1 /*
2  *  linux/fs/ext4/ialloc.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  BSD ufs-inspired inode and directory allocation by
10  *  Stephen Tweedie (sct@redhat.com), 1993
11  *  Big-endian to little-endian byte-swapping/bitmaps by
12  *        David S. Miller (davem@caip.rutgers.edu), 1995
13  */
14 
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
26 
27 #include "ext4.h"
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 #include <trace/events/ext4.h>
33 
34 /*
35  * ialloc.c contains the inodes allocation and deallocation routines
36  */
37 
38 /*
39  * The free inodes are managed by bitmaps.  A file system contains several
40  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
41  * block for inodes, N blocks for the inode table and data blocks.
42  *
43  * The file system contains group descriptors which are located after the
44  * super block.  Each descriptor contains the number of the bitmap block and
45  * the free blocks count in the block.
46  */
47 
48 /*
49  * To avoid calling the atomic setbit hundreds or thousands of times, we only
50  * need to use it within a single byte (to ensure we get endianness right).
51  * We can use memset for the rest of the bitmap as there are no other users.
52  */
ext4_mark_bitmap_end(int start_bit,int end_bit,char * bitmap)53 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 {
55 	int i;
56 
57 	if (start_bit >= end_bit)
58 		return;
59 
60 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 		ext4_set_bit(i, bitmap);
63 	if (i < end_bit)
64 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65 }
66 
67 /* Initializes an uninitialized inode bitmap */
ext4_init_inode_bitmap(struct super_block * sb,struct buffer_head * bh,ext4_group_t block_group,struct ext4_group_desc * gdp)68 static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 				       struct buffer_head *bh,
70 				       ext4_group_t block_group,
71 				       struct ext4_group_desc *gdp)
72 {
73 	struct ext4_sb_info *sbi = EXT4_SB(sb);
74 
75 	J_ASSERT_BH(bh, buffer_locked(bh));
76 
77 	/* If checksum is bad mark all blocks and inodes use to prevent
78 	 * allocation, essentially implementing a per-group read-only flag. */
79 	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
80 		ext4_error(sb, "Checksum bad for group %u", block_group);
81 		ext4_free_group_clusters_set(sb, gdp, 0);
82 		ext4_free_inodes_set(sb, gdp, 0);
83 		ext4_itable_unused_set(sb, gdp, 0);
84 		memset(bh->b_data, 0xff, sb->s_blocksize);
85 		return 0;
86 	}
87 
88 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
89 	ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
90 			bh->b_data);
91 
92 	return EXT4_INODES_PER_GROUP(sb);
93 }
94 
95 /*
96  * Read the inode allocation bitmap for a given block_group, reading
97  * into the specified slot in the superblock's bitmap cache.
98  *
99  * Return buffer_head of bitmap on success or NULL.
100  */
101 static struct buffer_head *
ext4_read_inode_bitmap(struct super_block * sb,ext4_group_t block_group)102 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
103 {
104 	struct ext4_group_desc *desc;
105 	struct buffer_head *bh = NULL;
106 	ext4_fsblk_t bitmap_blk;
107 
108 	desc = ext4_get_group_desc(sb, block_group, NULL);
109 	if (!desc)
110 		return NULL;
111 
112 	bitmap_blk = ext4_inode_bitmap(sb, desc);
113 	bh = sb_getblk(sb, bitmap_blk);
114 	if (unlikely(!bh)) {
115 		ext4_error(sb, "Cannot read inode bitmap - "
116 			    "block_group = %u, inode_bitmap = %llu",
117 			    block_group, bitmap_blk);
118 		return NULL;
119 	}
120 	if (bitmap_uptodate(bh))
121 		return bh;
122 
123 	lock_buffer(bh);
124 	if (bitmap_uptodate(bh)) {
125 		unlock_buffer(bh);
126 		return bh;
127 	}
128 
129 	ext4_lock_group(sb, block_group);
130 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
131 		ext4_init_inode_bitmap(sb, bh, block_group, desc);
132 		set_bitmap_uptodate(bh);
133 		set_buffer_uptodate(bh);
134 		ext4_unlock_group(sb, block_group);
135 		unlock_buffer(bh);
136 		return bh;
137 	}
138 	ext4_unlock_group(sb, block_group);
139 
140 	if (buffer_uptodate(bh)) {
141 		/*
142 		 * if not uninit if bh is uptodate,
143 		 * bitmap is also uptodate
144 		 */
145 		set_bitmap_uptodate(bh);
146 		unlock_buffer(bh);
147 		return bh;
148 	}
149 	/*
150 	 * submit the buffer_head for read. We can
151 	 * safely mark the bitmap as uptodate now.
152 	 * We do it here so the bitmap uptodate bit
153 	 * get set with buffer lock held.
154 	 */
155 	trace_ext4_load_inode_bitmap(sb, block_group);
156 	set_bitmap_uptodate(bh);
157 	if (bh_submit_read(bh) < 0) {
158 		put_bh(bh);
159 		ext4_error(sb, "Cannot read inode bitmap - "
160 			    "block_group = %u, inode_bitmap = %llu",
161 			    block_group, bitmap_blk);
162 		return NULL;
163 	}
164 	return bh;
165 }
166 
167 /*
168  * NOTE! When we get the inode, we're the only people
169  * that have access to it, and as such there are no
170  * race conditions we have to worry about. The inode
171  * is not on the hash-lists, and it cannot be reached
172  * through the filesystem because the directory entry
173  * has been deleted earlier.
