1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "extent-tree.h"
21 #include "relocation.h"
22 #include "tree-checker.h"
23
24 /* Just arbitrary numbers so we can be sure one of these happened. */
25 #define BACKREF_FOUND_SHARED 6
26 #define BACKREF_FOUND_NOT_SHARED 7
27
28 struct extent_inode_elem {
29 u64 inum;
30 u64 offset;
31 u64 num_bytes;
32 struct extent_inode_elem *next;
33 };
34
check_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,struct extent_inode_elem ** eie)35 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
36 const struct btrfs_key *key,
37 const struct extent_buffer *eb,
38 const struct btrfs_file_extent_item *fi,
39 struct extent_inode_elem **eie)
40 {
41 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi);
42 u64 offset = key->offset;
43 struct extent_inode_elem *e;
44 const u64 *root_ids;
45 int root_count;
46 bool cached;
47
48 if (!ctx->ignore_extent_item_pos &&
49 !btrfs_file_extent_compression(eb, fi) &&
50 !btrfs_file_extent_encryption(eb, fi) &&
51 !btrfs_file_extent_other_encoding(eb, fi)) {
52 u64 data_offset;
53
54 data_offset = btrfs_file_extent_offset(eb, fi);
55
56 if (ctx->extent_item_pos < data_offset ||
57 ctx->extent_item_pos >= data_offset + data_len)
58 return 1;
59 offset += ctx->extent_item_pos - data_offset;
60 }
61
62 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup)
63 goto add_inode_elem;
64
65 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids,
66 &root_count);
67 if (!cached)
68 goto add_inode_elem;
69
70 for (int i = 0; i < root_count; i++) {
71 int ret;
72
73 ret = ctx->indirect_ref_iterator(key->objectid, offset,
74 data_len, root_ids[i],
75 ctx->user_ctx);
76 if (ret)
77 return ret;
78 }
79
80 add_inode_elem:
81 e = kmalloc(sizeof(*e), GFP_NOFS);
82 if (!e)
83 return -ENOMEM;
84
85 e->next = *eie;
86 e->inum = key->objectid;
87 e->offset = offset;
88 e->num_bytes = data_len;
89 *eie = e;
90
91 return 0;
92 }
93
free_inode_elem_list(struct extent_inode_elem * eie)94 static void free_inode_elem_list(struct extent_inode_elem *eie)
95 {
96 struct extent_inode_elem *eie_next;
97
98 for (; eie; eie = eie_next) {
99 eie_next = eie->next;
100 kfree(eie);
101 }
102 }
103
find_extent_in_eb(struct btrfs_backref_walk_ctx * ctx,const struct extent_buffer * eb,struct extent_inode_elem ** eie)104 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx,
105 const struct extent_buffer *eb,
106 struct extent_inode_elem **eie)
107 {
108 u64 disk_byte;
109 struct btrfs_key key;
110 struct btrfs_file_extent_item *fi;
111 int slot;
112 int nritems;
113 int extent_type;
114 int ret;
115
116 /*
117 * from the shared data ref, we only have the leaf but we need
118 * the key. thus, we must look into all items and see that we
119 * find one (some) with a reference to our extent item.
120 */
121 nritems = btrfs_header_nritems(eb);
122 for (slot = 0; slot < nritems; ++slot) {
123 btrfs_item_key_to_cpu(eb, &key, slot);
124 if (key.type != BTRFS_EXTENT_DATA_KEY)
125 continue;
126 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
127 extent_type = btrfs_file_extent_type(eb, fi);
128 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
129 continue;
130 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
131 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
132 if (disk_byte != ctx->bytenr)
133 continue;
134
135 ret = check_extent_in_eb(ctx, &key, eb, fi, eie);
136 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
137 return ret;
138 }
139
140 return 0;
141 }
142
143 struct preftree {
144 struct rb_root_cached root;
145 unsigned int count;
146 };
147
148 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
149
150 struct preftrees {
151 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
152 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
153 struct preftree indirect_missing_keys;
154 };
155
156 /*
157 * Checks for a shared extent during backref search.
158 *
159 * The share_count tracks prelim_refs (direct and indirect) having a
160 * ref->count >0:
161 * - incremented when a ref->count transitions to >0
162 * - decremented when a ref->count transitions to <1
163 */
164 struct share_check {
165 struct btrfs_backref_share_check_ctx *ctx;
166 struct btrfs_root *root;
167 u64 inum;
168 u64 data_bytenr;
169 u64 data_extent_gen;
170 /*
171 * Counts number of inodes that refer to an extent (different inodes in
172 * the same root or different roots) that we could find. The sharedness
173 * check typically stops once this counter gets greater than 1, so it
174 * may not reflect the total number of inodes.
175 */
176 int share_count;
177 /*
178 * The number of times we found our inode refers to the data extent we
179 * are determining the sharedness. In other words, how many file extent
180 * items we could find for our inode that point to our target data
181 * extent. The value we get here after finishing the extent sharedness
182 * check may be smaller than reality, but if it ends up being greater
183 * than 1, then we know for sure the inode has multiple file extent
184 * items that point to our inode, and we can safely assume it's useful
185 * to cache the sharedness check result.
186 */
187 int self_ref_count;
188 bool have_delayed_delete_refs;
189 };
190
extent_is_shared(struct share_check * sc)191 static inline int extent_is_shared(struct share_check *sc)
192 {
193 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
194 }
195
196 static struct kmem_cache *btrfs_prelim_ref_cache;
197
btrfs_prelim_ref_init(void)198 int __init btrfs_prelim_ref_init(void)
199 {
200 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
201 sizeof(struct prelim_ref), 0, 0, NULL);
202 if (!btrfs_prelim_ref_cache)
203 return -ENOMEM;
204 return 0;
205 }
206
btrfs_prelim_ref_exit(void)207 void __cold btrfs_prelim_ref_exit(void)
208 {
209 kmem_cache_destroy(btrfs_prelim_ref_cache);
210 }
211
free_pref(struct prelim_ref * ref)212 static void free_pref(struct prelim_ref *ref)
213 {
214 kmem_cache_free(btrfs_prelim_ref_cache, ref);
215 }
216
217 /*
218 * Return 0 when both refs are for the same block (and can be merged).
219 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
220 * indicates a 'higher' block.
221 */
prelim_ref_compare(const struct prelim_ref * ref1,const struct prelim_ref * ref2)222 static int prelim_ref_compare(const struct prelim_ref *ref1,
223 const struct prelim_ref *ref2)
224 {
225 if (ref1->level < ref2->level)
226 return -1;
227 if (ref1->level > ref2->level)
228 return 1;
229 if (ref1->root_id < ref2->root_id)
230 return -1;
231 if (ref1->root_id > ref2->root_id)
232 return 1;
233 if (ref1->key_for_search.type < ref2->key_for_search.type)
234 return -1;
235 if (ref1->key_for_search.type > ref2->key_for_search.type)
236 return 1;
237 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
238 return -1;
239 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
240 return 1;
241 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
242 return -1;
243 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
244 return 1;
245 if (ref1->parent < ref2->parent)
246 return -1;
247 if (ref1->parent > ref2->parent)
248 return 1;
249
250 return 0;
251 }
252
prelim_ref_rb_add_cmp(const struct rb_node * new,const struct rb_node * exist)253 static int prelim_ref_rb_add_cmp(const struct rb_node *new,
254 const struct rb_node *exist)
255 {
256 const struct prelim_ref *ref_new =
257 rb_entry(new, struct prelim_ref, rbnode);
258 const struct prelim_ref *ref_exist =
259 rb_entry(exist, struct prelim_ref, rbnode);
260
261 /*
262 * prelim_ref_compare() expects the first parameter as the existing one,
263 * different from the rb_find_add_cached() order.
264 */
265 return prelim_ref_compare(ref_exist, ref_new);
266 }
267
update_share_count(struct share_check * sc,int oldcount,int newcount,const struct prelim_ref * newref)268 static void update_share_count(struct share_check *sc, int oldcount,
269 int newcount, const struct prelim_ref *newref)
270 {
271 if ((!sc) || (oldcount == 0 && newcount < 1))
272 return;
273
274 if (oldcount > 0 && newcount < 1)
275 sc->share_count--;
276 else if (oldcount < 1 && newcount > 0)
277 sc->share_count++;
278
279 if (newref->root_id == btrfs_root_id(sc->root) &&
280 newref->wanted_disk_byte == sc->data_bytenr &&
281 newref->key_for_search.objectid == sc->inum)
282 sc->self_ref_count += newref->count;
283 }
284
285 /*
286 * Add @newref to the @root rbtree, merging identical refs.
287 *
288 * Callers should assume that newref has been freed after calling.
289 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)290 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
291 struct preftree *preftree,
292 struct prelim_ref *newref,
293 struct share_check *sc)
294 {
295 struct rb_root_cached *root;
296 struct rb_node *exist;
297
298 root = &preftree->root;
299 exist = rb_find_add_cached(&newref->rbnode, root, prelim_ref_rb_add_cmp);
300 if (exist) {
301 struct prelim_ref *ref = rb_entry(exist, struct prelim_ref, rbnode);
302 /* Identical refs, merge them and free @newref */
303 struct extent_inode_elem *eie = ref->inode_list;
304
305 while (eie && eie->next)
306 eie = eie->next;
307
308 if (!eie)
309 ref->inode_list = newref->inode_list;
310 else
311 eie->next = newref->inode_list;
312 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
313 preftree->count);
314 /*
315 * A delayed ref can have newref->count < 0.
316 * The ref->count is updated to follow any
317 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
318 */
319 update_share_count(sc, ref->count,
320 ref->count + newref->count, newref);
321 ref->count += newref->count;
322 free_pref(newref);
323 return;
324 }
325
326 update_share_count(sc, 0, newref->count, newref);
327 preftree->count++;
328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
329 }
330
331 /*
332 * Release the entire tree. We don't care about internal consistency so
333 * just free everything and then reset the tree root.
334 */
prelim_release(struct preftree * preftree)335 static void prelim_release(struct preftree *preftree)
336 {
337 struct prelim_ref *ref, *next_ref;
338
339 rbtree_postorder_for_each_entry_safe(ref, next_ref,
340 &preftree->root.rb_root, rbnode) {
341 free_inode_elem_list(ref->inode_list);
342 free_pref(ref);
343 }
344
345 preftree->root = RB_ROOT_CACHED;
346 preftree->count = 0;
347 }
348
349 /*
350 * the rules for all callers of this function are:
351 * - obtaining the parent is the goal
352 * - if you add a key, you must know that it is a correct key
353 * - if you cannot add the parent or a correct key, then we will look into the
354 * block later to set a correct key
355 *
356 * delayed refs
357 * ============
358 * backref type | shared | indirect | shared | indirect
359 * information | tree | tree | data | data
360 * --------------------+--------+----------+--------+----------
361 * parent logical | y | - | - | -
362 * key to resolve | - | y | y | y
363 * tree block logical | - | - | - | -
364 * root for resolving | y | y | y | y
365 *
366 * - column 1: we've the parent -> done
367 * - column 2, 3, 4: we use the key to find the parent
368 *
369 * on disk refs (inline or keyed)
370 * ==============================
371 * backref type | shared | indirect | shared | indirect
372 * information | tree | tree | data | data
373 * --------------------+--------+----------+--------+----------
374 * parent logical | y | - | y | -
375 * key to resolve | - | - | - | y
376 * tree block logical | y | y | y | y
377 * root for resolving | - | y | y | y
378 *
379 * - column 1, 3: we've the parent -> done
380 * - column 2: we take the first key from the block to find the parent
381 * (see add_missing_keys)
382 * - column 4: we use the key to find the parent
383 *
384 * additional information that's available but not required to find the parent
385 * block might help in merging entries to gain some speed.
386 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)387 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
388 struct preftree *preftree, u64 root_id,
389 const struct btrfs_key *key, int level, u64 parent,
390 u64 wanted_disk_byte, int count,
391 struct share_check *sc, gfp_t gfp_mask)
392 {
393 struct prelim_ref *ref;
394
395 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
396 return 0;
397
398 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
399 if (!ref)
400 return -ENOMEM;
401
402 ref->root_id = root_id;
403 if (key)
404 ref->key_for_search = *key;
405 else
406 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
407
408 ref->inode_list = NULL;
409 ref->level = level;
410 ref->count = count;
411 ref->parent = parent;
412 ref->wanted_disk_byte = wanted_disk_byte;
413 prelim_ref_insert(fs_info, preftree, ref, sc);
414 return extent_is_shared(sc);
415 }
416
417 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)418 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
419 struct preftrees *preftrees, int level, u64 parent,
420 u64 wanted_disk_byte, int count,
421 struct share_check *sc, gfp_t gfp_mask)
422 {
423 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
424 parent, wanted_disk_byte, count, sc, gfp_mask);
425 }
426
427 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)428 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
429 struct preftrees *preftrees, u64 root_id,
430 const struct btrfs_key *key, int level,
431 u64 wanted_disk_byte, int count,
432 struct share_check *sc, gfp_t gfp_mask)
433 {
434 struct preftree *tree = &preftrees->indirect;
435
436 if (!key)
437 tree = &preftrees->indirect_missing_keys;
438 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
439 wanted_disk_byte, count, sc, gfp_mask);
440 }
441
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)442 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
443 {
444 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
445 struct rb_node *parent = NULL;
446 struct prelim_ref *ref = NULL;
447 struct prelim_ref target = {};
448 int result;
449
450 target.parent = bytenr;
451
452 while (*p) {
453 parent = *p;
454 ref = rb_entry(parent, struct prelim_ref, rbnode);
455 result = prelim_ref_compare(ref, &target);
456
457 if (result < 0)
458 p = &(*p)->rb_left;
459 else if (result > 0)
460 p = &(*p)->rb_right;
461 else
462 return 1;
463 }
464 return 0;
465 }
466
add_all_parents(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level)467 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx,
468 struct btrfs_root *root, struct btrfs_path *path,
469 struct ulist *parents,
470 struct preftrees *preftrees, struct prelim_ref *ref,
471 int level)
472 {
473 int ret = 0;
474 int slot;
475 struct extent_buffer *eb;
476 struct btrfs_key key;
477 struct btrfs_key *key_for_search = &ref->key_for_search;
478 struct btrfs_file_extent_item *fi;
479 struct extent_inode_elem *eie = NULL, *old = NULL;
480 u64 disk_byte;
481 u64 wanted_disk_byte = ref->wanted_disk_byte;
482 u64 count = 0;
483 u64 data_offset;
484 u8 type;
485
486 if (level != 0) {
487 eb = path->nodes[level];
488 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
489 if (ret < 0)
490 return ret;
491 return 0;
492 }
493
494 /*
495 * 1. We normally enter this function with the path already pointing to
496 * the first item to check. But sometimes, we may enter it with
497 * slot == nritems.
498 * 2. We are searching for normal backref but bytenr of this leaf
499 * matches shared data backref
500 * 3. The leaf owner is not equal to the root we are searching
501 *
502 * For these cases, go to the next leaf before we continue.
