1 /*
2  * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3  * Copyright © 2004 Micron Technology Inc.
4  * Copyright © 2004 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/platform_device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/delay.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/jiffies.h>
17 #include <linux/sched.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/nand.h>
20 #include <linux/mtd/partitions.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 
24 #include <plat/dma.h>
25 #include <plat/gpmc.h>
26 #include <plat/nand.h>
27 
28 #define	DRIVER_NAME	"omap2-nand"
29 #define	OMAP_NAND_TIMEOUT_MS	5000
30 
31 #define NAND_Ecc_P1e		(1 << 0)
32 #define NAND_Ecc_P2e		(1 << 1)
33 #define NAND_Ecc_P4e		(1 << 2)
34 #define NAND_Ecc_P8e		(1 << 3)
35 #define NAND_Ecc_P16e		(1 << 4)
36 #define NAND_Ecc_P32e		(1 << 5)
37 #define NAND_Ecc_P64e		(1 << 6)
38 #define NAND_Ecc_P128e		(1 << 7)
39 #define NAND_Ecc_P256e		(1 << 8)
40 #define NAND_Ecc_P512e		(1 << 9)
41 #define NAND_Ecc_P1024e		(1 << 10)
42 #define NAND_Ecc_P2048e		(1 << 11)
43 
44 #define NAND_Ecc_P1o		(1 << 16)
45 #define NAND_Ecc_P2o		(1 << 17)
46 #define NAND_Ecc_P4o		(1 << 18)
47 #define NAND_Ecc_P8o		(1 << 19)
48 #define NAND_Ecc_P16o		(1 << 20)
49 #define NAND_Ecc_P32o		(1 << 21)
50 #define NAND_Ecc_P64o		(1 << 22)
51 #define NAND_Ecc_P128o		(1 << 23)
52 #define NAND_Ecc_P256o		(1 << 24)
53 #define NAND_Ecc_P512o		(1 << 25)
54 #define NAND_Ecc_P1024o		(1 << 26)
55 #define NAND_Ecc_P2048o		(1 << 27)
56 
57 #define TF(value)	(value ? 1 : 0)
58 
59 #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
60 #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
61 #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
62 #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
63 #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
64 #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
65 #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
66 #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
67 
68 #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
69 #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
70 #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
71 #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
72 #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
73 #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
74 #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
75 #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
76 
77 #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
78 #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
79 #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
80 #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
81 #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
82 #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
83 #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
84 #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
85 
86 #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
87 #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
88 #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
89 #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
90 #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
91 #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
92 #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
93 #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
94 
95 #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
96 #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
97 
98 /* oob info generated runtime depending on ecc algorithm and layout selected */
99 static struct nand_ecclayout omap_oobinfo;
100 /* Define some generic bad / good block scan pattern which are used
101  * while scanning a device for factory marked good / bad blocks
102  */
103 static uint8_t scan_ff_pattern[] = { 0xff };
104 static struct nand_bbt_descr bb_descrip_flashbased = {
105 	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
106 	.offs = 0,
107 	.len = 1,
108 	.pattern = scan_ff_pattern,
109 };
110 
111 
112 struct omap_nand_info {
113 	struct nand_hw_control		controller;
114 	struct omap_nand_platform_data	*pdata;
115 	struct mtd_info			mtd;
116 	struct nand_chip		nand;
117 	struct platform_device		*pdev;
118 
119 	int				gpmc_cs;
120 	unsigned long			phys_base;
121 	struct completion		comp;
122 	int				dma_ch;
123 	int				gpmc_irq;
124 	enum {
125 		OMAP_NAND_IO_READ = 0,	/* read */
126 		OMAP_NAND_IO_WRITE,	/* write */
127 	} iomode;
128 	u_char				*buf;
129 	int					buf_len;
130 };
131 
132 /**
133  * omap_hwcontrol - hardware specific access to control-lines
134  * @mtd: MTD device structure
135  * @cmd: command to device
136  * @ctrl:
137  * NAND_NCE: bit 0 -> don't care
138  * NAND_CLE: bit 1 -> Command Latch
139  * NAND_ALE: bit 2 -> Address Latch
140  *
141  * NOTE: boards may use different bits for these!!
