1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21 
22 bool __read_mostly enable_mmio_caching = true;
23 static bool __ro_after_init allow_mmio_caching;
24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25 EXPORT_SYMBOL_GPL(enable_mmio_caching);
26 
27 bool __read_mostly kvm_ad_enabled;
28 
29 u64 __read_mostly shadow_host_writable_mask;
30 u64 __read_mostly shadow_mmu_writable_mask;
31 u64 __read_mostly shadow_nx_mask;
32 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
33 u64 __read_mostly shadow_user_mask;
34 u64 __read_mostly shadow_accessed_mask;
35 u64 __read_mostly shadow_dirty_mask;
36 u64 __read_mostly shadow_mmio_value;
37 u64 __read_mostly shadow_mmio_mask;
38 u64 __read_mostly shadow_mmio_access_mask;
39 u64 __read_mostly shadow_present_mask;
40 u64 __read_mostly shadow_memtype_mask;
41 u64 __read_mostly shadow_me_value;
42 u64 __read_mostly shadow_me_mask;
43 u64 __read_mostly shadow_acc_track_mask;
44 
45 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
46 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
47 
kvm_get_host_maxphyaddr(void)48 static u8 __init kvm_get_host_maxphyaddr(void)
49 {
50 	/*
51 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
52 	 * in CPU detection code, but the processor treats those reduced bits as
53 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
54 	 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
55 	 * when reasoning about CPU behavior with respect to MAXPHYADDR.
56 	 */
57 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
58 		return cpuid_eax(0x80000008) & 0xff;
59 
60 	/*
61 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
62 	 * custom CPUID.  Proceed with whatever the kernel found since these features
63 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
64 	 */
65 	return boot_cpu_data.x86_phys_bits;
66 }
67 
kvm_mmu_spte_module_init(void)68 void __init kvm_mmu_spte_module_init(void)
69 {
70 	/*
71 	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
72 	 * KVM can actually enable MMIO caching depends on vendor-specific
73 	 * hardware capabilities and other module params that can't be resolved
74 	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
75 	 * will change when the vendor module is (re)loaded.
76 	 */
77 	allow_mmio_caching = enable_mmio_caching;
78 
79 	kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
80 }
81 
generation_mmio_spte_mask(u64 gen)82 static u64 generation_mmio_spte_mask(u64 gen)
83 {
84 	u64 mask;
85 
86 	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
87 
88 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
89 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
90 	return mask;
91 }
92 
make_mmio_spte(struct kvm_vcpu * vcpu,u64 gfn,unsigned int access)93 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
94 {
95 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
96 	u64 spte = generation_mmio_spte_mask(gen);
97 	u64 gpa = gfn << PAGE_SHIFT;
98 
99 	WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
100 
101 	access &= shadow_mmio_access_mask;
102 	spte |= vcpu->kvm->arch.shadow_mmio_value | access;
103 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
104 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
105 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
106 
107 	return spte;
108 }
109 
kvm_is_mmio_pfn(kvm_pfn_t pfn)110 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
111 {
112 	if (pfn_valid(pfn))
113 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
114 			/*
115 			 * Some reserved pages, such as those from NVDIMM
116 			 * DAX devices, are not for MMIO, and can be mapped
117 			 * with cached memory type for better performance.
118 			 * However, the above check misconceives those pages
119 			 * as MMIO, and results in KVM mapping them with UC
120 			 * memory type, which would hurt the performance.
121 			 * Therefore, we check the host memory type in addition
122 			 * and only treat UC/UC-/WC pages as MMIO.
123 			 */
124 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
125 
126 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
127 				     pfn_to_hpa(pfn + 1) - 1,
128 				     E820_TYPE_RAM);
129 }
130 
131 /*
132  * Returns true if the SPTE needs to be updated atomically due to having bits
133  * that may be changed without holding mmu_lock, and for which KVM must not
134  * lose information.  E.g. KVM must not drop Dirty bit information.  The caller
135  * is responsible for checking if the SPTE is shadow-present, and for
136  * determining whether or not the caller cares about non-leaf SPTEs.
137  */
spte_needs_atomic_update(u64 spte)138 bool spte_needs_atomic_update(u64 spte)
139 {
140 	/* SPTEs can be made Writable bit by KVM's fast page fault handler. */
141 	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
142 		return true;
143 
144 	/*
145 	 * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked
146 	 * SPTEs can be restored by KVM's fast page fault handler.
