xref: /qemu/target/arm/tcg/mve_helper.c (revision 84307cd6027c4602913177ff09aeefa4743b7234)
1 /*
2  * M-profile MVE Operations
3  *
4  * Copyright (c) 2021 Linaro, Ltd.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "accel/tcg/cpu-ldst.h"
26 #include "tcg/tcg.h"
27 #include "fpu/softfloat.h"
28 #include "crypto/clmul.h"
29 
mve_eci_mask(CPUARMState * env)30 static uint16_t mve_eci_mask(CPUARMState *env)
31 {
32     /*
33      * Return the mask of which elements in the MVE vector correspond
34      * to beats being executed. The mask has 1 bits for executed lanes
35      * and 0 bits where ECI says this beat was already executed.
36      */
37     int eci;
38 
39     if ((env->condexec_bits & 0xf) != 0) {
40         return 0xffff;
41     }
42 
43     eci = env->condexec_bits >> 4;
44     switch (eci) {
45     case ECI_NONE:
46         return 0xffff;
47     case ECI_A0:
48         return 0xfff0;
49     case ECI_A0A1:
50         return 0xff00;
51     case ECI_A0A1A2:
52     case ECI_A0A1A2B0:
53         return 0xf000;
54     default:
55         g_assert_not_reached();
56     }
57 }
58 
mve_element_mask(CPUARMState * env)59 static uint16_t mve_element_mask(CPUARMState *env)
60 {
61     /*
62      * Return the mask of which elements in the MVE vector should be
63      * updated. This is a combination of multiple things:
64      *  (1) by default, we update every lane in the vector
65      *  (2) VPT predication stores its state in the VPR register;
66      *  (3) low-overhead-branch tail predication will mask out part
67      *      the vector on the final iteration of the loop
68      *  (4) if EPSR.ECI is set then we must execute only some beats
69      *      of the insn
70      * We combine all these into a 16-bit result with the same semantics
71      * as VPR.P0: 0 to mask the lane, 1 if it is active.
72      * 8-bit vector ops will look at all bits of the result;
73      * 16-bit ops will look at bits 0, 2, 4, ...;
74      * 32-bit ops will look at bits 0, 4, 8 and 12.
75      * Compare pseudocode GetCurInstrBeat(), though that only returns
76      * the 4-bit slice of the mask corresponding to a single beat.
77      */
78     uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
79 
80     if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
81         mask |= 0xff;
82     }
83     if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
84         mask |= 0xff00;
85     }
86 
87     if (env->v7m.ltpsize < 4 &&
88         env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
89         /*
90          * Tail predication active, and this is the last loop iteration.
91          * The element size is (1 << ltpsize), and we only want to process
92          * loopcount elements, so we want to retain the least significant
93          * (loopcount * esize) predicate bits and zero out bits above that.
94          */
95         int masklen = env->regs[14] << env->v7m.ltpsize;
96         assert(masklen <= 16);
97         uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
98         mask &= ltpmask;
99     }
100 
101     /*
102      * ECI bits indicate which beats are already executed;
103      * we handle this by effectively predicating them out.
104      */
105     mask &= mve_eci_mask(env);
106     return mask;
107 }
108 
mve_advance_vpt(CPUARMState * env)109 static void mve_advance_vpt(CPUARMState *env)
110 {
111     /* Advance the VPT and ECI state if necessary */
112     uint32_t vpr = env->v7m.vpr;
113     unsigned mask01, mask23;
114     uint16_t inv_mask;
115     uint16_t eci_mask = mve_eci_mask(env);
116 
117     if ((env->condexec_bits & 0xf) == 0) {
118         env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
119             (ECI_A0 << 4) : (ECI_NONE << 4);
120     }
121 
122     if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
123         /* VPT not enabled, nothing to do */
124         return;
125     }
126 
127     /* Invert P0 bits if needed, but only for beats we actually executed */
128     mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
129     mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
130     /* Start by assuming we invert all bits corresponding to executed beats */
131     inv_mask = eci_mask;
132     if (mask01 <= 8) {
133         /* MASK01 says don't invert low half of P0 */
134         inv_mask &= ~0xff;
135     }
136     if (mask23 <= 8) {
137         /* MASK23 says don't invert high half of P0 */
138         inv_mask &= ~0xff00;
139     }
140     vpr ^= inv_mask;
141     /* Only update MASK01 if beat 1 executed */
142     if (eci_mask & 0xf0) {
143         vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
144     }
145     /* Beat 3 always executes, so update MASK23 */
146     vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
147     env->v7m.vpr = vpr;
148 }
149 
150 /* For loads, predicated lanes are zeroed instead of keeping their old values */
151 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
152     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
153     {                                                                   \
154         TYPE *d = vd;                                                   \
155         uint16_t mask = mve_element_mask(env);                          \
156         uint16_t eci_mask = mve_eci_mask(env);                          \
157         unsigned b, e;                                                  \
158         /*                                                              \
159          * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
160          * beats so we don't care if we update part of the dest and     \
161          * then take an exception.                                      \
162          */                                                             \
163         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
164             if (eci_mask & (1 << b)) {                                  \
165                 d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
166                     cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
167             }                                                           \
168             addr += MSIZE;                                              \
169         }                                                               \
170         mve_advance_vpt(env);                                           \
171     }
172 
173 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
174     void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
175     {                                                                   \
176         TYPE *d = vd;                                                   \
177         uint16_t mask = mve_element_mask(env);                          \
178         unsigned b, e;                                                  \
179         for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
180             if (mask & (1 << b)) {                                      \
181                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
182             }                                                           \
183             addr += MSIZE;                                              \
184         }                                                               \
185         mve_advance_vpt(env);                                           \
186     }
187 
188 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
189 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
190 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
191 
192 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
193 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
194 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
195 
196 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
197 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
198 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
199 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
200 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
201 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
202 
203 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
204 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
205 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
206 
207 #undef DO_VLDR
208 #undef DO_VSTR
209 
210 /*
211  * Gather loads/scatter stores. Here each element of Qm specifies
212  * an offset to use from the base register Rm. In the _os_ versions
213  * that offset is scaled by the element size.
214  * For loads, predicated lanes are zeroed instead of retaining
215  * their previous values.
216  */
217 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
218     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
219                           uint32_t base)                                \
220     {                                                                   \
221         TYPE *d = vd;                                                   \
222         OFFTYPE *m = vm;                                                \
223         uint16_t mask = mve_element_mask(env);                          \
224         uint16_t eci_mask = mve_eci_mask(env);                          \
225         unsigned e;                                                     \
226         uint32_t addr;                                                  \
227         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
228             if (!(eci_mask & 1)) {                                      \
229                 continue;                                               \
230             }                                                           \
231             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
232             d[H##ESIZE(e)] = (mask & 1) ?                               \
233                 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
234             if (WB) {                                                   \
235                 m[H##ESIZE(e)] = addr;                                  \
236             }                                                           \
237         }                                                               \
238         mve_advance_vpt(env);                                           \
239     }
240 
241 /* We know here TYPE is unsigned so always the same as the offset type */
242 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
243     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
244                           uint32_t base)                                \
245     {                                                                   \
246         TYPE *d = vd;                                                   \
247         TYPE *m = vm;                                                   \
248         uint16_t mask = mve_element_mask(env);                          \
249         uint16_t eci_mask = mve_eci_mask(env);                          \
250         unsigned e;                                                     \
251         uint32_t addr;                                                  \
252         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
253             if (!(eci_mask & 1)) {                                      \
254                 continue;                                               \
255             }                                                           \
256             addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
257             if (mask & 1) {                                             \
258                 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
259             }                                                           \
260             if (WB) {                                                   \
261                 m[H##ESIZE(e)] = addr;                                  \
262             }                                                           \
263         }                                                               \
264         mve_advance_vpt(env);                                           \
265     }
266 
267 /*
268  * 64-bit accesses are slightly different: they are done as two 32-bit
269  * accesses, controlled by the predicate mask for the relevant beat,
270  * and with a single 32-bit offset in the first of the two Qm elements.
271  * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
272  * Address writeback happens on the odd beats and updates the address
273  * stored in the even-beat element.
274  */
275 #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
276     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
277                           uint32_t base)                                \
278     {                                                                   \
279         uint32_t *d = vd;                                               \
280         uint32_t *m = vm;                                               \
281         uint16_t mask = mve_element_mask(env);                          \
282         uint16_t eci_mask = mve_eci_mask(env);                          \
283         unsigned e;                                                     \
284         uint32_t addr;                                                  \
285         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
286             if (!(eci_mask & 1)) {                                      \
287                 continue;                                               \
288             }                                                           \
289             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
290             addr += 4 * (e & 1);                                        \
291             d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
292             if (WB && (e & 1)) {                                        \
293                 m[H4(e & ~1)] = addr - 4;                               \
294             }                                                           \
295         }                                                               \
296         mve_advance_vpt(env);                                           \
297     }
298 
299 #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
300     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
301                           uint32_t base)                                \
302     {                                                                   \
303         uint32_t *d = vd;                                               \
304         uint32_t *m = vm;                                               \
305         uint16_t mask = mve_element_mask(env);                          \
306         uint16_t eci_mask = mve_eci_mask(env);                          \
307         unsigned e;                                                     \
308         uint32_t addr;                                                  \
309         for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
310             if (!(eci_mask & 1)) {                                      \
311                 continue;                                               \
312             }                                                           \
313             addr = ADDRFN(base, m[H4(e & ~1)]);                         \
314             addr += 4 * (e & 1);                                        \
315             if (mask & 1) {                                             \
316                 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
317             }                                                           \
318             if (WB && (e & 1)) {                                        \
319                 m[H4(e & ~1)] = addr - 4;                               \
320             }                                                           \
321         }                                                               \
322         mve_advance_vpt(env);                                           \
323     }
324 
325 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
326 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
327 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
328 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
329 
330 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
331 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
332 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
333 
334 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
335 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
336 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
337 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
338 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
339 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
DO_VLDR64_SG(vldrd_sg_ud,ADDR_ADD,false)340 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
341 
342 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
343 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
344 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
345 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
346 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
347 
348 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
349 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
350 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
351 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
352 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
353 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
354 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
355 
356 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
357 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
358 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
359 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
360 
361 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
362 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
363 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
364 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
365 
366 /*
367  * Deinterleaving loads/interleaving stores.
368  *
369  * For these helpers we are passed the index of the first Qreg
370  * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
371  * and the value of the base address register Rn.
372  * The helpers are specialized for pattern and element size, so
373  * for instance vld42h is VLD4 with pattern 2, element size MO_16.
374  *
375  * These insns are beatwise but not predicated, so we must honour ECI,
376  * but need not look at mve_element_mask().
377  *
378  * The pseudocode implements these insns with multiple memory accesses
379  * of the element size, but rules R_VVVG and R_FXDM permit us to make
380  * one 32-bit memory access per beat.