142  */
omap_hwcontrol(struct mtd_info * mtd,int cmd,unsigned int ctrl)143 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
144 {
145 	struct omap_nand_info *info = container_of(mtd,
146 					struct omap_nand_info, mtd);
147 
148 	if (cmd != NAND_CMD_NONE) {
149 		if (ctrl & NAND_CLE)
150 			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
151 
152 		else if (ctrl & NAND_ALE)
153 			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
154 
155 		else /* NAND_NCE */
156 			gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
157 	}
158 }
159 
160 /**
161  * omap_read_buf8 - read data from NAND controller into buffer
162  * @mtd: MTD device structure
163  * @buf: buffer to store date
164  * @len: number of bytes to read
165  */
omap_read_buf8(struct mtd_info * mtd,u_char * buf,int len)166 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
167 {
168 	struct nand_chip *nand = mtd->priv;
169 
170 	ioread8_rep(nand->IO_ADDR_R, buf, len);
171 }
172 
173 /**
174  * omap_write_buf8 - write buffer to NAND controller
175  * @mtd: MTD device structure
176  * @buf: data buffer
177  * @len: number of bytes to write
178  */
omap_write_buf8(struct mtd_info * mtd,const u_char * buf,int len)179 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
180 {
181 	struct omap_nand_info *info = container_of(mtd,
182 						struct omap_nand_info, mtd);
183 	u_char *p = (u_char *)buf;
184 	u32	status = 0;
185 
186 	while (len--) {
187 		iowrite8(*p++, info->nand.IO_ADDR_W);
188 		/* wait until buffer is available for write */
189 		do {
190 			status = gpmc_read_status(GPMC_STATUS_BUFFER);
191 		} while (!status);
192 	}
193 }
194 
195 /**
196  * omap_read_buf16 - read data from NAND controller into buffer
197  * @mtd: MTD device structure
198  * @buf: buffer to store date
199  * @len: number of bytes to read
200  */
omap_read_buf16(struct mtd_info * mtd,u_char * buf,int len)201 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
202 {
203 	struct nand_chip *nand = mtd->priv;
204 
205 	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
206 }
207 
208 /**
209  * omap_write_buf16 - write buffer to NAND controller
210  * @mtd: MTD device structure
211  * @buf: data buffer
212  * @len: number of bytes to write
213  */
omap_write_buf16(struct mtd_info * mtd,const u_char * buf,int len)214 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
215 {
216 	struct omap_nand_info *info = container_of(mtd,
217 						struct omap_nand_info, mtd);
218 	u16 *p = (u16 *) buf;
219 	u32	status = 0;
220 	/* FIXME try bursts of writesw() or DMA ... */
221 	len >>= 1;
222 
223 	while (len--) {
224 		iowrite16(*p++, info->nand.IO_ADDR_W);
225 		/* wait until buffer is available for write */
226 		do {
227 			status = gpmc_read_status(GPMC_STATUS_BUFFER);
228 		} while (!status);
229 	}
230 }
231 
232 /**
233  * omap_read_buf_pref - read data from NAND controller into buffer
234  * @mtd: MTD device structure
235  * @buf: buffer to store date
236  * @len: number of bytes to read
237  */
omap_read_buf_pref(struct mtd_info * mtd,u_char * buf,int len)238 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
239 {
240 	struct omap_nand_info *info = container_of(mtd,
241 						struct omap_nand_info, mtd);
242 	uint32_t r_count = 0;
243 	int ret = 0;
244 	u32 *p = (u32 *)buf;
245 
246 	/* take care of subpage reads */
247 	if (len % 4) {
248 		if (info->nand.options & NAND_BUSWIDTH_16)
249 			omap_read_buf16(mtd, buf, len % 4);
250 		else
251 			omap_read_buf8(mtd, buf, len % 4);
252 		p = (u32 *) (buf + len % 4);
253 		len -= len % 4;
254 	}
255 
256 	/* configure and start prefetch transfer */
257 	ret = gpmc_prefetch_enable(info->gpmc_cs,
258 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
259 	if (ret) {
260 		/* PFPW engine is busy, use cpu copy method */
261 		if (info->nand.options & NAND_BUSWIDTH_16)
262 			omap_read_buf16(mtd, (u_char *)p, len);
263 		else
264 			omap_read_buf8(mtd, (u_char *)p, len);
265 	} else {
266 		do {
267 			r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
268 			r_count = r_count >> 2;
269 			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
270 			p += r_count;
271 			len -= r_count << 2;
272 		} while (len);
273 		/* disable and stop the PFPW engine */
274 		gpmc_prefetch_reset(info->gpmc_cs);
275 	}
276 }
277 
278 /**
279  * omap_write_buf_pref - write buffer to NAND controller
280  * @mtd: MTD device structure
281  * @buf: data buffer
282  * @len: number of bytes to write
283  */
omap_write_buf_pref(struct mtd_info * mtd,const u_char * buf,int len)284 static void omap_write_buf_pref(struct mtd_info *mtd,
285 					const u_char *buf, int len)
286 {
287 	struct omap_nand_info *info = container_of(mtd,
288 						struct omap_nand_info, mtd);
289 	uint32_t w_count = 0;
