1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 			     unsigned long journal_devnum);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 					struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 				   struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static const char *ext4_decode_error(struct super_block *sb, int errno,
72 				     char nbuf[16]);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static void ext4_write_super(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 	.owner		= THIS_MODULE,
90 	.name		= "ext2",
91 	.mount		= ext4_mount,
92 	.kill_sb	= kill_block_super,
93 	.fs_flags	= FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99 
100 
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 	.owner		= THIS_MODULE,
104 	.name		= "ext3",
105 	.mount		= ext4_mount,
106 	.kill_sb	= kill_block_super,
107 	.fs_flags	= FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113 
ext4_kvmalloc(size_t size,gfp_t flags)114 void *ext4_kvmalloc(size_t size, gfp_t flags)
115 {
116 	void *ret;
117 
118 	ret = kmalloc(size, flags);
119 	if (!ret)
120 		ret = __vmalloc(size, flags, PAGE_KERNEL);
121 	return ret;
122 }
123 
ext4_kvzalloc(size_t size,gfp_t flags)124 void *ext4_kvzalloc(size_t size, gfp_t flags)
125 {
126 	void *ret;
127 
128 	ret = kzalloc(size, flags);
129 	if (!ret)
130 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
131 	return ret;
132 }
133 
ext4_kvfree(void * ptr)134 void ext4_kvfree(void *ptr)
135 {
136 	if (is_vmalloc_addr(ptr))
137 		vfree(ptr);
138 	else
139 		kfree(ptr);
140 
141 }
142 
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)143 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
144 			       struct ext4_group_desc *bg)
145 {
146 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
147 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
148 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
149 }
150 
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)151 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
152 			       struct ext4_group_desc *bg)
153 {
154 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
155 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
156 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
157 }
158 
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)159 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
160 			      struct ext4_group_desc *bg)
161 {
162 	return le32_to_cpu(bg->bg_inode_table_lo) |
163 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
164 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
165 }
166 
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)167 __u32 ext4_free_group_clusters(struct super_block *sb,
168 			       struct ext4_group_desc *bg)
169 {
170 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
171 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
172 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
173 }
174 
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)175 __u32 ext4_free_inodes_count(struct super_block *sb,
176 			      struct ext4_group_desc *bg)
177 {
178 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
179 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
180 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
181 }
182 
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)183 __u32 ext4_used_dirs_count(struct super_block *sb,
184 			      struct ext4_group_desc *bg)
185 {
186 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
187 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
188 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
189 }
190 
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)191 __u32 ext4_itable_unused_count(struct super_block *sb,
192 			      struct ext4_group_desc *bg)
193 {
194 	return le16_to_cpu(bg->bg_itable_unused_lo) |
195 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
197 }
198 
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)199 void ext4_block_bitmap_set(struct super_block *sb,
200 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
201 {
202 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
203 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
204 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
205 }
206 
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)207 void ext4_inode_bitmap_set(struct super_block *sb,
208 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
209 {
210 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
211 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
212 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
213 }
214 
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)215 void ext4_inode_table_set(struct super_block *sb,
216 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
217 {
218 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
219 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
220 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
221 }
222 
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)223 void ext4_free_group_clusters_set(struct super_block *sb,
224 				  struct ext4_group_desc *bg, __u32 count)
225 {
226 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
227 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
228 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
229 }
230 
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)231 void ext4_free_inodes_set(struct super_block *sb,
232 			  struct ext4_group_desc *bg, __u32 count)
233 {
234 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
235 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
236 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
237 }
238 
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)239 void ext4_used_dirs_set(struct super_block *sb,
240 			  struct ext4_group_desc *bg, __u32 count)
241 {
242 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
243 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
244 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
245 }
246 
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)247 void ext4_itable_unused_set(struct super_block *sb,
248 			  struct ext4_group_desc *bg, __u32 count)
249 {
250 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
251 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
253 }
254 
255 
256 /* Just increment the non-pointer handle value */
ext4_get_nojournal(void)257 static handle_t *ext4_get_nojournal(void)
258 {
259 	handle_t *handle = current->journal_info;
260 	unsigned long ref_cnt = (unsigned long)handle;
261 
262 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
263 
264 	ref_cnt++;
265 	handle = (handle_t *)ref_cnt;
266 
267 	current->journal_info = handle;
268 	return handle;
269 }
270 
271 
272 /* Decrement the non-pointer handle value */
ext4_put_nojournal(handle_t * handle)273 static void ext4_put_nojournal(handle_t *handle)
274 {
275 	unsigned long ref_cnt = (unsigned long)handle;
276 
277 	BUG_ON(ref_cnt == 0);
278 
279 	ref_cnt--;
280 	handle = (handle_t *)ref_cnt;
281 
282 	current->journal_info = handle;
283 }
284 
285 /*
286  * Wrappers for jbd2_journal_start/end.
287  *
288  * The only special thing we need to do here is to make sure that all
289  * journal_end calls result in the superblock being marked dirty, so
290  * that sync() will call the filesystem's write_super callback if
291  * appropriate.
292  *
293  * To avoid j_barrier hold in userspace when a user calls freeze(),
294  * ext4 prevents a new handle from being started by s_frozen, which
295  * is in an upper layer.
296  */
ext4_journal_start_sb(struct super_block * sb,int nblocks)297 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
298 {
299 	journal_t *journal;
300 	handle_t  *handle;
301 
302 	trace_ext4_journal_start(sb, nblocks, _RET_IP_);
303 	if (sb->s_flags & MS_RDONLY)
304 		return ERR_PTR(-EROFS);
305 
306 	journal = EXT4_SB(sb)->s_journal;
307 	handle = ext4_journal_current_handle();
308 
309 	/*
310 	 * If a handle has been started, it should be allowed to
311 	 * finish, otherwise deadlock could happen between freeze
312 	 * and others(e.g. truncate) due to the restart of the
313 	 * journal handle if the filesystem is forzen and active
314 	 * handles are not stopped.
315 	 */
316 	if (!handle)
317 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
318 
319 	if (!journal)
320 		return ext4_get_nojournal();
321 	/*
322 	 * Special case here: if the journal has aborted behind our
323 	 * backs (eg. EIO in the commit thread), then we still need to
324 	 * take the FS itself readonly cleanly.
325 	 */
326 	if (is_journal_aborted(journal)) {
327 		ext4_abort(sb, "Detected aborted journal");
328 		return ERR_PTR(-EROFS);
329 	}
330 	return jbd2_journal_start(journal, nblocks);
331 }
332 
333 /*
334  * The only special thing we need to do here is to make sure that all
335  * jbd2_journal_stop calls result in the superblock being marked dirty, so
336  * that sync() will call the filesystem's write_super callback if
337  * appropriate.
338  */
__ext4_journal_stop(const char * where,unsigned int line,handle_t * handle)339 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
340 {
341 	struct super_block *sb;
342 	int err;
343 	int rc;
344 
345 	if (!ext4_handle_valid(handle)) {
346 		ext4_put_nojournal(handle);
347 		return 0;
348 	}
349 	sb = handle->h_transaction->t_journal->j_private;
350 	err = handle->h_err;
351 	rc = jbd2_journal_stop(handle);
352 
353 	if (!err)
354 		err = rc;
355 	if (err)
356 		__ext4_std_error(sb, where, line, err);
357 	return err;
358 }
359 
ext4_journal_abort_handle(const char * caller,unsigned int line,const char * err_fn,struct buffer_head * bh,handle_t * handle,int err)360 void ext4_journal_abort_handle(const char *caller, unsigned int line,
361 			       const char *err_fn, struct buffer_head *bh,
362 			       handle_t *handle, int err)
363 {
364 	char nbuf[16];
365 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
366 
367 	BUG_ON(!ext4_handle_valid(handle));
368 
369 	if (bh)
370 		BUFFER_TRACE(bh, "abort");
371 
372 	if (!handle->h_err)
373 		handle->h_err = err;
374 
375 	if (is_handle_aborted(handle))
376 		return;
377 
378 	printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
379 	       caller, line, errstr, err_fn);
380 
381 	jbd2_journal_abort_handle(handle);
382 }
383 
__save_error_info(struct super_block * sb,const char * func,unsigned int line)384 static void __save_error_info(struct super_block *sb, const char *func,
385 			    unsigned int line)
386 {
387 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
388 
389 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
390 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
391 	es->s_last_error_time = cpu_to_le32(get_seconds());
392 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
393 	es->s_last_error_line = cpu_to_le32(line);
394 	if (!es->s_first_error_time) {
395 		es->s_first_error_time = es->s_last_error_time;
396 		strncpy(es->s_first_error_func, func,
397 			sizeof(es->s_first_error_func));
398 		es->s_first_error_line = cpu_to_le32(line);
399 		es->s_first_error_ino = es->s_last_error_ino;
400 		es->s_first_error_block = es->s_last_error_block;
401 	}
402 	/*
403 	 * Start the daily error reporting function if it hasn't been
404 	 * started already
405 	 */
406 	if (!es->s_error_count)
407 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
408 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
409 }
410 
save_error_info(struct super_block * sb,const char * func,unsigned int line)411 static void save_error_info(struct super_block *sb, const char *func,
412 			    unsigned int line)
413 {
414 	__save_error_info(sb, func, line);
415 	ext4_commit_super(sb, 1);
416 }
417 
418 /*
419  * The del_gendisk() function uninitializes the disk-specific data
420  * structures, including the bdi structure, without telling anyone
421  * else.  Once this happens, any attempt to call mark_buffer_dirty()
422  * (for example, by ext4_commit_super), will cause a kernel OOPS.
423  * This is a kludge to prevent these oops until we can put in a proper
424  * hook in del_gendisk() to inform the VFS and file system layers.
425  */
block_device_ejected(struct super_block * sb)426 static int block_device_ejected(struct super_block *sb)
427 {
428 	struct inode *bd_inode = sb->s_bdev->bd_inode;
429 	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
430 
431 	return bdi->dev == NULL;
432 }
433 
434 
435 /* Deal with the reporting of failure conditions on a filesystem such as
436  * inconsistencies detected or read IO failures.
437  *
438  * On ext2, we can store the error state of the filesystem in the
439  * superblock.  That is not possible on ext4, because we may have other
440  * write ordering constraints on the superblock which prevent us from
441  * writing it out straight away; and given that the journal is about to
442  * be aborted, we can't rely on the current, or future, transactions to
443  * write out the superblock safely.
444  *
445  * We'll just use the jbd2_journal_abort() error code to record an error in
446  * the journal instead.  On recovery, the journal will complain about
447  * that error until we've noted it down and cleared it.
448  */
449 
ext4_handle_error(struct super_block * sb)450 static void ext4_handle_error(struct super_block *sb)
451 {
452 	if (sb->s_flags & MS_RDONLY)
453 		return;
454 
455 	if (!test_opt(sb, ERRORS_CONT)) {
456 		journal_t *journal = EXT4_SB(sb)->s_journal;
457 
458 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
459 		if (journal)
460 			jbd2_journal_abort(journal, -EIO);
461 	}
462 	if (test_opt(sb, ERRORS_RO)) {
463 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
464 		sb->s_flags |= MS_RDONLY;
465 	}
466 	if (test_opt(sb, ERRORS_PANIC))
467 		panic("EXT4-fs (device %s): panic forced after error\n",
468 			sb->s_id);
469 }
470 
__ext4_error(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)471 void __ext4_error(struct super_block *sb, const char *function,
472 		  unsigned int line, const char *fmt, ...)
473 {
474 	struct va_format vaf;
475 	va_list args;
476 
477 	va_start(args, fmt);
478 	vaf.fmt = fmt;
479 	vaf.va = &args;
480 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
481 	       sb->s_id, function, line, current->comm, &vaf);
482 	va_end(args);
483 
484 	ext4_handle_error(sb);
485 }
486 
ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)487 void ext4_error_inode(struct inode *inode, const char *function,
488 		      unsigned int line, ext4_fsblk_t block,
489 		      const char *fmt, ...)
490 {
491 	va_list args;
492 	struct va_format vaf;
493 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
494 
495 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 	es->s_last_error_block = cpu_to_le64(block);
497 	save_error_info(inode->i_sb, function, line);
498 	va_start(args, fmt);
499 	vaf.fmt = fmt;
500 	vaf.va = &args;
501 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
502 	       inode->i_sb->s_id, function, line, inode->i_ino);
503 	if (block)
504 		printk(KERN_CONT "block %llu: ", block);
505 	printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
506 	va_end(args);
507 
508 	ext4_handle_error(inode->i_sb);
509 }
510 
ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)511 void ext4_error_file(struct file *file, const char *function,
512 		     unsigned int line, ext4_fsblk_t block,
513 		     const char *fmt, ...)
514 {
515 	va_list args;
516 	struct va_format vaf;
517 	struct ext4_super_block *es;
518 	struct inode *inode = file->f_dentry->d_inode;
519 	char pathname[80], *path;
520 
521 	es = EXT4_SB(inode->i_sb)->s_es;
522 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
523 	save_error_info(inode->i_sb, function, line);
524 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
525 	if (IS_ERR(path))
526 		path = "(unknown)";
527 	printk(KERN_CRIT
528 	       "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
529 	       inode->i_sb->s_id, function, line, inode->i_ino);
530 	if (block)
531 		printk(KERN_CONT "block %llu: ", block);
532 	va_start(args, fmt);
533 	vaf.fmt = fmt;
534 	vaf.va = &args;
535 	printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
536 	va_end(args);
537 
538 	ext4_handle_error(inode->i_sb);
539 }
540 
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])541 static const char *ext4_decode_error(struct super_block *sb, int errno,
542 				     char nbuf[16])
543 {
544 	char *errstr = NULL;
545 
546 	switch (errno) {
547 	case -EIO:
548 		errstr = "IO failure";
549 		break;
550 	case -ENOMEM:
551 		errstr = "Out of memory";
552 		break;
553 	case -EROFS:
554 		if (!sb || (EXT4_SB(sb)->s_journal &&
555 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 			errstr = "Journal has aborted";
557 		else
558 			errstr = "Readonly filesystem";
559 		break;
560 	default:
561 		/* If the caller passed in an extra buffer for unknown
562 		 * errors, textualise them now.  Else we just return
563 		 * NULL. */
564 		if (nbuf) {
565 			/* Check for truncated error codes... */
566 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 				errstr = nbuf;
568 		}
569 		break;
570 	}
571 
572 	return errstr;
573 }
574 
575 /* __ext4_std_error decodes expected errors from journaling functions
576  * automatically and invokes the appropriate error response.  */
577 
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)578 void __ext4_std_error(struct super_block *sb, const char *function,
579 		      unsigned int line, int errno)
580 {
581 	char nbuf[16];
582 	const char *errstr;
583 
584 	/* Special case: if the error is EROFS, and we're not already
585 	 * inside a transaction, then there's really no point in logging
586 	 * an error. */
587 	if (errno == -EROFS && journal_current_handle() == NULL &&
588 	    (sb->s_flags & MS_RDONLY))
589 		return;
590 
591 	errstr = ext4_decode_error(sb, errno, nbuf);
592 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
593 	       sb->s_id, function, line, errstr);
594 	save_error_info(sb, function, line);
595 
596 	ext4_handle_error(sb);
597 }
598 
599 /*
600  * ext4_abort is a much stronger failure handler than ext4_error.  The
601  * abort function may be used to deal with unrecoverable failures such
602  * as journal IO errors or ENOMEM at a critical moment in log management.
603  *
604  * We unconditionally force the filesystem into an ABORT|READONLY state,
605  * unless the error response on the fs has been set to panic in which
606  * case we take the easy way out and panic immediately.
607  */
608 
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)609 void __ext4_abort(struct super_block *sb, const char *function,
610 		unsigned int line, const char *fmt, ...)
611 {
612 	va_list args;
613 
614 	save_error_info(sb, function, line);
615 	va_start(args, fmt);
616 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
617 	       function, line);
618 	vprintk(fmt, args);
619 	printk("\n");
620 	va_end(args);
621 
622 	if ((sb->s_flags & MS_RDONLY) == 0) {
623 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
624 		sb->s_flags |= MS_RDONLY;
625 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
626 		if (EXT4_SB(sb)->s_journal)
627 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
628 		save_error_info(sb, function, line);
629 	}
630 	if (test_opt(sb, ERRORS_PANIC))
631 		panic("EXT4-fs panic from previous error\n");
632 }
633 
ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)634 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
635 {
636 	struct va_format vaf;
637 	va_list args;
638 
639 	va_start(args, fmt);
640 	vaf.fmt = fmt;
641 	vaf.va = &args;
642 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
643 	va_end(args);
644 }
645 
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)646 void __ext4_warning(struct super_block *sb, const char *function,
647 		    unsigned int line, const char *fmt, ...)
648 {
649 	struct va_format vaf;
650 	va_list args;
651 
652 	va_start(args, fmt);
653 	vaf.fmt = fmt;
654 	vaf.va = &args;
655 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
656 	       sb->s_id, function, line, &vaf);
657 	va_end(args);
658 }
659 
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)660 void __ext4_grp_locked_error(const char *function, unsigned int line,
661 			     struct super_block *sb, ext4_group_t grp,
662 			     unsigned long ino, ext4_fsblk_t block,
663 			     const char *fmt, ...)
664 __releases(bitlock)
665 __acquires(bitlock)
666 {
667 	struct va_format vaf;
668 	va_list args;
669 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
670 
671 	es->s_last_error_ino = cpu_to_le32(ino);
672 	es->s_last_error_block = cpu_to_le64(block);
673 	__save_error_info(sb, function, line);
674 
675 	va_start(args, fmt);
676 
677 	vaf.fmt = fmt;
678 	vaf.va = &args;
679 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
680 	       sb->s_id, function, line, grp);
681 	if (ino)
682 		printk(KERN_CONT "inode %lu: ", ino);
683 	if (block)
684 		printk(KERN_CONT "block %llu:", (unsigned long long) block);
685 	printk(KERN_CONT "%pV\n", &vaf);
686 	va_end(args);
687 
688 	if (test_opt(sb, ERRORS_CONT)) {
689 		ext4_commit_super(sb, 0);
690 		return;
691 	}
692 
693 	ext4_unlock_group(sb, grp);
694 	ext4_handle_error(sb);
695 	/*
696 	 * We only get here in the ERRORS_RO case; relocking the group
697 	 * may be dangerous, but nothing bad will happen since the
698 	 * filesystem will have already been marked read/only and the
699 	 * journal has been aborted.  We return 1 as a hint to callers
700 	 * who might what to use the return value from
701 	 * ext4_grp_locked_error() to distinguish between the
702 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
703 	 * aggressively from the ext4 function in question, with a
704 	 * more appropriate error code.
705 	 */
706 	ext4_lock_group(sb, grp);
707 	return;
708 }
709 
ext4_update_dynamic_rev(struct super_block * sb)710 void ext4_update_dynamic_rev(struct super_block *sb)
711 {
712 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
713 
714 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
715 		return;
716 
717 	ext4_warning(sb,
718 		     "updating to rev %d because of new feature flag, "
719 		     "running e2fsck is recommended",
720 		     EXT4_DYNAMIC_REV);
721 
722 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
723 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
724 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
725 	/* leave es->s_feature_*compat flags alone */
726 	/* es->s_uuid will be set by e2fsck if empty */
727 
728 	/*
729 	 * The rest of the superblock fields should be zero, and if not it
730 	 * means they are likely already in use, so leave them alone.  We
731 	 * can leave it up to e2fsck to clean up any inconsistencies there.
