1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 #include <kunit/static_stub.h>
22
23 /*
24 * MUSTDO:
25 * - test ext4_ext_search_left() and ext4_ext_search_right()
26 * - search for metadata in few groups
27 *
28 * TODO v4:
29 * - normalization should take into account whether file is still open
30 * - discard preallocations if no free space left (policy?)
31 * - don't normalize tails
32 * - quota
33 * - reservation for superuser
34 *
35 * TODO v3:
36 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
37 * - track min/max extents in each group for better group selection
38 * - mb_mark_used() may allocate chunk right after splitting buddy
39 * - tree of groups sorted by number of free blocks
40 * - error handling
41 */
42
43 /*
44 * The allocation request involve request for multiple number of blocks
45 * near to the goal(block) value specified.
46 *
47 * During initialization phase of the allocator we decide to use the
48 * group preallocation or inode preallocation depending on the size of
49 * the file. The size of the file could be the resulting file size we
50 * would have after allocation, or the current file size, which ever
51 * is larger. If the size is less than sbi->s_mb_stream_request we
52 * select to use the group preallocation. The default value of
53 * s_mb_stream_request is 16 blocks. This can also be tuned via
54 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
55 * terms of number of blocks.
56 *
57 * The main motivation for having small file use group preallocation is to
58 * ensure that we have small files closer together on the disk.
59 *
60 * First stage the allocator looks at the inode prealloc list,
61 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
62 * spaces for this particular inode. The inode prealloc space is
63 * represented as:
64 *
65 * pa_lstart -> the logical start block for this prealloc space
66 * pa_pstart -> the physical start block for this prealloc space
67 * pa_len -> length for this prealloc space (in clusters)
68 * pa_free -> free space available in this prealloc space (in clusters)
69 *
70 * The inode preallocation space is used looking at the _logical_ start
71 * block. If only the logical file block falls within the range of prealloc
72 * space we will consume the particular prealloc space. This makes sure that
73 * we have contiguous physical blocks representing the file blocks
74 *
75 * The important thing to be noted in case of inode prealloc space is that
76 * we don't modify the values associated to inode prealloc space except
77 * pa_free.
78 *
79 * If we are not able to find blocks in the inode prealloc space and if we
80 * have the group allocation flag set then we look at the locality group
81 * prealloc space. These are per CPU prealloc list represented as
82 *
83 * ext4_sb_info.s_locality_groups[smp_processor_id()]
84 *
85 * The reason for having a per cpu locality group is to reduce the contention
86 * between CPUs. It is possible to get scheduled at this point.
87 *
88 * The locality group prealloc space is used looking at whether we have
89 * enough free space (pa_free) within the prealloc space.
90 *
91 * If we can't allocate blocks via inode prealloc or/and locality group
92 * prealloc then we look at the buddy cache. The buddy cache is represented
93 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
94 * mapped to the buddy and bitmap information regarding different
95 * groups. The buddy information is attached to buddy cache inode so that
96 * we can access them through the page cache. The information regarding
97 * each group is loaded via ext4_mb_load_buddy. The information involve
98 * block bitmap and buddy information. The information are stored in the
99 * inode as:
100 *
101 * { page }
102 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
103 *
104 *
105 * one block each for bitmap and buddy information. So for each group we
106 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
107 * blocksize) blocks. So it can have information regarding groups_per_page
108 * which is blocks_per_page/2
109 *
110 * The buddy cache inode is not stored on disk. The inode is thrown
111 * away when the filesystem is unmounted.
112 *
113 * We look for count number of blocks in the buddy cache. If we were able
114 * to locate that many free blocks we return with additional information
115 * regarding rest of the contiguous physical block available
116 *
117 * Before allocating blocks via buddy cache we normalize the request
118 * blocks. This ensure we ask for more blocks that we needed. The extra
119 * blocks that we get after allocation is added to the respective prealloc
120 * list. In case of inode preallocation we follow a list of heuristics
121 * based on file size. This can be found in ext4_mb_normalize_request. If
122 * we are doing a group prealloc we try to normalize the request to
123 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
124 * dependent on the cluster size; for non-bigalloc file systems, it is
125 * 512 blocks. This can be tuned via
126 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * smallest multiple of the stripe value (sbi->s_stripe) which is
130 * greater than the default mb_group_prealloc.
131 *
132 * If "mb_optimize_scan" mount option is set, we maintain in memory group info
133 * structures in two data structures:
134 *
135 * 1) Array of largest free order xarrays (sbi->s_mb_largest_free_orders)
136 *
137 * Locking: Writers use xa_lock, readers use rcu_read_lock.
138 *
139 * This is an array of xarrays where the index in the array represents the
140 * largest free order in the buddy bitmap of the participating group infos of
141 * that xarray. So, there are exactly MB_NUM_ORDERS(sb) (which means total
142 * number of buddy bitmap orders possible) number of xarrays. Group-infos are
143 * placed in appropriate xarrays.
144 *
145 * 2) Average fragment size xarrays (sbi->s_mb_avg_fragment_size)
146 *
147 * Locking: Writers use xa_lock, readers use rcu_read_lock.
148 *
149 * This is an array of xarrays where in the i-th xarray there are groups with
150 * average fragment size >= 2^i and < 2^(i+1). The average fragment size
151 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
152 * Note that we don't bother with a special xarray for completely empty
153 * groups so we only have MB_NUM_ORDERS(sb) xarrays. Group-infos are placed
154 * in appropriate xarrays.
155 *
156 * In xarray, the index is the block group number, the value is the block group
157 * information, and a non-empty value indicates the block group is present in
158 * the current xarray.
159 *
160 * When "mb_optimize_scan" mount option is set, mballoc consults the above data
161 * structures to decide the order in which groups are to be traversed for
162 * fulfilling an allocation request.
163 *
164 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
165 * >= the order of the request. We directly look at the largest free order list
166 * in the data structure (1) above where largest_free_order = order of the
167 * request. If that list is empty, we look at remaining list in the increasing
168 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
169 * lookup in O(1) time.
170 *
171 * At CR_GOAL_LEN_FAST, we only consider groups where
172 * average fragment size > request size. So, we lookup a group which has average
173 * fragment size just above or equal to request size using our average fragment
174 * size group lists (data structure 2) in O(1) time.
175 *
176 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
177 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
178 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
179 * fragment size > goal length. So before falling to the slower
180 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
181 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
182 * enough average fragment size. This increases the chances of finding a
183 * suitable block group in O(1) time and results in faster allocation at the
184 * cost of reduced size of allocation.
185 *
186 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
187 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
188 * CR_GOAL_LEN_FAST phase.
189 *
190 * The regular allocator (using the buddy cache) supports a few tunables.
191 *
192 * /sys/fs/ext4/<partition>/mb_min_to_scan
193 * /sys/fs/ext4/<partition>/mb_max_to_scan
194 * /sys/fs/ext4/<partition>/mb_order2_req
195 * /sys/fs/ext4/<partition>/mb_max_linear_groups
196 *
197 * The regular allocator uses buddy scan only if the request len is power of
198 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
199 * value of s_mb_order2_reqs can be tuned via
200 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
201 * stripe size (sbi->s_stripe), we try to search for contiguous block in
202 * stripe size. This should result in better allocation on RAID setups. If
203 * not, we search in the specific group using bitmap for best extents. The
204 * tunable min_to_scan and max_to_scan control the behaviour here.
205 * min_to_scan indicate how long the mballoc __must__ look for a best
206 * extent and max_to_scan indicates how long the mballoc __can__ look for a
207 * best extent in the found extents. Searching for the blocks starts with
208 * the group specified as the goal value in allocation context via
209 * ac_g_ex. Each group is first checked based on the criteria whether it
210 * can be used for allocation. ext4_mb_good_group explains how the groups are
211 * checked.
212 *
213 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
214 * get traversed linearly. That may result in subsequent allocations being not
215 * close to each other. And so, the underlying device may get filled up in a
216 * non-linear fashion. While that may not matter on non-rotational devices, for
217 * rotational devices that may result in higher seek times. "mb_max_linear_groups"
218 * tells mballoc how many groups mballoc should search linearly before
219 * performing consulting above data structures for more efficient lookups. For
220 * non rotational devices, this value defaults to 0 and for rotational devices
221 * this is set to MB_DEFAULT_LINEAR_LIMIT.
222 *
223 * Both the prealloc space are getting populated as above. So for the first
224 * request we will hit the buddy cache which will result in this prealloc
225 * space getting filled. The prealloc space is then later used for the
226 * subsequent request.
227 */
228
229 /*
230 * mballoc operates on the following data:
231 * - on-disk bitmap
232 * - in-core buddy (actually includes buddy and bitmap)
233 * - preallocation descriptors (PAs)
234 *
235 * there are two types of preallocations:
236 * - inode
237 * assiged to specific inode and can be used for this inode only.
238 * it describes part of inode's space preallocated to specific
239 * physical blocks. any block from that preallocated can be used
240 * independent. the descriptor just tracks number of blocks left
241 * unused. so, before taking some block from descriptor, one must
242 * make sure corresponded logical block isn't allocated yet. this
243 * also means that freeing any block within descriptor's range
244 * must discard all preallocated blocks.
245 * - locality group
246 * assigned to specific locality group which does not translate to
247 * permanent set of inodes: inode can join and leave group. space
248 * from this type of preallocation can be used for any inode. thus
249 * it's consumed from the beginning to the end.
250 *
251 * relation between them can be expressed as:
252 * in-core buddy = on-disk bitmap + preallocation descriptors
253 *
254 * this mean blocks mballoc considers used are:
255 * - allocated blocks (persistent)
256 * - preallocated blocks (non-persistent)
257 *
258 * consistency in mballoc world means that at any time a block is either
259 * free or used in ALL structures. notice: "any time" should not be read
260 * literally -- time is discrete and delimited by locks.
261 *
262 * to keep it simple, we don't use block numbers, instead we count number of
263 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
264 *
265 * all operations can be expressed as:
266 * - init buddy: buddy = on-disk + PAs
267 * - new PA: buddy += N; PA = N
268 * - use inode PA: on-disk += N; PA -= N
269 * - discard inode PA buddy -= on-disk - PA; PA = 0
270 * - use locality group PA on-disk += N; PA -= N
271 * - discard locality group PA buddy -= PA; PA = 0
272 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
273 * is used in real operation because we can't know actual used
274 * bits from PA, only from on-disk bitmap
275 *
276 * if we follow this strict logic, then all operations above should be atomic.
277 * given some of them can block, we'd have to use something like semaphores
278 * killing performance on high-end SMP hardware. let's try to relax it using
279 * the following knowledge:
280 * 1) if buddy is referenced, it's already initialized
281 * 2) while block is used in buddy and the buddy is referenced,
282 * nobody can re-allocate that block
283 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
284 * bit set and PA claims same block, it's OK. IOW, one can set bit in
285 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
286 * block
287 *
288 * so, now we're building a concurrency table:
289 * - init buddy vs.
290 * - new PA
291 * blocks for PA are allocated in the buddy, buddy must be referenced
292 * until PA is linked to allocation group to avoid concurrent buddy init
293 * - use inode PA
294 * we need to make sure that either on-disk bitmap or PA has uptodate data
295 * given (3) we care that PA-=N operation doesn't interfere with init
296 * - discard inode PA
297 * the simplest way would be to have buddy initialized by the discard
298 * - use locality group PA
299 * again PA-=N must be serialized with init
300 * - discard locality group PA
301 * the simplest way would be to have buddy initialized by the discard
302 * - new PA vs.
303 * - use inode PA
304 * i_data_sem serializes them
305 * - discard inode PA
306 * discard process must wait until PA isn't used by another process
307 * - use locality group PA
308 * some mutex should serialize them
309 * - discard locality group PA
310 * discard process must wait until PA isn't used by another process
311 * - use inode PA
312 * - use inode PA
313 * i_data_sem or another mutex should serializes them
314 * - discard inode PA
315 * discard process must wait until PA isn't used by another process
316 * - use locality group PA
317 * nothing wrong here -- they're different PAs covering different blocks
318 * - discard locality group PA
319 * discard process must wait until PA isn't used by another process
320 *
321 * now we're ready to make few consequences:
322 * - PA is referenced and while it is no discard is possible
323 * - PA is referenced until block isn't marked in on-disk bitmap
324 * - PA changes only after on-disk bitmap
325 * - discard must not compete with init. either init is done before
326 * any discard or they're serialized somehow
327 * - buddy init as sum of on-disk bitmap and PAs is done atomically
328 *
329 * a special case when we've used PA to emptiness. no need to modify buddy
330 * in this case, but we should care about concurrent init
331 *
332 */
333
334 /*
335 * Logic in few words:
336 *
337 * - allocation:
338 * load group
339 * find blocks
340 * mark bits in on-disk bitmap
341 * release group
342 *
343 * - use preallocation:
344 * find proper PA (per-inode or group)
345 * load group
346 * mark bits in on-disk bitmap
347 * release group
348 * release PA
349 *
350 * - free:
351 * load group
352 * mark bits in on-disk bitmap
353 * release group
354 *
355 * - discard preallocations in group:
356 * mark PAs deleted
357 * move them onto local list
358 * load on-disk bitmap
359 * load group
360 * remove PA from object (inode or locality group)
361 * mark free blocks in-core
362 *
363 * - discard inode's preallocations:
364 */
365
366 /*
367 * Locking rules
368 *
369 * Locks:
370 * - bitlock on a group (group)
371 * - object (inode/locality) (object)
372 * - per-pa lock (pa)
373 * - cr_power2_aligned lists lock (cr_power2_aligned)
374 * - cr_goal_len_fast lists lock (cr_goal_len_fast)
375 *
376 * Paths:
377 * - new pa
378 * object
379 * group
380 *
381 * - find and use pa:
382 * pa
383 *
384 * - release consumed pa:
385 * pa
386 * group
387 * object
388 *
389 * - generate in-core bitmap:
390 * group
391 * pa
392 *
393 * - discard all for given object (inode, locality group):
394 * object
395 * pa
396 * group
397 *
398 * - discard all for given group:
399 * group
400 * pa
401 * group
402 * object
403 *
404 * - allocation path (ext4_mb_regular_allocator)
405 * group
406 * cr_power2_aligned/cr_goal_len_fast
407 */
408 static struct kmem_cache *ext4_pspace_cachep;
409 static struct kmem_cache *ext4_ac_cachep;
410 static struct kmem_cache *ext4_free_data_cachep;
411
412 /* We create slab caches for groupinfo data structures based on the
413 * superblock block size. There will be one per mounted filesystem for
414 * each unique s_blocksize_bits */
415 #define NR_GRPINFO_CACHES 8
416 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
417
418 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
419 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
420 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
421 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
422 };
423
424 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
425 ext4_group_t group);
426 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
427
428 static int ext4_mb_scan_group(struct ext4_allocation_context *ac,
429 ext4_group_t group);
430
431 static int ext4_try_to_trim_range(struct super_block *sb,
432 struct ext4_buddy *e4b, ext4_grpblk_t start,
433 ext4_grpblk_t max, ext4_grpblk_t minblocks);
434
435 /*
436 * The algorithm using this percpu seq counter goes below:
437 * 1. We sample the percpu discard_pa_seq counter before trying for block
438 * allocation in ext4_mb_new_blocks().
439 * 2. We increment this percpu discard_pa_seq counter when we either allocate
440 * or free these blocks i.e. while marking those blocks as used/free in
441 * mb_mark_used()/mb_free_blocks().
442 * 3. We also increment this percpu seq counter when we successfully identify
443 * that the bb_prealloc_list is not empty and hence proceed for discarding
444 * of those PAs inside ext4_mb_discard_group_preallocations().
445 *
446 * Now to make sure that the regular fast path of block allocation is not
447 * affected, as a small optimization we only sample the percpu seq counter
448 * on that cpu. Only when the block allocation fails and when freed blocks
449 * found were 0, that is when we sample percpu seq counter for all cpus using
450 * below function ext4_get_discard_pa_seq_sum(). This happens after making
451 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
452 */
453 static DEFINE_PER_CPU(u64, discard_pa_seq);
ext4_get_discard_pa_seq_sum(void)454 static inline u64 ext4_get_discard_pa_seq_sum(void)
455 {
456 int __cpu;
457 u64 __seq = 0;
458
459 for_each_possible_cpu(__cpu)
460 __seq += per_cpu(discard_pa_seq, __cpu);
461 return __seq;
462 }
463
mb_correct_addr_and_bit(int * bit,void * addr)464 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
465 {
466 #if BITS_PER_LONG == 64
467 *bit += ((unsigned long) addr & 7UL) << 3;
468 addr = (void *) ((unsigned long) addr & ~7UL);
469 #elif BITS_PER_LONG == 32
470 *bit += ((unsigned long) addr & 3UL) << 3;
471 addr = (void *) ((unsigned long) addr & ~3UL);
472 #else
473 #error "how many bits you are?!"
474 #endif
475 return addr;
476 }
477
mb_test_bit(int bit,void * addr)478 static inline int mb_test_bit(int bit, void *addr)
479 {
480 /*
481 * ext4_test_bit on architecture like powerpc
482 * needs unsigned long aligned address
483 */
484 addr = mb_correct_addr_and_bit(&bit, addr);
485 return ext4_test_bit(bit, addr);
486 }
487
mb_set_bit(int bit,void * addr)488 static inline void mb_set_bit(int bit, void *addr)
489 {
490 addr = mb_correct_addr_and_bit(&bit, addr);
491 ext4_set_bit(bit, addr);
492 }
493
mb_clear_bit(int bit,void * addr)494 static inline void mb_clear_bit(int bit, void *addr)
495 {
496 addr = mb_correct_addr_and_bit(&bit, addr);
497 ext4_clear_bit(bit, addr);
498 }
499
mb_test_and_clear_bit(int bit,void * addr)500 static inline int mb_test_and_clear_bit(int bit, void *addr)
501 {
502 addr = mb_correct_addr_and_bit(&bit, addr);
503 return ext4_test_and_clear_bit(bit, addr);
504 }
505
mb_find_next_zero_bit(void * addr,int max,int start)506 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
507 {
508 int fix = 0, ret, tmpmax;
509 addr = mb_correct_addr_and_bit(&fix, addr);
510 tmpmax = max + fix;
511 start += fix;
512
513 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
514 if (ret > max)
515 return max;
516 return ret;
517 }
518
mb_find_next_bit(void * addr,int max,int start)519 static inline int mb_find_next_bit(void *addr, int max, int start)
520 {
521 int fix = 0, ret, tmpmax;
522 addr = mb_correct_addr_and_bit(&fix, addr);
523 tmpmax = max + fix;
524 start += fix;
525
526 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
527 if (ret > max)
528 return max;
529 return ret;
530 }
531
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)532 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
533 {
534 char *bb;
535
536 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
537 BUG_ON(max == NULL);
538
539 if (order > e4b->bd_blkbits + 1) {
540 *max = 0;
541 return NULL;
542 }
543
544 /* at order 0 we see each particular block */
545 if (order == 0) {
546 *max = 1 << (e4b->bd_blkbits + 3);
547 return e4b->bd_bitmap;
548 }
549
550 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
551 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
552
553 return bb;
554 }
555
556 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)557 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
558 int first, int count)
559 {
560 int i;
561 struct super_block *sb = e4b->bd_sb;
562
563 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
564 return;
565 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
566 for (i = 0; i < count; i++) {
567 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
568 ext4_fsblk_t blocknr;
569
570 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
571 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574 ext4_grp_locked_error(sb, e4b->bd_group,
575 inode ? inode->i_ino : 0,
576 blocknr,
577 "freeing block already freed "
578 "(bit %u)",
579 first + i);
580 }
581 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
582 }
583 }
584
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)585 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
586 {
587 int i;
588
589 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
590 return;
591 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
592 for (i = 0; i < count; i++) {
593 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
594 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
595 }
596 }
597
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)598 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
599 {
600 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
601 return;
602 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
603 unsigned char *b1, *b2;
604 int i;
605 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
606 b2 = (unsigned char *) bitmap;
607 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
608 if (b1[i] != b2[i]) {
609 ext4_msg(e4b->bd_sb, KERN_ERR,
610 "corruption in group %u "
611 "at byte %u(%u): %x in copy != %x "
612 "on disk/prealloc",
613 e4b->bd_group, i, i * 8, b1[i], b2[i]);
614 BUG();
615 }
616 }
617 }
618 }
619
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)620 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
621 struct ext4_group_info *grp, ext4_group_t group)
622 {
623 struct buffer_head *bh;
624
625 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
626 if (!grp->bb_bitmap)
627 return;
628
629 bh = ext4_read_block_bitmap(sb, group);
630 if (IS_ERR_OR_NULL(bh)) {
631 kfree(grp->bb_bitmap);
632 grp->bb_bitmap = NULL;
633 return;
634 }
635
636 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
637 put_bh(bh);
638 }
639
mb_group_bb_bitmap_free(struct ext4_group_info * grp)640 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
641 {
642 kfree(grp->bb_bitmap);
643 }
644
645 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)646 static inline void mb_free_blocks_double(struct inode *inode,
647 struct ext4_buddy *e4b, int first, int count)
648 {
649 return;
650 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)651 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
652 int first, int count)
653 {
654 return;
655 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)656 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
657 {
658 return;
659 }
660
mb_group_bb_bitmap_alloc(struct super_block * sb,struct ext4_group_info * grp,ext4_group_t group)661 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
662 struct ext4_group_info *grp, ext4_group_t group)
663 {
664 return;
665 }
666
mb_group_bb_bitmap_free(struct ext4_group_info * grp)667 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
668 {
669 return;
670 }
671 #endif
672
673 #ifdef AGGRESSIVE_CHECK
674
675 #define MB_CHECK_ASSERT(assert) \
676 do { \
677 if (!(assert)) { \
678 printk(KERN_EMERG \
679 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
680 function, file, line, # assert); \
681 BUG(); \
682 } \
683 } while (0)
684
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)685 static void __mb_check_buddy(struct ext4_buddy *e4b, char *file,
686 const char *function, int line)
687 {
688 struct super_block *sb = e4b->bd_sb;
689 int order = e4b->bd_blkbits + 1;
690 int max;
691 int max2;
692 int i;
693 int j;
694 int k;
695 int count;
696 struct ext4_group_info *grp;
697 int fragments = 0;
698 int fstart;
699 struct list_head *cur;
700 void *buddy;
701 void *buddy2;
702
703 if (e4b->bd_info->bb_check_counter++ % 10)
704 return;
705
706 while (order > 1) {
707 buddy = mb_find_buddy(e4b, order, &max);
708 MB_CHECK_ASSERT(buddy);
709 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
710 MB_CHECK_ASSERT(buddy2);
711 MB_CHECK_ASSERT(buddy != buddy2);
712 MB_CHECK_ASSERT(max * 2 == max2);
713
714 count = 0;
715 for (i = 0; i < max; i++) {
716
717 if (mb_test_bit(i, buddy)) {
718 /* only single bit in buddy2 may be 0 */
719 if (!mb_test_bit(i << 1, buddy2)) {
720 MB_CHECK_ASSERT(
721 mb_test_bit((i<<1)+1, buddy2));
722 }
723 continue;
724 }
725
726 /* both bits in buddy2 must be 1 */
727 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
728 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
729
730 for (j = 0; j < (1 << order); j++) {
731 k = (i * (1 << order)) + j;
732 MB_CHECK_ASSERT(
733 !mb_test_bit(k, e4b->bd_bitmap));
734 }
735 count++;
736 }
737 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
738 order--;
739 }
740
741 fstart = -1;
742 buddy = mb_find_buddy(e4b, 0, &max);
743 for (i = 0; i < max; i++) {
744 if (!mb_test_bit(i, buddy)) {
745 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
746 if (fstart == -1) {
747 fragments++;
748 fstart = i;
749 }
750 continue;
751 }
752 fstart = -1;
753 /* check used bits only */
754 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
755 buddy2 = mb_find_buddy(e4b, j, &max2);
756 k = i >> j;
757 MB_CHECK_ASSERT(k < max2);
758 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
759 }
760 }
761 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
762 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
763
764 grp = ext4_get_group_info(sb, e4b->bd_group);
765 if (!grp)
766 return;
767 list_for_each(cur, &grp->bb_prealloc_list) {
768 ext4_group_t groupnr;
769 struct ext4_prealloc_space *pa;
770 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
771 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
772 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
773 for (i = 0; i < pa->pa_len; i++)
774 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
775 }
776 }
777 #undef MB_CHECK_ASSERT
778 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
779 __FILE__, __func__, __LINE__)
780 #else
781 #define mb_check_buddy(e4b)
782 #endif
783
784 /*
785 * Divide blocks started from @first with length @len into
786 * smaller chunks with power of 2 blocks.
787 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
788 * then increase bb_counters[] for corresponded chunk size.
789 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)790 static void ext4_mb_mark_free_simple(struct super_block *sb,
791 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
792 struct ext4_group_info *grp)
793 {
794 struct ext4_sb_info *sbi = EXT4_SB(sb);
795 ext4_grpblk_t min;
796 ext4_grpblk_t max;
797 ext4_grpblk_t chunk;
798 unsigned int border;
799
800 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
801
802 border = 2 << sb->s_blocksize_bits;
803
804 while (len > 0) {
805 /* find how many blocks can be covered since this position */
806 max = ffs(first | border) - 1;
807
808 /* find how many blocks of power 2 we need to mark */
809 min = fls(len) - 1;
810
811 if (max < min)
812 min = max;
813 chunk = 1 << min;
814
815 /* mark multiblock chunks only */
816 grp->bb_counters[min]++;
817 if (min > 0)
818 mb_clear_bit(first >> min,
819 buddy + sbi->s_mb_offsets[min]);
820
821 len -= chunk;
822 first += chunk;
823 }
824 }
825
mb_avg_fragment_size_order(struct super_block * sb,ext4_grpblk_t len)826 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
827 {
828 int order;
829
830 /*
831 * We don't bother with a special lists groups with only 1 block free
832 * extents and for completely empty groups.
833 */
834 order = fls(len) - 2;
835 if (order < 0)
836 return 0;
837 if (order == MB_NUM_ORDERS(sb))
838 order--;
839 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
840 order = MB_NUM_ORDERS(sb) - 1;
841 return order;
842 }
843
844 /* Move group to appropriate avg_fragment_size list */
845 static void
mb_update_avg_fragment_size(struct super_block * sb,struct ext4_group_info * grp)846 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
847 {
848 struct ext4_sb_info *sbi = EXT4_SB(sb);
849 int new, old;
850
851 if (!test_opt2(sb, MB_OPTIMIZE_SCAN))
852 return;
853
854 old = grp->bb_avg_fragment_size_order;
855 new = grp->bb_fragments == 0 ? -1 :
856 mb_avg_fragment_size_order(sb, grp->bb_free / grp->bb_fragments);
857 if (new == old)
858 return;
859
860 if (old >= 0)
861 xa_erase(&sbi->s_mb_avg_fragment_size[old], grp->bb_group);
862
863 grp->bb_avg_fragment_size_order = new;
864 if (new >= 0) {
865 /*
866 * Cannot use __GFP_NOFAIL because we hold the group lock.
867 * Although allocation for insertion may fails, it's not fatal
868 * as we have linear traversal to fall back on.
869 */
870 int err = xa_insert(&sbi->s_mb_avg_fragment_size[new],
871 grp->bb_group, grp, GFP_ATOMIC);
872 if (err)
873 mb_debug(sb, "insert group: %u to s_mb_avg_fragment_size[%d] failed, err %d",
874 grp->bb_group, new, err);
875 }
876 }
877
ext4_mb_scan_groups_xa_range(struct ext4_allocation_context * ac,struct xarray * xa,ext4_group_t start,ext4_group_t end)878 static int ext4_mb_scan_groups_xa_range(struct ext4_allocation_context *ac,
879 struct xarray *xa,
880 ext4_group_t start, ext4_group_t end)
881 {
882 struct super_block *sb = ac->ac_sb;
883 struct ext4_sb_info *sbi = EXT4_SB(sb);
884 enum criteria cr = ac->ac_criteria;
885 ext4_group_t ngroups = ext4_get_groups_count(sb);
886 unsigned long group = start;
887 struct ext4_group_info *grp;
888
889 if (WARN_ON_ONCE(end > ngroups || start >= end))
890 return 0;
891
892 xa_for_each_range(xa, group, grp, start, end - 1) {
893 int err;
894
895 if (sbi->s_mb_stats)
896 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
897
898 err = ext4_mb_scan_group(ac, grp->bb_group);
899 if (err || ac->ac_status != AC_STATUS_CONTINUE)
900 return err;
901
902 cond_resched();
903 }
904
905 return 0;
906 }
907
908 /*
909 * Find a suitable group of given order from the largest free orders xarray.
910 */
911 static inline int
ext4_mb_scan_groups_largest_free_order_range(struct ext4_allocation_context * ac,int order,ext4_group_t start,ext4_group_t end)912 ext4_mb_scan_groups_largest_free_order_range(struct ext4_allocation_context *ac,
913 int order, ext4_group_t start,
914 ext4_group_t end)
915 {
916 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_largest_free_orders[order];
917
918 if (xa_empty(xa))
919 return 0;
920
921 return ext4_mb_scan_groups_xa_range(ac, xa, start, end);
922 }
923
924 /*
925 * Choose next group by traversing largest_free_order lists. Updates *new_cr if
926 * cr level needs an update.