174  *
175  * HOWEVER: we must make sure that we get no aliases,
176  * which means that we have to call "clear_inode()"
177  * _before_ we mark the inode not in use in the inode
178  * bitmaps. Otherwise a newly created file might use
179  * the same inode number (not actually the same pointer
180  * though), and then we'd have two inodes sharing the
181  * same inode number and space on the harddisk.
182  */
ext4_free_inode(handle_t * handle,struct inode * inode)183 void ext4_free_inode(handle_t *handle, struct inode *inode)
184 {
185 	struct super_block *sb = inode->i_sb;
186 	int is_directory;
187 	unsigned long ino;
188 	struct buffer_head *bitmap_bh = NULL;
189 	struct buffer_head *bh2;
190 	ext4_group_t block_group;
191 	unsigned long bit;
192 	struct ext4_group_desc *gdp;
193 	struct ext4_super_block *es;
194 	struct ext4_sb_info *sbi;
195 	int fatal = 0, err, count, cleared;
196 
197 	if (atomic_read(&inode->i_count) > 1) {
198 		printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
199 		       atomic_read(&inode->i_count));
200 		return;
201 	}
202 	if (inode->i_nlink) {
203 		printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
204 		       inode->i_nlink);
205 		return;
206 	}
207 	if (!sb) {
208 		printk(KERN_ERR "ext4_free_inode: inode on "
209 		       "nonexistent device\n");
210 		return;
211 	}
212 	sbi = EXT4_SB(sb);
213 
214 	ino = inode->i_ino;
215 	ext4_debug("freeing inode %lu\n", ino);
216 	trace_ext4_free_inode(inode);
217 
218 	/*
219 	 * Note: we must free any quota before locking the superblock,
220 	 * as writing the quota to disk may need the lock as well.
221 	 */
222 	dquot_initialize(inode);
223 	ext4_xattr_delete_inode(handle, inode);
224 	dquot_free_inode(inode);
225 	dquot_drop(inode);
226 
227 	is_directory = S_ISDIR(inode->i_mode);
228 
229 	/* Do this BEFORE marking the inode not in use or returning an error */
230 	ext4_clear_inode(inode);
231 
232 	es = EXT4_SB(sb)->s_es;
233 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
234 		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
235 		goto error_return;
236 	}
237 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
238 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
239 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
240 	if (!bitmap_bh)
241 		goto error_return;
242 
243 	BUFFER_TRACE(bitmap_bh, "get_write_access");
244 	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
245 	if (fatal)
246 		goto error_return;
247 
248 	fatal = -ESRCH;
249 	gdp = ext4_get_group_desc(sb, block_group, &bh2);
250 	if (gdp) {
251 		BUFFER_TRACE(bh2, "get_write_access");
252 		fatal = ext4_journal_get_write_access(handle, bh2);
253 	}
254 	ext4_lock_group(sb, block_group);
255 	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
256 	if (fatal || !cleared) {
257 		ext4_unlock_group(sb, block_group);
258 		goto out;
259 	}
260 
261 	count = ext4_free_inodes_count(sb, gdp) + 1;
262 	ext4_free_inodes_set(sb, gdp, count);
263 	if (is_directory) {
264 		count = ext4_used_dirs_count(sb, gdp) - 1;
265 		ext4_used_dirs_set(sb, gdp, count);
266 		percpu_counter_dec(&sbi->s_dirs_counter);
267 	}
268 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
269 	ext4_unlock_group(sb, block_group);
270 
271 	percpu_counter_inc(&sbi->s_freeinodes_counter);
272 	if (sbi->s_log_groups_per_flex) {
273 		ext4_group_t f = ext4_flex_group(sbi, block_group);
274 
275 		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
276 		if (is_directory)
277 			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
278 	}
279 	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
280 	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
281 out:
282 	if (cleared) {
283 		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
284 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
285 		if (!fatal)
286 			fatal = err;
287 		ext4_mark_super_dirty(sb);
288 	} else
289 		ext4_error(sb, "bit already cleared for inode %lu", ino);
290 
291 error_return:
292 	brelse(bitmap_bh);
293 	ext4_std_error(sb, fatal);
294 }
295 
296 struct orlov_stats {
297 	__u32 free_inodes;
298 	__u32 free_clusters;
299 	__u32 used_dirs;
300 };
301 
302 /*
303  * Helper function for Orlov's allocator; returns critical information
304  * for a particular block group or flex_bg.  If flex_size is 1, then g
305  * is a block group number; otherwise it is flex_bg number.