732 	 */
733 }
734 
735 /*
736  * Open the external journal device
737  */
ext4_blkdev_get(dev_t dev,struct super_block * sb)738 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
739 {
740 	struct block_device *bdev;
741 	char b[BDEVNAME_SIZE];
742 
743 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
744 	if (IS_ERR(bdev))
745 		goto fail;
746 	return bdev;
747 
748 fail:
749 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
750 			__bdevname(dev, b), PTR_ERR(bdev));
751 	return NULL;
752 }
753 
754 /*
755  * Release the journal device
756  */
ext4_blkdev_put(struct block_device * bdev)757 static int ext4_blkdev_put(struct block_device *bdev)
758 {
759 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
760 }
761 
ext4_blkdev_remove(struct ext4_sb_info * sbi)762 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
763 {
764 	struct block_device *bdev;
765 	int ret = -ENODEV;
766 
767 	bdev = sbi->journal_bdev;
768 	if (bdev) {
769 		ret = ext4_blkdev_put(bdev);
770 		sbi->journal_bdev = NULL;
771 	}
772 	return ret;
773 }
774 
orphan_list_entry(struct list_head * l)775 static inline struct inode *orphan_list_entry(struct list_head *l)
776 {
777 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
778 }
779 
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)780 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
781 {
782 	struct list_head *l;
783 
784 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
785 		 le32_to_cpu(sbi->s_es->s_last_orphan));
786 
787 	printk(KERN_ERR "sb_info orphan list:\n");
788 	list_for_each(l, &sbi->s_orphan) {
789 		struct inode *inode = orphan_list_entry(l);
790 		printk(KERN_ERR "  "
791 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
792 		       inode->i_sb->s_id, inode->i_ino, inode,
793 		       inode->i_mode, inode->i_nlink,
794 		       NEXT_ORPHAN(inode));
795 	}
796 }
797 
ext4_put_super(struct super_block * sb)798 static void ext4_put_super(struct super_block *sb)
799 {
800 	struct ext4_sb_info *sbi = EXT4_SB(sb);
801 	struct ext4_super_block *es = sbi->s_es;
802 	int i, err;
803 
804 	ext4_unregister_li_request(sb);
805 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
806 
807 	flush_workqueue(sbi->dio_unwritten_wq);
808 	destroy_workqueue(sbi->dio_unwritten_wq);
809 
810 	lock_super(sb);
811 	if (sb->s_dirt)
812 		ext4_commit_super(sb, 1);
813 
814 	if (sbi->s_journal) {
815 		err = jbd2_journal_destroy(sbi->s_journal);
816 		sbi->s_journal = NULL;
817 		if (err < 0)
818 			ext4_abort(sb, "Couldn't clean up the journal");
819 	}
820 
821 	del_timer(&sbi->s_err_report);
822 	ext4_release_system_zone(sb);
823 	ext4_mb_release(sb);
824 	ext4_ext_release(sb);
825 	ext4_xattr_put_super(sb);
826 
827 	if (!(sb->s_flags & MS_RDONLY)) {
828 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
829 		es->s_state = cpu_to_le16(sbi->s_mount_state);
830 		ext4_commit_super(sb, 1);
831 	}
832 	if (sbi->s_proc) {
833 		remove_proc_entry(sb->s_id, ext4_proc_root);
834 	}
835 	kobject_del(&sbi->s_kobj);
836 
837 	for (i = 0; i < sbi->s_gdb_count; i++)
838 		brelse(sbi->s_group_desc[i]);
839 	ext4_kvfree(sbi->s_group_desc);
840 	ext4_kvfree(sbi->s_flex_groups);
841 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
842 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
843 	percpu_counter_destroy(&sbi->s_dirs_counter);
844 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
845 	brelse(sbi->s_sbh);
846 #ifdef CONFIG_QUOTA
847 	for (i = 0; i < MAXQUOTAS; i++)
848 		kfree(sbi->s_qf_names[i]);
849 #endif
850 
851 	/* Debugging code just in case the in-memory inode orphan list
852 	 * isn't empty.  The on-disk one can be non-empty if we've
853 	 * detected an error and taken the fs readonly, but the
854 	 * in-memory list had better be clean by this point. */
855 	if (!list_empty(&sbi->s_orphan))
856 		dump_orphan_list(sb, sbi);
857 	J_ASSERT(list_empty(&sbi->s_orphan));
858 
859 	invalidate_bdev(sb->s_bdev);
860 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
861 		/*
862 		 * Invalidate the journal device's buffers.  We don't want them
863 		 * floating about in memory - the physical journal device may
864 		 * hotswapped, and it breaks the `ro-after' testing code.
865 		 */
866 		sync_blockdev(sbi->journal_bdev);
867 		invalidate_bdev(sbi->journal_bdev);
868 		ext4_blkdev_remove(sbi);
869 	}
870 	if (sbi->s_mmp_tsk)
871 		kthread_stop(sbi->s_mmp_tsk);
872 	sb->s_fs_info = NULL;
873 	/*
874 	 * Now that we are completely done shutting down the
875 	 * superblock, we need to actually destroy the kobject.
876 	 */
877 	unlock_super(sb);
878 	kobject_put(&sbi->s_kobj);
879 	wait_for_completion(&sbi->s_kobj_unregister);
880 	kfree(sbi->s_blockgroup_lock);
881 	kfree(sbi);
882 }
883 
884 static struct kmem_cache *ext4_inode_cachep;
885 
886 /*
887  * Called inside transaction, so use GFP_NOFS
888  */
ext4_alloc_inode(struct super_block * sb)889 static struct inode *ext4_alloc_inode(struct super_block *sb)
890 {
891 	struct ext4_inode_info *ei;
892 
893 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
894 	if (!ei)
895 		return NULL;
896 
897 	ei->vfs_inode.i_version = 1;
898 	ei->vfs_inode.i_data.writeback_index = 0;
899 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
900 	INIT_LIST_HEAD(&ei->i_prealloc_list);
901 	spin_lock_init(&ei->i_prealloc_lock);
902 	ei->i_reserved_data_blocks = 0;
903 	ei->i_reserved_meta_blocks = 0;
904 	ei->i_allocated_meta_blocks = 0;
905 	ei->i_da_metadata_calc_len = 0;
906 	spin_lock_init(&(ei->i_block_reservation_lock));
907 #ifdef CONFIG_QUOTA
908 	ei->i_reserved_quota = 0;
909 #endif
910 	ei->jinode = NULL;
911 	INIT_LIST_HEAD(&ei->i_completed_io_list);
912 	spin_lock_init(&ei->i_completed_io_lock);
913 	ei->cur_aio_dio = NULL;
914 	ei->i_sync_tid = 0;
915 	ei->i_datasync_tid = 0;
916 	atomic_set(&ei->i_ioend_count, 0);
917 	atomic_set(&ei->i_aiodio_unwritten, 0);
918 
919 	return &ei->vfs_inode;
920 }
921 
ext4_drop_inode(struct inode * inode)922 static int ext4_drop_inode(struct inode *inode)
923 {
924 	int drop = generic_drop_inode(inode);
925 
926 	trace_ext4_drop_inode(inode, drop);
927 	return drop;
928 }
929 
ext4_i_callback(struct rcu_head * head)930 static void ext4_i_callback(struct rcu_head *head)
931 {
932 	struct inode *inode = container_of(head, struct inode, i_rcu);
933 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
934 }
935 
ext4_destroy_inode(struct inode * inode)936 static void ext4_destroy_inode(struct inode *inode)
937 {
938 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
939 		ext4_msg(inode->i_sb, KERN_ERR,
940 			 "Inode %lu (%p): orphan list check failed!",
941 			 inode->i_ino, EXT4_I(inode));
942 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
943 				EXT4_I(inode), sizeof(struct ext4_inode_info),
944 				true);
945 		dump_stack();
946 	}
947 	call_rcu(&inode->i_rcu, ext4_i_callback);
948 }
949 
init_once(void * foo)950 static void init_once(void *foo)
951 {
952 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
953 
954 	INIT_LIST_HEAD(&ei->i_orphan);
955 #ifdef CONFIG_EXT4_FS_XATTR
956 	init_rwsem(&ei->xattr_sem);
957 #endif
958 	init_rwsem(&ei->i_data_sem);
959 	inode_init_once(&ei->vfs_inode);
960 }
961 
init_inodecache(void)962 static int init_inodecache(void)
963 {
964 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
965 					     sizeof(struct ext4_inode_info),
966 					     0, (SLAB_RECLAIM_ACCOUNT|
967 						SLAB_MEM_SPREAD),
968 					     init_once);
969 	if (ext4_inode_cachep == NULL)
970 		return -ENOMEM;
971 	return 0;
972 }
973 
destroy_inodecache(void)974 static void destroy_inodecache(void)
975 {
976 	kmem_cache_destroy(ext4_inode_cachep);
977 }
978 
ext4_clear_inode(struct inode * inode)979 void ext4_clear_inode(struct inode *inode)
980 {
981 	invalidate_inode_buffers(inode);
982 	end_writeback(inode);
983 	dquot_drop(inode);
984 	ext4_discard_preallocations(inode);
985 	if (EXT4_I(inode)->jinode) {
986 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
987 					       EXT4_I(inode)->jinode);
988 		jbd2_free_inode(EXT4_I(inode)->jinode);
989 		EXT4_I(inode)->jinode = NULL;
990 	}
991 }
992 
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)993 static inline void ext4_show_quota_options(struct seq_file *seq,
994 					   struct super_block *sb)
995 {
996 #if defined(CONFIG_QUOTA)
997 	struct ext4_sb_info *sbi = EXT4_SB(sb);
998 
999 	if (sbi->s_jquota_fmt) {
1000 		char *fmtname = "";
1001 
1002 		switch (sbi->s_jquota_fmt) {
1003 		case QFMT_VFS_OLD:
1004 			fmtname = "vfsold";
1005 			break;
1006 		case QFMT_VFS_V0:
1007 			fmtname = "vfsv0";
1008 			break;
1009 		case QFMT_VFS_V1:
1010 			fmtname = "vfsv1";
1011 			break;
1012 		}
1013 		seq_printf(seq, ",jqfmt=%s", fmtname);
1014 	}
1015 
1016 	if (sbi->s_qf_names[USRQUOTA])
1017 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1018 
1019 	if (sbi->s_qf_names[GRPQUOTA])
1020 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1021 
1022 	if (test_opt(sb, USRQUOTA))
1023 		seq_puts(seq, ",usrquota");
1024 
1025 	if (test_opt(sb, GRPQUOTA))
1026 		seq_puts(seq, ",grpquota");
1027 #endif
1028 }
1029 
1030 /*
1031  * Show an option if
1032  *  - it's set to a non-default value OR
1033  *  - if the per-sb default is different from the global default
1034  */
ext4_show_options(struct seq_file * seq,struct dentry * root)1035 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1036 {
1037 	int def_errors;
1038 	unsigned long def_mount_opts;
1039 	struct super_block *sb = root->d_sb;
1040 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1041 	struct ext4_super_block *es = sbi->s_es;
1042 
1043 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
1044 	def_errors     = le16_to_cpu(es->s_errors);
1045 
1046 	if (sbi->s_sb_block != 1)
1047 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
1048 	if (test_opt(sb, MINIX_DF))
1049 		seq_puts(seq, ",minixdf");
1050 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
1051 		seq_puts(seq, ",grpid");
1052 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
1053 		seq_puts(seq, ",nogrpid");
1054 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
1055 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
1056 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
1057 	}
1058 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
1059 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
1060 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
1061 	}
1062 	if (test_opt(sb, ERRORS_RO)) {
1063 		if (def_errors == EXT4_ERRORS_PANIC ||
1064 		    def_errors == EXT4_ERRORS_CONTINUE) {
1065 			seq_puts(seq, ",errors=remount-ro");
1066 		}
1067 	}
1068 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1069 		seq_puts(seq, ",errors=continue");
1070 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1071 		seq_puts(seq, ",errors=panic");
1072 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
1073 		seq_puts(seq, ",nouid32");
1074 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
1075 		seq_puts(seq, ",debug");
1076 #ifdef CONFIG_EXT4_FS_XATTR
1077 	if (test_opt(sb, XATTR_USER))
1078 		seq_puts(seq, ",user_xattr");
1079 	if (!test_opt(sb, XATTR_USER))
1080 		seq_puts(seq, ",nouser_xattr");
1081 #endif
1082 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1083 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1084 		seq_puts(seq, ",acl");
1085 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1086 		seq_puts(seq, ",noacl");
1087 #endif
1088 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1089 		seq_printf(seq, ",commit=%u",
1090 			   (unsigned) (sbi->s_commit_interval / HZ));
1091 	}
1092 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1093 		seq_printf(seq, ",min_batch_time=%u",
1094 			   (unsigned) sbi->s_min_batch_time);
1095 	}
1096 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1097 		seq_printf(seq, ",max_batch_time=%u",
1098 			   (unsigned) sbi->s_max_batch_time);
1099 	}
1100 
1101 	/*
1102 	 * We're changing the default of barrier mount option, so
1103 	 * let's always display its mount state so it's clear what its
1104 	 * status is.
1105 	 */
1106 	seq_puts(seq, ",barrier=");
1107 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1108 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1109 		seq_puts(seq, ",journal_async_commit");
1110 	else if (test_opt(sb, JOURNAL_CHECKSUM))
1111 		seq_puts(seq, ",journal_checksum");
1112 	if (test_opt(sb, I_VERSION))
1113 		seq_puts(seq, ",i_version");
1114 	if (!test_opt(sb, DELALLOC) &&
1115 	    !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1116 		seq_puts(seq, ",nodelalloc");
1117 
1118 	if (!test_opt(sb, MBLK_IO_SUBMIT))
1119 		seq_puts(seq, ",nomblk_io_submit");
1120 	if (sbi->s_stripe)
1121 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1122 	/*
1123 	 * journal mode get enabled in different ways
1124 	 * So just print the value even if we didn't specify it
1125 	 */
1126 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1127 		seq_puts(seq, ",data=journal");
1128 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1129 		seq_puts(seq, ",data=ordered");
1130 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1131 		seq_puts(seq, ",data=writeback");
1132 
1133 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1134 		seq_printf(seq, ",inode_readahead_blks=%u",
1135 			   sbi->s_inode_readahead_blks);
1136 
1137 	if (test_opt(sb, DATA_ERR_ABORT))
1138 		seq_puts(seq, ",data_err=abort");
1139 
1140 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
1141 		seq_puts(seq, ",noauto_da_alloc");
1142 
1143 	if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1144 		seq_puts(seq, ",discard");
1145 
1146 	if (test_opt(sb, NOLOAD))
1147 		seq_puts(seq, ",norecovery");
1148 
1149 	if (test_opt(sb, DIOREAD_NOLOCK))
1150 		seq_puts(seq, ",dioread_nolock");
1151 
1152 	if (test_opt(sb, BLOCK_VALIDITY) &&
1153 	    !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1154 		seq_puts(seq, ",block_validity");
1155 
1156 	if (!test_opt(sb, INIT_INODE_TABLE))
1157 		seq_puts(seq, ",noinit_itable");
1158 	else if (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)
1159 		seq_printf(seq, ",init_itable=%u",
1160 			   (unsigned) sbi->s_li_wait_mult);
1161 
1162 	ext4_show_quota_options(seq, sb);
1163 
1164 	return 0;
1165 }
1166 
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1167 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1168 					u64 ino, u32 generation)
1169 {
1170 	struct inode *inode;
1171 
1172 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1173 		return ERR_PTR(-ESTALE);
1174 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1175 		return ERR_PTR(-ESTALE);
1176 
1177 	/* iget isn't really right if the inode is currently unallocated!!
1178 	 *
1179 	 * ext4_read_inode will return a bad_inode if the inode had been
1180 	 * deleted, so we should be safe.
1181 	 *
1182 	 * Currently we don't know the generation for parent directory, so
1183 	 * a generation of 0 means "accept any"
1184 	 */
1185 	inode = ext4_iget(sb, ino);
1186 	if (IS_ERR(inode))
1187 		return ERR_CAST(inode);
1188 	if (generation && inode->i_generation != generation) {
1189 		iput(inode);
1190 		return ERR_PTR(-ESTALE);
1191 	}
1192 
1193 	return inode;
1194 }
1195 
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1196 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1197 					int fh_len, int fh_type)
1198 {
1199 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1200 				    ext4_nfs_get_inode);
1201 }
1202 
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1203 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1204 					int fh_len, int fh_type)
1205 {
1206 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1207 				    ext4_nfs_get_inode);
1208 }
1209 
1210 /*
1211  * Try to release metadata pages (indirect blocks, directories) which are
1212  * mapped via the block device.  Since these pages could have journal heads
1213  * which would prevent try_to_free_buffers() from freeing them, we must use
1214  * jbd2 layer's try_to_free_buffers() function to release them.
