1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
6 * Copyright 2001-2012 IBM Corporation.
7 *
8 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9 */
10
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 #include <linux/debugfs.h>
25
26 #include <linux/atomic.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35
36
37 /** Overview:
38 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39 * dealing with PCI bus errors that can't be dealt with within the
40 * usual PCI framework, except by check-stopping the CPU. Systems
41 * that are designed for high-availability/reliability cannot afford
42 * to crash due to a "mere" PCI error, thus the need for EEH.
43 * An EEH-capable bridge operates by converting a detected error
44 * into a "slot freeze", taking the PCI adapter off-line, making
45 * the slot behave, from the OS'es point of view, as if the slot
46 * were "empty": all reads return 0xff's and all writes are silently
47 * ignored. EEH slot isolation events can be triggered by parity
48 * errors on the address or data busses (e.g. during posted writes),
49 * which in turn might be caused by low voltage on the bus, dust,
50 * vibration, humidity, radioactivity or plain-old failed hardware.
51 *
52 * Note, however, that one of the leading causes of EEH slot
53 * freeze events are buggy device drivers, buggy device microcode,
54 * or buggy device hardware. This is because any attempt by the
55 * device to bus-master data to a memory address that is not
56 * assigned to the device will trigger a slot freeze. (The idea
57 * is to prevent devices-gone-wild from corrupting system memory).
58 * Buggy hardware/drivers will have a miserable time co-existing
59 * with EEH.
60 *
61 * Ideally, a PCI device driver, when suspecting that an isolation
62 * event has occurred (e.g. by reading 0xff's), will then ask EEH
63 * whether this is the case, and then take appropriate steps to
64 * reset the PCI slot, the PCI device, and then resume operations.
65 * However, until that day, the checking is done here, with the
66 * eeh_check_failure() routine embedded in the MMIO macros. If
67 * the slot is found to be isolated, an "EEH Event" is synthesized
68 * and sent out for processing.
69 */
70
71 /* If a device driver keeps reading an MMIO register in an interrupt
72 * handler after a slot isolation event, it might be broken.
73 * This sets the threshold for how many read attempts we allow
74 * before printing an error message.
75 */
76 #define EEH_MAX_FAILS 2100000
77
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80
81 /*
82 * EEH probe mode support, which is part of the flags,
83 * is to support multiple platforms for EEH. Some platforms
84 * like pSeries do PCI emunation based on device tree.
85 * However, other platforms like powernv probe PCI devices
86 * from hardware. The flag is used to distinguish that.
87 * In addition, struct eeh_ops::probe would be invoked for
88 * particular OF node or PCI device so that the corresponding
89 * PE would be created there.
90 */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93
94 /*
95 * EEH allowed maximal frozen times. If one particular PE's
96 * frozen count in last hour exceeds this limit, the PE will
97 * be forced to be offline permanently.
98 */
99 u32 eeh_max_freezes = 5;
100
101 /*
102 * Controls whether a recovery event should be scheduled when an
103 * isolated device is discovered. This is only really useful for
104 * debugging problems with the EEH core.
105 */
106 bool eeh_debugfs_no_recover;
107
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119 * not dynamically alloced, so that it ends up in RMO where RTAS
120 * can access it.
121 */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124
125 /*
126 * The struct is used to maintain the EEH global statistic
127 * information. Besides, the EEH global statistics will be
128 * exported to user space through procfs
129 */
130 struct eeh_stats {
131 u64 no_device; /* PCI device not found */
132 u64 no_dn; /* OF node not found */
133 u64 no_cfg_addr; /* Config address not found */
134 u64 ignored_check; /* EEH check skipped */
135 u64 total_mmio_ffs; /* Total EEH checks */
136 u64 false_positives; /* Unnecessary EEH checks */
137 u64 slot_resets; /* PE reset */
138 };
139
140 static struct eeh_stats eeh_stats;
141
eeh_setup(char * str)142 static int __init eeh_setup(char *str)
143 {
144 if (!strcmp(str, "off"))
145 eeh_add_flag(EEH_FORCE_DISABLED);
146 else if (!strcmp(str, "early_log"))
147 eeh_add_flag(EEH_EARLY_DUMP_LOG);
148
149 return 1;
150 }
151 __setup("eeh=", eeh_setup);
152
eeh_show_enabled(void)153 void eeh_show_enabled(void)
154 {
155 if (eeh_has_flag(EEH_FORCE_DISABLED))
156 pr_info("EEH: Recovery disabled by kernel parameter.\n");
157 else if (eeh_has_flag(EEH_ENABLED))
158 pr_info("EEH: Capable adapter found: recovery enabled.\n");
159 else
160 pr_info("EEH: No capable adapters found: recovery disabled.\n");
161 }
162
163 /*
164 * This routine captures assorted PCI configuration space data
165 * for the indicated PCI device, and puts them into a buffer
166 * for RTAS error logging.
