1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17
18 #include <asm/e820/api.h>
19 #include <asm/memtype.h>
20 #include <asm/vmx.h>
21
22 bool __read_mostly enable_mmio_caching = true;
23 static bool __ro_after_init allow_mmio_caching;
24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25 EXPORT_SYMBOL_GPL(enable_mmio_caching);
26
27 bool __read_mostly kvm_ad_enabled;
28
29 u64 __read_mostly shadow_host_writable_mask;
30 u64 __read_mostly shadow_mmu_writable_mask;
31 u64 __read_mostly shadow_nx_mask;
32 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
33 u64 __read_mostly shadow_user_mask;
34 u64 __read_mostly shadow_accessed_mask;
35 u64 __read_mostly shadow_dirty_mask;
36 u64 __read_mostly shadow_mmio_value;
37 u64 __read_mostly shadow_mmio_mask;
38 u64 __read_mostly shadow_mmio_access_mask;
39 u64 __read_mostly shadow_present_mask;
40 u64 __read_mostly shadow_memtype_mask;
41 u64 __read_mostly shadow_me_value;
42 u64 __read_mostly shadow_me_mask;
43 u64 __read_mostly shadow_acc_track_mask;
44
45 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
46 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
47
kvm_get_host_maxphyaddr(void)48 static u8 __init kvm_get_host_maxphyaddr(void)
49 {
50 /*
51 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
52 * in CPU detection code, but the processor treats those reduced bits as
53 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
54 * the physical address bits reported by CPUID, i.e. the raw MAXPHYADDR,
55 * when reasoning about CPU behavior with respect to MAXPHYADDR.
56 */
57 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
58 return cpuid_eax(0x80000008) & 0xff;
59
60 /*
61 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
62 * custom CPUID. Proceed with whatever the kernel found since these features
63 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
64 */
65 return boot_cpu_data.x86_phys_bits;
66 }
67
kvm_mmu_spte_module_init(void)68 void __init kvm_mmu_spte_module_init(void)
69 {
70 /*
71 * Snapshot userspace's desire to allow MMIO caching. Whether or not
72 * KVM can actually enable MMIO caching depends on vendor-specific
73 * hardware capabilities and other module params that can't be resolved
74 * until the vendor module is loaded, i.e. enable_mmio_caching can and
75 * will change when the vendor module is (re)loaded.
76 */
77 allow_mmio_caching = enable_mmio_caching;
78
79 kvm_host.maxphyaddr = kvm_get_host_maxphyaddr();
80 }
81
generation_mmio_spte_mask(u64 gen)82 static u64 generation_mmio_spte_mask(u64 gen)
83 {
84 u64 mask;
85
86 WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
87
88 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
89 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
90 return mask;
91 }
92
make_mmio_spte(struct kvm_vcpu * vcpu,u64 gfn,unsigned int access)93 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
94 {
95 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
96 u64 spte = generation_mmio_spte_mask(gen);
97 u64 gpa = gfn << PAGE_SHIFT;
98
99 WARN_ON_ONCE(!vcpu->kvm->arch.shadow_mmio_value);
100
101 access &= shadow_mmio_access_mask;
102 spte |= vcpu->kvm->arch.shadow_mmio_value | access;
103 spte |= gpa | shadow_nonpresent_or_rsvd_mask;
104 spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
105 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
106
107 return spte;
108 }
109
kvm_is_mmio_pfn(kvm_pfn_t pfn)110 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
114 /*
115 * Some reserved pages, such as those from NVDIMM
116 * DAX devices, are not for MMIO, and can be mapped
117 * with cached memory type for better performance.
118 * However, the above check misconceives those pages
119 * as MMIO, and results in KVM mapping them with UC
120 * memory type, which would hurt the performance.
121 * Therefore, we check the host memory type in addition
122 * and only treat UC/UC-/WC pages as MMIO.