1215  */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1216 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1217 				 gfp_t wait)
1218 {
1219 	journal_t *journal = EXT4_SB(sb)->s_journal;
1220 
1221 	WARN_ON(PageChecked(page));
1222 	if (!page_has_buffers(page))
1223 		return 0;
1224 	if (journal)
1225 		return jbd2_journal_try_to_free_buffers(journal, page,
1226 							wait & ~__GFP_WAIT);
1227 	return try_to_free_buffers(page);
1228 }
1229 
1230 #ifdef CONFIG_QUOTA
1231 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1232 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1233 
1234 static int ext4_write_dquot(struct dquot *dquot);
1235 static int ext4_acquire_dquot(struct dquot *dquot);
1236 static int ext4_release_dquot(struct dquot *dquot);
1237 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1238 static int ext4_write_info(struct super_block *sb, int type);
1239 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1240 			 struct path *path);
1241 static int ext4_quota_off(struct super_block *sb, int type);
1242 static int ext4_quota_on_mount(struct super_block *sb, int type);
1243 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1244 			       size_t len, loff_t off);
1245 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1246 				const char *data, size_t len, loff_t off);
1247 
1248 static const struct dquot_operations ext4_quota_operations = {
1249 	.get_reserved_space = ext4_get_reserved_space,
1250 	.write_dquot	= ext4_write_dquot,
1251 	.acquire_dquot	= ext4_acquire_dquot,
1252 	.release_dquot	= ext4_release_dquot,
1253 	.mark_dirty	= ext4_mark_dquot_dirty,
1254 	.write_info	= ext4_write_info,
1255 	.alloc_dquot	= dquot_alloc,
1256 	.destroy_dquot	= dquot_destroy,
1257 };
1258 
1259 static const struct quotactl_ops ext4_qctl_operations = {
1260 	.quota_on	= ext4_quota_on,
1261 	.quota_off	= ext4_quota_off,
1262 	.quota_sync	= dquot_quota_sync,
1263 	.get_info	= dquot_get_dqinfo,
1264 	.set_info	= dquot_set_dqinfo,
1265 	.get_dqblk	= dquot_get_dqblk,
1266 	.set_dqblk	= dquot_set_dqblk
1267 };
1268 #endif
1269 
1270 static const struct super_operations ext4_sops = {
1271 	.alloc_inode	= ext4_alloc_inode,
1272 	.destroy_inode	= ext4_destroy_inode,
1273 	.write_inode	= ext4_write_inode,
1274 	.dirty_inode	= ext4_dirty_inode,
1275 	.drop_inode	= ext4_drop_inode,
1276 	.evict_inode	= ext4_evict_inode,
1277 	.put_super	= ext4_put_super,
1278 	.sync_fs	= ext4_sync_fs,
1279 	.freeze_fs	= ext4_freeze,
1280 	.unfreeze_fs	= ext4_unfreeze,
1281 	.statfs		= ext4_statfs,
1282 	.remount_fs	= ext4_remount,
1283 	.show_options	= ext4_show_options,
1284 #ifdef CONFIG_QUOTA
1285 	.quota_read	= ext4_quota_read,
1286 	.quota_write	= ext4_quota_write,
1287 #endif
1288 	.bdev_try_to_free_page = bdev_try_to_free_page,
1289 };
1290 
1291 static const struct super_operations ext4_nojournal_sops = {
1292 	.alloc_inode	= ext4_alloc_inode,
1293 	.destroy_inode	= ext4_destroy_inode,
1294 	.write_inode	= ext4_write_inode,
1295 	.dirty_inode	= ext4_dirty_inode,
1296 	.drop_inode	= ext4_drop_inode,
1297 	.evict_inode	= ext4_evict_inode,
1298 	.write_super	= ext4_write_super,
1299 	.put_super	= ext4_put_super,
1300 	.statfs		= ext4_statfs,
1301 	.remount_fs	= ext4_remount,
1302 	.show_options	= ext4_show_options,
1303 #ifdef CONFIG_QUOTA
1304 	.quota_read	= ext4_quota_read,
1305 	.quota_write	= ext4_quota_write,
1306 #endif
1307 	.bdev_try_to_free_page = bdev_try_to_free_page,
1308 };
1309 
1310 static const struct export_operations ext4_export_ops = {
1311 	.fh_to_dentry = ext4_fh_to_dentry,
1312 	.fh_to_parent = ext4_fh_to_parent,
1313 	.get_parent = ext4_get_parent,
1314 };
1315 
1316 enum {
1317 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1318 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1319 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1320 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1321 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1322 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1323 	Opt_journal_update, Opt_journal_dev,
1324 	Opt_journal_checksum, Opt_journal_async_commit,
1325 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1326 	Opt_data_err_abort, Opt_data_err_ignore,
1327 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1328 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1329 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1330 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1331 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1332 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1333 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1334 	Opt_dioread_nolock, Opt_dioread_lock,
1335 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1336 };
1337 
1338 static const match_table_t tokens = {
1339 	{Opt_bsd_df, "bsddf"},
1340 	{Opt_minix_df, "minixdf"},
1341 	{Opt_grpid, "grpid"},
1342 	{Opt_grpid, "bsdgroups"},
1343 	{Opt_nogrpid, "nogrpid"},
1344 	{Opt_nogrpid, "sysvgroups"},
1345 	{Opt_resgid, "resgid=%u"},
1346 	{Opt_resuid, "resuid=%u"},
1347 	{Opt_sb, "sb=%u"},
1348 	{Opt_err_cont, "errors=continue"},
1349 	{Opt_err_panic, "errors=panic"},
1350 	{Opt_err_ro, "errors=remount-ro"},
1351 	{Opt_nouid32, "nouid32"},
1352 	{Opt_debug, "debug"},
1353 	{Opt_oldalloc, "oldalloc"},
1354 	{Opt_orlov, "orlov"},
1355 	{Opt_user_xattr, "user_xattr"},
1356 	{Opt_nouser_xattr, "nouser_xattr"},
1357 	{Opt_acl, "acl"},
1358 	{Opt_noacl, "noacl"},
1359 	{Opt_noload, "noload"},
1360 	{Opt_noload, "norecovery"},
1361 	{Opt_nobh, "nobh"},
1362 	{Opt_bh, "bh"},
1363 	{Opt_commit, "commit=%u"},
1364 	{Opt_min_batch_time, "min_batch_time=%u"},
1365 	{Opt_max_batch_time, "max_batch_time=%u"},
1366 	{Opt_journal_update, "journal=update"},
1367 	{Opt_journal_dev, "journal_dev=%u"},
1368 	{Opt_journal_checksum, "journal_checksum"},
1369 	{Opt_journal_async_commit, "journal_async_commit"},
1370 	{Opt_abort, "abort"},
1371 	{Opt_data_journal, "data=journal"},
1372 	{Opt_data_ordered, "data=ordered"},
1373 	{Opt_data_writeback, "data=writeback"},
1374 	{Opt_data_err_abort, "data_err=abort"},
1375 	{Opt_data_err_ignore, "data_err=ignore"},
1376 	{Opt_offusrjquota, "usrjquota="},
1377 	{Opt_usrjquota, "usrjquota=%s"},
1378 	{Opt_offgrpjquota, "grpjquota="},
1379 	{Opt_grpjquota, "grpjquota=%s"},
1380 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1381 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1382 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1383 	{Opt_grpquota, "grpquota"},
1384 	{Opt_noquota, "noquota"},
1385 	{Opt_quota, "quota"},
1386 	{Opt_usrquota, "usrquota"},
1387 	{Opt_barrier, "barrier=%u"},
1388 	{Opt_barrier, "barrier"},
1389 	{Opt_nobarrier, "nobarrier"},
1390 	{Opt_i_version, "i_version"},
1391 	{Opt_stripe, "stripe=%u"},
1392 	{Opt_resize, "resize"},
1393 	{Opt_delalloc, "delalloc"},
1394 	{Opt_nodelalloc, "nodelalloc"},
1395 	{Opt_mblk_io_submit, "mblk_io_submit"},
1396 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1397 	{Opt_block_validity, "block_validity"},
1398 	{Opt_noblock_validity, "noblock_validity"},
1399 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1400 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1401 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1402 	{Opt_auto_da_alloc, "auto_da_alloc"},
1403 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1404 	{Opt_dioread_nolock, "dioread_nolock"},
1405 	{Opt_dioread_lock, "dioread_lock"},
1406 	{Opt_discard, "discard"},
1407 	{Opt_nodiscard, "nodiscard"},
1408 	{Opt_init_itable, "init_itable=%u"},
1409 	{Opt_init_itable, "init_itable"},
1410 	{Opt_noinit_itable, "noinit_itable"},
1411 	{Opt_err, NULL},
1412 };
1413 
get_sb_block(void ** data)1414 static ext4_fsblk_t get_sb_block(void **data)
1415 {
1416 	ext4_fsblk_t	sb_block;
1417 	char		*options = (char *) *data;
1418 
1419 	if (!options || strncmp(options, "sb=", 3) != 0)
1420 		return 1;	/* Default location */
1421 
1422 	options += 3;
1423 	/* TODO: use simple_strtoll with >32bit ext4 */
1424 	sb_block = simple_strtoul(options, &options, 0);
1425 	if (*options && *options != ',') {
1426 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1427 		       (char *) *data);
1428 		return 1;
1429 	}
1430 	if (*options == ',')
1431 		options++;
1432 	*data = (void *) options;
1433 
1434 	return sb_block;
1435 }
1436 
1437 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1438 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1439 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1440 
1441 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1442 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1443 {
1444 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1445 	char *qname;
1446 
1447 	if (sb_any_quota_loaded(sb) &&
1448 		!sbi->s_qf_names[qtype]) {
1449 		ext4_msg(sb, KERN_ERR,
1450 			"Cannot change journaled "
1451 			"quota options when quota turned on");
1452 		return 0;
1453 	}
1454 	qname = match_strdup(args);
1455 	if (!qname) {
1456 		ext4_msg(sb, KERN_ERR,
1457 			"Not enough memory for storing quotafile name");
1458 		return 0;
1459 	}
1460 	if (sbi->s_qf_names[qtype] &&
1461 		strcmp(sbi->s_qf_names[qtype], qname)) {
1462 		ext4_msg(sb, KERN_ERR,
1463 			"%s quota file already specified", QTYPE2NAME(qtype));
1464 		kfree(qname);
1465 		return 0;
1466 	}
1467 	sbi->s_qf_names[qtype] = qname;
1468 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1469 		ext4_msg(sb, KERN_ERR,
1470 			"quotafile must be on filesystem root");
1471 		kfree(sbi->s_qf_names[qtype]);
1472 		sbi->s_qf_names[qtype] = NULL;
1473 		return 0;
1474 	}
1475 	set_opt(sb, QUOTA);
1476 	return 1;
1477 }
1478 
clear_qf_name(struct super_block * sb,int qtype)1479 static int clear_qf_name(struct super_block *sb, int qtype)
1480 {
1481 
1482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1483 
1484 	if (sb_any_quota_loaded(sb) &&
1485 		sbi->s_qf_names[qtype]) {
1486 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1487 			" when quota turned on");
1488 		return 0;
1489 	}
1490 	/*
1491 	 * The space will be released later when all options are confirmed
1492 	 * to be correct
1493 	 */
1494 	sbi->s_qf_names[qtype] = NULL;
1495 	return 1;
1496 }
1497 #endif
1498 
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,ext4_fsblk_t * n_blocks_count,int is_remount)1499 static int parse_options(char *options, struct super_block *sb,
1500 			 unsigned long *journal_devnum,
1501 			 unsigned int *journal_ioprio,
1502 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1503 {
1504 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1505 	char *p;
1506 	substring_t args[MAX_OPT_ARGS];
1507 	int data_opt = 0;
1508 	int option;
1509 #ifdef CONFIG_QUOTA
1510 	int qfmt;
1511 #endif
1512 
1513 	if (!options)
1514 		return 1;
1515 
1516 	while ((p = strsep(&options, ",")) != NULL) {
1517 		int token;
1518 		if (!*p)
1519 			continue;
1520 
1521 		/*
1522 		 * Initialize args struct so we know whether arg was
1523 		 * found; some options take optional arguments.
1524 		 */
1525 		args[0].to = args[0].from = NULL;
1526 		token = match_token(p, tokens, args);
1527 		switch (token) {
1528 		case Opt_bsd_df:
1529 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1530 			clear_opt(sb, MINIX_DF);
1531 			break;
1532 		case Opt_minix_df:
1533 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1534 			set_opt(sb, MINIX_DF);
1535 
1536 			break;
1537 		case Opt_grpid:
1538 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1539 			set_opt(sb, GRPID);
1540 
1541 			break;
1542 		case Opt_nogrpid:
1543 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1544 			clear_opt(sb, GRPID);
1545 
1546 			break;
1547 		case Opt_resuid:
1548 			if (match_int(&args[0], &option))
1549 				return 0;
1550 			sbi->s_resuid = option;
1551 			break;
1552 		case Opt_resgid:
1553 			if (match_int(&args[0], &option))
1554 				return 0;
1555 			sbi->s_resgid = option;
1556 			break;
1557 		case Opt_sb:
1558 			/* handled by get_sb_block() instead of here */
1559 			/* *sb_block = match_int(&args[0]); */
1560 			break;
1561 		case Opt_err_panic:
1562 			clear_opt(sb, ERRORS_CONT);
1563 			clear_opt(sb, ERRORS_RO);
1564 			set_opt(sb, ERRORS_PANIC);
1565 			break;
1566 		case Opt_err_ro:
1567 			clear_opt(sb, ERRORS_CONT);
1568 			clear_opt(sb, ERRORS_PANIC);
1569 			set_opt(sb, ERRORS_RO);
1570 			break;
1571 		case Opt_err_cont:
1572 			clear_opt(sb, ERRORS_RO);
1573 			clear_opt(sb, ERRORS_PANIC);
1574 			set_opt(sb, ERRORS_CONT);
1575 			break;
1576 		case Opt_nouid32:
1577 			set_opt(sb, NO_UID32);
1578 			break;
1579 		case Opt_debug:
1580 			set_opt(sb, DEBUG);
1581 			break;
1582 		case Opt_oldalloc:
1583 			ext4_msg(sb, KERN_WARNING,
1584 				 "Ignoring deprecated oldalloc option");
1585 			break;
1586 		case Opt_orlov:
1587 			ext4_msg(sb, KERN_WARNING,
1588 				 "Ignoring deprecated orlov option");
1589 			break;
1590 #ifdef CONFIG_EXT4_FS_XATTR
1591 		case Opt_user_xattr:
1592 			set_opt(sb, XATTR_USER);
1593 			break;
1594 		case Opt_nouser_xattr:
1595 			clear_opt(sb, XATTR_USER);
1596 			break;
1597 #else
1598 		case Opt_user_xattr:
1599 		case Opt_nouser_xattr:
1600 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1601 			break;
1602 #endif
1603 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1604 		case Opt_acl:
1605 			set_opt(sb, POSIX_ACL);
1606 			break;
1607 		case Opt_noacl:
1608 			clear_opt(sb, POSIX_ACL);
1609 			break;
1610 #else
1611 		case Opt_acl:
1612 		case Opt_noacl:
1613 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1614 			break;
1615 #endif
1616 		case Opt_journal_update:
1617 			/* @@@ FIXME */
1618 			/* Eventually we will want to be able to create
1619 			   a journal file here.  For now, only allow the
1620 			   user to specify an existing inode to be the
1621 			   journal file. */
1622 			if (is_remount) {
1623 				ext4_msg(sb, KERN_ERR,
1624 					 "Cannot specify journal on remount");
1625 				return 0;
1626 			}
1627 			set_opt(sb, UPDATE_JOURNAL);
1628 			break;
1629 		case Opt_journal_dev:
1630 			if (is_remount) {
1631 				ext4_msg(sb, KERN_ERR,
1632 					"Cannot specify journal on remount");
1633 				return 0;
1634 			}
1635 			if (match_int(&args[0], &option))
1636 				return 0;
1637 			*journal_devnum = option;
1638 			break;
1639 		case Opt_journal_checksum:
1640 			set_opt(sb, JOURNAL_CHECKSUM);
1641 			break;
1642 		case Opt_journal_async_commit:
1643 			set_opt(sb, JOURNAL_ASYNC_COMMIT);
1644 			set_opt(sb, JOURNAL_CHECKSUM);
1645 			break;
1646 		case Opt_noload:
1647 			set_opt(sb, NOLOAD);
1648 			break;
1649 		case Opt_commit:
1650 			if (match_int(&args[0], &option))
1651 				return 0;
1652 			if (option < 0)
1653 				return 0;
1654 			if (option == 0)
1655 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1656 			sbi->s_commit_interval = HZ * option;
1657 			break;
1658 		case Opt_max_batch_time:
1659 			if (match_int(&args[0], &option))
1660 				return 0;
1661 			if (option < 0)
1662 				return 0;
1663 			if (option == 0)
1664 				option = EXT4_DEF_MAX_BATCH_TIME;
1665 			sbi->s_max_batch_time = option;
1666 			break;
1667 		case Opt_min_batch_time:
1668 			if (match_int(&args[0], &option))
1669 				return 0;
1670 			if (option < 0)
1671 				return 0;
1672 			sbi->s_min_batch_time = option;
1673 			break;
1674 		case Opt_data_journal:
1675 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1676 			goto datacheck;
1677 		case Opt_data_ordered:
1678 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1679 			goto datacheck;
1680 		case Opt_data_writeback:
1681 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1682 		datacheck:
1683 			if (is_remount) {
1684 				if (!sbi->s_journal)
1685 					ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1686 				else if (test_opt(sb, DATA_FLAGS) != data_opt) {
1687 					ext4_msg(sb, KERN_ERR,
1688 						"Cannot change data mode on remount");
1689 					return 0;
1690 				}
1691 			} else {
1692 				clear_opt(sb, DATA_FLAGS);
1693 				sbi->s_mount_opt |= data_opt;
1694 			}
1695 			break;
1696 		case Opt_data_err_abort:
1697 			set_opt(sb, DATA_ERR_ABORT);
1698 			break;
1699 		case Opt_data_err_ignore:
1700 			clear_opt(sb, DATA_ERR_ABORT);
1701 			break;
1702 #ifdef CONFIG_QUOTA
1703 		case Opt_usrjquota:
1704 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1705 				return 0;
1706 			break;
1707 		case Opt_grpjquota:
1708 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1709 				return 0;
1710 			break;
1711 		case Opt_offusrjquota:
1712 			if (!clear_qf_name(sb, USRQUOTA))
1713 				return 0;
1714 			break;
1715 		case Opt_offgrpjquota:
1716 			if (!clear_qf_name(sb, GRPQUOTA))
1717 				return 0;
1718 			break;
1719 
1720 		case Opt_jqfmt_vfsold:
1721 			qfmt = QFMT_VFS_OLD;
1722 			goto set_qf_format;
1723 		case Opt_jqfmt_vfsv0:
1724 			qfmt = QFMT_VFS_V0;
1725 			goto set_qf_format;
1726 		case Opt_jqfmt_vfsv1:
1727 			qfmt = QFMT_VFS_V1;
1728 set_qf_format:
1729 			if (sb_any_quota_loaded(sb) &&
1730 			    sbi->s_jquota_fmt != qfmt) {
1731 				ext4_msg(sb, KERN_ERR, "Cannot change "
1732 					"journaled quota options when "
1733 					"quota turned on");
1734 				return 0;
1735 			}
1736 			sbi->s_jquota_fmt = qfmt;
1737 			break;
1738 		case Opt_quota:
1739 		case Opt_usrquota:
1740 			set_opt(sb, QUOTA);
1741 			set_opt(sb, USRQUOTA);
1742 			break;
1743 		case Opt_grpquota:
1744 			set_opt(sb, QUOTA);
1745 			set_opt(sb, GRPQUOTA);
1746 			break;
1747 		case Opt_noquota:
1748 			if (sb_any_quota_loaded(sb)) {
1749 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1750 					"options when quota turned on");
1751 				return 0;
1752 			}
1753 			clear_opt(sb, QUOTA);
1754 			clear_opt(sb, USRQUOTA);
1755 			clear_opt(sb, GRPQUOTA);
1756 			break;
1757 #else
1758 		case Opt_quota:
1759 		case Opt_usrquota:
1760 		case Opt_grpquota:
1761 			ext4_msg(sb, KERN_ERR,
1762 				"quota options not supported");
1763 			break;
1764 		case Opt_usrjquota:
1765 		case Opt_grpjquota:
1766 		case Opt_offusrjquota:
1767 		case Opt_offgrpjquota:
1768 		case Opt_jqfmt_vfsold:
1769 		case Opt_jqfmt_vfsv0:
1770 		case Opt_jqfmt_vfsv1:
1771 			ext4_msg(sb, KERN_ERR,
1772 				"journaled quota options not supported");
1773 			break;
1774 		case Opt_noquota:
1775 			break;
1776 #endif
1777 		case Opt_abort:
1778 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1779 			break;
1780 		case Opt_nobarrier:
1781 			clear_opt(sb, BARRIER);
1782 			break;
1783 		case Opt_barrier:
1784 			if (args[0].from) {
1785 				if (match_int(&args[0], &option))
1786 					return 0;
1787 			} else
1788 				option = 1;	/* No argument, default to 1 */
1789 			if (option)
1790 				set_opt(sb, BARRIER);
1791 			else
1792 				clear_opt(sb, BARRIER);
1793 			break;
1794 		case Opt_ignore:
1795 			break;
1796 		case Opt_resize:
1797 			if (!is_remount) {
1798 				ext4_msg(sb, KERN_ERR,
1799 					"resize option only available "
1800 					"for remount");
1801 				return 0;
1802 			}
1803 			if (match_int(&args[0], &option) != 0)
1804 				return 0;
1805 			*n_blocks_count = option;
1806 			break;
1807 		case Opt_nobh:
1808 			ext4_msg(sb, KERN_WARNING,
1809 				 "Ignoring deprecated nobh option");
1810 			break;
1811 		case Opt_bh:
1812 			ext4_msg(sb, KERN_WARNING,
1813 				 "Ignoring deprecated bh option");
1814 			break;
1815 		case Opt_i_version:
1816 			set_opt(sb, I_VERSION);
1817 			sb->s_flags |= MS_I_VERSION;
1818 			break;
1819 		case Opt_nodelalloc:
1820 			clear_opt(sb, DELALLOC);
1821 			clear_opt2(sb, EXPLICIT_DELALLOC);
1822 			break;
1823 		case Opt_mblk_io_submit:
1824 			set_opt(sb, MBLK_IO_SUBMIT);
1825 			break;
1826 		case Opt_nomblk_io_submit:
1827 			clear_opt(sb, MBLK_IO_SUBMIT);
1828 			break;
1829 		case Opt_stripe:
1830 			if (match_int(&args[0], &option))
1831 				return 0;
1832 			if (option < 0)
1833 				return 0;
1834 			sbi->s_stripe = option;
1835 			break;
1836 		case Opt_delalloc:
1837 			set_opt(sb, DELALLOC);
1838 			set_opt2(sb, EXPLICIT_DELALLOC);
1839 			break;
1840 		case Opt_block_validity:
1841 			set_opt(sb, BLOCK_VALIDITY);
1842 			break;
1843 		case Opt_noblock_validity:
1844 			clear_opt(sb, BLOCK_VALIDITY);
1845 			break;
1846 		case Opt_inode_readahead_blks:
1847 			if (match_int(&args[0], &option))
1848 				return 0;
1849 			if (option < 0 || option > (1 << 30))
1850 				return 0;
1851 			if (option && !is_power_of_2(option)) {
1852 				ext4_msg(sb, KERN_ERR,
1853 					 "EXT4-fs: inode_readahead_blks"
1854 					 " must be a power of 2");
1855 				return 0;
1856 			}
1857 			sbi->s_inode_readahead_blks = option;
1858 			break;
1859 		case Opt_journal_ioprio:
1860 			if (match_int(&args[0], &option))
1861 				return 0;
1862 			if (option < 0 || option > 7)
1863 				break;
1864 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1865 							    option);
1866 			break;
1867 		case Opt_noauto_da_alloc:
1868 			set_opt(sb, NO_AUTO_DA_ALLOC);
1869 			break;
1870 		case Opt_auto_da_alloc:
1871 			if (args[0].from) {
1872 				if (match_int(&args[0], &option))
1873 					return 0;
1874 			} else
1875 				option = 1;	/* No argument, default to 1 */
1876 			if (option)
1877 				clear_opt(sb, NO_AUTO_DA_ALLOC);
1878 			else
1879 				set_opt(sb,NO_AUTO_DA_ALLOC);
1880 			break;
1881 		case Opt_discard:
1882 			set_opt(sb, DISCARD);
1883 			break;
1884 		case Opt_nodiscard:
1885 			clear_opt(sb, DISCARD);
1886 			break;
1887 		case Opt_dioread_nolock:
1888 			set_opt(sb, DIOREAD_NOLOCK);
1889 			break;
1890 		case Opt_dioread_lock:
1891 			clear_opt(sb, DIOREAD_NOLOCK);
1892 			break;
1893 		case Opt_init_itable:
1894 			set_opt(sb, INIT_INODE_TABLE);
1895 			if (args[0].from) {
1896 				if (match_int(&args[0], &option))
1897 					return 0;
1898 			} else
1899 				option = EXT4_DEF_LI_WAIT_MULT;
1900 			if (option < 0)
1901 				return 0;
1902 			sbi->s_li_wait_mult = option;
1903 			break;
1904 		case Opt_noinit_itable:
1905 			clear_opt(sb, INIT_INODE_TABLE);
1906 			break;
1907 		default:
1908 			ext4_msg(sb, KERN_ERR,
1909 			       "Unrecognized mount option \"%s\" "
1910 			       "or missing value", p);
1911 			return 0;
1912 		}
1913 	}
1914 #ifdef CONFIG_QUOTA
1915 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1916 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1917 			clear_opt(sb, USRQUOTA);
1918 
1919 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1920 			clear_opt(sb, GRPQUOTA);
1921 
1922 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1923 			ext4_msg(sb, KERN_ERR, "old and new quota "
1924 					"format mixing");
1925 			return 0;
1926 		}
1927 
1928 		if (!sbi->s_jquota_fmt) {
1929 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1930 					"not specified");
1931 			return 0;
1932 		}
1933 	} else {
1934 		if (sbi->s_jquota_fmt) {
1935 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1936 					"specified with no journaling "
1937 					"enabled");
1938 			return 0;
1939 		}
1940 	}
1941 #endif
1942 	return 1;
1943 }
1944 
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)1945 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1946 			    int read_only)
1947 {
1948 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1949 	int res = 0;
1950 
1951 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1952 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1953 			 "forcing read-only mode");
1954 		res = MS_RDONLY;
1955 	}
1956 	if (read_only)
1957 		goto done;
1958 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1959 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1960 			 "running e2fsck is recommended");
1961 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1962 		ext4_msg(sb, KERN_WARNING,
1963 			 "warning: mounting fs with errors, "
1964 			 "running e2fsck is recommended");
1965 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1966 		 le16_to_cpu(es->s_mnt_count) >=
1967 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1968 		ext4_msg(sb, KERN_WARNING,
1969 			 "warning: maximal mount count reached, "
1970 			 "running e2fsck is recommended");
1971 	else if (le32_to_cpu(es->s_checkinterval) &&
1972 		(le32_to_cpu(es->s_lastcheck) +
1973 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1974 		ext4_msg(sb, KERN_WARNING,
1975 			 "warning: checktime reached, "
1976 			 "running e2fsck is recommended");
1977 	if (!sbi->s_journal)
1978 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1979 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1980 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1981 	le16_add_cpu(&es->s_mnt_count, 1);