167 */
eeh_dump_dev_log(struct eeh_dev * edev,char * buf,size_t len)168 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
169 {
170 u32 cfg;
171 int cap, i;
172 int n = 0, l = 0;
173 char buffer[128];
174
175 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
176 edev->pe->phb->global_number, edev->bdfn >> 8,
177 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
178 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
179 edev->pe->phb->global_number, edev->bdfn >> 8,
180 PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
181
182 eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
184 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
185
186 eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
187 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
188 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
189
190 /* Gather bridge-specific registers */
191 if (edev->mode & EEH_DEV_BRIDGE) {
192 eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
194 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
195
196 eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
197 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
198 pr_warn("EEH: Bridge control: %04x\n", cfg);
199 }
200
201 /* Dump out the PCI-X command and status regs */
202 cap = edev->pcix_cap;
203 if (cap) {
204 eeh_ops->read_config(edev, cap, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
206 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
207
208 eeh_ops->read_config(edev, cap+4, 4, &cfg);
209 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
210 pr_warn("EEH: PCI-X status: %08x\n", cfg);
211 }
212
213 /* If PCI-E capable, dump PCI-E cap 10 */
214 cap = edev->pcie_cap;
215 if (cap) {
216 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
217 pr_warn("EEH: PCI-E capabilities and status follow:\n");
218
219 for (i=0; i<=8; i++) {
220 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222
223 if ((i % 4) == 0) {
224 if (i != 0)
225 pr_warn("%s\n", buffer);
226
227 l = scnprintf(buffer, sizeof(buffer),
228 "EEH: PCI-E %02x: %08x ",
229 4*i, cfg);
230 } else {
231 l += scnprintf(buffer+l, sizeof(buffer)-l,
232 "%08x ", cfg);
233 }
234
235 }
236
237 pr_warn("%s\n", buffer);
238 }
239
240 /* If AER capable, dump it */
241 cap = edev->aer_cap;
242 if (cap) {
243 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
244 pr_warn("EEH: PCI-E AER capability register set follows:\n");
245
246 for (i=0; i<=13; i++) {
247 eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
248 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
249
250 if ((i % 4) == 0) {
251 if (i != 0)
252 pr_warn("%s\n", buffer);
253
254 l = scnprintf(buffer, sizeof(buffer),
255 "EEH: PCI-E AER %02x: %08x ",
256 4*i, cfg);
257 } else {
258 l += scnprintf(buffer+l, sizeof(buffer)-l,
259 "%08x ", cfg);
260 }
261 }
262
263 pr_warn("%s\n", buffer);
264 }
265
266 return n;
267 }
268
eeh_dump_pe_log(struct eeh_pe * pe,void * flag)269 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
270 {
271 struct eeh_dev *edev, *tmp;
272 size_t *plen = flag;
273
274 eeh_pe_for_each_dev(pe, edev, tmp)
275 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
276 EEH_PCI_REGS_LOG_LEN - *plen);
277
278 return NULL;
279 }
280
281 /**
282 * eeh_slot_error_detail - Generate combined log including driver log and error log
283 * @pe: EEH PE
284 * @severity: temporary or permanent error log
285 *
286 * This routine should be called to generate the combined log, which
287 * is comprised of driver log and error log. The driver log is figured
288 * out from the config space of the corresponding PCI device, while
289 * the error log is fetched through platform dependent function call.
290 */
eeh_slot_error_detail(struct eeh_pe * pe,int severity)291 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
292 {
293 size_t loglen = 0;
294
295 /*
296 * When the PHB is fenced or dead, it's pointless to collect
297 * the data from PCI config space because it should return
298 * 0xFF's. For ER, we still retrieve the data from the PCI
299 * config space.
300 *
301 * For pHyp, we have to enable IO for log retrieval. Otherwise,
302 * 0xFF's is always returned from PCI config space.
303 *
304 * When the @severity is EEH_LOG_PERM, the PE is going to be
305 * removed. Prior to that, the drivers for devices included in
306 * the PE will be closed. The drivers rely on working IO path
307 * to bring the devices to quiet state. Otherwise, PCI traffic
308 * from those devices after they are removed is like to cause
309 * another unexpected EEH error.
310 */
311 if (!(pe->type & EEH_PE_PHB)) {
312 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
313 severity == EEH_LOG_PERM)
314 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
315
316 /*
317 * The config space of some PCI devices can't be accessed
318 * when their PEs are in frozen state. Otherwise, fenced
319 * PHB might be seen. Those PEs are identified with flag
320 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
321 * is set automatically when the PE is put to EEH_PE_ISOLATED.
322 *
323 * Restoring BARs possibly triggers PCI config access in
324 * (OPAL) firmware and then causes fenced PHB. If the
325 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
326 * pointless to restore BARs and dump config space.
327 */
328 eeh_ops->configure_bridge(pe);
329 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
330 eeh_pe_restore_bars(pe);
331
332 pci_regs_buf[0] = 0;
333 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
334 }
335 }
336
337 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
338 }
339
340 /**
341 * eeh_token_to_phys - Convert EEH address token to phys address
342 * @token: I/O token, should be address in the form 0xA....
343 *
344 * This routine should be called to convert virtual I/O address
345 * to physical one.
346 */
eeh_token_to_phys(unsigned long token)347 static inline unsigned long eeh_token_to_phys(unsigned long token)
348 {
349 return ppc_find_vmap_phys(token);
350 }
351
352 /*
353 * On PowerNV platform, we might already have fenced PHB there.
354 * For that case, it's meaningless to recover frozen PE. Intead,
355 * We have to handle fenced PHB firstly.
356 */
eeh_phb_check_failure(struct eeh_pe * pe)357 static int eeh_phb_check_failure(struct eeh_pe *pe)
358 {
359 struct eeh_pe *phb_pe;
360 unsigned long flags;
361 int ret;
362
363 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
364 return -EPERM;
365
366 /* Find the PHB PE */
367 phb_pe = eeh_phb_pe_get(pe->phb);
368 if (!phb_pe) {
369 pr_warn("%s Can't find PE for PHB#%x\n",
370 __func__, pe->phb->global_number);
371 return -EEXIST;
372 }
373
374 /* If the PHB has been in problematic state */
375 eeh_serialize_lock(&flags);
376 if (phb_pe->state & EEH_PE_ISOLATED) {
377 ret = 0;
378 goto out;
379 }
380
381 /* Check PHB state */
382 ret = eeh_ops->get_state(phb_pe, NULL);
383 if ((ret < 0) ||
384 (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
385 ret = 0;
386 goto out;
387 }
388
389 /* Isolate the PHB and send event */
390 eeh_pe_mark_isolated(phb_pe);
391 eeh_serialize_unlock(flags);
392
393 pr_debug("EEH: PHB#%x failure detected, location: %s\n",
394 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
395 eeh_send_failure_event(phb_pe);
396 return 1;
397 out:
398 eeh_serialize_unlock(flags);
399 return ret;
400 }
401
eeh_driver_name(struct pci_dev * pdev)402 static inline const char *eeh_driver_name(struct pci_dev *pdev)
403 {
404 if (pdev)
405 return dev_driver_string(&pdev->dev);
406
407 return "<null>";
408 }
409
410 /**
411 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
412 * @edev: eeh device
413 *
414 * Check for an EEH failure for the given device node. Call this
415 * routine if the result of a read was all 0xff's and you want to
416 * find out if this is due to an EEH slot freeze. This routine
417 * will query firmware for the EEH status.
418 *
419 * Returns 0 if there has not been an EEH error; otherwise returns
420 * a non-zero value and queues up a slot isolation event notification.
421 *
422 * It is safe to call this routine in an interrupt context.
