state, src->state, xstate_size);
644 }
645 
646 extern void fpu_finit(struct fpu *fpu);
647 
648 #endif /* __ASSEMBLY__ */
649 
650 #endif /* _ASM_X86_I387_H */
651