1982 	es->s_mtime = cpu_to_le32(get_seconds());
1983 	ext4_update_dynamic_rev(sb);
1984 	if (sbi->s_journal)
1985 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1986 
1987 	ext4_commit_super(sb, 1);
1988 done:
1989 	if (test_opt(sb, DEBUG))
1990 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1991 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1992 			sb->s_blocksize,
1993 			sbi->s_groups_count,
1994 			EXT4_BLOCKS_PER_GROUP(sb),
1995 			EXT4_INODES_PER_GROUP(sb),
1996 			sbi->s_mount_opt, sbi->s_mount_opt2);
1997 
1998 	cleancache_init_fs(sb);
1999 	return res;
2000 }
2001 
ext4_fill_flex_info(struct super_block * sb)2002 static int ext4_fill_flex_info(struct super_block *sb)
2003 {
2004 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2005 	struct ext4_group_desc *gdp = NULL;
2006 	ext4_group_t flex_group_count;
2007 	ext4_group_t flex_group;
2008 	unsigned int groups_per_flex = 0;
2009 	size_t size;
2010 	int i;
2011 
2012 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2013 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2014 		sbi->s_log_groups_per_flex = 0;
2015 		return 1;
2016 	}
2017 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
2018 
2019 	/* We allocate both existing and potentially added groups */
2020 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
2021 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
2022 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
2023 	size = flex_group_count * sizeof(struct flex_groups);
2024 	sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
2025 	if (sbi->s_flex_groups == NULL) {
2026 		ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
2027 			 flex_group_count);
2028 		goto failed;
2029 	}
2030 
2031 	for (i = 0; i < sbi->s_groups_count; i++) {
2032 		gdp = ext4_get_group_desc(sb, i, NULL);
2033 
2034 		flex_group = ext4_flex_group(sbi, i);
2035 		atomic_add(ext4_free_inodes_count(sb, gdp),
2036 			   &sbi->s_flex_groups[flex_group].free_inodes);
2037 		atomic_add(ext4_free_group_clusters(sb, gdp),
2038 			   &sbi->s_flex_groups[flex_group].free_clusters);
2039 		atomic_add(ext4_used_dirs_count(sb, gdp),
2040 			   &sbi->s_flex_groups[flex_group].used_dirs);
2041 	}
2042 
2043 	return 1;
2044 failed:
2045 	return 0;
2046 }
2047 
ext4_group_desc_csum(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2048 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2049 			    struct ext4_group_desc *gdp)
2050 {
2051 	__u16 crc = 0;
2052 
2053 	if (sbi->s_es->s_feature_ro_compat &
2054 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
2055 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
2056 		__le32 le_group = cpu_to_le32(block_group);
2057 
2058 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2059 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2060 		crc = crc16(crc, (__u8 *)gdp, offset);
2061 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
2062 		/* for checksum of struct ext4_group_desc do the rest...*/
2063 		if ((sbi->s_es->s_feature_incompat &
2064 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2065 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2066 			crc = crc16(crc, (__u8 *)gdp + offset,
2067 				    le16_to_cpu(sbi->s_es->s_desc_size) -
2068 					offset);
2069 	}
2070 
2071 	return cpu_to_le16(crc);
2072 }
2073 
ext4_group_desc_csum_verify(struct ext4_sb_info * sbi,__u32 block_group,struct ext4_group_desc * gdp)2074 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
2075 				struct ext4_group_desc *gdp)
2076 {
2077 	if ((sbi->s_es->s_feature_ro_compat &
2078 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2079 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2080 		return 0;
2081 
2082 	return 1;
2083 }
2084 
2085 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_group_t * first_not_zeroed)2086 static int ext4_check_descriptors(struct super_block *sb,
2087 				  ext4_group_t *first_not_zeroed)
2088 {
2089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2090 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2091 	ext4_fsblk_t last_block;
2092 	ext4_fsblk_t block_bitmap;
2093 	ext4_fsblk_t inode_bitmap;
2094 	ext4_fsblk_t inode_table;
2095 	int flexbg_flag = 0;
2096 	ext4_group_t i, grp = sbi->s_groups_count;
2097 
2098 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2099 		flexbg_flag = 1;
2100 
2101 	ext4_debug("Checking group descriptors");
2102 
2103 	for (i = 0; i < sbi->s_groups_count; i++) {
2104 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2105 
2106 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2107 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2108 		else
2109 			last_block = first_block +
2110 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2111 
2112 		if ((grp == sbi->s_groups_count) &&
2113 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2114 			grp = i;
2115 
2116 		block_bitmap = ext4_block_bitmap(sb, gdp);
2117 		if (block_bitmap < first_block || block_bitmap > last_block) {
2118 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2119 			       "Block bitmap for group %u not in group "
2120 			       "(block %llu)!", i, block_bitmap);
2121 			return 0;
2122 		}
2123 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2124 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2125 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2126 			       "Inode bitmap for group %u not in group "
2127 			       "(block %llu)!", i, inode_bitmap);
2128 			return 0;
2129 		}
2130 		inode_table = ext4_inode_table(sb, gdp);
2131 		if (inode_table < first_block ||
2132 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2133 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2134 			       "Inode table for group %u not in group "
2135 			       "(block %llu)!", i, inode_table);
2136 			return 0;
2137 		}
2138 		ext4_lock_group(sb, i);
2139 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2140 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2141 				 "Checksum for group %u failed (%u!=%u)",
2142 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2143 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2144 			if (!(sb->s_flags & MS_RDONLY)) {
2145 				ext4_unlock_group(sb, i);
2146 				return 0;
2147 			}
2148 		}
2149 		ext4_unlock_group(sb, i);
2150 		if (!flexbg_flag)
2151 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2152 	}
2153 	if (NULL != first_not_zeroed)
2154 		*first_not_zeroed = grp;
2155 
2156 	ext4_free_blocks_count_set(sbi->s_es,
2157 				   EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2158 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2159 	return 1;
2160 }
2161 
2162 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2163  * the superblock) which were deleted from all directories, but held open by
2164  * a process at the time of a crash.  We walk the list and try to delete these
2165  * inodes at recovery time (only with a read-write filesystem).
2166  *
2167  * In order to keep the orphan inode chain consistent during traversal (in
2168  * case of crash during recovery), we link each inode into the superblock
2169  * orphan list_head and handle it the same way as an inode deletion during
2170  * normal operation (which journals the operations for us).
2171  *
2172  * We only do an iget() and an iput() on each inode, which is very safe if we
2173  * accidentally point at an in-use or already deleted inode.  The worst that
2174  * can happen in this case is that we get a "bit already cleared" message from
2175  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2176  * e2fsck was run on this filesystem, and it must have already done the orphan
2177  * inode cleanup for us, so we can safely abort without any further action.
2178  */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2179 static void ext4_orphan_cleanup(struct super_block *sb,
2180 				struct ext4_super_block *es)
2181 {
2182 	unsigned int s_flags = sb->s_flags;
2183 	int nr_orphans = 0, nr_truncates = 0;
2184 #ifdef CONFIG_QUOTA
2185 	int i;
2186 #endif
2187 	if (!es->s_last_orphan) {
2188 		jbd_debug(4, "no orphan inodes to clean up\n");
2189 		return;
2190 	}
2191 
2192 	if (bdev_read_only(sb->s_bdev)) {
2193 		ext4_msg(sb, KERN_ERR, "write access "
2194 			"unavailable, skipping orphan cleanup");
2195 		return;
2196 	}
2197 
2198 	/* Check if feature set would not allow a r/w mount */
2199 	if (!ext4_feature_set_ok(sb, 0)) {
2200 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2201 			 "unknown ROCOMPAT features");
2202 		return;
2203 	}
2204 
2205 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2206 		if (es->s_last_orphan)
2207 			jbd_debug(1, "Errors on filesystem, "
2208 				  "clearing orphan list.\n");
2209 		es->s_last_orphan = 0;
2210 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2211 		return;
2212 	}
2213 
2214 	if (s_flags & MS_RDONLY) {
2215 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2216 		sb->s_flags &= ~MS_RDONLY;
2217 	}
2218 #ifdef CONFIG_QUOTA
2219 	/* Needed for iput() to work correctly and not trash data */
2220 	sb->s_flags |= MS_ACTIVE;
2221 	/* Turn on quotas so that they are updated correctly */
2222 	for (i = 0; i < MAXQUOTAS; i++) {
2223 		if (EXT4_SB(sb)->s_qf_names[i]) {
2224 			int ret = ext4_quota_on_mount(sb, i);
2225 			if (ret < 0)
2226 				ext4_msg(sb, KERN_ERR,
2227 					"Cannot turn on journaled "
2228 					"quota: error %d", ret);
2229 		}
2230 	}
2231 #endif
2232 
2233 	while (es->s_last_orphan) {
2234 		struct inode *inode;
2235 
2236 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2237 		if (IS_ERR(inode)) {
2238 			es->s_last_orphan = 0;
2239 			break;
2240 		}
2241 
2242 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2243 		dquot_initialize(inode);
2244 		if (inode->i_nlink) {
2245 			ext4_msg(sb, KERN_DEBUG,
2246 				"%s: truncating inode %lu to %lld bytes",
2247 				__func__, inode->i_ino, inode->i_size);
2248 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2249 				  inode->i_ino, inode->i_size);
2250 			ext4_truncate(inode);
2251 			nr_truncates++;
2252 		} else {
2253 			ext4_msg(sb, KERN_DEBUG,
2254 				"%s: deleting unreferenced inode %lu",
2255 				__func__, inode->i_ino);
2256 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2257 				  inode->i_ino);
2258 			nr_orphans++;
2259 		}
2260 		iput(inode);  /* The delete magic happens here! */
2261 	}
2262 
2263 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2264 
2265 	if (nr_orphans)
2266 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2267 		       PLURAL(nr_orphans));
2268 	if (nr_truncates)
2269 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2270 		       PLURAL(nr_truncates));
2271 #ifdef CONFIG_QUOTA
2272 	/* Turn quotas off */
2273 	for (i = 0; i < MAXQUOTAS; i++) {
2274 		if (sb_dqopt(sb)->files[i])
2275 			dquot_quota_off(sb, i);
2276 	}
2277 #endif
2278 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2279 }
2280 
2281 /*
2282  * Maximal extent format file size.
2283  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2284  * extent format containers, within a sector_t, and within i_blocks
2285  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2286  * so that won't be a limiting factor.
2287  *
2288  * However there is other limiting factor. We do store extents in the form
2289  * of starting block and length, hence the resulting length of the extent
2290  * covering maximum file size must fit into on-disk format containers as
2291  * well. Given that length is always by 1 unit bigger than max unit (because
2292  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2293  *
2294  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2295  */
ext4_max_size(int blkbits,int has_huge_files)2296 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2297 {
2298 	loff_t res;
2299 	loff_t upper_limit = MAX_LFS_FILESIZE;
2300 
2301 	/* small i_blocks in vfs inode? */
2302 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2303 		/*
2304 		 * CONFIG_LBDAF is not enabled implies the inode
2305 		 * i_block represent total blocks in 512 bytes
2306 		 * 32 == size of vfs inode i_blocks * 8
2307 		 */
2308 		upper_limit = (1LL << 32) - 1;
2309 
2310 		/* total blocks in file system block size */
2311 		upper_limit >>= (blkbits - 9);
2312 		upper_limit <<= blkbits;
2313 	}
2314 
2315 	/*
2316 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2317 	 * by one fs block, so ee_len can cover the extent of maximum file
2318 	 * size
2319 	 */
2320 	res = (1LL << 32) - 1;
2321 	res <<= blkbits;
2322 
2323 	/* Sanity check against vm- & vfs- imposed limits */
2324 	if (res > upper_limit)
2325 		res = upper_limit;
2326 
2327 	return res;
2328 }
2329 
2330 /*
2331  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2332  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2333  * We need to be 1 filesystem block less than the 2^48 sector limit.
2334  */
ext4_max_bitmap_size(int bits,int has_huge_files)2335 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2336 {
2337 	loff_t res = EXT4_NDIR_BLOCKS;
2338 	int meta_blocks;
2339 	loff_t upper_limit;
2340 	/* This is calculated to be the largest file size for a dense, block
2341 	 * mapped file such that the file's total number of 512-byte sectors,
2342 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2343 	 *
2344 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2345 	 * number of 512-byte sectors of the file.
2346 	 */
2347 
2348 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2349 		/*
2350 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2351 		 * the inode i_block field represents total file blocks in
2352 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2353 		 */
2354 		upper_limit = (1LL << 32) - 1;
2355 
2356 		/* total blocks in file system block size */
2357 		upper_limit >>= (bits - 9);
2358 
2359 	} else {
2360 		/*
2361 		 * We use 48 bit ext4_inode i_blocks
2362 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2363 		 * represent total number of blocks in
2364 		 * file system block size
2365 		 */
2366 		upper_limit = (1LL << 48) - 1;
2367 
2368 	}
2369 
2370 	/* indirect blocks */
2371 	meta_blocks = 1;
2372 	/* double indirect blocks */
2373 	meta_blocks += 1 + (1LL << (bits-2));
2374 	/* tripple indirect blocks */
2375 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2376 
2377 	upper_limit -= meta_blocks;
2378 	upper_limit <<= bits;
2379 
2380 	res += 1LL << (bits-2);
2381 	res += 1LL << (2*(bits-2));
2382 	res += 1LL << (3*(bits-2));
2383 	res <<= bits;
2384 	if (res > upper_limit)
2385 		res = upper_limit;
2386 
2387 	if (res > MAX_LFS_FILESIZE)
2388 		res = MAX_LFS_FILESIZE;
2389 
2390 	return res;
2391 }
2392 
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)2393 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2394 				   ext4_fsblk_t logical_sb_block, int nr)
2395 {
2396 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2397 	ext4_group_t bg, first_meta_bg;
2398 	int has_super = 0;
2399 
2400 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2401 
2402 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2403 	    nr < first_meta_bg)
2404 		return logical_sb_block + nr + 1;
2405 	bg = sbi->s_desc_per_block * nr;
2406 	if (ext4_bg_has_super(sb, bg))
2407 		has_super = 1;
2408 
2409 	return (has_super + ext4_group_first_block_no(sb, bg));
2410 }
2411 
2412 /**
2413  * ext4_get_stripe_size: Get the stripe size.
2414  * @sbi: In memory super block info
2415  *
2416  * If we have specified it via mount option, then
2417  * use the mount option value. If the value specified at mount time is
2418  * greater than the blocks per group use the super block value.
2419  * If the super block value is greater than blocks per group return 0.
2420  * Allocator needs it be less than blocks per group.
2421  *
2422  */
ext4_get_stripe_size(struct ext4_sb_info * sbi)2423 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2424 {
2425 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2426 	unsigned long stripe_width =
2427 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2428 	int ret;
2429 
2430 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2431 		ret = sbi->s_stripe;
2432 	else if (stripe_width <= sbi->s_blocks_per_group)
2433 		ret = stripe_width;
2434 	else if (stride <= sbi->s_blocks_per_group)
2435 		ret = stride;
2436 	else
2437 		ret = 0;
2438 
2439 	/*
2440 	 * If the stripe width is 1, this makes no sense and
2441 	 * we set it to 0 to turn off stripe handling code.
2442 	 */
2443 	if (ret <= 1)
2444 		ret = 0;
2445 
2446 	return ret;
2447 }
2448 
2449 /* sysfs supprt */
2450 
2451 struct ext4_attr {
2452 	struct attribute attr;
2453 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2454 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2455 			 const char *, size_t);
2456 	int offset;
2457 };
2458 
parse_strtoul(const char * buf,unsigned long max,unsigned long * value)2459 static int parse_strtoul(const char *buf,
2460 		unsigned long max, unsigned long *value)
2461 {
2462 	char *endp;
2463 
2464 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2465 	endp = skip_spaces(endp);
2466 	if (*endp || *value > max)
2467 		return -EINVAL;
2468 
2469 	return 0;
2470 }
2471 
delayed_allocation_blocks_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2472 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2473 					      struct ext4_sb_info *sbi,
2474 					      char *buf)
2475 {
2476 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2477 		(s64) EXT4_C2B(sbi,
2478 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2479 }
2480 
session_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2481 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2482 					 struct ext4_sb_info *sbi, char *buf)
2483 {
2484 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2485 
2486 	if (!sb->s_bdev->bd_part)
2487 		return snprintf(buf, PAGE_SIZE, "0\n");
2488 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2489 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2490 			 sbi->s_sectors_written_start) >> 1);
2491 }
2492 
lifetime_write_kbytes_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2493 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2494 					  struct ext4_sb_info *sbi, char *buf)
2495 {
2496 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2497 
2498 	if (!sb->s_bdev->bd_part)
2499 		return snprintf(buf, PAGE_SIZE, "0\n");
2500 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2501 			(unsigned long long)(sbi->s_kbytes_written +
2502 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2503 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2504 }
2505 
extent_cache_hits_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2506 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2507 				      struct ext4_sb_info *sbi, char *buf)
2508 {
2509 	return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2510 }
2511 
extent_cache_misses_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2512 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2513 					struct ext4_sb_info *sbi, char *buf)
2514 {
2515 	return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2516 }
2517 
inode_readahead_blks_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2519 					  struct ext4_sb_info *sbi,
2520 					  const char *buf, size_t count)
2521 {
2522 	unsigned long t;
2523 
2524 	if (parse_strtoul(buf, 0x40000000, &t))
2525 		return -EINVAL;
2526 
2527 	if (t && !is_power_of_2(t))
2528 		return -EINVAL;
2529 
2530 	sbi->s_inode_readahead_blks = t;
2531 	return count;
2532 }
2533 
sbi_ui_show(struct ext4_attr * a,struct ext4_sb_info * sbi,char * buf)2534 static ssize_t sbi_ui_show(struct ext4_attr *a,
2535 			   struct ext4_sb_info *sbi, char *buf)
2536 {
2537 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2538 
2539 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2540 }
2541 
sbi_ui_store(struct ext4_attr * a,struct ext4_sb_info * sbi,const char * buf,size_t count)2542 static ssize_t sbi_ui_store(struct ext4_attr *a,
2543 			    struct ext4_sb_info *sbi,
2544 			    const char *buf, size_t count)
2545 {
2546 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2547 	unsigned long t;
2548 
2549 	if (parse_strtoul(buf, 0xffffffff, &t))
2550 		return -EINVAL;
2551 	*ui = t;
2552 	return count;
2553 }
2554 
2555 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2556 static struct ext4_attr ext4_attr_##_name = {			\
2557 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2558 	.show	= _show,					\
2559 	.store	= _store,					\
2560 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2561 }
2562 #define EXT4_ATTR(name, mode, show, store) \
2563 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2564 
2565 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2566 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2567 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2568 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2569 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2570 #define ATTR_LIST(name) &ext4_attr_##name.attr
2571 
2572 EXT4_RO_ATTR(delayed_allocation_blocks);
2573 EXT4_RO_ATTR(session_write_kbytes);
2574 EXT4_RO_ATTR(lifetime_write_kbytes);
2575 EXT4_RO_ATTR(extent_cache_hits);
2576 EXT4_RO_ATTR(extent_cache_misses);
2577 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2578 		 inode_readahead_blks_store, s_inode_readahead_blks);
2579 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2580 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2581 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2582 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2583 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2584 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2585 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2586 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2587 
2588 static struct attribute *ext4_attrs[] = {
2589 	ATTR_LIST(delayed_allocation_blocks),
2590 	ATTR_LIST(session_write_kbytes),
2591 	ATTR_LIST(lifetime_write_kbytes),
2592 	ATTR_LIST(extent_cache_hits),
2593 	ATTR_LIST(extent_cache_misses),
2594 	ATTR_LIST(inode_readahead_blks),
2595 	ATTR_LIST(inode_goal),
2596 	ATTR_LIST(mb_stats),
2597 	ATTR_LIST(mb_max_to_scan),
2598 	ATTR_LIST(mb_min_to_scan),
2599 	ATTR_LIST(mb_order2_req),
2600 	ATTR_LIST(mb_stream_req),
2601 	ATTR_LIST(mb_group_prealloc),
2602 	ATTR_LIST(max_writeback_mb_bump),
2603 	NULL,
2604 };
2605 
2606 /* Features this copy of ext4 supports */
2607 EXT4_INFO_ATTR(lazy_itable_init);
2608 EXT4_INFO_ATTR(batched_discard);
2609 
2610 static struct attribute *ext4_feat_attrs[] = {
2611 	ATTR_LIST(lazy_itable_init),
2612 	ATTR_LIST(batched_discard),
2613 	NULL,
2614 };
2615 
ext4_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2616 static ssize_t ext4_attr_show(struct kobject *kobj,
2617 			      struct attribute *attr, char *buf)
2618 {
2619 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2620 						s_kobj);
2621 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2622 
2623 	return a->show ? a->show(a, sbi, buf) : 0;
2624 }
2625 
ext4_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)2626 static ssize_t ext4_attr_store(struct kobject *kobj,
2627 			       struct attribute *attr,
2628 			       const char *buf, size_t len)
2629 {
2630 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2631 						s_kobj);
2632 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2633 
2634 	return a->store ? a->store(a, sbi, buf, len) : 0;
2635 }
2636 
ext4_sb_release(struct kobject * kobj)2637 static void ext4_sb_release(struct kobject *kobj)
2638 {
2639 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2640 						s_kobj);
2641 	complete(&sbi->s_kobj_unregister);
2642 }
2643 
2644 static const struct sysfs_ops ext4_attr_ops = {
2645 	.show	= ext4_attr_show,
2646 	.store	= ext4_attr_store,
2647 };
2648 
2649 static struct kobj_type ext4_ktype = {
2650 	.default_attrs	= ext4_attrs,
2651 	.sysfs_ops	= &ext4_attr_ops,
2652 	.release	= ext4_sb_release,
2653 };
2654 
ext4_feat_release(struct kobject * kobj)2655 static void ext4_feat_release(struct kobject *kobj)
2656 {
2657 	complete(&ext4_feat->f_kobj_unregister);
2658 }
2659 
2660 static struct kobj_type ext4_feat_ktype = {
2661 	.default_attrs	= ext4_feat_attrs,
2662 	.sysfs_ops	= &ext4_attr_ops,
2663 	.release	= ext4_feat_release,
2664 };
2665 
2666 /*
2667  * Check whether this filesystem can be mounted based on
2668  * the features present and the RDONLY/RDWR mount requested.