423 */
eeh_dev_check_failure(struct eeh_dev * edev)424 int eeh_dev_check_failure(struct eeh_dev *edev)
425 {
426 int ret;
427 unsigned long flags;
428 struct device_node *dn;
429 struct pci_dev *dev;
430 struct eeh_pe *pe, *parent_pe;
431 int rc = 0;
432 const char *location = NULL;
433
434 eeh_stats.total_mmio_ffs++;
435
436 if (!eeh_enabled())
437 return 0;
438
439 if (!edev) {
440 eeh_stats.no_dn++;
441 return 0;
442 }
443 dev = eeh_dev_to_pci_dev(edev);
444 pe = eeh_dev_to_pe(edev);
445
446 /* Access to IO BARs might get this far and still not want checking. */
447 if (!pe) {
448 eeh_stats.ignored_check++;
449 eeh_edev_dbg(edev, "Ignored check\n");
450 return 0;
451 }
452
453 /*
454 * On PowerNV platform, we might already have fenced PHB
455 * there and we need take care of that firstly.
456 */
457 ret = eeh_phb_check_failure(pe);
458 if (ret > 0)
459 return ret;
460
461 /*
462 * If the PE isn't owned by us, we shouldn't check the
463 * state. Instead, let the owner handle it if the PE has
464 * been frozen.
465 */
466 if (eeh_pe_passed(pe))
467 return 0;
468
469 /* If we already have a pending isolation event for this
470 * slot, we know it's bad already, we don't need to check.
471 * Do this checking under a lock; as multiple PCI devices
472 * in one slot might report errors simultaneously, and we
473 * only want one error recovery routine running.
474 */
475 eeh_serialize_lock(&flags);
476 rc = 1;
477 if (pe->state & EEH_PE_ISOLATED) {
478 pe->check_count++;
479 if (pe->check_count == EEH_MAX_FAILS) {
480 dn = pci_device_to_OF_node(dev);
481 if (dn)
482 location = of_get_property(dn, "ibm,loc-code",
483 NULL);
484 eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
485 pe->check_count,
486 location ? location : "unknown",
487 eeh_driver_name(dev));
488 eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
489 eeh_driver_name(dev));
490 dump_stack();
491 }
492 goto dn_unlock;
493 }
494
495 /*
496 * Now test for an EEH failure. This is VERY expensive.
497 * Note that the eeh_config_addr may be a parent device
498 * in the case of a device behind a bridge, or it may be
499 * function zero of a multi-function device.
500 * In any case they must share a common PHB.
501 */
502 ret = eeh_ops->get_state(pe, NULL);
503
504 /* Note that config-io to empty slots may fail;
505 * they are empty when they don't have children.
506 * We will punt with the following conditions: Failure to get
507 * PE's state, EEH not support and Permanently unavailable
508 * state, PE is in good state.
509 *
510 * On the pSeries, after reaching the threshold, get_state might
511 * return EEH_STATE_NOT_SUPPORT. However, it's possible that the
512 * device state remains uncleared if the device is not marked
513 * pci_channel_io_perm_failure. Therefore, consider logging the
514 * event to let device removal happen.
515 *
516 */
517 if ((ret < 0) ||
518 (ret == EEH_STATE_NOT_SUPPORT &&
519 dev->error_state == pci_channel_io_perm_failure) ||
520 eeh_state_active(ret)) {
521 eeh_stats.false_positives++;
522 pe->false_positives++;
523 rc = 0;
524 goto dn_unlock;
525 }
526
527 /*
528 * It should be corner case that the parent PE has been
529 * put into frozen state as well. We should take care
530 * that at first.
531 */
532 parent_pe = pe->parent;
533 while (parent_pe) {
534 /* Hit the ceiling ? */
535 if (parent_pe->type & EEH_PE_PHB)
536 break;
537
538 /* Frozen parent PE ? */
539 ret = eeh_ops->get_state(parent_pe, NULL);
540 if (ret > 0 && !eeh_state_active(ret)) {
541 pe = parent_pe;
542 pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
543 pe->phb->global_number, pe->addr,
544 pe->phb->global_number, parent_pe->addr);
545 }
546
547 /* Next parent level */
548 parent_pe = parent_pe->parent;
549 }
550
551 eeh_stats.slot_resets++;
552
553 /* Avoid repeated reports of this failure, including problems
554 * with other functions on this device, and functions under
555 * bridges.
556 */
557 eeh_pe_mark_isolated(pe);
558 eeh_serialize_unlock(flags);
559
560 /* Most EEH events are due to device driver bugs. Having
561 * a stack trace will help the device-driver authors figure
562 * out what happened. So print that out.
563 */
564 pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
565 __func__, pe->phb->global_number, pe->addr);
566 eeh_send_failure_event(pe);
567
568 return 1;
569
570 dn_unlock:
571 eeh_serialize_unlock(flags);
572 return rc;
573 }
574
575 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
576
577 /**
578 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
579 * @token: I/O address
580 *
581 * Check for an EEH failure at the given I/O address. Call this
582 * routine if the result of a read was all 0xff's and you want to
583 * find out if this is due to an EEH slot freeze event. This routine
584 * will query firmware for the EEH status.
585 *
586 * Note this routine is safe to call in an interrupt context.
587 */
eeh_check_failure(const volatile void __iomem * token)588 int eeh_check_failure(const volatile void __iomem *token)
589 {
590 unsigned long addr;
591 struct eeh_dev *edev;
592
593 /* Finding the phys addr + pci device; this is pretty quick. */
594 addr = eeh_token_to_phys((unsigned long __force) token);
595 edev = eeh_addr_cache_get_dev(addr);
596 if (!edev) {
597 eeh_stats.no_device++;
598 return 0;
599 }
600
601 return eeh_dev_check_failure(edev);
602 }
603 EXPORT_SYMBOL(eeh_check_failure);
604
605
606 /**
607 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
608 * @pe: EEH PE
609 * @function: EEH option
610 *
611 * This routine should be called to reenable frozen MMIO or DMA
612 * so that it would work correctly again. It's useful while doing
613 * recovery or log collection on the indicated device.
614 */
eeh_pci_enable(struct eeh_pe * pe,int function)615 int eeh_pci_enable(struct eeh_pe *pe, int function)
616 {
617 int active_flag, rc;
618
619 /*
620 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
621 * Also, it's pointless to enable them on unfrozen PE. So
622 * we have to check before enabling IO or DMA.