381  */
382 #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
383     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
384                           uint32_t base)                                \
385     {                                                                   \
386         int beat, e;                                                    \
387         uint16_t mask = mve_eci_mask(env);                              \
388         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
389         uint32_t addr, data;                                            \
390         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
391             if ((mask & 1) == 0) {                                      \
392                 /* ECI says skip this beat */                           \
393                 continue;                                               \
394             }                                                           \
395             addr = base + off[beat] * 4;                                \
396             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
397             for (e = 0; e < 4; e++, data >>= 8) {                       \
398                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
399                 qd[H1(off[beat])] = data;                               \
400             }                                                           \
401         }                                                               \
402     }
403 
404 #define DO_VLD4H(OP, O1, O2)                                            \
405     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
406                           uint32_t base)                                \
407     {                                                                   \
408         int beat;                                                       \
409         uint16_t mask = mve_eci_mask(env);                              \
410         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
411         uint32_t addr, data;                                            \
412         int y; /* y counts 0 2 0 2 */                                   \
413         uint16_t *qd;                                                   \
414         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
415             if ((mask & 1) == 0) {                                      \
416                 /* ECI says skip this beat */                           \
417                 continue;                                               \
418             }                                                           \
419             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
420             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
421             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
422             qd[H2(off[beat])] = data;                                   \
423             data >>= 16;                                                \
424             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
425             qd[H2(off[beat])] = data;                                   \
426         }                                                               \
427     }
428 
429 #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
430     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
431                           uint32_t base)                                \
432     {                                                                   \
433         int beat;                                                       \
434         uint16_t mask = mve_eci_mask(env);                              \
435         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
436         uint32_t addr, data;                                            \
437         uint32_t *qd;                                                   \
438         int y;                                                          \
439         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
440             if ((mask & 1) == 0) {                                      \
441                 /* ECI says skip this beat */                           \
442                 continue;                                               \
443             }                                                           \
444             addr = base + off[beat] * 4;                                \
445             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
446             y = (beat + (O1 & 2)) & 3;                                  \
447             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
448             qd[H4(off[beat] >> 2)] = data;                              \
449         }                                                               \
450     }
451 
452 DO_VLD4B(vld40b, 0, 1, 10, 11)
453 DO_VLD4B(vld41b, 2, 3, 12, 13)
454 DO_VLD4B(vld42b, 4, 5, 14, 15)
455 DO_VLD4B(vld43b, 6, 7, 8, 9)
456 
457 DO_VLD4H(vld40h, 0, 5)
458 DO_VLD4H(vld41h, 1, 6)
459 DO_VLD4H(vld42h, 2, 7)
460 DO_VLD4H(vld43h, 3, 4)
461 
462 DO_VLD4W(vld40w, 0, 1, 10, 11)
463 DO_VLD4W(vld41w, 2, 3, 12, 13)
464 DO_VLD4W(vld42w, 4, 5, 14, 15)
465 DO_VLD4W(vld43w, 6, 7, 8, 9)
466 
467 #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
468     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
469                           uint32_t base)                                \
470     {                                                                   \
471         int beat, e;                                                    \
472         uint16_t mask = mve_eci_mask(env);                              \
473         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
474         uint32_t addr, data;                                            \
475         uint8_t *qd;                                                    \
476         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
477             if ((mask & 1) == 0) {                                      \
478                 /* ECI says skip this beat */                           \
479                 continue;                                               \
480             }                                                           \
481             addr = base + off[beat] * 2;                                \
482             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
483             for (e = 0; e < 4; e++, data >>= 8) {                       \
484                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
485                 qd[H1(off[beat] + (e >> 1))] = data;                    \
486             }                                                           \
487         }                                                               \
488     }
489 
490 #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
491     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
492                           uint32_t base)                                \
493     {                                                                   \
494         int beat;                                                       \
495         uint16_t mask = mve_eci_mask(env);                              \
496         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
497         uint32_t addr, data;                                            \
498         int e;                                                          \
499         uint16_t *qd;                                                   \
500         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
501             if ((mask & 1) == 0) {                                      \
502                 /* ECI says skip this beat */                           \
503                 continue;                                               \
504             }                                                           \
505             addr = base + off[beat] * 4;                                \
506             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
507             for (e = 0; e < 2; e++, data >>= 16) {                      \
508                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
509                 qd[H2(off[beat])] = data;                               \
510             }                                                           \
511         }                                                               \
512     }
513 
514 #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
515     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
516                           uint32_t base)                                \
517     {                                                                   \
518         int beat;                                                       \
519         uint16_t mask = mve_eci_mask(env);                              \
520         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
521         uint32_t addr, data;                                            \
522         uint32_t *qd;                                                   \
523         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
524             if ((mask & 1) == 0) {                                      \
525                 /* ECI says skip this beat */                           \
526                 continue;                                               \
527             }                                                           \
528             addr = base + off[beat];                                    \
529             data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
530             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
531             qd[H4(off[beat] >> 3)] = data;                              \
532         }                                                               \
533     }
534 
535 DO_VLD2B(vld20b, 0, 2, 12, 14)
536 DO_VLD2B(vld21b, 4, 6, 8, 10)
537 
538 DO_VLD2H(vld20h, 0, 1, 6, 7)
539 DO_VLD2H(vld21h, 2, 3, 4, 5)
540 
541 DO_VLD2W(vld20w, 0, 4, 24, 28)
542 DO_VLD2W(vld21w, 8, 12, 16, 20)
543 
544 #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
545     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
546                           uint32_t base)                                \
547     {                                                                   \
548         int beat, e;                                                    \
549         uint16_t mask = mve_eci_mask(env);                              \
550         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
551         uint32_t addr, data;                                            \
552         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
553             if ((mask & 1) == 0) {                                      \
554                 /* ECI says skip this beat */                           \
555                 continue;                                               \
556             }                                                           \
557             addr = base + off[beat] * 4;                                \
558             data = 0;                                                   \
559             for (e = 3; e >= 0; e--) {                                  \
560                 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
561                 data = (data << 8) | qd[H1(off[beat])];                 \
562             }                                                           \
563             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
564         }                                                               \
565     }
566 
567 #define DO_VST4H(OP, O1, O2)                                            \
568     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
569                           uint32_t base)                                \
570     {                                                                   \
571         int beat;                                                       \
572         uint16_t mask = mve_eci_mask(env);                              \
573         static const uint8_t off[4] = { O1, O1, O2, O2 };               \
574         uint32_t addr, data;                                            \
575         int y; /* y counts 0 2 0 2 */                                   \
576         uint16_t *qd;                                                   \
577         for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
578             if ((mask & 1) == 0) {                                      \
579                 /* ECI says skip this beat */                           \
580                 continue;                                               \
581             }                                                           \
582             addr = base + off[beat] * 8 + (beat & 1) * 4;               \
583             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
584             data = qd[H2(off[beat])];                                   \
585             qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
586             data |= qd[H2(off[beat])] << 16;                            \
587             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
588         }                                                               \
589     }
590 
591 #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
592     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
593                           uint32_t base)                                \
594     {                                                                   \
595         int beat;                                                       \
596         uint16_t mask = mve_eci_mask(env);                              \
597         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
598         uint32_t addr, data;                                            \
599         uint32_t *qd;                                                   \
600         int y;                                                          \
601         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
602             if ((mask & 1) == 0) {                                      \
603                 /* ECI says skip this beat */                           \
604                 continue;                                               \
605             }                                                           \
606             addr = base + off[beat] * 4;                                \
607             y = (beat + (O1 & 2)) & 3;                                  \
608             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
609             data = qd[H4(off[beat] >> 2)];                              \
610             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
611         }                                                               \
612     }
613 
614 DO_VST4B(vst40b, 0, 1, 10, 11)
615 DO_VST4B(vst41b, 2, 3, 12, 13)
616 DO_VST4B(vst42b, 4, 5, 14, 15)
617 DO_VST4B(vst43b, 6, 7, 8, 9)
618 
619 DO_VST4H(vst40h, 0, 5)
620 DO_VST4H(vst41h, 1, 6)
621 DO_VST4H(vst42h, 2, 7)
622 DO_VST4H(vst43h, 3, 4)
623 
624 DO_VST4W(vst40w, 0, 1, 10, 11)
625 DO_VST4W(vst41w, 2, 3, 12, 13)
626 DO_VST4W(vst42w, 4, 5, 14, 15)
627 DO_VST4W(vst43w, 6, 7, 8, 9)
628 
629 #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
630     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
631                           uint32_t base)                                \
632     {                                                                   \
633         int beat, e;                                                    \
634         uint16_t mask = mve_eci_mask(env);                              \
635         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
636         uint32_t addr, data;                                            \
637         uint8_t *qd;                                                    \
638         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
639             if ((mask & 1) == 0) {                                      \
640                 /* ECI says skip this beat */                           \
641                 continue;                                               \
642             }                                                           \
643             addr = base + off[beat] * 2;                                \
644             data = 0;                                                   \
645             for (e = 3; e >= 0; e--) {                                  \
646                 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
647                 data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
648             }                                                           \
649             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
650         }                                                               \
651     }
652 
653 #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
654     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
655                           uint32_t base)                                \
656     {                                                                   \
657         int beat;                                                       \
658         uint16_t mask = mve_eci_mask(env);                              \
659         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
660         uint32_t addr, data;                                            \
661         int e;                                                          \
662         uint16_t *qd;                                                   \
663         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
664             if ((mask & 1) == 0) {                                      \
665                 /* ECI says skip this beat */                           \
666                 continue;                                               \
667             }                                                           \
668             addr = base + off[beat] * 4;                                \
669             data = 0;                                                   \
670             for (e = 1; e >= 0; e--) {                                  \
671                 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
672                 data = (data << 16) | qd[H2(off[beat])];                \
673             }                                                           \
674             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
675         }                                                               \
676     }
677 
678 #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
679     void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
680                           uint32_t base)                                \
681     {                                                                   \
682         int beat;                                                       \
683         uint16_t mask = mve_eci_mask(env);                              \
684         static const uint8_t off[4] = { O1, O2, O3, O4 };               \
685         uint32_t addr, data;                                            \
686         uint32_t *qd;                                                   \
687         for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
688             if ((mask & 1) == 0) {                                      \
689                 /* ECI says skip this beat */                           \
690                 continue;                                               \
691             }                                                           \
692             addr = base + off[beat];                                    \
693             qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
694             data = qd[H4(off[beat] >> 3)];                              \
695             cpu_stl_le_data_ra(env, addr, data, GETPC());               \
696         }                                                               \
697     }
698 
699 DO_VST2B(vst20b, 0, 2, 12, 14)
700 DO_VST2B(vst21b, 4, 6, 8, 10)
701 
702 DO_VST2H(vst20h, 0, 1, 6, 7)
703 DO_VST2H(vst21h, 2, 3, 4, 5)
704 
705 DO_VST2W(vst20w, 0, 4, 24, 28)
706 DO_VST2W(vst21w, 8, 12, 16, 20)
707 
708 /*
709  * The mergemask(D, R, M) macro performs the operation "*D = R" but
710  * storing only the bytes which correspond to 1 bits in M,
711  * leaving other bytes in *D unchanged. We use _Generic
712  * to select the correct implementation based on the type of D.
713  */
714 
715 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
716 {
717     if (mask & 1) {
718         *d = r;
719     }
720 }
721 
mergemask_sb(int8_t * d,int8_t r,uint16_t mask)722 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
723 {
724     mergemask_ub((uint8_t *)d, r, mask);
725 }
726 
mergemask_uh(uint16_t * d,uint16_t r,uint16_t mask)727 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
728 {
729     uint16_t bmask = expand_pred_b(mask);
730     *d = (*d & ~bmask) | (r & bmask);
731 }
732 
mergemask_sh(int16_t * d,int16_t r,uint16_t mask)733 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
734 {
735     mergemask_uh((uint16_t *)d, r, mask);
736 }
737 
mergemask_uw(uint32_t * d,uint32_t r,uint16_t mask)738 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
739 {
740     uint32_t bmask = expand_pred_b(mask);
741     *d = (*d & ~bmask) | (r & bmask);
742 }
743 
mergemask_sw(int32_t * d,int32_t r,uint16_t mask)744 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
745 {
746     mergemask_uw((uint32_t *)d, r, mask);
747 }
748 
mergemask_uq(uint64_t * d,uint64_t r,uint16_t mask)749 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
750 {
751     uint64_t bmask = expand_pred_b(mask);
752     *d = (*d & ~bmask) | (r & bmask);
753 }
754 
mergemask_sq(int64_t * d,int64_t r,uint16_t mask)755 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
756 {
757     mergemask_uq((uint64_t *)d, r, mask);
758 }
759 
760 #define mergemask(D, R, M)                      \
761     _Generic(D,                                 \
762              uint8_t *: mergemask_ub,           \
763              int8_t *:  mergemask_sb,           \
764              uint16_t *: mergemask_uh,          \
765              int16_t *:  mergemask_sh,          \
766              uint32_t *: mergemask_uw,          \
767              int32_t *:  mergemask_sw,          \
768              uint64_t *: mergemask_uq,          \
769              int64_t *:  mergemask_sq)(D, R, M)
770 
HELPER(mve_vdup)771 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
772 {
773     /*
774      * The generated code already replicated an 8 or 16 bit constant
775      * into the 32-bit value, so we only need to write the 32-bit
776      * value to all elements of the Qreg, allowing for predication.
777      */
778     uint32_t *d = vd;
779     uint16_t mask = mve_element_mask(env);
780     unsigned e;
781     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
782         mergemask(&d[H4(e)], val, mask);
783     }
784     mve_advance_vpt(env);
785 }
786 
787 #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
788     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
789     {                                                                   \
790         TYPE *d = vd, *m = vm;                                          \
791         uint16_t mask = mve_element_mask(env);                          \
792         unsigned e;                                                     \
793         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
794             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
795         }                                                               \
796         mve_advance_vpt(env);                                           \
797     }
798 
799 #define DO_CLS_B(N)   (clrsb32(N) - 24)
800 #define DO_CLS_H(N)   (clrsb32(N) - 16)
801 
802 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
803 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
804 DO_1OP(vclsw, 4, int32_t, clrsb32)
805 
806 #define DO_CLZ_B(N)   (clz32(N) - 24)
807 #define DO_CLZ_H(N)   (clz32(N) - 16)
808 
809 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
810 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
811 DO_1OP(vclzw, 4, uint32_t, clz32)
812 
813 DO_1OP(vrev16b, 2, uint16_t, bswap16)
814 DO_1OP(vrev32b, 4, uint32_t, bswap32)
815 DO_1OP(vrev32h, 4, uint32_t, hswap32)
816 DO_1OP(vrev64b, 8, uint64_t, bswap64)
817 DO_1OP(vrev64h, 8, uint64_t, hswap64)
818 DO_1OP(vrev64w, 8, uint64_t, wswap64)
819 
820 #define DO_NOT(N) (~(N))
821 
822 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
823 
824 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
825 #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
826 #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
827 
828 DO_1OP(vabsb, 1, int8_t, DO_ABS)
829 DO_1OP(vabsh, 2, int16_t, DO_ABS)
830 DO_1OP(vabsw, 4, int32_t, DO_ABS)
831 
832 /* We can do these 64 bits at a time */
833 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
834 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
835 
836 #define DO_NEG(N)    (-(N))
837 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
838 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
839 
840 DO_1OP(vnegb, 1, int8_t, DO_NEG)
841 DO_1OP(vnegh, 2, int16_t, DO_NEG)
842 DO_1OP(vnegw, 4, int32_t, DO_NEG)
843 
844 /* We can do these 64 bits at a time */
845 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
846 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
847 
848 /*
849  * 1 operand immediates: Vda is destination and possibly also one source.