2669  * Returns 1 if this filesystem can be mounted as requested,
2670  * 0 if it cannot be.
2671  */
ext4_feature_set_ok(struct super_block * sb,int readonly)2672 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2673 {
2674 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2675 		ext4_msg(sb, KERN_ERR,
2676 			"Couldn't mount because of "
2677 			"unsupported optional features (%x)",
2678 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2679 			~EXT4_FEATURE_INCOMPAT_SUPP));
2680 		return 0;
2681 	}
2682 
2683 	if (readonly)
2684 		return 1;
2685 
2686 	/* Check that feature set is OK for a read-write mount */
2687 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2688 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2689 			 "unsupported optional features (%x)",
2690 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2691 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2692 		return 0;
2693 	}
2694 	/*
2695 	 * Large file size enabled file system can only be mounted
2696 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2697 	 */
2698 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2699 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2700 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2701 				 "cannot be mounted RDWR without "
2702 				 "CONFIG_LBDAF");
2703 			return 0;
2704 		}
2705 	}
2706 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2707 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2708 		ext4_msg(sb, KERN_ERR,
2709 			 "Can't support bigalloc feature without "
2710 			 "extents feature\n");
2711 		return 0;
2712 	}
2713 	return 1;
2714 }
2715 
2716 /*
2717  * This function is called once a day if we have errors logged
2718  * on the file system
2719  */
print_daily_error_info(unsigned long arg)2720 static void print_daily_error_info(unsigned long arg)
2721 {
2722 	struct super_block *sb = (struct super_block *) arg;
2723 	struct ext4_sb_info *sbi;
2724 	struct ext4_super_block *es;
2725 
2726 	sbi = EXT4_SB(sb);
2727 	es = sbi->s_es;
2728 
2729 	if (es->s_error_count)
2730 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2731 			 le32_to_cpu(es->s_error_count));
2732 	if (es->s_first_error_time) {
2733 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2734 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2735 		       (int) sizeof(es->s_first_error_func),
2736 		       es->s_first_error_func,
2737 		       le32_to_cpu(es->s_first_error_line));
2738 		if (es->s_first_error_ino)
2739 			printk(": inode %u",
2740 			       le32_to_cpu(es->s_first_error_ino));
2741 		if (es->s_first_error_block)
2742 			printk(": block %llu", (unsigned long long)
2743 			       le64_to_cpu(es->s_first_error_block));
2744 		printk("\n");
2745 	}
2746 	if (es->s_last_error_time) {
2747 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2748 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2749 		       (int) sizeof(es->s_last_error_func),
2750 		       es->s_last_error_func,
2751 		       le32_to_cpu(es->s_last_error_line));
2752 		if (es->s_last_error_ino)
2753 			printk(": inode %u",
2754 			       le32_to_cpu(es->s_last_error_ino));
2755 		if (es->s_last_error_block)
2756 			printk(": block %llu", (unsigned long long)
2757 			       le64_to_cpu(es->s_last_error_block));
2758 		printk("\n");
2759 	}
2760 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2761 }
2762 
2763 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)2764 static int ext4_run_li_request(struct ext4_li_request *elr)
2765 {
2766 	struct ext4_group_desc *gdp = NULL;
2767 	ext4_group_t group, ngroups;
2768 	struct super_block *sb;
2769 	unsigned long timeout = 0;
2770 	int ret = 0;
2771 
2772 	sb = elr->lr_super;
2773 	ngroups = EXT4_SB(sb)->s_groups_count;
2774 
2775 	for (group = elr->lr_next_group; group < ngroups; group++) {
2776 		gdp = ext4_get_group_desc(sb, group, NULL);
2777 		if (!gdp) {
2778 			ret = 1;
2779 			break;
2780 		}
2781 
2782 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2783 			break;
2784 	}
2785 
2786 	if (group == ngroups)
2787 		ret = 1;
2788 
2789 	if (!ret) {
2790 		timeout = jiffies;
2791 		ret = ext4_init_inode_table(sb, group,
2792 					    elr->lr_timeout ? 0 : 1);
2793 		if (elr->lr_timeout == 0) {
2794 			timeout = (jiffies - timeout) *
2795 				  elr->lr_sbi->s_li_wait_mult;
2796 			elr->lr_timeout = timeout;
2797 		}
2798 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2799 		elr->lr_next_group = group + 1;
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 /*
2806  * Remove lr_request from the list_request and free the
2807  * request structure. Should be called with li_list_mtx held
2808  */
ext4_remove_li_request(struct ext4_li_request * elr)2809 static void ext4_remove_li_request(struct ext4_li_request *elr)
2810 {
2811 	struct ext4_sb_info *sbi;
2812 
2813 	if (!elr)
2814 		return;
2815 
2816 	sbi = elr->lr_sbi;
2817 
2818 	list_del(&elr->lr_request);
2819 	sbi->s_li_request = NULL;
2820 	kfree(elr);
2821 }
2822 
ext4_unregister_li_request(struct super_block * sb)2823 static void ext4_unregister_li_request(struct super_block *sb)
2824 {
2825 	mutex_lock(&ext4_li_mtx);
2826 	if (!ext4_li_info) {
2827 		mutex_unlock(&ext4_li_mtx);
2828 		return;
2829 	}
2830 
2831 	mutex_lock(&ext4_li_info->li_list_mtx);
2832 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2833 	mutex_unlock(&ext4_li_info->li_list_mtx);
2834 	mutex_unlock(&ext4_li_mtx);
2835 }
2836 
2837 static struct task_struct *ext4_lazyinit_task;
2838 
2839 /*
2840  * This is the function where ext4lazyinit thread lives. It walks
2841  * through the request list searching for next scheduled filesystem.
2842  * When such a fs is found, run the lazy initialization request
2843  * (ext4_rn_li_request) and keep track of the time spend in this
2844  * function. Based on that time we compute next schedule time of
2845  * the request. When walking through the list is complete, compute
2846  * next waking time and put itself into sleep.
2847  */
ext4_lazyinit_thread(void * arg)2848 static int ext4_lazyinit_thread(void *arg)
2849 {
2850 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2851 	struct list_head *pos, *n;
2852 	struct ext4_li_request *elr;
2853 	unsigned long next_wakeup, cur;
2854 
2855 	BUG_ON(NULL == eli);
2856 
2857 cont_thread:
2858 	while (true) {
2859 		next_wakeup = MAX_JIFFY_OFFSET;
2860 
2861 		mutex_lock(&eli->li_list_mtx);
2862 		if (list_empty(&eli->li_request_list)) {
2863 			mutex_unlock(&eli->li_list_mtx);
2864 			goto exit_thread;
2865 		}
2866 
2867 		list_for_each_safe(pos, n, &eli->li_request_list) {
2868 			elr = list_entry(pos, struct ext4_li_request,
2869 					 lr_request);
2870 
2871 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2872 				if (ext4_run_li_request(elr) != 0) {
2873 					/* error, remove the lazy_init job */
2874 					ext4_remove_li_request(elr);
2875 					continue;
2876 				}
2877 			}
2878 
2879 			if (time_before(elr->lr_next_sched, next_wakeup))
2880 				next_wakeup = elr->lr_next_sched;
2881 		}
2882 		mutex_unlock(&eli->li_list_mtx);
2883 
2884 		try_to_freeze();
2885 
2886 		cur = jiffies;
2887 		if ((time_after_eq(cur, next_wakeup)) ||
2888 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2889 			cond_resched();
2890 			continue;
2891 		}
2892 
2893 		schedule_timeout_interruptible(next_wakeup - cur);
2894 
2895 		if (kthread_should_stop()) {
2896 			ext4_clear_request_list();
2897 			goto exit_thread;
2898 		}
2899 	}
2900 
2901 exit_thread:
2902 	/*
2903 	 * It looks like the request list is empty, but we need
2904 	 * to check it under the li_list_mtx lock, to prevent any
2905 	 * additions into it, and of course we should lock ext4_li_mtx
2906 	 * to atomically free the list and ext4_li_info, because at
2907 	 * this point another ext4 filesystem could be registering
2908 	 * new one.
2909 	 */
2910 	mutex_lock(&ext4_li_mtx);
2911 	mutex_lock(&eli->li_list_mtx);
2912 	if (!list_empty(&eli->li_request_list)) {
2913 		mutex_unlock(&eli->li_list_mtx);
2914 		mutex_unlock(&ext4_li_mtx);
2915 		goto cont_thread;
2916 	}
2917 	mutex_unlock(&eli->li_list_mtx);
2918 	kfree(ext4_li_info);
2919 	ext4_li_info = NULL;
2920 	mutex_unlock(&ext4_li_mtx);
2921 
2922 	return 0;
2923 }
2924 
ext4_clear_request_list(void)2925 static void ext4_clear_request_list(void)
2926 {
2927 	struct list_head *pos, *n;
2928 	struct ext4_li_request *elr;
2929 
2930 	mutex_lock(&ext4_li_info->li_list_mtx);
2931 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2932 		elr = list_entry(pos, struct ext4_li_request,
2933 				 lr_request);
2934 		ext4_remove_li_request(elr);
2935 	}
2936 	mutex_unlock(&ext4_li_info->li_list_mtx);
2937 }
2938 
ext4_run_lazyinit_thread(void)2939 static int ext4_run_lazyinit_thread(void)
2940 {
2941 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2942 					 ext4_li_info, "ext4lazyinit");
2943 	if (IS_ERR(ext4_lazyinit_task)) {
2944 		int err = PTR_ERR(ext4_lazyinit_task);
2945 		ext4_clear_request_list();
2946 		kfree(ext4_li_info);
2947 		ext4_li_info = NULL;
2948 		printk(KERN_CRIT "EXT4: error %d creating inode table "
2949 				 "initialization thread\n",
2950 				 err);
2951 		return err;
2952 	}
2953 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2954 	return 0;
2955 }
2956 
2957 /*
2958  * Check whether it make sense to run itable init. thread or not.
2959  * If there is at least one uninitialized inode table, return
2960  * corresponding group number, else the loop goes through all
2961  * groups and return total number of groups.
2962  */
ext4_has_uninit_itable(struct super_block * sb)2963 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2964 {
2965 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2966 	struct ext4_group_desc *gdp = NULL;
2967 
2968 	for (group = 0; group < ngroups; group++) {
2969 		gdp = ext4_get_group_desc(sb, group, NULL);
2970 		if (!gdp)
2971 			continue;
2972 
2973 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2974 			break;
2975 	}
2976 
2977 	return group;
2978 }
2979 
ext4_li_info_new(void)2980 static int ext4_li_info_new(void)
2981 {
2982 	struct ext4_lazy_init *eli = NULL;
2983 
2984 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2985 	if (!eli)
2986 		return -ENOMEM;
2987 
2988 	INIT_LIST_HEAD(&eli->li_request_list);
2989 	mutex_init(&eli->li_list_mtx);
2990 
2991 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2992 
2993 	ext4_li_info = eli;
2994 
2995 	return 0;
2996 }
2997 
ext4_li_request_new(struct super_block * sb,ext4_group_t start)2998 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2999 					    ext4_group_t start)
3000 {
3001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 	struct ext4_li_request *elr;
3003 	unsigned long rnd;
3004 
3005 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3006 	if (!elr)
3007 		return NULL;
3008 
3009 	elr->lr_super = sb;
3010 	elr->lr_sbi = sbi;
3011 	elr->lr_next_group = start;
3012 
3013 	/*
3014 	 * Randomize first schedule time of the request to
3015 	 * spread the inode table initialization requests
3016 	 * better.
3017 	 */
3018 	get_random_bytes(&rnd, sizeof(rnd));
3019 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
3020 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3021 
3022 	return elr;
3023 }
3024 
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3025 static int ext4_register_li_request(struct super_block *sb,
3026 				    ext4_group_t first_not_zeroed)
3027 {
3028 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3029 	struct ext4_li_request *elr;
3030 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3031 	int ret = 0;
3032 
3033 	if (sbi->s_li_request != NULL) {
3034 		/*
3035 		 * Reset timeout so it can be computed again, because
3036 		 * s_li_wait_mult might have changed.
3037 		 */
3038 		sbi->s_li_request->lr_timeout = 0;
3039 		return 0;
3040 	}
3041 
3042 	if (first_not_zeroed == ngroups ||
3043 	    (sb->s_flags & MS_RDONLY) ||
3044 	    !test_opt(sb, INIT_INODE_TABLE))
3045 		return 0;
3046 
3047 	elr = ext4_li_request_new(sb, first_not_zeroed);
3048 	if (!elr)
3049 		return -ENOMEM;
3050 
3051 	mutex_lock(&ext4_li_mtx);
3052 
3053 	if (NULL == ext4_li_info) {
3054 		ret = ext4_li_info_new();
3055 		if (ret)
3056 			goto out;
3057 	}
3058 
3059 	mutex_lock(&ext4_li_info->li_list_mtx);
3060 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3061 	mutex_unlock(&ext4_li_info->li_list_mtx);
3062 
3063 	sbi->s_li_request = elr;
3064 	/*
3065 	 * set elr to NULL here since it has been inserted to
3066 	 * the request_list and the removal and free of it is
3067 	 * handled by ext4_clear_request_list from now on.
3068 	 */
3069 	elr = NULL;
3070 
3071 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3072 		ret = ext4_run_lazyinit_thread();
3073 		if (ret)
3074 			goto out;
3075 	}
3076 out:
3077 	mutex_unlock(&ext4_li_mtx);
3078 	if (ret)
3079 		kfree(elr);
3080 	return ret;
3081 }
3082 
3083 /*
3084  * We do not need to lock anything since this is called on
3085  * module unload.
3086  */
ext4_destroy_lazyinit_thread(void)3087 static void ext4_destroy_lazyinit_thread(void)
3088 {
3089 	/*
3090 	 * If thread exited earlier
3091 	 * there's nothing to be done.
3092 	 */
3093 	if (!ext4_li_info || !ext4_lazyinit_task)
3094 		return;
3095 
3096 	kthread_stop(ext4_lazyinit_task);
3097 }
3098 
ext4_fill_super(struct super_block * sb,void * data,int silent)3099 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3100 {
3101 	char *orig_data = kstrdup(data, GFP_KERNEL);
3102 	struct buffer_head *bh;
3103 	struct ext4_super_block *es = NULL;
3104 	struct ext4_sb_info *sbi;
3105 	ext4_fsblk_t block;
3106 	ext4_fsblk_t sb_block = get_sb_block(&data);
3107 	ext4_fsblk_t logical_sb_block;
3108 	unsigned long offset = 0;
3109 	unsigned long journal_devnum = 0;
3110 	unsigned long def_mount_opts;
3111 	struct inode *root;
3112 	char *cp;
3113 	const char *descr;
3114 	int ret = -ENOMEM;
3115 	int blocksize, clustersize;
3116 	unsigned int db_count;
3117 	unsigned int i;
3118 	int needs_recovery, has_huge_files, has_bigalloc;
3119 	__u64 blocks_count;
3120 	int err;
3121 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3122 	ext4_group_t first_not_zeroed;
3123 
3124 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3125 	if (!sbi)
3126 		goto out_free_orig;
3127 
3128 	sbi->s_blockgroup_lock =
3129 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3130 	if (!sbi->s_blockgroup_lock) {
3131 		kfree(sbi);
3132 		goto out_free_orig;
3133 	}
3134 	sb->s_fs_info = sbi;
3135 	sbi->s_mount_opt = 0;
3136 	sbi->s_resuid = EXT4_DEF_RESUID;
3137 	sbi->s_resgid = EXT4_DEF_RESGID;
3138 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3139 	sbi->s_sb_block = sb_block;
3140 	if (sb->s_bdev->bd_part)
3141 		sbi->s_sectors_written_start =
3142 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3143 
3144 	/* Cleanup superblock name */
3145 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3146 		*cp = '!';
3147 
3148 	ret = -EINVAL;
3149 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3150 	if (!blocksize) {
3151 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3152 		goto out_fail;
3153 	}
3154 
3155 	/*
3156 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3157 	 * block sizes.  We need to calculate the offset from buffer start.
3158 	 */
3159 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3160 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3161 		offset = do_div(logical_sb_block, blocksize);
3162 	} else {
3163 		logical_sb_block = sb_block;
3164 	}
3165 
3166 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3167 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3168 		goto out_fail;
3169 	}
3170 	/*
3171 	 * Note: s_es must be initialized as soon as possible because
3172 	 *       some ext4 macro-instructions depend on its value
3173 	 */
3174 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3175 	sbi->s_es = es;
3176 	sb->s_magic = le16_to_cpu(es->s_magic);
3177 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3178 		goto cantfind_ext4;
3179 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3180 
3181 	/* Set defaults before we parse the mount options */
3182 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3183 	set_opt(sb, INIT_INODE_TABLE);
3184 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3185 		set_opt(sb, DEBUG);
3186 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3187 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3188 			"2.6.38");
3189 		set_opt(sb, GRPID);
3190 	}
3191 	if (def_mount_opts & EXT4_DEFM_UID16)
3192 		set_opt(sb, NO_UID32);
3193 	/* xattr user namespace & acls are now defaulted on */
3194 #ifdef CONFIG_EXT4_FS_XATTR
3195 	set_opt(sb, XATTR_USER);
3196 #endif
3197 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3198 	set_opt(sb, POSIX_ACL);
3199 #endif
3200 	set_opt(sb, MBLK_IO_SUBMIT);
3201 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3202 		set_opt(sb, JOURNAL_DATA);
3203 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3204 		set_opt(sb, ORDERED_DATA);
3205 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3206 		set_opt(sb, WRITEBACK_DATA);
3207 
3208 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3209 		set_opt(sb, ERRORS_PANIC);
3210 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3211 		set_opt(sb, ERRORS_CONT);
3212 	else
3213 		set_opt(sb, ERRORS_RO);
3214 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3215 		set_opt(sb, BLOCK_VALIDITY);
3216 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3217 		set_opt(sb, DISCARD);
3218 
3219 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3220 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3221 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3222 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3223 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3224 
3225 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3226 		set_opt(sb, BARRIER);
3227 
3228 	/*
3229 	 * enable delayed allocation by default
3230 	 * Use -o nodelalloc to turn it off
3231 	 */
3232 	if (!IS_EXT3_SB(sb) &&
3233 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3234 		set_opt(sb, DELALLOC);
3235 
3236 	/*
3237 	 * set default s_li_wait_mult for lazyinit, for the case there is
3238 	 * no mount option specified.