503 */
504 eb = path->nodes[0];
505 if (path->slots[0] >= btrfs_header_nritems(eb) ||
506 is_shared_data_backref(preftrees, eb->start) ||
507 ref->root_id != btrfs_header_owner(eb)) {
508 if (ctx->time_seq == BTRFS_SEQ_LAST)
509 ret = btrfs_next_leaf(root, path);
510 else
511 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
512 }
513
514 while (!ret && count < ref->count) {
515 eb = path->nodes[0];
516 slot = path->slots[0];
517
518 btrfs_item_key_to_cpu(eb, &key, slot);
519
520 if (key.objectid != key_for_search->objectid ||
521 key.type != BTRFS_EXTENT_DATA_KEY)
522 break;
523
524 /*
525 * We are searching for normal backref but bytenr of this leaf
526 * matches shared data backref, OR
527 * the leaf owner is not equal to the root we are searching for
528 */
529 if (slot == 0 &&
530 (is_shared_data_backref(preftrees, eb->start) ||
531 ref->root_id != btrfs_header_owner(eb))) {
532 if (ctx->time_seq == BTRFS_SEQ_LAST)
533 ret = btrfs_next_leaf(root, path);
534 else
535 ret = btrfs_next_old_leaf(root, path, ctx->time_seq);
536 continue;
537 }
538 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 type = btrfs_file_extent_type(eb, fi);
540 if (type == BTRFS_FILE_EXTENT_INLINE)
541 goto next;
542 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
543 data_offset = btrfs_file_extent_offset(eb, fi);
544
545 if (disk_byte == wanted_disk_byte) {
546 eie = NULL;
547 old = NULL;
548 if (ref->key_for_search.offset == key.offset - data_offset)
549 count++;
550 else
551 goto next;
552 if (!ctx->skip_inode_ref_list) {
553 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie);
554 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
555 ret < 0)
556 break;
557 }
558 if (ret > 0)
559 goto next;
560 ret = ulist_add_merge_ptr(parents, eb->start,
561 eie, (void **)&old, GFP_NOFS);
562 if (ret < 0)
563 break;
564 if (!ret && !ctx->skip_inode_ref_list) {
565 while (old->next)
566 old = old->next;
567 old->next = eie;
568 }
569 eie = NULL;
570 }
571 next:
572 if (ctx->time_seq == BTRFS_SEQ_LAST)
573 ret = btrfs_next_item(root, path);
574 else
575 ret = btrfs_next_old_item(root, path, ctx->time_seq);
576 }
577
578 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
579 free_inode_elem_list(eie);
580 else if (ret > 0)
581 ret = 0;
582
583 return ret;
584 }
585
586 /*
587 * resolve an indirect backref in the form (root_id, key, level)
588 * to a logical address
589 */
resolve_indirect_ref(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents)590 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx,
591 struct btrfs_path *path,
592 struct preftrees *preftrees,
593 struct prelim_ref *ref, struct ulist *parents)
594 {
595 struct btrfs_root *root;
596 struct extent_buffer *eb;
597 int ret = 0;
598 int root_level;
599 int level = ref->level;
600 struct btrfs_key search_key = ref->key_for_search;
601
602 /*
603 * If we're search_commit_root we could possibly be holding locks on
604 * other tree nodes. This happens when qgroups does backref walks when
605 * adding new delayed refs. To deal with this we need to look in cache
606 * for the root, and if we don't find it then we need to search the
607 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
608 * here.
609 */
610 if (path->search_commit_root)
611 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id);
612 else
613 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false);
614 if (IS_ERR(root)) {
615 ret = PTR_ERR(root);
616 goto out_free;
617 }
618
619 if (!path->search_commit_root &&
620 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
621 ret = -ENOENT;
622 goto out;
623 }
624
625 if (btrfs_is_testing(ctx->fs_info)) {
626 ret = -ENOENT;
627 goto out;
628 }
629
630 if (path->search_commit_root)
631 root_level = btrfs_header_level(root->commit_root);
632 else if (ctx->time_seq == BTRFS_SEQ_LAST)
633 root_level = btrfs_header_level(root->node);
634 else
635 root_level = btrfs_old_root_level(root, ctx->time_seq);
636
637 if (root_level + 1 == level)
638 goto out;
639
640 /*
641 * We can often find data backrefs with an offset that is too large
642 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
643 * subtracting a file's offset with the data offset of its
644 * corresponding extent data item. This can happen for example in the
645 * clone ioctl.
646 *
647 * So if we detect such case we set the search key's offset to zero to
648 * make sure we will find the matching file extent item at
649 * add_all_parents(), otherwise we will miss it because the offset
650 * taken form the backref is much larger then the offset of the file
651 * extent item. This can make us scan a very large number of file
652 * extent items, but at least it will not make us miss any.
653 *
654 * This is an ugly workaround for a behaviour that should have never
655 * existed, but it does and a fix for the clone ioctl would touch a lot
656 * of places, cause backwards incompatibility and would not fix the
657 * problem for extents cloned with older kernels.
658 */
659 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
660 search_key.offset >= LLONG_MAX)
661 search_key.offset = 0;
662 path->lowest_level = level;
663 if (ctx->time_seq == BTRFS_SEQ_LAST)
664 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
665 else
666 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq);
667
668 btrfs_debug(ctx->fs_info,
669 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
670 ref->root_id, level, ref->count, ret,
671 ref->key_for_search.objectid, ref->key_for_search.type,
672 ref->key_for_search.offset);
673 if (ret < 0)
674 goto out;
675
676 eb = path->nodes[level];
677 while (!eb) {
678 if (WARN_ON(!level)) {
679 ret = 1;
680 goto out;
681 }
682 level--;
683 eb = path->nodes[level];
684 }
685
686 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level);
687 out:
688 btrfs_put_root(root);
689 out_free:
690 path->lowest_level = 0;
691 btrfs_release_path(path);
692 return ret;
693 }
694
695 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)696 unode_aux_to_inode_list(struct ulist_node *node)
697 {
698 if (!node)
699 return NULL;
700 return (struct extent_inode_elem *)(uintptr_t)node->aux;
701 }
702
free_leaf_list(struct ulist * ulist)703 static void free_leaf_list(struct ulist *ulist)
704 {
705 struct ulist_node *node;
706 struct ulist_iterator uiter;
707
708 ULIST_ITER_INIT(&uiter);
709 while ((node = ulist_next(ulist, &uiter)))
710 free_inode_elem_list(unode_aux_to_inode_list(node));
711
712 ulist_free(ulist);
713 }
714
715 /*
716 * We maintain three separate rbtrees: one for direct refs, one for
717 * indirect refs which have a key, and one for indirect refs which do not
718 * have a key. Each tree does merge on insertion.
719 *
720 * Once all of the references are located, we iterate over the tree of
721 * indirect refs with missing keys. An appropriate key is located and
722 * the ref is moved onto the tree for indirect refs. After all missing
723 * keys are thus located, we iterate over the indirect ref tree, resolve
724 * each reference, and then insert the resolved reference onto the
725 * direct tree (merging there too).
726 *
727 * New backrefs (i.e., for parent nodes) are added to the appropriate
728 * rbtree as they are encountered. The new backrefs are subsequently
729 * resolved as above.
730 */
resolve_indirect_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,struct preftrees * preftrees,struct share_check * sc)731 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx,
732 struct btrfs_path *path,
733 struct preftrees *preftrees,
734 struct share_check *sc)
735 {
736 int ret = 0;
737 struct ulist *parents;
738 struct ulist_node *node;
739 struct ulist_iterator uiter;
740 struct rb_node *rnode;
741
742 parents = ulist_alloc(GFP_NOFS);
743 if (!parents)
744 return -ENOMEM;
745
746 /*
747 * We could trade memory usage for performance here by iterating
748 * the tree, allocating new refs for each insertion, and then
749 * freeing the entire indirect tree when we're done. In some test
750 * cases, the tree can grow quite large (~200k objects).
751 */
752 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
753 struct prelim_ref *ref;
754 int ret2;
755
756 ref = rb_entry(rnode, struct prelim_ref, rbnode);
757 if (WARN(ref->parent,
758 "BUG: direct ref found in indirect tree")) {
759 ret = -EINVAL;
760 goto out;
761 }
762
763 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
764 preftrees->indirect.count--;
765
766 if (ref->count == 0) {
767 free_pref(ref);
768 continue;
769 }
770
771 if (sc && ref->root_id != btrfs_root_id(sc->root)) {
772 free_pref(ref);
773 ret = BACKREF_FOUND_SHARED;
774 goto out;
775 }
776 ret2 = resolve_indirect_ref(ctx, path, preftrees, ref, parents);
777 /*
778 * we can only tolerate ENOENT,otherwise,we should catch error
779 * and return directly.
780 */
781 if (ret2 == -ENOENT) {
782 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref,
783 NULL);
784 continue;
785 } else if (ret2) {
786 free_pref(ref);
787 ret = ret2;
788 goto out;
789 }
790
791 /* we put the first parent into the ref at hand */
792 ULIST_ITER_INIT(&uiter);
793 node = ulist_next(parents, &uiter);
794 ref->parent = node ? node->val : 0;
795 ref->inode_list = unode_aux_to_inode_list(node);
796
797 /* Add a prelim_ref(s) for any other parent(s). */
798 while ((node = ulist_next(parents, &uiter))) {
799 struct prelim_ref *new_ref;
800
801 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
802 GFP_NOFS);
803 if (!new_ref) {
804 free_pref(ref);
805 ret = -ENOMEM;
806 goto out;
807 }
808 memcpy(new_ref, ref, sizeof(*ref));
809 new_ref->parent = node->val;
810 new_ref->inode_list = unode_aux_to_inode_list(node);
811 prelim_ref_insert(ctx->fs_info, &preftrees->direct,
812 new_ref, NULL);
813 }
814
815 /*
816 * Now it's a direct ref, put it in the direct tree. We must
817 * do this last because the ref could be merged/freed here.
818 */
819 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL);
820
821 ulist_reinit(parents);
822 cond_resched();
823 }
824 out:
825 /*
826 * We may have inode lists attached to refs in the parents ulist, so we
827 * must free them before freeing the ulist and its refs.
828 */
829 free_leaf_list(parents);
830 return ret;
831 }
832
833 /*
834 * read tree blocks and add keys where required.
835 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)836 static int add_missing_keys(struct btrfs_fs_info *fs_info,
837 struct preftrees *preftrees, bool lock)
838 {
839 struct prelim_ref *ref;
840 struct extent_buffer *eb;
841 struct preftree *tree = &preftrees->indirect_missing_keys;
842 struct rb_node *node;
843
844 while ((node = rb_first_cached(&tree->root))) {
845 struct btrfs_tree_parent_check check = { 0 };
846
847 ref = rb_entry(node, struct prelim_ref, rbnode);
848 rb_erase_cached(node, &tree->root);
849
850 BUG_ON(ref->parent); /* should not be a direct ref */
851 BUG_ON(ref->key_for_search.type);
852 BUG_ON(!ref->wanted_disk_byte);
853
854 check.level = ref->level - 1;
855 check.owner_root = ref->root_id;
856
857 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check);
858 if (IS_ERR(eb)) {
859 free_pref(ref);
860 return PTR_ERR(eb);
861 }
862 if (!extent_buffer_uptodate(eb)) {
863 free_pref(ref);
864 free_extent_buffer(eb);
865 return -EIO;
866 }
867
868 if (lock)
869 btrfs_tree_read_lock(eb);
870 if (btrfs_header_level(eb) == 0)
871 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
872 else
873 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
874 if (lock)
875 btrfs_tree_read_unlock(eb);
876 free_extent_buffer(eb);
877 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
878 cond_resched();
879 }
880 return 0;
881 }
882
883 /*
884 * add all currently queued delayed refs from this head whose seq nr is
885 * smaller or equal that seq to the list
886 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)887 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
888 struct btrfs_delayed_ref_head *head, u64 seq,
889 struct preftrees *preftrees, struct share_check *sc)
890 {
891 struct btrfs_delayed_ref_node *node;
892 struct btrfs_key key;
893 struct rb_node *n;
894 int count;
895 int ret = 0;
896
897 spin_lock(&head->lock);
898 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
899 node = rb_entry(n, struct btrfs_delayed_ref_node,
900 ref_node);
901 if (node->seq > seq)
902 continue;
903
904 switch (node->action) {
905 case BTRFS_ADD_DELAYED_EXTENT:
906 case BTRFS_UPDATE_DELAYED_HEAD:
907 WARN_ON(1);
908 continue;
909 case BTRFS_ADD_DELAYED_REF:
910 count = node->ref_mod;
911 break;
912 case BTRFS_DROP_DELAYED_REF:
913 count = node->ref_mod * -1;
914 break;
915 default:
916 BUG();
917 }
918 switch (node->type) {
919 case BTRFS_TREE_BLOCK_REF_KEY: {
920 /* NORMAL INDIRECT METADATA backref */
921 struct btrfs_key *key_ptr = NULL;
922 /* The owner of a tree block ref is the level. */
923 int level = btrfs_delayed_ref_owner(node);
924
925 if (head->extent_op && head->extent_op->update_key) {
926 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
927 key_ptr = &key;
928 }
929
930 ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
931 key_ptr, level + 1, node->bytenr,
932 count, sc, GFP_ATOMIC);
933 break;
934 }
935 case BTRFS_SHARED_BLOCK_REF_KEY: {
936 /*
937 * SHARED DIRECT METADATA backref
938 *
939 * The owner of a tree block ref is the level.
940 */
941 int level = btrfs_delayed_ref_owner(node);
942
943 ret = add_direct_ref(fs_info, preftrees, level + 1,
944 node->parent, node->bytenr, count,
945 sc, GFP_ATOMIC);
946 break;
947 }
948 case BTRFS_EXTENT_DATA_REF_KEY: {
949 /* NORMAL INDIRECT DATA backref */
950 key.objectid = btrfs_delayed_ref_owner(node);
951 key.type = BTRFS_EXTENT_DATA_KEY;
952 key.offset = btrfs_delayed_ref_offset(node);
953
954 /*
955 * If we have a share check context and a reference for
956 * another inode, we can't exit immediately. This is
957 * because even if this is a BTRFS_ADD_DELAYED_REF
958 * reference we may find next a BTRFS_DROP_DELAYED_REF
959 * which cancels out this ADD reference.
960 *
961 * If this is a DROP reference and there was no previous
962 * ADD reference, then we need to signal that when we
963 * process references from the extent tree (through
964 * add_inline_refs() and add_keyed_refs()), we should
965 * not exit early if we find a reference for another
966 * inode, because one of the delayed DROP references
967 * may cancel that reference in the extent tree.
968 */
969 if (sc && count < 0)
970 sc->have_delayed_delete_refs = true;
971
972 ret = add_indirect_ref(fs_info, preftrees, node->ref_root,
973 &key, 0, node->bytenr, count, sc,
974 GFP_ATOMIC);
975 break;
976 }
977 case BTRFS_SHARED_DATA_REF_KEY: {
978 /* SHARED DIRECT FULL backref */
979 ret = add_direct_ref(fs_info, preftrees, 0, node->parent,
980 node->bytenr, count, sc,
981 GFP_ATOMIC);
982 break;
983 }
984 default:
985 WARN_ON(1);
986 }
987 /*
988 * We must ignore BACKREF_FOUND_SHARED until all delayed
989 * refs have been checked.