927 */
ext4_mb_scan_groups_p2_aligned(struct ext4_allocation_context * ac,ext4_group_t group)928 static int ext4_mb_scan_groups_p2_aligned(struct ext4_allocation_context *ac,
929 ext4_group_t group)
930 {
931 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
932 int i;
933 int ret = 0;
934 ext4_group_t start, end;
935
936 start = group;
937 end = ext4_get_groups_count(ac->ac_sb);
938 wrap_around:
939 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
940 ret = ext4_mb_scan_groups_largest_free_order_range(ac, i,
941 start, end);
942 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
943 return ret;
944 }
945 if (start) {
946 end = start;
947 start = 0;
948 goto wrap_around;
949 }
950
951 if (sbi->s_mb_stats)
952 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
953
954 /* Increment cr and search again if no group is found */
955 ac->ac_criteria = CR_GOAL_LEN_FAST;
956 return ret;
957 }
958
959 /*
960 * Find a suitable group of given order from the average fragments xarray.
961 */
962 static int
ext4_mb_scan_groups_avg_frag_order_range(struct ext4_allocation_context * ac,int order,ext4_group_t start,ext4_group_t end)963 ext4_mb_scan_groups_avg_frag_order_range(struct ext4_allocation_context *ac,
964 int order, ext4_group_t start,
965 ext4_group_t end)
966 {
967 struct xarray *xa = &EXT4_SB(ac->ac_sb)->s_mb_avg_fragment_size[order];
968
969 if (xa_empty(xa))
970 return 0;
971
972 return ext4_mb_scan_groups_xa_range(ac, xa, start, end);
973 }
974
975 /*
976 * Choose next group by traversing average fragment size list of suitable
977 * order. Updates *new_cr if cr level needs an update.
978 */
ext4_mb_scan_groups_goal_fast(struct ext4_allocation_context * ac,ext4_group_t group)979 static int ext4_mb_scan_groups_goal_fast(struct ext4_allocation_context *ac,
980 ext4_group_t group)
981 {
982 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
983 int i, ret = 0;
984 ext4_group_t start, end;
985
986 start = group;
987 end = ext4_get_groups_count(ac->ac_sb);
988 wrap_around:
989 i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
990 for (; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
991 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, i,
992 start, end);
993 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
994 return ret;
995 }
996 if (start) {
997 end = start;
998 start = 0;
999 goto wrap_around;
1000 }
1001
1002 if (sbi->s_mb_stats)
1003 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
1004 /*
1005 * CR_BEST_AVAIL_LEN works based on the concept that we have
1006 * a larger normalized goal len request which can be trimmed to
1007 * a smaller goal len such that it can still satisfy original
1008 * request len. However, allocation request for non-regular
1009 * files never gets normalized.
1010 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
1011 */
1012 if (ac->ac_flags & EXT4_MB_HINT_DATA)
1013 ac->ac_criteria = CR_BEST_AVAIL_LEN;
1014 else
1015 ac->ac_criteria = CR_GOAL_LEN_SLOW;
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
1022 * order we have and proactively trim the goal request length to that order to
1023 * find a suitable group faster.
1024 *
1025 * This optimizes allocation speed at the cost of slightly reduced
1026 * preallocations. However, we make sure that we don't trim the request too
1027 * much and fall to CR_GOAL_LEN_SLOW in that case.
1028 */
ext4_mb_scan_groups_best_avail(struct ext4_allocation_context * ac,ext4_group_t group)1029 static int ext4_mb_scan_groups_best_avail(struct ext4_allocation_context *ac,
1030 ext4_group_t group)
1031 {
1032 int ret = 0;
1033 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1034 int i, order, min_order;
1035 unsigned long num_stripe_clusters = 0;
1036 ext4_group_t start, end;
1037
1038 /*
1039 * mb_avg_fragment_size_order() returns order in a way that makes
1040 * retrieving back the length using (1 << order) inaccurate. Hence, use
1041 * fls() instead since we need to know the actual length while modifying
1042 * goal length.
1043 */
1044 order = fls(ac->ac_g_ex.fe_len) - 1;
1045 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1046 order = MB_NUM_ORDERS(ac->ac_sb);
1047 min_order = order - sbi->s_mb_best_avail_max_trim_order;
1048 if (min_order < 0)
1049 min_order = 0;
1050
1051 if (sbi->s_stripe > 0) {
1052 /*
1053 * We are assuming that stripe size is always a multiple of
1054 * cluster ratio otherwise __ext4_fill_super exists early.
1055 */
1056 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1057 if (1 << min_order < num_stripe_clusters)
1058 /*
1059 * We consider 1 order less because later we round
1060 * up the goal len to num_stripe_clusters
1061 */
1062 min_order = fls(num_stripe_clusters) - 1;
1063 }
1064
1065 if (1 << min_order < ac->ac_o_ex.fe_len)
1066 min_order = fls(ac->ac_o_ex.fe_len);
1067
1068 start = group;
1069 end = ext4_get_groups_count(ac->ac_sb);
1070 wrap_around:
1071 for (i = order; i >= min_order; i--) {
1072 int frag_order;
1073 /*
1074 * Scale down goal len to make sure we find something
1075 * in the free fragments list. Basically, reduce
1076 * preallocations.
1077 */
1078 ac->ac_g_ex.fe_len = 1 << i;
1079
1080 if (num_stripe_clusters > 0) {
1081 /*
1082 * Try to round up the adjusted goal length to
1083 * stripe size (in cluster units) multiple for
1084 * efficiency.
1085 */
1086 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1087 num_stripe_clusters);
1088 }
1089
1090 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1091 ac->ac_g_ex.fe_len);
1092
1093 ret = ext4_mb_scan_groups_avg_frag_order_range(ac, frag_order,
1094 start, end);
1095 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1096 return ret;
1097 }
1098 if (start) {
1099 end = start;
1100 start = 0;
1101 goto wrap_around;
1102 }
1103
1104 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1105 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1106 if (sbi->s_mb_stats)
1107 atomic64_inc(&sbi->s_bal_cX_failed[ac->ac_criteria]);
1108 ac->ac_criteria = CR_GOAL_LEN_SLOW;
1109
1110 return ret;
1111 }
1112
should_optimize_scan(struct ext4_allocation_context * ac)1113 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1114 {
1115 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1116 return 0;
1117 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1118 return 0;
1119 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1120 return 0;
1121 return 1;
1122 }
1123
1124 /*
1125 * next linear group for allocation.
1126 */
next_linear_group(ext4_group_t * group,ext4_group_t ngroups)1127 static void next_linear_group(ext4_group_t *group, ext4_group_t ngroups)
1128 {
1129 /*
1130 * Artificially restricted ngroups for non-extent
1131 * files makes group > ngroups possible on first loop.
1132 */
1133 *group = *group + 1 >= ngroups ? 0 : *group + 1;
1134 }
1135
ext4_mb_scan_groups_linear(struct ext4_allocation_context * ac,ext4_group_t ngroups,ext4_group_t * start,ext4_group_t count)1136 static int ext4_mb_scan_groups_linear(struct ext4_allocation_context *ac,
1137 ext4_group_t ngroups, ext4_group_t *start, ext4_group_t count)
1138 {
1139 int ret, i;
1140 enum criteria cr = ac->ac_criteria;
1141 struct super_block *sb = ac->ac_sb;
1142 struct ext4_sb_info *sbi = EXT4_SB(sb);
1143 ext4_group_t group = *start;
1144
1145 for (i = 0; i < count; i++, next_linear_group(&group, ngroups)) {
1146 ret = ext4_mb_scan_group(ac, group);
1147 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1148 return ret;
1149 cond_resched();
1150 }
1151
1152 *start = group;
1153 if (count == ngroups)
1154 ac->ac_criteria++;
1155
1156 /* Processed all groups and haven't found blocks */
1157 if (sbi->s_mb_stats && i == ngroups)
1158 atomic64_inc(&sbi->s_bal_cX_failed[cr]);
1159
1160 return 0;
1161 }
1162
ext4_mb_scan_groups(struct ext4_allocation_context * ac)1163 static int ext4_mb_scan_groups(struct ext4_allocation_context *ac)
1164 {
1165 int ret = 0;
1166 ext4_group_t start;
1167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1168 ext4_group_t ngroups = ext4_get_groups_count(ac->ac_sb);
1169
1170 /* non-extent files are limited to low blocks/groups */
1171 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1172 ngroups = sbi->s_blockfile_groups;
1173
1174 /* searching for the right group start from the goal value specified */
1175 start = ac->ac_g_ex.fe_group;
1176 ac->ac_prefetch_grp = start;
1177 ac->ac_prefetch_nr = 0;
1178
1179 if (!should_optimize_scan(ac))
1180 return ext4_mb_scan_groups_linear(ac, ngroups, &start, ngroups);
1181
1182 /*
1183 * Optimized scanning can return non adjacent groups which can cause
1184 * seek overhead for rotational disks. So try few linear groups before
1185 * trying optimized scan.
1186 */
1187 if (sbi->s_mb_max_linear_groups)
1188 ret = ext4_mb_scan_groups_linear(ac, ngroups, &start,
1189 sbi->s_mb_max_linear_groups);
1190 if (ret || ac->ac_status != AC_STATUS_CONTINUE)
1191 return ret;
1192
1193 switch (ac->ac_criteria) {
1194 case CR_POWER2_ALIGNED:
1195 return ext4_mb_scan_groups_p2_aligned(ac, start);
1196 case CR_GOAL_LEN_FAST:
1197 return ext4_mb_scan_groups_goal_fast(ac, start);
1198 case CR_BEST_AVAIL_LEN:
1199 return ext4_mb_scan_groups_best_avail(ac, start);
1200 default:
1201 /*
1202 * TODO: For CR_GOAL_LEN_SLOW, we can arrange groups in an
1203 * rb tree sorted by bb_free. But until that happens, we should
1204 * never come here.
1205 */
1206 WARN_ON(1);
1207 }
1208
1209 return 0;
1210 }
1211
1212 /*
1213 * Cache the order of the largest free extent we have available in this block
1214 * group.
1215 */
1216 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)1217 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1218 {
1219 struct ext4_sb_info *sbi = EXT4_SB(sb);
1220 int new, old = grp->bb_largest_free_order;
1221
1222 for (new = MB_NUM_ORDERS(sb) - 1; new >= 0; new--)
1223 if (grp->bb_counters[new] > 0)
1224 break;
1225
1226 /* No need to move between order lists? */
1227 if (new == old)
1228 return;
1229
1230 if (old >= 0) {
1231 struct xarray *xa = &sbi->s_mb_largest_free_orders[old];
1232
1233 if (!xa_empty(xa) && xa_load(xa, grp->bb_group))
1234 xa_erase(xa, grp->bb_group);
1235 }
1236
1237 grp->bb_largest_free_order = new;
1238 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && new >= 0 && grp->bb_free) {
1239 /*
1240 * Cannot use __GFP_NOFAIL because we hold the group lock.
1241 * Although allocation for insertion may fails, it's not fatal
1242 * as we have linear traversal to fall back on.
1243 */
1244 int err = xa_insert(&sbi->s_mb_largest_free_orders[new],
1245 grp->bb_group, grp, GFP_ATOMIC);
1246 if (err)
1247 mb_debug(sb, "insert group: %u to s_mb_largest_free_orders[%d] failed, err %d",
1248 grp->bb_group, new, err);
1249 }
1250 }
1251
1252 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group,struct ext4_group_info * grp)1253 void ext4_mb_generate_buddy(struct super_block *sb,
1254 void *buddy, void *bitmap, ext4_group_t group,
1255 struct ext4_group_info *grp)
1256 {
1257 struct ext4_sb_info *sbi = EXT4_SB(sb);
1258 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1259 ext4_grpblk_t i = 0;
1260 ext4_grpblk_t first;
1261 ext4_grpblk_t len;
1262 unsigned free = 0;
1263 unsigned fragments = 0;
1264 unsigned long long period = get_cycles();
1265
1266 /* initialize buddy from bitmap which is aggregation
1267 * of on-disk bitmap and preallocations */
1268 i = mb_find_next_zero_bit(bitmap, max, 0);
1269 grp->bb_first_free = i;
1270 while (i < max) {
1271 fragments++;
1272 first = i;
1273 i = mb_find_next_bit(bitmap, max, i);
1274 len = i - first;
1275 free += len;
1276 if (len > 1)
1277 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1278 else
1279 grp->bb_counters[0]++;
1280 if (i < max)
1281 i = mb_find_next_zero_bit(bitmap, max, i);
1282 }
1283 grp->bb_fragments = fragments;
1284
1285 if (free != grp->bb_free) {
1286 ext4_grp_locked_error(sb, group, 0, 0,
1287 "block bitmap and bg descriptor "
1288 "inconsistent: %u vs %u free clusters",
1289 free, grp->bb_free);
1290 /*
1291 * If we intend to continue, we consider group descriptor
1292 * corrupt and update bb_free using bitmap value
1293 */
1294 grp->bb_free = free;
1295 ext4_mark_group_bitmap_corrupted(sb, group,
1296 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1297 }
1298 mb_set_largest_free_order(sb, grp);
1299 mb_update_avg_fragment_size(sb, grp);
1300
1301 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1302
1303 period = get_cycles() - period;
1304 atomic_inc(&sbi->s_mb_buddies_generated);
1305 atomic64_add(period, &sbi->s_mb_generation_time);
1306 }
1307
mb_regenerate_buddy(struct ext4_buddy * e4b)1308 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1309 {
1310 int count;
1311 int order = 1;
1312 void *buddy;
1313
1314 while ((buddy = mb_find_buddy(e4b, order++, &count)))
1315 mb_set_bits(buddy, 0, count);
1316
1317 e4b->bd_info->bb_fragments = 0;
1318 memset(e4b->bd_info->bb_counters, 0,
1319 sizeof(*e4b->bd_info->bb_counters) *
1320 (e4b->bd_sb->s_blocksize_bits + 2));
1321
1322 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1323 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1324 }
1325
1326 /* The buddy information is attached the buddy cache inode
1327 * for convenience. The information regarding each group
1328 * is loaded via ext4_mb_load_buddy. The information involve
1329 * block bitmap and buddy information. The information are
1330 * stored in the inode as
1331 *
1332 * { page }
1333 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1334 *
1335 *
1336 * one block each for bitmap and buddy information.
1337 * So for each group we take up 2 blocks. A page can
1338 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
1339 * So it can have information regarding groups_per_page which
1340 * is blocks_per_page/2
1341 *
1342 * Locking note: This routine takes the block group lock of all groups
1343 * for this page; do not hold this lock when calling this routine!
1344 */
1345
ext4_mb_init_cache(struct folio * folio,char * incore,gfp_t gfp)1346 static int ext4_mb_init_cache(struct folio *folio, char *incore, gfp_t gfp)
1347 {
1348 ext4_group_t ngroups;
1349 unsigned int blocksize;
1350 int blocks_per_page;
1351 int groups_per_page;
1352 int err = 0;
1353 int i;
1354 ext4_group_t first_group, group;
1355 int first_block;
1356 struct super_block *sb;
1357 struct buffer_head *bhs;
1358 struct buffer_head **bh = NULL;
1359 struct inode *inode;
1360 char *data;
1361 char *bitmap;
1362 struct ext4_group_info *grinfo;
1363
1364 inode = folio->mapping->host;
1365 sb = inode->i_sb;
1366 ngroups = ext4_get_groups_count(sb);
1367 blocksize = i_blocksize(inode);
1368 blocks_per_page = PAGE_SIZE / blocksize;
1369
1370 mb_debug(sb, "init folio %lu\n", folio->index);
1371
1372 groups_per_page = blocks_per_page >> 1;
1373 if (groups_per_page == 0)
1374 groups_per_page = 1;
1375
1376 /* allocate buffer_heads to read bitmaps */
1377 if (groups_per_page > 1) {
1378 i = sizeof(struct buffer_head *) * groups_per_page;
1379 bh = kzalloc(i, gfp);
1380 if (bh == NULL)
1381 return -ENOMEM;
1382 } else
1383 bh = &bhs;
1384
1385 first_group = folio->index * blocks_per_page / 2;
1386
1387 /* read all groups the folio covers into the cache */
1388 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1389 if (group >= ngroups)
1390 break;
1391
1392 grinfo = ext4_get_group_info(sb, group);
1393 if (!grinfo)
1394 continue;
1395 /*
1396 * If page is uptodate then we came here after online resize
1397 * which added some new uninitialized group info structs, so
1398 * we must skip all initialized uptodate buddies on the folio,
1399 * which may be currently in use by an allocating task.
1400 */
1401 if (folio_test_uptodate(folio) &&
1402 !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1403 bh[i] = NULL;
1404 continue;
1405 }
1406 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1407 if (IS_ERR(bh[i])) {
1408 err = PTR_ERR(bh[i]);
1409 bh[i] = NULL;
1410 goto out;
1411 }
1412 mb_debug(sb, "read bitmap for group %u\n", group);
1413 }
1414
1415 /* wait for I/O completion */
1416 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1417 int err2;
1418
1419 if (!bh[i])
1420 continue;
1421 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1422 if (!err)
1423 err = err2;
1424 }
1425
1426 first_block = folio->index * blocks_per_page;
1427 for (i = 0; i < blocks_per_page; i++) {
1428 group = (first_block + i) >> 1;
1429 if (group >= ngroups)
1430 break;
1431
1432 if (!bh[group - first_group])
1433 /* skip initialized uptodate buddy */
1434 continue;
1435
1436 if (!buffer_verified(bh[group - first_group]))
1437 /* Skip faulty bitmaps */
1438 continue;
1439 err = 0;
1440
1441 /*
1442 * data carry information regarding this
1443 * particular group in the format specified
1444 * above
1445 *
1446 */
1447 data = folio_address(folio) + (i * blocksize);
1448 bitmap = bh[group - first_group]->b_data;
1449
1450 /*
1451 * We place the buddy block and bitmap block
1452 * close together
1453 */
1454 grinfo = ext4_get_group_info(sb, group);
1455 if (!grinfo) {
1456 err = -EFSCORRUPTED;
1457 goto out;
1458 }
1459 if ((first_block + i) & 1) {
1460 /* this is block of buddy */
1461 BUG_ON(incore == NULL);
1462 mb_debug(sb, "put buddy for group %u in folio %lu/%x\n",
1463 group, folio->index, i * blocksize);
1464 trace_ext4_mb_buddy_bitmap_load(sb, group);
1465 grinfo->bb_fragments = 0;
1466 memset(grinfo->bb_counters, 0,
1467 sizeof(*grinfo->bb_counters) *
1468 (MB_NUM_ORDERS(sb)));
1469 /*
1470 * incore got set to the group block bitmap below
1471 */
1472 ext4_lock_group(sb, group);
1473 /* init the buddy */
1474 memset(data, 0xff, blocksize);
1475 ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1476 ext4_unlock_group(sb, group);
1477 incore = NULL;
1478 } else {
1479 /* this is block of bitmap */
1480 BUG_ON(incore != NULL);
1481 mb_debug(sb, "put bitmap for group %u in folio %lu/%x\n",
1482 group, folio->index, i * blocksize);
1483 trace_ext4_mb_bitmap_load(sb, group);
1484
1485 /* see comments in ext4_mb_put_pa() */
1486 ext4_lock_group(sb, group);
1487 memcpy(data, bitmap, blocksize);
1488
1489 /* mark all preallocated blks used in in-core bitmap */
1490 ext4_mb_generate_from_pa(sb, data, group);
1491 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1492 ext4_unlock_group(sb, group);
1493
1494 /* set incore so that the buddy information can be
1495 * generated using this
1496 */
1497 incore = data;
1498 }
1499 }
1500 folio_mark_uptodate(folio);
1501
1502 out:
1503 if (bh) {
1504 for (i = 0; i < groups_per_page; i++)
1505 brelse(bh[i]);
1506 if (bh != &bhs)
1507 kfree(bh);
1508 }
1509 return err;
1510 }
1511
1512 /*
1513 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1514 * on the same buddy page doesn't happen whild holding the buddy page lock.
1515 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1516 * are on the same page e4b->bd_buddy_folio is NULL and return value is 0.
1517 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1518 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1519 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1520 {
1521 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1522 int block, pnum, poff;
1523 int blocks_per_page;
1524 struct folio *folio;
1525
1526 e4b->bd_buddy_folio = NULL;
1527 e4b->bd_bitmap_folio = NULL;
1528
1529 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1530 /*
1531 * the buddy cache inode stores the block bitmap
1532 * and buddy information in consecutive blocks.
1533 * So for each group we need two blocks.
1534 */
1535 block = group * 2;
1536 pnum = block / blocks_per_page;
1537 poff = block % blocks_per_page;
1538 folio = __filemap_get_folio(inode->i_mapping, pnum,
1539 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1540 if (IS_ERR(folio))
1541 return PTR_ERR(folio);
1542 BUG_ON(folio->mapping != inode->i_mapping);
1543 e4b->bd_bitmap_folio = folio;
1544 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1545
1546 if (blocks_per_page >= 2) {
1547 /* buddy and bitmap are on the same page */
1548 return 0;
1549 }
1550
1551 /* blocks_per_page == 1, hence we need another page for the buddy */
1552 folio = __filemap_get_folio(inode->i_mapping, block + 1,
1553 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1554 if (IS_ERR(folio))
1555 return PTR_ERR(folio);
1556 BUG_ON(folio->mapping != inode->i_mapping);
1557 e4b->bd_buddy_folio = folio;
1558 return 0;
1559 }
1560
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1561 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1562 {
1563 if (e4b->bd_bitmap_folio) {
1564 folio_unlock(e4b->bd_bitmap_folio);
1565 folio_put(e4b->bd_bitmap_folio);
1566 }
1567 if (e4b->bd_buddy_folio) {
1568 folio_unlock(e4b->bd_buddy_folio);
1569 folio_put(e4b->bd_buddy_folio);
1570 }
1571 }
1572
1573 /*
1574 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1575 * block group lock of all groups for this page; do not hold the BG lock when
1576 * calling this routine!
1577 */
1578 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1579 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1580 {
1581
1582 struct ext4_group_info *this_grp;
1583 struct ext4_buddy e4b;
1584 struct folio *folio;
1585 int ret = 0;
1586
1587 might_sleep();
1588 mb_debug(sb, "init group %u\n", group);
1589 this_grp = ext4_get_group_info(sb, group);
1590 if (!this_grp)
1591 return -EFSCORRUPTED;
1592
1593 /*
1594 * This ensures that we don't reinit the buddy cache
1595 * page which map to the group from which we are already
1596 * allocating. If we are looking at the buddy cache we would
1597 * have taken a reference using ext4_mb_load_buddy and that
1598 * would have pinned buddy page to page cache.
1599 * The call to ext4_mb_get_buddy_page_lock will mark the
1600 * page accessed.
1601 */
1602 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1603 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1604 /*
1605 * somebody initialized the group
1606 * return without doing anything
1607 */
1608 goto err;
1609 }
1610
1611 folio = e4b.bd_bitmap_folio;
1612 ret = ext4_mb_init_cache(folio, NULL, gfp);
1613 if (ret)
1614 goto err;
1615 if (!folio_test_uptodate(folio)) {
1616 ret = -EIO;
1617 goto err;
1618 }
1619
1620 if (e4b.bd_buddy_folio == NULL) {
1621 /*
1622 * If both the bitmap and buddy are in
1623 * the same page we don't need to force
1624 * init the buddy
1625 */
1626 ret = 0;
1627 goto err;
1628 }
1629 /* init buddy cache */
1630 folio = e4b.bd_buddy_folio;
1631 ret = ext4_mb_init_cache(folio, e4b.bd_bitmap, gfp);
1632 if (ret)
1633 goto err;
1634 if (!folio_test_uptodate(folio)) {
1635 ret = -EIO;
1636 goto err;
1637 }
1638 err:
1639 ext4_mb_put_buddy_page_lock(&e4b);
1640 return ret;
1641 }
1642
1643 /*
1644 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1645 * block group lock of all groups for this page; do not hold the BG lock when
1646 * calling this routine!
1647 */
1648 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1649 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1650 struct ext4_buddy *e4b, gfp_t gfp)
1651 {
1652 int blocks_per_page;
1653 int block;
1654 int pnum;
1655 int poff;
1656 struct folio *folio;
1657 int ret;
1658 struct ext4_group_info *grp;
1659 struct ext4_sb_info *sbi = EXT4_SB(sb);
1660 struct inode *inode = sbi->s_buddy_cache;
1661
1662 might_sleep();
1663 mb_debug(sb, "load group %u\n", group);
1664
1665 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1666 grp = ext4_get_group_info(sb, group);
1667 if (!grp)
1668 return -EFSCORRUPTED;
1669
1670 e4b->bd_blkbits = sb->s_blocksize_bits;
1671 e4b->bd_info = grp;
1672 e4b->bd_sb = sb;
1673 e4b->bd_group = group;
1674 e4b->bd_buddy_folio = NULL;
1675 e4b->bd_bitmap_folio = NULL;
1676
1677 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1678 /*
1679 * we need full data about the group
1680 * to make a good selection
1681 */
1682 ret = ext4_mb_init_group(sb, group, gfp);
1683 if (ret)
1684 return ret;
1685 }
1686
1687 /*
1688 * the buddy cache inode stores the block bitmap
1689 * and buddy information in consecutive blocks.
1690 * So for each group we need two blocks.
1691 */
1692 block = group * 2;
1693 pnum = block / blocks_per_page;
1694 poff = block % blocks_per_page;
1695
1696 /* Avoid locking the folio in the fast path ... */
1697 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1698 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1699 if (!IS_ERR(folio))
1700 /*
1701 * drop the folio reference and try
1702 * to get the folio with lock. If we
1703 * are not uptodate that implies
1704 * somebody just created the folio but
1705 * is yet to initialize it. So
1706 * wait for it to initialize.