306  */
get_orlov_stats(struct super_block * sb,ext4_group_t g,int flex_size,struct orlov_stats * stats)307 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
308 			    int flex_size, struct orlov_stats *stats)
309 {
310 	struct ext4_group_desc *desc;
311 	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
312 
313 	if (flex_size > 1) {
314 		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
315 		stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
316 		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
317 		return;
318 	}
319 
320 	desc = ext4_get_group_desc(sb, g, NULL);
321 	if (desc) {
322 		stats->free_inodes = ext4_free_inodes_count(sb, desc);
323 		stats->free_clusters = ext4_free_group_clusters(sb, desc);
324 		stats->used_dirs = ext4_used_dirs_count(sb, desc);
325 	} else {
326 		stats->free_inodes = 0;
327 		stats->free_clusters = 0;
328 		stats->used_dirs = 0;
329 	}
330 }
331 
332 /*
333  * Orlov's allocator for directories.
334  *
335  * We always try to spread first-level directories.
336  *
337  * If there are blockgroups with both free inodes and free blocks counts
338  * not worse than average we return one with smallest directory count.
339  * Otherwise we simply return a random group.
340  *
341  * For the rest rules look so:
342  *
343  * It's OK to put directory into a group unless
344  * it has too many directories already (max_dirs) or
345  * it has too few free inodes left (min_inodes) or
346  * it has too few free blocks left (min_blocks) or
347  * Parent's group is preferred, if it doesn't satisfy these
348  * conditions we search cyclically through the rest. If none
349  * of the groups look good we just look for a group with more
350  * free inodes than average (starting at parent's group).
351  */
352 
find_group_orlov(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode,const struct qstr * qstr)353 static int find_group_orlov(struct super_block *sb, struct inode *parent,
354 			    ext4_group_t *group, umode_t mode,
355 			    const struct qstr *qstr)
356 {
357 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
358 	struct ext4_sb_info *sbi = EXT4_SB(sb);
359 	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
360 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
361 	unsigned int freei, avefreei, grp_free;
362 	ext4_fsblk_t freeb, avefreec;
363 	unsigned int ndirs;
364 	int max_dirs, min_inodes;
365 	ext4_grpblk_t min_clusters;
366 	ext4_group_t i, grp, g, ngroups;
367 	struct ext4_group_desc *desc;
368 	struct orlov_stats stats;
369 	int flex_size = ext4_flex_bg_size(sbi);
370 	struct dx_hash_info hinfo;
371 
372 	ngroups = real_ngroups;
373 	if (flex_size > 1) {
374 		ngroups = (real_ngroups + flex_size - 1) >>
375 			sbi->s_log_groups_per_flex;
376 		parent_group >>= sbi->s_log_groups_per_flex;
377 	}
378 
379 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
380 	avefreei = freei / ngroups;
381 	freeb = EXT4_C2B(sbi,
382 		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
383 	avefreec = freeb;
384 	do_div(avefreec, ngroups);
385 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
386 
387 	if (S_ISDIR(mode) &&
388 	    ((parent == sb->s_root->d_inode) ||
389 	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
390 		int best_ndir = inodes_per_group;
391 		int ret = -1;
392 
393 		if (qstr) {
394 			hinfo.hash_version = DX_HASH_HALF_MD4;
395 			hinfo.seed = sbi->s_hash_seed;
396 			ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
397 			grp = hinfo.hash;
398 		} else
399 			get_random_bytes(&grp, sizeof(grp));
400 		parent_group = (unsigned)grp % ngroups;
401 		for (i = 0; i < ngroups; i++) {
402 			g = (parent_group + i) % ngroups;
403 			get_orlov_stats(sb, g, flex_size, &stats);
404 			if (!stats.free_inodes)
405 				continue;
406 			if (stats.used_dirs >= best_ndir)
407 				continue;
408 			if (stats.free_inodes < avefreei)
409 				continue;
410 			if (stats.free_clusters < avefreec)
411 				continue;
412 			grp = g;
413 			ret = 0;
414 			best_ndir = stats.used_dirs;
415 		}
416 		if (ret)
417 			goto fallback;
418 	found_flex_bg:
419 		if (flex_size == 1) {
420 			*group = grp;
421 			return 0;
422 		}
423 
424 		/*
425 		 * We pack inodes at the beginning of the flexgroup's
426 		 * inode tables.  Block allocation decisions will do
427 		 * something similar, although regular files will
428 		 * start at 2nd block group of the flexgroup.  See
429 		 * ext4_ext_find_goal() and ext4_find_near().