990 */
991 if (ret && (ret != BACKREF_FOUND_SHARED))
992 break;
993 }
994 if (!ret)
995 ret = extent_is_shared(sc);
996
997 spin_unlock(&head->lock);
998 return ret;
999 }
1000
1001 /*
1002 * add all inline backrefs for bytenr to the list
1003 *
1004 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1005 */
add_inline_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_path * path,int * info_level,struct preftrees * preftrees,struct share_check * sc)1006 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx,
1007 struct btrfs_path *path,
1008 int *info_level, struct preftrees *preftrees,
1009 struct share_check *sc)
1010 {
1011 int ret = 0;
1012 int slot;
1013 struct extent_buffer *leaf;
1014 struct btrfs_key key;
1015 struct btrfs_key found_key;
1016 unsigned long ptr;
1017 unsigned long end;
1018 struct btrfs_extent_item *ei;
1019 u64 flags;
1020 u64 item_size;
1021
1022 /*
1023 * enumerate all inline refs
1024 */
1025 leaf = path->nodes[0];
1026 slot = path->slots[0];
1027
1028 item_size = btrfs_item_size(leaf, slot);
1029 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1030
1031 if (ctx->check_extent_item) {
1032 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx);
1033 if (ret)
1034 return ret;
1035 }
1036
1037 flags = btrfs_extent_flags(leaf, ei);
1038 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1039
1040 ptr = (unsigned long)(ei + 1);
1041 end = (unsigned long)ei + item_size;
1042
1043 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1044 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1045 struct btrfs_tree_block_info *info;
1046
1047 info = (struct btrfs_tree_block_info *)ptr;
1048 *info_level = btrfs_tree_block_level(leaf, info);
1049 ptr += sizeof(struct btrfs_tree_block_info);
1050 BUG_ON(ptr > end);
1051 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1052 *info_level = found_key.offset;
1053 } else {
1054 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1055 }
1056
1057 while (ptr < end) {
1058 struct btrfs_extent_inline_ref *iref;
1059 u64 offset;
1060 int type;
1061
1062 iref = (struct btrfs_extent_inline_ref *)ptr;
1063 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1064 BTRFS_REF_TYPE_ANY);
1065 if (type == BTRFS_REF_TYPE_INVALID)
1066 return -EUCLEAN;
1067
1068 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1069
1070 switch (type) {
1071 case BTRFS_SHARED_BLOCK_REF_KEY:
1072 ret = add_direct_ref(ctx->fs_info, preftrees,
1073 *info_level + 1, offset,
1074 ctx->bytenr, 1, NULL, GFP_NOFS);
1075 break;
1076 case BTRFS_SHARED_DATA_REF_KEY: {
1077 struct btrfs_shared_data_ref *sdref;
1078 int count;
1079
1080 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1081 count = btrfs_shared_data_ref_count(leaf, sdref);
1082
1083 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset,
1084 ctx->bytenr, count, sc, GFP_NOFS);
1085 break;
1086 }
1087 case BTRFS_TREE_BLOCK_REF_KEY:
1088 ret = add_indirect_ref(ctx->fs_info, preftrees, offset,
1089 NULL, *info_level + 1,
1090 ctx->bytenr, 1, NULL, GFP_NOFS);
1091 break;
1092 case BTRFS_EXTENT_DATA_REF_KEY: {
1093 struct btrfs_extent_data_ref *dref;
1094 int count;
1095 u64 root;
1096
1097 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1098 count = btrfs_extent_data_ref_count(leaf, dref);
1099 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1100 dref);
1101 key.type = BTRFS_EXTENT_DATA_KEY;
1102 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1103
1104 if (sc && key.objectid != sc->inum &&
1105 !sc->have_delayed_delete_refs) {
1106 ret = BACKREF_FOUND_SHARED;
1107 break;
1108 }
1109
1110 root = btrfs_extent_data_ref_root(leaf, dref);
1111
1112 if (!ctx->skip_data_ref ||
1113 !ctx->skip_data_ref(root, key.objectid, key.offset,
1114 ctx->user_ctx))
1115 ret = add_indirect_ref(ctx->fs_info, preftrees,
1116 root, &key, 0, ctx->bytenr,
1117 count, sc, GFP_NOFS);
1118 break;
1119 }
1120 case BTRFS_EXTENT_OWNER_REF_KEY:
1121 ASSERT(btrfs_fs_incompat(ctx->fs_info, SIMPLE_QUOTA));
1122 break;
1123 default:
1124 WARN_ON(1);
1125 }
1126 if (ret)
1127 return ret;
1128 ptr += btrfs_extent_inline_ref_size(type);
1129 }
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * add all non-inline backrefs for bytenr to the list
1136 *
1137 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1138 */
add_keyed_refs(struct btrfs_backref_walk_ctx * ctx,struct btrfs_root * extent_root,struct btrfs_path * path,int info_level,struct preftrees * preftrees,struct share_check * sc)1139 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx,
1140 struct btrfs_root *extent_root,
1141 struct btrfs_path *path,
1142 int info_level, struct preftrees *preftrees,
1143 struct share_check *sc)
1144 {
1145 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1146 int ret;
1147 int slot;
1148 struct extent_buffer *leaf;
1149 struct btrfs_key key;
1150
1151 while (1) {
1152 ret = btrfs_next_item(extent_root, path);
1153 if (ret < 0)
1154 break;
1155 if (ret) {
1156 ret = 0;
1157 break;
1158 }
1159
1160 slot = path->slots[0];
1161 leaf = path->nodes[0];
1162 btrfs_item_key_to_cpu(leaf, &key, slot);
1163
1164 if (key.objectid != ctx->bytenr)
1165 break;
1166 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1167 continue;
1168 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1169 break;
1170
1171 switch (key.type) {
1172 case BTRFS_SHARED_BLOCK_REF_KEY:
1173 /* SHARED DIRECT METADATA backref */
1174 ret = add_direct_ref(fs_info, preftrees,
1175 info_level + 1, key.offset,
1176 ctx->bytenr, 1, NULL, GFP_NOFS);
1177 break;
1178 case BTRFS_SHARED_DATA_REF_KEY: {
1179 /* SHARED DIRECT FULL backref */
1180 struct btrfs_shared_data_ref *sdref;
1181 int count;
1182
1183 sdref = btrfs_item_ptr(leaf, slot,
1184 struct btrfs_shared_data_ref);
1185 count = btrfs_shared_data_ref_count(leaf, sdref);
1186 ret = add_direct_ref(fs_info, preftrees, 0,
1187 key.offset, ctx->bytenr, count,
1188 sc, GFP_NOFS);
1189 break;
1190 }
1191 case BTRFS_TREE_BLOCK_REF_KEY:
1192 /* NORMAL INDIRECT METADATA backref */
1193 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1194 NULL, info_level + 1, ctx->bytenr,
1195 1, NULL, GFP_NOFS);
1196 break;
1197 case BTRFS_EXTENT_DATA_REF_KEY: {
1198 /* NORMAL INDIRECT DATA backref */
1199 struct btrfs_extent_data_ref *dref;
1200 int count;
1201 u64 root;
1202
1203 dref = btrfs_item_ptr(leaf, slot,
1204 struct btrfs_extent_data_ref);
1205 count = btrfs_extent_data_ref_count(leaf, dref);
1206 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1207 dref);
1208 key.type = BTRFS_EXTENT_DATA_KEY;
1209 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1210
1211 if (sc && key.objectid != sc->inum &&
1212 !sc->have_delayed_delete_refs) {
1213 ret = BACKREF_FOUND_SHARED;
1214 break;
1215 }
1216
1217 root = btrfs_extent_data_ref_root(leaf, dref);
1218
1219 if (!ctx->skip_data_ref ||
1220 !ctx->skip_data_ref(root, key.objectid, key.offset,
1221 ctx->user_ctx))
1222 ret = add_indirect_ref(fs_info, preftrees, root,
1223 &key, 0, ctx->bytenr,
1224 count, sc, GFP_NOFS);
1225 break;
1226 }
1227 default:
1228 WARN_ON(1);
1229 }
1230 if (ret)
1231 return ret;
1232
1233 }
1234
1235 return ret;
1236 }
1237
1238 /*
1239 * The caller has joined a transaction or is holding a read lock on the
1240 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1241 * snapshot field changing while updating or checking the cache.
1242 */
lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool * is_shared)1243 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1244 struct btrfs_root *root,
1245 u64 bytenr, int level, bool *is_shared)
1246 {
1247 const struct btrfs_fs_info *fs_info = root->fs_info;
1248 struct btrfs_backref_shared_cache_entry *entry;
1249
1250 if (!current->journal_info)
1251 lockdep_assert_held(&fs_info->commit_root_sem);
1252
1253 if (!ctx->use_path_cache)
1254 return false;
1255
1256 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1257 return false;
1258
1259 /*
1260 * Level -1 is used for the data extent, which is not reliable to cache
1261 * because its reference count can increase or decrease without us
1262 * realizing. We cache results only for extent buffers that lead from
1263 * the root node down to the leaf with the file extent item.
1264 */
1265 ASSERT(level >= 0);
1266
1267 entry = &ctx->path_cache_entries[level];
1268
1269 /* Unused cache entry or being used for some other extent buffer. */
1270 if (entry->bytenr != bytenr)
1271 return false;
1272
1273 /*
1274 * We cached a false result, but the last snapshot generation of the
1275 * root changed, so we now have a snapshot. Don't trust the result.
1276 */
1277 if (!entry->is_shared &&
1278 entry->gen != btrfs_root_last_snapshot(&root->root_item))
1279 return false;
1280
1281 /*
1282 * If we cached a true result and the last generation used for dropping
1283 * a root changed, we can not trust the result, because the dropped root
1284 * could be a snapshot sharing this extent buffer.
1285 */
1286 if (entry->is_shared &&
1287 entry->gen != btrfs_get_last_root_drop_gen(fs_info))
1288 return false;
1289
1290 *is_shared = entry->is_shared;
1291 /*
1292 * If the node at this level is shared, than all nodes below are also
1293 * shared. Currently some of the nodes below may be marked as not shared
1294 * because we have just switched from one leaf to another, and switched
1295 * also other nodes above the leaf and below the current level, so mark
1296 * them as shared.
1297 */
1298 if (*is_shared) {
1299 for (int i = 0; i < level; i++) {
1300 ctx->path_cache_entries[i].is_shared = true;
1301 ctx->path_cache_entries[i].gen = entry->gen;
1302 }
1303 }
1304
1305 return true;
1306 }
1307
1308 /*
1309 * The caller has joined a transaction or is holding a read lock on the
1310 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last
1311 * snapshot field changing while updating or checking the cache.
1312 */
store_backref_shared_cache(struct btrfs_backref_share_check_ctx * ctx,struct btrfs_root * root,u64 bytenr,int level,bool is_shared)1313 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx,
1314 struct btrfs_root *root,
1315 u64 bytenr, int level, bool is_shared)
1316 {
1317 const struct btrfs_fs_info *fs_info = root->fs_info;
1318 struct btrfs_backref_shared_cache_entry *entry;
1319 u64 gen;
1320
1321 if (!current->journal_info)
1322 lockdep_assert_held(&fs_info->commit_root_sem);
1323
1324 if (!ctx->use_path_cache)
1325 return;
1326
1327 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL))
1328 return;
1329
1330 /*
1331 * Level -1 is used for the data extent, which is not reliable to cache
1332 * because its reference count can increase or decrease without us
1333 * realizing. We cache results only for extent buffers that lead from
1334 * the root node down to the leaf with the file extent item.
1335 */
1336 ASSERT(level >= 0);
1337
1338 if (is_shared)
1339 gen = btrfs_get_last_root_drop_gen(fs_info);
1340 else
1341 gen = btrfs_root_last_snapshot(&root->root_item);
1342
1343 entry = &ctx->path_cache_entries[level];
1344 entry->bytenr = bytenr;
1345 entry->is_shared = is_shared;
1346 entry->gen = gen;
1347
1348 /*
1349 * If we found an extent buffer is shared, set the cache result for all
1350 * extent buffers below it to true. As nodes in the path are COWed,
1351 * their sharedness is moved to their children, and if a leaf is COWed,
1352 * then the sharedness of a data extent becomes direct, the refcount of
1353 * data extent is increased in the extent item at the extent tree.
1354 */
1355 if (is_shared) {
1356 for (int i = 0; i < level; i++) {
1357 entry = &ctx->path_cache_entries[i];
1358 entry->is_shared = is_shared;
1359 entry->gen = gen;
1360 }
1361 }
1362 }
1363
1364 /*
1365 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1366 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1367 * indirect refs to their parent bytenr.
1368 * When roots are found, they're added to the roots list
1369 *
1370 * @ctx: Backref walking context object, must be not NULL.
1371 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a
1372 * shared extent is detected.
1373 *
1374 * Otherwise this returns 0 for success and <0 for an error.
1375 *
1376 * FIXME some caching might speed things up
1377 */
find_parent_nodes(struct btrfs_backref_walk_ctx * ctx,struct share_check * sc)1378 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx,
1379 struct share_check *sc)
1380 {
1381 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr);
1382 struct btrfs_key key;
1383 struct btrfs_path *path;
1384 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1385 struct btrfs_delayed_ref_head *head;
1386 int info_level = 0;
1387 int ret;
1388 struct prelim_ref *ref;
1389 struct rb_node *node;
1390 struct extent_inode_elem *eie = NULL;
1391 struct preftrees preftrees = {
1392 .direct = PREFTREE_INIT,
1393 .indirect = PREFTREE_INIT,
1394 .indirect_missing_keys = PREFTREE_INIT
1395 };
1396
1397 /* Roots ulist is not needed when using a sharedness check context. */
1398 if (sc)
1399 ASSERT(ctx->roots == NULL);
1400
1401 key.objectid = ctx->bytenr;
1402 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA))
1403 key.type = BTRFS_METADATA_ITEM_KEY;
1404 else
1405 key.type = BTRFS_EXTENT_ITEM_KEY;
1406 key.offset = (u64)-1;
1407
1408 path = btrfs_alloc_path();
1409 if (!path)
1410 return -ENOMEM;
1411 if (!ctx->trans) {
1412 path->search_commit_root = 1;
1413 path->skip_locking = 1;
1414 }
1415
1416 if (ctx->time_seq == BTRFS_SEQ_LAST)
1417 path->skip_locking = 1;
1418
1419 again:
1420 head = NULL;
1421
1422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1423 if (ret < 0)
1424 goto out;
1425 if (ret == 0) {
1426 /*
1427 * Key with offset -1 found, there would have to exist an extent
1428 * item with such offset, but this is out of the valid range.
1429 */
1430 ret = -EUCLEAN;
1431 goto out;
1432 }
1433
1434 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) &&
1435 ctx->time_seq != BTRFS_SEQ_LAST) {
1436 /*
1437 * We have a specific time_seq we care about and trans which
1438 * means we have the path lock, we need to grab the ref head and
1439 * lock it so we have a consistent view of the refs at the given
1440 * time.