123 */
124 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
125
126 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
127 pfn_to_hpa(pfn + 1) - 1,
128 E820_TYPE_RAM);
129 }
130
131 /*
132 * Returns true if the SPTE needs to be updated atomically due to having bits
133 * that may be changed without holding mmu_lock, and for which KVM must not
134 * lose information. E.g. KVM must not drop Dirty bit information. The caller
135 * is responsible for checking if the SPTE is shadow-present, and for
136 * determining whether or not the caller cares about non-leaf SPTEs.
137 */
spte_needs_atomic_update(u64 spte)138 bool spte_needs_atomic_update(u64 spte)
139 {
140 /* SPTEs can be made Writable bit by KVM's fast page fault handler. */
141 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
142 return true;
143
144 /*
145 * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked
146 * SPTEs can be restored by KVM's fast page fault handler.
147 */
148 if (!spte_ad_enabled(spte))
149 return true;
150
151 /*
152 * Dirty and Accessed bits can be set by the CPU. Ignore the Accessed
153 * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't
154 * invalidate TLBs when aging SPTEs, and so it's safe to clobber the
155 * Accessed bit (and rare in practice).
156 */
157 return is_writable_pte(spte) && !(spte & shadow_dirty_mask);
158 }
159
make_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,const struct kvm_memory_slot * slot,unsigned int pte_access,gfn_t gfn,kvm_pfn_t pfn,u64 old_spte,bool prefetch,bool synchronizing,bool host_writable,u64 * new_spte)160 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
161 const struct kvm_memory_slot *slot,
162 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
163 u64 old_spte, bool prefetch, bool synchronizing,
164 bool host_writable, u64 *new_spte)
165 {
166 int level = sp->role.level;
167 u64 spte = SPTE_MMU_PRESENT_MASK;
168 bool wrprot = false;
169
170 /*
171 * For the EPT case, shadow_present_mask has no RWX bits set if
172 * exec-only page table entries are supported. In that case,
173 * ACC_USER_MASK and shadow_user_mask are used to represent
174 * read access. See FNAME(gpte_access) in paging_tmpl.h.
175 */
176 WARN_ON_ONCE((pte_access | shadow_present_mask) == SHADOW_NONPRESENT_VALUE);
177
178 if (sp->role.ad_disabled)
179 spte |= SPTE_TDP_AD_DISABLED;
180 else if (kvm_mmu_page_ad_need_write_protect(sp))
181 spte |= SPTE_TDP_AD_WRPROT_ONLY;
182
183 spte |= shadow_present_mask;
184 if (!prefetch || synchronizing)
185 spte |= shadow_accessed_mask;
186
187 /*
188 * For simplicity, enforce the NX huge page mitigation even if not
189 * strictly necessary. KVM could ignore the mitigation if paging is
190 * disabled in the guest, as the guest doesn't have any page tables to
191 * abuse. But to safely ignore the mitigation, KVM would have to
192 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
193 * is toggled on, and that's a net negative for performance when TDP is
194 * enabled. When TDP is disabled, KVM will always switch to a new MMU
195 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
196 * would tie make_spte() further to vCPU/MMU state, and add complexity
197 * just to optimize a mode that is anything but performance critical.
198 */
199 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
200 is_nx_huge_page_enabled(vcpu->kvm)) {
201 pte_access &= ~ACC_EXEC_MASK;
202 }
203
204 if (pte_access & ACC_EXEC_MASK)
205 spte |= shadow_x_mask;
206 else
207 spte |= shadow_nx_mask;
208
209 if (pte_access & ACC_USER_MASK)
210 spte |= shadow_user_mask;
211
212 if (level > PG_LEVEL_4K)
213 spte |= PT_PAGE_SIZE_MASK;
214
215 if (shadow_memtype_mask)
216 spte |= kvm_x86_call(get_mt_mask)(vcpu, gfn,
217 kvm_is_mmio_pfn(pfn));
218 if (host_writable)
219 spte |= shadow_host_writable_mask;
220 else
221 pte_access &= ~ACC_WRITE_MASK;
222
223 if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
224 spte |= shadow_me_value;
225
226 spte |= (u64)pfn << PAGE_SHIFT;
227
228 if (pte_access & ACC_WRITE_MASK) {
229 /*
230 * Unsync shadow pages that are reachable by the new, writable
231 * SPTE. Write-protect the SPTE if the page can't be unsync'd,
232 * e.g. it's write-tracked (upper-level SPs) or has one or more
233 * shadow pages and unsync'ing pages is not allowed.