850  * All these insns work at 64-bit widths.
851  */
852 #define DO_1OP_IMM(OP, FN)                                              \
853     void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
854     {                                                                   \
855         uint64_t *da = vda;                                             \
856         uint16_t mask = mve_element_mask(env);                          \
857         unsigned e;                                                     \
858         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
859             mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
860         }                                                               \
861         mve_advance_vpt(env);                                           \
862     }
863 
864 #define DO_MOVI(N, I) (I)
865 #define DO_ANDI(N, I) ((N) & (I))
866 #define DO_ORRI(N, I) ((N) | (I))
867 
DO_1OP_IMM(vmovi,DO_MOVI)868 DO_1OP_IMM(vmovi, DO_MOVI)
869 DO_1OP_IMM(vandi, DO_ANDI)
870 DO_1OP_IMM(vorri, DO_ORRI)
871 
872 #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
873     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
874                                 void *vd, void *vn, void *vm)           \
875     {                                                                   \
876         TYPE *d = vd, *n = vn, *m = vm;                                 \
877         uint16_t mask = mve_element_mask(env);                          \
878         unsigned e;                                                     \
879         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
880             mergemask(&d[H##ESIZE(e)],                                  \
881                       FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
882         }                                                               \
883         mve_advance_vpt(env);                                           \
884     }
885 
886 /* provide unsigned 2-op helpers for all sizes */
887 #define DO_2OP_U(OP, FN)                        \
888     DO_2OP(OP##b, 1, uint8_t, FN)               \
889     DO_2OP(OP##h, 2, uint16_t, FN)              \
890     DO_2OP(OP##w, 4, uint32_t, FN)
891 
892 /* provide signed 2-op helpers for all sizes */
893 #define DO_2OP_S(OP, FN)                        \
894     DO_2OP(OP##b, 1, int8_t, FN)                \
895     DO_2OP(OP##h, 2, int16_t, FN)               \
896     DO_2OP(OP##w, 4, int32_t, FN)
897 
898 /*
899  * "Long" operations where two half-sized inputs (taken from either the
900  * top or the bottom of the input vector) produce a double-width result.
901  * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
902  */
903 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
904     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
905     {                                                                   \
906         LTYPE *d = vd;                                                  \
907         TYPE *n = vn, *m = vm;                                          \
908         uint16_t mask = mve_element_mask(env);                          \
909         unsigned le;                                                    \
910         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
911             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
912                          m[H##ESIZE(le * 2 + TOP)]);                    \
913             mergemask(&d[H##LESIZE(le)], r, mask);                      \
914         }                                                               \
915         mve_advance_vpt(env);                                           \
916     }
917 
918 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
919     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
920     {                                                                   \
921         TYPE *d = vd, *n = vn, *m = vm;                                 \
922         uint16_t mask = mve_element_mask(env);                          \
923         unsigned e;                                                     \
924         bool qc = false;                                                \
925         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
926             bool sat = false;                                           \
927             TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);         \
928             mergemask(&d[H##ESIZE(e)], r_, mask);                       \
929             qc |= sat & mask & 1;                                       \
930         }                                                               \
931         if (qc) {                                                       \
932             env->vfp.qc[0] = qc;                                        \
933         }                                                               \
934         mve_advance_vpt(env);                                           \
935     }
936 
937 /* provide unsigned 2-op helpers for all sizes */
938 #define DO_2OP_SAT_U(OP, FN)                    \
939     DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
940     DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
941     DO_2OP_SAT(OP##w, 4, uint32_t, FN)
942 
943 /* provide signed 2-op helpers for all sizes */
944 #define DO_2OP_SAT_S(OP, FN)                    \
945     DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
946     DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
947     DO_2OP_SAT(OP##w, 4, int32_t, FN)
948 
949 #define DO_AND(N, M)  ((N) & (M))
950 #define DO_BIC(N, M)  ((N) & ~(M))
951 #define DO_ORR(N, M)  ((N) | (M))
952 #define DO_ORN(N, M)  ((N) | ~(M))
953 #define DO_EOR(N, M)  ((N) ^ (M))
954 
955 DO_2OP(vand, 8, uint64_t, DO_AND)
956 DO_2OP(vbic, 8, uint64_t, DO_BIC)
957 DO_2OP(vorr, 8, uint64_t, DO_ORR)
958 DO_2OP(vorn, 8, uint64_t, DO_ORN)
959 DO_2OP(veor, 8, uint64_t, DO_EOR)
960 
961 #define DO_ADD(N, M) ((N) + (M))
962 #define DO_SUB(N, M) ((N) - (M))
963 #define DO_MUL(N, M) ((N) * (M))
964 
965 DO_2OP_U(vadd, DO_ADD)
966 DO_2OP_U(vsub, DO_SUB)
967 DO_2OP_U(vmul, DO_MUL)
968 
969 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
970 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
971 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
972 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
973 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
974 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
975 
976 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
977 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
978 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
979 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
980 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
981 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
982 
983 /*
984  * Polynomial multiply. We can always do this generating 64 bits
985  * of the result at a time, so we don't need to use DO_2OP_L.
986  */
987 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
988 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
989 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
990 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
991 
992 /*
993  * Because the computation type is at least twice as large as required,
994  * these work for both signed and unsigned source types.
995  */
996 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
997 {
998     return (n * m) >> 8;
999 }
1000 
do_mulh_h(int32_t n,int32_t m)1001 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1002 {
1003     return (n * m) >> 16;
1004 }
1005 
do_mulh_w(int64_t n,int64_t m)1006 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1007 {
1008     return (n * m) >> 32;
1009 }
1010 
do_rmulh_b(int32_t n,int32_t m)1011 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1012 {
1013     return (n * m + (1U << 7)) >> 8;
1014 }
1015 
do_rmulh_h(int32_t n,int32_t m)1016 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1017 {
1018     return (n * m + (1U << 15)) >> 16;
1019 }
1020 
do_rmulh_w(int64_t n,int64_t m)1021 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1022 {
1023     return (n * m + (1U << 31)) >> 32;
1024 }
1025 
1026 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1027 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1028 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1029 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1030 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1031 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1032 
1033 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1034 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1035 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1036 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1037 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1038 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1039 
1040 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1041 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1042 
DO_2OP_S(vmaxs,DO_MAX)1043 DO_2OP_S(vmaxs, DO_MAX)
1044 DO_2OP_U(vmaxu, DO_MAX)
1045 DO_2OP_S(vmins, DO_MIN)
1046 DO_2OP_U(vminu, DO_MIN)
1047 
1048 #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1049 
1050 DO_2OP_S(vabds, DO_ABD)
1051 DO_2OP_U(vabdu, DO_ABD)
1052 
1053 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1054 {
1055     return ((uint64_t)n + m) >> 1;
1056 }
1057 
do_vhadd_s(int32_t n,int32_t m)1058 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1059 {
1060     return ((int64_t)n + m) >> 1;
1061 }
1062 
do_vhsub_u(uint32_t n,uint32_t m)1063 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1064 {
1065     return ((uint64_t)n - m) >> 1;
1066 }
1067 
do_vhsub_s(int32_t n,int32_t m)1068 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1069 {
1070     return ((int64_t)n - m) >> 1;
1071 }
1072 
DO_2OP_S(vhadds,do_vhadd_s)1073 DO_2OP_S(vhadds, do_vhadd_s)
1074 DO_2OP_U(vhaddu, do_vhadd_u)
1075 DO_2OP_S(vhsubs, do_vhsub_s)
1076 DO_2OP_U(vhsubu, do_vhsub_u)
1077 
1078 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1079 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1080 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1081 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1082 
1083 DO_2OP_S(vshls, DO_VSHLS)
1084 DO_2OP_U(vshlu, DO_VSHLU)
1085 DO_2OP_S(vrshls, DO_VRSHLS)
1086 DO_2OP_U(vrshlu, DO_VRSHLU)
1087 
1088 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1089 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1090 
1091 DO_2OP_S(vrhadds, DO_RHADD_S)
1092 DO_2OP_U(vrhaddu, DO_RHADD_U)
1093 
1094 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1095                     uint32_t inv, uint32_t carry_in, bool update_flags)
1096 {
1097     uint16_t mask = mve_element_mask(env);
1098     unsigned e;
1099 
1100     /* If any additions trigger, we will update flags. */
1101     if (mask & 0x1111) {
1102         update_flags = true;
1103     }
1104 
1105     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1106         uint64_t r = carry_in;
1107         r += n[H4(e)];
1108         r += m[H4(e)] ^ inv;
1109         if (mask & 1) {
1110             carry_in = r >> 32;
1111         }
1112         mergemask(&d[H4(e)], r, mask);
1113     }
1114 
1115     if (update_flags) {
1116         /* Store C, clear NZV. */
1117         env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1118         env->vfp.fpsr |= carry_in * FPSR_C;
1119     }
1120     mve_advance_vpt(env);
1121 }
1122 
HELPER(mve_vadc)1123 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1124 {
1125     bool carry_in = env->vfp.fpsr & FPSR_C;
1126     do_vadc(env, vd, vn, vm, 0, carry_in, false);
1127 }
1128 
HELPER(mve_vsbc)1129 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1130 {
1131     bool carry_in = env->vfp.fpsr & FPSR_C;
1132     do_vadc(env, vd, vn, vm, -1, carry_in, false);
1133 }
1134 
1135 
HELPER(mve_vadci)1136 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1137 {
1138     do_vadc(env, vd, vn, vm, 0, 0, true);
1139 }
1140 
HELPER(mve_vsbci)1141 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1142 {
1143     do_vadc(env, vd, vn, vm, -1, 1, true);
1144 }
1145 
1146 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1147     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1148     {                                                                   \
1149         TYPE *d = vd, *n = vn, *m = vm;                                 \
1150         uint16_t mask = mve_element_mask(env);                          \
1151         unsigned e;                                                     \
1152         TYPE r[16 / ESIZE];                                             \
1153         /* Calculate all results first to avoid overwriting inputs */   \
1154         for (e = 0; e < 16 / ESIZE; e++) {                              \
1155             if (!(e & 1)) {                                             \
1156                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1157             } else {                                                    \
1158                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1159             }                                                           \
1160         }                                                               \
1161         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1162             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1163         }                                                               \
1164         mve_advance_vpt(env);                                           \
1165     }
1166 
1167 #define DO_VCADD_ALL(OP, FN0, FN1)              \
1168     DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1169     DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1170     DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1171 
DO_VCADD_ALL(vcadd90,DO_SUB,DO_ADD)1172 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1173 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1174 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1175 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1176 
1177 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1178 {
1179     if (val > max) {
1180         *s = true;
1181         return max;
1182     } else if (val < min) {
1183         *s = true;
1184         return min;
1185     }
1186     return val;
1187 }
1188 
1189 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1190 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1191 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1192 
1193 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1194 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1195 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1196 
1197 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1198 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1199 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1200 
1201 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1202 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1203 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1204 
1205 /*
1206  * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1207  * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1208  */
1209 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1210                                         INT8_MIN, INT8_MAX, s)
1211 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1212                                         INT16_MIN, INT16_MAX, s)
1213 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1214                                         INT32_MIN, INT32_MAX, s)
1215 
1216 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1217                                          INT8_MIN, INT8_MAX, s)
1218 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1219                                          INT16_MIN, INT16_MAX, s)
1220 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1221                                          INT32_MIN, INT32_MAX, s)
1222 
1223 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1224 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1225 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1226 
1227 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1228 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1229 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1230 
1231 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1232 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1233 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1234 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1235 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1236 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1237 
1238 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1239 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1240 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1241 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1242 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1243 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1244 
1245 /*
1246  * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1247  * and friends wanting a uint32_t* sat and our needing a bool*.
1248  */
1249 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1250     ({                                                                  \
1251         uint32_t su32 = 0;                                              \
1252         typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1253         if (su32) {                                                     \
1254             *satp = true;                                               \
1255         }                                                               \
1256         qrshl_ret;                                                      \
1257     })
1258 
1259 #define DO_SQSHL_OP(N, M, satp) \
1260     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1261 #define DO_UQSHL_OP(N, M, satp) \
1262     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1263 #define DO_SQRSHL_OP(N, M, satp) \
1264     WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1265 #define DO_UQRSHL_OP(N, M, satp) \
1266     WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1267 #define DO_SUQSHL_OP(N, M, satp) \
1268     WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1269 
DO_2OP_SAT_S(vqshls,DO_SQSHL_OP)1270 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1271 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1272 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1273 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1274 
1275 /*
1276  * Multiply add dual returning high half
1277  * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1278  * whether to add the rounding constant, and the pointer to the
1279  * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1280  * saturate to twice the input size and return the high half; or
1281  * (A * B - C * D) etc for VQDMLSDH.