623 */
624 switch (function) {
625 case EEH_OPT_THAW_MMIO:
626 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
627 break;
628 case EEH_OPT_THAW_DMA:
629 active_flag = EEH_STATE_DMA_ACTIVE;
630 break;
631 case EEH_OPT_DISABLE:
632 case EEH_OPT_ENABLE:
633 case EEH_OPT_FREEZE_PE:
634 active_flag = 0;
635 break;
636 default:
637 pr_warn("%s: Invalid function %d\n",
638 __func__, function);
639 return -EINVAL;
640 }
641
642 /*
643 * Check if IO or DMA has been enabled before
644 * enabling them.
645 */
646 if (active_flag) {
647 rc = eeh_ops->get_state(pe, NULL);
648 if (rc < 0)
649 return rc;
650
651 /* Needn't enable it at all */
652 if (rc == EEH_STATE_NOT_SUPPORT)
653 return 0;
654
655 /* It's already enabled */
656 if (rc & active_flag)
657 return 0;
658 }
659
660
661 /* Issue the request */
662 rc = eeh_ops->set_option(pe, function);
663 if (rc)
664 pr_warn("%s: Unexpected state change %d on "
665 "PHB#%x-PE#%x, err=%d\n",
666 __func__, function, pe->phb->global_number,
667 pe->addr, rc);
668
669 /* Check if the request is finished successfully */
670 if (active_flag) {
671 rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
672 if (rc < 0)
673 return rc;
674
675 if (rc & active_flag)
676 return 0;
677
678 return -EIO;
679 }
680
681 return rc;
682 }
683
eeh_disable_and_save_dev_state(struct eeh_dev * edev,void * userdata)684 static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
685 void *userdata)
686 {
687 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
688 struct pci_dev *dev = userdata;
689
690 /*
691 * The caller should have disabled and saved the
692 * state for the specified device
693 */
694 if (!pdev || pdev == dev)
695 return;
696
697 /* Ensure we have D0 power state */
698 pci_set_power_state(pdev, PCI_D0);
699
700 /* Save device state */
701 pci_save_state(pdev);
702
703 /*
704 * Disable device to avoid any DMA traffic and
705 * interrupt from the device
706 */
707 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
708 }
709
eeh_restore_dev_state(struct eeh_dev * edev,void * userdata)710 static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
711 {
712 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
713 struct pci_dev *dev = userdata;
714
715 if (!pdev)
716 return;
717
718 /* Apply customization from firmware */
719 if (eeh_ops->restore_config)
720 eeh_ops->restore_config(edev);
721
722 /* The caller should restore state for the specified device */
723 if (pdev != dev)
724 pci_restore_state(pdev);
725 }
726
727 /**
728 * pcibios_set_pcie_reset_state - Set PCI-E reset state
729 * @dev: pci device struct
730 * @state: reset state to enter
731 *
732 * Return value:
733 * 0 if success
734 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)735 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
736 {
737 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
738 struct eeh_pe *pe = eeh_dev_to_pe(edev);
739
740 if (!pe) {
741 pr_err("%s: No PE found on PCI device %s\n",
742 __func__, pci_name(dev));
743 return -EINVAL;
744 }
745
746 switch (state) {
747 case pcie_deassert_reset:
748 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
749 eeh_unfreeze_pe(pe);
750 if (!(pe->type & EEH_PE_VF))
751 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
752 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
753 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
754 break;
755 case pcie_hot_reset:
756 eeh_pe_mark_isolated(pe);
757 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
758 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
759 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
760 if (!(pe->type & EEH_PE_VF))
761 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
762 eeh_ops->reset(pe, EEH_RESET_HOT);
763 break;
764 case pcie_warm_reset:
765 eeh_pe_mark_isolated(pe);
766 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
767 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
768 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
769 if (!(pe->type & EEH_PE_VF))
770 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
771 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
772 break;
773 default:
774 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
775 return -EINVAL;
776 }
777
778 return 0;
779 }
780
781 /**
782 * eeh_set_dev_freset - Check the required reset for the indicated device
783 * @edev: EEH device
784 * @flag: return value
785 *
786 * Each device might have its preferred reset type: fundamental or
787 * hot reset. The routine is used to collected the information for
788 * the indicated device and its children so that the bunch of the
789 * devices could be reset properly.
790 */
eeh_set_dev_freset(struct eeh_dev * edev,void * flag)791 static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
792 {
793 struct pci_dev *dev;
794 unsigned int *freset = (unsigned int *)flag;
795
796 dev = eeh_dev_to_pci_dev(edev);
797 if (dev)
798 *freset |= dev->needs_freset;
799 }
800
eeh_pe_refreeze_passed(struct eeh_pe * root)801 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
802 {
803 struct eeh_pe *pe;
804 int state;
805
806 eeh_for_each_pe(root, pe) {
807 if (eeh_pe_passed(pe)) {
808 state = eeh_ops->get_state(pe, NULL);
809 if (state &
810 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
811 pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
812 pe->phb->global_number, pe->addr);
813 eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
814 }
815 }
816 }
817 }
818
819 /**
820 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
821 * @pe: EEH PE
822 * @include_passed: include passed-through devices?
823 *
824 * This function executes a full reset procedure on a PE, including setting
825 * the appropriate flags, performing a fundamental or hot reset, and then
826 * deactivating the reset status. It is designed to be used within the EEH
827 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
828 * only performs a single operation at a time.
829 *
830 * This function will attempt to reset a PE three times before failing.
831 */
eeh_pe_reset_full(struct eeh_pe * pe,bool include_passed)832 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
833 {
834 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
835 int type = EEH_RESET_HOT;
836 unsigned int freset = 0;
837 int i, state = 0, ret;
838
839 /*
840 * Determine the type of reset to perform - hot or fundamental.
841 * Hot reset is the default operation, unless any device under the
842 * PE requires a fundamental reset.