234 *
235 * When overwriting an existing leaf SPTE, and the old SPTE was
236 * writable, skip trying to unsync shadow pages as any relevant
237 * shadow pages must already be unsync, i.e. the hash lookup is
238 * unnecessary (and expensive). Note, this relies on KVM not
239 * changing PFNs without first zapping the old SPTE, which is
240 * guaranteed by both the shadow MMU and the TDP MMU.
241 */
242 if ((!is_last_spte(old_spte, level) || !is_writable_pte(old_spte)) &&
243 mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, synchronizing, prefetch))
244 wrprot = true;
245 else
246 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask |
247 shadow_dirty_mask;
248 }
249
250 if (prefetch && !synchronizing)
251 spte = mark_spte_for_access_track(spte);
252
253 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
254 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
255 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
256
257 /*
258 * Mark the memslot dirty *after* modifying it for access tracking.
259 * Unlike folios, memslots can be safely marked dirty out of mmu_lock,
260 * i.e. in the fast page fault handler.
261 */
262 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
263 /* Enforced by kvm_mmu_hugepage_adjust. */
264 WARN_ON_ONCE(level > PG_LEVEL_4K);
265 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
266 }
267
268 *new_spte = spte;
269 return wrprot;
270 }
271
modify_spte_protections(u64 spte,u64 set,u64 clear)272 static u64 modify_spte_protections(u64 spte, u64 set, u64 clear)
273 {
274 bool is_access_track = is_access_track_spte(spte);
275
276 if (is_access_track)
277 spte = restore_acc_track_spte(spte);
278
279 KVM_MMU_WARN_ON(set & clear);
280 spte = (spte | set) & ~clear;
281
282 if (is_access_track)
283 spte = mark_spte_for_access_track(spte);
284
285 return spte;
286 }
287
make_spte_executable(u64 spte)288 static u64 make_spte_executable(u64 spte)
289 {
290 return modify_spte_protections(spte, shadow_x_mask, shadow_nx_mask);
291 }
292
make_spte_nonexecutable(u64 spte)293 static u64 make_spte_nonexecutable(u64 spte)
294 {
295 return modify_spte_protections(spte, shadow_nx_mask, shadow_x_mask);
296 }
297
298 /*
299 * Construct an SPTE that maps a sub-page of the given huge page SPTE where
300 * `index` identifies which sub-page.
301 *
302 * This is used during huge page splitting to build the SPTEs that make up the
303 * new page table.
304 */
make_small_spte(struct kvm * kvm,u64 huge_spte,union kvm_mmu_page_role role,int index)305 u64 make_small_spte(struct kvm *kvm, u64 huge_spte,
306 union kvm_mmu_page_role role, int index)
307 {
308 u64 child_spte = huge_spte;
309
310 KVM_BUG_ON(!is_shadow_present_pte(huge_spte) || !is_large_pte(huge_spte), kvm);
311
312 /*
313 * The child_spte already has the base address of the huge page being
314 * split. So we just have to OR in the offset to the page at the next
315 * lower level for the given index.
316 */
317 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
318
319 if (role.level == PG_LEVEL_4K) {
320 child_spte &= ~PT_PAGE_SIZE_MASK;
321
322 /*
323 * When splitting to a 4K page where execution is allowed, mark
324 * the page executable as the NX hugepage mitigation no longer
325 * applies.