1282  */
1283 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1284     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1285                                 void *vm)                               \
1286     {                                                                   \
1287         TYPE *d = vd, *n = vn, *m = vm;                                 \
1288         uint16_t mask = mve_element_mask(env);                          \
1289         unsigned e;                                                     \
1290         bool qc = false;                                                \
1291         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1292             bool sat = false;                                           \
1293             if ((e & 1) == XCHG) {                                      \
1294                 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)],                  \
1295                             m[H##ESIZE(e - XCHG)],                      \
1296                             n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1297                             m[H##ESIZE(e + (1 - XCHG))],                \
1298                             ROUND, &sat);                               \
1299                 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask);         \
1300                 qc |= sat & mask & 1;                                   \
1301             }                                                           \
1302         }                                                               \
1303         if (qc) {                                                       \
1304             env->vfp.qc[0] = qc;                                        \
1305         }                                                               \
1306         mve_advance_vpt(env);                                           \
1307     }
1308 
1309 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1310                             int round, bool *sat)
1311 {
1312     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1313     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1314 }
1315 
do_vqdmladh_h(int16_t a,int16_t b,int16_t c,int16_t d,int round,bool * sat)1316 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1317                              int round, bool *sat)
1318 {
1319     int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1320     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1321 }
1322 
do_vqdmladh_w(int32_t a,int32_t b,int32_t c,int32_t d,int round,bool * sat)1323 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1324                              int round, bool *sat)
1325 {
1326     int64_t m1 = (int64_t)a * b;
1327     int64_t m2 = (int64_t)c * d;
1328     int64_t r;
1329     /*
1330      * Architecturally we should do the entire add, double, round
1331      * and then check for saturation. We do three saturating adds,
1332      * but we need to be careful about the order. If the first
1333      * m1 + m2 saturates then it's impossible for the *2+rc to
1334      * bring it back into the non-saturated range. However, if
1335      * m1 + m2 is negative then it's possible that doing the doubling
1336      * would take the intermediate result below INT64_MAX and the
1337      * addition of the rounding constant then brings it back in range.
1338      * So we add half the rounding constant before doubling rather
1339      * than adding the rounding constant after the doubling.
1340      */
1341     if (sadd64_overflow(m1, m2, &r) ||
1342         sadd64_overflow(r, (round << 30), &r) ||
1343         sadd64_overflow(r, r, &r)) {
1344         *sat = true;
1345         return r < 0 ? INT32_MAX : INT32_MIN;
1346     }
1347     return r >> 32;
1348 }
1349 
do_vqdmlsdh_b(int8_t a,int8_t b,int8_t c,int8_t d,int round,bool * sat)1350 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1351                             int round, bool *sat)
1352 {
1353     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1354     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1355 }
1356 
do_vqdmlsdh_h(int16_t a,int16_t b,int16_t c,int16_t d,int round,bool * sat)1357 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1358                              int round, bool *sat)
1359 {
1360     int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1361     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1362 }
1363 
do_vqdmlsdh_w(int32_t a,int32_t b,int32_t c,int32_t d,int round,bool * sat)1364 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1365                              int round, bool *sat)
1366 {
1367     int64_t m1 = (int64_t)a * b;
1368     int64_t m2 = (int64_t)c * d;
1369     int64_t r;
1370     /* The same ordering issue as in do_vqdmladh_w applies here too */
1371     if (ssub64_overflow(m1, m2, &r) ||
1372         sadd64_overflow(r, (round << 30), &r) ||
1373         sadd64_overflow(r, r, &r)) {
1374         *sat = true;
1375         return r < 0 ? INT32_MAX : INT32_MIN;
1376     }
1377     return r >> 32;
1378 }
1379 
1380 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1381 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1382 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1383 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1384 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1385 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1386 
1387 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1388 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1389 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1390 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1391 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1392 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1393 
1394 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1395 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1396 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1397 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1398 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1399 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1400 
1401 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1402 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1403 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1404 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1405 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1406 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1407 
1408 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1409     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1410                                 uint32_t rm)                            \
1411     {                                                                   \
1412         TYPE *d = vd, *n = vn;                                          \
1413         TYPE m = rm;                                                    \
1414         uint16_t mask = mve_element_mask(env);                          \
1415         unsigned e;                                                     \
1416         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1417             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1418         }                                                               \
1419         mve_advance_vpt(env);                                           \
1420     }
1421 
1422 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1423     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1424                                 uint32_t rm)                            \
1425     {                                                                   \
1426         TYPE *d = vd, *n = vn;                                          \
1427         TYPE m = rm;                                                    \
1428         uint16_t mask = mve_element_mask(env);                          \
1429         unsigned e;                                                     \
1430         bool qc = false;                                                \
1431         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1432             bool sat = false;                                           \
1433             mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1434                       mask);                                            \
1435             qc |= sat & mask & 1;                                       \
1436         }                                                               \
1437         if (qc) {                                                       \
1438             env->vfp.qc[0] = qc;                                        \
1439         }                                                               \
1440         mve_advance_vpt(env);                                           \
1441     }
1442 
1443 /* "accumulating" version where FN takes d as well as n and m */
1444 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1445     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1446                                 uint32_t rm)                            \
1447     {                                                                   \
1448         TYPE *d = vd, *n = vn;                                          \
1449         TYPE m = rm;                                                    \
1450         uint16_t mask = mve_element_mask(env);                          \
1451         unsigned e;                                                     \
1452         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1453             mergemask(&d[H##ESIZE(e)],                                  \
1454                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1455         }                                                               \
1456         mve_advance_vpt(env);                                           \
1457     }
1458 
1459 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1460     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1461                                 uint32_t rm)                            \
1462     {                                                                   \
1463         TYPE *d = vd, *n = vn;                                          \
1464         TYPE m = rm;                                                    \
1465         uint16_t mask = mve_element_mask(env);                          \
1466         unsigned e;                                                     \
1467         bool qc = false;                                                \
1468         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1469             bool sat = false;                                           \
1470             mergemask(&d[H##ESIZE(e)],                                  \
1471                       FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1472                       mask);                                            \
1473             qc |= sat & mask & 1;                                       \
1474         }                                                               \
1475         if (qc) {                                                       \
1476             env->vfp.qc[0] = qc;                                        \
1477         }                                                               \
1478         mve_advance_vpt(env);                                           \
1479     }
1480 
1481 /* provide unsigned 2-op scalar helpers for all sizes */
1482 #define DO_2OP_SCALAR_U(OP, FN)                 \
1483     DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1484     DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1485     DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1486 #define DO_2OP_SCALAR_S(OP, FN)                 \
1487     DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1488     DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1489     DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1490 
1491 #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1492     DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1493     DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1494     DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1495 
DO_2OP_SCALAR_U(vadd_scalar,DO_ADD)1496 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1497 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1498 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1499 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1500 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1501 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1502 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1503 
1504 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1505 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1506 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1507 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1508 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1509 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1510 
1511 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1512 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1513 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1514 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1515 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1516 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1517 
1518 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1519 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1520 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1521 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1522 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1523 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1524 
1525 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1526 {
1527     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1528     return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1529 }
1530 
do_vqdmlah_h(int16_t a,int16_t b,int16_t c,int round,bool * sat)1531 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1532                            int round, bool *sat)
1533 {
1534     int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1535     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1536 }
1537 
do_vqdmlah_w(int32_t a,int32_t b,int32_t c,int round,bool * sat)1538 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1539                             int round, bool *sat)
1540 {
1541     /*
1542      * Architecturally we should do the entire add, double, round
1543      * and then check for saturation. We do three saturating adds,
1544      * but we need to be careful about the order. If the first
1545      * m1 + m2 saturates then it's impossible for the *2+rc to
1546      * bring it back into the non-saturated range. However, if
1547      * m1 + m2 is negative then it's possible that doing the doubling
1548      * would take the intermediate result below INT64_MAX and the
1549      * addition of the rounding constant then brings it back in range.
1550      * So we add half the rounding constant and half the "c << esize"
1551      * before doubling rather than adding the rounding constant after
1552      * the doubling.
1553      */
1554     int64_t m1 = (int64_t)a * b;
1555     int64_t m2 = (int64_t)c << 31;
1556     int64_t r;
1557     if (sadd64_overflow(m1, m2, &r) ||
1558         sadd64_overflow(r, (round << 30), &r) ||
1559         sadd64_overflow(r, r, &r)) {
1560         *sat = true;
1561         return r < 0 ? INT32_MAX : INT32_MIN;
1562     }
1563     return r >> 32;
1564 }
1565 
1566 /*
1567  * The *MLAH insns are vector * scalar + vector;
1568  * the *MLASH insns are vector * vector + scalar
1569  */
1570 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1571 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1572 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1573 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1574 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1575 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1576 
1577 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1578 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1579 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1580 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1581 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1582 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1583 
1584 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1585 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1586 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1587 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1588 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1589 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1590 
1591 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1592 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1593 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1594 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1597 
1598 /* Vector by scalar plus vector */
1599 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1600 
DO_2OP_ACC_SCALAR_U(vmla,DO_VMLA)1601 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1602 
1603 /* Vector by vector plus scalar */
1604 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1605 
1606 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1607 
1608 /*
1609  * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1610  * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1611  * SATMASK specifies which bits of the predicate mask matter for determining
1612  * whether to propagate a saturation indication into FPSCR.QC -- for
1613  * the 16x16->32 case we must check only the bit corresponding to the T or B
1614  * half that we used, but for the 32x32->64 case we propagate if the mask
1615  * bit is set for either half.
1616  */
1617 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1618     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1619                                 uint32_t rm)                            \
1620     {                                                                   \
1621         LTYPE *d = vd;                                                  \
1622         TYPE *n = vn;                                                   \
1623         TYPE m = rm;                                                    \
1624         uint16_t mask = mve_element_mask(env);                          \
1625         unsigned le;                                                    \
1626         bool qc = false;                                                \
1627         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1628             bool sat = false;                                           \
1629             LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1630             mergemask(&d[H##LESIZE(le)], r, mask);                      \
1631             qc |= sat && (mask & SATMASK);                              \
1632         }                                                               \
1633         if (qc) {                                                       \
1634             env->vfp.qc[0] = qc;                                        \
1635         }                                                               \
1636         mve_advance_vpt(env);                                           \
1637     }
1638 
1639 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1640 {
1641     int64_t r = ((int64_t)n * m) * 2;
1642     return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1643 }
1644 
do_qdmullw(int32_t n,int32_t m,bool * sat)1645 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1646 {
1647     /* The multiply can't overflow, but the doubling might */
1648     int64_t r = (int64_t)n * m;
1649     if (r > INT64_MAX / 2) {
1650         *sat = true;
1651         return INT64_MAX;
1652     } else if (r < INT64_MIN / 2) {
1653         *sat = true;
1654         return INT64_MIN;
1655     } else {
1656         return r * 2;
1657     }
1658 }
1659 
1660 #define SATMASK16B 1
1661 #define SATMASK16T (1 << 2)
1662 #define SATMASK32 ((1 << 4) | 1)
1663 
1664 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1665                     do_qdmullh, SATMASK16B)
1666 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1667                     do_qdmullw, SATMASK32)
1668 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1669                     do_qdmullh, SATMASK16T)
1670 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1671                     do_qdmullw, SATMASK32)
1672 
1673 /*
1674  * Long saturating ops
1675  */
1676 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1677     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1678                                 void *vm)                               \
1679     {                                                                   \
1680         LTYPE *d = vd;                                                  \
1681         TYPE *n = vn, *m = vm;                                          \
1682         uint16_t mask = mve_element_mask(env);                          \
1683         unsigned le;                                                    \
1684         bool qc = false;                                                \
1685         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1686             bool sat = false;                                           \
1687             LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1688             LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1689             mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1690             qc |= sat && (mask & SATMASK);                              \
1691         }                                                               \
1692         if (qc) {                                                       \
1693             env->vfp.qc[0] = qc;                                        \
1694         }                                                               \
1695         mve_advance_vpt(env);                                           \
1696     }
1697 
1698 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1699 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1700 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1701 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1702 
do_vbrsrb(uint32_t n,uint32_t m)1703 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1704 {
1705     m &= 0xff;
1706     if (m == 0) {
1707         return 0;
1708     }
1709     n = revbit8(n);
1710     if (m < 8) {
1711         n >>= 8 - m;
1712     }
1713     return n;
1714 }
1715 
do_vbrsrh(uint32_t n,uint32_t m)1716 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1717 {
1718     m &= 0xff;
1719     if (m == 0) {
1720         return 0;
1721     }
1722     n = revbit16(n);
1723     if (m < 16) {
1724         n >>= 16 - m;
1725     }
1726     return n;
1727 }
1728 
do_vbrsrw(uint32_t n,uint32_t m)1729 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1730 {
1731     m &= 0xff;
1732     if (m == 0) {
1733         return 0;
1734     }
1735     n = revbit32(n);
1736     if (m < 32) {
1737         n >>= 32 - m;
1738     }
1739     return n;
1740 }
1741 
1742 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1743 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1744 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1745 
1746 /*
1747  * Multiply add long dual accumulate ops.