1707 */
1708 folio_put(folio);
1709 folio = __filemap_get_folio(inode->i_mapping, pnum,
1710 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1711 if (!IS_ERR(folio)) {
1712 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1713 "ext4: bitmap's mapping != inode->i_mapping\n")) {
1714 /* should never happen */
1715 folio_unlock(folio);
1716 ret = -EINVAL;
1717 goto err;
1718 }
1719 if (!folio_test_uptodate(folio)) {
1720 ret = ext4_mb_init_cache(folio, NULL, gfp);
1721 if (ret) {
1722 folio_unlock(folio);
1723 goto err;
1724 }
1725 mb_cmp_bitmaps(e4b, folio_address(folio) +
1726 (poff * sb->s_blocksize));
1727 }
1728 folio_unlock(folio);
1729 }
1730 }
1731 if (IS_ERR(folio)) {
1732 ret = PTR_ERR(folio);
1733 goto err;
1734 }
1735 if (!folio_test_uptodate(folio)) {
1736 ret = -EIO;
1737 goto err;
1738 }
1739
1740 /* Folios marked accessed already */
1741 e4b->bd_bitmap_folio = folio;
1742 e4b->bd_bitmap = folio_address(folio) + (poff * sb->s_blocksize);
1743
1744 block++;
1745 pnum = block / blocks_per_page;
1746 poff = block % blocks_per_page;
1747
1748 folio = __filemap_get_folio(inode->i_mapping, pnum, FGP_ACCESSED, 0);
1749 if (IS_ERR(folio) || !folio_test_uptodate(folio)) {
1750 if (!IS_ERR(folio))
1751 folio_put(folio);
1752 folio = __filemap_get_folio(inode->i_mapping, pnum,
1753 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1754 if (!IS_ERR(folio)) {
1755 if (WARN_RATELIMIT(folio->mapping != inode->i_mapping,
1756 "ext4: buddy bitmap's mapping != inode->i_mapping\n")) {
1757 /* should never happen */
1758 folio_unlock(folio);
1759 ret = -EINVAL;
1760 goto err;
1761 }
1762 if (!folio_test_uptodate(folio)) {
1763 ret = ext4_mb_init_cache(folio, e4b->bd_bitmap,
1764 gfp);
1765 if (ret) {
1766 folio_unlock(folio);
1767 goto err;
1768 }
1769 }
1770 folio_unlock(folio);
1771 }
1772 }
1773 if (IS_ERR(folio)) {
1774 ret = PTR_ERR(folio);
1775 goto err;
1776 }
1777 if (!folio_test_uptodate(folio)) {
1778 ret = -EIO;
1779 goto err;
1780 }
1781
1782 /* Folios marked accessed already */
1783 e4b->bd_buddy_folio = folio;
1784 e4b->bd_buddy = folio_address(folio) + (poff * sb->s_blocksize);
1785
1786 return 0;
1787
1788 err:
1789 if (!IS_ERR_OR_NULL(folio))
1790 folio_put(folio);
1791 if (e4b->bd_bitmap_folio)
1792 folio_put(e4b->bd_bitmap_folio);
1793
1794 e4b->bd_buddy = NULL;
1795 e4b->bd_bitmap = NULL;
1796 return ret;
1797 }
1798
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1799 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1800 struct ext4_buddy *e4b)
1801 {
1802 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1803 }
1804
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1805 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1806 {
1807 if (e4b->bd_bitmap_folio)
1808 folio_put(e4b->bd_bitmap_folio);
1809 if (e4b->bd_buddy_folio)
1810 folio_put(e4b->bd_buddy_folio);
1811 }
1812
1813
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1814 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1815 {
1816 int order = 1, max;
1817 void *bb;
1818
1819 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1820 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1821
1822 while (order <= e4b->bd_blkbits + 1) {
1823 bb = mb_find_buddy(e4b, order, &max);
1824 if (!mb_test_bit(block >> order, bb)) {
1825 /* this block is part of buddy of order 'order' */
1826 return order;
1827 }
1828 order++;
1829 }
1830 return 0;
1831 }
1832
mb_clear_bits(void * bm,int cur,int len)1833 static void mb_clear_bits(void *bm, int cur, int len)
1834 {
1835 __u32 *addr;
1836
1837 len = cur + len;
1838 while (cur < len) {
1839 if ((cur & 31) == 0 && (len - cur) >= 32) {
1840 /* fast path: clear whole word at once */
1841 addr = bm + (cur >> 3);
1842 *addr = 0;
1843 cur += 32;
1844 continue;
1845 }
1846 mb_clear_bit(cur, bm);
1847 cur++;
1848 }
1849 }
1850
1851 /* clear bits in given range
1852 * will return first found zero bit if any, -1 otherwise
1853 */
mb_test_and_clear_bits(void * bm,int cur,int len)1854 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1855 {
1856 __u32 *addr;
1857 int zero_bit = -1;
1858
1859 len = cur + len;
1860 while (cur < len) {
1861 if ((cur & 31) == 0 && (len - cur) >= 32) {
1862 /* fast path: clear whole word at once */
1863 addr = bm + (cur >> 3);
1864 if (*addr != (__u32)(-1) && zero_bit == -1)
1865 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1866 *addr = 0;
1867 cur += 32;
1868 continue;
1869 }
1870 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1871 zero_bit = cur;
1872 cur++;
1873 }
1874
1875 return zero_bit;
1876 }
1877
mb_set_bits(void * bm,int cur,int len)1878 void mb_set_bits(void *bm, int cur, int len)
1879 {
1880 __u32 *addr;
1881
1882 len = cur + len;
1883 while (cur < len) {
1884 if ((cur & 31) == 0 && (len - cur) >= 32) {
1885 /* fast path: set whole word at once */
1886 addr = bm + (cur >> 3);
1887 *addr = 0xffffffff;
1888 cur += 32;
1889 continue;
1890 }
1891 mb_set_bit(cur, bm);
1892 cur++;
1893 }
1894 }
1895
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1896 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1897 {
1898 if (mb_test_bit(*bit + side, bitmap)) {
1899 mb_clear_bit(*bit, bitmap);
1900 (*bit) -= side;
1901 return 1;
1902 }
1903 else {
1904 (*bit) += side;
1905 mb_set_bit(*bit, bitmap);
1906 return -1;
1907 }
1908 }
1909
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1910 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1911 {
1912 int max;
1913 int order = 1;
1914 void *buddy = mb_find_buddy(e4b, order, &max);
1915
1916 while (buddy) {
1917 void *buddy2;
1918
1919 /* Bits in range [first; last] are known to be set since
1920 * corresponding blocks were allocated. Bits in range
1921 * (first; last) will stay set because they form buddies on
1922 * upper layer. We just deal with borders if they don't
1923 * align with upper layer and then go up.
1924 * Releasing entire group is all about clearing
1925 * single bit of highest order buddy.
1926 */
1927
1928 /* Example:
1929 * ---------------------------------
1930 * | 1 | 1 | 1 | 1 |
1931 * ---------------------------------
1932 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1933 * ---------------------------------
1934 * 0 1 2 3 4 5 6 7
1935 * \_____________________/
1936 *
1937 * Neither [1] nor [6] is aligned to above layer.
1938 * Left neighbour [0] is free, so mark it busy,
1939 * decrease bb_counters and extend range to
1940 * [0; 6]
1941 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1942 * mark [6] free, increase bb_counters and shrink range to
1943 * [0; 5].
1944 * Then shift range to [0; 2], go up and do the same.
1945 */
1946
1947
1948 if (first & 1)
1949 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1950 if (!(last & 1))
1951 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1952 if (first > last)
1953 break;
1954 order++;
1955
1956 buddy2 = mb_find_buddy(e4b, order, &max);
1957 if (!buddy2) {
1958 mb_clear_bits(buddy, first, last - first + 1);
1959 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1960 break;
1961 }
1962 first >>= 1;
1963 last >>= 1;
1964 buddy = buddy2;
1965 }
1966 }
1967
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1968 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1969 int first, int count)
1970 {
1971 int left_is_free = 0;
1972 int right_is_free = 0;
1973 int block;
1974 int last = first + count - 1;
1975 struct super_block *sb = e4b->bd_sb;
1976
1977 if (WARN_ON(count == 0))
1978 return;
1979 BUG_ON(last >= (sb->s_blocksize << 3));
1980 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1981 /* Don't bother if the block group is corrupt. */
1982 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1983 return;
1984
1985 mb_check_buddy(e4b);
1986 mb_free_blocks_double(inode, e4b, first, count);
1987
1988 /* access memory sequentially: check left neighbour,
1989 * clear range and then check right neighbour
1990 */
1991 if (first != 0)
1992 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1993 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1994 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1995 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1996
1997 if (unlikely(block != -1)) {
1998 struct ext4_sb_info *sbi = EXT4_SB(sb);
1999 ext4_fsblk_t blocknr;
2000
2001 /*
2002 * Fastcommit replay can free already freed blocks which
2003 * corrupts allocation info. Regenerate it.
2004 */
2005 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
2006 mb_regenerate_buddy(e4b);
2007 goto check;
2008 }
2009
2010 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
2011 blocknr += EXT4_C2B(sbi, block);
2012 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2013 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2014 ext4_grp_locked_error(sb, e4b->bd_group,
2015 inode ? inode->i_ino : 0, blocknr,
2016 "freeing already freed block (bit %u); block bitmap corrupt.",
2017 block);
2018 return;
2019 }
2020
2021 this_cpu_inc(discard_pa_seq);
2022 e4b->bd_info->bb_free += count;
2023 if (first < e4b->bd_info->bb_first_free)
2024 e4b->bd_info->bb_first_free = first;
2025
2026 /* let's maintain fragments counter */
2027 if (left_is_free && right_is_free)
2028 e4b->bd_info->bb_fragments--;
2029 else if (!left_is_free && !right_is_free)
2030 e4b->bd_info->bb_fragments++;
2031
2032 /* buddy[0] == bd_bitmap is a special case, so handle
2033 * it right away and let mb_buddy_mark_free stay free of
2034 * zero order checks.
2035 * Check if neighbours are to be coaleasced,
2036 * adjust bitmap bb_counters and borders appropriately.
2037 */
2038 if (first & 1) {
2039 first += !left_is_free;
2040 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
2041 }
2042 if (!(last & 1)) {
2043 last -= !right_is_free;
2044 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
2045 }
2046
2047 if (first <= last)
2048 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
2049
2050 mb_set_largest_free_order(sb, e4b->bd_info);
2051 mb_update_avg_fragment_size(sb, e4b->bd_info);
2052 check:
2053 mb_check_buddy(e4b);
2054 }
2055
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)2056 static int mb_find_extent(struct ext4_buddy *e4b, int block,
2057 int needed, struct ext4_free_extent *ex)
2058 {
2059 int max, order, next;
2060 void *buddy;
2061
2062 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2063 BUG_ON(ex == NULL);
2064
2065 buddy = mb_find_buddy(e4b, 0, &max);
2066 BUG_ON(buddy == NULL);
2067 BUG_ON(block >= max);
2068 if (mb_test_bit(block, buddy)) {
2069 ex->fe_len = 0;
2070 ex->fe_start = 0;
2071 ex->fe_group = 0;
2072 return 0;
2073 }
2074
2075 /* find actual order */
2076 order = mb_find_order_for_block(e4b, block);
2077
2078 ex->fe_len = (1 << order) - (block & ((1 << order) - 1));
2079 ex->fe_start = block;
2080 ex->fe_group = e4b->bd_group;
2081
2082 block = block >> order;
2083
2084 while (needed > ex->fe_len &&
2085 mb_find_buddy(e4b, order, &max)) {
2086
2087 if (block + 1 >= max)
2088 break;
2089
2090 next = (block + 1) * (1 << order);
2091 if (mb_test_bit(next, e4b->bd_bitmap))
2092 break;
2093
2094 order = mb_find_order_for_block(e4b, next);
2095
2096 block = next >> order;
2097 ex->fe_len += 1 << order;
2098 }
2099
2100 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2101 /* Should never happen! (but apparently sometimes does?!?) */
2102 WARN_ON(1);
2103 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2104 "corruption or bug in mb_find_extent "
2105 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2106 block, order, needed, ex->fe_group, ex->fe_start,
2107 ex->fe_len, ex->fe_logical);
2108 ex->fe_len = 0;
2109 ex->fe_start = 0;
2110 ex->fe_group = 0;
2111 }
2112 return ex->fe_len;
2113 }
2114
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)2115 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2116 {
2117 int ord;
2118 int mlen = 0;
2119 int max = 0;
2120 int start = ex->fe_start;
2121 int len = ex->fe_len;
2122 unsigned ret = 0;
2123 int len0 = len;
2124 void *buddy;
2125 int ord_start, ord_end;
2126
2127 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2128 BUG_ON(e4b->bd_group != ex->fe_group);
2129 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2130 mb_check_buddy(e4b);
2131 mb_mark_used_double(e4b, start, len);
2132
2133 this_cpu_inc(discard_pa_seq);
2134 e4b->bd_info->bb_free -= len;
2135 if (e4b->bd_info->bb_first_free == start)
2136 e4b->bd_info->bb_first_free += len;
2137
2138 /* let's maintain fragments counter */
2139 if (start != 0)
2140 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2141 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2142 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2143 if (mlen && max)
2144 e4b->bd_info->bb_fragments++;
2145 else if (!mlen && !max)
2146 e4b->bd_info->bb_fragments--;
2147
2148 /* let's maintain buddy itself */
2149 while (len) {
2150 ord = mb_find_order_for_block(e4b, start);
2151
2152 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2153 /* the whole chunk may be allocated at once! */
2154 mlen = 1 << ord;
2155 buddy = mb_find_buddy(e4b, ord, &max);
2156 BUG_ON((start >> ord) >= max);
2157 mb_set_bit(start >> ord, buddy);
2158 e4b->bd_info->bb_counters[ord]--;
2159 start += mlen;
2160 len -= mlen;
2161 BUG_ON(len < 0);
2162 continue;
2163 }
2164
2165 /* store for history */
2166 if (ret == 0)
2167 ret = len | (ord << 16);
2168
2169 BUG_ON(ord <= 0);
2170 buddy = mb_find_buddy(e4b, ord, &max);
2171 mb_set_bit(start >> ord, buddy);
2172 e4b->bd_info->bb_counters[ord]--;
2173
2174 ord_start = (start >> ord) << ord;
2175 ord_end = ord_start + (1 << ord);
2176 /* first chunk */
2177 if (start > ord_start)
2178 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2179 ord_start, start - ord_start,
2180 e4b->bd_info);
2181
2182 /* last chunk */
2183 if (start + len < ord_end) {
2184 ext4_mb_mark_free_simple(e4b->bd_sb, e4b->bd_buddy,
2185 start + len,
2186 ord_end - (start + len),
2187 e4b->bd_info);
2188 break;
2189 }
2190 len = start + len - ord_end;
2191 start = ord_end;
2192 }
2193 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2194
2195 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2196 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2197 mb_check_buddy(e4b);
2198
2199 return ret;
2200 }
2201
2202 /*
2203 * Must be called under group lock!
2204 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2205 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2206 struct ext4_buddy *e4b)
2207 {
2208 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2209 int ret;
2210
2211 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2212 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2213
2214 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2215 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2216 ret = mb_mark_used(e4b, &ac->ac_b_ex);
2217
2218 /* preallocation can change ac_b_ex, thus we store actually
2219 * allocated blocks for history */
2220 ac->ac_f_ex = ac->ac_b_ex;
2221
2222 ac->ac_status = AC_STATUS_FOUND;
2223 ac->ac_tail = ret & 0xffff;
2224 ac->ac_buddy = ret >> 16;
2225
2226 /*
2227 * take the page reference. We want the page to be pinned
2228 * so that we don't get a ext4_mb_init_cache_call for this
2229 * group until we update the bitmap. That would mean we
2230 * double allocate blocks. The reference is dropped
2231 * in ext4_mb_release_context
2232 */
2233 ac->ac_bitmap_folio = e4b->bd_bitmap_folio;
2234 folio_get(ac->ac_bitmap_folio);
2235 ac->ac_buddy_folio = e4b->bd_buddy_folio;
2236 folio_get(ac->ac_buddy_folio);
2237 /* store last allocated for subsequent stream allocation */
2238 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2239 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals;
2240
2241 WRITE_ONCE(sbi->s_mb_last_groups[hash], ac->ac_f_ex.fe_group);
2242 }
2243
2244 /*
2245 * As we've just preallocated more space than
2246 * user requested originally, we store allocated
2247 * space in a special descriptor.
2248 */
2249 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2250 ext4_mb_new_preallocation(ac);
2251
2252 }
2253
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)2254 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2255 struct ext4_buddy *e4b,
2256 int finish_group)
2257 {
2258 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2259 struct ext4_free_extent *bex = &ac->ac_b_ex;
2260 struct ext4_free_extent *gex = &ac->ac_g_ex;
2261
2262 if (ac->ac_status == AC_STATUS_FOUND)
2263 return;
2264 /*
2265 * We don't want to scan for a whole year
2266 */
2267 if (ac->ac_found > sbi->s_mb_max_to_scan &&
2268 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2269 ac->ac_status = AC_STATUS_BREAK;
2270 return;
2271 }
2272
2273 /*
2274 * Haven't found good chunk so far, let's continue
2275 */
2276 if (bex->fe_len < gex->fe_len)
2277 return;
2278
2279 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2280 ext4_mb_use_best_found(ac, e4b);
2281 }
2282
2283 /*
2284 * The routine checks whether found extent is good enough. If it is,
2285 * then the extent gets marked used and flag is set to the context
2286 * to stop scanning. Otherwise, the extent is compared with the
2287 * previous found extent and if new one is better, then it's stored
2288 * in the context. Later, the best found extent will be used, if
2289 * mballoc can't find good enough extent.
2290 *
2291 * The algorithm used is roughly as follows:
2292 *
2293 * * If free extent found is exactly as big as goal, then
2294 * stop the scan and use it immediately
2295 *
2296 * * If free extent found is smaller than goal, then keep retrying
2297 * upto a max of sbi->s_mb_max_to_scan times (default 200). After
2298 * that stop scanning and use whatever we have.
2299 *
2300 * * If free extent found is bigger than goal, then keep retrying
2301 * upto a max of sbi->s_mb_min_to_scan times (default 10) before
2302 * stopping the scan and using the extent.
2303 *
2304 *
2305 * FIXME: real allocation policy is to be designed yet!
2306 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)2307 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2308 struct ext4_free_extent *ex,
2309 struct ext4_buddy *e4b)
2310 {
2311 struct ext4_free_extent *bex = &ac->ac_b_ex;
2312 struct ext4_free_extent *gex = &ac->ac_g_ex;
2313
2314 BUG_ON(ex->fe_len <= 0);
2315 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2316 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2317 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2318
2319 ac->ac_found++;
2320 ac->ac_cX_found[ac->ac_criteria]++;
2321
2322 /*
2323 * The special case - take what you catch first
2324 */
2325 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2326 *bex = *ex;
2327 ext4_mb_use_best_found(ac, e4b);
2328 return;
2329 }
2330
2331 /*
2332 * Let's check whether the chuck is good enough
2333 */
2334 if (ex->fe_len == gex->fe_len) {
2335 *bex = *ex;
2336 ext4_mb_use_best_found(ac, e4b);
2337 return;
2338 }
2339
2340 /*
2341 * If this is first found extent, just store it in the context
2342 */
2343 if (bex->fe_len == 0) {
2344 *bex = *ex;
2345 return;
2346 }
2347
2348 /*
2349 * If new found extent is better, store it in the context
2350 */
2351 if (bex->fe_len < gex->fe_len) {
2352 /* if the request isn't satisfied, any found extent
2353 * larger than previous best one is better */
2354 if (ex->fe_len > bex->fe_len)
2355 *bex = *ex;
2356 } else if (ex->fe_len > gex->fe_len) {
2357 /* if the request is satisfied, then we try to find
2358 * an extent that still satisfy the request, but is
2359 * smaller than previous one */
2360 if (ex->fe_len < bex->fe_len)
2361 *bex = *ex;
2362 }
2363
2364 ext4_mb_check_limits(ac, e4b, 0);
2365 }
2366
2367 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2368 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2369 struct ext4_buddy *e4b)
2370 {
2371 struct ext4_free_extent ex = ac->ac_b_ex;
2372 ext4_group_t group = ex.fe_group;
2373 int max;
2374 int err;
2375
2376 BUG_ON(ex.fe_len <= 0);
2377 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2378 if (err)
2379 return;
2380
2381 ext4_lock_group(ac->ac_sb, group);
2382 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2383 goto out;
2384
2385 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2386
2387 if (max > 0) {
2388 ac->ac_b_ex = ex;
2389 ext4_mb_use_best_found(ac, e4b);
2390 }
2391
2392 out:
2393 ext4_unlock_group(ac->ac_sb, group);
2394 ext4_mb_unload_buddy(e4b);
2395 }
2396
2397 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2398 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2399 struct ext4_buddy *e4b)
2400 {
2401 ext4_group_t group = ac->ac_g_ex.fe_group;
2402 int max;
2403 int err;
2404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2405 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2406 struct ext4_free_extent ex;
2407
2408 if (!grp)
2409 return -EFSCORRUPTED;
2410 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2411 return 0;
2412 if (grp->bb_free == 0)
2413 return 0;
2414
2415 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2416 if (err)
2417 return err;
2418
2419 ext4_lock_group(ac->ac_sb, group);
2420 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2421 goto out;
2422
2423 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2424 ac->ac_g_ex.fe_len, &ex);
2425 ex.fe_logical = 0xDEADFA11; /* debug value */
2426
2427 if (max >= ac->ac_g_ex.fe_len &&
2428 ac->ac_g_ex.fe_len == EXT4_NUM_B2C(sbi, sbi->s_stripe)) {
2429 ext4_fsblk_t start;
2430
2431 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2432 /* use do_div to get remainder (would be 64-bit modulo) */
2433 if (do_div(start, sbi->s_stripe) == 0) {
2434 ac->ac_found++;
2435 ac->ac_b_ex = ex;
2436 ext4_mb_use_best_found(ac, e4b);
2437 }
2438 } else if (max >= ac->ac_g_ex.fe_len) {
2439 BUG_ON(ex.fe_len <= 0);
2440 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2441 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2442 ac->ac_found++;
2443 ac->ac_b_ex = ex;
2444 ext4_mb_use_best_found(ac, e4b);
2445 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2446 /* Sometimes, caller may want to merge even small
2447 * number of blocks to an existing extent */
2448 BUG_ON(ex.fe_len <= 0);
2449 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2450 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2451 ac->ac_found++;
2452 ac->ac_b_ex = ex;
2453 ext4_mb_use_best_found(ac, e4b);
2454 }
2455 out:
2456 ext4_unlock_group(ac->ac_sb, group);
2457 ext4_mb_unload_buddy(e4b);
2458
2459 return 0;
2460 }
2461
2462 /*
2463 * The routine scans buddy structures (not bitmap!) from given order
2464 * to max order and tries to find big enough chunk to satisfy the req
2465 */
2466 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2467 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2468 struct ext4_buddy *e4b)
2469 {
2470 struct super_block *sb = ac->ac_sb;
2471 struct ext4_group_info *grp = e4b->bd_info;
2472 void *buddy;
2473 int i;
2474 int k;
2475 int max;
2476
2477 BUG_ON(ac->ac_2order <= 0);
2478 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2479 if (grp->bb_counters[i] == 0)
2480 continue;
2481
2482 buddy = mb_find_buddy(e4b, i, &max);
2483 if (WARN_RATELIMIT(buddy == NULL,
2484 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2485 continue;
2486
2487 k = mb_find_next_zero_bit(buddy, max, 0);
2488 if (k >= max) {
2489 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2490 e4b->bd_group,
2491 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2492 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2493 "%d free clusters of order %d. But found 0",
2494 grp->bb_counters[i], i);
2495 break;
2496 }
2497 ac->ac_found++;
2498 ac->ac_cX_found[ac->ac_criteria]++;
2499
2500 ac->ac_b_ex.fe_len = 1 << i;
2501 ac->ac_b_ex.fe_start = k << i;
2502 ac->ac_b_ex.fe_group = e4b->bd_group;
2503
2504 ext4_mb_use_best_found(ac, e4b);
2505
2506 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2507
2508 if (EXT4_SB(sb)->s_mb_stats)
2509 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2510
2511 break;
2512 }
2513 }
2514
2515 /*
2516 * The routine scans the group and measures all found extents.
2517 * In order to optimize scanning, caller must pass number of
2518 * free blocks in the group, so the routine can know upper limit.
2519 */
2520 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2521 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2522 struct ext4_buddy *e4b)
2523 {
2524 struct super_block *sb = ac->ac_sb;
2525 void *bitmap = e4b->bd_bitmap;
2526 struct ext4_free_extent ex;
2527 int i, j, freelen;
2528 int free;
2529
2530 free = e4b->bd_info->bb_free;
2531 if (WARN_ON(free <= 0))
2532 return;
2533
2534 i = e4b->bd_info->bb_first_free;
2535
2536 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2537 i = mb_find_next_zero_bit(bitmap,
2538 EXT4_CLUSTERS_PER_GROUP(sb), i);
2539 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2540 /*
2541 * IF we have corrupt bitmap, we won't find any
2542 * free blocks even though group info says we
2543 * have free blocks
2544 */
2545 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2546 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2547 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2548 "%d free clusters as per "
2549 "group info. But bitmap says 0",
2550 free);
2551 break;
2552 }
2553
2554 if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2555 /*
2556 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2557 * sure that this group will have a large enough
2558 * continuous free extent, so skip over the smaller free
2559 * extents
2560 */
2561 j = mb_find_next_bit(bitmap,
2562 EXT4_CLUSTERS_PER_GROUP(sb), i);
2563 freelen = j - i;
2564
2565 if (freelen < ac->ac_g_ex.fe_len) {
2566 i = j;
2567 free -= freelen;
2568 continue;
2569 }
2570 }
2571
2572 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2573 if (WARN_ON(ex.fe_len <= 0))
2574 break;
2575 if (free < ex.fe_len) {
2576 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2577 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2578 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2579 "%d free clusters as per "
2580 "group info. But got %d blocks",
2581 free, ex.fe_len);
2582 /*
2583 * The number of free blocks differs. This mostly
2584 * indicate that the bitmap is corrupt. So exit
2585 * without claiming the space.
2586 */
2587 break;
2588 }
2589 ex.fe_logical = 0xDEADC0DE; /* debug value */
2590 ext4_mb_measure_extent(ac, &ex, e4b);
2591
2592 i += ex.fe_len;
2593 free -= ex.fe_len;
2594 }
2595
2596 ext4_mb_check_limits(ac, e4b, 1);
2597 }
2598
2599 /*
2600 * This is a special case for storages like raid5
2601 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2602 */
2603 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)2604 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2605 struct ext4_buddy *e4b)
2606 {
2607 struct super_block *sb = ac->ac_sb;
2608 struct ext4_sb_info *sbi = EXT4_SB(sb);
2609 void *bitmap = e4b->bd_bitmap;
2610 struct ext4_free_extent ex;
2611 ext4_fsblk_t first_group_block;
2612 ext4_fsblk_t a;
2613 ext4_grpblk_t i, stripe;
2614 int max;
2615
2616 BUG_ON(sbi->s_stripe == 0);
2617
2618 /* find first stripe-aligned block in group */
2619 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2620
2621 a = first_group_block + sbi->s_stripe - 1;
2622 do_div(a, sbi->s_stripe);
2623 i = (a * sbi->s_stripe) - first_group_block;
2624
2625 stripe = EXT4_NUM_B2C(sbi, sbi->s_stripe);
2626 i = EXT4_B2C(sbi, i);
2627 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2628 if (!mb_test_bit(i, bitmap)) {
2629 max = mb_find_extent(e4b, i, stripe, &ex);
2630 if (max >= stripe) {
2631 ac->ac_found++;
2632 ac->ac_cX_found[ac->ac_criteria]++;
2633 ex.fe_logical = 0xDEADF00D; /* debug value */
2634 ac->ac_b_ex = ex;
2635 ext4_mb_use_best_found(ac, e4b);
2636 break;
2637 }
2638 }
2639 i += stripe;
2640 }
2641 }
2642
__ext4_mb_scan_group(struct ext4_allocation_context * ac)2643 static void __ext4_mb_scan_group(struct ext4_allocation_context *ac)
2644 {
2645 bool is_stripe_aligned;
2646 struct ext4_sb_info *sbi;
2647 enum criteria cr = ac->ac_criteria;
2648
2649 ac->ac_groups_scanned++;
2650 if (cr == CR_POWER2_ALIGNED)
2651 return ext4_mb_simple_scan_group(ac, ac->ac_e4b);
2652
2653 sbi = EXT4_SB(ac->ac_sb);
2654 is_stripe_aligned = false;
2655 if ((sbi->s_stripe >= sbi->s_cluster_ratio) &&
2656 !(ac->ac_g_ex.fe_len % EXT4_NUM_B2C(sbi, sbi->s_stripe)))
2657 is_stripe_aligned = true;
2658
2659 if ((cr == CR_GOAL_LEN_FAST || cr == CR_BEST_AVAIL_LEN) &&
2660 is_stripe_aligned)
2661 ext4_mb_scan_aligned(ac, ac->ac_e4b);
2662
2663 if (ac->ac_status == AC_STATUS_CONTINUE)
2664 ext4_mb_complex_scan_group(ac, ac->ac_e4b);
2665 }
2666
2667 /*
2668 * This is also called BEFORE we load the buddy bitmap.
2669 * Returns either 1 or 0 indicating that the group is either suitable
2670 * for the allocation or not.
2671 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2672 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2673 ext4_group_t group, enum criteria cr)
2674 {
2675 ext4_grpblk_t free, fragments;
2676 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2677 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2678
2679 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2680
2681 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2682 return false;
2683
2684 free = grp->bb_free;
2685 if (free == 0)
2686 return false;
2687
2688 fragments = grp->bb_fragments;
2689 if (fragments == 0)
2690 return false;
2691
2692 switch (cr) {
2693 case CR_POWER2_ALIGNED:
2694 BUG_ON(ac->ac_2order == 0);
2695
2696 /* Avoid using the first bg of a flexgroup for data files */
2697 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2698 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2699 ((group % flex_size) == 0))
2700 return false;
2701
2702 if (free < ac->ac_g_ex.fe_len)
2703 return false;
2704
2705 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2706 return true;
2707
2708 if (grp->bb_largest_free_order < ac->ac_2order)
2709 return false;
2710
2711 return true;
2712 case CR_GOAL_LEN_FAST:
2713 case CR_BEST_AVAIL_LEN:
2714 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2715 return true;
2716 break;
2717 case CR_GOAL_LEN_SLOW:
2718 if (free >= ac->ac_g_ex.fe_len)
2719 return true;
2720 break;
2721 case CR_ANY_FREE:
2722 return true;
2723 default:
2724 BUG();
2725 }
2726
2727 return false;
2728 }
2729
2730 /*
2731 * This could return negative error code if something goes wrong
2732 * during ext4_mb_init_group(). This should not be called with
2733 * ext4_lock_group() held.
2734 *
2735 * Note: because we are conditionally operating with the group lock in
2736 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2737 * function using __acquire and __release. This means we need to be
2738 * super careful before messing with the error path handling via "goto
2739 * out"!
2740 */
ext4_mb_good_group_nolock(struct ext4_allocation_context * ac,ext4_group_t group,enum criteria cr)2741 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2742 ext4_group_t group, enum criteria cr)
2743 {
2744 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2745 struct super_block *sb = ac->ac_sb;
2746 struct ext4_sb_info *sbi = EXT4_SB(sb);
2747 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2748 ext4_grpblk_t free;
2749 int ret = 0;
2750
2751 if (!grp)
2752 return -EFSCORRUPTED;
2753 if (sbi->s_mb_stats)
2754 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2755 if (should_lock) {
2756 ext4_lock_group(sb, group);
2757 __release(ext4_group_lock_ptr(sb, group));
2758 }
2759 free = grp->bb_free;
2760 if (free == 0)
2761 goto out;
2762 /*
2763 * In all criterias except CR_ANY_FREE we try to avoid groups that
2764 * can't possibly satisfy the full goal request due to insufficient
2765 * free blocks.