1441 */
1442 delayed_refs = &ctx->trans->transaction->delayed_refs;
1443 spin_lock(&delayed_refs->lock);
1444 head = btrfs_find_delayed_ref_head(ctx->fs_info, delayed_refs,
1445 ctx->bytenr);
1446 if (head) {
1447 if (!mutex_trylock(&head->mutex)) {
1448 refcount_inc(&head->refs);
1449 spin_unlock(&delayed_refs->lock);
1450
1451 btrfs_release_path(path);
1452
1453 /*
1454 * Mutex was contended, block until it's
1455 * released and try again
1456 */
1457 mutex_lock(&head->mutex);
1458 mutex_unlock(&head->mutex);
1459 btrfs_put_delayed_ref_head(head);
1460 goto again;
1461 }
1462 spin_unlock(&delayed_refs->lock);
1463 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq,
1464 &preftrees, sc);
1465 mutex_unlock(&head->mutex);
1466 if (ret)
1467 goto out;
1468 } else {
1469 spin_unlock(&delayed_refs->lock);
1470 }
1471 }
1472
1473 if (path->slots[0]) {
1474 struct extent_buffer *leaf;
1475 int slot;
1476
1477 path->slots[0]--;
1478 leaf = path->nodes[0];
1479 slot = path->slots[0];
1480 btrfs_item_key_to_cpu(leaf, &key, slot);
1481 if (key.objectid == ctx->bytenr &&
1482 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1483 key.type == BTRFS_METADATA_ITEM_KEY)) {
1484 ret = add_inline_refs(ctx, path, &info_level,
1485 &preftrees, sc);
1486 if (ret)
1487 goto out;
1488 ret = add_keyed_refs(ctx, root, path, info_level,
1489 &preftrees, sc);
1490 if (ret)
1491 goto out;
1492 }
1493 }
1494
1495 /*
1496 * If we have a share context and we reached here, it means the extent
1497 * is not directly shared (no multiple reference items for it),
1498 * otherwise we would have exited earlier with a return value of
1499 * BACKREF_FOUND_SHARED after processing delayed references or while
1500 * processing inline or keyed references from the extent tree.
1501 * The extent may however be indirectly shared through shared subtrees
1502 * as a result from creating snapshots, so we determine below what is
1503 * its parent node, in case we are dealing with a metadata extent, or
1504 * what's the leaf (or leaves), from a fs tree, that has a file extent
1505 * item pointing to it in case we are dealing with a data extent.
1506 */
1507 ASSERT(extent_is_shared(sc) == 0);
1508
1509 /*
1510 * If we are here for a data extent and we have a share_check structure
1511 * it means the data extent is not directly shared (does not have
1512 * multiple reference items), so we have to check if a path in the fs
1513 * tree (going from the root node down to the leaf that has the file
1514 * extent item pointing to the data extent) is shared, that is, if any
1515 * of the extent buffers in the path is referenced by other trees.
1516 */
1517 if (sc && ctx->bytenr == sc->data_bytenr) {
1518 /*
1519 * If our data extent is from a generation more recent than the
1520 * last generation used to snapshot the root, then we know that
1521 * it can not be shared through subtrees, so we can skip
1522 * resolving indirect references, there's no point in
1523 * determining the extent buffers for the path from the fs tree
1524 * root node down to the leaf that has the file extent item that
1525 * points to the data extent.
1526 */
1527 if (sc->data_extent_gen >
1528 btrfs_root_last_snapshot(&sc->root->root_item)) {
1529 ret = BACKREF_FOUND_NOT_SHARED;
1530 goto out;
1531 }
1532
1533 /*
1534 * If we are only determining if a data extent is shared or not
1535 * and the corresponding file extent item is located in the same
1536 * leaf as the previous file extent item, we can skip resolving
1537 * indirect references for a data extent, since the fs tree path
1538 * is the same (same leaf, so same path). We skip as long as the
1539 * cached result for the leaf is valid and only if there's only
1540 * one file extent item pointing to the data extent, because in
1541 * the case of multiple file extent items, they may be located
1542 * in different leaves and therefore we have multiple paths.
1543 */
1544 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr &&
1545 sc->self_ref_count == 1) {
1546 bool cached;
1547 bool is_shared;
1548
1549 cached = lookup_backref_shared_cache(sc->ctx, sc->root,
1550 sc->ctx->curr_leaf_bytenr,
1551 0, &is_shared);
1552 if (cached) {
1553 if (is_shared)
1554 ret = BACKREF_FOUND_SHARED;
1555 else
1556 ret = BACKREF_FOUND_NOT_SHARED;
1557 goto out;
1558 }
1559 }
1560 }
1561
1562 btrfs_release_path(path);
1563
1564 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0);
1565 if (ret)
1566 goto out;
1567
1568 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1569
1570 ret = resolve_indirect_refs(ctx, path, &preftrees, sc);
1571 if (ret)
1572 goto out;
1573
1574 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1575
1576 /*
1577 * This walks the tree of merged and resolved refs. Tree blocks are
1578 * read in as needed. Unique entries are added to the ulist, and
1579 * the list of found roots is updated.
1580 *
1581 * We release the entire tree in one go before returning.
1582 */
1583 node = rb_first_cached(&preftrees.direct.root);
1584 while (node) {
1585 ref = rb_entry(node, struct prelim_ref, rbnode);
1586 node = rb_next(&ref->rbnode);
1587 /*
1588 * ref->count < 0 can happen here if there are delayed
1589 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1590 * prelim_ref_insert() relies on this when merging
1591 * identical refs to keep the overall count correct.
1592 * prelim_ref_insert() will merge only those refs
1593 * which compare identically. Any refs having
1594 * e.g. different offsets would not be merged,
1595 * and would retain their original ref->count < 0.
1596 */
1597 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) {
1598 /* no parent == root of tree */
1599 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS);
1600 if (ret < 0)
1601 goto out;
1602 }
1603 if (ref->count && ref->parent) {
1604 if (!ctx->skip_inode_ref_list && !ref->inode_list &&
1605 ref->level == 0) {
1606 struct btrfs_tree_parent_check check = { 0 };
1607 struct extent_buffer *eb;
1608
1609 check.level = ref->level;
1610
1611 eb = read_tree_block(ctx->fs_info, ref->parent,
1612 &check);
1613 if (IS_ERR(eb)) {
1614 ret = PTR_ERR(eb);
1615 goto out;
1616 }
1617 if (!extent_buffer_uptodate(eb)) {
1618 free_extent_buffer(eb);
1619 ret = -EIO;
1620 goto out;
1621 }
1622
1623 if (!path->skip_locking)
1624 btrfs_tree_read_lock(eb);
1625 ret = find_extent_in_eb(ctx, eb, &eie);
1626 if (!path->skip_locking)
1627 btrfs_tree_read_unlock(eb);
1628 free_extent_buffer(eb);
1629 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1630 ret < 0)
1631 goto out;
1632 ref->inode_list = eie;
1633 /*
1634 * We transferred the list ownership to the ref,
1635 * so set to NULL to avoid a double free in case
1636 * an error happens after this.
1637 */
1638 eie = NULL;
1639 }
1640 ret = ulist_add_merge_ptr(ctx->refs, ref->parent,
1641 ref->inode_list,
1642 (void **)&eie, GFP_NOFS);
1643 if (ret < 0)
1644 goto out;
1645 if (!ret && !ctx->skip_inode_ref_list) {
1646 /*
1647 * We've recorded that parent, so we must extend
1648 * its inode list here.
1649 *
1650 * However if there was corruption we may not
1651 * have found an eie, return an error in this
1652 * case.
1653 */
1654 ASSERT(eie);
1655 if (!eie) {
1656 ret = -EUCLEAN;
1657 goto out;
1658 }
1659 while (eie->next)
1660 eie = eie->next;
1661 eie->next = ref->inode_list;
1662 }
1663 eie = NULL;
1664 /*
1665 * We have transferred the inode list ownership from
1666 * this ref to the ref we added to the 'refs' ulist.
1667 * So set this ref's inode list to NULL to avoid
1668 * use-after-free when our caller uses it or double
1669 * frees in case an error happens before we return.
1670 */
1671 ref->inode_list = NULL;
1672 }
1673 cond_resched();
1674 }
1675
1676 out:
1677 btrfs_free_path(path);
1678
1679 prelim_release(&preftrees.direct);
1680 prelim_release(&preftrees.indirect);
1681 prelim_release(&preftrees.indirect_missing_keys);
1682
1683 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0)
1684 free_inode_elem_list(eie);
1685 return ret;
1686 }
1687
1688 /*
1689 * Finds all leaves with a reference to the specified combination of
1690 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are
1691 * added to the ulist at @ctx->refs, and that ulist is allocated by this
1692 * function. The caller should free the ulist with free_leaf_list() if
1693 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is
1694 * enough.
1695 *
1696 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated.
1697 */
btrfs_find_all_leafs(struct btrfs_backref_walk_ctx * ctx)1698 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx)
1699 {
1700 int ret;
1701
1702 ASSERT(ctx->refs == NULL);
1703
1704 ctx->refs = ulist_alloc(GFP_NOFS);
1705 if (!ctx->refs)
1706 return -ENOMEM;
1707
1708 ret = find_parent_nodes(ctx, NULL);
1709 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP ||
1710 (ret < 0 && ret != -ENOENT)) {
1711 free_leaf_list(ctx->refs);
1712 ctx->refs = NULL;
1713 return ret;
1714 }
1715
1716 return 0;
1717 }
1718
1719 /*
1720 * Walk all backrefs for a given extent to find all roots that reference this
1721 * extent. Walking a backref means finding all extents that reference this
1722 * extent and in turn walk the backrefs of those, too. Naturally this is a
1723 * recursive process, but here it is implemented in an iterative fashion: We
1724 * find all referencing extents for the extent in question and put them on a
1725 * list. In turn, we find all referencing extents for those, further appending
1726 * to the list. The way we iterate the list allows adding more elements after
1727 * the current while iterating. The process stops when we reach the end of the
1728 * list.
1729 *
1730 * Found roots are added to @ctx->roots, which is allocated by this function if
1731 * it points to NULL, in which case the caller is responsible for freeing it
1732 * after it's not needed anymore.
1733 * This function requires @ctx->refs to be NULL, as it uses it for allocating a
1734 * ulist to do temporary work, and frees it before returning.
1735 *
1736 * Returns 0 on success, < 0 on error.
1737 */
btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx * ctx)1738 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx)
1739 {
1740 const u64 orig_bytenr = ctx->bytenr;
1741 const bool orig_skip_inode_ref_list = ctx->skip_inode_ref_list;
1742 bool roots_ulist_allocated = false;
1743 struct ulist_iterator uiter;
1744 int ret = 0;
1745
1746 ASSERT(ctx->refs == NULL);
1747
1748 ctx->refs = ulist_alloc(GFP_NOFS);
1749 if (!ctx->refs)
1750 return -ENOMEM;
1751
1752 if (!ctx->roots) {
1753 ctx->roots = ulist_alloc(GFP_NOFS);
1754 if (!ctx->roots) {
1755 ulist_free(ctx->refs);
1756 ctx->refs = NULL;
1757 return -ENOMEM;
1758 }
1759 roots_ulist_allocated = true;
1760 }
1761
1762 ctx->skip_inode_ref_list = true;
1763
1764 ULIST_ITER_INIT(&uiter);
1765 while (1) {
1766 struct ulist_node *node;
1767
1768 ret = find_parent_nodes(ctx, NULL);
1769 if (ret < 0 && ret != -ENOENT) {
1770 if (roots_ulist_allocated) {
1771 ulist_free(ctx->roots);
1772 ctx->roots = NULL;
1773 }
1774 break;
1775 }
1776 ret = 0;
1777 node = ulist_next(ctx->refs, &uiter);
1778 if (!node)
1779 break;
1780 ctx->bytenr = node->val;
1781 cond_resched();
1782 }
1783
1784 ulist_free(ctx->refs);
1785 ctx->refs = NULL;
1786 ctx->bytenr = orig_bytenr;
1787 ctx->skip_inode_ref_list = orig_skip_inode_ref_list;
1788
1789 return ret;
1790 }
1791
btrfs_find_all_roots(struct btrfs_backref_walk_ctx * ctx,bool skip_commit_root_sem)1792 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx,
1793 bool skip_commit_root_sem)
1794 {
1795 int ret;
1796
1797 if (!ctx->trans && !skip_commit_root_sem)
1798 down_read(&ctx->fs_info->commit_root_sem);
1799 ret = btrfs_find_all_roots_safe(ctx);
1800 if (!ctx->trans && !skip_commit_root_sem)
1801 up_read(&ctx->fs_info->commit_root_sem);
1802 return ret;
1803 }
1804
btrfs_alloc_backref_share_check_ctx(void)1805 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void)
1806 {
1807 struct btrfs_backref_share_check_ctx *ctx;
1808
1809 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1810 if (!ctx)
1811 return NULL;
1812
1813 ulist_init(&ctx->refs);
1814
1815 return ctx;
1816 }
1817
btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx * ctx)1818 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx)
1819 {
1820 if (!ctx)
1821 return;
1822
1823 ulist_release(&ctx->refs);
1824 kfree(ctx);
1825 }
1826
1827 /*
1828 * Check if a data extent is shared or not.
1829 *
1830 * @inode: The inode whose extent we are checking.
1831 * @bytenr: Logical bytenr of the extent we are checking.
1832 * @extent_gen: Generation of the extent (file extent item) or 0 if it is
1833 * not known.
1834 * @ctx: A backref sharedness check context.
1835 *
1836 * btrfs_is_data_extent_shared uses the backref walking code but will short
1837 * circuit as soon as it finds a root or inode that doesn't match the
1838 * one passed in. This provides a significant performance benefit for
1839 * callers (such as fiemap) which want to know whether the extent is
1840 * shared but do not need a ref count.
1841 *
1842 * This attempts to attach to the running transaction in order to account for
1843 * delayed refs, but continues on even when no running transaction exists.
1844 *
1845 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1846 */
btrfs_is_data_extent_shared(struct btrfs_inode * inode,u64 bytenr,u64 extent_gen,struct btrfs_backref_share_check_ctx * ctx)1847 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr,
1848 u64 extent_gen,
1849 struct btrfs_backref_share_check_ctx *ctx)
1850 {
1851 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
1852 struct btrfs_root *root = inode->root;
1853 struct btrfs_fs_info *fs_info = root->fs_info;
1854 struct btrfs_trans_handle *trans;
1855 struct ulist_iterator uiter;
1856 struct ulist_node *node;
1857 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1858 int ret = 0;
1859 struct share_check shared = {
1860 .ctx = ctx,
1861 .root = root,
1862 .inum = btrfs_ino(inode),
1863 .data_bytenr = bytenr,
1864 .data_extent_gen = extent_gen,
1865 .share_count = 0,
1866 .self_ref_count = 0,
1867 .have_delayed_delete_refs = false,
1868 };
1869 int level;
1870 bool leaf_cached;
1871 bool leaf_is_shared;
1872
1873 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) {
1874 if (ctx->prev_extents_cache[i].bytenr == bytenr)
1875 return ctx->prev_extents_cache[i].is_shared;
1876 }
1877
1878 ulist_init(&ctx->refs);
1879
1880 trans = btrfs_join_transaction_nostart(root);
1881 if (IS_ERR(trans)) {
1882 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1883 ret = PTR_ERR(trans);
1884 goto out;
1885 }
1886 trans = NULL;
1887 down_read(&fs_info->commit_root_sem);
1888 } else {
1889 btrfs_get_tree_mod_seq(fs_info, &elem);
1890 walk_ctx.time_seq = elem.seq;
1891 }
1892
1893 ctx->use_path_cache = true;
1894
1895 /*
1896 * We may have previously determined that the current leaf is shared.
1897 * If it is, then we have a data extent that is shared due to a shared
1898 * subtree (caused by snapshotting) and we don't need to check for data
1899 * backrefs. If the leaf is not shared, then we must do backref walking
1900 * to determine if the data extent is shared through reflinks.