843 */
844 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
845
846 if (freset)
847 type = EEH_RESET_FUNDAMENTAL;
848
849 /* Mark the PE as in reset state and block config space accesses */
850 eeh_pe_state_mark(pe, reset_state);
851
852 /* Make three attempts at resetting the bus */
853 for (i = 0; i < 3; i++) {
854 ret = eeh_pe_reset(pe, type, include_passed);
855 if (!ret)
856 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
857 include_passed);
858 if (ret) {
859 ret = -EIO;
860 pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
861 state, pe->phb->global_number, pe->addr, i + 1);
862 continue;
863 }
864 if (i)
865 pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
866 pe->phb->global_number, pe->addr, i + 1);
867
868 /* Wait until the PE is in a functioning state */
869 state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
870 if (state < 0) {
871 pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
872 pe->phb->global_number, pe->addr);
873 ret = -ENOTRECOVERABLE;
874 break;
875 }
876 if (eeh_state_active(state))
877 break;
878 else
879 pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
880 pe->phb->global_number, pe->addr, state, i + 1);
881 }
882
883 /* Resetting the PE may have unfrozen child PEs. If those PEs have been
884 * (potentially) passed through to a guest, re-freeze them:
885 */
886 if (!include_passed)
887 eeh_pe_refreeze_passed(pe);
888
889 eeh_pe_state_clear(pe, reset_state, true);
890 return ret;
891 }
892
893 /**
894 * eeh_save_bars - Save device bars
895 * @edev: PCI device associated EEH device
896 *
897 * Save the values of the device bars. Unlike the restore
898 * routine, this routine is *not* recursive. This is because
899 * PCI devices are added individually; but, for the restore,
900 * an entire slot is reset at a time.
901 */
eeh_save_bars(struct eeh_dev * edev)902 void eeh_save_bars(struct eeh_dev *edev)
903 {
904 int i;
905
906 if (!edev)
907 return;
908
909 for (i = 0; i < 16; i++)
910 eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
911
912 /*
913 * For PCI bridges including root port, we need enable bus
914 * master explicitly. Otherwise, it can't fetch IODA table
915 * entries correctly. So we cache the bit in advance so that
916 * we can restore it after reset, either PHB range or PE range.
917 */
918 if (edev->mode & EEH_DEV_BRIDGE)
919 edev->config_space[1] |= PCI_COMMAND_MASTER;
920 }
921
eeh_reboot_notifier(struct notifier_block * nb,unsigned long action,void * unused)922 static int eeh_reboot_notifier(struct notifier_block *nb,
923 unsigned long action, void *unused)
924 {
925 eeh_clear_flag(EEH_ENABLED);
926 return NOTIFY_DONE;
927 }
928
929 static struct notifier_block eeh_reboot_nb = {
930 .notifier_call = eeh_reboot_notifier,
931 };
932
eeh_device_notifier(struct notifier_block * nb,unsigned long action,void * data)933 static int eeh_device_notifier(struct notifier_block *nb,
934 unsigned long action, void *data)
935 {
936 struct device *dev = data;
937
938 switch (action) {
939 /*
940 * Note: It's not possible to perform EEH device addition (i.e.
941 * {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
942 * the device's resources, which have not yet been set up.
943 */
944 case BUS_NOTIFY_DEL_DEVICE:
945 eeh_remove_device(to_pci_dev(dev));
946 break;
947 default:
948 break;
949 }
950 return NOTIFY_DONE;
951 }
952
953 static struct notifier_block eeh_device_nb = {
954 .notifier_call = eeh_device_notifier,
955 };
956
957 /**
958 * eeh_init - System wide EEH initialization
959 * @ops: struct to trace EEH operation callback functions
960 *
961 * It's the platform's job to call this from an arch_initcall().
962 */
eeh_init(struct eeh_ops * ops)963 int eeh_init(struct eeh_ops *ops)
964 {
965 struct pci_controller *hose, *tmp;
966 int ret = 0;
967
968 /* the platform should only initialise EEH once */
969 if (WARN_ON(eeh_ops))
970 return -EEXIST;
971 if (WARN_ON(!ops))
972 return -ENOENT;
973 eeh_ops = ops;
974
975 /* Register reboot notifier */
976 ret = register_reboot_notifier(&eeh_reboot_nb);
977 if (ret) {
978 pr_warn("%s: Failed to register reboot notifier (%d)\n",
979 __func__, ret);
980 return ret;
981 }
982
983 ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
984 if (ret) {
985 pr_warn("%s: Failed to register bus notifier (%d)\n",
986 __func__, ret);
987 return ret;
988 }
989
990 /* Initialize PHB PEs */
991 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
992 eeh_phb_pe_create(hose);
993
994 eeh_addr_cache_init();
995
996 /* Initialize EEH event */
997 return eeh_event_init();
998 }
999
1000 /**
1001 * eeh_probe_device() - Perform EEH initialization for the indicated pci device
1002 * @dev: pci device for which to set up EEH
1003 *
1004 * This routine must be used to complete EEH initialization for PCI
1005 * devices that were added after system boot (e.g. hotplug, dlpar).
1006 */
eeh_probe_device(struct pci_dev * dev)1007 void eeh_probe_device(struct pci_dev *dev)
1008 {
1009 struct eeh_dev *edev;
1010
1011 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1012
1013 /*
1014 * pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
1015 * already called for this device.
1016 */
1017 if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
1018 pci_dbg(dev, "Already bound to an eeh_dev!\n");
1019 return;
1020 }
1021
1022 edev = eeh_ops->probe(dev);
1023 if (!edev) {
1024 pr_debug("EEH: Adding device failed\n");
1025 return;
1026 }
1027
1028 /*
1029 * FIXME: We rely on pcibios_release_device() to remove the
1030 * existing EEH state. The release function is only called if
1031 * the pci_dev's refcount drops to zero so if something is
1032 * keeping a ref to a device (e.g. a filesystem) we need to
1033 * remove the old EEH state.
1034 *
1035 * FIXME: HEY MA, LOOK AT ME, NO LOCKING!
1036 */
1037 if (edev->pdev && edev->pdev != dev) {
1038 eeh_pe_tree_remove(edev);
1039 eeh_addr_cache_rmv_dev(edev->pdev);
1040 eeh_sysfs_remove_device(edev->pdev);
1041
1042 /*
1043 * We definitely should have the PCI device removed
1044 * though it wasn't correctly. So we needn't call
1045 * into error handler afterwards.