2766 */
2767 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2768 goto out;
2769 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2770 goto out;
2771 if (should_lock) {
2772 __acquire(ext4_group_lock_ptr(sb, group));
2773 ext4_unlock_group(sb, group);
2774 }
2775
2776 /* We only do this if the grp has never been initialized */
2777 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2778 struct ext4_group_desc *gdp =
2779 ext4_get_group_desc(sb, group, NULL);
2780 int ret;
2781
2782 /*
2783 * CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2784 * search to find large good chunks almost for free. If buddy
2785 * data is not ready, then this optimization makes no sense. But
2786 * we never skip the first block group in a flex_bg, since this
2787 * gets used for metadata block allocation, and we want to make
2788 * sure we locate metadata blocks in the first block group in
2789 * the flex_bg if possible.
2790 */
2791 if (!ext4_mb_cr_expensive(cr) &&
2792 (!sbi->s_log_groups_per_flex ||
2793 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2794 !(ext4_has_group_desc_csum(sb) &&
2795 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2796 return 0;
2797 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2798 if (ret)
2799 return ret;
2800 }
2801
2802 if (should_lock) {
2803 ext4_lock_group(sb, group);
2804 __release(ext4_group_lock_ptr(sb, group));
2805 }
2806 ret = ext4_mb_good_group(ac, group, cr);
2807 out:
2808 if (should_lock) {
2809 __acquire(ext4_group_lock_ptr(sb, group));
2810 ext4_unlock_group(sb, group);
2811 }
2812 return ret;
2813 }
2814
2815 /*
2816 * Start prefetching @nr block bitmaps starting at @group.
2817 * Return the next group which needs to be prefetched.
2818 */
ext4_mb_prefetch(struct super_block * sb,ext4_group_t group,unsigned int nr,int * cnt)2819 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2820 unsigned int nr, int *cnt)
2821 {
2822 ext4_group_t ngroups = ext4_get_groups_count(sb);
2823 struct buffer_head *bh;
2824 struct blk_plug plug;
2825
2826 blk_start_plug(&plug);
2827 while (nr-- > 0) {
2828 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2829 NULL);
2830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2831
2832 /*
2833 * Prefetch block groups with free blocks; but don't
2834 * bother if it is marked uninitialized on disk, since
2835 * it won't require I/O to read. Also only try to
2836 * prefetch once, so we avoid getblk() call, which can
2837 * be expensive.
2838 */
2839 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2840 EXT4_MB_GRP_NEED_INIT(grp) &&
2841 ext4_free_group_clusters(sb, gdp) > 0 ) {
2842 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2843 if (bh && !IS_ERR(bh)) {
2844 if (!buffer_uptodate(bh) && cnt)
2845 (*cnt)++;
2846 brelse(bh);
2847 }
2848 }
2849 if (++group >= ngroups)
2850 group = 0;
2851 }
2852 blk_finish_plug(&plug);
2853 return group;
2854 }
2855
2856 /*
2857 * Batch reads of the block allocation bitmaps to get
2858 * multiple READs in flight; limit prefetching at inexpensive
2859 * CR, otherwise mballoc can spend a lot of time loading
2860 * imperfect groups
2861 */
ext4_mb_might_prefetch(struct ext4_allocation_context * ac,ext4_group_t group)2862 static void ext4_mb_might_prefetch(struct ext4_allocation_context *ac,
2863 ext4_group_t group)
2864 {
2865 struct ext4_sb_info *sbi;
2866
2867 if (ac->ac_prefetch_grp != group)
2868 return;
2869
2870 sbi = EXT4_SB(ac->ac_sb);
2871 if (ext4_mb_cr_expensive(ac->ac_criteria) ||
2872 ac->ac_prefetch_ios < sbi->s_mb_prefetch_limit) {
2873 unsigned int nr = sbi->s_mb_prefetch;
2874
2875 if (ext4_has_feature_flex_bg(ac->ac_sb)) {
2876 nr = 1 << sbi->s_log_groups_per_flex;
2877 nr -= group & (nr - 1);
2878 nr = umin(nr, sbi->s_mb_prefetch);
2879 }
2880
2881 ac->ac_prefetch_nr = nr;
2882 ac->ac_prefetch_grp = ext4_mb_prefetch(ac->ac_sb, group, nr,
2883 &ac->ac_prefetch_ios);
2884 }
2885 }
2886
2887 /*
2888 * Prefetching reads the block bitmap into the buffer cache; but we
2889 * need to make sure that the buddy bitmap in the page cache has been
2890 * initialized. Note that ext4_mb_init_group() will block if the I/O
2891 * is not yet completed, or indeed if it was not initiated by
2892 * ext4_mb_prefetch did not start the I/O.
2893 *
2894 * TODO: We should actually kick off the buddy bitmap setup in a work
2895 * queue when the buffer I/O is completed, so that we don't block
2896 * waiting for the block allocation bitmap read to finish when
2897 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2898 */
ext4_mb_prefetch_fini(struct super_block * sb,ext4_group_t group,unsigned int nr)2899 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2900 unsigned int nr)
2901 {
2902 struct ext4_group_desc *gdp;
2903 struct ext4_group_info *grp;
2904
2905 while (nr-- > 0) {
2906 if (!group)
2907 group = ext4_get_groups_count(sb);
2908 group--;
2909 gdp = ext4_get_group_desc(sb, group, NULL);
2910 grp = ext4_get_group_info(sb, group);
2911
2912 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2913 ext4_free_group_clusters(sb, gdp) > 0) {
2914 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2915 break;
2916 }
2917 }
2918 }
2919
ext4_mb_scan_group(struct ext4_allocation_context * ac,ext4_group_t group)2920 static int ext4_mb_scan_group(struct ext4_allocation_context *ac,
2921 ext4_group_t group)
2922 {
2923 int ret;
2924 struct super_block *sb = ac->ac_sb;
2925 enum criteria cr = ac->ac_criteria;
2926
2927 ext4_mb_might_prefetch(ac, group);
2928
2929 /* prevent unnecessary buddy loading. */
2930 if (cr < CR_ANY_FREE && spin_is_locked(ext4_group_lock_ptr(sb, group)))
2931 return 0;
2932
2933 /* This now checks without needing the buddy page */
2934 ret = ext4_mb_good_group_nolock(ac, group, cr);
2935 if (ret <= 0) {
2936 if (!ac->ac_first_err)
2937 ac->ac_first_err = ret;
2938 return 0;
2939 }
2940
2941 ret = ext4_mb_load_buddy(sb, group, ac->ac_e4b);
2942 if (ret)
2943 return ret;
2944
2945 /* skip busy group */
2946 if (cr >= CR_ANY_FREE)
2947 ext4_lock_group(sb, group);
2948 else if (!ext4_try_lock_group(sb, group))
2949 goto out_unload;
2950
2951 /* We need to check again after locking the block group. */
2952 if (unlikely(!ext4_mb_good_group(ac, group, cr)))
2953 goto out_unlock;
2954
2955 __ext4_mb_scan_group(ac);
2956
2957 out_unlock:
2958 ext4_unlock_group(sb, group);
2959 out_unload:
2960 ext4_mb_unload_buddy(ac->ac_e4b);
2961 return ret;
2962 }
2963
2964 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2965 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2966 {
2967 ext4_group_t i;
2968 int err = 0;
2969 struct super_block *sb = ac->ac_sb;
2970 struct ext4_sb_info *sbi = EXT4_SB(sb);
2971 struct ext4_buddy e4b;
2972
2973 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2974
2975 /* first, try the goal */
2976 err = ext4_mb_find_by_goal(ac, &e4b);
2977 if (err || ac->ac_status == AC_STATUS_FOUND)
2978 goto out;
2979
2980 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2981 goto out;
2982
2983 /*
2984 * ac->ac_2order is set only if the fe_len is a power of 2
2985 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2986 * so that we try exact allocation using buddy.
2987 */
2988 i = fls(ac->ac_g_ex.fe_len);
2989 ac->ac_2order = 0;
2990 /*
2991 * We search using buddy data only if the order of the request
2992 * is greater than equal to the sbi_s_mb_order2_reqs
2993 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2994 * We also support searching for power-of-two requests only for
2995 * requests upto maximum buddy size we have constructed.
2996 */
2997 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2998 if (is_power_of_2(ac->ac_g_ex.fe_len))
2999 ac->ac_2order = array_index_nospec(i - 1,
3000 MB_NUM_ORDERS(sb));
3001 }
3002
3003 /* if stream allocation is enabled, use global goal */
3004 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
3005 int hash = ac->ac_inode->i_ino % sbi->s_mb_nr_global_goals;
3006
3007 ac->ac_g_ex.fe_group = READ_ONCE(sbi->s_mb_last_groups[hash]);
3008 ac->ac_g_ex.fe_start = -1;
3009 ac->ac_flags &= ~EXT4_MB_HINT_TRY_GOAL;
3010 }
3011
3012 /*
3013 * Let's just scan groups to find more-less suitable blocks We
3014 * start with CR_GOAL_LEN_FAST, unless it is power of 2
3015 * aligned, in which case let's do that faster approach first.
3016 */
3017 ac->ac_criteria = CR_GOAL_LEN_FAST;
3018 if (ac->ac_2order)
3019 ac->ac_criteria = CR_POWER2_ALIGNED;
3020
3021 ac->ac_e4b = &e4b;
3022 ac->ac_prefetch_ios = 0;
3023 ac->ac_first_err = 0;
3024 repeat:
3025 while (ac->ac_criteria < EXT4_MB_NUM_CRS) {
3026 err = ext4_mb_scan_groups(ac);
3027 if (err)
3028 goto out;
3029
3030 if (ac->ac_status != AC_STATUS_CONTINUE)
3031 break;
3032 }
3033
3034 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
3035 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
3036 /*
3037 * We've been searching too long. Let's try to allocate
3038 * the best chunk we've found so far
3039 */
3040 ext4_mb_try_best_found(ac, &e4b);
3041 if (ac->ac_status != AC_STATUS_FOUND) {
3042 int lost;
3043
3044 /*
3045 * Someone more lucky has already allocated it.
3046 * The only thing we can do is just take first
3047 * found block(s)
3048 */
3049 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
3050 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
3051 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
3052 ac->ac_b_ex.fe_len, lost);
3053
3054 ac->ac_b_ex.fe_group = 0;
3055 ac->ac_b_ex.fe_start = 0;
3056 ac->ac_b_ex.fe_len = 0;
3057 ac->ac_status = AC_STATUS_CONTINUE;
3058 ac->ac_flags |= EXT4_MB_HINT_FIRST;
3059 ac->ac_criteria = CR_ANY_FREE;
3060 goto repeat;
3061 }
3062 }
3063
3064 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) {
3065 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
3066 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC &&
3067 ac->ac_b_ex.fe_group == ac->ac_g_ex.fe_group)
3068 atomic_inc(&sbi->s_bal_stream_goals);
3069 }
3070 out:
3071 if (!err && ac->ac_status != AC_STATUS_FOUND && ac->ac_first_err)
3072 err = ac->ac_first_err;
3073
3074 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
3075 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
3076 ac->ac_flags, ac->ac_criteria, err);
3077
3078 if (ac->ac_prefetch_nr)
3079 ext4_mb_prefetch_fini(sb, ac->ac_prefetch_grp, ac->ac_prefetch_nr);
3080
3081 return err;
3082 }
3083
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)3084 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
3085 {
3086 struct super_block *sb = pde_data(file_inode(seq->file));
3087 ext4_group_t group;
3088
3089 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3090 return NULL;
3091 group = *pos + 1;
3092 return (void *) ((unsigned long) group);
3093 }
3094
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)3095 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3096 {
3097 struct super_block *sb = pde_data(file_inode(seq->file));
3098 ext4_group_t group;
3099
3100 ++*pos;
3101 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3102 return NULL;
3103 group = *pos + 1;
3104 return (void *) ((unsigned long) group);
3105 }
3106
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)3107 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3108 {
3109 struct super_block *sb = pde_data(file_inode(seq->file));
3110 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3111 int i, err;
3112 char nbuf[16];
3113 struct ext4_buddy e4b;
3114 struct ext4_group_info *grinfo;
3115 unsigned char blocksize_bits = min_t(unsigned char,
3116 sb->s_blocksize_bits,
3117 EXT4_MAX_BLOCK_LOG_SIZE);
3118 DEFINE_RAW_FLEX(struct ext4_group_info, sg, bb_counters,
3119 EXT4_MAX_BLOCK_LOG_SIZE + 2);
3120
3121 group--;
3122 if (group == 0)
3123 seq_puts(seq, "#group: free frags first ["
3124 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
3125 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
3126
3127 i = (blocksize_bits + 2) * sizeof(sg->bb_counters[0]) +
3128 sizeof(struct ext4_group_info);
3129
3130 grinfo = ext4_get_group_info(sb, group);
3131 if (!grinfo)
3132 return 0;
3133 /* Load the group info in memory only if not already loaded. */
3134 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3135 err = ext4_mb_load_buddy(sb, group, &e4b);
3136 if (err) {
3137 seq_printf(seq, "#%-5u: %s\n", group, ext4_decode_error(NULL, err, nbuf));
3138 return 0;
3139 }
3140 ext4_mb_unload_buddy(&e4b);
3141 }
3142
3143 /*
3144 * We care only about free space counters in the group info and
3145 * these are safe to access even after the buddy has been unloaded
3146 */
3147 memcpy(sg, grinfo, i);
3148 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg->bb_free,
3149 sg->bb_fragments, sg->bb_first_free);
3150 for (i = 0; i <= 13; i++)
3151 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3152 sg->bb_counters[i] : 0);
3153 seq_puts(seq, " ]");
3154 if (EXT4_MB_GRP_BBITMAP_CORRUPT(sg))
3155 seq_puts(seq, " Block bitmap corrupted!");
3156 seq_putc(seq, '\n');
3157 return 0;
3158 }
3159
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)3160 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3161 {
3162 }
3163
3164 const struct seq_operations ext4_mb_seq_groups_ops = {
3165 .start = ext4_mb_seq_groups_start,
3166 .next = ext4_mb_seq_groups_next,
3167 .stop = ext4_mb_seq_groups_stop,
3168 .show = ext4_mb_seq_groups_show,
3169 };
3170
ext4_seq_mb_stats_show(struct seq_file * seq,void * offset)3171 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3172 {
3173 struct super_block *sb = seq->private;
3174 struct ext4_sb_info *sbi = EXT4_SB(sb);
3175
3176 seq_puts(seq, "mballoc:\n");
3177 if (!sbi->s_mb_stats) {
3178 seq_puts(seq, "\tmb stats collection turned off.\n");
3179 seq_puts(
3180 seq,
3181 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3182 return 0;
3183 }
3184 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3185 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3186
3187 seq_printf(seq, "\tgroups_scanned: %u\n",
3188 atomic_read(&sbi->s_bal_groups_scanned));
3189
3190 /* CR_POWER2_ALIGNED stats */
3191 seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3192 seq_printf(seq, "\t\thits: %llu\n",
3193 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3194 seq_printf(
3195 seq, "\t\tgroups_considered: %llu\n",
3196 atomic64_read(
3197 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3198 seq_printf(seq, "\t\textents_scanned: %u\n",
3199 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3200 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3201 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3202
3203 /* CR_GOAL_LEN_FAST stats */
3204 seq_puts(seq, "\tcr_goal_fast_stats:\n");
3205 seq_printf(seq, "\t\thits: %llu\n",
3206 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3207 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3208 atomic64_read(
3209 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3210 seq_printf(seq, "\t\textents_scanned: %u\n",
3211 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3212 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3213 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3214
3215 /* CR_BEST_AVAIL_LEN stats */
3216 seq_puts(seq, "\tcr_best_avail_stats:\n");
3217 seq_printf(seq, "\t\thits: %llu\n",
3218 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3219 seq_printf(
3220 seq, "\t\tgroups_considered: %llu\n",
3221 atomic64_read(
3222 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3223 seq_printf(seq, "\t\textents_scanned: %u\n",
3224 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3225 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3226 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3227
3228 /* CR_GOAL_LEN_SLOW stats */
3229 seq_puts(seq, "\tcr_goal_slow_stats:\n");
3230 seq_printf(seq, "\t\thits: %llu\n",
3231 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3232 seq_printf(seq, "\t\tgroups_considered: %llu\n",
3233 atomic64_read(
3234 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3235 seq_printf(seq, "\t\textents_scanned: %u\n",
3236 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3237 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3238 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3239
3240 /* CR_ANY_FREE stats */
3241 seq_puts(seq, "\tcr_any_free_stats:\n");
3242 seq_printf(seq, "\t\thits: %llu\n",
3243 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3244 seq_printf(
3245 seq, "\t\tgroups_considered: %llu\n",
3246 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3247 seq_printf(seq, "\t\textents_scanned: %u\n",
3248 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3249 seq_printf(seq, "\t\tuseless_loops: %llu\n",
3250 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3251
3252 /* Aggregates */
3253 seq_printf(seq, "\textents_scanned: %u\n",
3254 atomic_read(&sbi->s_bal_ex_scanned));
3255 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3256 seq_printf(seq, "\t\tstream_goal_hits: %u\n",
3257 atomic_read(&sbi->s_bal_stream_goals));
3258 seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3259 atomic_read(&sbi->s_bal_len_goals));
3260 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3261 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3262 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3263 seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3264 atomic_read(&sbi->s_mb_buddies_generated),
3265 ext4_get_groups_count(sb));
3266 seq_printf(seq, "\tbuddies_time_used: %llu\n",
3267 atomic64_read(&sbi->s_mb_generation_time));
3268 seq_printf(seq, "\tpreallocated: %u\n",
3269 atomic_read(&sbi->s_mb_preallocated));
3270 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3271 return 0;
3272 }
3273
ext4_mb_seq_structs_summary_start(struct seq_file * seq,loff_t * pos)3274 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3275 {
3276 struct super_block *sb = pde_data(file_inode(seq->file));
3277 unsigned long position;
3278
3279 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3280 return NULL;
3281 position = *pos + 1;
3282 return (void *) ((unsigned long) position);
3283 }
3284
ext4_mb_seq_structs_summary_next(struct seq_file * seq,void * v,loff_t * pos)3285 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3286 {
3287 struct super_block *sb = pde_data(file_inode(seq->file));
3288 unsigned long position;
3289
3290 ++*pos;
3291 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3292 return NULL;
3293 position = *pos + 1;
3294 return (void *) ((unsigned long) position);
3295 }
3296
ext4_mb_seq_structs_summary_show(struct seq_file * seq,void * v)3297 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3298 {
3299 struct super_block *sb = pde_data(file_inode(seq->file));
3300 struct ext4_sb_info *sbi = EXT4_SB(sb);
3301 unsigned long position = ((unsigned long) v);
3302 struct ext4_group_info *grp;
3303 unsigned int count;
3304 unsigned long idx;
3305
3306 position--;
3307 if (position >= MB_NUM_ORDERS(sb)) {
3308 position -= MB_NUM_ORDERS(sb);
3309 if (position == 0)
3310 seq_puts(seq, "avg_fragment_size_lists:\n");
3311
3312 count = 0;
3313 xa_for_each(&sbi->s_mb_avg_fragment_size[position], idx, grp)
3314 count++;
3315 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3316 (unsigned int)position, count);
3317 return 0;
3318 }
3319
3320 if (position == 0) {
3321 seq_printf(seq, "optimize_scan: %d\n",
3322 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3323 seq_puts(seq, "max_free_order_lists:\n");
3324 }
3325 count = 0;
3326 xa_for_each(&sbi->s_mb_largest_free_orders[position], idx, grp)
3327 count++;
3328 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3329 (unsigned int)position, count);
3330
3331 return 0;
3332 }
3333
ext4_mb_seq_structs_summary_stop(struct seq_file * seq,void * v)3334 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3335 {
3336 }
3337
3338 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3339 .start = ext4_mb_seq_structs_summary_start,
3340 .next = ext4_mb_seq_structs_summary_next,
3341 .stop = ext4_mb_seq_structs_summary_stop,
3342 .show = ext4_mb_seq_structs_summary_show,
3343 };
3344
get_groupinfo_cache(int blocksize_bits)3345 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3346 {
3347 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3348 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3349
3350 BUG_ON(!cachep);
3351 return cachep;
3352 }
3353
3354 /*
3355 * Allocate the top-level s_group_info array for the specified number
3356 * of groups
3357 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)3358 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3359 {
3360 struct ext4_sb_info *sbi = EXT4_SB(sb);
3361 unsigned size;
3362 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3363
3364 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3365 EXT4_DESC_PER_BLOCK_BITS(sb);
3366 if (size <= sbi->s_group_info_size)
3367 return 0;
3368
3369 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3370 new_groupinfo = kvzalloc(size, GFP_KERNEL);
3371 if (!new_groupinfo) {
3372 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3373 return -ENOMEM;
3374 }
3375 rcu_read_lock();
3376 old_groupinfo = rcu_dereference(sbi->s_group_info);
3377 if (old_groupinfo)
3378 memcpy(new_groupinfo, old_groupinfo,
3379 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3380 rcu_read_unlock();
3381 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3382 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3383 if (old_groupinfo)
3384 ext4_kvfree_array_rcu(old_groupinfo);
3385 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3386 sbi->s_group_info_size);
3387 return 0;
3388 }
3389
3390 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)3391 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3392 struct ext4_group_desc *desc)
3393 {
3394 int i;
3395 int metalen = 0;
3396 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3397 struct ext4_sb_info *sbi = EXT4_SB(sb);
3398 struct ext4_group_info **meta_group_info;
3399 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3400
3401 /*
3402 * First check if this group is the first of a reserved block.
3403 * If it's true, we have to allocate a new table of pointers
3404 * to ext4_group_info structures
3405 */
3406 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3407 metalen = sizeof(*meta_group_info) <<
3408 EXT4_DESC_PER_BLOCK_BITS(sb);
3409 meta_group_info = kmalloc(metalen, GFP_NOFS);
3410 if (meta_group_info == NULL) {
3411 ext4_msg(sb, KERN_ERR, "can't allocate mem "
3412 "for a buddy group");
3413 return -ENOMEM;
3414 }
3415 rcu_read_lock();
3416 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3417 rcu_read_unlock();
3418 }
3419
3420 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3421 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3422
3423 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3424 if (meta_group_info[i] == NULL) {
3425 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3426 goto exit_group_info;
3427 }
3428 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3429 &(meta_group_info[i]->bb_state));
3430
3431 /*
3432 * initialize bb_free to be able to skip
3433 * empty groups without initialization
3434 */
3435 if (ext4_has_group_desc_csum(sb) &&
3436 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3437 meta_group_info[i]->bb_free =
3438 ext4_free_clusters_after_init(sb, group, desc);
3439 } else {
3440 meta_group_info[i]->bb_free =
3441 ext4_free_group_clusters(sb, desc);
3442 }
3443
3444 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3445 init_rwsem(&meta_group_info[i]->alloc_sem);
3446 meta_group_info[i]->bb_free_root = RB_ROOT;
3447 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
3448 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */
3449 meta_group_info[i]->bb_group = group;
3450
3451 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3452 return 0;
3453
3454 exit_group_info:
3455 /* If a meta_group_info table has been allocated, release it now */
3456 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3457 struct ext4_group_info ***group_info;
3458
3459 rcu_read_lock();
3460 group_info = rcu_dereference(sbi->s_group_info);
3461 kfree(group_info[idx]);
3462 group_info[idx] = NULL;
3463 rcu_read_unlock();
3464 }
3465 return -ENOMEM;
3466 } /* ext4_mb_add_groupinfo */
3467
ext4_mb_init_backend(struct super_block * sb)3468 static int ext4_mb_init_backend(struct super_block *sb)
3469 {
3470 ext4_group_t ngroups = ext4_get_groups_count(sb);
3471 ext4_group_t i;
3472 struct ext4_sb_info *sbi = EXT4_SB(sb);
3473 int err;
3474 struct ext4_group_desc *desc;
3475 struct ext4_group_info ***group_info;
3476 struct kmem_cache *cachep;
3477
3478 err = ext4_mb_alloc_groupinfo(sb, ngroups);
3479 if (err)
3480 return err;
3481
3482 sbi->s_buddy_cache = new_inode(sb);
3483 if (sbi->s_buddy_cache == NULL) {
3484 ext4_msg(sb, KERN_ERR, "can't get new inode");
3485 goto err_freesgi;
3486 }
3487 /* To avoid potentially colliding with an valid on-disk inode number,
3488 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
3489 * not in the inode hash, so it should never be found by iget(), but
3490 * this will avoid confusion if it ever shows up during debugging. */
3491 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3492 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3493 for (i = 0; i < ngroups; i++) {
3494 cond_resched();
3495 desc = ext4_get_group_desc(sb, i, NULL);
3496 if (desc == NULL) {
3497 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3498 goto err_freebuddy;
3499 }
3500 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3501 goto err_freebuddy;
3502 }
3503
3504 if (ext4_has_feature_flex_bg(sb)) {
3505 /* a single flex group is supposed to be read by a single IO.
3506 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3507 * unsigned integer, so the maximum shift is 32.
3508 */
3509 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3510 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3511 goto err_freebuddy;
3512 }
3513 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3514 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3515 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3516 } else {
3517 sbi->s_mb_prefetch = 32;
3518 }
3519 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3520 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3521 /*
3522 * now many real IOs to prefetch within a single allocation at
3523 * CR_POWER2_ALIGNED. Given CR_POWER2_ALIGNED is an CPU-related
3524 * optimization we shouldn't try to load too many groups, at some point
3525 * we should start to use what we've got in memory.