430 		 */
431 		grp *= flex_size;
432 		for (i = 0; i < flex_size; i++) {
433 			if (grp+i >= real_ngroups)
434 				break;
435 			desc = ext4_get_group_desc(sb, grp+i, NULL);
436 			if (desc && ext4_free_inodes_count(sb, desc)) {
437 				*group = grp+i;
438 				return 0;
439 			}
440 		}
441 		goto fallback;
442 	}
443 
444 	max_dirs = ndirs / ngroups + inodes_per_group / 16;
445 	min_inodes = avefreei - inodes_per_group*flex_size / 4;
446 	if (min_inodes < 1)
447 		min_inodes = 1;
448 	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
449 
450 	/*
451 	 * Start looking in the flex group where we last allocated an
452 	 * inode for this parent directory
453 	 */
454 	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
455 		parent_group = EXT4_I(parent)->i_last_alloc_group;
456 		if (flex_size > 1)
457 			parent_group >>= sbi->s_log_groups_per_flex;
458 	}
459 
460 	for (i = 0; i < ngroups; i++) {
461 		grp = (parent_group + i) % ngroups;
462 		get_orlov_stats(sb, grp, flex_size, &stats);
463 		if (stats.used_dirs >= max_dirs)
464 			continue;
465 		if (stats.free_inodes < min_inodes)
466 			continue;
467 		if (stats.free_clusters < min_clusters)
468 			continue;
469 		goto found_flex_bg;
470 	}
471 
472 fallback:
473 	ngroups = real_ngroups;
474 	avefreei = freei / ngroups;
475 fallback_retry:
476 	parent_group = EXT4_I(parent)->i_block_group;
477 	for (i = 0; i < ngroups; i++) {
478 		grp = (parent_group + i) % ngroups;
479 		desc = ext4_get_group_desc(sb, grp, NULL);
480 		grp_free = ext4_free_inodes_count(sb, desc);
481 		if (desc && grp_free && grp_free >= avefreei) {
482 			*group = grp;
483 			return 0;
484 		}
485 	}
486 
487 	if (avefreei) {
488 		/*
489 		 * The free-inodes counter is approximate, and for really small
490 		 * filesystems the above test can fail to find any blockgroups
491 		 */
492 		avefreei = 0;
493 		goto fallback_retry;
494 	}
495 
496 	return -1;
497 }
498 
find_group_other(struct super_block * sb,struct inode * parent,ext4_group_t * group,umode_t mode)499 static int find_group_other(struct super_block *sb, struct inode *parent,
500 			    ext4_group_t *group, umode_t mode)
501 {
502 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
503 	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
504 	struct ext4_group_desc *desc;
505 	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
506 
507 	/*
508 	 * Try to place the inode is the same flex group as its
509 	 * parent.  If we can't find space, use the Orlov algorithm to
510 	 * find another flex group, and store that information in the
511 	 * parent directory's inode information so that use that flex
512 	 * group for future allocations.
513 	 */
514 	if (flex_size > 1) {
515 		int retry = 0;
516 
517 	try_again:
518 		parent_group &= ~(flex_size-1);
519 		last = parent_group + flex_size;
520 		if (last > ngroups)
521 			last = ngroups;
522 		for  (i = parent_group; i < last; i++) {
523 			desc = ext4_get_group_desc(sb, i, NULL);
524 			if (desc && ext4_free_inodes_count(sb, desc)) {
525 				*group = i;
526 				return 0;
527 			}
528 		}
529 		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
530 			retry = 1;
531 			parent_group = EXT4_I(parent)->i_last_alloc_group;
532 			goto try_again;
533 		}
534 		/*
535 		 * If this didn't work, use the Orlov search algorithm
536 		 * to find a new flex group; we pass in the mode to
537 		 * avoid the topdir algorithms.
538 		 */
539 		*group = parent_group + flex_size;
540 		if (*group > ngroups)
541 			*group = 0;
542 		return find_group_orlov(sb, parent, group, mode, NULL);
543 	}
544 
545 	/*
546 	 * Try to place the inode in its parent directory
547 	 */
548 	*group = parent_group;
549 	desc = ext4_get_group_desc(sb, *group, NULL);
550 	if (desc && ext4_free_inodes_count(sb, desc) &&
551 	    ext4_free_group_clusters(sb, desc))
552 		return 0;
553 
554 	/*
555 	 * We're going to place this inode in a different blockgroup from its
556 	 * parent.  We want to cause files in a common directory to all land in
557 	 * the same blockgroup.  But we want files which are in a different
558 	 * directory which shares a blockgroup with our parent to land in a
559 	 * different blockgroup.
560 	 *
561 	 * So add our directory's i_ino into the starting point for the hash.
562 	 */
563 	*group = (*group + parent->i_ino) % ngroups;
564 
565 	/*
566 	 * Use a quadratic hash to find a group with a free inode and some free
567 	 * blocks.
568 	 */
569 	for (i = 1; i < ngroups; i <<= 1) {
570 		*group += i;
571 		if (*group >= ngroups)
572 			*group -= ngroups;
573 		desc = ext4_get_group_desc(sb, *group, NULL);
574 		if (desc && ext4_free_inodes_count(sb, desc) &&
575 		    ext4_free_group_clusters(sb, desc))
576 			return 0;
577 	}
578 
579 	/*
580 	 * That failed: try linear search for a free inode, even if that group
581 	 * has no free blocks.
582 	 */
583 	*group = parent_group;
584 	for (i = 0; i < ngroups; i++) {
585 		if (++*group >= ngroups)
586 			*group = 0;
587 		desc = ext4_get_group_desc(sb, *group, NULL);
588 		if (desc && ext4_free_inodes_count(sb, desc))
589 			return 0;
590 	}
591 
592 	return -1;
593 }
594 
595 /*
596  * claim the inode from the inode bitmap. If the group
597  * is uninit we need to take the groups's ext4_group_lock
598  * and clear the uninit flag. The inode bitmap update
599  * and group desc uninit flag clear should be done
600  * after holding ext4_group_lock so that ext4_read_inode_bitmap
601  * doesn't race with the ext4_claim_inode
602  */
ext4_claim_inode(struct super_block * sb,struct buffer_head * inode_bitmap_bh,unsigned long ino,ext4_group_t group,umode_t mode)603 static int ext4_claim_inode(struct super_block *sb,
604 			struct buffer_head *inode_bitmap_bh,
605 			unsigned long ino, ext4_group_t group, umode_t mode)
606 {
607 	int free = 0, retval = 0, count;
608 	struct ext4_sb_info *sbi = EXT4_SB(sb);
609 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
610 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
611 
612 	/*
613 	 * We have to be sure that new inode allocation does not race with
614 	 * inode table initialization, because otherwise we may end up
615 	 * allocating and writing new inode right before sb_issue_zeroout
616 	 * takes place and overwriting our new inode with zeroes. So we
617 	 * take alloc_sem to prevent it.