326 */
327 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
328 child_spte = make_spte_executable(child_spte);
329 }
330
331 return child_spte;
332 }
333
make_huge_spte(struct kvm * kvm,u64 small_spte,int level)334 u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level)
335 {
336 u64 huge_spte;
337
338 KVM_BUG_ON(!is_shadow_present_pte(small_spte) || level == PG_LEVEL_4K, kvm);
339
340 huge_spte = small_spte | PT_PAGE_SIZE_MASK;
341
342 /*
343 * huge_spte already has the address of the sub-page being collapsed
344 * from small_spte, so just clear the lower address bits to create the
345 * huge page address.
346 */
347 huge_spte &= KVM_HPAGE_MASK(level) | ~PAGE_MASK;
348
349 if (is_nx_huge_page_enabled(kvm))
350 huge_spte = make_spte_nonexecutable(huge_spte);
351
352 return huge_spte;
353 }
354
make_nonleaf_spte(u64 * child_pt,bool ad_disabled)355 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
356 {
357 u64 spte = SPTE_MMU_PRESENT_MASK;
358
359 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
360 shadow_user_mask | shadow_x_mask | shadow_me_value;
361
362 if (ad_disabled)
363 spte |= SPTE_TDP_AD_DISABLED;
364 else
365 spte |= shadow_accessed_mask;
366
367 return spte;
368 }
369
mark_spte_for_access_track(u64 spte)370 u64 mark_spte_for_access_track(u64 spte)
371 {
372 if (spte_ad_enabled(spte))
373 return spte & ~shadow_accessed_mask;
374
375 if (is_access_track_spte(spte))
376 return spte;
377
378 check_spte_writable_invariants(spte);
379
380 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
381 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
382 "Access Tracking saved bit locations are not zero\n");
383
384 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
385 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
386 spte &= ~(shadow_acc_track_mask | shadow_accessed_mask);
387
388 return spte;
389 }
390
kvm_mmu_set_mmio_spte_mask(u64 mmio_value,u64 mmio_mask,u64 access_mask)391 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
392 {
393 BUG_ON((u64)(unsigned)access_mask != access_mask);
394 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
395
396 /*
397 * Reset to the original module param value to honor userspace's desire
398 * to (dis)allow MMIO caching. Update the param itself so that
399 * userspace can see whether or not KVM is actually using MMIO caching.
400 */
401 enable_mmio_caching = allow_mmio_caching;
402 if (!enable_mmio_caching)
403 mmio_value = 0;
404
405 /*
406 * The mask must contain only bits that are carved out specifically for
407 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
408 * generation.
409 */
410 if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
411 mmio_value = 0;
412
413 /*
414 * Disable MMIO caching if the MMIO value collides with the bits that
415 * are used to hold the relocated GFN when the L1TF mitigation is
416 * enabled. This should never fire as there is no known hardware that
417 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
418 * MMIO value are not susceptible to L1TF.
419 */
420 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
421 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
422 mmio_value = 0;
423
424 /*
425 * The masked MMIO value must obviously match itself and a frozen SPTE
426 * must not get a false positive. Frozen SPTEs and MMIO SPTEs should
427 * never collide as MMIO must set some RWX bits, and frozen SPTEs must
428 * not set any RWX bits.