3526 * with an average random access time 5ms, it'd take a second to get
3527 * 200 groups (* N with flex_bg), so let's make this limit 4
3528 */
3529 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3530 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3531 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3532
3533 return 0;
3534
3535 err_freebuddy:
3536 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3537 while (i-- > 0) {
3538 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3539
3540 if (grp)
3541 kmem_cache_free(cachep, grp);
3542 }
3543 i = sbi->s_group_info_size;
3544 rcu_read_lock();
3545 group_info = rcu_dereference(sbi->s_group_info);
3546 while (i-- > 0)
3547 kfree(group_info[i]);
3548 rcu_read_unlock();
3549 iput(sbi->s_buddy_cache);
3550 err_freesgi:
3551 rcu_read_lock();
3552 kvfree(rcu_dereference(sbi->s_group_info));
3553 rcu_read_unlock();
3554 return -ENOMEM;
3555 }
3556
ext4_groupinfo_destroy_slabs(void)3557 static void ext4_groupinfo_destroy_slabs(void)
3558 {
3559 int i;
3560
3561 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3562 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3563 ext4_groupinfo_caches[i] = NULL;
3564 }
3565 }
3566
ext4_groupinfo_create_slab(size_t size)3567 static int ext4_groupinfo_create_slab(size_t size)
3568 {
3569 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3570 int slab_size;
3571 int blocksize_bits = order_base_2(size);
3572 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3573 struct kmem_cache *cachep;
3574
3575 if (cache_index >= NR_GRPINFO_CACHES)
3576 return -EINVAL;
3577
3578 if (unlikely(cache_index < 0))
3579 cache_index = 0;
3580
3581 mutex_lock(&ext4_grpinfo_slab_create_mutex);
3582 if (ext4_groupinfo_caches[cache_index]) {
3583 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3584 return 0; /* Already created */
3585 }
3586
3587 slab_size = offsetof(struct ext4_group_info,
3588 bb_counters[blocksize_bits + 2]);
3589
3590 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3591 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3592 NULL);
3593
3594 ext4_groupinfo_caches[cache_index] = cachep;
3595
3596 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3597 if (!cachep) {
3598 printk(KERN_EMERG
3599 "EXT4-fs: no memory for groupinfo slab cache\n");
3600 return -ENOMEM;
3601 }
3602
3603 return 0;
3604 }
3605
ext4_discard_work(struct work_struct * work)3606 static void ext4_discard_work(struct work_struct *work)
3607 {
3608 struct ext4_sb_info *sbi = container_of(work,
3609 struct ext4_sb_info, s_discard_work);
3610 struct super_block *sb = sbi->s_sb;
3611 struct ext4_free_data *fd, *nfd;
3612 struct ext4_buddy e4b;
3613 LIST_HEAD(discard_list);
3614 ext4_group_t grp, load_grp;
3615 int err = 0;
3616
3617 spin_lock(&sbi->s_md_lock);
3618 list_splice_init(&sbi->s_discard_list, &discard_list);
3619 spin_unlock(&sbi->s_md_lock);
3620
3621 load_grp = UINT_MAX;
3622 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3623 /*
3624 * If filesystem is umounting or no memory or suffering
3625 * from no space, give up the discard
3626 */
3627 if ((sb->s_flags & SB_ACTIVE) && !err &&
3628 !atomic_read(&sbi->s_retry_alloc_pending)) {
3629 grp = fd->efd_group;
3630 if (grp != load_grp) {
3631 if (load_grp != UINT_MAX)
3632 ext4_mb_unload_buddy(&e4b);
3633
3634 err = ext4_mb_load_buddy(sb, grp, &e4b);
3635 if (err) {
3636 kmem_cache_free(ext4_free_data_cachep, fd);
3637 load_grp = UINT_MAX;
3638 continue;
3639 } else {
3640 load_grp = grp;
3641 }
3642 }
3643
3644 ext4_lock_group(sb, grp);
3645 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3646 fd->efd_start_cluster + fd->efd_count - 1, 1);
3647 ext4_unlock_group(sb, grp);
3648 }
3649 kmem_cache_free(ext4_free_data_cachep, fd);
3650 }
3651
3652 if (load_grp != UINT_MAX)
3653 ext4_mb_unload_buddy(&e4b);
3654 }
3655
ext4_mb_avg_fragment_size_destroy(struct ext4_sb_info * sbi)3656 static inline void ext4_mb_avg_fragment_size_destroy(struct ext4_sb_info *sbi)
3657 {
3658 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++)
3659 xa_destroy(&sbi->s_mb_avg_fragment_size[i]);
3660 kfree(sbi->s_mb_avg_fragment_size);
3661 }
3662
ext4_mb_largest_free_orders_destroy(struct ext4_sb_info * sbi)3663 static inline void ext4_mb_largest_free_orders_destroy(struct ext4_sb_info *sbi)
3664 {
3665 for (int i = 0; i < MB_NUM_ORDERS(sbi->s_sb); i++)
3666 xa_destroy(&sbi->s_mb_largest_free_orders[i]);
3667 kfree(sbi->s_mb_largest_free_orders);
3668 }
3669
ext4_mb_init(struct super_block * sb)3670 int ext4_mb_init(struct super_block *sb)
3671 {
3672 struct ext4_sb_info *sbi = EXT4_SB(sb);
3673 unsigned i, j;
3674 unsigned offset, offset_incr;
3675 unsigned max;
3676 int ret;
3677
3678 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3679
3680 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3681 if (sbi->s_mb_offsets == NULL) {
3682 ret = -ENOMEM;
3683 goto out;
3684 }
3685
3686 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3687 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3688 if (sbi->s_mb_maxs == NULL) {
3689 ret = -ENOMEM;
3690 goto out;
3691 }
3692
3693 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3694 if (ret < 0)
3695 goto out;
3696
3697 /* order 0 is regular bitmap */
3698 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3699 sbi->s_mb_offsets[0] = 0;
3700
3701 i = 1;
3702 offset = 0;
3703 offset_incr = 1 << (sb->s_blocksize_bits - 1);
3704 max = sb->s_blocksize << 2;
3705 do {
3706 sbi->s_mb_offsets[i] = offset;
3707 sbi->s_mb_maxs[i] = max;
3708 offset += offset_incr;
3709 offset_incr = offset_incr >> 1;
3710 max = max >> 1;
3711 i++;
3712 } while (i < MB_NUM_ORDERS(sb));
3713
3714 sbi->s_mb_avg_fragment_size =
3715 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray),
3716 GFP_KERNEL);
3717 if (!sbi->s_mb_avg_fragment_size) {
3718 ret = -ENOMEM;
3719 goto out;
3720 }
3721 for (i = 0; i < MB_NUM_ORDERS(sb); i++)
3722 xa_init(&sbi->s_mb_avg_fragment_size[i]);
3723
3724 sbi->s_mb_largest_free_orders =
3725 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct xarray),
3726 GFP_KERNEL);
3727 if (!sbi->s_mb_largest_free_orders) {
3728 ret = -ENOMEM;
3729 goto out;
3730 }
3731 for (i = 0; i < MB_NUM_ORDERS(sb); i++)
3732 xa_init(&sbi->s_mb_largest_free_orders[i]);
3733
3734 spin_lock_init(&sbi->s_md_lock);
3735 atomic_set(&sbi->s_mb_free_pending, 0);
3736 INIT_LIST_HEAD(&sbi->s_freed_data_list[0]);
3737 INIT_LIST_HEAD(&sbi->s_freed_data_list[1]);
3738 INIT_LIST_HEAD(&sbi->s_discard_list);
3739 INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3740 atomic_set(&sbi->s_retry_alloc_pending, 0);
3741
3742 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3743 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3744 sbi->s_mb_stats = MB_DEFAULT_STATS;
3745 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3746 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3747 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3748
3749 /*
3750 * The default group preallocation is 512, which for 4k block
3751 * sizes translates to 2 megabytes. However for bigalloc file
3752 * systems, this is probably too big (i.e, if the cluster size
3753 * is 1 megabyte, then group preallocation size becomes half a
3754 * gigabyte!). As a default, we will keep a two megabyte
3755 * group pralloc size for cluster sizes up to 64k, and after
3756 * that, we will force a minimum group preallocation size of
3757 * 32 clusters. This translates to 8 megs when the cluster
3758 * size is 256k, and 32 megs when the cluster size is 1 meg,
3759 * which seems reasonable as a default.
3760 */
3761 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3762 sbi->s_cluster_bits, 32);
3763 /*
3764 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3765 * to the lowest multiple of s_stripe which is bigger than
3766 * the s_mb_group_prealloc as determined above. We want
3767 * the preallocation size to be an exact multiple of the
3768 * RAID stripe size so that preallocations don't fragment
3769 * the stripes.
3770 */
3771 if (sbi->s_stripe > 1) {
3772 sbi->s_mb_group_prealloc = roundup(
3773 sbi->s_mb_group_prealloc, EXT4_NUM_B2C(sbi, sbi->s_stripe));
3774 }
3775
3776 sbi->s_mb_nr_global_goals = umin(num_possible_cpus(),
3777 DIV_ROUND_UP(sbi->s_groups_count, 4));
3778 sbi->s_mb_last_groups = kcalloc(sbi->s_mb_nr_global_goals,
3779 sizeof(ext4_group_t), GFP_KERNEL);
3780 if (sbi->s_mb_last_groups == NULL) {
3781 ret = -ENOMEM;
3782 goto out;
3783 }
3784
3785 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3786 if (sbi->s_locality_groups == NULL) {
3787 ret = -ENOMEM;
3788 goto out_free_last_groups;
3789 }
3790 for_each_possible_cpu(i) {
3791 struct ext4_locality_group *lg;
3792 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3793 mutex_init(&lg->lg_mutex);
3794 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3795 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3796 spin_lock_init(&lg->lg_prealloc_lock);
3797 }
3798
3799 if (bdev_nonrot(sb->s_bdev))
3800 sbi->s_mb_max_linear_groups = 0;
3801 else
3802 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3803 /* init file for buddy data */
3804 ret = ext4_mb_init_backend(sb);
3805 if (ret != 0)
3806 goto out_free_locality_groups;
3807
3808 return 0;
3809
3810 out_free_locality_groups:
3811 free_percpu(sbi->s_locality_groups);
3812 sbi->s_locality_groups = NULL;
3813 out_free_last_groups:
3814 kfree(sbi->s_mb_last_groups);
3815 sbi->s_mb_last_groups = NULL;
3816 out:
3817 ext4_mb_avg_fragment_size_destroy(sbi);
3818 ext4_mb_largest_free_orders_destroy(sbi);
3819 kfree(sbi->s_mb_offsets);
3820 sbi->s_mb_offsets = NULL;
3821 kfree(sbi->s_mb_maxs);
3822 sbi->s_mb_maxs = NULL;
3823 return ret;
3824 }
3825
3826 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)3827 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3828 {
3829 struct ext4_prealloc_space *pa;
3830 struct list_head *cur, *tmp;
3831 int count = 0;
3832
3833 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3834 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3835 list_del(&pa->pa_group_list);
3836 count++;
3837 kmem_cache_free(ext4_pspace_cachep, pa);
3838 }
3839 return count;
3840 }
3841
ext4_mb_release(struct super_block * sb)3842 void ext4_mb_release(struct super_block *sb)
3843 {
3844 ext4_group_t ngroups = ext4_get_groups_count(sb);
3845 ext4_group_t i;
3846 int num_meta_group_infos;
3847 struct ext4_group_info *grinfo, ***group_info;
3848 struct ext4_sb_info *sbi = EXT4_SB(sb);
3849 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3850 int count;
3851
3852 if (test_opt(sb, DISCARD)) {
3853 /*
3854 * wait the discard work to drain all of ext4_free_data
3855 */
3856 flush_work(&sbi->s_discard_work);
3857 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3858 }
3859
3860 if (sbi->s_group_info) {
3861 for (i = 0; i < ngroups; i++) {
3862 cond_resched();
3863 grinfo = ext4_get_group_info(sb, i);
3864 if (!grinfo)
3865 continue;
3866 mb_group_bb_bitmap_free(grinfo);
3867 ext4_lock_group(sb, i);
3868 count = ext4_mb_cleanup_pa(grinfo);
3869 if (count)
3870 mb_debug(sb, "mballoc: %d PAs left\n",
3871 count);
3872 ext4_unlock_group(sb, i);
3873 kmem_cache_free(cachep, grinfo);
3874 }
3875 num_meta_group_infos = (ngroups +
3876 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3877 EXT4_DESC_PER_BLOCK_BITS(sb);
3878 rcu_read_lock();
3879 group_info = rcu_dereference(sbi->s_group_info);
3880 for (i = 0; i < num_meta_group_infos; i++)
3881 kfree(group_info[i]);
3882 kvfree(group_info);
3883 rcu_read_unlock();
3884 }
3885 ext4_mb_avg_fragment_size_destroy(sbi);
3886 ext4_mb_largest_free_orders_destroy(sbi);
3887 kfree(sbi->s_mb_offsets);
3888 kfree(sbi->s_mb_maxs);
3889 iput(sbi->s_buddy_cache);
3890 if (sbi->s_mb_stats) {
3891 ext4_msg(sb, KERN_INFO,
3892 "mballoc: %u blocks %u reqs (%u success)",
3893 atomic_read(&sbi->s_bal_allocated),
3894 atomic_read(&sbi->s_bal_reqs),
3895 atomic_read(&sbi->s_bal_success));
3896 ext4_msg(sb, KERN_INFO,
3897 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3898 "%u 2^N hits, %u breaks, %u lost",
3899 atomic_read(&sbi->s_bal_ex_scanned),
3900 atomic_read(&sbi->s_bal_groups_scanned),
3901 atomic_read(&sbi->s_bal_goals),
3902 atomic_read(&sbi->s_bal_2orders),
3903 atomic_read(&sbi->s_bal_breaks),
3904 atomic_read(&sbi->s_mb_lost_chunks));
3905 ext4_msg(sb, KERN_INFO,
3906 "mballoc: %u generated and it took %llu",
3907 atomic_read(&sbi->s_mb_buddies_generated),
3908 atomic64_read(&sbi->s_mb_generation_time));
3909 ext4_msg(sb, KERN_INFO,
3910 "mballoc: %u preallocated, %u discarded",
3911 atomic_read(&sbi->s_mb_preallocated),
3912 atomic_read(&sbi->s_mb_discarded));
3913 }
3914
3915 free_percpu(sbi->s_locality_groups);
3916 kfree(sbi->s_mb_last_groups);
3917 }
3918
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count)3919 static inline int ext4_issue_discard(struct super_block *sb,
3920 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
3921 {
3922 ext4_fsblk_t discard_block;
3923
3924 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3925 ext4_group_first_block_no(sb, block_group));
3926 count = EXT4_C2B(EXT4_SB(sb), count);
3927 trace_ext4_discard_blocks(sb,
3928 (unsigned long long) discard_block, count);
3929
3930 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3931 }
3932
ext4_free_data_in_buddy(struct super_block * sb,struct ext4_free_data * entry)3933 static void ext4_free_data_in_buddy(struct super_block *sb,
3934 struct ext4_free_data *entry)
3935 {
3936 struct ext4_buddy e4b;
3937 struct ext4_group_info *db;
3938 int err, count = 0;
3939
3940 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3941 entry->efd_count, entry->efd_group, entry);
3942
3943 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3944 /* we expect to find existing buddy because it's pinned */
3945 BUG_ON(err != 0);
3946
3947 atomic_sub(entry->efd_count, &EXT4_SB(sb)->s_mb_free_pending);
3948 db = e4b.bd_info;
3949 /* there are blocks to put in buddy to make them really free */
3950 count += entry->efd_count;
3951 ext4_lock_group(sb, entry->efd_group);
3952 /* Take it out of per group rb tree */
3953 rb_erase(&entry->efd_node, &(db->bb_free_root));
3954 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3955
3956 /*
3957 * Clear the trimmed flag for the group so that the next
3958 * ext4_trim_fs can trim it.
3959 */
3960 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3961
3962 if (!db->bb_free_root.rb_node) {
3963 /* No more items in the per group rb tree
3964 * balance refcounts from ext4_mb_free_metadata()
3965 */
3966 folio_put(e4b.bd_buddy_folio);
3967 folio_put(e4b.bd_bitmap_folio);
3968 }
3969 ext4_unlock_group(sb, entry->efd_group);
3970 ext4_mb_unload_buddy(&e4b);
3971
3972 mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3973 }
3974
3975 /*
3976 * This function is called by the jbd2 layer once the commit has finished,
3977 * so we know we can free the blocks that were released with that commit.
3978 */
ext4_process_freed_data(struct super_block * sb,tid_t commit_tid)3979 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3980 {
3981 struct ext4_sb_info *sbi = EXT4_SB(sb);
3982 struct ext4_free_data *entry, *tmp;
3983 LIST_HEAD(freed_data_list);
3984 struct list_head *s_freed_head = &sbi->s_freed_data_list[commit_tid & 1];
3985 bool wake;
3986
3987 list_replace_init(s_freed_head, &freed_data_list);
3988
3989 list_for_each_entry(entry, &freed_data_list, efd_list)
3990 ext4_free_data_in_buddy(sb, entry);
3991
3992 if (test_opt(sb, DISCARD)) {
3993 spin_lock(&sbi->s_md_lock);
3994 wake = list_empty(&sbi->s_discard_list);
3995 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3996 spin_unlock(&sbi->s_md_lock);
3997 if (wake)
3998 queue_work(system_unbound_wq, &sbi->s_discard_work);
3999 } else {
4000 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
4001 kmem_cache_free(ext4_free_data_cachep, entry);
4002 }
4003 }
4004
ext4_init_mballoc(void)4005 int __init ext4_init_mballoc(void)
4006 {
4007 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
4008 SLAB_RECLAIM_ACCOUNT);
4009 if (ext4_pspace_cachep == NULL)
4010 goto out;
4011
4012 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
4013 SLAB_RECLAIM_ACCOUNT);
4014 if (ext4_ac_cachep == NULL)
4015 goto out_pa_free;
4016
4017 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
4018 SLAB_RECLAIM_ACCOUNT);
4019 if (ext4_free_data_cachep == NULL)
4020 goto out_ac_free;
4021
4022 return 0;
4023
4024 out_ac_free:
4025 kmem_cache_destroy(ext4_ac_cachep);
4026 out_pa_free:
4027 kmem_cache_destroy(ext4_pspace_cachep);
4028 out:
4029 return -ENOMEM;
4030 }
4031
ext4_exit_mballoc(void)4032 void ext4_exit_mballoc(void)
4033 {
4034 /*
4035 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
4036 * before destroying the slab cache.
4037 */
4038 rcu_barrier();
4039 kmem_cache_destroy(ext4_pspace_cachep);
4040 kmem_cache_destroy(ext4_ac_cachep);
4041 kmem_cache_destroy(ext4_free_data_cachep);
4042 ext4_groupinfo_destroy_slabs();
4043 }
4044
4045 #define EXT4_MB_BITMAP_MARKED_CHECK 0x0001
4046 #define EXT4_MB_SYNC_UPDATE 0x0002
4047 static int
ext4_mb_mark_context(handle_t * handle,struct super_block * sb,bool state,ext4_group_t group,ext4_grpblk_t blkoff,ext4_grpblk_t len,int flags,ext4_grpblk_t * ret_changed)4048 ext4_mb_mark_context(handle_t *handle, struct super_block *sb, bool state,
4049 ext4_group_t group, ext4_grpblk_t blkoff,
4050 ext4_grpblk_t len, int flags, ext4_grpblk_t *ret_changed)
4051 {
4052 struct ext4_sb_info *sbi = EXT4_SB(sb);
4053 struct buffer_head *bitmap_bh = NULL;
4054 struct ext4_group_desc *gdp;
4055 struct buffer_head *gdp_bh;
4056 int err;
4057 unsigned int i, already, changed = len;
4058
4059 KUNIT_STATIC_STUB_REDIRECT(ext4_mb_mark_context,
4060 handle, sb, state, group, blkoff, len,
4061 flags, ret_changed);
4062
4063 if (ret_changed)
4064 *ret_changed = 0;
4065 bitmap_bh = ext4_read_block_bitmap(sb, group);
4066 if (IS_ERR(bitmap_bh))
4067 return PTR_ERR(bitmap_bh);
4068
4069 if (handle) {
4070 BUFFER_TRACE(bitmap_bh, "getting write access");
4071 err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4072 EXT4_JTR_NONE);
4073 if (err)
4074 goto out_err;
4075 }
4076
4077 err = -EIO;
4078 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4079 if (!gdp)
4080 goto out_err;
4081
4082 if (handle) {
4083 BUFFER_TRACE(gdp_bh, "get_write_access");
4084 err = ext4_journal_get_write_access(handle, sb, gdp_bh,
4085 EXT4_JTR_NONE);
4086 if (err)
4087 goto out_err;
4088 }
4089
4090 ext4_lock_group(sb, group);
4091 if (ext4_has_group_desc_csum(sb) &&
4092 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4093 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4094 ext4_free_group_clusters_set(sb, gdp,
4095 ext4_free_clusters_after_init(sb, group, gdp));
4096 }
4097
4098 if (flags & EXT4_MB_BITMAP_MARKED_CHECK) {
4099 already = 0;
4100 for (i = 0; i < len; i++)
4101 if (mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4102 state)
4103 already++;
4104 changed = len - already;
4105 }
4106
4107 if (state) {
4108 mb_set_bits(bitmap_bh->b_data, blkoff, len);
4109 ext4_free_group_clusters_set(sb, gdp,
4110 ext4_free_group_clusters(sb, gdp) - changed);
4111 } else {
4112 mb_clear_bits(bitmap_bh->b_data, blkoff, len);
4113 ext4_free_group_clusters_set(sb, gdp,
4114 ext4_free_group_clusters(sb, gdp) + changed);
4115 }
4116
4117 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4118 ext4_group_desc_csum_set(sb, group, gdp);
4119 ext4_unlock_group(sb, group);
4120 if (ret_changed)
4121 *ret_changed = changed;
4122
4123 if (sbi->s_log_groups_per_flex) {
4124 ext4_group_t flex_group = ext4_flex_group(sbi, group);
4125 struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4126 s_flex_groups, flex_group);
4127
4128 if (state)
4129 atomic64_sub(changed, &fg->free_clusters);
4130 else
4131 atomic64_add(changed, &fg->free_clusters);
4132 }
4133
4134 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4135 if (err)
4136 goto out_err;
4137 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4138 if (err)
4139 goto out_err;
4140
4141 if (flags & EXT4_MB_SYNC_UPDATE) {
4142 sync_dirty_buffer(bitmap_bh);
4143 sync_dirty_buffer(gdp_bh);
4144 }
4145
4146 out_err:
4147 brelse(bitmap_bh);
4148 return err;
4149 }
4150
4151 /*
4152 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
4153 * Returns 0 if success or error code
4154 */
4155 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)4156 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
4157 handle_t *handle, unsigned int reserv_clstrs)
4158 {
4159 struct ext4_group_desc *gdp;
4160 struct ext4_sb_info *sbi;
4161 struct super_block *sb;
4162 ext4_fsblk_t block;
4163 int err, len;
4164 int flags = 0;
4165 ext4_grpblk_t changed;
4166
4167 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4168 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4169
4170 sb = ac->ac_sb;
4171 sbi = EXT4_SB(sb);
4172
4173 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, NULL);
4174 if (!gdp)
4175 return -EIO;
4176 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4177 ext4_free_group_clusters(sb, gdp));
4178
4179 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4180 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4181 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4182 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4183 "fs metadata", block, block+len);
4184 /* File system mounted not to panic on error
4185 * Fix the bitmap and return EFSCORRUPTED
4186 * We leak some of the blocks here.
4187 */
4188 err = ext4_mb_mark_context(handle, sb, true,
4189 ac->ac_b_ex.fe_group,
4190 ac->ac_b_ex.fe_start,
4191 ac->ac_b_ex.fe_len,
4192 0, NULL);
4193 if (!err)
4194 err = -EFSCORRUPTED;
4195 return err;
4196 }
4197
4198 #ifdef AGGRESSIVE_CHECK
4199 flags |= EXT4_MB_BITMAP_MARKED_CHECK;
4200 #endif
4201 err = ext4_mb_mark_context(handle, sb, true, ac->ac_b_ex.fe_group,
4202 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len,
4203 flags, &changed);
4204
4205 if (err && changed == 0)
4206 return err;
4207
4208 #ifdef AGGRESSIVE_CHECK
4209 BUG_ON(changed != ac->ac_b_ex.fe_len);
4210 #endif
4211 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4212 /*
4213 * Now reduce the dirty block count also. Should not go negative
4214 */
4215 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4216 /* release all the reserved blocks if non delalloc */
4217 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4218 reserv_clstrs);
4219
4220 return err;
4221 }
4222
4223 /*
4224 * Idempotent helper for Ext4 fast commit replay path to set the state of
4225 * blocks in bitmaps and update counters.
4226 */
ext4_mb_mark_bb(struct super_block * sb,ext4_fsblk_t block,int len,bool state)4227 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4228 int len, bool state)
4229 {
4230 struct ext4_sb_info *sbi = EXT4_SB(sb);
4231 ext4_group_t group;
4232 ext4_grpblk_t blkoff;
4233 int err = 0;
4234 unsigned int clen, thisgrp_len;
4235
4236 while (len > 0) {
4237 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4238
4239 /*
4240 * Check to see if we are freeing blocks across a group
4241 * boundary.
4242 * In case of flex_bg, this can happen that (block, len) may
4243 * span across more than one group. In that case we need to
4244 * get the corresponding group metadata to work with.
4245 * For this we have goto again loop.
4246 */
4247 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4248 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4249 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4250
4251 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4252 ext4_error(sb, "Marking blocks in system zone - "
4253 "Block = %llu, len = %u",
4254 block, thisgrp_len);
4255 break;
4256 }
4257
4258 err = ext4_mb_mark_context(NULL, sb, state,
4259 group, blkoff, clen,
4260 EXT4_MB_BITMAP_MARKED_CHECK |
4261 EXT4_MB_SYNC_UPDATE,
4262 NULL);
4263 if (err)
4264 break;
4265
4266 block += thisgrp_len;
4267 len -= thisgrp_len;
4268 BUG_ON(len < 0);
4269 }
4270 }
4271
4272 /*
4273 * here we normalize request for locality group
4274 * Group request are normalized to s_mb_group_prealloc, which goes to
4275 * s_strip if we set the same via mount option.
4276 * s_mb_group_prealloc can be configured via
4277 * /sys/fs/ext4/<partition>/mb_group_prealloc
4278 *
4279 * XXX: should we try to preallocate more than the group has now?
4280 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)4281 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4282 {
4283 struct super_block *sb = ac->ac_sb;
4284 struct ext4_locality_group *lg = ac->ac_lg;
4285
4286 BUG_ON(lg == NULL);
4287 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4288 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4289 }
4290
4291 /*
4292 * This function returns the next element to look at during inode
4293 * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4294 * (ei->i_prealloc_lock)
4295 *
4296 * new_start The start of the range we want to compare
4297 * cur_start The existing start that we are comparing against
4298 * node The node of the rb_tree
4299 */
4300 static inline struct rb_node*
ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start,ext4_lblk_t cur_start,struct rb_node * node)4301 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4302 {
4303 if (new_start < cur_start)
4304 return node->rb_left;
4305 else
4306 return node->rb_right;
4307 }
4308
4309 static inline void
ext4_mb_pa_assert_overlap(struct ext4_allocation_context * ac,ext4_lblk_t start,loff_t end)4310 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4311 ext4_lblk_t start, loff_t end)
4312 {
4313 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4314 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4315 struct ext4_prealloc_space *tmp_pa;
4316 ext4_lblk_t tmp_pa_start;
4317 loff_t tmp_pa_end;
4318 struct rb_node *iter;
4319
4320 read_lock(&ei->i_prealloc_lock);
4321 for (iter = ei->i_prealloc_node.rb_node; iter;
4322 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4323 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4324 pa_node.inode_node);
4325 tmp_pa_start = tmp_pa->pa_lstart;
4326 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4327
4328 spin_lock(&tmp_pa->pa_lock);
4329 if (tmp_pa->pa_deleted == 0)
4330 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4331 spin_unlock(&tmp_pa->pa_lock);
4332 }
4333 read_unlock(&ei->i_prealloc_lock);
4334 }
4335
4336 /*
4337 * Given an allocation context "ac" and a range "start", "end", check
4338 * and adjust boundaries if the range overlaps with any of the existing
4339 * preallocatoins stored in the corresponding inode of the allocation context.
4340 *
4341 * Parameters:
4342 * ac allocation context
4343 * start start of the new range
4344 * end end of the new range
4345 */
4346 static inline void
ext4_mb_pa_adjust_overlap(struct ext4_allocation_context * ac,ext4_lblk_t * start,loff_t * end)4347 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4348 ext4_lblk_t *start, loff_t *end)
4349 {
4350 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4351 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4352 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4353 struct rb_node *iter;
4354 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4355 loff_t new_end, tmp_pa_end, left_pa_end = -1;
4356
4357 new_start = *start;
4358 new_end = *end;
4359
4360 /*
4361 * Adjust the normalized range so that it doesn't overlap with any
4362 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4363 * so it doesn't change underneath us.