618 	 */
619 	down_read(&grp->alloc_sem);
620 	ext4_lock_group(sb, group);
621 	if (ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data)) {
622 		/* not a free inode */
623 		retval = 1;
624 		goto err_ret;
625 	}
626 	ino++;
627 	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
628 			ino > EXT4_INODES_PER_GROUP(sb)) {
629 		ext4_unlock_group(sb, group);
630 		up_read(&grp->alloc_sem);
631 		ext4_error(sb, "reserved inode or inode > inodes count - "
632 			   "block_group = %u, inode=%lu", group,
633 			   ino + group * EXT4_INODES_PER_GROUP(sb));
634 		return 1;
635 	}
636 	/* If we didn't allocate from within the initialized part of the inode
637 	 * table then we need to initialize up to this inode. */
638 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
639 
640 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
641 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
642 			/* When marking the block group with
643 			 * ~EXT4_BG_INODE_UNINIT we don't want to depend
644 			 * on the value of bg_itable_unused even though
645 			 * mke2fs could have initialized the same for us.
646 			 * Instead we calculated the value below
647 			 */
648 
649 			free = 0;
650 		} else {
651 			free = EXT4_INODES_PER_GROUP(sb) -
652 				ext4_itable_unused_count(sb, gdp);
653 		}
654 
655 		/*
656 		 * Check the relative inode number against the last used
657 		 * relative inode number in this group. if it is greater
658 		 * we need to  update the bg_itable_unused count
659 		 *
660 		 */
661 		if (ino > free)
662 			ext4_itable_unused_set(sb, gdp,
663 					(EXT4_INODES_PER_GROUP(sb) - ino));
664 	}
665 	count = ext4_free_inodes_count(sb, gdp) - 1;
666 	ext4_free_inodes_set(sb, gdp, count);
667 	if (S_ISDIR(mode)) {
668 		count = ext4_used_dirs_count(sb, gdp) + 1;
669 		ext4_used_dirs_set(sb, gdp, count);
670 		if (sbi->s_log_groups_per_flex) {
671 			ext4_group_t f = ext4_flex_group(sbi, group);
672 
673 			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
674 		}
675 	}
676 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
677 err_ret:
678 	ext4_unlock_group(sb, group);
679 	up_read(&grp->alloc_sem);
680 	return retval;
681 }
682 
683 /*
684  * There are two policies for allocating an inode.  If the new inode is
685  * a directory, then a forward search is made for a block group with both
686  * free space and a low directory-to-inode ratio; if that fails, then of
687  * the groups with above-average free space, that group with the fewest
688  * directories already is chosen.
689  *
690  * For other inodes, search forward from the parent directory's block
691  * group to find a free inode.
692  */
ext4_new_inode(handle_t * handle,struct inode * dir,umode_t mode,const struct qstr * qstr,__u32 goal,uid_t * owner)693 struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
694 			     const struct qstr *qstr, __u32 goal, uid_t *owner)
695 {
696 	struct super_block *sb;
697 	struct buffer_head *inode_bitmap_bh = NULL;
698 	struct buffer_head *group_desc_bh;
699 	ext4_group_t ngroups, group = 0;
700 	unsigned long ino = 0;
701 	struct inode *inode;
702 	struct ext4_group_desc *gdp = NULL;
703 	struct ext4_inode_info *ei;
704 	struct ext4_sb_info *sbi;
705 	int ret2, err = 0;
706 	struct inode *ret;
707 	ext4_group_t i;
708 	ext4_group_t flex_group;
709 
710 	/* Cannot create files in a deleted directory */
711 	if (!dir || !dir->i_nlink)
712 		return ERR_PTR(-EPERM);
713 
714 	sb = dir->i_sb;
715 	ngroups = ext4_get_groups_count(sb);
716 	trace_ext4_request_inode(dir, mode);
717 	inode = new_inode(sb);
718 	if (!inode)
719 		return ERR_PTR(-ENOMEM);
720 	ei = EXT4_I(inode);
721 	sbi = EXT4_SB(sb);
722 
723 	if (!goal)
724 		goal = sbi->s_inode_goal;
725 
726 	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
727 		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
728 		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
729 		ret2 = 0;
730 		goto got_group;
731 	}
732 
733 	if (S_ISDIR(mode))
734 		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
735 	else
736 		ret2 = find_group_other(sb, dir, &group, mode);
737 
738 got_group:
739 	EXT4_I(dir)->i_last_alloc_group = group;
740 	err = -ENOSPC;
741 	if (ret2 == -1)
742 		goto out;
743 
744 	for (i = 0; i < ngroups; i++, ino = 0) {
745 		err = -EIO;
746 
747 		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
748 		if (!gdp)
749 			goto fail;
750 
751 		brelse(inode_bitmap_bh);
752 		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