290 	int i = 0, ret = 0;
291 	u16 *p = (u16 *)buf;
292 	unsigned long tim, limit;
293 
294 	/* take care of subpage writes */
295 	if (len % 2 != 0) {
296 		writeb(*buf, info->nand.IO_ADDR_W);
297 		p = (u16 *)(buf + 1);
298 		len--;
299 	}
300 
301 	/*  configure and start prefetch transfer */
302 	ret = gpmc_prefetch_enable(info->gpmc_cs,
303 			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
304 	if (ret) {
305 		/* PFPW engine is busy, use cpu copy method */
306 		if (info->nand.options & NAND_BUSWIDTH_16)
307 			omap_write_buf16(mtd, (u_char *)p, len);
308 		else
309 			omap_write_buf8(mtd, (u_char *)p, len);
310 	} else {
311 		while (len) {
312 			w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
313 			w_count = w_count >> 1;
314 			for (i = 0; (i < w_count) && len; i++, len -= 2)
315 				iowrite16(*p++, info->nand.IO_ADDR_W);
316 		}
317 		/* wait for data to flushed-out before reset the prefetch */
318 		tim = 0;
319 		limit = (loops_per_jiffy *
320 					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
321 		while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
322 			cpu_relax();
323 
324 		/* disable and stop the PFPW engine */
325 		gpmc_prefetch_reset(info->gpmc_cs);
326 	}
327 }
328 
329 /*
330  * omap_nand_dma_cb: callback on the completion of dma transfer
331  * @lch: logical channel
332  * @ch_satuts: channel status
333  * @data: pointer to completion data structure
334  */
omap_nand_dma_cb(int lch,u16 ch_status,void * data)335 static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
336 {
337 	complete((struct completion *) data);
338 }
339 
340 /*
341  * omap_nand_dma_transfer: configer and start dma transfer
342  * @mtd: MTD device structure
343  * @addr: virtual address in RAM of source/destination
344  * @len: number of data bytes to be transferred
345  * @is_write: flag for read/write operation
346  */
omap_nand_dma_transfer(struct mtd_info * mtd,void * addr,unsigned int len,int is_write)347 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
348 					unsigned int len, int is_write)
349 {
350 	struct omap_nand_info *info = container_of(mtd,
351 					struct omap_nand_info, mtd);
352 	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
353 							DMA_FROM_DEVICE;
354 	dma_addr_t dma_addr;
355 	int ret;
356 	unsigned long tim, limit;
357 
358 	/* The fifo depth is 64 bytes max.
359 	 * But configure the FIFO-threahold to 32 to get a sync at each frame
360 	 * and frame length is 32 bytes.
361 	 */
362 	int buf_len = len >> 6;
363 
364 	if (addr >= high_memory) {
365 		struct page *p1;
366 
367 		if (((size_t)addr & PAGE_MASK) !=
368 			((size_t)(addr + len - 1) & PAGE_MASK))
369 			goto out_copy;
370 		p1 = vmalloc_to_page(addr);
371 		if (!p1)
372 			goto out_copy;
373 		addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
374 	}
375 
376 	dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
377 	if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
378 		dev_err(&info->pdev->dev,
379 			"Couldn't DMA map a %d byte buffer\n", len);
380 		goto out_copy;
381 	}
382 
383 	if (is_write) {
384 	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
385 						info->phys_base, 0, 0);
386 	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
387 							dma_addr, 0, 0);
388 	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
389 					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
390 					OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
391 	} else {
392 	    omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
393 						info->phys_base, 0, 0);
394 	    omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
395 							dma_addr, 0, 0);
396 	    omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
397 					0x10, buf_len, OMAP_DMA_SYNC_FRAME,
398 					OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
399 	}
400 	/*  configure and start prefetch transfer */
401 	ret = gpmc_prefetch_enable(info->gpmc_cs,
402 			PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
403 	if (ret)
404 		/* PFPW engine is busy, use cpu copy method */
405 		goto out_copy;
406 
407 	init_completion(&info->comp);
408 
409 	omap_start_dma(info->dma_ch);
410 
411 	/* setup and start DMA using dma_addr */
412 	wait_for_completion(&info->comp);
413 	tim = 0;
414 	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
415 	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
416 		cpu_relax();
417 
418 	/* disable and stop the PFPW engine */
419 	gpmc_prefetch_reset(info->gpmc_cs);
420 
421 	dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
422 	return 0;
423 
424 out_copy:
425 	if (info->nand.options & NAND_BUSWIDTH_16)
426 		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
427 			: omap_write_buf16(mtd, (u_char *) addr, len);