1901 */
1902 leaf_cached = lookup_backref_shared_cache(ctx, root,
1903 ctx->curr_leaf_bytenr, 0,
1904 &leaf_is_shared);
1905 if (leaf_cached && leaf_is_shared) {
1906 ret = 1;
1907 goto out_trans;
1908 }
1909
1910 walk_ctx.skip_inode_ref_list = true;
1911 walk_ctx.trans = trans;
1912 walk_ctx.fs_info = fs_info;
1913 walk_ctx.refs = &ctx->refs;
1914
1915 /* -1 means we are in the bytenr of the data extent. */
1916 level = -1;
1917 ULIST_ITER_INIT(&uiter);
1918 while (1) {
1919 const unsigned long prev_ref_count = ctx->refs.nnodes;
1920
1921 walk_ctx.bytenr = bytenr;
1922 ret = find_parent_nodes(&walk_ctx, &shared);
1923 if (ret == BACKREF_FOUND_SHARED ||
1924 ret == BACKREF_FOUND_NOT_SHARED) {
1925 /* If shared must return 1, otherwise return 0. */
1926 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0;
1927 if (level >= 0)
1928 store_backref_shared_cache(ctx, root, bytenr,
1929 level, ret == 1);
1930 break;
1931 }
1932 if (ret < 0 && ret != -ENOENT)
1933 break;
1934 ret = 0;
1935
1936 /*
1937 * More than one extent buffer (bytenr) may have been added to
1938 * the ctx->refs ulist, in which case we have to check multiple
1939 * tree paths in case the first one is not shared, so we can not
1940 * use the path cache which is made for a single path. Multiple
1941 * extent buffers at the current level happen when:
1942 *
1943 * 1) level -1, the data extent: If our data extent was not
1944 * directly shared (without multiple reference items), then
1945 * it might have a single reference item with a count > 1 for
1946 * the same offset, which means there are 2 (or more) file
1947 * extent items that point to the data extent - this happens
1948 * when a file extent item needs to be split and then one
1949 * item gets moved to another leaf due to a b+tree leaf split
1950 * when inserting some item. In this case the file extent
1951 * items may be located in different leaves and therefore
1952 * some of the leaves may be referenced through shared
1953 * subtrees while others are not. Since our extent buffer
1954 * cache only works for a single path (by far the most common
1955 * case and simpler to deal with), we can not use it if we
1956 * have multiple leaves (which implies multiple paths).
1957 *
1958 * 2) level >= 0, a tree node/leaf: We can have a mix of direct
1959 * and indirect references on a b+tree node/leaf, so we have
1960 * to check multiple paths, and the extent buffer (the
1961 * current bytenr) may be shared or not. One example is
1962 * during relocation as we may get a shared tree block ref
1963 * (direct ref) and a non-shared tree block ref (indirect
1964 * ref) for the same node/leaf.
1965 */
1966 if ((ctx->refs.nnodes - prev_ref_count) > 1)
1967 ctx->use_path_cache = false;
1968
1969 if (level >= 0)
1970 store_backref_shared_cache(ctx, root, bytenr,
1971 level, false);
1972 node = ulist_next(&ctx->refs, &uiter);
1973 if (!node)
1974 break;
1975 bytenr = node->val;
1976 if (ctx->use_path_cache) {
1977 bool is_shared;
1978 bool cached;
1979
1980 level++;
1981 cached = lookup_backref_shared_cache(ctx, root, bytenr,
1982 level, &is_shared);
1983 if (cached) {
1984 ret = (is_shared ? 1 : 0);
1985 break;
1986 }
1987 }
1988 shared.share_count = 0;
1989 shared.have_delayed_delete_refs = false;
1990 cond_resched();
1991 }
1992
1993 /*
1994 * If the path cache is disabled, then it means at some tree level we
1995 * got multiple parents due to a mix of direct and indirect backrefs or
1996 * multiple leaves with file extent items pointing to the same data
1997 * extent. We have to invalidate the cache and cache only the sharedness
1998 * result for the levels where we got only one node/reference.
1999 */
2000 if (!ctx->use_path_cache) {
2001 int i = 0;
2002
2003 level--;
2004 if (ret >= 0 && level >= 0) {
2005 bytenr = ctx->path_cache_entries[level].bytenr;
2006 ctx->use_path_cache = true;
2007 store_backref_shared_cache(ctx, root, bytenr, level, ret);
2008 i = level + 1;
2009 }
2010
2011 for ( ; i < BTRFS_MAX_LEVEL; i++)
2012 ctx->path_cache_entries[i].bytenr = 0;
2013 }
2014
2015 /*
2016 * Cache the sharedness result for the data extent if we know our inode
2017 * has more than 1 file extent item that refers to the data extent.
2018 */
2019 if (ret >= 0 && shared.self_ref_count > 1) {
2020 int slot = ctx->prev_extents_cache_slot;
2021
2022 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr;
2023 ctx->prev_extents_cache[slot].is_shared = (ret == 1);
2024
2025 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE;
2026 ctx->prev_extents_cache_slot = slot;
2027 }
2028
2029 out_trans:
2030 if (trans) {
2031 btrfs_put_tree_mod_seq(fs_info, &elem);
2032 btrfs_end_transaction(trans);
2033 } else {
2034 up_read(&fs_info->commit_root_sem);
2035 }
2036 out:
2037 ulist_release(&ctx->refs);
2038 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr;
2039
2040 return ret;
2041 }
2042
btrfs_find_one_extref(struct btrfs_root * root,u64 inode_objectid,u64 start_off,struct btrfs_path * path,struct btrfs_inode_extref ** ret_extref,u64 * found_off)2043 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
2044 u64 start_off, struct btrfs_path *path,
2045 struct btrfs_inode_extref **ret_extref,
2046 u64 *found_off)
2047 {
2048 int ret, slot;
2049 struct btrfs_key key;
2050 struct btrfs_key found_key;
2051 struct btrfs_inode_extref *extref;
2052 const struct extent_buffer *leaf;
2053 unsigned long ptr;
2054
2055 key.objectid = inode_objectid;
2056 key.type = BTRFS_INODE_EXTREF_KEY;
2057 key.offset = start_off;
2058
2059 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2060 if (ret < 0)
2061 return ret;
2062
2063 while (1) {
2064 leaf = path->nodes[0];
2065 slot = path->slots[0];
2066 if (slot >= btrfs_header_nritems(leaf)) {
2067 /*
2068 * If the item at offset is not found,
2069 * btrfs_search_slot will point us to the slot
2070 * where it should be inserted. In our case
2071 * that will be the slot directly before the
2072 * next INODE_REF_KEY_V2 item. In the case
2073 * that we're pointing to the last slot in a
2074 * leaf, we must move one leaf over.
2075 */
2076 ret = btrfs_next_leaf(root, path);
2077 if (ret) {
2078 if (ret >= 1)
2079 ret = -ENOENT;
2080 break;
2081 }
2082 continue;
2083 }
2084
2085 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2086
2087 /*
2088 * Check that we're still looking at an extended ref key for
2089 * this particular objectid. If we have different
2090 * objectid or type then there are no more to be found
2091 * in the tree and we can exit.
2092 */
2093 ret = -ENOENT;
2094 if (found_key.objectid != inode_objectid)
2095 break;
2096 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
2097 break;
2098
2099 ret = 0;
2100 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2101 extref = (struct btrfs_inode_extref *)ptr;
2102 *ret_extref = extref;
2103 if (found_off)
2104 *found_off = found_key.offset;
2105 break;
2106 }
2107
2108 return ret;
2109 }
2110
2111 /*
2112 * this iterates to turn a name (from iref/extref) into a full filesystem path.
2113 * Elements of the path are separated by '/' and the path is guaranteed to be
2114 * 0-terminated. the path is only given within the current file system.
2115 * Therefore, it never starts with a '/'. the caller is responsible to provide
2116 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
2117 * the start point of the resulting string is returned. this pointer is within
2118 * dest, normally.
2119 * in case the path buffer would overflow, the pointer is decremented further
2120 * as if output was written to the buffer, though no more output is actually
2121 * generated. that way, the caller can determine how much space would be
2122 * required for the path to fit into the buffer. in that case, the returned
2123 * value will be smaller than dest. callers must check this!
2124 */
btrfs_ref_to_path(struct btrfs_root * fs_root,struct btrfs_path * path,u32 name_len,unsigned long name_off,struct extent_buffer * eb_in,u64 parent,char * dest,u32 size)2125 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
2126 u32 name_len, unsigned long name_off,
2127 struct extent_buffer *eb_in, u64 parent,
2128 char *dest, u32 size)
2129 {
2130 int slot;
2131 u64 next_inum;
2132 int ret;
2133 s64 bytes_left = ((s64)size) - 1;
2134 struct extent_buffer *eb = eb_in;
2135 struct btrfs_key found_key;
2136 struct btrfs_inode_ref *iref;
2137
2138 if (bytes_left >= 0)
2139 dest[bytes_left] = '\0';
2140
2141 while (1) {
2142 bytes_left -= name_len;
2143 if (bytes_left >= 0)
2144 read_extent_buffer(eb, dest + bytes_left,
2145 name_off, name_len);
2146 if (eb != eb_in) {
2147 if (!path->skip_locking)
2148 btrfs_tree_read_unlock(eb);
2149 free_extent_buffer(eb);
2150 }
2151 ret = btrfs_find_item(fs_root, path, parent, 0,
2152 BTRFS_INODE_REF_KEY, &found_key);
2153 if (ret > 0)
2154 ret = -ENOENT;
2155 if (ret)
2156 break;
2157
2158 next_inum = found_key.offset;
2159
2160 /* regular exit ahead */
2161 if (parent == next_inum)
2162 break;
2163
2164 slot = path->slots[0];
2165 eb = path->nodes[0];
2166 /* make sure we can use eb after releasing the path */
2167 if (eb != eb_in) {
2168 path->nodes[0] = NULL;
2169 path->locks[0] = 0;
2170 }
2171 btrfs_release_path(path);
2172 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2173
2174 name_len = btrfs_inode_ref_name_len(eb, iref);
2175 name_off = (unsigned long)(iref + 1);
2176
2177 parent = next_inum;
2178 --bytes_left;
2179 if (bytes_left >= 0)
2180 dest[bytes_left] = '/';
2181 }
2182
2183 btrfs_release_path(path);
2184
2185 if (ret)
2186 return ERR_PTR(ret);
2187
2188 return dest + bytes_left;
2189 }
2190
2191 /*
2192 * this makes the path point to (logical EXTENT_ITEM *)
2193 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
2194 * tree blocks and <0 on error.
2195 */
extent_from_logical(struct btrfs_fs_info * fs_info,u64 logical,struct btrfs_path * path,struct btrfs_key * found_key,u64 * flags_ret)2196 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
2197 struct btrfs_path *path, struct btrfs_key *found_key,
2198 u64 *flags_ret)
2199 {
2200 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
2201 int ret;
2202 u64 flags;
2203 u64 size = 0;
2204 const struct extent_buffer *eb;
2205 struct btrfs_extent_item *ei;
2206 struct btrfs_key key;
2207
2208 key.objectid = logical;
2209 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2210 key.type = BTRFS_METADATA_ITEM_KEY;
2211 else
2212 key.type = BTRFS_EXTENT_ITEM_KEY;
2213 key.offset = (u64)-1;
2214
2215 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2216 if (ret < 0)
2217 return ret;
2218 if (ret == 0) {
2219 /*
2220 * Key with offset -1 found, there would have to exist an extent
2221 * item with such offset, but this is out of the valid range.
2222 */
2223 return -EUCLEAN;
2224 }
2225
2226 ret = btrfs_previous_extent_item(extent_root, path, 0);
2227 if (ret) {
2228 if (ret > 0)
2229 ret = -ENOENT;
2230 return ret;
2231 }
2232 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
2233 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
2234 size = fs_info->nodesize;
2235 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
2236 size = found_key->offset;
2237
2238 if (found_key->objectid > logical ||
2239 found_key->objectid + size <= logical) {
2240 btrfs_debug(fs_info,
2241 "logical %llu is not within any extent", logical);
2242 return -ENOENT;
2243 }
2244
2245 eb = path->nodes[0];
2246
2247 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
2248 flags = btrfs_extent_flags(eb, ei);
2249
2250 btrfs_debug(fs_info,
2251 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
2252 logical, logical - found_key->objectid, found_key->objectid,
2253 found_key->offset, flags, btrfs_item_size(eb, path->slots[0]));
2254
2255 WARN_ON(!flags_ret);
2256 if (flags_ret) {
2257 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2258 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
2259 else if (flags & BTRFS_EXTENT_FLAG_DATA)
2260 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
2261 else
2262 BUG();
2263 return 0;
2264 }
2265
2266 return -EIO;
2267 }
2268
2269 /*
2270 * helper function to iterate extent inline refs. ptr must point to a 0 value
2271 * for the first call and may be modified. it is used to track state.
2272 * if more refs exist, 0 is returned and the next call to
2273 * get_extent_inline_ref must pass the modified ptr parameter to get the
2274 * next ref. after the last ref was processed, 1 is returned.
2275 * returns <0 on error
2276 */
get_extent_inline_ref(unsigned long * ptr,const struct extent_buffer * eb,const struct btrfs_key * key,const struct btrfs_extent_item * ei,u32 item_size,struct btrfs_extent_inline_ref ** out_eiref,int * out_type)2277 static int get_extent_inline_ref(unsigned long *ptr,
2278 const struct extent_buffer *eb,
2279 const struct btrfs_key *key,
2280 const struct btrfs_extent_item *ei,
2281 u32 item_size,
2282 struct btrfs_extent_inline_ref **out_eiref,
2283 int *out_type)
2284 {
2285 unsigned long end;
2286 u64 flags;
2287 struct btrfs_tree_block_info *info;
2288
2289 if (!*ptr) {
2290 /* first call */
2291 flags = btrfs_extent_flags(eb, ei);
2292 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2293 if (key->type == BTRFS_METADATA_ITEM_KEY) {
2294 /* a skinny metadata extent */
2295 *out_eiref =
2296 (struct btrfs_extent_inline_ref *)(ei + 1);
2297 } else {
2298 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
2299 info = (struct btrfs_tree_block_info *)(ei + 1);
2300 *out_eiref =
2301 (struct btrfs_extent_inline_ref *)(info + 1);
2302 }
2303 } else {
2304 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
2305 }
2306 *ptr = (unsigned long)*out_eiref;
2307 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
2308 return -ENOENT;
2309 }
2310
2311 end = (unsigned long)ei + item_size;
2312 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
2313 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
2314 BTRFS_REF_TYPE_ANY);
2315 if (*out_type == BTRFS_REF_TYPE_INVALID)
2316 return -EUCLEAN;
2317
2318 *ptr += btrfs_extent_inline_ref_size(*out_type);
2319 WARN_ON(*ptr > end);
2320 if (*ptr == end)
2321 return 1; /* last */
2322
2323 return 0;
2324 }
2325
2326 /*
2327 * reads the tree block backref for an extent. tree level and root are returned
2328 * through out_level and out_root. ptr must point to a 0 value for the first
2329 * call and may be modified (see get_extent_inline_ref comment).
2330 * returns 0 if data was provided, 1 if there was no more data to provide or
2331 * <0 on error.