1748  */
1749 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1750     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1751                                     void *vm, uint64_t a)               \
1752     {                                                                   \
1753         uint16_t mask = mve_element_mask(env);                          \
1754         unsigned e;                                                     \
1755         TYPE *n = vn, *m = vm;                                          \
1756         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1757             if (mask & 1) {                                             \
1758                 if (e & 1) {                                            \
1759                     a ODDACC                                            \
1760                         (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1761                 } else {                                                \
1762                     a EVENACC                                           \
1763                         (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1764                 }                                                       \
1765             }                                                           \
1766         }                                                               \
1767         mve_advance_vpt(env);                                           \
1768         return a;                                                       \
1769     }
1770 
1771 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1772 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1773 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1774 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1775 
1776 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1777 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1778 
1779 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1780 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1781 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1782 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1783 
1784 /*
1785  * Multiply add dual accumulate ops
1786  */
1787 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1788     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1789                                     void *vm, uint32_t a)               \
1790     {                                                                   \
1791         uint16_t mask = mve_element_mask(env);                          \
1792         unsigned e;                                                     \
1793         TYPE *n = vn, *m = vm;                                          \
1794         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1795             if (mask & 1) {                                             \
1796                 if (e & 1) {                                            \
1797                     a ODDACC                                            \
1798                         n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1799                 } else {                                                \
1800                     a EVENACC                                           \
1801                         n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1802                 }                                                       \
1803             }                                                           \
1804         }                                                               \
1805         mve_advance_vpt(env);                                           \
1806         return a;                                                       \
1807     }
1808 
1809 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1810     DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1811     DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1812     DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1813 
1814 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1815     DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1816     DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1817     DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1818 
1819 DO_DAV_S(vmladavs, false, +=, +=)
1820 DO_DAV_U(vmladavu, false, +=, +=)
1821 DO_DAV_S(vmlsdav, false, +=, -=)
1822 DO_DAV_S(vmladavsx, true, +=, +=)
1823 DO_DAV_S(vmlsdavx, true, +=, -=)
1824 
1825 /*
1826  * Rounding multiply add long dual accumulate high. In the pseudocode
1827  * this is implemented with a 72-bit internal accumulator value of which
1828  * the top 64 bits are returned. We optimize this to avoid having to
1829  * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1830  * is squashed back into 64-bits after each beat.
1831  */
1832 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1833     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1834                                     void *vm, uint64_t a)               \
1835     {                                                                   \
1836         uint16_t mask = mve_element_mask(env);                          \
1837         unsigned e;                                                     \
1838         TYPE *n = vn, *m = vm;                                          \
1839         for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1840             if (mask & 1) {                                             \
1841                 LTYPE mul;                                              \
1842                 if (e & 1) {                                            \
1843                     mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1844                     if (SUB) {                                          \
1845                         mul = -mul;                                     \
1846                     }                                                   \
1847                 } else {                                                \
1848                     mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1849                 }                                                       \
1850                 mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1851                 a += mul;                                               \
1852             }                                                           \
1853         }                                                               \
1854         mve_advance_vpt(env);                                           \
1855         return a;                                                       \
1856     }
1857 
DO_LDAVH(vrmlaldavhsw,int32_t,int64_t,false,false)1858 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1859 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1860 
1861 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1862 
1863 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1864 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1865 
1866 /* Vector add across vector */
1867 #define DO_VADDV(OP, ESIZE, TYPE)                               \
1868     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1869                                     uint32_t ra)                \
1870     {                                                           \
1871         uint16_t mask = mve_element_mask(env);                  \
1872         unsigned e;                                             \
1873         TYPE *m = vm;                                           \
1874         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1875             if (mask & 1) {                                     \
1876                 ra += m[H##ESIZE(e)];                           \
1877             }                                                   \
1878         }                                                       \
1879         mve_advance_vpt(env);                                   \
1880         return ra;                                              \
1881     }                                                           \
1882 
1883 DO_VADDV(vaddvsb, 1, int8_t)
1884 DO_VADDV(vaddvsh, 2, int16_t)
1885 DO_VADDV(vaddvsw, 4, int32_t)
1886 DO_VADDV(vaddvub, 1, uint8_t)
1887 DO_VADDV(vaddvuh, 2, uint16_t)
1888 DO_VADDV(vaddvuw, 4, uint32_t)
1889 
1890 /*
1891  * Vector max/min across vector. Unlike VADDV, we must
1892  * read ra as the element size, not its full width.
1893  * We work with int64_t internally for simplicity.
1894  */
1895 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1896     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1897                                     uint32_t ra_in)             \
1898     {                                                           \
1899         uint16_t mask = mve_element_mask(env);                  \
1900         unsigned e;                                             \
1901         TYPE *m = vm;                                           \
1902         int64_t ra = (RATYPE)ra_in;                             \
1903         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1904             if (mask & 1) {                                     \
1905                 ra = FN(ra, m[H##ESIZE(e)]);                    \
1906             }                                                   \
1907         }                                                       \
1908         mve_advance_vpt(env);                                   \
1909         return ra;                                              \
1910     }                                                           \
1911 
1912 #define DO_VMAXMINV_U(INSN, FN)                         \
1913     DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1914     DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1915     DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1916 #define DO_VMAXMINV_S(INSN, FN)                         \
1917     DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1918     DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1919     DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1920 
1921 /*
1922  * Helpers for max and min of absolute values across vector:
1923  * note that we only take the absolute value of 'm', not 'n'
1924  */
1925 static int64_t do_maxa(int64_t n, int64_t m)
1926 {
1927     if (m < 0) {
1928         m = -m;
1929     }
1930     return MAX(n, m);
1931 }
1932 
do_mina(int64_t n,int64_t m)1933 static int64_t do_mina(int64_t n, int64_t m)
1934 {
1935     if (m < 0) {
1936         m = -m;
1937     }
1938     return MIN(n, m);
1939 }
1940 
DO_VMAXMINV_S(vmaxvs,DO_MAX)1941 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1942 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1943 DO_VMAXMINV_S(vminvs, DO_MIN)
1944 DO_VMAXMINV_U(vminvu, DO_MIN)
1945 /*
1946  * VMAXAV, VMINAV treat the general purpose input as unsigned
1947  * and the vector elements as signed.
1948  */
1949 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1950 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1951 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1952 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1953 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1954 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1955 
1956 #define DO_VABAV(OP, ESIZE, TYPE)                               \
1957     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1958                                     void *vm, uint32_t ra)      \
1959     {                                                           \
1960         uint16_t mask = mve_element_mask(env);                  \
1961         unsigned e;                                             \
1962         TYPE *m = vm, *n = vn;                                  \
1963         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1964             if (mask & 1) {                                     \
1965                 int64_t n0 = n[H##ESIZE(e)];                    \
1966                 int64_t m0 = m[H##ESIZE(e)];                    \
1967                 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1968                 ra += r;                                        \
1969             }                                                   \
1970         }                                                       \
1971         mve_advance_vpt(env);                                   \
1972         return ra;                                              \
1973     }
1974 
1975 DO_VABAV(vabavsb, 1, int8_t)
1976 DO_VABAV(vabavsh, 2, int16_t)
1977 DO_VABAV(vabavsw, 4, int32_t)
1978 DO_VABAV(vabavub, 1, uint8_t)
1979 DO_VABAV(vabavuh, 2, uint16_t)
1980 DO_VABAV(vabavuw, 4, uint32_t)
1981 
1982 #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1983     uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1984                                     uint64_t ra)                \
1985     {                                                           \
1986         uint16_t mask = mve_element_mask(env);                  \
1987         unsigned e;                                             \
1988         TYPE *m = vm;                                           \
1989         for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1990             if (mask & 1) {                                     \
1991                 ra += (LTYPE)m[H4(e)];                          \
1992             }                                                   \
1993         }                                                       \
1994         mve_advance_vpt(env);                                   \
1995         return ra;                                              \
1996     }                                                           \
1997 
1998 DO_VADDLV(vaddlv_s, int32_t, int64_t)
1999 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2000 
2001 /* Shifts by immediate */
2002 #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2003     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2004                                 void *vm, uint32_t shift)       \
2005     {                                                           \
2006         TYPE *d = vd, *m = vm;                                  \
2007         uint16_t mask = mve_element_mask(env);                  \
2008         unsigned e;                                             \
2009         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2010             mergemask(&d[H##ESIZE(e)],                          \
2011                       FN(m[H##ESIZE(e)], shift), mask);         \
2012         }                                                       \
2013         mve_advance_vpt(env);                                   \
2014     }
2015 
2016 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2017     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2018                                 void *vm, uint32_t shift)       \
2019     {                                                           \
2020         TYPE *d = vd, *m = vm;                                  \
2021         uint16_t mask = mve_element_mask(env);                  \
2022         unsigned e;                                             \
2023         bool qc = false;                                        \
2024         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2025             bool sat = false;                                   \
2026             mergemask(&d[H##ESIZE(e)],                          \
2027                       FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2028             qc |= sat & mask & 1;                               \
2029         }                                                       \
2030         if (qc) {                                               \
2031             env->vfp.qc[0] = qc;                                \
2032         }                                                       \
2033         mve_advance_vpt(env);                                   \
2034     }
2035 
2036 /* provide unsigned 2-op shift helpers for all sizes */
2037 #define DO_2SHIFT_U(OP, FN)                     \
2038     DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2039     DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2040     DO_2SHIFT(OP##w, 4, uint32_t, FN)
2041 #define DO_2SHIFT_S(OP, FN)                     \
2042     DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2043     DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2044     DO_2SHIFT(OP##w, 4, int32_t, FN)
2045 
2046 #define DO_2SHIFT_SAT_U(OP, FN)                 \
2047     DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2048     DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2049     DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2050 #define DO_2SHIFT_SAT_S(OP, FN)                 \
2051     DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2052     DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2053     DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2054 
2055 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2056 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2057 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2058 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2059 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2060 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2061 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2062 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2063 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2064 
2065 /* Shift-and-insert; we always work with 64 bits at a time */
2066 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2067     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2068                                 void *vm, uint32_t shift)               \
2069     {                                                                   \
2070         uint64_t *d = vd, *m = vm;                                      \
2071         uint16_t mask;                                                  \
2072         uint64_t shiftmask;                                             \
2073         unsigned e;                                                     \
2074         if (shift == ESIZE * 8) {                                       \
2075             /*                                                          \
2076              * Only VSRI can shift by <dt>; it should mean "don't       \
2077              * update the destination". The generic logic can't handle  \
2078              * this because it would try to shift by an out-of-range    \
2079              * amount, so special case it here.                         \
2080              */                                                         \
2081             goto done;                                                  \
2082         }                                                               \
2083         assert(shift < ESIZE * 8);                                      \
2084         mask = mve_element_mask(env);                                   \
2085         /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2086         shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2087         for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2088             uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2089                 (d[H8(e)] & ~shiftmask);                                \
2090             mergemask(&d[H8(e)], r, mask);                              \
2091         }                                                               \
2092 done:                                                                   \
2093         mve_advance_vpt(env);                                           \
2094     }
2095 
2096 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2097 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2098 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2099 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2100 
2101 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2102 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2103 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2104 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2105 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2106 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2107 
2108 /*
2109  * Long shifts taking half-sized inputs from top or bottom of the input
2110  * vector and producing a double-width result. ESIZE, TYPE are for
2111  * the input, and LESIZE, LTYPE for the output.
2112  * Unlike the normal shift helpers, we do not handle negative shift counts,
2113  * because the long shift is strictly left-only.
2114  */
2115 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2116     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2117                                 void *vm, uint32_t shift)               \
2118     {                                                                   \
2119         LTYPE *d = vd;                                                  \
2120         TYPE *m = vm;                                                   \
2121         uint16_t mask = mve_element_mask(env);                          \
2122         unsigned le;                                                    \
2123         assert(shift <= 16);                                            \
2124         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2125             LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2126             mergemask(&d[H##LESIZE(le)], r, mask);                      \
2127         }                                                               \
2128         mve_advance_vpt(env);                                           \
2129     }
2130 
2131 #define DO_VSHLL_ALL(OP, TOP)                                \
2132     DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2133     DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2134     DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2135     DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2136 
2137 DO_VSHLL_ALL(vshllb, false)
2138 DO_VSHLL_ALL(vshllt, true)
2139 
2140 /*
2141  * Narrowing right shifts, taking a double sized input, shifting it
2142  * and putting the result in either the top or bottom half of the output.