428 	else
429 		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
430 			: omap_write_buf8(mtd, (u_char *) addr, len);
431 	return 0;
432 }
433 
434 /**
435  * omap_read_buf_dma_pref - read data from NAND controller into buffer
436  * @mtd: MTD device structure
437  * @buf: buffer to store date
438  * @len: number of bytes to read
439  */
omap_read_buf_dma_pref(struct mtd_info * mtd,u_char * buf,int len)440 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
441 {
442 	if (len <= mtd->oobsize)
443 		omap_read_buf_pref(mtd, buf, len);
444 	else
445 		/* start transfer in DMA mode */
446 		omap_nand_dma_transfer(mtd, buf, len, 0x0);
447 }
448 
449 /**
450  * omap_write_buf_dma_pref - write buffer to NAND controller
451  * @mtd: MTD device structure
452  * @buf: data buffer
453  * @len: number of bytes to write
454  */
omap_write_buf_dma_pref(struct mtd_info * mtd,const u_char * buf,int len)455 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
456 					const u_char *buf, int len)
457 {
458 	if (len <= mtd->oobsize)
459 		omap_write_buf_pref(mtd, buf, len);
460 	else
461 		/* start transfer in DMA mode */
462 		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
463 }
464 
465 /*
466  * omap_nand_irq - GMPC irq handler
467  * @this_irq: gpmc irq number
468  * @dev: omap_nand_info structure pointer is passed here
469  */
omap_nand_irq(int this_irq,void * dev)470 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
471 {
472 	struct omap_nand_info *info = (struct omap_nand_info *) dev;
473 	u32 bytes;
474 	u32 irq_stat;
475 
476 	irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
477 	bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
478 	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
479 	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
480 		if (irq_stat & 0x2)
481 			goto done;
482 
483 		if (info->buf_len && (info->buf_len < bytes))
484 			bytes = info->buf_len;
485 		else if (!info->buf_len)
486 			bytes = 0;
487 		iowrite32_rep(info->nand.IO_ADDR_W,
488 						(u32 *)info->buf, bytes >> 2);
489 		info->buf = info->buf + bytes;
490 		info->buf_len -= bytes;
491 
492 	} else {
493 		ioread32_rep(info->nand.IO_ADDR_R,
494 						(u32 *)info->buf, bytes >> 2);
495 		info->buf = info->buf + bytes;
496 
497 		if (irq_stat & 0x2)
498 			goto done;
499 	}
500 	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
501 
502 	return IRQ_HANDLED;
503 
504 done:
505 	complete(&info->comp);
506 	/* disable irq */
507 	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
508 
509 	/* clear status */
510 	gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
511 
512 	return IRQ_HANDLED;
513 }
514 
515 /*
516  * omap_read_buf_irq_pref - read data from NAND controller into buffer
517  * @mtd: MTD device structure
518  * @buf: buffer to store date
519  * @len: number of bytes to read
520  */
omap_read_buf_irq_pref(struct mtd_info * mtd,u_char * buf,int len)521 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
522 {
523 	struct omap_nand_info *info = container_of(mtd,
524 						struct omap_nand_info, mtd);
525 	int ret = 0;
526 
527 	if (len <= mtd->oobsize) {
528 		omap_read_buf_pref(mtd, buf, len);
529 		return;
530 	}
531 
532 	info->iomode = OMAP_NAND_IO_READ;
533 	info->buf = buf;
534 	init_completion(&info->comp);
535 
536 	/*  configure and start prefetch transfer */
537 	ret = gpmc_prefetch_enable(info->gpmc_cs,
538 			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
539 	if (ret)
540 		/* PFPW engine is busy, use cpu copy method */
541 		goto out_copy;
542 
543 	info->buf_len = len;
544 	/* enable irq */
545 	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
546 		(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
547 
548 	/* waiting for read to complete */
549 	wait_for_completion(&info->comp);
550 
551 	/* disable and stop the PFPW engine */
552 	gpmc_prefetch_reset(info->gpmc_cs);
553 	return;
554 
555 out_copy:
556 	if (info->nand.options & NAND_BUSWIDTH_16)
557 		omap_read_buf16(mtd, buf, len);
558 	else
559 		omap_read_buf8(mtd, buf, len);
560 }
561 
562 /*
563  * omap_write_buf_irq_pref - write buffer to NAND controller
564  * @mtd: MTD device structure
565  * @buf: data buffer
566  * @len: number of bytes to write
567  */
omap_write_buf_irq_pref(struct mtd_info * mtd,const u_char * buf,int len)568 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
569 					const u_char *buf, int len)
570 {
571 	struct omap_nand_info *info = container_of(mtd,
572 						struct omap_nand_info, mtd);
573 	int ret = 0;
574 	unsigned long tim, limit;
575 
576 	if (len <= mtd->oobsize) {
577 		omap_write_buf_pref(mtd, buf, len);
578 		return;
579 	}
580 
581 	info->iomode = OMAP_NAND_IO_WRITE;
582 	info->buf = (u_char *) buf;