1046 */
1047 edev->mode |= EEH_DEV_NO_HANDLER;
1048 }
1049
1050 /* bind the pdev and the edev together */
1051 edev->pdev = dev;
1052 dev->dev.archdata.edev = edev;
1053 eeh_addr_cache_insert_dev(dev);
1054 eeh_sysfs_add_device(dev);
1055 }
1056
1057 /**
1058 * eeh_remove_device - Undo EEH setup for the indicated pci device
1059 * @dev: pci device to be removed
1060 *
1061 * This routine should be called when a device is removed from
1062 * a running system (e.g. by hotplug or dlpar). It unregisters
1063 * the PCI device from the EEH subsystem. I/O errors affecting
1064 * this device will no longer be detected after this call; thus,
1065 * i/o errors affecting this slot may leave this device unusable.
1066 */
eeh_remove_device(struct pci_dev * dev)1067 void eeh_remove_device(struct pci_dev *dev)
1068 {
1069 struct eeh_dev *edev;
1070
1071 if (!dev || !eeh_enabled())
1072 return;
1073 edev = pci_dev_to_eeh_dev(dev);
1074
1075 /* Unregister the device with the EEH/PCI address search system */
1076 dev_dbg(&dev->dev, "EEH: Removing device\n");
1077
1078 if (!edev || !edev->pdev || !edev->pe) {
1079 dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
1080 return;
1081 }
1082
1083 /*
1084 * During the hotplug for EEH error recovery, we need the EEH
1085 * device attached to the parent PE in order for BAR restore
1086 * a bit later. So we keep it for BAR restore and remove it
1087 * from the parent PE during the BAR resotre.
1088 */
1089 edev->pdev = NULL;
1090
1091 /*
1092 * eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
1093 * remove the sysfs files before clearing dev.archdata.edev
1094 */
1095 if (edev->mode & EEH_DEV_SYSFS)
1096 eeh_sysfs_remove_device(dev);
1097
1098 /*
1099 * We're removing from the PCI subsystem, that means
1100 * the PCI device driver can't support EEH or not
1101 * well. So we rely on hotplug completely to do recovery
1102 * for the specific PCI device.
1103 */
1104 edev->mode |= EEH_DEV_NO_HANDLER;
1105
1106 eeh_addr_cache_rmv_dev(dev);
1107
1108 /*
1109 * The flag "in_error" is used to trace EEH devices for VFs
1110 * in error state or not. It's set in eeh_report_error(). If
1111 * it's not set, eeh_report_{reset,resume}() won't be called
1112 * for the VF EEH device.
1113 */
1114 edev->in_error = false;
1115 dev->dev.archdata.edev = NULL;
1116 if (!(edev->pe->state & EEH_PE_KEEP))
1117 eeh_pe_tree_remove(edev);
1118 else
1119 edev->mode |= EEH_DEV_DISCONNECTED;
1120 }
1121
eeh_unfreeze_pe(struct eeh_pe * pe)1122 int eeh_unfreeze_pe(struct eeh_pe *pe)
1123 {
1124 int ret;
1125
1126 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1127 if (ret) {
1128 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1129 __func__, ret, pe->phb->global_number, pe->addr);
1130 return ret;
1131 }
1132
1133 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1134 if (ret) {
1135 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1136 __func__, ret, pe->phb->global_number, pe->addr);
1137 return ret;
1138 }
1139
1140 return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(eeh_unfreeze_pe);
1143
1144
1145 static struct pci_device_id eeh_reset_ids[] = {
1146 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1147 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1148 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1149 { 0 }
1150 };
1151
eeh_pe_change_owner(struct eeh_pe * pe)1152 static int eeh_pe_change_owner(struct eeh_pe *pe)
1153 {
1154 struct eeh_dev *edev, *tmp;
1155 struct pci_dev *pdev;
1156 struct pci_device_id *id;
1157 int ret;
1158
1159 /* Check PE state */
1160 ret = eeh_ops->get_state(pe, NULL);
1161 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1162 return 0;
1163
1164 /* Unfrozen PE, nothing to do */
1165 if (eeh_state_active(ret))
1166 return 0;
1167
1168 /* Frozen PE, check if it needs PE level reset */
1169 eeh_pe_for_each_dev(pe, edev, tmp) {
1170 pdev = eeh_dev_to_pci_dev(edev);
1171 if (!pdev)
1172 continue;
1173
1174 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1175 if (id->vendor != PCI_ANY_ID &&
1176 id->vendor != pdev->vendor)
1177 continue;
1178 if (id->device != PCI_ANY_ID &&
1179 id->device != pdev->device)
1180 continue;
1181 if (id->subvendor != PCI_ANY_ID &&
1182 id->subvendor != pdev->subsystem_vendor)
1183 continue;
1184 if (id->subdevice != PCI_ANY_ID &&
1185 id->subdevice != pdev->subsystem_device)
1186 continue;
1187
1188 return eeh_pe_reset_and_recover(pe);
1189 }
1190 }
1191
1192 ret = eeh_unfreeze_pe(pe);
1193 if (!ret)
1194 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1195 return ret;
1196 }
1197
1198 /**
1199 * eeh_dev_open - Increase count of pass through devices for PE
1200 * @pdev: PCI device
1201 *
1202 * Increase count of passed through devices for the indicated
1203 * PE. In the result, the EEH errors detected on the PE won't be
1204 * reported. The PE owner will be responsible for detection
1205 * and recovery.
1206 */
eeh_dev_open(struct pci_dev * pdev)1207 int eeh_dev_open(struct pci_dev *pdev)
1208 {
1209 struct eeh_dev *edev;
1210 int ret = -ENODEV;
1211
1212 guard(mutex)(&eeh_dev_mutex);
1213
1214 /* No PCI device ? */
1215 if (!pdev)
1216 return ret;
1217
1218 /* No EEH device or PE ? */
1219 edev = pci_dev_to_eeh_dev(pdev);
1220 if (!edev || !edev->pe)
1221 return ret;
1222
1223 /*
1224 * The PE might have been put into frozen state, but we
1225 * didn't detect that yet. The passed through PCI devices
1226 * in frozen PE won't work properly. Clear the frozen state
1227 * in advance.