3239 	 */
3240 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3241 
3242 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3243 			   &journal_devnum, &journal_ioprio, NULL, 0)) {
3244 		ext4_msg(sb, KERN_WARNING,
3245 			 "failed to parse options in superblock: %s",
3246 			 sbi->s_es->s_mount_opts);
3247 	}
3248 	if (!parse_options((char *) data, sb, &journal_devnum,
3249 			   &journal_ioprio, NULL, 0))
3250 		goto failed_mount;
3251 
3252 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3253 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3254 			    "with data=journal disables delayed "
3255 			    "allocation and O_DIRECT support!\n");
3256 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3257 			ext4_msg(sb, KERN_ERR, "can't mount with "
3258 				 "both data=journal and delalloc");
3259 			goto failed_mount;
3260 		}
3261 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3262 			ext4_msg(sb, KERN_ERR, "can't mount with "
3263 				 "both data=journal and delalloc");
3264 			goto failed_mount;
3265 		}
3266 		if (test_opt(sb, DELALLOC))
3267 			clear_opt(sb, DELALLOC);
3268 	}
3269 
3270 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3271 	if (test_opt(sb, DIOREAD_NOLOCK)) {
3272 		if (blocksize < PAGE_SIZE) {
3273 			ext4_msg(sb, KERN_ERR, "can't mount with "
3274 				 "dioread_nolock if block size != PAGE_SIZE");
3275 			goto failed_mount;
3276 		}
3277 	}
3278 
3279 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3280 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3281 
3282 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3283 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3284 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3285 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3286 		ext4_msg(sb, KERN_WARNING,
3287 		       "feature flags set on rev 0 fs, "
3288 		       "running e2fsck is recommended");
3289 
3290 	if (IS_EXT2_SB(sb)) {
3291 		if (ext2_feature_set_ok(sb))
3292 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3293 				 "using the ext4 subsystem");
3294 		else {
3295 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3296 				 "to feature incompatibilities");
3297 			goto failed_mount;
3298 		}
3299 	}
3300 
3301 	if (IS_EXT3_SB(sb)) {
3302 		if (ext3_feature_set_ok(sb))
3303 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3304 				 "using the ext4 subsystem");
3305 		else {
3306 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3307 				 "to feature incompatibilities");
3308 			goto failed_mount;
3309 		}
3310 	}
3311 
3312 	/*
3313 	 * Check feature flags regardless of the revision level, since we
3314 	 * previously didn't change the revision level when setting the flags,
3315 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3316 	 */
3317 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3318 		goto failed_mount;
3319 
3320 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3321 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3322 		ext4_msg(sb, KERN_ERR,
3323 		       "Unsupported filesystem blocksize %d", blocksize);
3324 		goto failed_mount;
3325 	}
3326 
3327 	if (sb->s_blocksize != blocksize) {
3328 		/* Validate the filesystem blocksize */
3329 		if (!sb_set_blocksize(sb, blocksize)) {
3330 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3331 					blocksize);
3332 			goto failed_mount;
3333 		}
3334 
3335 		brelse(bh);
3336 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3337 		offset = do_div(logical_sb_block, blocksize);
3338 		bh = sb_bread(sb, logical_sb_block);
3339 		if (!bh) {
3340 			ext4_msg(sb, KERN_ERR,
3341 			       "Can't read superblock on 2nd try");
3342 			goto failed_mount;
3343 		}
3344 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3345 		sbi->s_es = es;
3346 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3347 			ext4_msg(sb, KERN_ERR,
3348 			       "Magic mismatch, very weird!");
3349 			goto failed_mount;
3350 		}
3351 	}
3352 
3353 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3354 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3355 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3356 						      has_huge_files);
3357 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3358 
3359 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3360 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3361 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3362 	} else {
3363 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3364 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3365 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3366 		    (!is_power_of_2(sbi->s_inode_size)) ||
3367 		    (sbi->s_inode_size > blocksize)) {
3368 			ext4_msg(sb, KERN_ERR,
3369 			       "unsupported inode size: %d",
3370 			       sbi->s_inode_size);
3371 			goto failed_mount;
3372 		}
3373 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3374 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3375 	}
3376 
3377 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3378 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3379 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3380 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3381 		    !is_power_of_2(sbi->s_desc_size)) {
3382 			ext4_msg(sb, KERN_ERR,
3383 			       "unsupported descriptor size %lu",
3384 			       sbi->s_desc_size);
3385 			goto failed_mount;
3386 		}
3387 	} else
3388 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3389 
3390 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3391 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3392 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3393 		goto cantfind_ext4;
3394 
3395 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3396 	if (sbi->s_inodes_per_block == 0)
3397 		goto cantfind_ext4;
3398 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3399 					sbi->s_inodes_per_block;
3400 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3401 	sbi->s_sbh = bh;
3402 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3403 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3404 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3405 
3406 	for (i = 0; i < 4; i++)
3407 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3408 	sbi->s_def_hash_version = es->s_def_hash_version;
3409 	i = le32_to_cpu(es->s_flags);
3410 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3411 		sbi->s_hash_unsigned = 3;
3412 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3413 #ifdef __CHAR_UNSIGNED__
3414 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3415 		sbi->s_hash_unsigned = 3;
3416 #else
3417 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3418 #endif
3419 		sb->s_dirt = 1;
3420 	}
3421 
3422 	/* Handle clustersize */
3423 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3424 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3425 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3426 	if (has_bigalloc) {
3427 		if (clustersize < blocksize) {
3428 			ext4_msg(sb, KERN_ERR,
3429 				 "cluster size (%d) smaller than "
3430 				 "block size (%d)", clustersize, blocksize);
3431 			goto failed_mount;
3432 		}
3433 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3434 			le32_to_cpu(es->s_log_block_size);
3435 		sbi->s_clusters_per_group =
3436 			le32_to_cpu(es->s_clusters_per_group);
3437 		if (sbi->s_clusters_per_group > blocksize * 8) {
3438 			ext4_msg(sb, KERN_ERR,
3439 				 "#clusters per group too big: %lu",
3440 				 sbi->s_clusters_per_group);
3441 			goto failed_mount;
3442 		}
3443 		if (sbi->s_blocks_per_group !=
3444 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3445 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3446 				 "clusters per group (%lu) inconsistent",
3447 				 sbi->s_blocks_per_group,
3448 				 sbi->s_clusters_per_group);
3449 			goto failed_mount;
3450 		}
3451 	} else {
3452 		if (clustersize != blocksize) {
3453 			ext4_warning(sb, "fragment/cluster size (%d) != "
3454 				     "block size (%d)", clustersize,
3455 				     blocksize);
3456 			clustersize = blocksize;
3457 		}
3458 		if (sbi->s_blocks_per_group > blocksize * 8) {
3459 			ext4_msg(sb, KERN_ERR,
3460 				 "#blocks per group too big: %lu",
3461 				 sbi->s_blocks_per_group);
3462 			goto failed_mount;
3463 		}
3464 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3465 		sbi->s_cluster_bits = 0;
3466 	}
3467 	sbi->s_cluster_ratio = clustersize / blocksize;
3468 
3469 	if (sbi->s_inodes_per_group > blocksize * 8) {
3470 		ext4_msg(sb, KERN_ERR,
3471 		       "#inodes per group too big: %lu",
3472 		       sbi->s_inodes_per_group);
3473 		goto failed_mount;
3474 	}
3475 
3476 	/*
3477 	 * Test whether we have more sectors than will fit in sector_t,
3478 	 * and whether the max offset is addressable by the page cache.
3479 	 */
3480 	err = generic_check_addressable(sb->s_blocksize_bits,
3481 					ext4_blocks_count(es));
3482 	if (err) {
3483 		ext4_msg(sb, KERN_ERR, "filesystem"
3484 			 " too large to mount safely on this system");
3485 		if (sizeof(sector_t) < 8)
3486 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3487 		ret = err;
3488 		goto failed_mount;
3489 	}
3490 
3491 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3492 		goto cantfind_ext4;
3493 
3494 	/* check blocks count against device size */
3495 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3496 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3497 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3498 		       "exceeds size of device (%llu blocks)",
3499 		       ext4_blocks_count(es), blocks_count);
3500 		goto failed_mount;
3501 	}
3502 
3503 	/*
3504 	 * It makes no sense for the first data block to be beyond the end
3505 	 * of the filesystem.
3506 	 */
3507 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3508 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3509 			 "block %u is beyond end of filesystem (%llu)",
3510 			 le32_to_cpu(es->s_first_data_block),
3511 			 ext4_blocks_count(es));
3512 		goto failed_mount;
3513 	}
3514 	blocks_count = (ext4_blocks_count(es) -
3515 			le32_to_cpu(es->s_first_data_block) +
3516 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3517 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3518 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3519 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3520 		       "(block count %llu, first data block %u, "
3521 		       "blocks per group %lu)", sbi->s_groups_count,
3522 		       ext4_blocks_count(es),
3523 		       le32_to_cpu(es->s_first_data_block),
3524 		       EXT4_BLOCKS_PER_GROUP(sb));
3525 		goto failed_mount;
3526 	}
3527 	sbi->s_groups_count = blocks_count;
3528 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3529 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3530 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3531 		   EXT4_DESC_PER_BLOCK(sb);
3532 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3533 					  sizeof(struct buffer_head *),
3534 					  GFP_KERNEL);
3535 	if (sbi->s_group_desc == NULL) {
3536 		ext4_msg(sb, KERN_ERR, "not enough memory");
3537 		goto failed_mount;
3538 	}
3539 
3540 	if (ext4_proc_root)
3541 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3542 
3543 	bgl_lock_init(sbi->s_blockgroup_lock);
3544 
3545 	for (i = 0; i < db_count; i++) {
3546 		block = descriptor_loc(sb, logical_sb_block, i);
3547 		sbi->s_group_desc[i] = sb_bread(sb, block);
3548 		if (!sbi->s_group_desc[i]) {
3549 			ext4_msg(sb, KERN_ERR,
3550 			       "can't read group descriptor %d", i);
3551 			db_count = i;
3552 			goto failed_mount2;
3553 		}
3554 	}
3555 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3556 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3557 		goto failed_mount2;
3558 	}
3559 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3560 		if (!ext4_fill_flex_info(sb)) {
3561 			ext4_msg(sb, KERN_ERR,
3562 			       "unable to initialize "
3563 			       "flex_bg meta info!");
3564 			goto failed_mount2;
3565 		}
3566 
3567 	sbi->s_gdb_count = db_count;
3568 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3569 	spin_lock_init(&sbi->s_next_gen_lock);
3570 
3571 	init_timer(&sbi->s_err_report);
3572 	sbi->s_err_report.function = print_daily_error_info;
3573 	sbi->s_err_report.data = (unsigned long) sb;
3574 
3575 	err = percpu_counter_init(&sbi->s_freeclusters_counter,
3576 			ext4_count_free_clusters(sb));
3577 	if (!err) {
3578 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3579 				ext4_count_free_inodes(sb));
3580 	}
3581 	if (!err) {
3582 		err = percpu_counter_init(&sbi->s_dirs_counter,
3583 				ext4_count_dirs(sb));
3584 	}
3585 	if (!err) {
3586 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3587 	}
3588 	if (err) {
3589 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3590 		goto failed_mount3;
3591 	}
3592 
3593 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3594 	sbi->s_max_writeback_mb_bump = 128;
3595 
3596 	/*
3597 	 * set up enough so that it can read an inode
3598 	 */
3599 	if (!test_opt(sb, NOLOAD) &&
3600 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3601 		sb->s_op = &ext4_sops;
3602 	else
3603 		sb->s_op = &ext4_nojournal_sops;
3604 	sb->s_export_op = &ext4_export_ops;
3605 	sb->s_xattr = ext4_xattr_handlers;
3606 #ifdef CONFIG_QUOTA
3607 	sb->s_qcop = &ext4_qctl_operations;
3608 	sb->dq_op = &ext4_quota_operations;
3609 #endif
3610 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3611 
3612 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3613 	mutex_init(&sbi->s_orphan_lock);
3614 	sbi->s_resize_flags = 0;
3615 
3616 	sb->s_root = NULL;
3617 
3618 	needs_recovery = (es->s_last_orphan != 0 ||
3619 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3620 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3621 
3622 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3623 	    !(sb->s_flags & MS_RDONLY))
3624 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3625 			goto failed_mount3;
3626 
3627 	/*
3628 	 * The first inode we look at is the journal inode.  Don't try
3629 	 * root first: it may be modified in the journal!
3630 	 */
3631 	if (!test_opt(sb, NOLOAD) &&
3632 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3633 		if (ext4_load_journal(sb, es, journal_devnum))
3634 			goto failed_mount3;
3635 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3636 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3637 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3638 		       "suppressed and not mounted read-only");
3639 		goto failed_mount_wq;
3640 	} else {
3641 		clear_opt(sb, DATA_FLAGS);
3642 		sbi->s_journal = NULL;
3643 		needs_recovery = 0;
3644 		goto no_journal;
3645 	}
3646 
3647 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3648 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3649 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3650 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3651 		goto failed_mount_wq;
3652 	}
3653 
3654 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3655 		jbd2_journal_set_features(sbi->s_journal,
3656 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3657 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3658 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3659 		jbd2_journal_set_features(sbi->s_journal,
3660 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3661 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3662 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3663 	} else {
3664 		jbd2_journal_clear_features(sbi->s_journal,
3665 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3666 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3667 	}
3668 
3669 	/* We have now updated the journal if required, so we can
3670 	 * validate the data journaling mode. */
3671 	switch (test_opt(sb, DATA_FLAGS)) {
3672 	case 0:
3673 		/* No mode set, assume a default based on the journal
3674 		 * capabilities: ORDERED_DATA if the journal can
3675 		 * cope, else JOURNAL_DATA
3676 		 */
3677 		if (jbd2_journal_check_available_features
3678 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3679 			set_opt(sb, ORDERED_DATA);
3680 		else
3681 			set_opt(sb, JOURNAL_DATA);
3682 		break;
3683 
3684 	case EXT4_MOUNT_ORDERED_DATA:
3685 	case EXT4_MOUNT_WRITEBACK_DATA:
3686 		if (!jbd2_journal_check_available_features
3687 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3688 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3689 			       "requested data journaling mode");
3690 			goto failed_mount_wq;
3691 		}
3692 	default:
3693 		break;
3694 	}
3695 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3696 
3697 	/*
3698 	 * The journal may have updated the bg summary counts, so we
3699 	 * need to update the global counters.
3700 	 */
3701 	percpu_counter_set(&sbi->s_freeclusters_counter,
3702 			   ext4_count_free_clusters(sb));
3703 	percpu_counter_set(&sbi->s_freeinodes_counter,
3704 			   ext4_count_free_inodes(sb));
3705 	percpu_counter_set(&sbi->s_dirs_counter,
3706 			   ext4_count_dirs(sb));
3707 	percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3708 
3709 no_journal:
3710 	/*
3711 	 * The maximum number of concurrent works can be high and
3712 	 * concurrency isn't really necessary.  Limit it to 1.
3713 	 */
3714 	EXT4_SB(sb)->dio_unwritten_wq =
3715 		alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3716 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3717 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3718 		goto failed_mount_wq;
3719 	}
3720 
3721 	/*
3722 	 * The jbd2_journal_load will have done any necessary log recovery,
3723 	 * so we can safely mount the rest of the filesystem now.
3724 	 */
3725 
3726 	root = ext4_iget(sb, EXT4_ROOT_INO);
3727 	if (IS_ERR(root)) {
3728 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3729 		ret = PTR_ERR(root);
3730 		root = NULL;
3731 		goto failed_mount4;
3732 	}
3733 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3734 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3735 		iput(root);
3736 		goto failed_mount4;
3737 	}
3738 	sb->s_root = d_alloc_root(root);
3739 	if (!sb->s_root) {
3740 		iput(root);
3741 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3742 		ret = -ENOMEM;
3743 		goto failed_mount4;
3744 	}
3745 
3746 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3747 
3748 	/* determine the minimum size of new large inodes, if present */
3749 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3750 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3751 						     EXT4_GOOD_OLD_INODE_SIZE;
3752 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3753 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3754 			if (sbi->s_want_extra_isize <
3755 			    le16_to_cpu(es->s_want_extra_isize))
3756 				sbi->s_want_extra_isize =
3757 					le16_to_cpu(es->s_want_extra_isize);
3758 			if (sbi->s_want_extra_isize <
3759 			    le16_to_cpu(es->s_min_extra_isize))
3760 				sbi->s_want_extra_isize =
3761 					le16_to_cpu(es->s_min_extra_isize);
3762 		}
3763 	}
3764 	/* Check if enough inode space is available */
3765 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3766 							sbi->s_inode_size) {
3767 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3768 						       EXT4_GOOD_OLD_INODE_SIZE;
3769 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3770 			 "available");
3771 	}
3772 
3773 	err = ext4_setup_system_zone(sb);
3774 	if (err) {
3775 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3776 			 "zone (%d)", err);
3777 		goto failed_mount4a;
3778 	}
3779 
3780 	ext4_ext_init(sb);
3781 	err = ext4_mb_init(sb, needs_recovery);
3782 	if (err) {
3783 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3784 			 err);
3785 		goto failed_mount5;
3786 	}
3787 
3788 	err = ext4_register_li_request(sb, first_not_zeroed);
3789 	if (err)
3790 		goto failed_mount6;
3791 
3792 	sbi->s_kobj.kset = ext4_kset;
3793 	init_completion(&sbi->s_kobj_unregister);
3794 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3795 				   "%s", sb->s_id);
3796 	if (err)
3797 		goto failed_mount7;
3798 
3799 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3800 	ext4_orphan_cleanup(sb, es);
3801 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3802 	if (needs_recovery) {
3803 		ext4_msg(sb, KERN_INFO, "recovery complete");
3804 		ext4_mark_recovery_complete(sb, es);
3805 	}
3806 	if (EXT4_SB(sb)->s_journal) {
3807 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3808 			descr = " journalled data mode";
3809 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3810 			descr = " ordered data mode";
3811 		else
3812 			descr = " writeback data mode";
3813 	} else
3814 		descr = "out journal";
3815 
3816 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3817 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3818 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3819 
3820 	if (es->s_error_count)
3821 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3822 
3823 	kfree(orig_data);
3824 	return 0;
3825 
3826 cantfind_ext4:
3827 	if (!silent)
3828 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3829 	goto failed_mount;
3830 
3831 failed_mount7:
3832 	ext4_unregister_li_request(sb);
3833 failed_mount6:
3834 	ext4_mb_release(sb);
3835 failed_mount5:
3836 	ext4_ext_release(sb);
3837 	ext4_release_system_zone(sb);
3838 failed_mount4a:
3839 	dput(sb->s_root);
3840 	sb->s_root = NULL;
3841 failed_mount4:
3842 	ext4_msg(sb, KERN_ERR, "mount failed");
3843 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3844 failed_mount_wq:
3845 	if (sbi->s_journal) {
3846 		jbd2_journal_destroy(sbi->s_journal);
3847 		sbi->s_journal = NULL;
3848 	}
3849 failed_mount3:
3850 	del_timer(&sbi->s_err_report);
3851 	if (sbi->s_flex_groups)
3852 		ext4_kvfree(sbi->s_flex_groups);
3853 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
3854 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3855 	percpu_counter_destroy(&sbi->s_dirs_counter);
3856 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3857 	if (sbi->s_mmp_tsk)
3858 		kthread_stop(sbi->s_mmp_tsk);
3859 failed_mount2:
3860 	for (i = 0; i < db_count; i++)
3861 		brelse(sbi->s_group_desc[i]);
3862 	ext4_kvfree(sbi->s_group_desc);
3863 failed_mount:
3864 	if (sbi->s_proc) {
3865 		remove_proc_entry(sb->s_id, ext4_proc_root);
3866 	}
3867 #ifdef CONFIG_QUOTA
3868 	for (i = 0; i < MAXQUOTAS; i++)
3869 		kfree(sbi->s_qf_names[i]);
3870 #endif
3871 	ext4_blkdev_remove(sbi);
3872 	brelse(bh);
3873 out_fail:
3874 	sb->s_fs_info = NULL;
3875 	kfree(sbi->s_blockgroup_lock);
3876 	kfree(sbi);
3877 out_free_orig:
3878 	kfree(orig_data);
3879 	return ret;
3880 }
3881 
3882 /*
3883  * Setup any per-fs journal parameters now.  We'll do this both on
3884  * initial mount, once the journal has been initialised but before we've
3885  * done any recovery; and again on any subsequent remount.