583 	init_completion(&info->comp);
584 
585 	/* configure and start prefetch transfer : size=24 */
586 	ret = gpmc_prefetch_enable(info->gpmc_cs,
587 			(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
588 	if (ret)
589 		/* PFPW engine is busy, use cpu copy method */
590 		goto out_copy;
591 
592 	info->buf_len = len;
593 	/* enable irq */
594 	gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
595 			(GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
596 
597 	/* waiting for write to complete */
598 	wait_for_completion(&info->comp);
599 	/* wait for data to flushed-out before reset the prefetch */
600 	tim = 0;
601 	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
602 	while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
603 		cpu_relax();
604 
605 	/* disable and stop the PFPW engine */
606 	gpmc_prefetch_reset(info->gpmc_cs);
607 	return;
608 
609 out_copy:
610 	if (info->nand.options & NAND_BUSWIDTH_16)
611 		omap_write_buf16(mtd, buf, len);
612 	else
613 		omap_write_buf8(mtd, buf, len);
614 }
615 
616 /**
617  * omap_verify_buf - Verify chip data against buffer
618  * @mtd: MTD device structure
619  * @buf: buffer containing the data to compare
620  * @len: number of bytes to compare
621  */
omap_verify_buf(struct mtd_info * mtd,const u_char * buf,int len)622 static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
623 {
624 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
625 							mtd);
626 	u16 *p = (u16 *) buf;
627 
628 	len >>= 1;
629 	while (len--) {
630 		if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
631 			return -EFAULT;
632 	}
633 
634 	return 0;
635 }
636 
637 /**
638  * gen_true_ecc - This function will generate true ECC value
639  * @ecc_buf: buffer to store ecc code
640  *
641  * This generated true ECC value can be used when correcting
642  * data read from NAND flash memory core
643  */
gen_true_ecc(u8 * ecc_buf)644 static void gen_true_ecc(u8 *ecc_buf)
645 {
646 	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
647 		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
648 
649 	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
650 			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
651 	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
652 			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
653 	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
654 			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
655 }
656 
657 /**
658  * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
659  * @ecc_data1:  ecc code from nand spare area
660  * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
661  * @page_data:  page data
662  *
663  * This function compares two ECC's and indicates if there is an error.
664  * If the error can be corrected it will be corrected to the buffer.
665  * If there is no error, %0 is returned. If there is an error but it
666  * was corrected, %1 is returned. Otherwise, %-1 is returned.
667  */
omap_compare_ecc(u8 * ecc_data1,u8 * ecc_data2,u8 * page_data)668 static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
669 			    u8 *ecc_data2,	/* read from register */
670 			    u8 *page_data)
671 {
672 	uint	i;
673 	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
674 	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
675 	u8	ecc_bit[24];
676 	u8	ecc_sum = 0;
677 	u8	find_bit = 0;
678 	uint	find_byte = 0;
679 	int	isEccFF;
680 
681 	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
682 
683 	gen_true_ecc(ecc_data1);
684 	gen_true_ecc(ecc_data2);
685 
686 	for (i = 0; i <= 2; i++) {
687 		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
688 		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
689 	}
690 
691 	for (i = 0; i < 8; i++) {
692 		tmp0_bit[i]     = *ecc_data1 % 2;
693 		*ecc_data1	= *ecc_data1 / 2;
694 	}
695 
696 	for (i = 0; i < 8; i++) {
697 		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
698 		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
699 	}
700 
701 	for (i = 0; i < 8; i++) {
702 		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
703 		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
704 	}
705 
706 	for (i = 0; i < 8; i++) {
707 		comp0_bit[i]     = *ecc_data2 % 2;
708 		*ecc_data2       = *ecc_data2 / 2;
709 	}
710 
711 	for (i = 0; i < 8; i++) {
712 		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
713 		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
714 	}
715 
716 	for (i = 0; i < 8; i++) {
717 		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
718 		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
719 	}
720 
721 	for (i = 0; i < 6; i++)
722 		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
723 
724 	for (i = 0; i < 8; i++)
725 		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