2143  * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2144  */
2145 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2146     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2147                                 void *vm, uint32_t shift)       \
2148     {                                                           \
2149         LTYPE *m = vm;                                          \
2150         TYPE *d = vd;                                           \
2151         uint16_t mask = mve_element_mask(env);                  \
2152         unsigned le;                                            \
2153         mask >>= ESIZE * TOP;                                   \
2154         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2155             TYPE r = FN(m[H##LESIZE(le)], shift);               \
2156             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2157         }                                                       \
2158         mve_advance_vpt(env);                                   \
2159     }
2160 
2161 #define DO_VSHRN_ALL(OP, FN)                                    \
2162     DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2163     DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2164     DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2165     DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2166 
2167 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2168 {
2169     if (likely(sh < 64)) {
2170         return (x >> sh) + ((x >> (sh - 1)) & 1);
2171     } else if (sh == 64) {
2172         return x >> 63;
2173     } else {
2174         return 0;
2175     }
2176 }
2177 
do_srshr(int64_t x,unsigned sh)2178 static inline int64_t do_srshr(int64_t x, unsigned sh)
2179 {
2180     if (likely(sh < 64)) {
2181         return (x >> sh) + ((x >> (sh - 1)) & 1);
2182     } else {
2183         /* Rounding the sign bit always produces 0. */
2184         return 0;
2185     }
2186 }
2187 
DO_VSHRN_ALL(vshrn,DO_SHR)2188 DO_VSHRN_ALL(vshrn, DO_SHR)
2189 DO_VSHRN_ALL(vrshrn, do_urshr)
2190 
2191 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2192                                  bool *satp)
2193 {
2194     if (val > max) {
2195         *satp = true;
2196         return max;
2197     } else if (val < min) {
2198         *satp = true;
2199         return min;
2200     } else {
2201         return val;
2202     }
2203 }
2204 
2205 /* Saturating narrowing right shifts */
2206 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2207     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2208                                 void *vm, uint32_t shift)       \
2209     {                                                           \
2210         LTYPE *m = vm;                                          \
2211         TYPE *d = vd;                                           \
2212         uint16_t mask = mve_element_mask(env);                  \
2213         bool qc = false;                                        \
2214         unsigned le;                                            \
2215         mask >>= ESIZE * TOP;                                   \
2216         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2217             bool sat = false;                                   \
2218             TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2219             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2220             qc |= sat & mask & 1;                               \
2221         }                                                       \
2222         if (qc) {                                               \
2223             env->vfp.qc[0] = qc;                                \
2224         }                                                       \
2225         mve_advance_vpt(env);                                   \
2226     }
2227 
2228 #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2229     DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2230     DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2231 
2232 #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2233     DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2234     DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2235 
2236 #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2237     DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2238     DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2239 
2240 #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2241     DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2242     DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2243 
2244 #define DO_SHRN_SB(N, M, SATP)                                  \
2245     do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2246 #define DO_SHRN_UB(N, M, SATP)                                  \
2247     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2248 #define DO_SHRUN_B(N, M, SATP)                                  \
2249     do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2250 
2251 #define DO_SHRN_SH(N, M, SATP)                                  \
2252     do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2253 #define DO_SHRN_UH(N, M, SATP)                                  \
2254     do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2255 #define DO_SHRUN_H(N, M, SATP)                                  \
2256     do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2257 
2258 #define DO_RSHRN_SB(N, M, SATP)                                 \
2259     do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2260 #define DO_RSHRN_UB(N, M, SATP)                                 \
2261     do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2262 #define DO_RSHRUN_B(N, M, SATP)                                 \
2263     do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2264 
2265 #define DO_RSHRN_SH(N, M, SATP)                                 \
2266     do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2267 #define DO_RSHRN_UH(N, M, SATP)                                 \
2268     do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2269 #define DO_RSHRUN_H(N, M, SATP)                                 \
2270     do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2271 
DO_VSHRN_SAT_SB(vqshrnb_sb,vqshrnt_sb,DO_SHRN_SB)2272 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2273 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2274 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2275 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2276 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2277 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2278 
2279 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2280 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2281 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2282 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2283 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2284 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2285 
2286 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2287     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2288     {                                                                   \
2289         LTYPE *m = vm;                                                  \
2290         TYPE *d = vd;                                                   \
2291         uint16_t mask = mve_element_mask(env);                          \
2292         unsigned le;                                                    \
2293         mask >>= ESIZE * TOP;                                           \
2294         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2295             mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2296                       m[H##LESIZE(le)], mask);                          \
2297         }                                                               \
2298         mve_advance_vpt(env);                                           \
2299     }
2300 
2301 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2302 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2303 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2304 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2305 
2306 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2307     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2308     {                                                                   \
2309         LTYPE *m = vm;                                                  \
2310         TYPE *d = vd;                                                   \
2311         uint16_t mask = mve_element_mask(env);                          \
2312         bool qc = false;                                                \
2313         unsigned le;                                                    \
2314         mask >>= ESIZE * TOP;                                           \
2315         for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2316             bool sat = false;                                           \
2317             TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2318             mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2319             qc |= sat & mask & 1;                                       \
2320         }                                                               \
2321         if (qc) {                                                       \
2322             env->vfp.qc[0] = qc;                                        \
2323         }                                                               \
2324         mve_advance_vpt(env);                                           \
2325     }
2326 
2327 #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2328     DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2329     DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2330 
2331 #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2332     DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2333     DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2334 
2335 #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2336     DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2337     DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2338 
2339 #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2340     DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2341     DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2342 
2343 #define DO_VQMOVN_SB(N, SATP)                           \
2344     do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2345 #define DO_VQMOVN_UB(N, SATP)                           \
2346     do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2347 #define DO_VQMOVUN_B(N, SATP)                           \
2348     do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2349 
2350 #define DO_VQMOVN_SH(N, SATP)                           \
2351     do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2352 #define DO_VQMOVN_UH(N, SATP)                           \
2353     do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2354 #define DO_VQMOVUN_H(N, SATP)                           \
2355     do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2356 
2357 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2358 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2359 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2360 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2361 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2362 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2363 
2364 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2365                            uint32_t shift)
2366 {
2367     uint32_t *d = vd;
2368     uint16_t mask = mve_element_mask(env);
2369     unsigned e;
2370     uint32_t r;
2371 
2372     /*
2373      * For each 32-bit element, we shift it left, bringing in the
2374      * low 'shift' bits of rdm at the bottom. Bits shifted out at
2375      * the top become the new rdm, if the predicate mask permits.
2376      * The final rdm value is returned to update the register.
2377      * shift == 0 here means "shift by 32 bits".
2378      */
2379     if (shift == 0) {
2380         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2381             r = rdm;
2382             if (mask & 1) {
2383                 rdm = d[H4(e)];
2384             }
2385             mergemask(&d[H4(e)], r, mask);
2386         }
2387     } else {
2388         uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2389 
2390         for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2391             r = (d[H4(e)] << shift) | (rdm & shiftmask);
2392             if (mask & 1) {
2393                 rdm = d[H4(e)] >> (32 - shift);
2394             }
2395             mergemask(&d[H4(e)], r, mask);
2396         }
2397     }
2398     mve_advance_vpt(env);
2399     return rdm;
2400 }
2401 
HELPER(mve_sshrl)2402 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2403 {
2404     return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2405 }
2406 
HELPER(mve_ushll)2407 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2408 {
2409     return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2410 }
2411 
HELPER(mve_sqshll)2412 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2413 {
2414     return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2415 }
2416 
HELPER(mve_uqshll)2417 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2418 {
2419     return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2420 }
2421 
HELPER(mve_sqrshrl)2422 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2423 {
2424     return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2425 }
2426 
HELPER(mve_uqrshll)2427 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2428 {
2429     return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2430 }
2431 
2432 /* Operate on 64-bit values, but saturate at 48 bits */
do_sqrshl48_d(int64_t src,int64_t shift,bool round,uint32_t * sat)2433 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2434                                     bool round, uint32_t *sat)
2435 {
2436     int64_t val, extval;
2437 
2438     if (shift <= -48) {
2439         /* Rounding the sign bit always produces 0. */
2440         if (round) {
2441             return 0;
2442         }
2443         return src >> 63;
2444     } else if (shift < 0) {
2445         if (round) {
2446             src >>= -shift - 1;
2447             val = (src >> 1) + (src & 1);
2448         } else {
2449             val = src >> -shift;
2450         }
2451         extval = sextract64(val, 0, 48);
2452         if (!sat || val == extval) {
2453             return extval;
2454         }
2455     } else if (shift < 48) {
2456         extval = sextract64(src << shift, 0, 48);
2457         if (!sat || src == (extval >> shift)) {
2458             return extval;
2459         }
2460     } else if (!sat || src == 0) {
2461         return 0;
2462     }
2463 
2464     *sat = 1;
2465     return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2466 }
2467 
2468 /* Operate on 64-bit values, but saturate at 48 bits */
do_uqrshl48_d(uint64_t src,int64_t shift,bool round,uint32_t * sat)2469 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2470                                      bool round, uint32_t *sat)
2471 {
2472     uint64_t val, extval;
2473 
2474     if (shift <= -(48 + round)) {
2475         return 0;
2476     } else if (shift < 0) {
2477         if (round) {
2478             val = src >> (-shift - 1);
2479             val = (val >> 1) + (val & 1);
2480         } else {
2481             val = src >> -shift;
2482         }
2483         extval = extract64(val, 0, 48);
2484         if (!sat || val == extval) {
2485             return extval;
2486         }
2487     } else if (shift < 48) {
2488         extval = extract64(src << shift, 0, 48);
2489         if (!sat || src == (extval >> shift)) {
2490             return extval;
2491         }
2492     } else if (!sat || src == 0) {
2493         return 0;
2494     }
2495 
2496     *sat = 1;
2497     return MAKE_64BIT_MASK(0, 48);
2498 }
2499 
HELPER(mve_sqrshrl48)2500 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2501 {
2502     return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2503 }
2504 
HELPER(mve_uqrshll48)2505 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2506 {
2507     return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2508 }
2509 
HELPER(mve_uqshl)2510 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2511 {
2512     return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2513 }
2514 
HELPER(mve_sqshl)2515 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2516 {
2517     return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2518 }
2519 
HELPER(mve_uqrshl)2520 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2521 {
2522     return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2523 }
2524 
HELPER(mve_sqrshr)2525 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2526 {
2527     return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2528 }
2529 
2530 #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2531     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2532                            uint32_t offset, uint32_t imm)       \
2533     {                                                           \
2534         TYPE *d = vd;                                           \
2535         uint16_t mask = mve_element_mask(env);                  \
2536         unsigned e;                                             \
2537         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2538             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2539             offset = FN(offset, imm);                           \
2540         }                                                       \
2541         mve_advance_vpt(env);                                   \
2542         return offset;                                          \
2543     }
2544 
2545 #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2546     uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2547                               uint32_t offset, uint32_t wrap,   \
2548                               uint32_t imm)                     \
2549     {                                                           \
2550         TYPE *d = vd;                                           \
2551         uint16_t mask = mve_element_mask(env);                  \
2552         unsigned e;                                             \
2553         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2554             mergemask(&d[H##ESIZE(e)], offset, mask);           \
2555             offset = FN(offset, wrap, imm);                     \
2556         }                                                       \
2557         mve_advance_vpt(env);                                   \
2558         return offset;                                          \
2559     }
2560 
2561 #define DO_VIDUP_ALL(OP, FN)                    \
2562     DO_VIDUP(OP##b, 1, int8_t, FN)              \
2563     DO_VIDUP(OP##h, 2, int16_t, FN)             \
2564     DO_VIDUP(OP##w, 4, int32_t, FN)
2565 
2566 #define DO_VIWDUP_ALL(OP, FN)                   \
2567     DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2568     DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2569     DO_VIWDUP(OP##w, 4, int32_t, FN)
2570 
do_add_wrap(uint32_t offset,uint32_t wrap,uint32_t imm)2571 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2572 {
2573     offset += imm;
2574     if (offset == wrap) {
2575         offset = 0;
2576     }
2577     return offset;
2578 }
2579 
do_sub_wrap(uint32_t offset,uint32_t wrap,uint32_t imm)2580 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2581 {
2582     if (offset == 0) {
2583         offset = wrap;
2584     }
2585     offset -= imm;
2586     return offset;
2587 }
2588 
DO_VIDUP_ALL(vidup,DO_ADD)2589 DO_VIDUP_ALL(vidup, DO_ADD)
2590 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2591 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2592 
2593 /*
2594  * Vector comparison.
2595  * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2596  * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2597  * P0 bits otherwise are updated with the results of the comparisons.