1228 */
1229 ret = eeh_pe_change_owner(edev->pe);
1230 if (ret)
1231 return ret;
1232
1233 /* Increase PE's pass through count */
1234 atomic_inc(&edev->pe->pass_dev_cnt);
1235
1236 return 0;
1237 }
1238 EXPORT_SYMBOL_GPL(eeh_dev_open);
1239
1240 /**
1241 * eeh_dev_release - Decrease count of pass through devices for PE
1242 * @pdev: PCI device
1243 *
1244 * Decrease count of pass through devices for the indicated PE. If
1245 * there is no passed through device in PE, the EEH errors detected
1246 * on the PE will be reported and handled as usual.
1247 */
eeh_dev_release(struct pci_dev * pdev)1248 void eeh_dev_release(struct pci_dev *pdev)
1249 {
1250 struct eeh_dev *edev;
1251
1252 guard(mutex)(&eeh_dev_mutex);
1253
1254 /* No PCI device ? */
1255 if (!pdev)
1256 return;
1257
1258 /* No EEH device ? */
1259 edev = pci_dev_to_eeh_dev(pdev);
1260 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1261 return;
1262
1263 /* Decrease PE's pass through count */
1264 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1265 eeh_pe_change_owner(edev->pe);
1266 }
1267 EXPORT_SYMBOL(eeh_dev_release);
1268
1269 #ifdef CONFIG_IOMMU_API
1270
1271 /**
1272 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1273 * @group: IOMMU group
1274 *
1275 * The routine is called to convert IOMMU group to EEH PE.
1276 */
eeh_iommu_group_to_pe(struct iommu_group * group)1277 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1278 {
1279 struct pci_dev *pdev = NULL;
1280 struct eeh_dev *edev;
1281 int ret;
1282
1283 /* No IOMMU group ? */
1284 if (!group)
1285 return NULL;
1286
1287 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1288 if (!ret || !pdev)
1289 return NULL;
1290
1291 /* No EEH device or PE ? */
1292 edev = pci_dev_to_eeh_dev(pdev);
1293 if (!edev || !edev->pe)
1294 return NULL;
1295
1296 return edev->pe;
1297 }
1298 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1299
1300 #endif /* CONFIG_IOMMU_API */
1301
1302 /**
1303 * eeh_pe_set_option - Set options for the indicated PE
1304 * @pe: EEH PE
1305 * @option: requested option
1306 *
1307 * The routine is called to enable or disable EEH functionality
1308 * on the indicated PE, to enable IO or DMA for the frozen PE.
1309 */
eeh_pe_set_option(struct eeh_pe * pe,int option)1310 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1311 {
1312 int ret = 0;
1313
1314 /* Invalid PE ? */
1315 if (!pe)
1316 return -ENODEV;
1317
1318 /*
1319 * EEH functionality could possibly be disabled, just
1320 * return error for the case. And the EEH functionality
1321 * isn't expected to be disabled on one specific PE.
1322 */
1323 switch (option) {
1324 case EEH_OPT_ENABLE:
1325 if (eeh_enabled()) {
1326 ret = eeh_pe_change_owner(pe);
1327 break;
1328 }
1329 ret = -EIO;
1330 break;
1331 case EEH_OPT_DISABLE:
1332 break;
1333 case EEH_OPT_THAW_MMIO:
1334 case EEH_OPT_THAW_DMA:
1335 case EEH_OPT_FREEZE_PE:
1336 if (!eeh_ops || !eeh_ops->set_option) {
1337 ret = -ENOENT;
1338 break;
1339 }
1340
1341 ret = eeh_pci_enable(pe, option);
1342 break;
1343 default:
1344 pr_debug("%s: Option %d out of range (%d, %d)\n",
1345 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1346 ret = -EINVAL;
1347 }
1348
1349 return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1352
1353 /**
1354 * eeh_pe_get_state - Retrieve PE's state
1355 * @pe: EEH PE
1356 *
1357 * Retrieve the PE's state, which includes 3 aspects: enabled
1358 * DMA, enabled IO and asserted reset.
1359 */
eeh_pe_get_state(struct eeh_pe * pe)1360 int eeh_pe_get_state(struct eeh_pe *pe)
1361 {
1362 int result, ret = 0;
1363 bool rst_active, dma_en, mmio_en;
1364
1365 /* Existing PE ? */
1366 if (!pe)
1367 return -ENODEV;
1368
1369 if (!eeh_ops || !eeh_ops->get_state)
1370 return -ENOENT;
1371
1372 /*
1373 * If the parent PE is owned by the host kernel and is undergoing
1374 * error recovery, we should return the PE state as temporarily
1375 * unavailable so that the error recovery on the guest is suspended
1376 * until the recovery completes on the host.
1377 */
1378 if (pe->parent &&
1379 !(pe->state & EEH_PE_REMOVED) &&
1380 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1381 return EEH_PE_STATE_UNAVAIL;
1382
1383 result = eeh_ops->get_state(pe, NULL);
1384 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1385 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1386 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1387
1388 if (rst_active)
1389 ret = EEH_PE_STATE_RESET;
1390 else if (dma_en && mmio_en)
1391 ret = EEH_PE_STATE_NORMAL;
1392 else if (!dma_en && !mmio_en)
1393 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1394 else if (!dma_en && mmio_en)
1395 ret = EEH_PE_STATE_STOPPED_DMA;
1396 else
1397 ret = EEH_PE_STATE_UNAVAIL;
1398
1399 return ret;
1400 }
1401 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1402
eeh_pe_reenable_devices(struct eeh_pe * pe,bool include_passed)1403 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1404 {
1405 struct eeh_dev *edev, *tmp;
1406 struct pci_dev *pdev;
1407 int ret = 0;
1408
1409 eeh_pe_restore_bars(pe);
1410
1411 /*
1412 * Reenable PCI devices as the devices passed
1413 * through are always enabled before the reset.
1414 */
1415 eeh_pe_for_each_dev(pe, edev, tmp) {
1416 pdev = eeh_dev_to_pci_dev(edev);
1417 if (!pdev)
1418 continue;
1419
1420 ret = pci_reenable_device(pdev);
1421 if (ret) {
1422 pr_warn("%s: Failure %d reenabling %s\n",
1423 __func__, ret, pci_name(pdev));
1424 return ret;
1425 }
1426 }
1427
1428 /* The PE is still in frozen state */
1429 if (include_passed || !eeh_pe_passed(pe)) {
1430 ret = eeh_unfreeze_pe(pe);
1431 } else
1432 pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1433 pe->phb->global_number, pe->addr);
1434 if (!ret)
1435 eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1436 return ret;
1437 }
1438
1439
1440 /**
1441 * eeh_pe_reset - Issue PE reset according to specified type
1442 * @pe: EEH PE
1443 * @option: reset type
1444 * @include_passed: include passed-through devices?