2332 */
tree_backref_for_extent(unsigned long * ptr,struct extent_buffer * eb,struct btrfs_key * key,struct btrfs_extent_item * ei,u32 item_size,u64 * out_root,u8 * out_level)2333 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
2334 struct btrfs_key *key, struct btrfs_extent_item *ei,
2335 u32 item_size, u64 *out_root, u8 *out_level)
2336 {
2337 int ret;
2338 int type;
2339 struct btrfs_extent_inline_ref *eiref;
2340
2341 if (*ptr == (unsigned long)-1)
2342 return 1;
2343
2344 while (1) {
2345 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
2346 &eiref, &type);
2347 if (ret < 0)
2348 return ret;
2349
2350 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2351 type == BTRFS_SHARED_BLOCK_REF_KEY)
2352 break;
2353
2354 if (ret == 1)
2355 return 1;
2356 }
2357
2358 /* we can treat both ref types equally here */
2359 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
2360
2361 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
2362 struct btrfs_tree_block_info *info;
2363
2364 info = (struct btrfs_tree_block_info *)(ei + 1);
2365 *out_level = btrfs_tree_block_level(eb, info);
2366 } else {
2367 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
2368 *out_level = (u8)key->offset;
2369 }
2370
2371 if (ret == 1)
2372 *ptr = (unsigned long)-1;
2373
2374 return 0;
2375 }
2376
iterate_leaf_refs(struct btrfs_fs_info * fs_info,struct extent_inode_elem * inode_list,u64 root,u64 extent_item_objectid,iterate_extent_inodes_t * iterate,void * ctx)2377 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
2378 struct extent_inode_elem *inode_list,
2379 u64 root, u64 extent_item_objectid,
2380 iterate_extent_inodes_t *iterate, void *ctx)
2381 {
2382 struct extent_inode_elem *eie;
2383 int ret = 0;
2384
2385 for (eie = inode_list; eie; eie = eie->next) {
2386 btrfs_debug(fs_info,
2387 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
2388 extent_item_objectid, eie->inum,
2389 eie->offset, root);
2390 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx);
2391 if (ret) {
2392 btrfs_debug(fs_info,
2393 "stopping iteration for %llu due to ret=%d",
2394 extent_item_objectid, ret);
2395 break;
2396 }
2397 }
2398
2399 return ret;
2400 }
2401
2402 /*
2403 * calls iterate() for every inode that references the extent identified by
2404 * the given parameters.
2405 * when the iterator function returns a non-zero value, iteration stops.
2406 */
iterate_extent_inodes(struct btrfs_backref_walk_ctx * ctx,bool search_commit_root,iterate_extent_inodes_t * iterate,void * user_ctx)2407 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx,
2408 bool search_commit_root,
2409 iterate_extent_inodes_t *iterate, void *user_ctx)
2410 {
2411 int ret;
2412 struct ulist *refs;
2413 struct ulist_node *ref_node;
2414 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
2415 struct ulist_iterator ref_uiter;
2416
2417 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu",
2418 ctx->bytenr);
2419
2420 ASSERT(ctx->trans == NULL);
2421 ASSERT(ctx->roots == NULL);
2422
2423 if (!search_commit_root) {
2424 struct btrfs_trans_handle *trans;
2425
2426 trans = btrfs_attach_transaction(ctx->fs_info->tree_root);
2427 if (IS_ERR(trans)) {
2428 if (PTR_ERR(trans) != -ENOENT &&
2429 PTR_ERR(trans) != -EROFS)
2430 return PTR_ERR(trans);
2431 trans = NULL;
2432 }
2433 ctx->trans = trans;
2434 }
2435
2436 if (ctx->trans) {
2437 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem);
2438 ctx->time_seq = seq_elem.seq;
2439 } else {
2440 down_read(&ctx->fs_info->commit_root_sem);
2441 }
2442
2443 ret = btrfs_find_all_leafs(ctx);
2444 if (ret)
2445 goto out;
2446 refs = ctx->refs;
2447 ctx->refs = NULL;
2448
2449 ULIST_ITER_INIT(&ref_uiter);
2450 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2451 const u64 leaf_bytenr = ref_node->val;
2452 struct ulist_node *root_node;
2453 struct ulist_iterator root_uiter;
2454 struct extent_inode_elem *inode_list;
2455
2456 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux;
2457
2458 if (ctx->cache_lookup) {
2459 const u64 *root_ids;
2460 int root_count;
2461 bool cached;
2462
2463 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx,
2464 &root_ids, &root_count);
2465 if (cached) {
2466 for (int i = 0; i < root_count; i++) {
2467 ret = iterate_leaf_refs(ctx->fs_info,
2468 inode_list,
2469 root_ids[i],
2470 leaf_bytenr,
2471 iterate,
2472 user_ctx);
2473 if (ret)
2474 break;
2475 }
2476 continue;
2477 }
2478 }
2479
2480 if (!ctx->roots) {
2481 ctx->roots = ulist_alloc(GFP_NOFS);
2482 if (!ctx->roots) {
2483 ret = -ENOMEM;
2484 break;
2485 }
2486 }
2487
2488 ctx->bytenr = leaf_bytenr;
2489 ret = btrfs_find_all_roots_safe(ctx);
2490 if (ret)
2491 break;
2492
2493 if (ctx->cache_store)
2494 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx);
2495
2496 ULIST_ITER_INIT(&root_uiter);
2497 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) {
2498 btrfs_debug(ctx->fs_info,
2499 "root %llu references leaf %llu, data list %#llx",
2500 root_node->val, ref_node->val,
2501 ref_node->aux);
2502 ret = iterate_leaf_refs(ctx->fs_info, inode_list,
2503 root_node->val, ctx->bytenr,
2504 iterate, user_ctx);
2505 }
2506 ulist_reinit(ctx->roots);
2507 }
2508
2509 free_leaf_list(refs);
2510 out:
2511 if (ctx->trans) {
2512 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem);
2513 btrfs_end_transaction(ctx->trans);
2514 ctx->trans = NULL;
2515 } else {
2516 up_read(&ctx->fs_info->commit_root_sem);
2517 }
2518
2519 ulist_free(ctx->roots);
2520 ctx->roots = NULL;
2521
2522 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP)
2523 ret = 0;
2524
2525 return ret;
2526 }
2527
build_ino_list(u64 inum,u64 offset,u64 num_bytes,u64 root,void * ctx)2528 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx)
2529 {
2530 struct btrfs_data_container *inodes = ctx;
2531 const size_t c = 3 * sizeof(u64);
2532
2533 if (inodes->bytes_left >= c) {
2534 inodes->bytes_left -= c;
2535 inodes->val[inodes->elem_cnt] = inum;
2536 inodes->val[inodes->elem_cnt + 1] = offset;
2537 inodes->val[inodes->elem_cnt + 2] = root;
2538 inodes->elem_cnt += 3;
2539 } else {
2540 inodes->bytes_missing += c - inodes->bytes_left;
2541 inodes->bytes_left = 0;
2542 inodes->elem_missed += 3;
2543 }
2544
2545 return 0;
2546 }
2547
iterate_inodes_from_logical(u64 logical,struct btrfs_fs_info * fs_info,void * ctx,bool ignore_offset)2548 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2549 void *ctx, bool ignore_offset)
2550 {
2551 struct btrfs_backref_walk_ctx walk_ctx = { 0 };
2552 int ret;
2553 u64 flags = 0;
2554 struct btrfs_key found_key;
2555 struct btrfs_path *path;
2556
2557 path = btrfs_alloc_path();
2558 if (!path)
2559 return -ENOMEM;
2560
2561 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2562 btrfs_free_path(path);
2563 if (ret < 0)
2564 return ret;
2565 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2566 return -EINVAL;
2567
2568 walk_ctx.bytenr = found_key.objectid;
2569 if (ignore_offset)
2570 walk_ctx.ignore_extent_item_pos = true;
2571 else
2572 walk_ctx.extent_item_pos = logical - found_key.objectid;
2573 walk_ctx.fs_info = fs_info;
2574
2575 return iterate_extent_inodes(&walk_ctx, false, build_ino_list, ctx);
2576 }
2577
2578 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2579 struct extent_buffer *eb, struct inode_fs_paths *ipath);
2580
iterate_inode_refs(u64 inum,struct inode_fs_paths * ipath)2581 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath)
2582 {
2583 int ret = 0;
2584 int slot;
2585 u32 cur;
2586 u32 len;
2587 u32 name_len;
2588 u64 parent = 0;
2589 int found = 0;
2590 struct btrfs_root *fs_root = ipath->fs_root;
2591 struct btrfs_path *path = ipath->btrfs_path;
2592 struct extent_buffer *eb;
2593 struct btrfs_inode_ref *iref;
2594 struct btrfs_key found_key;
2595
2596 while (!ret) {
2597 ret = btrfs_find_item(fs_root, path, inum,
2598 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2599 &found_key);
2600
2601 if (ret < 0)
2602 break;
2603 if (ret) {
2604 ret = found ? 0 : -ENOENT;
2605 break;
2606 }
2607 ++found;
2608
2609 parent = found_key.offset;
2610 slot = path->slots[0];
2611 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2612 if (!eb) {
2613 ret = -ENOMEM;
2614 break;
2615 }
2616 btrfs_release_path(path);
2617
2618 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2619
2620 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2621 name_len = btrfs_inode_ref_name_len(eb, iref);
2622 /* path must be released before calling iterate()! */
2623 btrfs_debug(fs_root->fs_info,
2624 "following ref at offset %u for inode %llu in tree %llu",
2625 cur, found_key.objectid,
2626 btrfs_root_id(fs_root));
2627 ret = inode_to_path(parent, name_len,
2628 (unsigned long)(iref + 1), eb, ipath);
2629 if (ret)
2630 break;
2631 len = sizeof(*iref) + name_len;
2632 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2633 }
2634 free_extent_buffer(eb);
2635 }
2636
2637 btrfs_release_path(path);
2638
2639 return ret;
2640 }
2641
iterate_inode_extrefs(u64 inum,struct inode_fs_paths * ipath)2642 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath)
2643 {
2644 int ret;
2645 int slot;
2646 u64 offset = 0;
2647 u64 parent;
2648 int found = 0;
2649 struct btrfs_root *fs_root = ipath->fs_root;
2650 struct btrfs_path *path = ipath->btrfs_path;
2651 struct extent_buffer *eb;
2652 struct btrfs_inode_extref *extref;
2653 u32 item_size;
2654 u32 cur_offset;
2655 unsigned long ptr;
2656
2657 while (1) {
2658 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2659 &offset);
2660 if (ret < 0)
2661 break;
2662 if (ret) {
2663 ret = found ? 0 : -ENOENT;
2664 break;
2665 }
2666 ++found;
2667
2668 slot = path->slots[0];
2669 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2670 if (!eb) {
2671 ret = -ENOMEM;
2672 break;
2673 }
2674 btrfs_release_path(path);
2675
2676 item_size = btrfs_item_size(eb, slot);
2677 ptr = btrfs_item_ptr_offset(eb, slot);
2678 cur_offset = 0;
2679
2680 while (cur_offset < item_size) {
2681 u32 name_len;
2682
2683 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2684 parent = btrfs_inode_extref_parent(eb, extref);
2685 name_len = btrfs_inode_extref_name_len(eb, extref);
2686 ret = inode_to_path(parent, name_len,
2687 (unsigned long)&extref->name, eb, ipath);
2688 if (ret)
2689 break;
2690
2691 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2692 cur_offset += sizeof(*extref);
2693 }
2694 free_extent_buffer(eb);
2695
2696 offset++;
2697 }
2698
2699 btrfs_release_path(path);
2700
2701 return ret;
2702 }
2703
2704 /*
2705 * returns 0 if the path could be dumped (probably truncated)
2706 * returns <0 in case of an error
2707 */
inode_to_path(u64 inum,u32 name_len,unsigned long name_off,struct extent_buffer * eb,struct inode_fs_paths * ipath)2708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2709 struct extent_buffer *eb, struct inode_fs_paths *ipath)
2710 {
2711 char *fspath;
2712 char *fspath_min;
2713 int i = ipath->fspath->elem_cnt;
2714 const int s_ptr = sizeof(char *);
2715 u32 bytes_left;
2716
2717 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2718 ipath->fspath->bytes_left - s_ptr : 0;
2719
2720 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2721 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2722 name_off, eb, inum, fspath_min, bytes_left);
2723 if (IS_ERR(fspath))
2724 return PTR_ERR(fspath);
2725
2726 if (fspath > fspath_min) {
2727 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2728 ++ipath->fspath->elem_cnt;
2729 ipath->fspath->bytes_left = fspath - fspath_min;
2730 } else {
2731 ++ipath->fspath->elem_missed;
2732 ipath->fspath->bytes_missing += fspath_min - fspath;
2733 ipath->fspath->bytes_left = 0;
2734 }
2735
2736 return 0;
2737 }
2738
2739 /*
2740 * this dumps all file system paths to the inode into the ipath struct, provided
2741 * is has been created large enough. each path is zero-terminated and accessed
2742 * from ipath->fspath->val[i].
2743 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2744 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2745 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2746 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2747 * have been needed to return all paths.
2748 */
paths_from_inode(u64 inum,struct inode_fs_paths * ipath)2749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2750 {
2751 int ret;
2752 int found_refs = 0;
2753
2754 ret = iterate_inode_refs(inum, ipath);
2755 if (!ret)
2756 ++found_refs;
2757 else if (ret != -ENOENT)
2758 return ret;
2759
2760 ret = iterate_inode_extrefs(inum, ipath);
2761 if (ret == -ENOENT && found_refs)
2762 return 0;
2763
2764 return ret;
2765 }
2766
init_data_container(u32 total_bytes)2767 struct btrfs_data_container *init_data_container(u32 total_bytes)
2768 {
2769 struct btrfs_data_container *data;
2770 size_t alloc_bytes;
2771
2772 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2773 data = kvzalloc(alloc_bytes, GFP_KERNEL);
2774 if (!data)
2775 return ERR_PTR(-ENOMEM);
2776
2777 if (total_bytes >= sizeof(*data))
2778 data->bytes_left = total_bytes - sizeof(*data);
2779 else
2780 data->bytes_missing = sizeof(*data) - total_bytes;
2781
2782 return data;
2783 }
2784
2785 /*
2786 * allocates space to return multiple file system paths for an inode.
2787 * total_bytes to allocate are passed, note that space usable for actual path
2788 * information will be total_bytes - sizeof(struct inode_fs_paths).
2789 * the returned pointer must be freed with free_ipath() in the end.