753 		if (!inode_bitmap_bh)
754 			goto fail;
755 
756 repeat_in_this_group:
757 		ino = ext4_find_next_zero_bit((unsigned long *)
758 					      inode_bitmap_bh->b_data,
759 					      EXT4_INODES_PER_GROUP(sb), ino);
760 
761 		if (ino < EXT4_INODES_PER_GROUP(sb)) {
762 
763 			BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
764 			err = ext4_journal_get_write_access(handle,
765 							    inode_bitmap_bh);
766 			if (err)
767 				goto fail;
768 
769 			BUFFER_TRACE(group_desc_bh, "get_write_access");
770 			err = ext4_journal_get_write_access(handle,
771 								group_desc_bh);
772 			if (err)
773 				goto fail;
774 			if (!ext4_claim_inode(sb, inode_bitmap_bh,
775 						ino, group, mode)) {
776 				/* we won it */
777 				BUFFER_TRACE(inode_bitmap_bh,
778 					"call ext4_handle_dirty_metadata");
779 				err = ext4_handle_dirty_metadata(handle,
780 								 NULL,
781 							inode_bitmap_bh);
782 				if (err)
783 					goto fail;
784 				/* zero bit is inode number 1*/
785 				ino++;
786 				goto got;
787 			}
788 			/* we lost it */
789 			ext4_handle_release_buffer(handle, inode_bitmap_bh);
790 			ext4_handle_release_buffer(handle, group_desc_bh);
791 
792 			if (++ino < EXT4_INODES_PER_GROUP(sb))
793 				goto repeat_in_this_group;
794 		}
795 
796 		/*
797 		 * This case is possible in concurrent environment.  It is very
798 		 * rare.  We cannot repeat the find_group_xxx() call because
799 		 * that will simply return the same blockgroup, because the
800 		 * group descriptor metadata has not yet been updated.
801 		 * So we just go onto the next blockgroup.
802 		 */
803 		if (++group == ngroups)
804 			group = 0;
805 	}
806 	err = -ENOSPC;
807 	goto out;
808 
809 got:
810 	/* We may have to initialize the block bitmap if it isn't already */
811 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
812 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
813 		struct buffer_head *block_bitmap_bh;
814 
815 		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
816 		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
817 		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
818 		if (err) {
819 			brelse(block_bitmap_bh);
820 			goto fail;
821 		}
822 
823 		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
824 		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
825 		brelse(block_bitmap_bh);
826 
827 		/* recheck and clear flag under lock if we still need to */
828 		ext4_lock_group(sb, group);
829 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
830 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
831 			ext4_free_group_clusters_set(sb, gdp,
832 				ext4_free_clusters_after_init(sb, group, gdp));
833 			gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
834 								gdp);
835 		}
836 		ext4_unlock_group(sb, group);
837 
838 		if (err)
839 			goto fail;
840 	}
841 	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
842 	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
843 	if (err)
844 		goto fail;
845 
846 	percpu_counter_dec(&sbi->s_freeinodes_counter);
847 	if (S_ISDIR(mode))
848 		percpu_counter_inc(&sbi->s_dirs_counter);
849 	ext4_mark_super_dirty(sb);
850 
851 	if (sbi->s_log_groups_per_flex) {
852 		flex_group = ext4_flex_group(sbi, group);
853 		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
854 	}
855 	if (owner) {
856 		inode->i_mode = mode;
857 		inode->i_uid = owner[0];
858 		inode->i_gid = owner[1];
859 	} else if (test_opt(sb, GRPID)) {
860 		inode->i_mode = mode;
861 		inode->i_uid = current_fsuid();
862 		inode->i_gid = dir->i_gid;
863 	} else
864 		inode_init_owner(inode, dir, mode);
865 
866 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
867 	/* This is the optimal IO size (for stat), not the fs block size */
868 	inode->i_blocks = 0;
869 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
870 						       ext4_current_time(inode);
871 
872 	memset(ei->i_data, 0, sizeof(ei->i_data));
873 	ei->i_dir_start_lookup = 0;
874 	ei->i_disksize = 0;
875 
876 	/* Don't inherit extent flag from directory, amongst others. */
877 	ei->i_flags =
878 		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
879 	ei->i_file_acl = 0;
880 	ei->i_dtime = 0;
881 	ei->i_block_group = group;
882 	ei->i_last_alloc_group = ~0;
883 
884 	ext4_set_inode_flags(inode);
885 	if (IS_DIRSYNC(inode))
886 		ext4_handle_sync(handle);
887 	if (insert_inode_locked(inode) < 0) {
888 		/*
889 		 * Likely a bitmap corruption causing inode to be allocated
890 		 * twice.