147 	 */
148 	if (!spte_ad_enabled(spte))
149 		return true;
150 
151 	/*
152 	 * Dirty and Accessed bits can be set by the CPU.  Ignore the Accessed
153 	 * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't
154 	 * invalidate TLBs when aging SPTEs, and so it's safe to clobber the
155 	 * Accessed bit (and rare in practice).
156 	 */
157 	return is_writable_pte(spte) && !(spte & shadow_dirty_mask);
158 }
159 
make_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,const struct kvm_memory_slot * slot,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,u64 old_spte,bool prefetch,bool synchronizing,bool host_writable,u64 * new_spte)160 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
161 	       const struct kvm_memory_slot *slot,
162 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
163 	       u64 old_spte, bool prefetch, bool synchronizing,
164 	       bool host_writable, u64 *new_spte)
165 {
166 	int level = sp->role.level;
167 	u64 spte = SPTE_MMU_PRESENT_MASK;
168 	bool wrprot = false;
169 
170 	/*
171 	 * For the EPT case, shadow_present_mask has no RWX bits set if
172 	 * exec-only page table entries are supported.  In that case,
173 	 * ACC_USER_MASK and shadow_user_mask are used to represent
174 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
175 	 */
176 	WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
177 
178 	if (sp->role.ad_disabled)
179 		spte |= SPTE_TDP_AD_DISABLED;
180 	else if (kvm_mmu_page_ad_need_write_protect(sp))
181 		spte |= SPTE_TDP_AD_WRPROT_ONLY;
182 
183 	spte |= shadow_present_mask;
184 	if (!prefetch || synchronizing)
185 		spte |= shadow_accessed_mask;
186 
187 	/*
188 	 * For simplicity, enforce the NX huge page mitigation even if not
189 	 * strictly necessary.  KVM could ignore the mitigation if paging is
190 	 * disabled in the guest, as the guest doesn't have any page tables to
191 	 * abuse.  But to safely ignore the mitigation, KVM would have to
192 	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
193 	 * is toggled on, and that's a net negative for performance when TDP is
194 	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
195 	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
196 	 * would tie make_spte() further to vCPU/MMU state, and add complexity
197 	 * just to optimize a mode that is anything but performance critical.
198 	 */
199 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
200 	    is_nx_huge_page_enabled(vcpu->kvm)) {
201 		pte_access &= ~ACC_EXEC_MASK;
202 	}
203 
204 	if (pte_access & ACC_EXEC_MASK)
205 		spte |= shadow_x_mask;
206 	else
207 		spte |= shadow_nx_mask;
208 
209 	if (pte_access & ACC_USER_MASK)
210 		spte |= shadow_user_mask;
211 
212 	if (level > PG_LEVEL_4K)
213 		spte |= PT_PAGE_SIZE_MASK;
214 
215 	if (shadow_memtype_mask)
216 		spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
217 						  kvm_is_mmio_pfn(pfn));
218 	if (host_writable)
219 		spte |= shadow_host_writable_mask;
220 	else
221 		pte_access &= ~ACC_WRITE_MASK;
222 
223 	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
224 		spte |= shadow_me_value;
225 
226 	spte |= (u64)pfn << PAGE_SHIFT;
227 
228 	if (pte_access & ACC_WRITE_MASK) {
229 		/*
230 		 * Unsync shadow pages that are reachable by the new, writable
231 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
232 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
233 		 * shadow pages and unsync'ing pages is not allowed.
234 		 *
235 		 * When overwriting an existing leaf SPTE, and the old SPTE was
236 		 * writable, skip trying to unsync shadow pages as any relevant
237 		 * shadow pages must already be unsync, i.e. the hash lookup is
238 		 * unnecessary (and expensive).  Note, this relies on KVM not
239 		 * changing PFNs without first zapping the old SPTE, which is
240 		 * guaranteed by both the shadow MMU and the TDP MMU.
241 		 */
242 		if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
243 		    mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
244 			wrprot = true;
245 		else
246 			spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
247 				shadow_dirty_mask;
248 	}
249 
250 	if (prefetch && !synchronizing)
251 		spte = mark_spte_for_access_track(spte);
252 
253 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
254 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
255 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
256 
257 	/*
258 	 * Mark the memslot dirty *after* modifying it for access tracking.
259 	 * Unlike folios, memslots can be safely marked dirty out of mmu_lock,
260 	 * i.e. in the fast page fault handler.