429 */
430 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
431 WARN_ON(mmio_value && (FROZEN_SPTE & mmio_mask) == mmio_value))
432 mmio_value = 0;
433
434 if (!mmio_value)
435 enable_mmio_caching = false;
436
437 shadow_mmio_value = mmio_value;
438 shadow_mmio_mask = mmio_mask;
439 shadow_mmio_access_mask = access_mask;
440 }
441 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
442
kvm_mmu_set_me_spte_mask(u64 me_value,u64 me_mask)443 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
444 {
445 /* shadow_me_value must be a subset of shadow_me_mask */
446 if (WARN_ON(me_value & ~me_mask))
447 me_value = me_mask = 0;
448
449 shadow_me_value = me_value;
450 shadow_me_mask = me_mask;
451 }
452 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
453
kvm_mmu_set_ept_masks(bool has_ad_bits,bool has_exec_only)454 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
455 {
456 kvm_ad_enabled = has_ad_bits;
457
458 shadow_user_mask = VMX_EPT_READABLE_MASK;
459 shadow_accessed_mask = VMX_EPT_ACCESS_BIT;
460 shadow_dirty_mask = VMX_EPT_DIRTY_BIT;
461 shadow_nx_mask = 0ull;
462 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
463 /* VMX_EPT_SUPPRESS_VE_BIT is needed for W or X violation. */
464 shadow_present_mask =
465 (has_exec_only ? 0ull : VMX_EPT_READABLE_MASK) | VMX_EPT_SUPPRESS_VE_BIT;
466 /*
467 * EPT overrides the host MTRRs, and so KVM must program the desired
468 * memtype directly into the SPTEs. Note, this mask is just the mask
469 * of all bits that factor into the memtype, the actual memtype must be
470 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
471 */
472 shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
473 shadow_acc_track_mask = VMX_EPT_RWX_MASK;
474 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
475 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
476
477 /*
478 * EPT Misconfigurations are generated if the value of bits 2:0
479 * of an EPT paging-structure entry is 110b (write/execute).
480 */
481 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
482 VMX_EPT_RWX_MASK | VMX_EPT_SUPPRESS_VE_BIT, 0);
483 }
484 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
485
kvm_mmu_reset_all_pte_masks(void)486 void kvm_mmu_reset_all_pte_masks(void)
487 {
488 u8 low_phys_bits;
489 u64 mask;
490
491 kvm_ad_enabled = true;
492
493 /*
494 * If the CPU has 46 or less physical address bits, then set an
495 * appropriate mask to guard against L1TF attacks. Otherwise, it is
496 * assumed that the CPU is not vulnerable to L1TF.
497 *
498 * Some Intel CPUs address the L1 cache using more PA bits than are
499 * reported by CPUID. Use the PA width of the L1 cache when possible
500 * to achieve more effective mitigation, e.g. if system RAM overlaps
501 * the most significant bits of legal physical address space.
502 */
503 shadow_nonpresent_or_rsvd_mask = 0;
504 low_phys_bits = boot_cpu_data.x86_phys_bits;
505 if (boot_cpu_has_bug(X86_BUG_L1TF) &&
506 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
507 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
508 low_phys_bits = boot_cpu_data.x86_cache_bits
509 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
510 shadow_nonpresent_or_rsvd_mask =
511 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
512 }
513
514 shadow_nonpresent_or_rsvd_lower_gfn_mask =
515 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
516
517 shadow_user_mask = PT_USER_MASK;
518 shadow_accessed_mask = PT_ACCESSED_MASK;
519 shadow_dirty_mask = PT_DIRTY_MASK;
520 shadow_nx_mask = PT64_NX_MASK;
521 shadow_x_mask = 0;
522 shadow_present_mask = PT_PRESENT_MASK;
523
524 /*
525 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
526 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
527 * correct memtype (WB is the "weakest" memtype).
528 */
529 shadow_memtype_mask = 0;
530 shadow_acc_track_mask = 0;
531 shadow_me_mask = 0;
532 shadow_me_value = 0;
533
534 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
535 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
536
537 /*
538 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
539 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
540 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
541 * 52-bit physical addresses then there are no reserved PA bits in the
542 * PTEs and so the reserved PA approach must be disabled.
543 */
544 if (kvm_host.maxphyaddr < 52)
545 mask = BIT_ULL(51) | PT_PRESENT_MASK;
546 else
547 mask = 0;
548
549 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
550 }
551