891 		 */
892 		err = -EIO;
893 		goto fail;
894 	}
895 	spin_lock(&sbi->s_next_gen_lock);
896 	inode->i_generation = sbi->s_next_generation++;
897 	spin_unlock(&sbi->s_next_gen_lock);
898 
899 	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
900 	ext4_set_inode_state(inode, EXT4_STATE_NEW);
901 
902 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
903 
904 	ret = inode;
905 	dquot_initialize(inode);
906 	err = dquot_alloc_inode(inode);
907 	if (err)
908 		goto fail_drop;
909 
910 	err = ext4_init_acl(handle, inode, dir);
911 	if (err)
912 		goto fail_free_drop;
913 
914 	err = ext4_init_security(handle, inode, dir, qstr);
915 	if (err)
916 		goto fail_free_drop;
917 
918 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
919 		/* set extent flag only for directory, file and normal symlink*/
920 		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
921 			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
922 			ext4_ext_tree_init(handle, inode);
923 		}
924 	}
925 
926 	if (ext4_handle_valid(handle)) {
927 		ei->i_sync_tid = handle->h_transaction->t_tid;
928 		ei->i_datasync_tid = handle->h_transaction->t_tid;
929 	}
930 
931 	err = ext4_mark_inode_dirty(handle, inode);
932 	if (err) {
933 		ext4_std_error(sb, err);
934 		goto fail_free_drop;
935 	}
936 
937 	ext4_debug("allocating inode %lu\n", inode->i_ino);
938 	trace_ext4_allocate_inode(inode, dir, mode);
939 	goto really_out;
940 fail:
941 	ext4_std_error(sb, err);
942 out:
943 	iput(inode);
944 	ret = ERR_PTR(err);
945 really_out:
946 	brelse(inode_bitmap_bh);
947 	return ret;
948 
949 fail_free_drop:
950 	dquot_free_inode(inode);
951 
952 fail_drop:
953 	dquot_drop(inode);
954 	inode->i_flags |= S_NOQUOTA;
955 	clear_nlink(inode);
956 	unlock_new_inode(inode);
957 	iput(inode);
958 	brelse(inode_bitmap_bh);
959 	return ERR_PTR(err);
960 }
961 
962 /* Verify that we are loading a valid orphan from disk */
ext4_orphan_get(struct super_block * sb,unsigned long ino)963 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
964 {
965 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
966 	ext4_group_t block_group;
967 	int bit;
968 	struct buffer_head *bitmap_bh;
969 	struct inode *inode = NULL;
970 	long err = -EIO;
971 
972 	/* Error cases - e2fsck has already cleaned up for us */
973 	if (ino > max_ino) {
974 		ext4_warning(sb, "bad orphan ino %lu!  e2fsck was run?", ino);
975 		goto error;
976 	}
977 
978 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
979 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
980 	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
981 	if (!bitmap_bh) {
982 		ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
983 		goto error;
984 	}
985 
986 	/* Having the inode bit set should be a 100% indicator that this
987 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
988 	 * inodes that were being truncated, so we can't check i_nlink==0.
989 	 */
990 	if (!ext4_test_bit(bit, bitmap_bh->b_data))
991 		goto bad_orphan;
992 
993 	inode = ext4_iget(sb, ino);
994 	if (IS_ERR(inode))
995 		goto iget_failed;
996 
997 	/*
998 	 * If the orphans has i_nlinks > 0 then it should be able to be
999 	 * truncated, otherwise it won't be removed from the orphan list
1000 	 * during processing and an infinite loop will result.
1001 	 */
1002 	if (inode->i_nlink && !ext4_can_truncate(inode))
1003 		goto bad_orphan;
1004 
1005 	if (NEXT_ORPHAN(inode) > max_ino)
1006 		goto bad_orphan;
1007 	brelse(bitmap_bh);
1008 	return inode;
1009 
1010 iget_failed:
1011 	err = PTR_ERR(inode);
1012 	inode = NULL;
1013 bad_orphan:
1014 	ext4_warning(sb, "bad orphan inode %lu!  e2fsck was run?", ino);
1015 	printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1016 	       bit, (unsigned long long)bitmap_bh->b_blocknr,
1017 	       ext4_test_bit(bit, bitmap_bh->b_data));
1018 	printk(KERN_NOTICE "inode=%p\n", inode);
1019 	if (inode) {
1020 		printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
1021 		       is_bad_inode(inode));
1022 		printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
1023 		       NEXT_ORPHAN(inode));
1024 		printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
1025 		printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
1026 		/* Avoid freeing blocks if we got a bad deleted inode */
1027 		if (inode->i_nlink == 0)
1028 			inode->i_blocks = 0;
1029 		iput(inode);
1030 	}
1031 	brelse(bitmap_bh);
1032 error:
1033 	return ERR_PTR(err);
1034 }
1035 
ext4_count_free_inodes(struct super_block * sb)1036 unsigned long ext4_count_free_inodes(struct super_block *sb)
1037 {
1038 	unsigned long desc_count;
1039 	struct ext4_group_desc *gdp;
1040 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1041 #ifdef EXT4FS_DEBUG
1042 	struct ext4_super_block *es;
1043 	unsigned long bitmap_count, x;
1044 	struct buffer_head *bitmap_bh = NULL;
1045 
1046 	es = EXT4_SB(sb)->s_es;
1047 	desc_count = 0;
1048 	bitmap_count = 0;
1049 	gdp = NULL;
1050 	for (i = 0; i < ngroups; i++) {