4364 */
4365 read_lock(&ei->i_prealloc_lock);
4366
4367 /* Step 1: find any one immediate neighboring PA of the normalized range */
4368 for (iter = ei->i_prealloc_node.rb_node; iter;
4369 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4370 tmp_pa_start, iter)) {
4371 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4372 pa_node.inode_node);
4373 tmp_pa_start = tmp_pa->pa_lstart;
4374 tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4375
4376 /* PA must not overlap original request */
4377 spin_lock(&tmp_pa->pa_lock);
4378 if (tmp_pa->pa_deleted == 0)
4379 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4380 ac->ac_o_ex.fe_logical < tmp_pa_start));
4381 spin_unlock(&tmp_pa->pa_lock);
4382 }
4383
4384 /*
4385 * Step 2: check if the found PA is left or right neighbor and
4386 * get the other neighbor
4387 */
4388 if (tmp_pa) {
4389 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4390 struct rb_node *tmp;
4391
4392 left_pa = tmp_pa;
4393 tmp = rb_next(&left_pa->pa_node.inode_node);
4394 if (tmp) {
4395 right_pa = rb_entry(tmp,
4396 struct ext4_prealloc_space,
4397 pa_node.inode_node);
4398 }
4399 } else {
4400 struct rb_node *tmp;
4401
4402 right_pa = tmp_pa;
4403 tmp = rb_prev(&right_pa->pa_node.inode_node);
4404 if (tmp) {
4405 left_pa = rb_entry(tmp,
4406 struct ext4_prealloc_space,
4407 pa_node.inode_node);
4408 }
4409 }
4410 }
4411
4412 /* Step 3: get the non deleted neighbors */
4413 if (left_pa) {
4414 for (iter = &left_pa->pa_node.inode_node;;
4415 iter = rb_prev(iter)) {
4416 if (!iter) {
4417 left_pa = NULL;
4418 break;
4419 }
4420
4421 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4422 pa_node.inode_node);
4423 left_pa = tmp_pa;
4424 spin_lock(&tmp_pa->pa_lock);
4425 if (tmp_pa->pa_deleted == 0) {
4426 spin_unlock(&tmp_pa->pa_lock);
4427 break;
4428 }
4429 spin_unlock(&tmp_pa->pa_lock);
4430 }
4431 }
4432
4433 if (right_pa) {
4434 for (iter = &right_pa->pa_node.inode_node;;
4435 iter = rb_next(iter)) {
4436 if (!iter) {
4437 right_pa = NULL;
4438 break;
4439 }
4440
4441 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4442 pa_node.inode_node);
4443 right_pa = tmp_pa;
4444 spin_lock(&tmp_pa->pa_lock);
4445 if (tmp_pa->pa_deleted == 0) {
4446 spin_unlock(&tmp_pa->pa_lock);
4447 break;
4448 }
4449 spin_unlock(&tmp_pa->pa_lock);
4450 }
4451 }
4452
4453 if (left_pa) {
4454 left_pa_end = pa_logical_end(sbi, left_pa);
4455 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4456 }
4457
4458 if (right_pa) {
4459 right_pa_start = right_pa->pa_lstart;
4460 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4461 }
4462
4463 /* Step 4: trim our normalized range to not overlap with the neighbors */
4464 if (left_pa) {
4465 if (left_pa_end > new_start)
4466 new_start = left_pa_end;
4467 }
4468
4469 if (right_pa) {
4470 if (right_pa_start < new_end)
4471 new_end = right_pa_start;
4472 }
4473 read_unlock(&ei->i_prealloc_lock);
4474
4475 /* XXX: extra loop to check we really don't overlap preallocations */
4476 ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4477
4478 *start = new_start;
4479 *end = new_end;
4480 }
4481
4482 /*
4483 * Normalization means making request better in terms of
4484 * size and alignment
4485 */
4486 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4487 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4488 struct ext4_allocation_request *ar)
4489 {
4490 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4491 struct ext4_super_block *es = sbi->s_es;
4492 int bsbits, max;
4493 loff_t size, start_off, end;
4494 loff_t orig_size __maybe_unused;
4495 ext4_lblk_t start;
4496
4497 /* do normalize only data requests, metadata requests
4498 do not need preallocation */
4499 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4500 return;
4501
4502 /* sometime caller may want exact blocks */
4503 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4504 return;
4505
4506 /* caller may indicate that preallocation isn't
4507 * required (it's a tail, for example) */
4508 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4509 return;
4510
4511 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4512 ext4_mb_normalize_group_request(ac);
4513 return ;
4514 }
4515
4516 bsbits = ac->ac_sb->s_blocksize_bits;
4517
4518 /* first, let's learn actual file size
4519 * given current request is allocated */
4520 size = extent_logical_end(sbi, &ac->ac_o_ex);
4521 size = size << bsbits;
4522 if (size < i_size_read(ac->ac_inode))
4523 size = i_size_read(ac->ac_inode);
4524 orig_size = size;
4525
4526 /* max size of free chunks */
4527 max = 2 << bsbits;
4528
4529 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
4530 (req <= (size) || max <= (chunk_size))
4531
4532 /* first, try to predict filesize */
4533 /* XXX: should this table be tunable? */
4534 start_off = 0;
4535 if (size <= 16 * 1024) {
4536 size = 16 * 1024;
4537 } else if (size <= 32 * 1024) {
4538 size = 32 * 1024;
4539 } else if (size <= 64 * 1024) {
4540 size = 64 * 1024;
4541 } else if (size <= 128 * 1024) {
4542 size = 128 * 1024;
4543 } else if (size <= 256 * 1024) {
4544 size = 256 * 1024;
4545 } else if (size <= 512 * 1024) {
4546 size = 512 * 1024;
4547 } else if (size <= 1024 * 1024) {
4548 size = 1024 * 1024;
4549 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4550 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4551 (21 - bsbits)) << 21;
4552 size = 2 * 1024 * 1024;
4553 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4554 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4555 (22 - bsbits)) << 22;
4556 size = 4 * 1024 * 1024;
4557 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4558 (8<<20)>>bsbits, max, 8 * 1024)) {
4559 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4560 (23 - bsbits)) << 23;
4561 size = 8 * 1024 * 1024;
4562 } else {
4563 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4564 size = (loff_t) EXT4_C2B(sbi,
4565 ac->ac_o_ex.fe_len) << bsbits;
4566 }
4567 size = size >> bsbits;
4568 start = start_off >> bsbits;
4569
4570 /*
4571 * For tiny groups (smaller than 8MB) the chosen allocation
4572 * alignment may be larger than group size. Make sure the
4573 * alignment does not move allocation to a different group which
4574 * makes mballoc fail assertions later.
4575 */
4576 start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4577 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4578
4579 /* avoid unnecessary preallocation that may trigger assertions */
4580 if (start + size > EXT_MAX_BLOCKS)
4581 size = EXT_MAX_BLOCKS - start;
4582
4583 /* don't cover already allocated blocks in selected range */
4584 if (ar->pleft && start <= ar->lleft) {
4585 size -= ar->lleft + 1 - start;
4586 start = ar->lleft + 1;
4587 }
4588 if (ar->pright && start + size - 1 >= ar->lright)
4589 size -= start + size - ar->lright;
4590
4591 /*
4592 * Trim allocation request for filesystems with artificially small
4593 * groups.
4594 */
4595 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4596 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4597
4598 end = start + size;
4599
4600 ext4_mb_pa_adjust_overlap(ac, &start, &end);
4601
4602 size = end - start;
4603
4604 /*
4605 * In this function "start" and "size" are normalized for better
4606 * alignment and length such that we could preallocate more blocks.
4607 * This normalization is done such that original request of
4608 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4609 * "size" boundaries.
4610 * (Note fe_len can be relaxed since FS block allocation API does not
4611 * provide gurantee on number of contiguous blocks allocation since that
4612 * depends upon free space left, etc).
4613 * In case of inode pa, later we use the allocated blocks
4614 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4615 * range of goal/best blocks [start, size] to put it at the
4616 * ac_o_ex.fe_logical extent of this inode.
4617 * (See ext4_mb_use_inode_pa() for more details)
4618 */
4619 if (start + size <= ac->ac_o_ex.fe_logical ||
4620 start > ac->ac_o_ex.fe_logical) {
4621 ext4_msg(ac->ac_sb, KERN_ERR,
4622 "start %lu, size %lu, fe_logical %lu",
4623 (unsigned long) start, (unsigned long) size,
4624 (unsigned long) ac->ac_o_ex.fe_logical);
4625 BUG();
4626 }
4627 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4628
4629 /* now prepare goal request */
4630
4631 /* XXX: is it better to align blocks WRT to logical
4632 * placement or satisfy big request as is */
4633 ac->ac_g_ex.fe_logical = start;
4634 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4635 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4636
4637 /* define goal start in order to merge */
4638 if (ar->pright && (ar->lright == (start + size)) &&
4639 ar->pright >= size &&
4640 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4641 /* merge to the right */
4642 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4643 &ac->ac_g_ex.fe_group,
4644 &ac->ac_g_ex.fe_start);
4645 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4646 }
4647 if (ar->pleft && (ar->lleft + 1 == start) &&
4648 ar->pleft + 1 < ext4_blocks_count(es)) {
4649 /* merge to the left */
4650 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4651 &ac->ac_g_ex.fe_group,
4652 &ac->ac_g_ex.fe_start);
4653 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4654 }
4655
4656 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4657 orig_size, start);
4658 }
4659
ext4_mb_collect_stats(struct ext4_allocation_context * ac)4660 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4661 {
4662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4663
4664 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4665 atomic_inc(&sbi->s_bal_reqs);
4666 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4667 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4668 atomic_inc(&sbi->s_bal_success);
4669
4670 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4671 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4672 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4673 }
4674
4675 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4676 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4677 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4678 atomic_inc(&sbi->s_bal_goals);
4679 /* did we allocate as much as normalizer originally wanted? */
4680 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4681 atomic_inc(&sbi->s_bal_len_goals);
4682
4683 if (ac->ac_found > sbi->s_mb_max_to_scan)
4684 atomic_inc(&sbi->s_bal_breaks);
4685 }
4686
4687 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4688 trace_ext4_mballoc_alloc(ac);
4689 else
4690 trace_ext4_mballoc_prealloc(ac);
4691 }
4692
4693 /*
4694 * Called on failure; free up any blocks from the inode PA for this
4695 * context. We don't need this for MB_GROUP_PA because we only change
4696 * pa_free in ext4_mb_release_context(), but on failure, we've already
4697 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4698 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)4699 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4700 {
4701 struct ext4_prealloc_space *pa = ac->ac_pa;
4702 struct ext4_buddy e4b;
4703 int err;
4704
4705 if (pa == NULL) {
4706 if (ac->ac_f_ex.fe_len == 0)
4707 return;
4708 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4709 if (WARN_RATELIMIT(err,
4710 "ext4: mb_load_buddy failed (%d)", err))
4711 /*
4712 * This should never happen since we pin the
4713 * pages in the ext4_allocation_context so
4714 * ext4_mb_load_buddy() should never fail.
4715 */
4716 return;
4717 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4718 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4719 ac->ac_f_ex.fe_len);
4720 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4721 ext4_mb_unload_buddy(&e4b);
4722 return;
4723 }
4724 if (pa->pa_type == MB_INODE_PA) {
4725 spin_lock(&pa->pa_lock);
4726 pa->pa_free += ac->ac_b_ex.fe_len;
4727 spin_unlock(&pa->pa_lock);
4728 }
4729 }
4730
4731 /*
4732 * use blocks preallocated to inode
4733 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4734 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4735 struct ext4_prealloc_space *pa)
4736 {
4737 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4738 ext4_fsblk_t start;
4739 ext4_fsblk_t end;
4740 int len;
4741
4742 /* found preallocated blocks, use them */
4743 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4744 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4745 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4746 len = EXT4_NUM_B2C(sbi, end - start);
4747 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4748 &ac->ac_b_ex.fe_start);
4749 ac->ac_b_ex.fe_len = len;
4750 ac->ac_status = AC_STATUS_FOUND;
4751 ac->ac_pa = pa;
4752
4753 BUG_ON(start < pa->pa_pstart);
4754 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4755 BUG_ON(pa->pa_free < len);
4756 BUG_ON(ac->ac_b_ex.fe_len <= 0);
4757 pa->pa_free -= len;
4758
4759 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4760 }
4761
4762 /*
4763 * use blocks preallocated to locality group
4764 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4765 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4766 struct ext4_prealloc_space *pa)
4767 {
4768 unsigned int len = ac->ac_o_ex.fe_len;
4769
4770 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4771 &ac->ac_b_ex.fe_group,
4772 &ac->ac_b_ex.fe_start);
4773 ac->ac_b_ex.fe_len = len;
4774 ac->ac_status = AC_STATUS_FOUND;
4775 ac->ac_pa = pa;
4776
4777 /* we don't correct pa_pstart or pa_len here to avoid
4778 * possible race when the group is being loaded concurrently
4779 * instead we correct pa later, after blocks are marked
4780 * in on-disk bitmap -- see ext4_mb_release_context()
4781 * Other CPUs are prevented from allocating from this pa by lg_mutex
4782 */
4783 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4784 pa->pa_lstart, len, pa);
4785 }
4786
4787 /*
4788 * Return the prealloc space that have minimal distance
4789 * from the goal block. @cpa is the prealloc
4790 * space that is having currently known minimal distance
4791 * from the goal block.
4792 */
4793 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)4794 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4795 struct ext4_prealloc_space *pa,
4796 struct ext4_prealloc_space *cpa)
4797 {
4798 ext4_fsblk_t cur_distance, new_distance;
4799
4800 if (cpa == NULL) {
4801 atomic_inc(&pa->pa_count);
4802 return pa;
4803 }
4804 cur_distance = abs(goal_block - cpa->pa_pstart);
4805 new_distance = abs(goal_block - pa->pa_pstart);
4806
4807 if (cur_distance <= new_distance)
4808 return cpa;
4809
4810 /* drop the previous reference */
4811 atomic_dec(&cpa->pa_count);
4812 atomic_inc(&pa->pa_count);
4813 return pa;
4814 }
4815
4816 /*
4817 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4818 */
4819 static bool
ext4_mb_pa_goal_check(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)4820 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4821 struct ext4_prealloc_space *pa)
4822 {
4823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4824 ext4_fsblk_t start;
4825
4826 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4827 return true;
4828
4829 /*
4830 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4831 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4832 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4833 * consistent with ext4_mb_find_by_goal.
4834 */
4835 start = pa->pa_pstart +
4836 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4837 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4838 return false;
4839
4840 if (ac->ac_g_ex.fe_len > pa->pa_len -
4841 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4842 return false;
4843
4844 return true;
4845 }
4846
4847 /*
4848 * search goal blocks in preallocated space
4849 */
4850 static noinline_for_stack bool
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)4851 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4852 {
4853 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4854 int order, i;
4855 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4856 struct ext4_locality_group *lg;
4857 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4858 struct rb_node *iter;
4859 ext4_fsblk_t goal_block;
4860
4861 /* only data can be preallocated */
4862 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4863 return false;
4864
4865 /*
4866 * first, try per-file preallocation by searching the inode pa rbtree.
4867 *
4868 * Here, we can't do a direct traversal of the tree because
4869 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4870 * deleted and that can cause direct traversal to skip some entries.
4871 */
4872 read_lock(&ei->i_prealloc_lock);
4873
4874 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4875 goto try_group_pa;
4876 }
4877
4878 /*
4879 * Step 1: Find a pa with logical start immediately adjacent to the
4880 * original logical start. This could be on the left or right.
4881 *
4882 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4883 */
4884 for (iter = ei->i_prealloc_node.rb_node; iter;
4885 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4886 tmp_pa->pa_lstart, iter)) {
4887 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4888 pa_node.inode_node);
4889 }
4890
4891 /*
4892 * Step 2: The adjacent pa might be to the right of logical start, find
4893 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4894 * logical start is towards the left of original request's logical start
4895 */
4896 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4897 struct rb_node *tmp;
4898 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4899
4900 if (tmp) {
4901 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4902 pa_node.inode_node);
4903 } else {
4904 /*
4905 * If there is no adjacent pa to the left then finding
4906 * an overlapping pa is not possible hence stop searching
4907 * inode pa tree
4908 */
4909 goto try_group_pa;
4910 }
4911 }
4912
4913 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4914
4915 /*
4916 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4917 * the first non deleted adjacent pa. After this step we should have a
4918 * valid tmp_pa which is guaranteed to be non deleted.
4919 */
4920 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4921 if (!iter) {
4922 /*
4923 * no non deleted left adjacent pa, so stop searching
4924 * inode pa tree
4925 */
4926 goto try_group_pa;
4927 }
4928 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4929 pa_node.inode_node);
4930 spin_lock(&tmp_pa->pa_lock);
4931 if (tmp_pa->pa_deleted == 0) {
4932 /*
4933 * We will keep holding the pa_lock from
4934 * this point on because we don't want group discard
4935 * to delete this pa underneath us. Since group
4936 * discard is anyways an ENOSPC operation it
4937 * should be okay for it to wait a few more cycles.
4938 */
4939 break;
4940 } else {
4941 spin_unlock(&tmp_pa->pa_lock);
4942 }
4943 }
4944
4945 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4946 BUG_ON(tmp_pa->pa_deleted == 1);
4947
4948 /*
4949 * Step 4: We now have the non deleted left adjacent pa. Only this
4950 * pa can possibly satisfy the request hence check if it overlaps
4951 * original logical start and stop searching if it doesn't.
4952 */
4953 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4954 spin_unlock(&tmp_pa->pa_lock);
4955 goto try_group_pa;
4956 }
4957
4958 /* non-extent files can't have physical blocks past 2^32 */
4959 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4960 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4961 EXT4_MAX_BLOCK_FILE_PHYS)) {
4962 /*
4963 * Since PAs don't overlap, we won't find any other PA to
4964 * satisfy this.
4965 */
4966 spin_unlock(&tmp_pa->pa_lock);
4967 goto try_group_pa;
4968 }
4969
4970 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4971 atomic_inc(&tmp_pa->pa_count);
4972 ext4_mb_use_inode_pa(ac, tmp_pa);
4973 spin_unlock(&tmp_pa->pa_lock);
4974 read_unlock(&ei->i_prealloc_lock);
4975 return true;
4976 } else {
4977 /*
4978 * We found a valid overlapping pa but couldn't use it because
4979 * it had no free blocks. This should ideally never happen
4980 * because:
4981 *
4982 * 1. When a new inode pa is added to rbtree it must have
4983 * pa_free > 0 since otherwise we won't actually need
4984 * preallocation.
4985 *
4986 * 2. An inode pa that is in the rbtree can only have it's
4987 * pa_free become zero when another thread calls:
4988 * ext4_mb_new_blocks
4989 * ext4_mb_use_preallocated
4990 * ext4_mb_use_inode_pa
4991 *
4992 * 3. Further, after the above calls make pa_free == 0, we will
4993 * immediately remove it from the rbtree in:
4994 * ext4_mb_new_blocks
4995 * ext4_mb_release_context
4996 * ext4_mb_put_pa
4997 *
4998 * 4. Since the pa_free becoming 0 and pa_free getting removed
4999 * from tree both happen in ext4_mb_new_blocks, which is always
5000 * called with i_data_sem held for data allocations, we can be
5001 * sure that another process will never see a pa in rbtree with
5002 * pa_free == 0.
5003 */
5004 WARN_ON_ONCE(tmp_pa->pa_free == 0);
5005 }
5006 spin_unlock(&tmp_pa->pa_lock);
5007 try_group_pa:
5008 read_unlock(&ei->i_prealloc_lock);
5009
5010 /* can we use group allocation? */
5011 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
5012 return false;
5013
5014 /* inode may have no locality group for some reason */
5015 lg = ac->ac_lg;
5016 if (lg == NULL)
5017 return false;
5018 order = fls(ac->ac_o_ex.fe_len) - 1;
5019 if (order > PREALLOC_TB_SIZE - 1)
5020 /* The max size of hash table is PREALLOC_TB_SIZE */
5021 order = PREALLOC_TB_SIZE - 1;
5022
5023 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
5024 /*
5025 * search for the prealloc space that is having
5026 * minimal distance from the goal block.
5027 */
5028 for (i = order; i < PREALLOC_TB_SIZE; i++) {
5029 rcu_read_lock();
5030 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
5031 pa_node.lg_list) {
5032 spin_lock(&tmp_pa->pa_lock);
5033 if (tmp_pa->pa_deleted == 0 &&
5034 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
5035
5036 cpa = ext4_mb_check_group_pa(goal_block,
5037 tmp_pa, cpa);
5038 }
5039 spin_unlock(&tmp_pa->pa_lock);
5040 }
5041 rcu_read_unlock();
5042 }
5043 if (cpa) {
5044 ext4_mb_use_group_pa(ac, cpa);
5045 return true;
5046 }
5047 return false;
5048 }
5049
5050 /*
5051 * the function goes through all preallocation in this group and marks them
5052 * used in in-core bitmap. buddy must be generated from this bitmap
5053 * Need to be called with ext4 group lock held
5054 */
5055 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)5056 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
5057 ext4_group_t group)
5058 {
5059 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5060 struct ext4_prealloc_space *pa;
5061 struct list_head *cur;
5062 ext4_group_t groupnr;
5063 ext4_grpblk_t start;
5064 int preallocated = 0;
5065 int len;
5066
5067 if (!grp)
5068 return;
5069
5070 /* all form of preallocation discards first load group,
5071 * so the only competing code is preallocation use.
5072 * we don't need any locking here
5073 * notice we do NOT ignore preallocations with pa_deleted
5074 * otherwise we could leave used blocks available for
5075 * allocation in buddy when concurrent ext4_mb_put_pa()
5076 * is dropping preallocation
5077 */
5078 list_for_each(cur, &grp->bb_prealloc_list) {
5079 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5080 spin_lock(&pa->pa_lock);
5081 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5082 &groupnr, &start);
5083 len = pa->pa_len;
5084 spin_unlock(&pa->pa_lock);
5085 if (unlikely(len == 0))
5086 continue;
5087 BUG_ON(groupnr != group);
5088 mb_set_bits(bitmap, start, len);
5089 preallocated += len;
5090 }
5091 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5092 }
5093
ext4_mb_mark_pa_deleted(struct super_block * sb,struct ext4_prealloc_space * pa)5094 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5095 struct ext4_prealloc_space *pa)
5096 {
5097 struct ext4_inode_info *ei;
5098
5099 if (pa->pa_deleted) {
5100 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5101 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5102 pa->pa_len);
5103 return;
5104 }
5105
5106 pa->pa_deleted = 1;
5107
5108 if (pa->pa_type == MB_INODE_PA) {
5109 ei = EXT4_I(pa->pa_inode);
5110 atomic_dec(&ei->i_prealloc_active);
5111 }
5112 }
5113
ext4_mb_pa_free(struct ext4_prealloc_space * pa)5114 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5115 {
5116 BUG_ON(!pa);
5117 BUG_ON(atomic_read(&pa->pa_count));
5118 BUG_ON(pa->pa_deleted == 0);
5119 kmem_cache_free(ext4_pspace_cachep, pa);
5120 }
5121
ext4_mb_pa_callback(struct rcu_head * head)5122 static void ext4_mb_pa_callback(struct rcu_head *head)
5123 {
5124 struct ext4_prealloc_space *pa;
5125
5126 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5127 ext4_mb_pa_free(pa);
5128 }
5129
5130 /*
5131 * drops a reference to preallocated space descriptor
5132 * if this was the last reference and the space is consumed
5133 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)5134 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5135 struct super_block *sb, struct ext4_prealloc_space *pa)
5136 {
5137 ext4_group_t grp;
5138 ext4_fsblk_t grp_blk;
5139 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5140
5141 /* in this short window concurrent discard can set pa_deleted */
5142 spin_lock(&pa->pa_lock);
5143 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5144 spin_unlock(&pa->pa_lock);
5145 return;
5146 }
5147
5148 if (pa->pa_deleted == 1) {
5149 spin_unlock(&pa->pa_lock);
5150 return;
5151 }
5152
5153 ext4_mb_mark_pa_deleted(sb, pa);
5154 spin_unlock(&pa->pa_lock);
5155
5156 grp_blk = pa->pa_pstart;
5157 /*
5158 * If doing group-based preallocation, pa_pstart may be in the
5159 * next group when pa is used up
5160 */
5161 if (pa->pa_type == MB_GROUP_PA)
5162 grp_blk--;
5163
5164 grp = ext4_get_group_number(sb, grp_blk);
5165
5166 /*
5167 * possible race:
5168 *
5169 * P1 (buddy init) P2 (regular allocation)
5170 * find block B in PA
5171 * copy on-disk bitmap to buddy
5172 * mark B in on-disk bitmap
5173 * drop PA from group
5174 * mark all PAs in buddy
5175 *
5176 * thus, P1 initializes buddy with B available. to prevent this
5177 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5178 * against that pair
5179 */
5180 ext4_lock_group(sb, grp);
5181 list_del(&pa->pa_group_list);
5182 ext4_unlock_group(sb, grp);
5183
5184 if (pa->pa_type == MB_INODE_PA) {
5185 write_lock(pa->pa_node_lock.inode_lock);
5186 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5187 write_unlock(pa->pa_node_lock.inode_lock);
5188 ext4_mb_pa_free(pa);
5189 } else {
5190 spin_lock(pa->pa_node_lock.lg_lock);
5191 list_del_rcu(&pa->pa_node.lg_list);
5192 spin_unlock(pa->pa_node_lock.lg_lock);
5193 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5194 }
5195 }
5196
ext4_mb_pa_rb_insert(struct rb_root * root,struct rb_node * new)5197 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5198 {
5199 struct rb_node **iter = &root->rb_node, *parent = NULL;
5200 struct ext4_prealloc_space *iter_pa, *new_pa;
5201 ext4_lblk_t iter_start, new_start;
5202
5203 while (*iter) {
5204 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5205 pa_node.inode_node);
5206 new_pa = rb_entry(new, struct ext4_prealloc_space,
5207 pa_node.inode_node);
5208 iter_start = iter_pa->pa_lstart;
5209 new_start = new_pa->pa_lstart;
5210
5211 parent = *iter;
5212 if (new_start < iter_start)
5213 iter = &((*iter)->rb_left);
5214 else
5215 iter = &((*iter)->rb_right);
5216 }
5217
5218 rb_link_node(new, parent, iter);
5219 rb_insert_color(new, root);
5220 }
5221
5222 /*
5223 * creates new preallocated space for given inode
5224 */
5225 static noinline_for_stack void
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)5226 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5227 {
5228 struct super_block *sb = ac->ac_sb;
5229 struct ext4_sb_info *sbi = EXT4_SB(sb);
5230 struct ext4_prealloc_space *pa;
5231 struct ext4_group_info *grp;
5232 struct ext4_inode_info *ei;
5233
5234 /* preallocate only when found space is larger then requested */
5235 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5236 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5237 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5238 BUG_ON(ac->ac_pa == NULL);
5239
5240 pa = ac->ac_pa;
5241
5242 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5243 struct ext4_free_extent ex = {
5244 .fe_logical = ac->ac_g_ex.fe_logical,
5245 .fe_len = ac->ac_orig_goal_len,
5246 };
5247 loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5248 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5249
5250 /*
5251 * We can't allocate as much as normalizer wants, so we try
5252 * to get proper lstart to cover the original request, except
5253 * when the goal doesn't cover the original request as below:
5254 *
5255 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5256 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5257 */
5258 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5259 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5260
5261 /*
5262 * Use the below logic for adjusting best extent as it keeps
5263 * fragmentation in check while ensuring logical range of best
5264 * extent doesn't overflow out of goal extent:
5265 *
5266 * 1. Check if best ex can be kept at end of goal (before
5267 * cr_best_avail trimmed it) and still cover original start
5268 * 2. Else, check if best ex can be kept at start of goal and
5269 * still cover original end
5270 * 3. Else, keep the best ex at start of original request.
5271 */
5272 ex.fe_len = ac->ac_b_ex.fe_len;
5273
5274 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5275 if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5276 goto adjust_bex;
5277
5278 ex.fe_logical = ac->ac_g_ex.fe_logical;
5279 if (o_ex_end <= extent_logical_end(sbi, &ex))
5280 goto adjust_bex;
5281
5282 ex.fe_logical = ac->ac_o_ex.fe_logical;
5283 adjust_bex:
5284 ac->ac_b_ex.fe_logical = ex.fe_logical;
5285
5286 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5287 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5288 }
5289
5290 pa->pa_lstart = ac->ac_b_ex.fe_logical;
5291 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5292 pa->pa_len = ac->ac_b_ex.fe_len;
5293 pa->pa_free = pa->pa_len;
5294 spin_lock_init(&pa->pa_lock);
5295 INIT_LIST_HEAD(&pa->pa_group_list);
5296 pa->pa_deleted = 0;
5297 pa->pa_type = MB_INODE_PA;
5298
5299 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5300 pa->pa_len, pa->pa_lstart);
5301 trace_ext4_mb_new_inode_pa(ac, pa);
5302
5303 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5304 ext4_mb_use_inode_pa(ac, pa);
5305
5306 ei = EXT4_I(ac->ac_inode);
5307 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5308 if (!grp)
5309 return;
5310
5311 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5312 pa->pa_inode = ac->ac_inode;
5313
5314 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5315
5316 write_lock(pa->pa_node_lock.inode_lock);
5317 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5318 write_unlock(pa->pa_node_lock.inode_lock);
5319 atomic_inc(&ei->i_prealloc_active);
5320 }
5321
5322 /*
5323 * creates new preallocated space for locality group inodes belongs to
5324 */
5325 static noinline_for_stack void
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)5326 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5327 {
5328 struct super_block *sb = ac->ac_sb;
5329 struct ext4_locality_group *lg;
5330 struct ext4_prealloc_space *pa;
5331 struct ext4_group_info *grp;
5332
5333 /* preallocate only when found space is larger then requested */
5334 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5335 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5336 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5337 BUG_ON(ac->ac_pa == NULL);
5338
5339 pa = ac->ac_pa;
5340
5341 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5342 pa->pa_lstart = pa->pa_pstart;
5343 pa->pa_len = ac->ac_b_ex.fe_len;
5344 pa->pa_free = pa->pa_len;
5345 spin_lock_init(&pa->pa_lock);
5346 INIT_LIST_HEAD(&pa->pa_node.lg_list);
5347 INIT_LIST_HEAD(&pa->pa_group_list);
5348 pa->pa_deleted = 0;
5349 pa->pa_type = MB_GROUP_PA;
5350
5351 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5352 pa->pa_len, pa->pa_lstart);
5353 trace_ext4_mb_new_group_pa(ac, pa);
5354
5355 ext4_mb_use_group_pa(ac, pa);
5356 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5357
5358 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5359 if (!grp)
5360 return;
5361 lg = ac->ac_lg;
5362 BUG_ON(lg == NULL);
5363
5364 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5365 pa->pa_inode = NULL;
5366
5367 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5368
5369 /*
5370 * We will later add the new pa to the right bucket
5371 * after updating the pa_free in ext4_mb_release_context
5372 */
5373 }
5374
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)5375 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5376 {
5377 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5378 ext4_mb_new_group_pa(ac);
5379 else
5380 ext4_mb_new_inode_pa(ac);
5381 }
5382
5383 /*
5384 * finds all unused blocks in on-disk bitmap, frees them in
5385 * in-core bitmap and buddy.
5386 * @pa must be unlinked from inode and group lists, so that
5387 * nobody else can find/use it.
5388 * the caller MUST hold group/inode locks.
5389 * TODO: optimize the case when there are no in-core structures yet
5390 */
5391 static noinline_for_stack void
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)5392 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5393 struct ext4_prealloc_space *pa)
5394 {
5395 struct super_block *sb = e4b->bd_sb;
5396 struct ext4_sb_info *sbi = EXT4_SB(sb);
5397 unsigned int end;
5398 unsigned int next;
5399 ext4_group_t group;
5400 ext4_grpblk_t bit;
5401 unsigned long long grp_blk_start;
5402 int free = 0;
5403
5404 BUG_ON(pa->pa_deleted == 0);
5405 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5406 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5407 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5408 end = bit + pa->pa_len;
5409
5410 while (bit < end) {
5411 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5412 if (bit >= end)
5413 break;
5414 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5415 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5416 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5417 (unsigned) next - bit, (unsigned) group);
5418 free += next - bit;
5419
5420 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5421 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5422 EXT4_C2B(sbi, bit)),
5423 next - bit);
5424 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5425 bit = next + 1;
5426 }
5427 if (free != pa->pa_free) {
5428 ext4_msg(e4b->bd_sb, KERN_CRIT,
5429 "pa %p: logic %lu, phys. %lu, len %d",
5430 pa, (unsigned long) pa->pa_lstart,
5431 (unsigned long) pa->pa_pstart,
5432 pa->pa_len);
5433 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5434 free, pa->pa_free);
5435 /*
5436 * pa is already deleted so we use the value obtained
5437 * from the bitmap and continue.