2598  * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2599  */
2600 #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2601     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2602     {                                                                   \
2603         TYPE *n = vn, *m = vm;                                          \
2604         uint16_t mask = mve_element_mask(env);                          \
2605         uint16_t eci_mask = mve_eci_mask(env);                          \
2606         uint16_t beatpred = 0;                                          \
2607         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2608         unsigned e;                                                     \
2609         for (e = 0; e < 16 / ESIZE; e++) {                              \
2610             bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2611             /* Comparison sets 0/1 bits for each byte in the element */ \
2612             beatpred |= r * emask;                                      \
2613             emask <<= ESIZE;                                            \
2614         }                                                               \
2615         beatpred &= mask;                                               \
2616         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2617             (beatpred & eci_mask);                                      \
2618         mve_advance_vpt(env);                                           \
2619     }
2620 
2621 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2622     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2623                                 uint32_t rm)                            \
2624     {                                                                   \
2625         TYPE *n = vn;                                                   \
2626         uint16_t mask = mve_element_mask(env);                          \
2627         uint16_t eci_mask = mve_eci_mask(env);                          \
2628         uint16_t beatpred = 0;                                          \
2629         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2630         unsigned e;                                                     \
2631         for (e = 0; e < 16 / ESIZE; e++) {                              \
2632             bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2633             /* Comparison sets 0/1 bits for each byte in the element */ \
2634             beatpred |= r * emask;                                      \
2635             emask <<= ESIZE;                                            \
2636         }                                                               \
2637         beatpred &= mask;                                               \
2638         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2639             (beatpred & eci_mask);                                      \
2640         mve_advance_vpt(env);                                           \
2641     }
2642 
2643 #define DO_VCMP_S(OP, FN)                               \
2644     DO_VCMP(OP##b, 1, int8_t, FN)                       \
2645     DO_VCMP(OP##h, 2, int16_t, FN)                      \
2646     DO_VCMP(OP##w, 4, int32_t, FN)                      \
2647     DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2648     DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2649     DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2650 
2651 #define DO_VCMP_U(OP, FN)                               \
2652     DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2653     DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2654     DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2655     DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2656     DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2657     DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2658 
2659 #define DO_EQ(N, M) ((N) == (M))
2660 #define DO_NE(N, M) ((N) != (M))
2661 #define DO_EQ(N, M) ((N) == (M))
2662 #define DO_EQ(N, M) ((N) == (M))
2663 #define DO_GE(N, M) ((N) >= (M))
2664 #define DO_LT(N, M) ((N) < (M))
2665 #define DO_GT(N, M) ((N) > (M))
2666 #define DO_LE(N, M) ((N) <= (M))
2667 
2668 DO_VCMP_U(vcmpeq, DO_EQ)
2669 DO_VCMP_U(vcmpne, DO_NE)
2670 DO_VCMP_U(vcmpcs, DO_GE)
2671 DO_VCMP_U(vcmphi, DO_GT)
2672 DO_VCMP_S(vcmpge, DO_GE)
2673 DO_VCMP_S(vcmplt, DO_LT)
2674 DO_VCMP_S(vcmpgt, DO_GT)
2675 DO_VCMP_S(vcmple, DO_LE)
2676 
2677 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2678 {
2679     /*
2680      * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2681      * but note that whether bytes are written to Qd is still subject
2682      * to (all forms of) predication in the usual way.
2683      */
2684     uint64_t *d = vd, *n = vn, *m = vm;
2685     uint16_t mask = mve_element_mask(env);
2686     uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2687     unsigned e;
2688     for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2689         uint64_t r = m[H8(e)];
2690         mergemask(&r, n[H8(e)], p0);
2691         mergemask(&d[H8(e)], r, mask);
2692     }
2693     mve_advance_vpt(env);
2694 }
2695 
HELPER(mve_vpnot)2696 void HELPER(mve_vpnot)(CPUARMState *env)
2697 {
2698     /*
2699      * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2700      * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2701      * P0 bits otherwise are inverted.
2702      * (This is the same logic as VCMP.)
2703      * This insn is itself subject to predication and to beat-wise execution,
2704      * and after it executes VPT state advances in the usual way.
2705      */
2706     uint16_t mask = mve_element_mask(env);
2707     uint16_t eci_mask = mve_eci_mask(env);
2708     uint16_t beatpred = ~env->v7m.vpr & mask;
2709     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2710     mve_advance_vpt(env);
2711 }
2712 
2713 /*
2714  * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2715  * otherwise set according to value of Rn. The calculation of
2716  * newmask here works in the same way as the calculation of the
2717  * ltpmask in mve_element_mask(), but we have pre-calculated
2718  * the masklen in the generated code.
2719  */
HELPER(mve_vctp)2720 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2721 {
2722     uint16_t mask = mve_element_mask(env);
2723     uint16_t eci_mask = mve_eci_mask(env);
2724     uint16_t newmask;
2725 
2726     assert(masklen <= 16);
2727     newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2728     newmask &= mask;
2729     env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2730     mve_advance_vpt(env);
2731 }
2732 
2733 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2734     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2735     {                                                                   \
2736         TYPE *d = vd, *m = vm;                                          \
2737         uint16_t mask = mve_element_mask(env);                          \
2738         unsigned e;                                                     \
2739         bool qc = false;                                                \
2740         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2741             bool sat = false;                                           \
2742             mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2743             qc |= sat & mask & 1;                                       \
2744         }                                                               \
2745         if (qc) {                                                       \
2746             env->vfp.qc[0] = qc;                                        \
2747         }                                                               \
2748         mve_advance_vpt(env);                                           \
2749     }
2750 
2751 #define DO_VQABS_B(N, SATP) \
2752     do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2753 #define DO_VQABS_H(N, SATP) \
2754     do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2755 #define DO_VQABS_W(N, SATP) \
2756     do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2757 
2758 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2759 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2760 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2761 
2762 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2763 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2764 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2765 
2766 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2767 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2768 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2769 
2770 /*
2771  * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2772  * absolute value; we then do an unsigned comparison.
2773  */
2774 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2775     void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2776     {                                                                   \
2777         UTYPE *d = vd;                                                  \
2778         STYPE *m = vm;                                                  \
2779         uint16_t mask = mve_element_mask(env);                          \
2780         unsigned e;                                                     \
2781         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2782             UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2783             r = FN(d[H##ESIZE(e)], r);                                  \
2784             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2785         }                                                               \
2786         mve_advance_vpt(env);                                           \
2787     }
2788 
2789 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2790 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2791 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2792 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2793 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2794 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2795 
2796 /*
2797  * 2-operand floating point. Note that if an element is partially
2798  * predicated we must do the FP operation to update the non-predicated
2799  * bytes, but we must be careful to avoid updating the FP exception
2800  * state unless byte 0 of the element was unpredicated.
2801  */
2802 #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2803     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2804                                 void *vd, void *vn, void *vm)           \
2805     {                                                                   \
2806         TYPE *d = vd, *n = vn, *m = vm;                                 \
2807         TYPE r;                                                         \
2808         uint16_t mask = mve_element_mask(env);                          \
2809         unsigned e;                                                     \
2810         float_status *fpst;                                             \
2811         float_status scratch_fpst;                                      \
2812         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2813             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2814                 continue;                                               \
2815             }                                                           \
2816             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2817             if (!(mask & 1)) {                                          \
2818                 /* We need the result but without updating flags */     \
2819                 scratch_fpst = *fpst;                                   \
2820                 fpst = &scratch_fpst;                                   \
2821             }                                                           \
2822             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2823             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2824         }                                                               \
2825         mve_advance_vpt(env);                                           \
2826     }
2827 
2828 #define DO_2OP_FP_ALL(OP, FN)                  \
2829     DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2830     DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2831 
DO_2OP_FP_ALL(vfadd,add)2832 DO_2OP_FP_ALL(vfadd, add)
2833 DO_2OP_FP_ALL(vfsub, sub)
2834 DO_2OP_FP_ALL(vfmul, mul)
2835 
2836 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2837 {
2838     return float16_abs(float16_sub(a, b, s));
2839 }
2840 
float32_abd(float32 a,float32 b,float_status * s)2841 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2842 {
2843     return float32_abs(float32_sub(a, b, s));
2844 }
2845 
DO_2OP_FP_ALL(vfabd,abd)2846 DO_2OP_FP_ALL(vfabd, abd)
2847 DO_2OP_FP_ALL(vmaxnm, maxnum)
2848 DO_2OP_FP_ALL(vminnm, minnum)
2849 
2850 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2851 {
2852     return float16_maxnum(float16_abs(a), float16_abs(b), s);
2853 }
2854 
float32_maxnuma(float32 a,float32 b,float_status * s)2855 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2856 {
2857     return float32_maxnum(float32_abs(a), float32_abs(b), s);
2858 }
2859 
float16_minnuma(float16 a,float16 b,float_status * s)2860 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2861 {
2862     return float16_minnum(float16_abs(a), float16_abs(b), s);
2863 }
2864 
float32_minnuma(float32 a,float32 b,float_status * s)2865 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2866 {
2867     return float32_minnum(float32_abs(a), float32_abs(b), s);
2868 }
2869 
DO_2OP_FP_ALL(vmaxnma,maxnuma)2870 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2871 DO_2OP_FP_ALL(vminnma, minnuma)
2872 
2873 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2874     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2875                                 void *vd, void *vn, void *vm)           \
2876     {                                                                   \
2877         TYPE *d = vd, *n = vn, *m = vm;                                 \
2878         TYPE r[16 / ESIZE];                                             \
2879         uint16_t tm, mask = mve_element_mask(env);                      \
2880         unsigned e;                                                     \
2881         float_status *fpst;                                             \
2882         float_status scratch_fpst;                                      \
2883         /* Calculate all results first to avoid overwriting inputs */   \
2884         for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2885             if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2886                 r[e] = 0;                                               \
2887                 continue;                                               \
2888             }                                                           \
2889             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2890             if (!(tm & 1)) {                                            \
2891                 /* We need the result but without updating flags */     \
2892                 scratch_fpst = *fpst;                                   \
2893                 fpst = &scratch_fpst;                                   \
2894             }                                                           \
2895             if (!(e & 1)) {                                             \
2896                 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2897             } else {                                                    \
2898                 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2899             }                                                           \
2900         }                                                               \
2901         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2902             mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2903         }                                                               \
2904         mve_advance_vpt(env);                                           \
2905     }
2906 
2907 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2908 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2909 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2910 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2911 
2912 #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2913     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2914                                 void *vd, void *vn, void *vm)           \
2915     {                                                                   \
2916         TYPE *d = vd, *n = vn, *m = vm;                                 \
2917         TYPE r;                                                         \
2918         uint16_t mask = mve_element_mask(env);                          \
2919         unsigned e;                                                     \
2920         float_status *fpst;                                             \
2921         float_status scratch_fpst;                                      \
2922         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2923             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2924                 continue;                                               \
2925             }                                                           \
2926             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2927             if (!(mask & 1)) {                                          \
2928                 /* We need the result but without updating flags */     \
2929                 scratch_fpst = *fpst;                                   \
2930                 fpst = &scratch_fpst;                                   \
2931             }                                                           \
2932             r = n[H##ESIZE(e)];                                         \
2933             if (CHS) {                                                  \
2934                 r = TYPE##_chs(r);                                      \
2935             }                                                           \
2936             r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2937                               0, fpst);                                 \
2938             mergemask(&d[H##ESIZE(e)], r, mask);                        \
2939         }                                                               \
2940         mve_advance_vpt(env);                                           \
2941     }
2942 
2943 DO_VFMA(vfmah, 2, float16, false)
2944 DO_VFMA(vfmas, 4, float32, false)
2945 DO_VFMA(vfmsh, 2, float16, true)
2946 DO_VFMA(vfmss, 4, float32, true)
2947 
2948 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2949     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2950                                 void *vd, void *vn, void *vm)           \
2951     {                                                                   \
2952         TYPE *d = vd, *n = vn, *m = vm;                                 \
2953         TYPE r0, r1, e1, e2, e3, e4;                                    \
2954         uint16_t mask = mve_element_mask(env);                          \
2955         unsigned e;                                                     \
2956         float_status *fpst0, *fpst1;                                    \
2957         float_status scratch_fpst;                                      \
2958         /* We loop through pairs of elements at a time */               \
2959         for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2960             if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2961                 continue;                                               \
2962             }                                                           \
2963             fpst0 = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
2964             fpst1 = fpst0;                                              \
2965             if (!(mask & 1)) {                                          \
2966                 scratch_fpst = *fpst0;                                  \
2967                 fpst0 = &scratch_fpst;                                  \
2968             }                                                           \
2969             if (!(mask & (1 << ESIZE))) {                               \
2970                 scratch_fpst = *fpst1;                                  \
2971                 fpst1 = &scratch_fpst;                                  \
2972             }                                                           \
2973             switch (ROT) {                                              \
2974             case 0:                                                     \
2975                 e1 = m[H##ESIZE(e)];                                    \
2976                 e2 = n[H##ESIZE(e)];                                    \
2977                 e3 = m[H##ESIZE(e + 1)];                                \
2978                 e4 = n[H##ESIZE(e)];                                    \
2979                 break;                                                  \
2980             case 1:                                                     \
2981                 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2982                 e2 = n[H##ESIZE(e + 1)];                                \
2983                 e3 = m[H##ESIZE(e)];                                    \
2984                 e4 = n[H##ESIZE(e + 1)];                                \
2985                 break;                                                  \
2986             case 2:                                                     \
2987                 e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
2988                 e2 = n[H##ESIZE(e)];                                    \
2989                 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2990                 e4 = n[H##ESIZE(e)];                                    \
2991                 break;                                                  \
2992             case 3:                                                     \
2993                 e1 = m[H##ESIZE(e + 1)];                                \
2994                 e2 = n[H##ESIZE(e + 1)];                                \
2995                 e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
2996                 e4 = n[H##ESIZE(e + 1)];                                \
2997                 break;                                                  \
2998             default:                                                    \
2999                 g_assert_not_reached();                                 \
3000             }                                                           \
3001             r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3002             r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3003             mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3004             mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3005         }                                                               \
3006         mve_advance_vpt(env);                                           \
3007     }
3008 
3009 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3010 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3011 
3012 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3013 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3014 
3015 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3016 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3017 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3018 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3019 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3020 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3021 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3022 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3023 