1051 		gdp = ext4_get_group_desc(sb, i, NULL);
1052 		if (!gdp)
1053 			continue;
1054 		desc_count += ext4_free_inodes_count(sb, gdp);
1055 		brelse(bitmap_bh);
1056 		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1057 		if (!bitmap_bh)
1058 			continue;
1059 
1060 		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
1061 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1062 			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1063 		bitmap_count += x;
1064 	}
1065 	brelse(bitmap_bh);
1066 	printk(KERN_DEBUG "ext4_count_free_inodes: "
1067 	       "stored = %u, computed = %lu, %lu\n",
1068 	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1069 	return desc_count;
1070 #else
1071 	desc_count = 0;
1072 	for (i = 0; i < ngroups; i++) {
1073 		gdp = ext4_get_group_desc(sb, i, NULL);
1074 		if (!gdp)
1075 			continue;
1076 		desc_count += ext4_free_inodes_count(sb, gdp);
1077 		cond_resched();
1078 	}
1079 	return desc_count;
1080 #endif
1081 }
1082 
1083 /* Called at mount-time, super-block is locked */
ext4_count_dirs(struct super_block * sb)1084 unsigned long ext4_count_dirs(struct super_block * sb)
1085 {
1086 	unsigned long count = 0;
1087 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1088 
1089 	for (i = 0; i < ngroups; i++) {
1090 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1091 		if (!gdp)
1092 			continue;
1093 		count += ext4_used_dirs_count(sb, gdp);
1094 	}
1095 	return count;
1096 }
1097 
1098 /*
1099  * Zeroes not yet zeroed inode table - just write zeroes through the whole
1100  * inode table. Must be called without any spinlock held. The only place
1101  * where it is called from on active part of filesystem is ext4lazyinit
1102  * thread, so we do not need any special locks, however we have to prevent
1103  * inode allocation from the current group, so we take alloc_sem lock, to
1104  * block ext4_claim_inode until we are finished.
1105  */
ext4_init_inode_table(struct super_block * sb,ext4_group_t group,int barrier)1106 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1107 				 int barrier)
1108 {
1109 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1110 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1111 	struct ext4_group_desc *gdp = NULL;
1112 	struct buffer_head *group_desc_bh;
1113 	handle_t *handle;
1114 	ext4_fsblk_t blk;
1115 	int num, ret = 0, used_blks = 0;
1116 
1117 	/* This should not happen, but just to be sure check this */
1118 	if (sb->s_flags & MS_RDONLY) {
1119 		ret = 1;
1120 		goto out;
1121 	}
1122 
1123 	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1124 	if (!gdp)
1125 		goto out;
1126 
1127 	/*
1128 	 * We do not need to lock this, because we are the only one
1129 	 * handling this flag.
1130 	 */
1131 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1132 		goto out;
1133 
1134 	handle = ext4_journal_start_sb(sb, 1);
1135 	if (IS_ERR(handle)) {
1136 		ret = PTR_ERR(handle);
1137 		goto out;
1138 	}
1139 
1140 	down_write(&grp->alloc_sem);
1141 	/*
1142 	 * If inode bitmap was already initialized there may be some
1143 	 * used inodes so we need to skip blocks with used inodes in
1144 	 * inode table.
1145 	 */
1146 	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1147 		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1148 			    ext4_itable_unused_count(sb, gdp)),
1149 			    sbi->s_inodes_per_block);
1150 
1151 	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1152 		ext4_error(sb, "Something is wrong with group %u\n"
1153 			   "Used itable blocks: %d"
1154 			   "itable unused count: %u\n",
1155 			   group, used_blks,
1156 			   ext4_itable_unused_count(sb, gdp));
1157 		ret = 1;
1158 		goto err_out;
1159 	}
1160 
1161 	blk = ext4_inode_table(sb, gdp) + used_blks;
1162 	num = sbi->s_itb_per_group - used_blks;
1163 
1164 	BUFFER_TRACE(group_desc_bh, "get_write_access");
1165 	ret = ext4_journal_get_write_access(handle,
1166 					    group_desc_bh);
1167 	if (ret)
1168 		goto err_out;
1169 
1170 	/*
1171 	 * Skip zeroout if the inode table is full. But we set the ZEROED
1172 	 * flag anyway, because obviously, when it is full it does not need
1173 	 * further zeroing.
1174 	 */
1175 	if (unlikely(num == 0))
1176 		goto skip_zeroout;
1177 
1178 	ext4_debug("going to zero out inode table in group %d\n",
1179 		   group);
1180 	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1181 	if (ret < 0)
1182 		goto err_out;
1183 	if (barrier)
1184 		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1185 
1186 skip_zeroout:
1187 	ext4_lock_group(sb, group);
1188 	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1189 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
1190 	ext4_unlock_group(sb, group);
1191 
1192 	BUFFER_TRACE(group_desc_bh,
1193 		     "call ext4_handle_dirty_metadata");
1194 	ret = ext4_handle_dirty_metadata(handle, NULL,
1195 					 group_desc_bh);
1196 
1197 err_out:
1198 	up_write(&grp->alloc_sem);
1199 	ext4_journal_stop(handle);
1200 out:
1201 	return ret;
1202 }
1203