5438 */
5439 }
5440 atomic_add(free, &sbi->s_mb_discarded);
5441 }
5442
5443 static noinline_for_stack void
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)5444 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5445 struct ext4_prealloc_space *pa)
5446 {
5447 struct super_block *sb = e4b->bd_sb;
5448 ext4_group_t group;
5449 ext4_grpblk_t bit;
5450
5451 trace_ext4_mb_release_group_pa(sb, pa);
5452 BUG_ON(pa->pa_deleted == 0);
5453 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5454 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5455 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5456 e4b->bd_group, group, pa->pa_pstart);
5457 return;
5458 }
5459 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5460 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5461 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5462 }
5463
5464 /*
5465 * releases all preallocations in given group
5466 *
5467 * first, we need to decide discard policy:
5468 * - when do we discard
5469 * 1) ENOSPC
5470 * - how many do we discard
5471 * 1) how many requested
5472 */
5473 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int * busy)5474 ext4_mb_discard_group_preallocations(struct super_block *sb,
5475 ext4_group_t group, int *busy)
5476 {
5477 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5478 struct buffer_head *bitmap_bh = NULL;
5479 struct ext4_prealloc_space *pa, *tmp;
5480 LIST_HEAD(list);
5481 struct ext4_buddy e4b;
5482 struct ext4_inode_info *ei;
5483 int err;
5484 int free = 0;
5485
5486 if (!grp)
5487 return 0;
5488 mb_debug(sb, "discard preallocation for group %u\n", group);
5489 if (list_empty(&grp->bb_prealloc_list))
5490 goto out_dbg;
5491
5492 bitmap_bh = ext4_read_block_bitmap(sb, group);
5493 if (IS_ERR(bitmap_bh)) {
5494 err = PTR_ERR(bitmap_bh);
5495 ext4_error_err(sb, -err,
5496 "Error %d reading block bitmap for %u",
5497 err, group);
5498 goto out_dbg;
5499 }
5500
5501 err = ext4_mb_load_buddy(sb, group, &e4b);
5502 if (err) {
5503 ext4_warning(sb, "Error %d loading buddy information for %u",
5504 err, group);
5505 put_bh(bitmap_bh);
5506 goto out_dbg;
5507 }
5508
5509 ext4_lock_group(sb, group);
5510 list_for_each_entry_safe(pa, tmp,
5511 &grp->bb_prealloc_list, pa_group_list) {
5512 spin_lock(&pa->pa_lock);
5513 if (atomic_read(&pa->pa_count)) {
5514 spin_unlock(&pa->pa_lock);
5515 *busy = 1;
5516 continue;
5517 }
5518 if (pa->pa_deleted) {
5519 spin_unlock(&pa->pa_lock);
5520 continue;
5521 }
5522
5523 /* seems this one can be freed ... */
5524 ext4_mb_mark_pa_deleted(sb, pa);
5525
5526 if (!free)
5527 this_cpu_inc(discard_pa_seq);
5528
5529 /* we can trust pa_free ... */
5530 free += pa->pa_free;
5531
5532 spin_unlock(&pa->pa_lock);
5533
5534 list_del(&pa->pa_group_list);
5535 list_add(&pa->u.pa_tmp_list, &list);
5536 }
5537
5538 /* now free all selected PAs */
5539 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5540
5541 /* remove from object (inode or locality group) */
5542 if (pa->pa_type == MB_GROUP_PA) {
5543 spin_lock(pa->pa_node_lock.lg_lock);
5544 list_del_rcu(&pa->pa_node.lg_list);
5545 spin_unlock(pa->pa_node_lock.lg_lock);
5546 } else {
5547 write_lock(pa->pa_node_lock.inode_lock);
5548 ei = EXT4_I(pa->pa_inode);
5549 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5550 write_unlock(pa->pa_node_lock.inode_lock);
5551 }
5552
5553 list_del(&pa->u.pa_tmp_list);
5554
5555 if (pa->pa_type == MB_GROUP_PA) {
5556 ext4_mb_release_group_pa(&e4b, pa);
5557 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5558 } else {
5559 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5560 ext4_mb_pa_free(pa);
5561 }
5562 }
5563
5564 ext4_unlock_group(sb, group);
5565 ext4_mb_unload_buddy(&e4b);
5566 put_bh(bitmap_bh);
5567 out_dbg:
5568 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5569 free, group, grp->bb_free);
5570 return free;
5571 }
5572
5573 /*
5574 * releases all non-used preallocated blocks for given inode
5575 *
5576 * It's important to discard preallocations under i_data_sem
5577 * We don't want another block to be served from the prealloc
5578 * space when we are discarding the inode prealloc space.
5579 *
5580 * FIXME!! Make sure it is valid at all the call sites
5581 */
ext4_discard_preallocations(struct inode * inode)5582 void ext4_discard_preallocations(struct inode *inode)
5583 {
5584 struct ext4_inode_info *ei = EXT4_I(inode);
5585 struct super_block *sb = inode->i_sb;
5586 struct buffer_head *bitmap_bh = NULL;
5587 struct ext4_prealloc_space *pa, *tmp;
5588 ext4_group_t group = 0;
5589 LIST_HEAD(list);
5590 struct ext4_buddy e4b;
5591 struct rb_node *iter;
5592 int err;
5593
5594 if (!S_ISREG(inode->i_mode))
5595 return;
5596
5597 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5598 return;
5599
5600 mb_debug(sb, "discard preallocation for inode %lu\n",
5601 inode->i_ino);
5602 trace_ext4_discard_preallocations(inode,
5603 atomic_read(&ei->i_prealloc_active));
5604
5605 repeat:
5606 /* first, collect all pa's in the inode */
5607 write_lock(&ei->i_prealloc_lock);
5608 for (iter = rb_first(&ei->i_prealloc_node); iter;
5609 iter = rb_next(iter)) {
5610 pa = rb_entry(iter, struct ext4_prealloc_space,
5611 pa_node.inode_node);
5612 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5613
5614 spin_lock(&pa->pa_lock);
5615 if (atomic_read(&pa->pa_count)) {
5616 /* this shouldn't happen often - nobody should
5617 * use preallocation while we're discarding it */
5618 spin_unlock(&pa->pa_lock);
5619 write_unlock(&ei->i_prealloc_lock);
5620 ext4_msg(sb, KERN_ERR,
5621 "uh-oh! used pa while discarding");
5622 WARN_ON(1);
5623 schedule_timeout_uninterruptible(HZ);
5624 goto repeat;
5625
5626 }
5627 if (pa->pa_deleted == 0) {
5628 ext4_mb_mark_pa_deleted(sb, pa);
5629 spin_unlock(&pa->pa_lock);
5630 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5631 list_add(&pa->u.pa_tmp_list, &list);
5632 continue;
5633 }
5634
5635 /* someone is deleting pa right now */
5636 spin_unlock(&pa->pa_lock);
5637 write_unlock(&ei->i_prealloc_lock);
5638
5639 /* we have to wait here because pa_deleted
5640 * doesn't mean pa is already unlinked from
5641 * the list. as we might be called from
5642 * ->clear_inode() the inode will get freed
5643 * and concurrent thread which is unlinking
5644 * pa from inode's list may access already
5645 * freed memory, bad-bad-bad */
5646
5647 /* XXX: if this happens too often, we can
5648 * add a flag to force wait only in case
5649 * of ->clear_inode(), but not in case of
5650 * regular truncate */
5651 schedule_timeout_uninterruptible(HZ);
5652 goto repeat;
5653 }
5654 write_unlock(&ei->i_prealloc_lock);
5655
5656 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5657 BUG_ON(pa->pa_type != MB_INODE_PA);
5658 group = ext4_get_group_number(sb, pa->pa_pstart);
5659
5660 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5661 GFP_NOFS|__GFP_NOFAIL);
5662 if (err) {
5663 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5664 err, group);
5665 continue;
5666 }
5667
5668 bitmap_bh = ext4_read_block_bitmap(sb, group);
5669 if (IS_ERR(bitmap_bh)) {
5670 err = PTR_ERR(bitmap_bh);
5671 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5672 err, group);
5673 ext4_mb_unload_buddy(&e4b);
5674 continue;
5675 }
5676
5677 ext4_lock_group(sb, group);
5678 list_del(&pa->pa_group_list);
5679 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5680 ext4_unlock_group(sb, group);
5681
5682 ext4_mb_unload_buddy(&e4b);
5683 put_bh(bitmap_bh);
5684
5685 list_del(&pa->u.pa_tmp_list);
5686 ext4_mb_pa_free(pa);
5687 }
5688 }
5689
ext4_mb_pa_alloc(struct ext4_allocation_context * ac)5690 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5691 {
5692 struct ext4_prealloc_space *pa;
5693
5694 BUG_ON(ext4_pspace_cachep == NULL);
5695 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5696 if (!pa)
5697 return -ENOMEM;
5698 atomic_set(&pa->pa_count, 1);
5699 ac->ac_pa = pa;
5700 return 0;
5701 }
5702
ext4_mb_pa_put_free(struct ext4_allocation_context * ac)5703 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5704 {
5705 struct ext4_prealloc_space *pa = ac->ac_pa;
5706
5707 BUG_ON(!pa);
5708 ac->ac_pa = NULL;
5709 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5710 /*
5711 * current function is only called due to an error or due to
5712 * len of found blocks < len of requested blocks hence the PA has not
5713 * been added to grp->bb_prealloc_list. So we don't need to lock it
5714 */
5715 pa->pa_deleted = 1;
5716 ext4_mb_pa_free(pa);
5717 }
5718
5719 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_pa(struct super_block * sb)5720 static inline void ext4_mb_show_pa(struct super_block *sb)
5721 {
5722 ext4_group_t i, ngroups;
5723
5724 if (ext4_emergency_state(sb))
5725 return;
5726
5727 ngroups = ext4_get_groups_count(sb);
5728 mb_debug(sb, "groups: ");
5729 for (i = 0; i < ngroups; i++) {
5730 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5731 struct ext4_prealloc_space *pa;
5732 ext4_grpblk_t start;
5733 struct list_head *cur;
5734
5735 if (!grp)
5736 continue;
5737 ext4_lock_group(sb, i);
5738 list_for_each(cur, &grp->bb_prealloc_list) {
5739 pa = list_entry(cur, struct ext4_prealloc_space,
5740 pa_group_list);
5741 spin_lock(&pa->pa_lock);
5742 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5743 NULL, &start);
5744 spin_unlock(&pa->pa_lock);
5745 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5746 pa->pa_len);
5747 }
5748 ext4_unlock_group(sb, i);
5749 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5750 grp->bb_fragments);
5751 }
5752 }
5753
ext4_mb_show_ac(struct ext4_allocation_context * ac)5754 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5755 {
5756 struct super_block *sb = ac->ac_sb;
5757
5758 if (ext4_emergency_state(sb))
5759 return;
5760
5761 mb_debug(sb, "Can't allocate:"
5762 " Allocation context details:");
5763 mb_debug(sb, "status %u flags 0x%x",
5764 ac->ac_status, ac->ac_flags);
5765 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5766 "goal %lu/%lu/%lu@%lu, "
5767 "best %lu/%lu/%lu@%lu cr %d",
5768 (unsigned long)ac->ac_o_ex.fe_group,
5769 (unsigned long)ac->ac_o_ex.fe_start,
5770 (unsigned long)ac->ac_o_ex.fe_len,
5771 (unsigned long)ac->ac_o_ex.fe_logical,
5772 (unsigned long)ac->ac_g_ex.fe_group,
5773 (unsigned long)ac->ac_g_ex.fe_start,
5774 (unsigned long)ac->ac_g_ex.fe_len,
5775 (unsigned long)ac->ac_g_ex.fe_logical,
5776 (unsigned long)ac->ac_b_ex.fe_group,
5777 (unsigned long)ac->ac_b_ex.fe_start,
5778 (unsigned long)ac->ac_b_ex.fe_len,
5779 (unsigned long)ac->ac_b_ex.fe_logical,
5780 (int)ac->ac_criteria);
5781 mb_debug(sb, "%u found", ac->ac_found);
5782 mb_debug(sb, "used pa: %s, ", str_yes_no(ac->ac_pa));
5783 if (ac->ac_pa)
5784 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5785 "group pa" : "inode pa");
5786 ext4_mb_show_pa(sb);
5787 }
5788 #else
ext4_mb_show_pa(struct super_block * sb)5789 static inline void ext4_mb_show_pa(struct super_block *sb)
5790 {
5791 }
ext4_mb_show_ac(struct ext4_allocation_context * ac)5792 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5793 {
5794 ext4_mb_show_pa(ac->ac_sb);
5795 }
5796 #endif
5797
5798 /*
5799 * We use locality group preallocation for small size file. The size of the
5800 * file is determined by the current size or the resulting size after
5801 * allocation which ever is larger
5802 *
5803 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5804 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)5805 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5806 {
5807 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5808 int bsbits = ac->ac_sb->s_blocksize_bits;
5809 loff_t size, isize;
5810 bool inode_pa_eligible, group_pa_eligible;
5811
5812 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5813 return;
5814
5815 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5816 return;
5817
5818 group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5819 inode_pa_eligible = true;
5820 size = extent_logical_end(sbi, &ac->ac_o_ex);
5821 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5822 >> bsbits;
5823
5824 /* No point in using inode preallocation for closed files */
5825 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5826 !inode_is_open_for_write(ac->ac_inode))
5827 inode_pa_eligible = false;
5828
5829 size = max(size, isize);
5830 /* Don't use group allocation for large files */
5831 if (size > sbi->s_mb_stream_request)
5832 group_pa_eligible = false;
5833
5834 if (!group_pa_eligible) {
5835 if (inode_pa_eligible)
5836 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5837 else
5838 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5839 return;
5840 }
5841
5842 BUG_ON(ac->ac_lg != NULL);
5843 /*
5844 * locality group prealloc space are per cpu. The reason for having
5845 * per cpu locality group is to reduce the contention between block
5846 * request from multiple CPUs.
5847 */
5848 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5849
5850 /* we're going to use group allocation */
5851 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5852
5853 /* serialize all allocations in the group */
5854 mutex_lock(&ac->ac_lg->lg_mutex);
5855 }
5856
5857 static noinline_for_stack void
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)5858 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5859 struct ext4_allocation_request *ar)
5860 {
5861 struct super_block *sb = ar->inode->i_sb;
5862 struct ext4_sb_info *sbi = EXT4_SB(sb);
5863 struct ext4_super_block *es = sbi->s_es;
5864 ext4_group_t group;
5865 unsigned int len;
5866 ext4_fsblk_t goal;
5867 ext4_grpblk_t block;
5868
5869 /* we can't allocate > group size */
5870 len = ar->len;
5871
5872 /* just a dirty hack to filter too big requests */
5873 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5874 len = EXT4_CLUSTERS_PER_GROUP(sb);
5875
5876 /* start searching from the goal */
5877 goal = ar->goal;
5878 if (goal < le32_to_cpu(es->s_first_data_block) ||
5879 goal >= ext4_blocks_count(es))
5880 goal = le32_to_cpu(es->s_first_data_block);
5881 ext4_get_group_no_and_offset(sb, goal, &group, &block);
5882
5883 /* set up allocation goals */
5884 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5885 ac->ac_status = AC_STATUS_CONTINUE;
5886 ac->ac_sb = sb;
5887 ac->ac_inode = ar->inode;
5888 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5889 ac->ac_o_ex.fe_group = group;
5890 ac->ac_o_ex.fe_start = block;
5891 ac->ac_o_ex.fe_len = len;
5892 ac->ac_g_ex = ac->ac_o_ex;
5893 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5894 ac->ac_flags = ar->flags;
5895
5896 /* we have to define context: we'll work with a file or
5897 * locality group. this is a policy, actually */
5898 ext4_mb_group_or_file(ac);
5899
5900 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5901 "left: %u/%u, right %u/%u to %swritable\n",
5902 (unsigned) ar->len, (unsigned) ar->logical,
5903 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5904 (unsigned) ar->lleft, (unsigned) ar->pleft,
5905 (unsigned) ar->lright, (unsigned) ar->pright,
5906 inode_is_open_for_write(ar->inode) ? "" : "non-");
5907 }
5908
5909 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)5910 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5911 struct ext4_locality_group *lg,
5912 int order, int total_entries)
5913 {
5914 ext4_group_t group = 0;
5915 struct ext4_buddy e4b;
5916 LIST_HEAD(discard_list);
5917 struct ext4_prealloc_space *pa, *tmp;
5918
5919 mb_debug(sb, "discard locality group preallocation\n");
5920
5921 spin_lock(&lg->lg_prealloc_lock);
5922 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5923 pa_node.lg_list,
5924 lockdep_is_held(&lg->lg_prealloc_lock)) {
5925 spin_lock(&pa->pa_lock);
5926 if (atomic_read(&pa->pa_count)) {
5927 /*
5928 * This is the pa that we just used
5929 * for block allocation. So don't
5930 * free that
5931 */
5932 spin_unlock(&pa->pa_lock);
5933 continue;
5934 }
5935 if (pa->pa_deleted) {
5936 spin_unlock(&pa->pa_lock);
5937 continue;
5938 }
5939 /* only lg prealloc space */
5940 BUG_ON(pa->pa_type != MB_GROUP_PA);
5941
5942 /* seems this one can be freed ... */
5943 ext4_mb_mark_pa_deleted(sb, pa);
5944 spin_unlock(&pa->pa_lock);
5945
5946 list_del_rcu(&pa->pa_node.lg_list);
5947 list_add(&pa->u.pa_tmp_list, &discard_list);
5948
5949 total_entries--;
5950 if (total_entries <= 5) {
5951 /*
5952 * we want to keep only 5 entries
5953 * allowing it to grow to 8. This
5954 * mak sure we don't call discard
5955 * soon for this list.
5956 */
5957 break;
5958 }
5959 }
5960 spin_unlock(&lg->lg_prealloc_lock);
5961
5962 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5963 int err;
5964
5965 group = ext4_get_group_number(sb, pa->pa_pstart);
5966 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5967 GFP_NOFS|__GFP_NOFAIL);
5968 if (err) {
5969 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5970 err, group);
5971 continue;
5972 }
5973 ext4_lock_group(sb, group);
5974 list_del(&pa->pa_group_list);
5975 ext4_mb_release_group_pa(&e4b, pa);
5976 ext4_unlock_group(sb, group);
5977
5978 ext4_mb_unload_buddy(&e4b);
5979 list_del(&pa->u.pa_tmp_list);
5980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5981 }
5982 }
5983
5984 /*
5985 * We have incremented pa_count. So it cannot be freed at this
5986 * point. Also we hold lg_mutex. So no parallel allocation is
5987 * possible from this lg. That means pa_free cannot be updated.
5988 *
5989 * A parallel ext4_mb_discard_group_preallocations is possible.
5990 * which can cause the lg_prealloc_list to be updated.
5991 */
5992
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)5993 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5994 {
5995 int order, added = 0, lg_prealloc_count = 1;
5996 struct super_block *sb = ac->ac_sb;
5997 struct ext4_locality_group *lg = ac->ac_lg;
5998 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5999
6000 order = fls(pa->pa_free) - 1;
6001 if (order > PREALLOC_TB_SIZE - 1)
6002 /* The max size of hash table is PREALLOC_TB_SIZE */
6003 order = PREALLOC_TB_SIZE - 1;
6004 /* Add the prealloc space to lg */
6005 spin_lock(&lg->lg_prealloc_lock);
6006 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
6007 pa_node.lg_list,
6008 lockdep_is_held(&lg->lg_prealloc_lock)) {
6009 spin_lock(&tmp_pa->pa_lock);
6010 if (tmp_pa->pa_deleted) {
6011 spin_unlock(&tmp_pa->pa_lock);
6012 continue;
6013 }
6014 if (!added && pa->pa_free < tmp_pa->pa_free) {
6015 /* Add to the tail of the previous entry */
6016 list_add_tail_rcu(&pa->pa_node.lg_list,
6017 &tmp_pa->pa_node.lg_list);
6018 added = 1;
6019 /*
6020 * we want to count the total
6021 * number of entries in the list
6022 */
6023 }
6024 spin_unlock(&tmp_pa->pa_lock);
6025 lg_prealloc_count++;
6026 }
6027 if (!added)
6028 list_add_tail_rcu(&pa->pa_node.lg_list,
6029 &lg->lg_prealloc_list[order]);
6030 spin_unlock(&lg->lg_prealloc_lock);
6031
6032 /* Now trim the list to be not more than 8 elements */
6033 if (lg_prealloc_count > 8)
6034 ext4_mb_discard_lg_preallocations(sb, lg,
6035 order, lg_prealloc_count);
6036 }
6037
6038 /*
6039 * release all resource we used in allocation
6040 */
ext4_mb_release_context(struct ext4_allocation_context * ac)6041 static void ext4_mb_release_context(struct ext4_allocation_context *ac)
6042 {
6043 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
6044 struct ext4_prealloc_space *pa = ac->ac_pa;
6045 if (pa) {
6046 if (pa->pa_type == MB_GROUP_PA) {
6047 /* see comment in ext4_mb_use_group_pa() */
6048 spin_lock(&pa->pa_lock);
6049 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6050 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6051 pa->pa_free -= ac->ac_b_ex.fe_len;
6052 pa->pa_len -= ac->ac_b_ex.fe_len;
6053 spin_unlock(&pa->pa_lock);
6054
6055 /*
6056 * We want to add the pa to the right bucket.
6057 * Remove it from the list and while adding
6058 * make sure the list to which we are adding
6059 * doesn't grow big.
6060 */
6061 if (likely(pa->pa_free)) {
6062 spin_lock(pa->pa_node_lock.lg_lock);
6063 list_del_rcu(&pa->pa_node.lg_list);
6064 spin_unlock(pa->pa_node_lock.lg_lock);
6065 ext4_mb_add_n_trim(ac);
6066 }
6067 }
6068
6069 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6070 }
6071 if (ac->ac_bitmap_folio)
6072 folio_put(ac->ac_bitmap_folio);
6073 if (ac->ac_buddy_folio)
6074 folio_put(ac->ac_buddy_folio);
6075 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6076 mutex_unlock(&ac->ac_lg->lg_mutex);
6077 ext4_mb_collect_stats(ac);
6078 }
6079
ext4_mb_discard_preallocations(struct super_block * sb,int needed)6080 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6081 {
6082 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6083 int ret;
6084 int freed = 0, busy = 0;
6085 int retry = 0;
6086
6087 trace_ext4_mb_discard_preallocations(sb, needed);
6088
6089 if (needed == 0)
6090 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6091 repeat:
6092 for (i = 0; i < ngroups && needed > 0; i++) {
6093 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6094 freed += ret;
6095 needed -= ret;
6096 cond_resched();
6097 }
6098
6099 if (needed > 0 && busy && ++retry < 3) {
6100 busy = 0;
6101 goto repeat;
6102 }
6103
6104 return freed;
6105 }
6106
ext4_mb_discard_preallocations_should_retry(struct super_block * sb,struct ext4_allocation_context * ac,u64 * seq)6107 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6108 struct ext4_allocation_context *ac, u64 *seq)
6109 {
6110 int freed;
6111 u64 seq_retry = 0;
6112 bool ret = false;
6113
6114 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6115 if (freed) {
6116 ret = true;
6117 goto out_dbg;
6118 }
6119 seq_retry = ext4_get_discard_pa_seq_sum();
6120 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6121 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6122 *seq = seq_retry;
6123 ret = true;
6124 }
6125
6126 out_dbg:
6127 mb_debug(sb, "freed %d, retry ? %s\n", freed, str_yes_no(ret));
6128 return ret;
6129 }
6130
6131 /*
6132 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6133 * linearly starting at the goal block and also excludes the blocks which
6134 * are going to be in use after fast commit replay.
6135 */
6136 static ext4_fsblk_t
ext4_mb_new_blocks_simple(struct ext4_allocation_request * ar,int * errp)6137 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6138 {
6139 struct buffer_head *bitmap_bh;
6140 struct super_block *sb = ar->inode->i_sb;
6141 struct ext4_sb_info *sbi = EXT4_SB(sb);
6142 ext4_group_t group, nr;
6143 ext4_grpblk_t blkoff;
6144 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6145 ext4_grpblk_t i = 0;
6146 ext4_fsblk_t goal, block;
6147 struct ext4_super_block *es = sbi->s_es;
6148
6149 goal = ar->goal;
6150 if (goal < le32_to_cpu(es->s_first_data_block) ||
6151 goal >= ext4_blocks_count(es))
6152 goal = le32_to_cpu(es->s_first_data_block);
6153
6154 ar->len = 0;
6155 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6156 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6157 bitmap_bh = ext4_read_block_bitmap(sb, group);
6158 if (IS_ERR(bitmap_bh)) {
6159 *errp = PTR_ERR(bitmap_bh);
6160 pr_warn("Failed to read block bitmap\n");
6161 return 0;
6162 }
6163
6164 while (1) {
6165 i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6166 blkoff);
6167 if (i >= max)
6168 break;
6169 if (ext4_fc_replay_check_excluded(sb,
6170 ext4_group_first_block_no(sb, group) +
6171 EXT4_C2B(sbi, i))) {
6172 blkoff = i + 1;
6173 } else
6174 break;
6175 }
6176 brelse(bitmap_bh);
6177 if (i < max)
6178 break;
6179
6180 if (++group >= ext4_get_groups_count(sb))
6181 group = 0;
6182
6183 blkoff = 0;
6184 }
6185
6186 if (i >= max) {
6187 *errp = -ENOSPC;
6188 return 0;
6189 }
6190
6191 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6192 ext4_mb_mark_bb(sb, block, 1, true);
6193 ar->len = 1;
6194
6195 *errp = 0;
6196 return block;
6197 }
6198
6199 /*
6200 * Main entry point into mballoc to allocate blocks
6201 * it tries to use preallocation first, then falls back
6202 * to usual allocation
6203 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)6204 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6205 struct ext4_allocation_request *ar, int *errp)
6206 {
6207 struct ext4_allocation_context *ac = NULL;
6208 struct ext4_sb_info *sbi;
6209 struct super_block *sb;
6210 ext4_fsblk_t block = 0;
6211 unsigned int inquota = 0;
6212 unsigned int reserv_clstrs = 0;
6213 int retries = 0;
6214 u64 seq;
6215
6216 might_sleep();
6217 sb = ar->inode->i_sb;
6218 sbi = EXT4_SB(sb);
6219
6220 trace_ext4_request_blocks(ar);
6221 if (sbi->s_mount_state & EXT4_FC_REPLAY)
6222 return ext4_mb_new_blocks_simple(ar, errp);
6223
6224 /* Allow to use superuser reservation for quota file */
6225 if (ext4_is_quota_file(ar->inode))
6226 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6227
6228 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6229 /* Without delayed allocation we need to verify
6230 * there is enough free blocks to do block allocation
6231 * and verify allocation doesn't exceed the quota limits.
6232 */
6233 while (ar->len &&
6234 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6235
6236 /* let others to free the space */
6237 cond_resched();
6238 ar->len = ar->len >> 1;
6239 }
6240 if (!ar->len) {
6241 ext4_mb_show_pa(sb);
6242 *errp = -ENOSPC;
6243 return 0;
6244 }
6245 reserv_clstrs = ar->len;
6246 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6247 dquot_alloc_block_nofail(ar->inode,
6248 EXT4_C2B(sbi, ar->len));
6249 } else {
6250 while (ar->len &&
6251 dquot_alloc_block(ar->inode,
6252 EXT4_C2B(sbi, ar->len))) {
6253
6254 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6255 ar->len--;
6256 }
6257 }
6258 inquota = ar->len;
6259 if (ar->len == 0) {
6260 *errp = -EDQUOT;
6261 goto out;
6262 }
6263 }
6264
6265 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6266 if (!ac) {
6267 ar->len = 0;
6268 *errp = -ENOMEM;
6269 goto out;
6270 }
6271
6272 ext4_mb_initialize_context(ac, ar);
6273
6274 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6275 seq = this_cpu_read(discard_pa_seq);
6276 if (!ext4_mb_use_preallocated(ac)) {
6277 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6278 ext4_mb_normalize_request(ac, ar);
6279
6280 *errp = ext4_mb_pa_alloc(ac);
6281 if (*errp)
6282 goto errout;
6283 repeat:
6284 /* allocate space in core */
6285 *errp = ext4_mb_regular_allocator(ac);
6286 /*
6287 * pa allocated above is added to grp->bb_prealloc_list only
6288 * when we were able to allocate some block i.e. when
6289 * ac->ac_status == AC_STATUS_FOUND.