261 	 */
262 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
263 		/* Enforced by kvm_mmu_hugepage_adjust. */
264 		WARN_ON_ONCE(level > PG_LEVEL_4K);
265 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
266 	}
267 
268 	*new_spte = spte;
269 	return wrprot;
270 }
271 
modify_spte_protections(u64 spte,u64 set,u64 clear)272 static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
273 {
274 	bool is_access_track = is_access_track_spte(spte);
275 
276 	if (is_access_track)
277 		spte = restore_acc_track_spte(spte);
278 
279 	KVM_MMU_WARN_ON(set & clear);
280 	spte = (spte | set) & ~clear;
281 
282 	if (is_access_track)
283 		spte = mark_spte_for_access_track(spte);
284 
285 	return spte;
286 }
287 
make_spte_executable(u64 spte)288 static u64 make_spte_executable(u64 spte)
289 {
290 	return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
291 }
292 
make_spte_nonexecutable(u64 spte)293 static u64 make_spte_nonexecutable(u64 spte)
294 {
295 	return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
296 }
297 
298 /*
299  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
300  * `index` identifies which sub-page.
301  *
302  * This is used during huge page splitting to build the SPTEs that make up the
303  * new page table.
304  */
make_small_spte(struct kvm * kvm,u64 huge_spte,union kvm_mmu_page_role role,int index)305 u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
306 		    union kvm_mmu_page_role role, int index)
307 {
308 	u64 child_spte = huge_spte;
309 
310 	KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
311 
312 	/*
313 	 * The child_spte already has the base address of the huge page being
314 	 * split. So we just have to OR in the offset to the page at the next
315 	 * lower level for the given index.
316 	 */
317 	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
318 
319 	if (role.level == PG_LEVEL_4K) {
320 		child_spte &= ~PT_PAGE_SIZE_MASK;
321 
322 		/*
323 		 * When splitting to a 4K page where execution is allowed, mark
324 		 * the page executable as the NX hugepage mitigation no longer
325 		 * applies.
326 		 */
327 		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
328 			child_spte = make_spte_executable(child_spte);
329 	}
330 
331 	return child_spte;
332 }
333 
make_huge_spte(struct kvm * kvm,u64 small_spte,int level)334 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
335 {
336 	u64 huge_spte;
337 
338 	KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
339 
340 	huge_spte = small_spte | PT_PAGE_SIZE_MASK;
341 
342 	/*
343 	 * huge_spte already has the address of the sub-page being collapsed
344 	 * from small_spte, so just clear the lower address bits to create the
345 	 * huge page address.
346 	 */
347 	huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
348 
349 	if (is_nx_huge_page_enabled(kvm))
350 		huge_spte = make_spte_nonexecutable(huge_spte);
351 
352 	return huge_spte;
353 }
354 
make_nonleaf_spte(u64 * child_pt,bool ad_disabled)355 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
356 {
357 	u64 spte = SPTE_MMU_PRESENT_MASK;
358 
359 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
360 		shadow_user_mask | shadow_x_mask | shadow_me_value;
361 
362 	if (ad_disabled)
363 		spte |= SPTE_TDP_AD_DISABLED;
364 	else
365 		spte |= shadow_accessed_mask;
366 
367 	return spte;
368 }
369 
mark_spte_for_access_track(u64 spte)370 u64 mark_spte_for_access_track(u64 spte)
371 {
372 	if (spte_ad_enabled(spte))
373 		return spte & ~shadow_accessed_mask;
374 
375 	if (is_access_track_spte(spte))
376 		return spte;
377 
378 	check_spte_writable_invariants(spte);
379 
380 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
381 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
382 		  "Access Tracking saved bit locations are not zero\n");
383 
384 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
385 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
386 	spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
387 
388 	return spte;
389 }
390 
kvm_mmu_set_mmio_spte_mask(u64 mmio_value,u64 mmio_mask,u64 access_mask)391 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
392 {
393 	BUG_ON((u64)(unsigned)access_mask != access_mask);
394 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
395 
396 	/*
397 	 * Reset to the original module param value to honor userspace's desire
398 	 * to (dis)allow MMIO caching.  Update the param itself so that
399 	 * userspace can see whether or not KVM is actually using MMIO caching.
400 	 */
401 	enable_mmio_caching = allow_mmio_caching;
402 	if (!enable_mmio_caching)
403 		mmio_value = 0;
404 
405 	/*
406 	 * The mask must contain only bits that are carved out specifically for
407 	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
408 	 * generation.