726 
727 	for (i = 0; i < 8; i++)
728 		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
729 
730 	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
731 	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
732 
733 	for (i = 0; i < 24; i++)
734 		ecc_sum += ecc_bit[i];
735 
736 	switch (ecc_sum) {
737 	case 0:
738 		/* Not reached because this function is not called if
739 		 *  ECC values are equal
740 		 */
741 		return 0;
742 
743 	case 1:
744 		/* Uncorrectable error */
745 		pr_debug("ECC UNCORRECTED_ERROR 1\n");
746 		return -1;
747 
748 	case 11:
749 		/* UN-Correctable error */
750 		pr_debug("ECC UNCORRECTED_ERROR B\n");
751 		return -1;
752 
753 	case 12:
754 		/* Correctable error */
755 		find_byte = (ecc_bit[23] << 8) +
756 			    (ecc_bit[21] << 7) +
757 			    (ecc_bit[19] << 6) +
758 			    (ecc_bit[17] << 5) +
759 			    (ecc_bit[15] << 4) +
760 			    (ecc_bit[13] << 3) +
761 			    (ecc_bit[11] << 2) +
762 			    (ecc_bit[9]  << 1) +
763 			    ecc_bit[7];
764 
765 		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
766 
767 		pr_debug("Correcting single bit ECC error at offset: "
768 				"%d, bit: %d\n", find_byte, find_bit);
769 
770 		page_data[find_byte] ^= (1 << find_bit);
771 
772 		return 1;
773 	default:
774 		if (isEccFF) {
775 			if (ecc_data2[0] == 0 &&
776 			    ecc_data2[1] == 0 &&
777 			    ecc_data2[2] == 0)
778 				return 0;
779 		}
780 		pr_debug("UNCORRECTED_ERROR default\n");
781 		return -1;
782 	}
783 }
784 
785 /**
786  * omap_correct_data - Compares the ECC read with HW generated ECC
787  * @mtd: MTD device structure
788  * @dat: page data
789  * @read_ecc: ecc read from nand flash
790  * @calc_ecc: ecc read from HW ECC registers
791  *
792  * Compares the ecc read from nand spare area with ECC registers values
793  * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
794  * detection and correction. If there are no errors, %0 is returned. If
795  * there were errors and all of the errors were corrected, the number of
796  * corrected errors is returned. If uncorrectable errors exist, %-1 is
797  * returned.
798  */
omap_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)799 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
800 				u_char *read_ecc, u_char *calc_ecc)
801 {
802 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
803 							mtd);
804 	int blockCnt = 0, i = 0, ret = 0;
805 	int stat = 0;
806 
807 	/* Ex NAND_ECC_HW12_2048 */
808 	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
809 			(info->nand.ecc.size  == 2048))
810 		blockCnt = 4;
811 	else
812 		blockCnt = 1;
813 
814 	for (i = 0; i < blockCnt; i++) {
815 		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
816 			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
817 			if (ret < 0)
818 				return ret;
819 			/* keep track of the number of corrected errors */
820 			stat += ret;
821 		}
822 		read_ecc += 3;
823 		calc_ecc += 3;
824 		dat      += 512;
825 	}
826 	return stat;
827 }
828 
829 /**
830  * omap_calcuate_ecc - Generate non-inverted ECC bytes.
831  * @mtd: MTD device structure
832  * @dat: The pointer to data on which ecc is computed
833  * @ecc_code: The ecc_code buffer
834  *
835  * Using noninverted ECC can be considered ugly since writing a blank
836  * page ie. padding will clear the ECC bytes. This is no problem as long
837  * nobody is trying to write data on the seemingly unused page. Reading
838  * an erased page will produce an ECC mismatch between generated and read
839  * ECC bytes that has to be dealt with separately.
840  */
omap_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)841 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
842 				u_char *ecc_code)
843 {
844 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
845 							mtd);
846 	return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
847 }
848 
849 /**
850  * omap_enable_hwecc - This function enables the hardware ecc functionality
851  * @mtd: MTD device structure
852  * @mode: Read/Write mode
853  */
omap_enable_hwecc(struct mtd_info * mtd,int mode)854 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
855 {
856 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
857 							mtd);
858 	struct nand_chip *chip = mtd->priv;
859 	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
860 
861 	gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
862 }
863 
864 /**
865  * omap_wait - wait until the command is done
866  * @mtd: MTD device structure
867  * @chip: NAND Chip structure
868  *
869  * Wait function is called during Program and erase operations and
870  * the way it is called from MTD layer, we should wait till the NAND
871  * chip is ready after the programming/erase operation has completed.