2790 */
init_ipath(s32 total_bytes,struct btrfs_root * fs_root,struct btrfs_path * path)2791 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2792 struct btrfs_path *path)
2793 {
2794 struct inode_fs_paths *ifp;
2795 struct btrfs_data_container *fspath;
2796
2797 fspath = init_data_container(total_bytes);
2798 if (IS_ERR(fspath))
2799 return ERR_CAST(fspath);
2800
2801 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2802 if (!ifp) {
2803 kvfree(fspath);
2804 return ERR_PTR(-ENOMEM);
2805 }
2806
2807 ifp->btrfs_path = path;
2808 ifp->fspath = fspath;
2809 ifp->fs_root = fs_root;
2810
2811 return ifp;
2812 }
2813
free_ipath(struct inode_fs_paths * ipath)2814 void free_ipath(struct inode_fs_paths *ipath)
2815 {
2816 if (!ipath)
2817 return;
2818 kvfree(ipath->fspath);
2819 kfree(ipath);
2820 }
2821
btrfs_backref_iter_alloc(struct btrfs_fs_info * fs_info)2822 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info)
2823 {
2824 struct btrfs_backref_iter *ret;
2825
2826 ret = kzalloc(sizeof(*ret), GFP_NOFS);
2827 if (!ret)
2828 return NULL;
2829
2830 ret->path = btrfs_alloc_path();
2831 if (!ret->path) {
2832 kfree(ret);
2833 return NULL;
2834 }
2835
2836 /* Current backref iterator only supports iteration in commit root */
2837 ret->path->search_commit_root = 1;
2838 ret->path->skip_locking = 1;
2839 ret->fs_info = fs_info;
2840
2841 return ret;
2842 }
2843
btrfs_backref_iter_release(struct btrfs_backref_iter * iter)2844 static void btrfs_backref_iter_release(struct btrfs_backref_iter *iter)
2845 {
2846 iter->bytenr = 0;
2847 iter->item_ptr = 0;
2848 iter->cur_ptr = 0;
2849 iter->end_ptr = 0;
2850 btrfs_release_path(iter->path);
2851 memset(&iter->cur_key, 0, sizeof(iter->cur_key));
2852 }
2853
btrfs_backref_iter_start(struct btrfs_backref_iter * iter,u64 bytenr)2854 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2855 {
2856 struct btrfs_fs_info *fs_info = iter->fs_info;
2857 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2858 struct btrfs_path *path = iter->path;
2859 struct btrfs_extent_item *ei;
2860 struct btrfs_key key;
2861 int ret;
2862
2863 key.objectid = bytenr;
2864 key.type = BTRFS_METADATA_ITEM_KEY;
2865 key.offset = (u64)-1;
2866 iter->bytenr = bytenr;
2867
2868 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2869 if (ret < 0)
2870 return ret;
2871 if (ret == 0) {
2872 /*
2873 * Key with offset -1 found, there would have to exist an extent
2874 * item with such offset, but this is out of the valid range.
2875 */
2876 ret = -EUCLEAN;
2877 goto release;
2878 }
2879 if (path->slots[0] == 0) {
2880 DEBUG_WARN();
2881 ret = -EUCLEAN;
2882 goto release;
2883 }
2884 path->slots[0]--;
2885
2886 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2887 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2888 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2889 ret = -ENOENT;
2890 goto release;
2891 }
2892 memcpy(&iter->cur_key, &key, sizeof(key));
2893 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2894 path->slots[0]);
2895 iter->end_ptr = (u32)(iter->item_ptr +
2896 btrfs_item_size(path->nodes[0], path->slots[0]));
2897 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2898 struct btrfs_extent_item);
2899
2900 /*
2901 * Only support iteration on tree backref yet.
2902 *
2903 * This is an extra precaution for non skinny-metadata, where
2904 * EXTENT_ITEM is also used for tree blocks, that we can only use
2905 * extent flags to determine if it's a tree block.
2906 */
2907 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2908 ret = -ENOTSUPP;
2909 goto release;
2910 }
2911 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2912
2913 /* If there is no inline backref, go search for keyed backref */
2914 if (iter->cur_ptr >= iter->end_ptr) {
2915 ret = btrfs_next_item(extent_root, path);
2916
2917 /* No inline nor keyed ref */
2918 if (ret > 0) {
2919 ret = -ENOENT;
2920 goto release;
2921 }
2922 if (ret < 0)
2923 goto release;
2924
2925 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2926 path->slots[0]);
2927 if (iter->cur_key.objectid != bytenr ||
2928 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2929 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2930 ret = -ENOENT;
2931 goto release;
2932 }
2933 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2934 path->slots[0]);
2935 iter->item_ptr = iter->cur_ptr;
2936 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2937 path->nodes[0], path->slots[0]));
2938 }
2939
2940 return 0;
2941 release:
2942 btrfs_backref_iter_release(iter);
2943 return ret;
2944 }
2945
btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter * iter)2946 static bool btrfs_backref_iter_is_inline_ref(struct btrfs_backref_iter *iter)
2947 {
2948 if (iter->cur_key.type == BTRFS_EXTENT_ITEM_KEY ||
2949 iter->cur_key.type == BTRFS_METADATA_ITEM_KEY)
2950 return true;
2951 return false;
2952 }
2953
2954 /*
2955 * Go to the next backref item of current bytenr, can be either inlined or
2956 * keyed.
2957 *
2958 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2959 *
2960 * Return 0 if we get next backref without problem.
2961 * Return >0 if there is no extra backref for this bytenr.
2962 * Return <0 if there is something wrong happened.
2963 */
btrfs_backref_iter_next(struct btrfs_backref_iter * iter)2964 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2965 {
2966 struct extent_buffer *eb = iter->path->nodes[0];
2967 struct btrfs_root *extent_root;
2968 struct btrfs_path *path = iter->path;
2969 struct btrfs_extent_inline_ref *iref;
2970 int ret;
2971 u32 size;
2972
2973 if (btrfs_backref_iter_is_inline_ref(iter)) {
2974 /* We're still inside the inline refs */
2975 ASSERT(iter->cur_ptr < iter->end_ptr);
2976
2977 if (btrfs_backref_has_tree_block_info(iter)) {
2978 /* First tree block info */
2979 size = sizeof(struct btrfs_tree_block_info);
2980 } else {
2981 /* Use inline ref type to determine the size */
2982 int type;
2983
2984 iref = (struct btrfs_extent_inline_ref *)
2985 ((unsigned long)iter->cur_ptr);
2986 type = btrfs_extent_inline_ref_type(eb, iref);
2987
2988 size = btrfs_extent_inline_ref_size(type);
2989 }
2990 iter->cur_ptr += size;
2991 if (iter->cur_ptr < iter->end_ptr)
2992 return 0;
2993
2994 /* All inline items iterated, fall through */
2995 }
2996
2997 /* We're at keyed items, there is no inline item, go to the next one */
2998 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2999 ret = btrfs_next_item(extent_root, iter->path);
3000 if (ret)
3001 return ret;
3002
3003 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
3004 if (iter->cur_key.objectid != iter->bytenr ||
3005 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
3006 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
3007 return 1;
3008 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
3009 path->slots[0]);
3010 iter->cur_ptr = iter->item_ptr;
3011 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
3012 path->slots[0]);
3013 return 0;
3014 }
3015
btrfs_backref_init_cache(struct btrfs_fs_info * fs_info,struct btrfs_backref_cache * cache,bool is_reloc)3016 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
3017 struct btrfs_backref_cache *cache, bool is_reloc)
3018 {
3019 int i;
3020
3021 cache->rb_root = RB_ROOT;
3022 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
3023 INIT_LIST_HEAD(&cache->pending[i]);
3024 INIT_LIST_HEAD(&cache->pending_edge);
3025 INIT_LIST_HEAD(&cache->useless_node);
3026 cache->fs_info = fs_info;
3027 cache->is_reloc = is_reloc;
3028 }
3029
btrfs_backref_alloc_node(struct btrfs_backref_cache * cache,u64 bytenr,int level)3030 struct btrfs_backref_node *btrfs_backref_alloc_node(
3031 struct btrfs_backref_cache *cache, u64 bytenr, int level)
3032 {
3033 struct btrfs_backref_node *node;
3034
3035 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
3036 node = kzalloc(sizeof(*node), GFP_NOFS);
3037 if (!node)
3038 return node;
3039
3040 INIT_LIST_HEAD(&node->list);
3041 INIT_LIST_HEAD(&node->upper);
3042 INIT_LIST_HEAD(&node->lower);
3043 RB_CLEAR_NODE(&node->rb_node);
3044 cache->nr_nodes++;
3045 node->level = level;
3046 node->bytenr = bytenr;
3047
3048 return node;
3049 }
3050
btrfs_backref_free_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3051 void btrfs_backref_free_node(struct btrfs_backref_cache *cache,
3052 struct btrfs_backref_node *node)
3053 {
3054 if (node) {
3055 ASSERT(list_empty(&node->list));
3056 ASSERT(list_empty(&node->lower));
3057 ASSERT(node->eb == NULL);
3058 cache->nr_nodes--;
3059 btrfs_put_root(node->root);
3060 kfree(node);
3061 }
3062 }
3063
btrfs_backref_alloc_edge(struct btrfs_backref_cache * cache)3064 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
3065 struct btrfs_backref_cache *cache)
3066 {
3067 struct btrfs_backref_edge *edge;
3068
3069 edge = kzalloc(sizeof(*edge), GFP_NOFS);
3070 if (edge)
3071 cache->nr_edges++;
3072 return edge;
3073 }
3074
btrfs_backref_free_edge(struct btrfs_backref_cache * cache,struct btrfs_backref_edge * edge)3075 void btrfs_backref_free_edge(struct btrfs_backref_cache *cache,
3076 struct btrfs_backref_edge *edge)
3077 {
3078 if (edge) {
3079 cache->nr_edges--;
3080 kfree(edge);
3081 }
3082 }
3083
btrfs_backref_unlock_node_buffer(struct btrfs_backref_node * node)3084 void btrfs_backref_unlock_node_buffer(struct btrfs_backref_node *node)
3085 {
3086 if (node->locked) {
3087 btrfs_tree_unlock(node->eb);
3088 node->locked = 0;
3089 }
3090 }
3091
btrfs_backref_drop_node_buffer(struct btrfs_backref_node * node)3092 void btrfs_backref_drop_node_buffer(struct btrfs_backref_node *node)
3093 {
3094 if (node->eb) {
3095 btrfs_backref_unlock_node_buffer(node);
3096 free_extent_buffer(node->eb);
3097 node->eb = NULL;
3098 }
3099 }
3100
3101 /*
3102 * Drop the backref node from cache without cleaning up its children
3103 * edges.
3104 *
3105 * This can only be called on node without parent edges.
3106 * The children edges are still kept as is.
3107 */
btrfs_backref_drop_node(struct btrfs_backref_cache * tree,struct btrfs_backref_node * node)3108 void btrfs_backref_drop_node(struct btrfs_backref_cache *tree,
3109 struct btrfs_backref_node *node)
3110 {
3111 ASSERT(list_empty(&node->upper));
3112
3113 btrfs_backref_drop_node_buffer(node);
3114 list_del_init(&node->list);
3115 list_del_init(&node->lower);
3116 if (!RB_EMPTY_NODE(&node->rb_node))
3117 rb_erase(&node->rb_node, &tree->rb_root);
3118 btrfs_backref_free_node(tree, node);
3119 }
3120
3121 /*
3122 * Drop the backref node from cache, also cleaning up all its
3123 * upper edges and any uncached nodes in the path.
3124 *
3125 * This cleanup happens bottom up, thus the node should either
3126 * be the lowest node in the cache or a detached node.
3127 */
btrfs_backref_cleanup_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3128 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
3129 struct btrfs_backref_node *node)
3130 {
3131 struct btrfs_backref_edge *edge;
3132
3133 if (!node)
3134 return;
3135
3136 while (!list_empty(&node->upper)) {
3137 edge = list_first_entry(&node->upper, struct btrfs_backref_edge,
3138 list[LOWER]);
3139 list_del(&edge->list[LOWER]);
3140 list_del(&edge->list[UPPER]);
3141 btrfs_backref_free_edge(cache, edge);
3142 }
3143
3144 btrfs_backref_drop_node(cache, node);
3145 }
3146
3147 /*
3148 * Release all nodes/edges from current cache
3149 */
btrfs_backref_release_cache(struct btrfs_backref_cache * cache)3150 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
3151 {
3152 struct btrfs_backref_node *node;
3153
3154 while ((node = rb_entry_safe(rb_first(&cache->rb_root),
3155 struct btrfs_backref_node, rb_node)))
3156 btrfs_backref_cleanup_node(cache, node);
3157
3158 ASSERT(list_empty(&cache->pending_edge));
3159 ASSERT(list_empty(&cache->useless_node));
3160 ASSERT(!cache->nr_nodes);
3161 ASSERT(!cache->nr_edges);
3162 }
3163
btrfs_backref_link_edge(struct btrfs_backref_edge * edge,struct btrfs_backref_node * lower,struct btrfs_backref_node * upper)3164 static void btrfs_backref_link_edge(struct btrfs_backref_edge *edge,
3165 struct btrfs_backref_node *lower,
3166 struct btrfs_backref_node *upper)
3167 {
3168 ASSERT(upper && lower && upper->level == lower->level + 1);
3169 edge->node[LOWER] = lower;
3170 edge->node[UPPER] = upper;
3171 list_add_tail(&edge->list[LOWER], &lower->upper);
3172 }
3173 /*
3174 * Handle direct tree backref
3175 *
3176 * Direct tree backref means, the backref item shows its parent bytenr
3177 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
3178 *
3179 * @ref_key: The converted backref key.
3180 * For keyed backref, it's the item key.
3181 * For inlined backref, objectid is the bytenr,
3182 * type is btrfs_inline_ref_type, offset is
3183 * btrfs_inline_ref_offset.
3184 */
handle_direct_tree_backref(struct btrfs_backref_cache * cache,struct btrfs_key * ref_key,struct btrfs_backref_node * cur)3185 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
3186 struct btrfs_key *ref_key,
3187 struct btrfs_backref_node *cur)
3188 {
3189 struct btrfs_backref_edge *edge;
3190 struct btrfs_backref_node *upper;
3191 struct rb_node *rb_node;
3192
3193 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
3194
3195 /* Only reloc root uses backref pointing to itself */
3196 if (ref_key->objectid == ref_key->offset) {
3197 struct btrfs_root *root;
3198
3199 cur->is_reloc_root = 1;
3200 /* Only reloc backref cache cares about a specific root */
3201 if (cache->is_reloc) {
3202 root = find_reloc_root(cache->fs_info, cur->bytenr);
3203 if (!root)
3204 return -ENOENT;
3205 cur->root = root;
3206 } else {
3207 /*
3208 * For generic purpose backref cache, reloc root node
3209 * is useless.
3210 */
3211 list_add(&cur->list, &cache->useless_node);
3212 }
3213 return 0;
3214 }
3215
3216 edge = btrfs_backref_alloc_edge(cache);
3217 if (!edge)
3218 return -ENOMEM;
3219
3220 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
3221 if (!rb_node) {
3222 /* Parent node not yet cached */
3223 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
3224 cur->level + 1);
3225 if (!upper) {
3226 btrfs_backref_free_edge(cache, edge);
3227 return -ENOMEM;
3228 }
3229
3230 /*
3231 * Backrefs for the upper level block isn't cached, add the
3232 * block to pending list
3233 */
3234 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3235 } else {
3236 /* Parent node already cached */
3237 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
3238 ASSERT(upper->checked);
3239 INIT_LIST_HEAD(&edge->list[UPPER]);
3240 }
3241 btrfs_backref_link_edge(edge, cur, upper);
3242 return 0;
3243 }
3244
3245 /*
3246 * Handle indirect tree backref
3247 *
3248 * Indirect tree backref means, we only know which tree the node belongs to.
3249 * We still need to do a tree search to find out the parents. This is for
3250 * TREE_BLOCK_REF backref (keyed or inlined).
3251 *
3252 * @trans: Transaction handle.
3253 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
3254 * @tree_key: The first key of this tree block.
3255 * @path: A clean (released) path, to avoid allocating path every time
3256 * the function get called.