409 	 */
410 	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
411 		mmio_value = 0;
412 
413 	/*
414 	 * Disable MMIO caching if the MMIO value collides with the bits that
415 	 * are used to hold the relocated GFN when the L1TF mitigation is
416 	 * enabled.  This should never fire as there is no known hardware that
417 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
418 	 * MMIO value are not susceptible to L1TF.
419 	 */
420 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
421 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
422 		mmio_value = 0;
423 
424 	/*
425 	 * The masked MMIO value must obviously match itself and a frozen SPTE
426 	 * must not get a false positive.  Frozen SPTEs and MMIO SPTEs should
427 	 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
428 	 * not set any RWX bits.
429 	 */
430 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
431 	    WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
432 		mmio_value = 0;
433 
434 	if (!mmio_value)
435 		enable_mmio_caching = false;
436 
437 	shadow_mmio_value = mmio_value;
438 	shadow_mmio_mask  = mmio_mask;
439 	shadow_mmio_access_mask = access_mask;
440 }
441 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
442 
kvm_mmu_set_me_spte_mask(u64 me_value,u64 me_mask)443 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
444 {
445 	/* shadow_me_value must be a subset of shadow_me_mask */
446 	if (WARN_ON(me_value & ~me_mask))
447 		me_value = me_mask = 0;
448 
449 	shadow_me_value = me_value;
450 	shadow_me_mask = me_mask;
451 }
452 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
453 
kvm_mmu_set_ept_masks(bool has_ad_bits,bool has_exec_only)454 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
455 {
456 	kvm_ad_enabled		= has_ad_bits;
457 
458 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
459 	shadow_accessed_mask	= VMX_EPT_ACCESS_BIT;
460 	shadow_dirty_mask	= VMX_EPT_DIRTY_BIT;
461 	shadow_nx_mask		= 0ull;
462 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
463 	/* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
464 	shadow_present_mask	=
465 		(has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
466 	/*
467 	 * EPT overrides the host MTRRs, and so KVM must program the desired
468 	 * memtype directly into the SPTEs.  Note, this mask is just the mask
469 	 * of all bits that factor into the memtype, the actual memtype must be
470 	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
471 	 */
472 	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
473 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
474 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
475 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
476 
477 	/*
478 	 * EPT Misconfigurations are generated if the value of bits 2:0
479 	 * of an EPT paging-structure entry is 110b (write/execute).
480 	 */
481 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
482 				   VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
483 }
484 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
485 
kvm_mmu_reset_all_pte_masks(void)486 void kvm_mmu_reset_all_pte_masks(void)
487 {
488 	u8 low_phys_bits;
489 	u64 mask;
490 
491 	kvm_ad_enabled = true;
492 
493 	/*
494 	 * If the CPU has 46 or less physical address bits, then set an
495 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
496 	 * assumed that the CPU is not vulnerable to L1TF.
497 	 *
498 	 * Some Intel CPUs address the L1 cache using more PA bits than are
499 	 * reported by CPUID. Use the PA width of the L1 cache when possible
500 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
501 	 * the most significant bits of legal physical address space.
502 	 */
503 	shadow_nonpresent_or_rsvd_mask = 0;
504 	low_phys_bits = boot_cpu_data.x86_phys_bits;
505 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
506 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
507 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
508 		low_phys_bits = boot_cpu_data.x86_cache_bits
509 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
510 		shadow_nonpresent_or_rsvd_mask =
511 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
512 	}
513 
514 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
515 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
516 
517 	shadow_user_mask	= PT_USER_MASK;
518 	shadow_accessed_mask	= PT_ACCESSED_MASK;
519 	shadow_dirty_mask	= PT_DIRTY_MASK;
520 	shadow_nx_mask		= PT64_NX_MASK;
521 	shadow_x_mask		= 0;
522 	shadow_present_mask	= PT_PRESENT_MASK;
523 
524 	/*
525 	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
526 	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
527 	 * correct memtype (WB is the "weakest" memtype).
528 	 */
529 	shadow_memtype_mask	= 0;
530 	shadow_acc_track_mask	= 0;
531 	shadow_me_mask		= 0;
532 	shadow_me_value		= 0;
533 
534 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
535 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
536 
537 	/*
538 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
539 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
540 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
541 	 * 52-bit physical addresses then there are no reserved PA bits in the
542 	 * PTEs and so the reserved PA approach must be disabled.
543 	 */
544 	if (kvm_host.maxphyaddr < 52)
545 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
546 	else
547 		mask = 0;
548 
549 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
550 }
551