3886  */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)3887 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3888 {
3889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3890 
3891 	journal->j_commit_interval = sbi->s_commit_interval;
3892 	journal->j_min_batch_time = sbi->s_min_batch_time;
3893 	journal->j_max_batch_time = sbi->s_max_batch_time;
3894 
3895 	write_lock(&journal->j_state_lock);
3896 	if (test_opt(sb, BARRIER))
3897 		journal->j_flags |= JBD2_BARRIER;
3898 	else
3899 		journal->j_flags &= ~JBD2_BARRIER;
3900 	if (test_opt(sb, DATA_ERR_ABORT))
3901 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3902 	else
3903 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3904 	write_unlock(&journal->j_state_lock);
3905 }
3906 
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)3907 static journal_t *ext4_get_journal(struct super_block *sb,
3908 				   unsigned int journal_inum)
3909 {
3910 	struct inode *journal_inode;
3911 	journal_t *journal;
3912 
3913 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3914 
3915 	/* First, test for the existence of a valid inode on disk.  Bad
3916 	 * things happen if we iget() an unused inode, as the subsequent
3917 	 * iput() will try to delete it. */
3918 
3919 	journal_inode = ext4_iget(sb, journal_inum);
3920 	if (IS_ERR(journal_inode)) {
3921 		ext4_msg(sb, KERN_ERR, "no journal found");
3922 		return NULL;
3923 	}
3924 	if (!journal_inode->i_nlink) {
3925 		make_bad_inode(journal_inode);
3926 		iput(journal_inode);
3927 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3928 		return NULL;
3929 	}
3930 
3931 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3932 		  journal_inode, journal_inode->i_size);
3933 	if (!S_ISREG(journal_inode->i_mode)) {
3934 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3935 		iput(journal_inode);
3936 		return NULL;
3937 	}
3938 
3939 	journal = jbd2_journal_init_inode(journal_inode);
3940 	if (!journal) {
3941 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3942 		iput(journal_inode);
3943 		return NULL;
3944 	}
3945 	journal->j_private = sb;
3946 	ext4_init_journal_params(sb, journal);
3947 	return journal;
3948 }
3949 
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)3950 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3951 				       dev_t j_dev)
3952 {
3953 	struct buffer_head *bh;
3954 	journal_t *journal;
3955 	ext4_fsblk_t start;
3956 	ext4_fsblk_t len;
3957 	int hblock, blocksize;
3958 	ext4_fsblk_t sb_block;
3959 	unsigned long offset;
3960 	struct ext4_super_block *es;
3961 	struct block_device *bdev;
3962 
3963 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3964 
3965 	bdev = ext4_blkdev_get(j_dev, sb);
3966 	if (bdev == NULL)
3967 		return NULL;
3968 
3969 	blocksize = sb->s_blocksize;
3970 	hblock = bdev_logical_block_size(bdev);
3971 	if (blocksize < hblock) {
3972 		ext4_msg(sb, KERN_ERR,
3973 			"blocksize too small for journal device");
3974 		goto out_bdev;
3975 	}
3976 
3977 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3978 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3979 	set_blocksize(bdev, blocksize);
3980 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3981 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3982 		       "external journal");
3983 		goto out_bdev;
3984 	}
3985 
3986 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3987 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3988 	    !(le32_to_cpu(es->s_feature_incompat) &
3989 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3990 		ext4_msg(sb, KERN_ERR, "external journal has "
3991 					"bad superblock");
3992 		brelse(bh);
3993 		goto out_bdev;
3994 	}
3995 
3996 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3997 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3998 		brelse(bh);
3999 		goto out_bdev;
4000 	}
4001 
4002 	len = ext4_blocks_count(es);
4003 	start = sb_block + 1;
4004 	brelse(bh);	/* we're done with the superblock */
4005 
4006 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4007 					start, len, blocksize);
4008 	if (!journal) {
4009 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4010 		goto out_bdev;
4011 	}
4012 	journal->j_private = sb;
4013 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
4014 	wait_on_buffer(journal->j_sb_buffer);
4015 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4016 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4017 		goto out_journal;
4018 	}
4019 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4020 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4021 					"user (unsupported) - %d",
4022 			be32_to_cpu(journal->j_superblock->s_nr_users));
4023 		goto out_journal;
4024 	}
4025 	EXT4_SB(sb)->journal_bdev = bdev;
4026 	ext4_init_journal_params(sb, journal);
4027 	return journal;
4028 
4029 out_journal:
4030 	jbd2_journal_destroy(journal);
4031 out_bdev:
4032 	ext4_blkdev_put(bdev);
4033 	return NULL;
4034 }
4035 
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)4036 static int ext4_load_journal(struct super_block *sb,
4037 			     struct ext4_super_block *es,
4038 			     unsigned long journal_devnum)
4039 {
4040 	journal_t *journal;
4041 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4042 	dev_t journal_dev;
4043 	int err = 0;
4044 	int really_read_only;
4045 
4046 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4047 
4048 	if (journal_devnum &&
4049 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4050 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4051 			"numbers have changed");
4052 		journal_dev = new_decode_dev(journal_devnum);
4053 	} else
4054 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4055 
4056 	really_read_only = bdev_read_only(sb->s_bdev);
4057 
4058 	/*
4059 	 * Are we loading a blank journal or performing recovery after a
4060 	 * crash?  For recovery, we need to check in advance whether we
4061 	 * can get read-write access to the device.
4062 	 */
4063 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4064 		if (sb->s_flags & MS_RDONLY) {
4065 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4066 					"required on readonly filesystem");
4067 			if (really_read_only) {
4068 				ext4_msg(sb, KERN_ERR, "write access "
4069 					"unavailable, cannot proceed");
4070 				return -EROFS;
4071 			}
4072 			ext4_msg(sb, KERN_INFO, "write access will "
4073 			       "be enabled during recovery");
4074 		}
4075 	}
4076 
4077 	if (journal_inum && journal_dev) {
4078 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4079 		       "and inode journals!");
4080 		return -EINVAL;
4081 	}
4082 
4083 	if (journal_inum) {
4084 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4085 			return -EINVAL;
4086 	} else {
4087 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4088 			return -EINVAL;
4089 	}
4090 
4091 	if (!(journal->j_flags & JBD2_BARRIER))
4092 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4093 
4094 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
4095 		err = jbd2_journal_update_format(journal);
4096 		if (err)  {
4097 			ext4_msg(sb, KERN_ERR, "error updating journal");
4098 			jbd2_journal_destroy(journal);
4099 			return err;
4100 		}
4101 	}
4102 
4103 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4104 		err = jbd2_journal_wipe(journal, !really_read_only);
4105 	if (!err) {
4106 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4107 		if (save)
4108 			memcpy(save, ((char *) es) +
4109 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4110 		err = jbd2_journal_load(journal);
4111 		if (save)
4112 			memcpy(((char *) es) + EXT4_S_ERR_START,
4113 			       save, EXT4_S_ERR_LEN);
4114 		kfree(save);
4115 	}
4116 
4117 	if (err) {
4118 		ext4_msg(sb, KERN_ERR, "error loading journal");
4119 		jbd2_journal_destroy(journal);
4120 		return err;
4121 	}
4122 
4123 	EXT4_SB(sb)->s_journal = journal;
4124 	ext4_clear_journal_err(sb, es);
4125 
4126 	if (!really_read_only && journal_devnum &&
4127 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4128 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4129 
4130 		/* Make sure we flush the recovery flag to disk. */
4131 		ext4_commit_super(sb, 1);
4132 	}
4133 
4134 	return 0;
4135 }
4136 
ext4_commit_super(struct super_block * sb,int sync)4137 static int ext4_commit_super(struct super_block *sb, int sync)
4138 {
4139 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4140 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4141 	int error = 0;
4142 
4143 	if (!sbh || block_device_ejected(sb))
4144 		return error;
4145 	if (buffer_write_io_error(sbh)) {
4146 		/*
4147 		 * Oh, dear.  A previous attempt to write the
4148 		 * superblock failed.  This could happen because the
4149 		 * USB device was yanked out.  Or it could happen to
4150 		 * be a transient write error and maybe the block will
4151 		 * be remapped.  Nothing we can do but to retry the
4152 		 * write and hope for the best.
4153 		 */
4154 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4155 		       "superblock detected");
4156 		clear_buffer_write_io_error(sbh);
4157 		set_buffer_uptodate(sbh);
4158 	}
4159 	/*
4160 	 * If the file system is mounted read-only, don't update the
4161 	 * superblock write time.  This avoids updating the superblock
4162 	 * write time when we are mounting the root file system
4163 	 * read/only but we need to replay the journal; at that point,
4164 	 * for people who are east of GMT and who make their clock
4165 	 * tick in localtime for Windows bug-for-bug compatibility,
4166 	 * the clock is set in the future, and this will cause e2fsck
4167 	 * to complain and force a full file system check.
4168 	 */
4169 	if (!(sb->s_flags & MS_RDONLY))
4170 		es->s_wtime = cpu_to_le32(get_seconds());
4171 	if (sb->s_bdev->bd_part)
4172 		es->s_kbytes_written =
4173 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4174 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4175 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4176 	else
4177 		es->s_kbytes_written =
4178 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4179 	ext4_free_blocks_count_set(es,
4180 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4181 				&EXT4_SB(sb)->s_freeclusters_counter)));
4182 	es->s_free_inodes_count =
4183 		cpu_to_le32(percpu_counter_sum_positive(
4184 				&EXT4_SB(sb)->s_freeinodes_counter));
4185 	sb->s_dirt = 0;
4186 	BUFFER_TRACE(sbh, "marking dirty");
4187 	mark_buffer_dirty(sbh);
4188 	if (sync) {
4189 		error = sync_dirty_buffer(sbh);
4190 		if (error)
4191 			return error;
4192 
4193 		error = buffer_write_io_error(sbh);
4194 		if (error) {
4195 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4196 			       "superblock");
4197 			clear_buffer_write_io_error(sbh);
4198 			set_buffer_uptodate(sbh);
4199 		}
4200 	}
4201 	return error;
4202 }
4203 
4204 /*
4205  * Have we just finished recovery?  If so, and if we are mounting (or
4206  * remounting) the filesystem readonly, then we will end up with a
4207  * consistent fs on disk.  Record that fact.
4208  */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)4209 static void ext4_mark_recovery_complete(struct super_block *sb,
4210 					struct ext4_super_block *es)
4211 {
4212 	journal_t *journal = EXT4_SB(sb)->s_journal;
4213 
4214 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4215 		BUG_ON(journal != NULL);
4216 		return;
4217 	}
4218 	jbd2_journal_lock_updates(journal);
4219 	if (jbd2_journal_flush(journal) < 0)
4220 		goto out;
4221 
4222 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4223 	    sb->s_flags & MS_RDONLY) {
4224 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4225 		ext4_commit_super(sb, 1);
4226 	}
4227 
4228 out:
4229 	jbd2_journal_unlock_updates(journal);
4230 }
4231 
4232 /*
4233  * If we are mounting (or read-write remounting) a filesystem whose journal
4234  * has recorded an error from a previous lifetime, move that error to the
4235  * main filesystem now.
4236  */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)4237 static void ext4_clear_journal_err(struct super_block *sb,
4238 				   struct ext4_super_block *es)
4239 {
4240 	journal_t *journal;
4241 	int j_errno;
4242 	const char *errstr;
4243 
4244 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4245 
4246 	journal = EXT4_SB(sb)->s_journal;
4247 
4248 	/*
4249 	 * Now check for any error status which may have been recorded in the
4250 	 * journal by a prior ext4_error() or ext4_abort()
4251 	 */
4252 
4253 	j_errno = jbd2_journal_errno(journal);
4254 	if (j_errno) {
4255 		char nbuf[16];
4256 
4257 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4258 		ext4_warning(sb, "Filesystem error recorded "
4259 			     "from previous mount: %s", errstr);
4260 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4261 
4262 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4263 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4264 		ext4_commit_super(sb, 1);
4265 
4266 		jbd2_journal_clear_err(journal);
4267 	}
4268 }
4269 
4270 /*
4271  * Force the running and committing transactions to commit,
4272  * and wait on the commit.
4273  */
ext4_force_commit(struct super_block * sb)4274 int ext4_force_commit(struct super_block *sb)
4275 {
4276 	journal_t *journal;
4277 	int ret = 0;
4278 
4279 	if (sb->s_flags & MS_RDONLY)
4280 		return 0;
4281 
4282 	journal = EXT4_SB(sb)->s_journal;
4283 	if (journal) {
4284 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4285 		ret = ext4_journal_force_commit(journal);
4286 	}
4287 
4288 	return ret;
4289 }
4290 
ext4_write_super(struct super_block * sb)4291 static void ext4_write_super(struct super_block *sb)
4292 {
4293 	lock_super(sb);
4294 	ext4_commit_super(sb, 1);
4295 	unlock_super(sb);
4296 }
4297 
ext4_sync_fs(struct super_block * sb,int wait)4298 static int ext4_sync_fs(struct super_block *sb, int wait)
4299 {
4300 	int ret = 0;
4301 	tid_t target;
4302 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4303 
4304 	trace_ext4_sync_fs(sb, wait);
4305 	flush_workqueue(sbi->dio_unwritten_wq);
4306 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4307 		if (wait)
4308 			jbd2_log_wait_commit(sbi->s_journal, target);
4309 	}
4310 	return ret;
4311 }
4312 
4313 /*
4314  * LVM calls this function before a (read-only) snapshot is created.  This
4315  * gives us a chance to flush the journal completely and mark the fs clean.
4316  *
4317  * Note that only this function cannot bring a filesystem to be in a clean
4318  * state independently, because ext4 prevents a new handle from being started
4319  * by @sb->s_frozen, which stays in an upper layer.  It thus needs help from
4320  * the upper layer.
4321  */
ext4_freeze(struct super_block * sb)4322 static int ext4_freeze(struct super_block *sb)
4323 {
4324 	int error = 0;
4325 	journal_t *journal;
4326 
4327 	if (sb->s_flags & MS_RDONLY)
4328 		return 0;
4329 
4330 	journal = EXT4_SB(sb)->s_journal;
4331 
4332 	/* Now we set up the journal barrier. */
4333 	jbd2_journal_lock_updates(journal);
4334 
4335 	/*
4336 	 * Don't clear the needs_recovery flag if we failed to flush
4337 	 * the journal.
4338 	 */
4339 	error = jbd2_journal_flush(journal);
4340 	if (error < 0)
4341 		goto out;
4342 
4343 	/* Journal blocked and flushed, clear needs_recovery flag. */
4344 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4345 	error = ext4_commit_super(sb, 1);
4346 out:
4347 	/* we rely on s_frozen to stop further updates */
4348 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4349 	return error;
4350 }
4351 
4352 /*
4353  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4354  * flag here, even though the filesystem is not technically dirty yet.
4355  */
ext4_unfreeze(struct super_block * sb)4356 static int ext4_unfreeze(struct super_block *sb)
4357 {
4358 	if (sb->s_flags & MS_RDONLY)
4359 		return 0;
4360 
4361 	lock_super(sb);
4362 	/* Reset the needs_recovery flag before the fs is unlocked. */
4363 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4364 	ext4_commit_super(sb, 1);
4365 	unlock_super(sb);
4366 	return 0;
4367 }
4368 
4369 /*
4370  * Structure to save mount options for ext4_remount's benefit
4371  */
4372 struct ext4_mount_options {
4373 	unsigned long s_mount_opt;
4374 	unsigned long s_mount_opt2;
4375 	uid_t s_resuid;
4376 	gid_t s_resgid;
4377 	unsigned long s_commit_interval;
4378 	u32 s_min_batch_time, s_max_batch_time;
4379 #ifdef CONFIG_QUOTA
4380 	int s_jquota_fmt;
4381 	char *s_qf_names[MAXQUOTAS];
4382 #endif
4383 };
4384 
ext4_remount(struct super_block * sb,int * flags,char * data)4385 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4386 {
4387 	struct ext4_super_block *es;
4388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4389 	ext4_fsblk_t n_blocks_count = 0;
4390 	unsigned long old_sb_flags;
4391 	struct ext4_mount_options old_opts;
4392 	int enable_quota = 0;
4393 	ext4_group_t g;
4394 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4395 	int err = 0;
4396 #ifdef CONFIG_QUOTA
4397 	int i;
4398 #endif
4399 	char *orig_data = kstrdup(data, GFP_KERNEL);
4400 
4401 	/* Store the original options */
4402 	lock_super(sb);
4403 	old_sb_flags = sb->s_flags;
4404 	old_opts.s_mount_opt = sbi->s_mount_opt;
4405 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4406 	old_opts.s_resuid = sbi->s_resuid;
4407 	old_opts.s_resgid = sbi->s_resgid;
4408 	old_opts.s_commit_interval = sbi->s_commit_interval;
4409 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4410 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4411 #ifdef CONFIG_QUOTA
4412 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4413 	for (i = 0; i < MAXQUOTAS; i++)
4414 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4415 #endif
4416 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4417 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4418 
4419 	/*
4420 	 * Allow the "check" option to be passed as a remount option.
4421 	 */
4422 	if (!parse_options(data, sb, NULL, &journal_ioprio,
4423 			   &n_blocks_count, 1)) {
4424 		err = -EINVAL;
4425 		goto restore_opts;
4426 	}
4427 
4428 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4429 		ext4_abort(sb, "Abort forced by user");
4430 
4431 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4432 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4433 
4434 	es = sbi->s_es;
4435 
4436 	if (sbi->s_journal) {
4437 		ext4_init_journal_params(sb, sbi->s_journal);
4438 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4439 	}
4440 
4441 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4442 		n_blocks_count > ext4_blocks_count(es)) {
4443 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4444 			err = -EROFS;
4445 			goto restore_opts;
4446 		}
4447 
4448 		if (*flags & MS_RDONLY) {
4449 			err = dquot_suspend(sb, -1);
4450 			if (err < 0)
4451 				goto restore_opts;
4452 
4453 			/*
4454 			 * First of all, the unconditional stuff we have to do
4455 			 * to disable replay of the journal when we next remount
4456 			 */
4457 			sb->s_flags |= MS_RDONLY;
4458 
4459 			/*
4460 			 * OK, test if we are remounting a valid rw partition
4461 			 * readonly, and if so set the rdonly flag and then
4462 			 * mark the partition as valid again.
4463 			 */
4464 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4465 			    (sbi->s_mount_state & EXT4_VALID_FS))
4466 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4467 
4468 			if (sbi->s_journal)
4469 				ext4_mark_recovery_complete(sb, es);
4470 		} else {
4471 			/* Make sure we can mount this feature set readwrite */
4472 			if (!ext4_feature_set_ok(sb, 0)) {
4473 				err = -EROFS;
4474 				goto restore_opts;
4475 			}
4476 			/*
4477 			 * Make sure the group descriptor checksums
4478 			 * are sane.  If they aren't, refuse to remount r/w.
4479 			 */
4480 			for (g = 0; g < sbi->s_groups_count; g++) {
4481 				struct ext4_group_desc *gdp =
4482 					ext4_get_group_desc(sb, g, NULL);
4483 
4484 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4485 					ext4_msg(sb, KERN_ERR,
4486 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4487 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4488 					       le16_to_cpu(gdp->bg_checksum));
4489 					err = -EINVAL;
4490 					goto restore_opts;
4491 				}
4492 			}
4493 
4494 			/*
4495 			 * If we have an unprocessed orphan list hanging
4496 			 * around from a previously readonly bdev mount,
4497 			 * require a full umount/remount for now.
4498 			 */
4499 			if (es->s_last_orphan) {
4500 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4501 				       "remount RDWR because of unprocessed "
4502 				       "orphan inode list.  Please "
4503 				       "umount/remount instead");
4504 				err = -EINVAL;
4505 				goto restore_opts;
4506 			}
4507 
4508 			/*
4509 			 * Mounting a RDONLY partition read-write, so reread
4510 			 * and store the current valid flag.  (It may have
4511 			 * been changed by e2fsck since we originally mounted
4512 			 * the partition.)