6290 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6291 * So we have to free this pa here itself.
6292 */
6293 if (*errp) {
6294 ext4_mb_pa_put_free(ac);
6295 ext4_discard_allocated_blocks(ac);
6296 goto errout;
6297 }
6298 if (ac->ac_status == AC_STATUS_FOUND &&
6299 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6300 ext4_mb_pa_put_free(ac);
6301 }
6302 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6303 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6304 if (*errp) {
6305 ext4_discard_allocated_blocks(ac);
6306 goto errout;
6307 } else {
6308 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6309 ar->len = ac->ac_b_ex.fe_len;
6310 }
6311 } else {
6312 if (++retries < 3 &&
6313 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6314 goto repeat;
6315 /*
6316 * If block allocation fails then the pa allocated above
6317 * needs to be freed here itself.
6318 */
6319 ext4_mb_pa_put_free(ac);
6320 *errp = -ENOSPC;
6321 }
6322
6323 if (*errp) {
6324 errout:
6325 ac->ac_b_ex.fe_len = 0;
6326 ar->len = 0;
6327 ext4_mb_show_ac(ac);
6328 }
6329 ext4_mb_release_context(ac);
6330 kmem_cache_free(ext4_ac_cachep, ac);
6331 out:
6332 if (inquota && ar->len < inquota)
6333 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6334 if (!ar->len) {
6335 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6336 /* release all the reserved blocks if non delalloc */
6337 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6338 reserv_clstrs);
6339 }
6340
6341 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6342
6343 return block;
6344 }
6345
6346 /*
6347 * We can merge two free data extents only if the physical blocks
6348 * are contiguous, AND the extents were freed by the same transaction,
6349 * AND the blocks are associated with the same group.
6350 */
6351 static inline bool
ext4_freed_extents_can_be_merged(struct ext4_free_data * entry1,struct ext4_free_data * entry2)6352 ext4_freed_extents_can_be_merged(struct ext4_free_data *entry1,
6353 struct ext4_free_data *entry2)
6354 {
6355 if (entry1->efd_tid != entry2->efd_tid)
6356 return false;
6357 if (entry1->efd_start_cluster + entry1->efd_count !=
6358 entry2->efd_start_cluster)
6359 return false;
6360 if (WARN_ON_ONCE(entry1->efd_group != entry2->efd_group))
6361 return false;
6362 return true;
6363 }
6364
6365 static inline void
ext4_merge_freed_extents(struct ext4_sb_info * sbi,struct rb_root * root,struct ext4_free_data * entry1,struct ext4_free_data * entry2)6366 ext4_merge_freed_extents(struct ext4_sb_info *sbi, struct rb_root *root,
6367 struct ext4_free_data *entry1,
6368 struct ext4_free_data *entry2)
6369 {
6370 entry1->efd_count += entry2->efd_count;
6371 spin_lock(&sbi->s_md_lock);
6372 list_del(&entry2->efd_list);
6373 spin_unlock(&sbi->s_md_lock);
6374 rb_erase(&entry2->efd_node, root);
6375 kmem_cache_free(ext4_free_data_cachep, entry2);
6376 }
6377
6378 static inline void
ext4_try_merge_freed_extent_prev(struct ext4_sb_info * sbi,struct rb_root * root,struct ext4_free_data * entry)6379 ext4_try_merge_freed_extent_prev(struct ext4_sb_info *sbi, struct rb_root *root,
6380 struct ext4_free_data *entry)
6381 {
6382 struct ext4_free_data *prev;
6383 struct rb_node *node;
6384
6385 node = rb_prev(&entry->efd_node);
6386 if (!node)
6387 return;
6388
6389 prev = rb_entry(node, struct ext4_free_data, efd_node);
6390 if (ext4_freed_extents_can_be_merged(prev, entry))
6391 ext4_merge_freed_extents(sbi, root, prev, entry);
6392 }
6393
6394 static inline void
ext4_try_merge_freed_extent_next(struct ext4_sb_info * sbi,struct rb_root * root,struct ext4_free_data * entry)6395 ext4_try_merge_freed_extent_next(struct ext4_sb_info *sbi, struct rb_root *root,
6396 struct ext4_free_data *entry)
6397 {
6398 struct ext4_free_data *next;
6399 struct rb_node *node;
6400
6401 node = rb_next(&entry->efd_node);
6402 if (!node)
6403 return;
6404
6405 next = rb_entry(node, struct ext4_free_data, efd_node);
6406 if (ext4_freed_extents_can_be_merged(entry, next))
6407 ext4_merge_freed_extents(sbi, root, entry, next);
6408 }
6409
6410 static noinline_for_stack void
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)6411 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6412 struct ext4_free_data *new_entry)
6413 {
6414 ext4_group_t group = e4b->bd_group;
6415 ext4_grpblk_t cluster;
6416 ext4_grpblk_t clusters = new_entry->efd_count;
6417 struct ext4_free_data *entry = NULL;
6418 struct ext4_group_info *db = e4b->bd_info;
6419 struct super_block *sb = e4b->bd_sb;
6420 struct ext4_sb_info *sbi = EXT4_SB(sb);
6421 struct rb_root *root = &db->bb_free_root;
6422 struct rb_node **n = &root->rb_node;
6423 struct rb_node *parent = NULL, *new_node;
6424
6425 BUG_ON(!ext4_handle_valid(handle));
6426 BUG_ON(e4b->bd_bitmap_folio == NULL);
6427 BUG_ON(e4b->bd_buddy_folio == NULL);
6428
6429 new_node = &new_entry->efd_node;
6430 cluster = new_entry->efd_start_cluster;
6431
6432 if (!*n) {
6433 /* first free block exent. We need to
6434 protect buddy cache from being freed,
6435 * otherwise we'll refresh it from
6436 * on-disk bitmap and lose not-yet-available
6437 * blocks */
6438 folio_get(e4b->bd_buddy_folio);
6439 folio_get(e4b->bd_bitmap_folio);
6440 }
6441 while (*n) {
6442 parent = *n;
6443 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6444 if (cluster < entry->efd_start_cluster)
6445 n = &(*n)->rb_left;
6446 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6447 n = &(*n)->rb_right;
6448 else {
6449 ext4_grp_locked_error(sb, group, 0,
6450 ext4_group_first_block_no(sb, group) +
6451 EXT4_C2B(sbi, cluster),
6452 "Block already on to-be-freed list");
6453 kmem_cache_free(ext4_free_data_cachep, new_entry);
6454 return;
6455 }
6456 }
6457
6458 atomic_add(clusters, &sbi->s_mb_free_pending);
6459 if (!entry)
6460 goto insert;
6461
6462 /* Now try to see the extent can be merged to prev and next */
6463 if (ext4_freed_extents_can_be_merged(new_entry, entry)) {
6464 entry->efd_start_cluster = cluster;
6465 entry->efd_count += new_entry->efd_count;
6466 kmem_cache_free(ext4_free_data_cachep, new_entry);
6467 ext4_try_merge_freed_extent_prev(sbi, root, entry);
6468 return;
6469 }
6470 if (ext4_freed_extents_can_be_merged(entry, new_entry)) {
6471 entry->efd_count += new_entry->efd_count;
6472 kmem_cache_free(ext4_free_data_cachep, new_entry);
6473 ext4_try_merge_freed_extent_next(sbi, root, entry);
6474 return;
6475 }
6476 insert:
6477 rb_link_node(new_node, parent, n);
6478 rb_insert_color(new_node, root);
6479
6480 spin_lock(&sbi->s_md_lock);
6481 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list[new_entry->efd_tid & 1]);
6482 spin_unlock(&sbi->s_md_lock);
6483 }
6484
ext4_free_blocks_simple(struct inode * inode,ext4_fsblk_t block,unsigned long count)6485 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6486 unsigned long count)
6487 {
6488 struct super_block *sb = inode->i_sb;
6489 ext4_group_t group;
6490 ext4_grpblk_t blkoff;
6491
6492 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6493 ext4_mb_mark_context(NULL, sb, false, group, blkoff, count,
6494 EXT4_MB_BITMAP_MARKED_CHECK |
6495 EXT4_MB_SYNC_UPDATE,
6496 NULL);
6497 }
6498
6499 /**
6500 * ext4_mb_clear_bb() -- helper function for freeing blocks.
6501 * Used by ext4_free_blocks()
6502 * @handle: handle for this transaction
6503 * @inode: inode
6504 * @block: starting physical block to be freed
6505 * @count: number of blocks to be freed
6506 * @flags: flags used by ext4_free_blocks
6507 */
ext4_mb_clear_bb(handle_t * handle,struct inode * inode,ext4_fsblk_t block,unsigned long count,int flags)6508 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6509 ext4_fsblk_t block, unsigned long count,
6510 int flags)
6511 {
6512 struct super_block *sb = inode->i_sb;
6513 struct ext4_group_info *grp;
6514 unsigned int overflow;
6515 ext4_grpblk_t bit;
6516 ext4_group_t block_group;
6517 struct ext4_sb_info *sbi;
6518 struct ext4_buddy e4b;
6519 unsigned int count_clusters;
6520 int err = 0;
6521 int mark_flags = 0;
6522 ext4_grpblk_t changed;
6523
6524 sbi = EXT4_SB(sb);
6525
6526 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6527 !ext4_inode_block_valid(inode, block, count)) {
6528 ext4_error(sb, "Freeing blocks in system zone - "
6529 "Block = %llu, count = %lu", block, count);
6530 /* err = 0. ext4_std_error should be a no op */
6531 goto error_out;
6532 }
6533 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6534
6535 do_more:
6536 overflow = 0;
6537 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6538
6539 grp = ext4_get_group_info(sb, block_group);
6540 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6541 return;
6542
6543 /*
6544 * Check to see if we are freeing blocks across a group
6545 * boundary.
6546 */
6547 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6548 overflow = EXT4_C2B(sbi, bit) + count -
6549 EXT4_BLOCKS_PER_GROUP(sb);
6550 count -= overflow;
6551 /* The range changed so it's no longer validated */
6552 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6553 }
6554 count_clusters = EXT4_NUM_B2C(sbi, count);
6555 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6556
6557 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6558 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6559 GFP_NOFS|__GFP_NOFAIL);
6560 if (err)
6561 goto error_out;
6562
6563 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6564 !ext4_inode_block_valid(inode, block, count)) {
6565 ext4_error(sb, "Freeing blocks in system zone - "
6566 "Block = %llu, count = %lu", block, count);
6567 /* err = 0. ext4_std_error should be a no op */
6568 goto error_clean;
6569 }
6570
6571 #ifdef AGGRESSIVE_CHECK
6572 mark_flags |= EXT4_MB_BITMAP_MARKED_CHECK;
6573 #endif
6574 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6575 count_clusters, mark_flags, &changed);
6576
6577
6578 if (err && changed == 0)
6579 goto error_clean;
6580
6581 #ifdef AGGRESSIVE_CHECK
6582 BUG_ON(changed != count_clusters);
6583 #endif
6584
6585 /*
6586 * We need to make sure we don't reuse the freed block until after the
6587 * transaction is committed. We make an exception if the inode is to be
6588 * written in writeback mode since writeback mode has weak data
6589 * consistency guarantees.
6590 */
6591 if (ext4_handle_valid(handle) &&
6592 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6593 !ext4_should_writeback_data(inode))) {
6594 struct ext4_free_data *new_entry;
6595 /*
6596 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6597 * to fail.
6598 */
6599 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6600 GFP_NOFS|__GFP_NOFAIL);
6601 new_entry->efd_start_cluster = bit;
6602 new_entry->efd_group = block_group;
6603 new_entry->efd_count = count_clusters;
6604 new_entry->efd_tid = handle->h_transaction->t_tid;
6605
6606 ext4_lock_group(sb, block_group);
6607 ext4_mb_free_metadata(handle, &e4b, new_entry);
6608 } else {
6609 if (test_opt(sb, DISCARD)) {
6610 err = ext4_issue_discard(sb, block_group, bit,
6611 count_clusters);
6612 /*
6613 * Ignore EOPNOTSUPP error. This is consistent with
6614 * what happens when using journal.
6615 */
6616 if (err == -EOPNOTSUPP)
6617 err = 0;
6618 if (err)
6619 ext4_msg(sb, KERN_WARNING, "discard request in"
6620 " group:%u block:%d count:%lu failed"
6621 " with %d", block_group, bit, count,
6622 err);
6623 }
6624
6625 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6626
6627 ext4_lock_group(sb, block_group);
6628 mb_free_blocks(inode, &e4b, bit, count_clusters);
6629 }
6630
6631 ext4_unlock_group(sb, block_group);
6632
6633 /*
6634 * on a bigalloc file system, defer the s_freeclusters_counter
6635 * update to the caller (ext4_remove_space and friends) so they
6636 * can determine if a cluster freed here should be rereserved
6637 */
6638 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6639 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6640 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6641 percpu_counter_add(&sbi->s_freeclusters_counter,
6642 count_clusters);
6643 }
6644
6645 if (overflow && !err) {
6646 block += count;
6647 count = overflow;
6648 ext4_mb_unload_buddy(&e4b);
6649 /* The range changed so it's no longer validated */
6650 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6651 goto do_more;
6652 }
6653
6654 error_clean:
6655 ext4_mb_unload_buddy(&e4b);
6656 error_out:
6657 ext4_std_error(sb, err);
6658 }
6659
6660 /**
6661 * ext4_free_blocks() -- Free given blocks and update quota
6662 * @handle: handle for this transaction
6663 * @inode: inode
6664 * @bh: optional buffer of the block to be freed
6665 * @block: starting physical block to be freed
6666 * @count: number of blocks to be freed
6667 * @flags: flags used by ext4_free_blocks
6668 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)6669 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6670 struct buffer_head *bh, ext4_fsblk_t block,
6671 unsigned long count, int flags)
6672 {
6673 struct super_block *sb = inode->i_sb;
6674 unsigned int overflow;
6675 struct ext4_sb_info *sbi;
6676
6677 sbi = EXT4_SB(sb);
6678
6679 if (bh) {
6680 if (block)
6681 BUG_ON(block != bh->b_blocknr);
6682 else
6683 block = bh->b_blocknr;
6684 }
6685
6686 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6687 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6688 return;
6689 }
6690
6691 might_sleep();
6692
6693 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6694 !ext4_inode_block_valid(inode, block, count)) {
6695 ext4_error(sb, "Freeing blocks not in datazone - "
6696 "block = %llu, count = %lu", block, count);
6697 return;
6698 }
6699 flags |= EXT4_FREE_BLOCKS_VALIDATED;
6700
6701 ext4_debug("freeing block %llu\n", block);
6702 trace_ext4_free_blocks(inode, block, count, flags);
6703
6704 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6705 BUG_ON(count > 1);
6706
6707 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6708 inode, bh, block);
6709 }
6710
6711 /*
6712 * If the extent to be freed does not begin on a cluster
6713 * boundary, we need to deal with partial clusters at the
6714 * beginning and end of the extent. Normally we will free
6715 * blocks at the beginning or the end unless we are explicitly
6716 * requested to avoid doing so.
6717 */
6718 overflow = EXT4_PBLK_COFF(sbi, block);
6719 if (overflow) {
6720 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6721 overflow = sbi->s_cluster_ratio - overflow;
6722 block += overflow;
6723 if (count > overflow)
6724 count -= overflow;
6725 else
6726 return;
6727 } else {
6728 block -= overflow;
6729 count += overflow;
6730 }
6731 /* The range changed so it's no longer validated */
6732 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6733 }
6734 overflow = EXT4_LBLK_COFF(sbi, count);
6735 if (overflow) {
6736 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6737 if (count > overflow)
6738 count -= overflow;
6739 else
6740 return;
6741 } else
6742 count += sbi->s_cluster_ratio - overflow;
6743 /* The range changed so it's no longer validated */
6744 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6745 }
6746
6747 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6748 int i;
6749 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6750
6751 for (i = 0; i < count; i++) {
6752 cond_resched();
6753 if (is_metadata)
6754 bh = sb_find_get_block_nonatomic(inode->i_sb,
6755 block + i);
6756 ext4_forget(handle, is_metadata, inode, bh, block + i);
6757 }
6758 }
6759
6760 ext4_mb_clear_bb(handle, inode, block, count, flags);
6761 }
6762
6763 /**
6764 * ext4_group_add_blocks() -- Add given blocks to an existing group
6765 * @handle: handle to this transaction
6766 * @sb: super block
6767 * @block: start physical block to add to the block group
6768 * @count: number of blocks to free
6769 *
6770 * This marks the blocks as free in the bitmap and buddy.
6771 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)6772 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6773 ext4_fsblk_t block, unsigned long count)
6774 {
6775 ext4_group_t block_group;
6776 ext4_grpblk_t bit;
6777 struct ext4_sb_info *sbi = EXT4_SB(sb);
6778 struct ext4_buddy e4b;
6779 int err = 0;
6780 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6781 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6782 unsigned long cluster_count = last_cluster - first_cluster + 1;
6783 ext4_grpblk_t changed;
6784
6785 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6786
6787 if (cluster_count == 0)
6788 return 0;
6789
6790 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6791 /*
6792 * Check to see if we are freeing blocks across a group
6793 * boundary.
6794 */
6795 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6796 ext4_warning(sb, "too many blocks added to group %u",
6797 block_group);
6798 err = -EINVAL;
6799 goto error_out;
6800 }
6801
6802 err = ext4_mb_load_buddy(sb, block_group, &e4b);
6803 if (err)
6804 goto error_out;
6805
6806 if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6807 ext4_error(sb, "Adding blocks in system zones - "
6808 "Block = %llu, count = %lu",
6809 block, count);
6810 err = -EINVAL;
6811 goto error_clean;
6812 }
6813
6814 err = ext4_mb_mark_context(handle, sb, false, block_group, bit,
6815 cluster_count, EXT4_MB_BITMAP_MARKED_CHECK,
6816 &changed);
6817 if (err && changed == 0)
6818 goto error_clean;
6819
6820 if (changed != cluster_count)
6821 ext4_error(sb, "bit already cleared in group %u", block_group);
6822
6823 ext4_lock_group(sb, block_group);
6824 mb_free_blocks(NULL, &e4b, bit, cluster_count);
6825 ext4_unlock_group(sb, block_group);
6826 percpu_counter_add(&sbi->s_freeclusters_counter,
6827 changed);
6828
6829 error_clean:
6830 ext4_mb_unload_buddy(&e4b);
6831 error_out:
6832 ext4_std_error(sb, err);
6833 return err;
6834 }
6835
6836 /**
6837 * ext4_trim_extent -- function to TRIM one single free extent in the group
6838 * @sb: super block for the file system
6839 * @start: starting block of the free extent in the alloc. group
6840 * @count: number of blocks to TRIM
6841 * @e4b: ext4 buddy for the group
6842 *
6843 * Trim "count" blocks starting at "start" in the "group". To assure that no
6844 * one will allocate those blocks, mark it as used in buddy bitmap. This must
6845 * be called with under the group lock.
6846 */
ext4_trim_extent(struct super_block * sb,int start,int count,struct ext4_buddy * e4b)6847 static int ext4_trim_extent(struct super_block *sb,
6848 int start, int count, struct ext4_buddy *e4b)
6849 __releases(bitlock)
6850 __acquires(bitlock)
6851 {
6852 struct ext4_free_extent ex;
6853 ext4_group_t group = e4b->bd_group;
6854 int ret = 0;
6855
6856 trace_ext4_trim_extent(sb, group, start, count);
6857
6858 assert_spin_locked(ext4_group_lock_ptr(sb, group));
6859
6860 ex.fe_start = start;
6861 ex.fe_group = group;
6862 ex.fe_len = count;
6863
6864 /*
6865 * Mark blocks used, so no one can reuse them while
6866 * being trimmed.
6867 */
6868 mb_mark_used(e4b, &ex);
6869 ext4_unlock_group(sb, group);
6870 ret = ext4_issue_discard(sb, group, start, count);
6871 ext4_lock_group(sb, group);
6872 mb_free_blocks(NULL, e4b, start, ex.fe_len);
6873 return ret;
6874 }
6875
ext4_last_grp_cluster(struct super_block * sb,ext4_group_t grp)6876 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6877 ext4_group_t grp)
6878 {
6879 unsigned long nr_clusters_in_group;
6880
6881 if (grp < (ext4_get_groups_count(sb) - 1))
6882 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6883 else
6884 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6885 ext4_group_first_block_no(sb, grp))
6886 >> EXT4_CLUSTER_BITS(sb);
6887
6888 return nr_clusters_in_group - 1;
6889 }
6890
ext4_trim_interrupted(void)6891 static bool ext4_trim_interrupted(void)
6892 {
6893 return fatal_signal_pending(current) || freezing(current);
6894 }
6895
ext4_try_to_trim_range(struct super_block * sb,struct ext4_buddy * e4b,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6896 static int ext4_try_to_trim_range(struct super_block *sb,
6897 struct ext4_buddy *e4b, ext4_grpblk_t start,
6898 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6899 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6900 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6901 {
6902 ext4_grpblk_t next, count, free_count, last, origin_start;
6903 bool set_trimmed = false;
6904 void *bitmap;
6905
6906 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6907 return 0;
6908
6909 last = ext4_last_grp_cluster(sb, e4b->bd_group);
6910 bitmap = e4b->bd_bitmap;
6911 if (start == 0 && max >= last)
6912 set_trimmed = true;
6913 origin_start = start;
6914 start = max(e4b->bd_info->bb_first_free, start);
6915 count = 0;
6916 free_count = 0;
6917
6918 while (start <= max) {
6919 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6920 if (start > max)
6921 break;
6922
6923 next = mb_find_next_bit(bitmap, last + 1, start);
6924 if (origin_start == 0 && next >= last)
6925 set_trimmed = true;
6926
6927 if ((next - start) >= minblocks) {
6928 int ret = ext4_trim_extent(sb, start, next - start, e4b);
6929
6930 if (ret && ret != -EOPNOTSUPP)
6931 return count;
6932 count += next - start;
6933 }
6934 free_count += next - start;
6935 start = next + 1;
6936
6937 if (ext4_trim_interrupted())
6938 return count;
6939
6940 if (need_resched()) {
6941 ext4_unlock_group(sb, e4b->bd_group);
6942 cond_resched();
6943 ext4_lock_group(sb, e4b->bd_group);
6944 }
6945
6946 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6947 break;
6948 }
6949
6950 if (set_trimmed)
6951 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6952
6953 return count;
6954 }
6955
6956 /**
6957 * ext4_trim_all_free -- function to trim all free space in alloc. group
6958 * @sb: super block for file system
6959 * @group: group to be trimmed
6960 * @start: first group block to examine
6961 * @max: last group block to examine
6962 * @minblocks: minimum extent block count
6963 *
6964 * ext4_trim_all_free walks through group's block bitmap searching for free
6965 * extents. When the free extent is found, mark it as used in group buddy
6966 * bitmap. Then issue a TRIM command on this extent and free the extent in
6967 * the group buddy bitmap.
6968 */
6969 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks)6970 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6971 ext4_grpblk_t start, ext4_grpblk_t max,
6972 ext4_grpblk_t minblocks)
6973 {
6974 struct ext4_buddy e4b;
6975 int ret;
6976
6977 trace_ext4_trim_all_free(sb, group, start, max);
6978
6979 ret = ext4_mb_load_buddy(sb, group, &e4b);
6980 if (ret) {
6981 ext4_warning(sb, "Error %d loading buddy information for %u",
6982 ret, group);
6983 return ret;
6984 }
6985
6986 ext4_lock_group(sb, group);
6987
6988 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6989 minblocks < EXT4_SB(sb)->s_last_trim_minblks)
6990 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6991 else
6992 ret = 0;
6993
6994 ext4_unlock_group(sb, group);
6995 ext4_mb_unload_buddy(&e4b);
6996
6997 ext4_debug("trimmed %d blocks in the group %d\n",
6998 ret, group);
6999
7000 return ret;
7001 }
7002
7003 /**
7004 * ext4_trim_fs() -- trim ioctl handle function
7005 * @sb: superblock for filesystem
7006 * @range: fstrim_range structure
7007 *
7008 * start: First Byte to trim
7009 * len: number of Bytes to trim from start
7010 * minlen: minimum extent length in Bytes
7011 * ext4_trim_fs goes through all allocation groups containing Bytes from
7012 * start to start+len. For each such a group ext4_trim_all_free function
7013 * is invoked to trim all free space.
7014 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range)7015 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7016 {
7017 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7018 struct ext4_group_info *grp;
7019 ext4_group_t group, first_group, last_group;
7020 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7021 uint64_t start, end, minlen, trimmed = 0;
7022 ext4_fsblk_t first_data_blk =
7023 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7024 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7025 int ret = 0;
7026
7027 start = range->start >> sb->s_blocksize_bits;
7028 end = start + (range->len >> sb->s_blocksize_bits) - 1;
7029 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7030 range->minlen >> sb->s_blocksize_bits);
7031
7032 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7033 start >= max_blks ||
7034 range->len < sb->s_blocksize)
7035 return -EINVAL;
7036 /* No point to try to trim less than discard granularity */
7037 if (range->minlen < discard_granularity) {
7038 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7039 discard_granularity >> sb->s_blocksize_bits);
7040 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7041 goto out;
7042 }
7043 if (end >= max_blks - 1)
7044 end = max_blks - 1;
7045 if (end <= first_data_blk)
7046 goto out;
7047 if (start < first_data_blk)
7048 start = first_data_blk;
7049
7050 /* Determine first and last group to examine based on start and end */
7051 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7052 &first_group, &first_cluster);
7053 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7054 &last_group, &last_cluster);
7055
7056 /* end now represents the last cluster to discard in this group */
7057 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7058
7059 for (group = first_group; group <= last_group; group++) {
7060 if (ext4_trim_interrupted())
7061 break;
7062 grp = ext4_get_group_info(sb, group);
7063 if (!grp)
7064 continue;
7065 /* We only do this if the grp has never been initialized */
7066 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7067 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7068 if (ret)
7069 break;
7070 }
7071
7072 /*
7073 * For all the groups except the last one, last cluster will
7074 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7075 * change it for the last group, note that last_cluster is
7076 * already computed earlier by ext4_get_group_no_and_offset()
7077 */
7078 if (group == last_group)
7079 end = last_cluster;
7080 if (grp->bb_free >= minlen) {
7081 cnt = ext4_trim_all_free(sb, group, first_cluster,
7082 end, minlen);
7083 if (cnt < 0) {
7084 ret = cnt;
7085 break;
7086 }
7087 trimmed += cnt;
7088 }
7089
7090 /*
7091 * For every group except the first one, we are sure
7092 * that the first cluster to discard will be cluster #0.
7093 */
7094 first_cluster = 0;
7095 }
7096
7097 if (!ret)
7098 EXT4_SB(sb)->s_last_trim_minblks = minlen;
7099
7100 out:
7101 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7102 return ret;
7103 }
7104
7105 /* Iterate all the free extents in the group. */
7106 int
ext4_mballoc_query_range(struct super_block * sb,ext4_group_t group,ext4_grpblk_t first,ext4_grpblk_t end,ext4_mballoc_query_range_fn meta_formatter,ext4_mballoc_query_range_fn formatter,void * priv)7107 ext4_mballoc_query_range(
7108 struct super_block *sb,
7109 ext4_group_t group,
7110 ext4_grpblk_t first,
7111 ext4_grpblk_t end,
7112 ext4_mballoc_query_range_fn meta_formatter,
7113 ext4_mballoc_query_range_fn formatter,
7114 void *priv)
7115 {
7116 void *bitmap;
7117 ext4_grpblk_t start, next;
7118 struct ext4_buddy e4b;
7119 int error;
7120
7121 error = ext4_mb_load_buddy(sb, group, &e4b);
7122 if (error)
7123 return error;
7124 bitmap = e4b.bd_bitmap;
7125
7126 ext4_lock_group(sb, group);
7127
7128 start = max(e4b.bd_info->bb_first_free, first);
7129 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7130 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7131 if (meta_formatter && start != first) {
7132 if (start > end)
7133 start = end;
7134 ext4_unlock_group(sb, group);
7135 error = meta_formatter(sb, group, first, start - first,
7136 priv);
7137 if (error)
7138 goto out_unload;
7139 ext4_lock_group(sb, group);
7140 }
7141 while (start <= end) {
7142 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7143 if (start > end)
7144 break;
7145 next = mb_find_next_bit(bitmap, end + 1, start);
7146
7147 ext4_unlock_group(sb, group);
7148 error = formatter(sb, group, start, next - start, priv);
7149 if (error)
7150 goto out_unload;
7151 ext4_lock_group(sb, group);
7152
7153 start = next + 1;
7154 }
7155
7156 ext4_unlock_group(sb, group);
7157 out_unload:
7158 ext4_mb_unload_buddy(&e4b);
7159
7160 return error;
7161 }
7162
7163 #ifdef CONFIG_EXT4_KUNIT_TESTS
7164 #include "mballoc-test.c"
7165 #endif
7166