3257 */
handle_indirect_tree_backref(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_key * ref_key,struct btrfs_key * tree_key,struct btrfs_backref_node * cur)3258 static int handle_indirect_tree_backref(struct btrfs_trans_handle *trans,
3259 struct btrfs_backref_cache *cache,
3260 struct btrfs_path *path,
3261 struct btrfs_key *ref_key,
3262 struct btrfs_key *tree_key,
3263 struct btrfs_backref_node *cur)
3264 {
3265 struct btrfs_fs_info *fs_info = cache->fs_info;
3266 struct btrfs_backref_node *upper;
3267 struct btrfs_backref_node *lower;
3268 struct btrfs_backref_edge *edge;
3269 struct extent_buffer *eb;
3270 struct btrfs_root *root;
3271 struct rb_node *rb_node;
3272 int level;
3273 bool need_check = true;
3274 int ret;
3275
3276 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
3277 if (IS_ERR(root))
3278 return PTR_ERR(root);
3279
3280 /* We shouldn't be using backref cache for non-shareable roots. */
3281 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3282 btrfs_put_root(root);
3283 return -EUCLEAN;
3284 }
3285
3286 if (btrfs_root_level(&root->root_item) == cur->level) {
3287 /* Tree root */
3288 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
3289 /*
3290 * For reloc backref cache, we may ignore reloc root. But for
3291 * general purpose backref cache, we can't rely on
3292 * btrfs_should_ignore_reloc_root() as it may conflict with
3293 * current running relocation and lead to missing root.
3294 *
3295 * For general purpose backref cache, reloc root detection is
3296 * completely relying on direct backref (key->offset is parent
3297 * bytenr), thus only do such check for reloc cache.
3298 */
3299 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
3300 btrfs_put_root(root);
3301 list_add(&cur->list, &cache->useless_node);
3302 } else {
3303 cur->root = root;
3304 }
3305 return 0;
3306 }
3307
3308 level = cur->level + 1;
3309
3310 /* Search the tree to find parent blocks referring to the block */
3311 path->search_commit_root = 1;
3312 path->skip_locking = 1;
3313 path->lowest_level = level;
3314 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
3315 path->lowest_level = 0;
3316 if (ret < 0) {
3317 btrfs_put_root(root);
3318 return ret;
3319 }
3320 if (ret > 0 && path->slots[level] > 0)
3321 path->slots[level]--;
3322
3323 eb = path->nodes[level];
3324 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
3325 btrfs_err(fs_info,
3326 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
3327 cur->bytenr, level - 1, btrfs_root_id(root),
3328 tree_key->objectid, tree_key->type, tree_key->offset);
3329 btrfs_put_root(root);
3330 ret = -ENOENT;
3331 goto out;
3332 }
3333 lower = cur;
3334
3335 /* Add all nodes and edges in the path */
3336 for (; level < BTRFS_MAX_LEVEL; level++) {
3337 if (!path->nodes[level]) {
3338 ASSERT(btrfs_root_bytenr(&root->root_item) ==
3339 lower->bytenr);
3340 /* Same as previous should_ignore_reloc_root() call */
3341 if (btrfs_should_ignore_reloc_root(root) &&
3342 cache->is_reloc) {
3343 btrfs_put_root(root);
3344 list_add(&lower->list, &cache->useless_node);
3345 } else {
3346 lower->root = root;
3347 }
3348 break;
3349 }
3350
3351 edge = btrfs_backref_alloc_edge(cache);
3352 if (!edge) {
3353 btrfs_put_root(root);
3354 ret = -ENOMEM;
3355 goto out;
3356 }
3357
3358 eb = path->nodes[level];
3359 rb_node = rb_simple_search(&cache->rb_root, eb->start);
3360 if (!rb_node) {
3361 upper = btrfs_backref_alloc_node(cache, eb->start,
3362 lower->level + 1);
3363 if (!upper) {
3364 btrfs_put_root(root);
3365 btrfs_backref_free_edge(cache, edge);
3366 ret = -ENOMEM;
3367 goto out;
3368 }
3369 upper->owner = btrfs_header_owner(eb);
3370
3371 /* We shouldn't be using backref cache for non shareable roots. */
3372 if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
3373 btrfs_put_root(root);
3374 btrfs_backref_free_edge(cache, edge);
3375 btrfs_backref_free_node(cache, upper);
3376 ret = -EUCLEAN;
3377 goto out;
3378 }
3379
3380 /*
3381 * If we know the block isn't shared we can avoid
3382 * checking its backrefs.
3383 */
3384 if (btrfs_block_can_be_shared(trans, root, eb))
3385 upper->checked = 0;
3386 else
3387 upper->checked = 1;
3388
3389 /*
3390 * Add the block to pending list if we need to check its
3391 * backrefs, we only do this once while walking up a
3392 * tree as we will catch anything else later on.
3393 */
3394 if (!upper->checked && need_check) {
3395 need_check = false;
3396 list_add_tail(&edge->list[UPPER],
3397 &cache->pending_edge);
3398 } else {
3399 if (upper->checked)
3400 need_check = true;
3401 INIT_LIST_HEAD(&edge->list[UPPER]);
3402 }
3403 } else {
3404 upper = rb_entry(rb_node, struct btrfs_backref_node,
3405 rb_node);
3406 ASSERT(upper->checked);
3407 INIT_LIST_HEAD(&edge->list[UPPER]);
3408 if (!upper->owner)
3409 upper->owner = btrfs_header_owner(eb);
3410 }
3411 btrfs_backref_link_edge(edge, lower, upper);
3412
3413 if (rb_node) {
3414 btrfs_put_root(root);
3415 break;
3416 }
3417 lower = upper;
3418 upper = NULL;
3419 }
3420 out:
3421 btrfs_release_path(path);
3422 return ret;
3423 }
3424
3425 /*
3426 * Add backref node @cur into @cache.
3427 *
3428 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
3429 * links aren't yet bi-directional. Needs to finish such links.
3430 * Use btrfs_backref_finish_upper_links() to finish such linkage.
3431 *
3432 * @trans: Transaction handle.
3433 * @path: Released path for indirect tree backref lookup
3434 * @iter: Released backref iter for extent tree search
3435 * @node_key: The first key of the tree block
3436 */
btrfs_backref_add_tree_node(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache,struct btrfs_path * path,struct btrfs_backref_iter * iter,struct btrfs_key * node_key,struct btrfs_backref_node * cur)3437 int btrfs_backref_add_tree_node(struct btrfs_trans_handle *trans,
3438 struct btrfs_backref_cache *cache,
3439 struct btrfs_path *path,
3440 struct btrfs_backref_iter *iter,
3441 struct btrfs_key *node_key,
3442 struct btrfs_backref_node *cur)
3443 {
3444 struct btrfs_backref_edge *edge;
3445 struct btrfs_backref_node *exist;
3446 int ret;
3447
3448 ret = btrfs_backref_iter_start(iter, cur->bytenr);
3449 if (ret < 0)
3450 return ret;
3451 /*
3452 * We skip the first btrfs_tree_block_info, as we don't use the key
3453 * stored in it, but fetch it from the tree block
3454 */
3455 if (btrfs_backref_has_tree_block_info(iter)) {
3456 ret = btrfs_backref_iter_next(iter);
3457 if (ret < 0)
3458 goto out;
3459 /* No extra backref? This means the tree block is corrupted */
3460 if (ret > 0) {
3461 ret = -EUCLEAN;
3462 goto out;
3463 }
3464 }
3465 WARN_ON(cur->checked);
3466 if (!list_empty(&cur->upper)) {
3467 /*
3468 * The backref was added previously when processing backref of
3469 * type BTRFS_TREE_BLOCK_REF_KEY
3470 */
3471 ASSERT(list_is_singular(&cur->upper));
3472 edge = list_first_entry(&cur->upper, struct btrfs_backref_edge,
3473 list[LOWER]);
3474 ASSERT(list_empty(&edge->list[UPPER]));
3475 exist = edge->node[UPPER];
3476 /*
3477 * Add the upper level block to pending list if we need check
3478 * its backrefs
3479 */
3480 if (!exist->checked)
3481 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
3482 } else {
3483 exist = NULL;
3484 }
3485
3486 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
3487 struct extent_buffer *eb;
3488 struct btrfs_key key;
3489 int type;
3490
3491 cond_resched();
3492 eb = iter->path->nodes[0];
3493
3494 key.objectid = iter->bytenr;
3495 if (btrfs_backref_iter_is_inline_ref(iter)) {
3496 struct btrfs_extent_inline_ref *iref;
3497
3498 /* Update key for inline backref */
3499 iref = (struct btrfs_extent_inline_ref *)
3500 ((unsigned long)iter->cur_ptr);
3501 type = btrfs_get_extent_inline_ref_type(eb, iref,
3502 BTRFS_REF_TYPE_BLOCK);
3503 if (type == BTRFS_REF_TYPE_INVALID) {
3504 ret = -EUCLEAN;
3505 goto out;
3506 }
3507 key.type = type;
3508 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3509 } else {
3510 key.type = iter->cur_key.type;
3511 key.offset = iter->cur_key.offset;
3512 }
3513
3514 /*
3515 * Parent node found and matches current inline ref, no need to
3516 * rebuild this node for this inline ref
3517 */
3518 if (exist &&
3519 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
3520 exist->owner == key.offset) ||
3521 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
3522 exist->bytenr == key.offset))) {
3523 exist = NULL;
3524 continue;
3525 }
3526
3527 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3528 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3529 ret = handle_direct_tree_backref(cache, &key, cur);
3530 if (ret < 0)
3531 goto out;
3532 } else if (key.type == BTRFS_TREE_BLOCK_REF_KEY) {
3533 /*
3534 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref
3535 * offset means the root objectid. We need to search
3536 * the tree to get its parent bytenr.
3537 */
3538 ret = handle_indirect_tree_backref(trans, cache, path,
3539 &key, node_key, cur);
3540 if (ret < 0)
3541 goto out;
3542 }
3543 /*
3544 * Unrecognized tree backref items (if it can pass tree-checker)
3545 * would be ignored.
3546 */
3547 }
3548 ret = 0;
3549 cur->checked = 1;
3550 WARN_ON(exist);
3551 out:
3552 btrfs_backref_iter_release(iter);
3553 return ret;
3554 }
3555
3556 /*
3557 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3558 */
btrfs_backref_finish_upper_links(struct btrfs_backref_cache * cache,struct btrfs_backref_node * start)3559 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3560 struct btrfs_backref_node *start)
3561 {
3562 struct list_head *useless_node = &cache->useless_node;
3563 struct btrfs_backref_edge *edge;
3564 struct rb_node *rb_node;
3565 LIST_HEAD(pending_edge);
3566
3567 ASSERT(start->checked);
3568
3569 rb_node = rb_simple_insert(&cache->rb_root, &start->simple_node);
3570 if (rb_node)
3571 btrfs_backref_panic(cache->fs_info, start->bytenr, -EEXIST);
3572
3573 /*
3574 * Use breadth first search to iterate all related edges.
3575 *
3576 * The starting points are all the edges of this node
3577 */
3578 list_for_each_entry(edge, &start->upper, list[LOWER])
3579 list_add_tail(&edge->list[UPPER], &pending_edge);
3580
3581 while (!list_empty(&pending_edge)) {
3582 struct btrfs_backref_node *upper;
3583 struct btrfs_backref_node *lower;
3584
3585 edge = list_first_entry(&pending_edge,
3586 struct btrfs_backref_edge, list[UPPER]);
3587 list_del_init(&edge->list[UPPER]);
3588 upper = edge->node[UPPER];
3589 lower = edge->node[LOWER];
3590
3591 /* Parent is detached, no need to keep any edges */
3592 if (upper->detached) {
3593 list_del(&edge->list[LOWER]);
3594 btrfs_backref_free_edge(cache, edge);
3595
3596 /* Lower node is orphan, queue for cleanup */
3597 if (list_empty(&lower->upper))
3598 list_add(&lower->list, useless_node);
3599 continue;
3600 }
3601
3602 /*
3603 * All new nodes added in current build_backref_tree() haven't
3604 * been linked to the cache rb tree.
3605 * So if we have upper->rb_node populated, this means a cache
3606 * hit. We only need to link the edge, as @upper and all its
3607 * parents have already been linked.
3608 */
3609 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3610 list_add_tail(&edge->list[UPPER], &upper->lower);
3611 continue;
3612 }
3613
3614 /* Sanity check, we shouldn't have any unchecked nodes */
3615 if (!upper->checked) {
3616 DEBUG_WARN("we should not have any unchecked nodes");
3617 return -EUCLEAN;
3618 }
3619
3620 rb_node = rb_simple_insert(&cache->rb_root, &upper->simple_node);
3621 if (unlikely(rb_node)) {
3622 btrfs_backref_panic(cache->fs_info, upper->bytenr, -EEXIST);
3623 return -EUCLEAN;
3624 }
3625
3626 list_add_tail(&edge->list[UPPER], &upper->lower);
3627
3628 /*
3629 * Also queue all the parent edges of this uncached node
3630 * to finish the upper linkage
3631 */
3632 list_for_each_entry(edge, &upper->upper, list[LOWER])
3633 list_add_tail(&edge->list[UPPER], &pending_edge);
3634 }
3635 return 0;
3636 }
3637
btrfs_backref_error_cleanup(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node)3638 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3639 struct btrfs_backref_node *node)
3640 {
3641 struct btrfs_backref_node *lower;
3642 struct btrfs_backref_node *upper;
3643 struct btrfs_backref_edge *edge;
3644
3645 while (!list_empty(&cache->useless_node)) {
3646 lower = list_first_entry(&cache->useless_node,
3647 struct btrfs_backref_node, list);
3648 list_del_init(&lower->list);
3649 }
3650 while (!list_empty(&cache->pending_edge)) {
3651 edge = list_first_entry(&cache->pending_edge,
3652 struct btrfs_backref_edge, list[UPPER]);
3653 list_del(&edge->list[UPPER]);
3654 list_del(&edge->list[LOWER]);
3655 lower = edge->node[LOWER];
3656 upper = edge->node[UPPER];
3657 btrfs_backref_free_edge(cache, edge);
3658
3659 /*
3660 * Lower is no longer linked to any upper backref nodes and
3661 * isn't in the cache, we can free it ourselves.
3662 */
3663 if (list_empty(&lower->upper) &&
3664 RB_EMPTY_NODE(&lower->rb_node))
3665 list_add(&lower->list, &cache->useless_node);
3666
3667 if (!RB_EMPTY_NODE(&upper->rb_node))
3668 continue;
3669
3670 /* Add this guy's upper edges to the list to process */
3671 list_for_each_entry(edge, &upper->upper, list[LOWER])
3672 list_add_tail(&edge->list[UPPER],
3673 &cache->pending_edge);
3674 if (list_empty(&upper->upper))
3675 list_add(&upper->list, &cache->useless_node);
3676 }
3677
3678 while (!list_empty(&cache->useless_node)) {
3679 lower = list_first_entry(&cache->useless_node,
3680 struct btrfs_backref_node, list);
3681 list_del_init(&lower->list);
3682 if (lower == node)
3683 node = NULL;
3684 btrfs_backref_drop_node(cache, lower);
3685 }
3686
3687 btrfs_backref_cleanup_node(cache, node);
3688 ASSERT(list_empty(&cache->useless_node) &&
3689 list_empty(&cache->pending_edge));
3690 }
3691