4513 			 */
4514 			if (sbi->s_journal)
4515 				ext4_clear_journal_err(sb, es);
4516 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4517 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4518 				goto restore_opts;
4519 			if (!ext4_setup_super(sb, es, 0))
4520 				sb->s_flags &= ~MS_RDONLY;
4521 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4522 						     EXT4_FEATURE_INCOMPAT_MMP))
4523 				if (ext4_multi_mount_protect(sb,
4524 						le64_to_cpu(es->s_mmp_block))) {
4525 					err = -EROFS;
4526 					goto restore_opts;
4527 				}
4528 			enable_quota = 1;
4529 		}
4530 	}
4531 
4532 	/*
4533 	 * Reinitialize lazy itable initialization thread based on
4534 	 * current settings
4535 	 */
4536 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4537 		ext4_unregister_li_request(sb);
4538 	else {
4539 		ext4_group_t first_not_zeroed;
4540 		first_not_zeroed = ext4_has_uninit_itable(sb);
4541 		ext4_register_li_request(sb, first_not_zeroed);
4542 	}
4543 
4544 	ext4_setup_system_zone(sb);
4545 	if (sbi->s_journal == NULL)
4546 		ext4_commit_super(sb, 1);
4547 
4548 #ifdef CONFIG_QUOTA
4549 	/* Release old quota file names */
4550 	for (i = 0; i < MAXQUOTAS; i++)
4551 		if (old_opts.s_qf_names[i] &&
4552 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4553 			kfree(old_opts.s_qf_names[i]);
4554 #endif
4555 	unlock_super(sb);
4556 	if (enable_quota)
4557 		dquot_resume(sb, -1);
4558 
4559 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4560 	kfree(orig_data);
4561 	return 0;
4562 
4563 restore_opts:
4564 	sb->s_flags = old_sb_flags;
4565 	sbi->s_mount_opt = old_opts.s_mount_opt;
4566 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4567 	sbi->s_resuid = old_opts.s_resuid;
4568 	sbi->s_resgid = old_opts.s_resgid;
4569 	sbi->s_commit_interval = old_opts.s_commit_interval;
4570 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4571 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4572 #ifdef CONFIG_QUOTA
4573 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4574 	for (i = 0; i < MAXQUOTAS; i++) {
4575 		if (sbi->s_qf_names[i] &&
4576 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4577 			kfree(sbi->s_qf_names[i]);
4578 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4579 	}
4580 #endif
4581 	unlock_super(sb);
4582 	kfree(orig_data);
4583 	return err;
4584 }
4585 
4586 /*
4587  * Note: calculating the overhead so we can be compatible with
4588  * historical BSD practice is quite difficult in the face of
4589  * clusters/bigalloc.  This is because multiple metadata blocks from
4590  * different block group can end up in the same allocation cluster.
4591  * Calculating the exact overhead in the face of clustered allocation
4592  * requires either O(all block bitmaps) in memory or O(number of block
4593  * groups**2) in time.  We will still calculate the superblock for
4594  * older file systems --- and if we come across with a bigalloc file
4595  * system with zero in s_overhead_clusters the estimate will be close to
4596  * correct especially for very large cluster sizes --- but for newer
4597  * file systems, it's better to calculate this figure once at mkfs
4598  * time, and store it in the superblock.  If the superblock value is
4599  * present (even for non-bigalloc file systems), we will use it.
4600  */
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)4601 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4602 {
4603 	struct super_block *sb = dentry->d_sb;
4604 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4605 	struct ext4_super_block *es = sbi->s_es;
4606 	struct ext4_group_desc *gdp;
4607 	u64 fsid;
4608 	s64 bfree;
4609 
4610 	if (test_opt(sb, MINIX_DF)) {
4611 		sbi->s_overhead_last = 0;
4612 	} else if (es->s_overhead_clusters) {
4613 		sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4614 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4615 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4616 		ext4_fsblk_t overhead = 0;
4617 
4618 		/*
4619 		 * Compute the overhead (FS structures).  This is constant
4620 		 * for a given filesystem unless the number of block groups
4621 		 * changes so we cache the previous value until it does.
4622 		 */
4623 
4624 		/*
4625 		 * All of the blocks before first_data_block are
4626 		 * overhead
4627 		 */
4628 		overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4629 
4630 		/*
4631 		 * Add the overhead found in each block group
4632 		 */
4633 		for (i = 0; i < ngroups; i++) {
4634 			gdp = ext4_get_group_desc(sb, i, NULL);
4635 			overhead += ext4_num_overhead_clusters(sb, i, gdp);
4636 			cond_resched();
4637 		}
4638 		sbi->s_overhead_last = overhead;
4639 		smp_wmb();
4640 		sbi->s_blocks_last = ext4_blocks_count(es);
4641 	}
4642 
4643 	buf->f_type = EXT4_SUPER_MAGIC;
4644 	buf->f_bsize = sb->s_blocksize;
4645 	buf->f_blocks = (ext4_blocks_count(es) -
4646 			 EXT4_C2B(sbi, sbi->s_overhead_last));
4647 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4648 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4649 	/* prevent underflow in case that few free space is available */
4650 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4651 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4652 	if (buf->f_bfree < ext4_r_blocks_count(es))
4653 		buf->f_bavail = 0;
4654 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4655 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4656 	buf->f_namelen = EXT4_NAME_LEN;
4657 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4658 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4659 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4660 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4661 
4662 	return 0;
4663 }
4664 
4665 /* Helper function for writing quotas on sync - we need to start transaction
4666  * before quota file is locked for write. Otherwise the are possible deadlocks:
4667  * Process 1                         Process 2
4668  * ext4_create()                     quota_sync()
4669  *   jbd2_journal_start()                  write_dquot()
4670  *   dquot_initialize()                         down(dqio_mutex)
4671  *     down(dqio_mutex)                    jbd2_journal_start()
4672  *
4673  */
4674 
4675 #ifdef CONFIG_QUOTA
4676 
dquot_to_inode(struct dquot * dquot)4677 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4678 {
4679 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4680 }
4681 
ext4_write_dquot(struct dquot * dquot)4682 static int ext4_write_dquot(struct dquot *dquot)
4683 {
4684 	int ret, err;
4685 	handle_t *handle;
4686 	struct inode *inode;
4687 
4688 	inode = dquot_to_inode(dquot);
4689 	handle = ext4_journal_start(inode,
4690 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4691 	if (IS_ERR(handle))
4692 		return PTR_ERR(handle);
4693 	ret = dquot_commit(dquot);
4694 	err = ext4_journal_stop(handle);
4695 	if (!ret)
4696 		ret = err;
4697 	return ret;
4698 }
4699 
ext4_acquire_dquot(struct dquot * dquot)4700 static int ext4_acquire_dquot(struct dquot *dquot)
4701 {
4702 	int ret, err;
4703 	handle_t *handle;
4704 
4705 	handle = ext4_journal_start(dquot_to_inode(dquot),
4706 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4707 	if (IS_ERR(handle))
4708 		return PTR_ERR(handle);
4709 	ret = dquot_acquire(dquot);
4710 	err = ext4_journal_stop(handle);
4711 	if (!ret)
4712 		ret = err;
4713 	return ret;
4714 }
4715 
ext4_release_dquot(struct dquot * dquot)4716 static int ext4_release_dquot(struct dquot *dquot)
4717 {
4718 	int ret, err;
4719 	handle_t *handle;
4720 
4721 	handle = ext4_journal_start(dquot_to_inode(dquot),
4722 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4723 	if (IS_ERR(handle)) {
4724 		/* Release dquot anyway to avoid endless cycle in dqput() */
4725 		dquot_release(dquot);
4726 		return PTR_ERR(handle);
4727 	}
4728 	ret = dquot_release(dquot);
4729 	err = ext4_journal_stop(handle);
4730 	if (!ret)
4731 		ret = err;
4732 	return ret;
4733 }
4734 
ext4_mark_dquot_dirty(struct dquot * dquot)4735 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4736 {
4737 	/* Are we journaling quotas? */
4738 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4739 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4740 		dquot_mark_dquot_dirty(dquot);
4741 		return ext4_write_dquot(dquot);
4742 	} else {
4743 		return dquot_mark_dquot_dirty(dquot);
4744 	}
4745 }
4746 
ext4_write_info(struct super_block * sb,int type)4747 static int ext4_write_info(struct super_block *sb, int type)
4748 {
4749 	int ret, err;
4750 	handle_t *handle;
4751 
4752 	/* Data block + inode block */
4753 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4754 	if (IS_ERR(handle))
4755 		return PTR_ERR(handle);
4756 	ret = dquot_commit_info(sb, type);
4757 	err = ext4_journal_stop(handle);
4758 	if (!ret)
4759 		ret = err;
4760 	return ret;
4761 }
4762 
4763 /*
4764  * Turn on quotas during mount time - we need to find
4765  * the quota file and such...
4766  */
ext4_quota_on_mount(struct super_block * sb,int type)4767 static int ext4_quota_on_mount(struct super_block *sb, int type)
4768 {
4769 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4770 					EXT4_SB(sb)->s_jquota_fmt, type);
4771 }
4772 
4773 /*
4774  * Standard function to be called on quota_on
4775  */
ext4_quota_on(struct super_block * sb,int type,int format_id,struct path * path)4776 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4777 			 struct path *path)
4778 {
4779 	int err;
4780 
4781 	if (!test_opt(sb, QUOTA))
4782 		return -EINVAL;
4783 
4784 	/* Quotafile not on the same filesystem? */
4785 	if (path->dentry->d_sb != sb)
4786 		return -EXDEV;
4787 	/* Journaling quota? */
4788 	if (EXT4_SB(sb)->s_qf_names[type]) {
4789 		/* Quotafile not in fs root? */
4790 		if (path->dentry->d_parent != sb->s_root)
4791 			ext4_msg(sb, KERN_WARNING,
4792 				"Quota file not on filesystem root. "
4793 				"Journaled quota will not work");
4794 	}
4795 
4796 	/*
4797 	 * When we journal data on quota file, we have to flush journal to see
4798 	 * all updates to the file when we bypass pagecache...
4799 	 */
4800 	if (EXT4_SB(sb)->s_journal &&
4801 	    ext4_should_journal_data(path->dentry->d_inode)) {
4802 		/*
4803 		 * We don't need to lock updates but journal_flush() could
4804 		 * otherwise be livelocked...
4805 		 */
4806 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4807 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4808 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4809 		if (err)
4810 			return err;
4811 	}
4812 
4813 	return dquot_quota_on(sb, type, format_id, path);
4814 }
4815 
ext4_quota_off(struct super_block * sb,int type)4816 static int ext4_quota_off(struct super_block *sb, int type)
4817 {
4818 	struct inode *inode = sb_dqopt(sb)->files[type];
4819 	handle_t *handle;
4820 
4821 	/* Force all delayed allocation blocks to be allocated.
4822 	 * Caller already holds s_umount sem */
4823 	if (test_opt(sb, DELALLOC))
4824 		sync_filesystem(sb);
4825 
4826 	if (!inode)
4827 		goto out;
4828 
4829 	/* Update modification times of quota files when userspace can
4830 	 * start looking at them */
4831 	handle = ext4_journal_start(inode, 1);
4832 	if (IS_ERR(handle))
4833 		goto out;
4834 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4835 	ext4_mark_inode_dirty(handle, inode);
4836 	ext4_journal_stop(handle);
4837 
4838 out:
4839 	return dquot_quota_off(sb, type);
4840 }
4841 
4842 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4843  * acquiring the locks... As quota files are never truncated and quota code
4844  * itself serializes the operations (and no one else should touch the files)
4845  * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)4846 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4847 			       size_t len, loff_t off)
4848 {
4849 	struct inode *inode = sb_dqopt(sb)->files[type];
4850 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4851 	int err = 0;
4852 	int offset = off & (sb->s_blocksize - 1);
4853 	int tocopy;
4854 	size_t toread;
4855 	struct buffer_head *bh;
4856 	loff_t i_size = i_size_read(inode);
4857 
4858 	if (off > i_size)
4859 		return 0;
4860 	if (off+len > i_size)
4861 		len = i_size-off;
4862 	toread = len;
4863 	while (toread > 0) {
4864 		tocopy = sb->s_blocksize - offset < toread ?
4865 				sb->s_blocksize - offset : toread;
4866 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4867 		if (err)
4868 			return err;
4869 		if (!bh)	/* A hole? */
4870 			memset(data, 0, tocopy);
4871 		else
4872 			memcpy(data, bh->b_data+offset, tocopy);
4873 		brelse(bh);
4874 		offset = 0;
4875 		toread -= tocopy;
4876 		data += tocopy;
4877 		blk++;
4878 	}
4879 	return len;
4880 }
4881 
4882 /* Write to quotafile (we know the transaction is already started and has
4883  * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)4884 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4885 				const char *data, size_t len, loff_t off)
4886 {
4887 	struct inode *inode = sb_dqopt(sb)->files[type];
4888 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4889 	int err = 0;
4890 	int offset = off & (sb->s_blocksize - 1);
4891 	struct buffer_head *bh;
4892 	handle_t *handle = journal_current_handle();
4893 
4894 	if (EXT4_SB(sb)->s_journal && !handle) {
4895 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4896 			" cancelled because transaction is not started",
4897 			(unsigned long long)off, (unsigned long long)len);
4898 		return -EIO;
4899 	}
4900 	/*
4901 	 * Since we account only one data block in transaction credits,
4902 	 * then it is impossible to cross a block boundary.
4903 	 */
4904 	if (sb->s_blocksize - offset < len) {
4905 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4906 			" cancelled because not block aligned",
4907 			(unsigned long long)off, (unsigned long long)len);
4908 		return -EIO;
4909 	}
4910 
4911 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4912 	bh = ext4_bread(handle, inode, blk, 1, &err);
4913 	if (!bh)
4914 		goto out;
4915 	err = ext4_journal_get_write_access(handle, bh);
4916 	if (err) {
4917 		brelse(bh);
4918 		goto out;
4919 	}
4920 	lock_buffer(bh);
4921 	memcpy(bh->b_data+offset, data, len);
4922 	flush_dcache_page(bh->b_page);
4923 	unlock_buffer(bh);
4924 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4925 	brelse(bh);
4926 out:
4927 	if (err) {
4928 		mutex_unlock(&inode->i_mutex);
4929 		return err;
4930 	}
4931 	if (inode->i_size < off + len) {
4932 		i_size_write(inode, off + len);
4933 		EXT4_I(inode)->i_disksize = inode->i_size;
4934 		ext4_mark_inode_dirty(handle, inode);
4935 	}
4936 	mutex_unlock(&inode->i_mutex);
4937 	return len;
4938 }
4939 
4940 #endif
4941 
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)4942 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4943 		       const char *dev_name, void *data)
4944 {
4945 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4946 }
4947 
4948 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext2(void)4949 static inline void register_as_ext2(void)
4950 {
4951 	int err = register_filesystem(&ext2_fs_type);
4952 	if (err)
4953 		printk(KERN_WARNING
4954 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4955 }
4956 
unregister_as_ext2(void)4957 static inline void unregister_as_ext2(void)
4958 {
4959 	unregister_filesystem(&ext2_fs_type);
4960 }
4961 
ext2_feature_set_ok(struct super_block * sb)4962 static inline int ext2_feature_set_ok(struct super_block *sb)
4963 {
4964 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4965 		return 0;
4966 	if (sb->s_flags & MS_RDONLY)
4967 		return 1;
4968 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4969 		return 0;
4970 	return 1;
4971 }
4972 MODULE_ALIAS("ext2");
4973 #else
register_as_ext2(void)4974 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)4975 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)4976 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4977 #endif
4978 
4979 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
register_as_ext3(void)4980 static inline void register_as_ext3(void)
4981 {
4982 	int err = register_filesystem(&ext3_fs_type);
4983 	if (err)
4984 		printk(KERN_WARNING
4985 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4986 }
4987 
unregister_as_ext3(void)4988 static inline void unregister_as_ext3(void)
4989 {
4990 	unregister_filesystem(&ext3_fs_type);
4991 }
4992 
ext3_feature_set_ok(struct super_block * sb)4993 static inline int ext3_feature_set_ok(struct super_block *sb)
4994 {
4995 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4996 		return 0;
4997 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4998 		return 0;
4999 	if (sb->s_flags & MS_RDONLY)
5000 		return 1;
5001 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5002 		return 0;
5003 	return 1;
5004 }
5005 MODULE_ALIAS("ext3");
5006 #else
register_as_ext3(void)5007 static inline void register_as_ext3(void) { }
unregister_as_ext3(void)5008 static inline void unregister_as_ext3(void) { }
ext3_feature_set_ok(struct super_block * sb)5009 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5010 #endif
5011 
5012 static struct file_system_type ext4_fs_type = {
5013 	.owner		= THIS_MODULE,
5014 	.name		= "ext4",
5015 	.mount		= ext4_mount,
5016 	.kill_sb	= kill_block_super,
5017 	.fs_flags	= FS_REQUIRES_DEV,
5018 };
5019 
ext4_init_feat_adverts(void)5020 static int __init ext4_init_feat_adverts(void)
5021 {
5022 	struct ext4_features *ef;
5023 	int ret = -ENOMEM;
5024 
5025 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5026 	if (!ef)
5027 		goto out;
5028 
5029 	ef->f_kobj.kset = ext4_kset;
5030 	init_completion(&ef->f_kobj_unregister);
5031 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5032 				   "features");
5033 	if (ret) {
5034 		kfree(ef);
5035 		goto out;
5036 	}
5037 
5038 	ext4_feat = ef;
5039 	ret = 0;
5040 out:
5041 	return ret;
5042 }
5043 
ext4_exit_feat_adverts(void)5044 static void ext4_exit_feat_adverts(void)
5045 {
5046 	kobject_put(&ext4_feat->f_kobj);
5047 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5048 	kfree(ext4_feat);
5049 }
5050 
5051 /* Shared across all ext4 file systems */
5052 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5053 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5054 
ext4_init_fs(void)5055 static int __init ext4_init_fs(void)
5056 {
5057 	int i, err;
5058 
5059 	ext4_check_flag_values();
5060 
5061 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5062 		mutex_init(&ext4__aio_mutex[i]);
5063 		init_waitqueue_head(&ext4__ioend_wq[i]);
5064 	}
5065 
5066 	err = ext4_init_pageio();
5067 	if (err)
5068 		return err;
5069 	err = ext4_init_system_zone();
5070 	if (err)
5071 		goto out6;
5072 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5073 	if (!ext4_kset)
5074 		goto out5;
5075 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5076 
5077 	err = ext4_init_feat_adverts();
5078 	if (err)
5079 		goto out4;
5080 
5081 	err = ext4_init_mballoc();
5082 	if (err)
5083 		goto out3;
5084 
5085 	err = ext4_init_xattr();
5086 	if (err)
5087 		goto out2;
5088 	err = init_inodecache();
5089 	if (err)
5090 		goto out1;
5091 	register_as_ext3();
5092 	register_as_ext2();
5093 	err = register_filesystem(&ext4_fs_type);
5094 	if (err)
5095 		goto out;
5096 
5097 	ext4_li_info = NULL;
5098 	mutex_init(&ext4_li_mtx);
5099 	return 0;
5100 out:
5101 	unregister_as_ext2();
5102 	unregister_as_ext3();
5103 	destroy_inodecache();
5104 out1:
5105 	ext4_exit_xattr();
5106 out2:
5107 	ext4_exit_mballoc();
5108 out3:
5109 	ext4_exit_feat_adverts();
5110 out4:
5111 	if (ext4_proc_root)
5112 		remove_proc_entry("fs/ext4", NULL);
5113 	kset_unregister(ext4_kset);
5114 out5:
5115 	ext4_exit_system_zone();
5116 out6:
5117 	ext4_exit_pageio();
5118 	return err;
5119 }
5120 
ext4_exit_fs(void)5121 static void __exit ext4_exit_fs(void)
5122 {
5123 	ext4_destroy_lazyinit_thread();
5124 	unregister_as_ext2();
5125 	unregister_as_ext3();
5126 	unregister_filesystem(&ext4_fs_type);
5127 	destroy_inodecache();
5128 	ext4_exit_xattr();
5129 	ext4_exit_mballoc();
5130 	ext4_exit_feat_adverts();
5131 	remove_proc_entry("fs/ext4", NULL);
5132 	kset_unregister(ext4_kset);
5133 	ext4_exit_system_zone();
5134 	ext4_exit_pageio();
5135 }
5136 
5137 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5138 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5139 MODULE_LICENSE("GPL");
5140 module_init(ext4_init_fs)
5141 module_exit(ext4_exit_fs)
5142