872  *
873  * Erase can take up to 400ms and program up to 20ms according to
874  * general NAND and SmartMedia specs
875  */
omap_wait(struct mtd_info * mtd,struct nand_chip * chip)876 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
877 {
878 	struct nand_chip *this = mtd->priv;
879 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
880 							mtd);
881 	unsigned long timeo = jiffies;
882 	int status = NAND_STATUS_FAIL, state = this->state;
883 
884 	if (state == FL_ERASING)
885 		timeo += (HZ * 400) / 1000;
886 	else
887 		timeo += (HZ * 20) / 1000;
888 
889 	gpmc_nand_write(info->gpmc_cs,
890 			GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
891 	while (time_before(jiffies, timeo)) {
892 		status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
893 		if (status & NAND_STATUS_READY)
894 			break;
895 		cond_resched();
896 	}
897 	return status;
898 }
899 
900 /**
901  * omap_dev_ready - calls the platform specific dev_ready function
902  * @mtd: MTD device structure
903  */
omap_dev_ready(struct mtd_info * mtd)904 static int omap_dev_ready(struct mtd_info *mtd)
905 {
906 	unsigned int val = 0;
907 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
908 							mtd);
909 
910 	val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
911 	if ((val & 0x100) == 0x100) {
912 		/* Clear IRQ Interrupt */
913 		val |= 0x100;
914 		val &= ~(0x0);
915 		gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
916 	} else {
917 		unsigned int cnt = 0;
918 		while (cnt++ < 0x1FF) {
919 			if  ((val & 0x100) == 0x100)
920 				return 0;
921 			val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
922 		}
923 	}
924 
925 	return 1;
926 }
927 
omap_nand_probe(struct platform_device * pdev)928 static int __devinit omap_nand_probe(struct platform_device *pdev)
929 {
930 	struct omap_nand_info		*info;
931 	struct omap_nand_platform_data	*pdata;
932 	int				err;
933 	int				i, offset;
934 
935 	pdata = pdev->dev.platform_data;
936 	if (pdata == NULL) {
937 		dev_err(&pdev->dev, "platform data missing\n");
938 		return -ENODEV;
939 	}
940 
941 	info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
942 	if (!info)
943 		return -ENOMEM;
944 
945 	platform_set_drvdata(pdev, info);
946 
947 	spin_lock_init(&info->controller.lock);
948 	init_waitqueue_head(&info->controller.wq);
949 
950 	info->pdev = pdev;
951 
952 	info->gpmc_cs		= pdata->cs;
953 	info->phys_base		= pdata->phys_base;
954 
955 	info->mtd.priv		= &info->nand;
956 	info->mtd.name		= dev_name(&pdev->dev);
957 	info->mtd.owner		= THIS_MODULE;
958 
959 	info->nand.options	= pdata->devsize;
960 	info->nand.options	|= NAND_SKIP_BBTSCAN;
961 
962 	/* NAND write protect off */
963 	gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
964 
965 	if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
966 				pdev->dev.driver->name)) {
967 		err = -EBUSY;
968 		goto out_free_info;
969 	}
970 
971 	info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
972 	if (!info->nand.IO_ADDR_R) {
973 		err = -ENOMEM;
974 		goto out_release_mem_region;
975 	}
976 
977 	info->nand.controller = &info->controller;
978 
979 	info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
980 	info->nand.cmd_ctrl  = omap_hwcontrol;
981 
982 	/*
983 	 * If RDY/BSY line is connected to OMAP then use the omap ready
984 	 * funcrtion and the generic nand_wait function which reads the status
985 	 * register after monitoring the RDY/BSY line.Otherwise use a standard
986 	 * chip delay which is slightly more than tR (AC Timing) of the NAND
987 	 * device and read status register until you get a failure or success
988 	 */
989 	if (pdata->dev_ready) {
990 		info->nand.dev_ready = omap_dev_ready;
991 		info->nand.chip_delay = 0;
992 	} else {
993 		info->nand.waitfunc = omap_wait;
994 		info->nand.chip_delay = 50;
995 	}
996 
997 	switch (pdata->xfer_type) {
998 	case NAND_OMAP_PREFETCH_POLLED:
999 		info->nand.read_buf   = omap_read_buf_pref;
1000 		info->nand.write_buf  = omap_write_buf_pref;
1001 		break;
1002 
1003 	case NAND_OMAP_POLLED:
1004 		if (info->nand.options & NAND_BUSWIDTH_16) {
1005 			info->nand.read_buf   = omap_read_buf16;
1006 			info->nand.write_buf  = omap_write_buf16;
1007 		} else {
1008 			info->nand.read_buf   = omap_read_buf8;
1009 			info->nand.write_buf  = omap_write_buf8;
1010 		}
1011 		break;
1012 
1013 	case NAND_OMAP_PREFETCH_DMA:
1014 		err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1015 				omap_nand_dma_cb, &info->comp, &info->dma_ch);
1016 		if (err < 0) {
1017 			info->dma_ch = -1;
1018 			dev_err(&pdev->dev, "DMA request failed!\n");
1019 			goto out_release_mem_region;
1020 		} else {
1021 			omap_set_dma_dest_burst_mode(info->dma_ch,
1022 					OMAP_DMA_DATA_BURST_16);
1023 			omap_set_dma_src_burst_mode(info->dma_ch,
1024 					OMAP_DMA_DATA_BURST_16);
1025 
1026 			info->nand.read_buf   = omap_read_buf_dma_pref;
1027 			info->nand.write_buf  = omap_write_buf_dma_pref;
1028 		}
1029 		break;
1030 
1031 	case NAND_OMAP_PREFETCH_IRQ:
1032 		err = request_irq(pdata->gpmc_irq,
1033 				omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1034 		if (err) {
1035 			dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1036 							pdata->gpmc_irq, err);
1037 			goto out_release_mem_region;
1038 		} else {
1039 			info->gpmc_irq	     = pdata->gpmc_irq;
1040 			info->nand.read_buf  = omap_read_buf_irq_pref;
1041 			info->nand.write_buf = omap_write_buf_irq_pref;
1042 		}
1043 		break;
1044 
1045 	default:
1046 		dev_err(&pdev->dev,
1047 			"xfer_type(%d) not supported!\n", pdata->xfer_type);
1048 		err = -EINVAL;
1049 		goto out_release_mem_region;
1050 	}
1051 
1052 	info->nand.verify_buf = omap_verify_buf;
1053 
1054 	/* selsect the ecc type */
1055 	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1056 		info->nand.ecc.mode = NAND_ECC_SOFT;
1057 	else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1058 		(pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1059 		info->nand.ecc.bytes            = 3;
1060 		info->nand.ecc.size             = 512;
1061 		info->nand.ecc.calculate        = omap_calculate_ecc;
1062 		info->nand.ecc.hwctl            = omap_enable_hwecc;
1063 		info->nand.ecc.correct          = omap_correct_data;
1064 		info->nand.ecc.mode             = NAND_ECC_HW;
1065 	}
1066 
1067 	/* DIP switches on some boards change between 8 and 16 bit
1068 	 * bus widths for flash.  Try the other width if the first try fails.
1069 	 */
1070 	if (nand_scan_ident(&info->mtd, 1, NULL)) {
1071 		info->nand.options ^= NAND_BUSWIDTH_16;
1072 		if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073 			err = -ENXIO;
1074 			goto out_release_mem_region;
1075 		}
1076 	}
1077 
1078 	/* rom code layout */
1079 	if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1080 
1081 		if (info->nand.options & NAND_BUSWIDTH_16)
1082 			offset = 2;
1083 		else {
1084 			offset = 1;
1085 			info->nand.badblock_pattern = &bb_descrip_flashbased;
1086 		}
1087 		omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1088 		for (i = 0; i < omap_oobinfo.eccbytes; i++)
1089 			omap_oobinfo.eccpos[i] = i+offset;
1090 
1091 		omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1092 		omap_oobinfo.oobfree->length = info->mtd.oobsize -
1093 					(offset + omap_oobinfo.eccbytes);
1094 
1095 		info->nand.ecc.layout = &omap_oobinfo;
1096 	}
1097 
1098 	/* second phase scan */
1099 	if (nand_scan_tail(&info->mtd)) {
1100 		err = -ENXIO;
1101 		goto out_release_mem_region;
1102 	}
1103 
1104 	mtd_device_parse_register(&info->mtd, NULL, 0,
1105 			pdata->parts, pdata->nr_parts);
1106 
1107 	platform_set_drvdata(pdev, &info->mtd);
1108 
1109 	return 0;
1110 
1111 out_release_mem_region:
1112 	release_mem_region(info->phys_base, NAND_IO_SIZE);
1113 out_free_info:
1114 	kfree(info);
1115 
1116 	return err;
1117 }
1118 
omap_nand_remove(struct platform_device * pdev)1119 static int omap_nand_remove(struct platform_device *pdev)
1120 {
1121 	struct mtd_info *mtd = platform_get_drvdata(pdev);
1122 	struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1123 							mtd);
1124 
1125 	platform_set_drvdata(pdev, NULL);
1126 	if (info->dma_ch != -1)
1127 		omap_free_dma(info->dma_ch);
1128 
1129 	if (info->gpmc_irq)
1130 		free_irq(info->gpmc_irq, info);
1131 
1132 	/* Release NAND device, its internal structures and partitions */
1133 	nand_release(&info->mtd);
1134 	iounmap(info->nand.IO_ADDR_R);
1135 	kfree(&info->mtd);
1136 	return 0;
1137 }
1138 
1139 static struct platform_driver omap_nand_driver = {
1140 	.probe		= omap_nand_probe,
1141 	.remove		= omap_nand_remove,
1142 	.driver		= {
1143 		.name	= DRIVER_NAME,
1144 		.owner	= THIS_MODULE,
1145 	},
1146 };
1147 
1148 module_platform_driver(omap_nand_driver);
1149 
1150 MODULE_ALIAS("platform:" DRIVER_NAME);
1151 MODULE_LICENSE("GPL");
1152 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
1153