3024 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3025 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3026 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3027 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3028 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3029 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3030 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3031 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3032 
3033 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3034     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3035                                 void *vd, void *vn, uint32_t rm)        \
3036     {                                                                   \
3037         TYPE *d = vd, *n = vn;                                          \
3038         TYPE r, m = rm;                                                 \
3039         uint16_t mask = mve_element_mask(env);                          \
3040         unsigned e;                                                     \
3041         float_status *fpst;                                             \
3042         float_status scratch_fpst;                                      \
3043         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3044             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3045                 continue;                                               \
3046             }                                                           \
3047             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3048             if (!(mask & 1)) {                                          \
3049                 /* We need the result but without updating flags */     \
3050                 scratch_fpst = *fpst;                                   \
3051                 fpst = &scratch_fpst;                                   \
3052             }                                                           \
3053             r = FN(n[H##ESIZE(e)], m, fpst);                            \
3054             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3055         }                                                               \
3056         mve_advance_vpt(env);                                           \
3057     }
3058 
3059 #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3060     DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3061     DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3062 
3063 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3064 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3065 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3066 
3067 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3068     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3069                                 void *vd, void *vn, uint32_t rm)        \
3070     {                                                                   \
3071         TYPE *d = vd, *n = vn;                                          \
3072         TYPE r, m = rm;                                                 \
3073         uint16_t mask = mve_element_mask(env);                          \
3074         unsigned e;                                                     \
3075         float_status *fpst;                                             \
3076         float_status scratch_fpst;                                      \
3077         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3078             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3079                 continue;                                               \
3080             }                                                           \
3081             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3082             if (!(mask & 1)) {                                          \
3083                 /* We need the result but without updating flags */     \
3084                 scratch_fpst = *fpst;                                   \
3085                 fpst = &scratch_fpst;                                   \
3086             }                                                           \
3087             r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3088             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3089         }                                                               \
3090         mve_advance_vpt(env);                                           \
3091     }
3092 
3093 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3094 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3095 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3096 
3097 /* VFMA is vector * scalar + vector */
3098 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3099 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3100 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3101 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3102 
3103 /* Floating point max/min across vector. */
3104 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3105     uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3106                                     uint32_t ra_in)             \
3107     {                                                           \
3108         uint16_t mask = mve_element_mask(env);                  \
3109         unsigned e;                                             \
3110         TYPE *m = vm;                                           \
3111         TYPE ra = (TYPE)ra_in;                                  \
3112         float_status *fpst =                                    \
3113             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3114         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3115             if (mask & 1) {                                     \
3116                 TYPE v = m[H##ESIZE(e)];                        \
3117                 if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3118                     ra = TYPE##_silence_nan(ra, fpst);          \
3119                     float_raise(float_flag_invalid, fpst);      \
3120                 }                                               \
3121                 if (TYPE##_is_signaling_nan(v, fpst)) {         \
3122                     v = TYPE##_silence_nan(v, fpst);            \
3123                     float_raise(float_flag_invalid, fpst);      \
3124                 }                                               \
3125                 if (ABS) {                                      \
3126                     v = TYPE##_abs(v);                          \
3127                 }                                               \
3128                 ra = FN(ra, v, fpst);                           \
3129             }                                                   \
3130         }                                                       \
3131         mve_advance_vpt(env);                                   \
3132         return ra;                                              \
3133     }                                                           \
3134 
3135 #define NOP(X) (X)
3136 
3137 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3138 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3139 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3140 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3141 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3142 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3143 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3144 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3145 
3146 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3147 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3148     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3149     {                                                                   \
3150         TYPE *n = vn, *m = vm;                                          \
3151         uint16_t mask = mve_element_mask(env);                          \
3152         uint16_t eci_mask = mve_eci_mask(env);                          \
3153         uint16_t beatpred = 0;                                          \
3154         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3155         unsigned e;                                                     \
3156         float_status *fpst;                                             \
3157         float_status scratch_fpst;                                      \
3158         bool r;                                                         \
3159         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3160             if ((mask & emask) == 0) {                                  \
3161                 continue;                                               \
3162             }                                                           \
3163             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3164             if (!(mask & (1 << (e * ESIZE)))) {                         \
3165                 /* We need the result but without updating flags */     \
3166                 scratch_fpst = *fpst;                                   \
3167                 fpst = &scratch_fpst;                                   \
3168             }                                                           \
3169             r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3170             /* Comparison sets 0/1 bits for each byte in the element */ \
3171             beatpred |= r * emask;                                      \
3172         }                                                               \
3173         beatpred &= mask;                                               \
3174         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3175             (beatpred & eci_mask);                                      \
3176         mve_advance_vpt(env);                                           \
3177     }
3178 
3179 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3180     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3181                                 uint32_t rm)                            \
3182     {                                                                   \
3183         TYPE *n = vn;                                                   \
3184         uint16_t mask = mve_element_mask(env);                          \
3185         uint16_t eci_mask = mve_eci_mask(env);                          \
3186         uint16_t beatpred = 0;                                          \
3187         uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3188         unsigned e;                                                     \
3189         float_status *fpst;                                             \
3190         float_status scratch_fpst;                                      \
3191         bool r;                                                         \
3192         for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3193             if ((mask & emask) == 0) {                                  \
3194                 continue;                                               \
3195             }                                                           \
3196             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3197             if (!(mask & (1 << (e * ESIZE)))) {                         \
3198                 /* We need the result but without updating flags */     \
3199                 scratch_fpst = *fpst;                                   \
3200                 fpst = &scratch_fpst;                                   \
3201             }                                                           \
3202             r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3203             /* Comparison sets 0/1 bits for each byte in the element */ \
3204             beatpred |= r * emask;                                      \
3205         }                                                               \
3206         beatpred &= mask;                                               \
3207         env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3208             (beatpred & eci_mask);                                      \
3209         mve_advance_vpt(env);                                           \
3210     }
3211 
3212 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3213     DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3214     DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3215 
3216 /*
3217  * Some care is needed here to get the correct result for the unordered case.
3218  * Architecturally EQ, GE and GT are defined to be false for unordered, but
3219  * the NE, LT and LE comparisons are defined as simple logical inverses of
3220  * EQ, GE and GT and so they must return true for unordered. The softfloat
3221  * comparison functions float*_{eq,le,lt} all return false for unordered.
3222  */
3223 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3224 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3225 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3226 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3227 
3228 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3229 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3230 
3231 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3232 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3233 
3234 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3235 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3236 
3237 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3238 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3239 
3240 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3241 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3242 
3243 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3244 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3245 
3246 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3247     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3248                                 uint32_t shift)                         \
3249     {                                                                   \
3250         TYPE *d = vd, *m = vm;                                          \
3251         TYPE r;                                                         \
3252         uint16_t mask = mve_element_mask(env);                          \
3253         unsigned e;                                                     \
3254         float_status *fpst;                                             \
3255         float_status scratch_fpst;                                      \
3256         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3257             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3258                 continue;                                               \
3259             }                                                           \
3260             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3261             if (!(mask & 1)) {                                          \
3262                 /* We need the result but without updating flags */     \
3263                 scratch_fpst = *fpst;                                   \
3264                 fpst = &scratch_fpst;                                   \
3265             }                                                           \
3266             r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3267             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3268         }                                                               \
3269         mve_advance_vpt(env);                                           \
3270     }
3271 
3272 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3273 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3274 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3275 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3276 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3277 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3278 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3279 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3280 
3281 /* VCVT with specified rmode */
3282 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3283     void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3284                                 void *vd, void *vm, uint32_t rmode)     \
3285     {                                                                   \
3286         TYPE *d = vd, *m = vm;                                          \
3287         TYPE r;                                                         \
3288         uint16_t mask = mve_element_mask(env);                          \
3289         unsigned e;                                                     \
3290         float_status *fpst;                                             \
3291         float_status scratch_fpst;                                      \
3292         float_status *base_fpst =                                       \
3293             &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD];  \
3294         uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3295         set_float_rounding_mode(rmode, base_fpst);                      \
3296         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3297             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3298                 continue;                                               \
3299             }                                                           \
3300             fpst = base_fpst;                                           \
3301             if (!(mask & 1)) {                                          \
3302                 /* We need the result but without updating flags */     \
3303                 scratch_fpst = *fpst;                                   \
3304                 fpst = &scratch_fpst;                                   \
3305             }                                                           \
3306             r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3307             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3308         }                                                               \
3309         set_float_rounding_mode(prev_rmode, base_fpst);                 \
3310         mve_advance_vpt(env);                                           \
3311     }
3312 
3313 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3314 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3315 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3316 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3317 
3318 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3319 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3320 
3321 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3322 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3323 
3324 /*
3325  * VCVT between halfprec and singleprec. As usual for halfprec
3326  * conversions, FZ16 is ignored and AHP is observed.
3327  */
3328 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3329 {
3330     uint16_t *d = vd;
3331     uint32_t *m = vm;
3332     uint16_t r;
3333     uint16_t mask = mve_element_mask(env);
3334     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3335     unsigned e;
3336     float_status *fpst;
3337     float_status scratch_fpst;
3338     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3339     bool old_fz = get_flush_to_zero(base_fpst);
3340     set_flush_to_zero(false, base_fpst);
3341     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3342         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3343             continue;
3344         }
3345         fpst = base_fpst;
3346         if (!(mask & 1)) {
3347             /* We need the result but without updating flags */
3348             scratch_fpst = *fpst;
3349             fpst = &scratch_fpst;
3350         }
3351         r = float32_to_float16(m[H4(e)], ieee, fpst);
3352         mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3353     }
3354     set_flush_to_zero(old_fz, base_fpst);
3355     mve_advance_vpt(env);
3356 }
3357 
do_vcvt_hs(CPUARMState * env,void * vd,void * vm,int top)3358 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3359 {
3360     uint32_t *d = vd;
3361     uint16_t *m = vm;
3362     uint32_t r;
3363     uint16_t mask = mve_element_mask(env);
3364     bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3365     unsigned e;
3366     float_status *fpst;
3367     float_status scratch_fpst;
3368     float_status *base_fpst = &env->vfp.fp_status[FPST_STD];
3369     bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3370     set_flush_inputs_to_zero(false, base_fpst);
3371     for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3372         if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3373             continue;
3374         }
3375         fpst = base_fpst;
3376         if (!(mask & (1 << (top * 2)))) {
3377             /* We need the result but without updating flags */
3378             scratch_fpst = *fpst;
3379             fpst = &scratch_fpst;
3380         }
3381         r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3382         mergemask(&d[H4(e)], r, mask);
3383     }
3384     set_flush_inputs_to_zero(old_fiz, base_fpst);
3385     mve_advance_vpt(env);
3386 }
3387 
HELPER(mve_vcvtb_sh)3388 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3389 {
3390     do_vcvt_sh(env, vd, vm, 0);
3391 }
HELPER(mve_vcvtt_sh)3392 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3393 {
3394     do_vcvt_sh(env, vd, vm, 1);
3395 }
HELPER(mve_vcvtb_hs)3396 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3397 {
3398     do_vcvt_hs(env, vd, vm, 0);
3399 }
HELPER(mve_vcvtt_hs)3400 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3401 {
3402     do_vcvt_hs(env, vd, vm, 1);
3403 }
3404 
3405 #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3406     void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3407     {                                                                   \
3408         TYPE *d = vd, *m = vm;                                          \
3409         TYPE r;                                                         \
3410         uint16_t mask = mve_element_mask(env);                          \
3411         unsigned e;                                                     \
3412         float_status *fpst;                                             \
3413         float_status scratch_fpst;                                      \
3414         for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3415             if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3416                 continue;                                               \
3417             }                                                           \
3418             fpst = &env->vfp.fp_status[ESIZE == 2 ? FPST_STD_F16 : FPST_STD]; \
3419             if (!(mask & 1)) {                                          \
3420                 /* We need the result but without updating flags */     \
3421                 scratch_fpst = *fpst;                                   \
3422                 fpst = &scratch_fpst;                                   \
3423             }                                                           \
3424             r = FN(m[H##ESIZE(e)], fpst);                               \
3425             mergemask(&d[H##ESIZE(e)], r, mask);                        \
3426         }                                                               \
3427         mve_advance_vpt(env);                                           \
3428     }
3429 
3430 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3431 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3432