1445 *
1446 * The routine is called to reset the specified PE with the
1447 * indicated type, either fundamental reset or hot reset.
1448 * PE reset is the most important part for error recovery.
1449 */
eeh_pe_reset(struct eeh_pe * pe,int option,bool include_passed)1450 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1451 {
1452 int ret = 0;
1453
1454 /* Invalid PE ? */
1455 if (!pe)
1456 return -ENODEV;
1457
1458 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1459 return -ENOENT;
1460
1461 switch (option) {
1462 case EEH_RESET_DEACTIVATE:
1463 ret = eeh_ops->reset(pe, option);
1464 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1465 if (ret)
1466 break;
1467
1468 ret = eeh_pe_reenable_devices(pe, include_passed);
1469 break;
1470 case EEH_RESET_HOT:
1471 case EEH_RESET_FUNDAMENTAL:
1472 /*
1473 * Proactively freeze the PE to drop all MMIO access
1474 * during reset, which should be banned as it's always
1475 * cause recursive EEH error.
1476 */
1477 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1478
1479 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1480 ret = eeh_ops->reset(pe, option);
1481 break;
1482 default:
1483 pr_debug("%s: Unsupported option %d\n",
1484 __func__, option);
1485 ret = -EINVAL;
1486 }
1487
1488 return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1491
1492 /**
1493 * eeh_pe_configure - Configure PCI bridges after PE reset
1494 * @pe: EEH PE
1495 *
1496 * The routine is called to restore the PCI config space for
1497 * those PCI devices, especially PCI bridges affected by PE
1498 * reset issued previously.
1499 */
eeh_pe_configure(struct eeh_pe * pe)1500 int eeh_pe_configure(struct eeh_pe *pe)
1501 {
1502 int ret = 0;
1503
1504 /* Invalid PE ? */
1505 if (!pe)
1506 return -ENODEV;
1507 else
1508 ret = eeh_ops->configure_bridge(pe);
1509
1510 return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1513
1514 /**
1515 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1516 * @pe: the indicated PE
1517 * @type: error type
1518 * @func: error function
1519 * @addr: address
1520 * @mask: address mask
1521 *
1522 * The routine is called to inject the specified PCI error, which
1523 * is determined by @type and @func, to the indicated PE for
1524 * testing purpose.
1525 */
eeh_pe_inject_err(struct eeh_pe * pe,int type,int func,unsigned long addr,unsigned long mask)1526 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1527 unsigned long addr, unsigned long mask)
1528 {
1529 /* Invalid PE ? */
1530 if (!pe)
1531 return -ENODEV;
1532
1533 /* Unsupported operation ? */
1534 if (!eeh_ops || !eeh_ops->err_inject)
1535 return -ENOENT;
1536
1537 /* Check on PCI error function */
1538 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1539 return -EINVAL;
1540
1541 return eeh_ops->err_inject(pe, type, func, addr, mask);
1542 }
1543 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1544
1545 #ifdef CONFIG_PROC_FS
proc_eeh_show(struct seq_file * m,void * v)1546 static int proc_eeh_show(struct seq_file *m, void *v)
1547 {
1548 if (!eeh_enabled()) {
1549 seq_printf(m, "EEH Subsystem is globally disabled\n");
1550 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1551 } else {
1552 seq_printf(m, "EEH Subsystem is enabled\n");
1553 seq_printf(m,
1554 "no device=%llu\n"
1555 "no device node=%llu\n"
1556 "no config address=%llu\n"
1557 "check not wanted=%llu\n"
1558 "eeh_total_mmio_ffs=%llu\n"
1559 "eeh_false_positives=%llu\n"
1560 "eeh_slot_resets=%llu\n",
1561 eeh_stats.no_device,
1562 eeh_stats.no_dn,
1563 eeh_stats.no_cfg_addr,
1564 eeh_stats.ignored_check,
1565 eeh_stats.total_mmio_ffs,
1566 eeh_stats.false_positives,
1567 eeh_stats.slot_resets);
1568 }
1569
1570 return 0;
1571 }
1572 #endif /* CONFIG_PROC_FS */
1573
eeh_break_device(struct pci_dev * pdev)1574 static int eeh_break_device(struct pci_dev *pdev)
1575 {
1576 struct resource *bar = NULL;
1577 void __iomem *mapped;
1578 u16 old, bit;
1579 int i, pos;
1580
1581 /* Do we have an MMIO BAR to disable? */
1582 for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
1583 struct resource *r = &pdev->resource[i];
1584
1585 if (!r->flags || !r->start)
1586 continue;
1587 if (r->flags & IORESOURCE_IO)
1588 continue;
1589 if (r->flags & IORESOURCE_UNSET)
1590 continue;
1591
1592 bar = r;
1593 break;
1594 }
1595
1596 if (!bar) {
1597 pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
1598 return -ENXIO;
1599 }
1600
1601 pci_err(pdev, "Going to break: %pR\n", bar);
1602
1603 if (pdev->is_virtfn) {
1604 #ifndef CONFIG_PCI_IOV
1605 return -ENXIO;
1606 #else
1607 /*
1608 * VFs don't have a per-function COMMAND register, so the best
1609 * we can do is clear the Memory Space Enable bit in the PF's
1610 * SRIOV control reg.
1611 *
1612 * Unfortunately, this requires that we have a PF (i.e doesn't
1613 * work for a passed-through VF) and it has the potential side
1614 * effect of also causing an EEH on every other VF under the
1615 * PF. Oh well.
1616 */
1617 pdev = pdev->physfn;
1618 if (!pdev)
1619 return -ENXIO; /* passed through VFs have no PF */
1620
1621 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1622 pos += PCI_SRIOV_CTRL;
1623 bit = PCI_SRIOV_CTRL_MSE;
1624 #endif /* !CONFIG_PCI_IOV */
1625 } else {
1626 bit = PCI_COMMAND_MEMORY;
1627 pos = PCI_COMMAND;
1628 }
1629
1630 /*
1631 * Process here is:
1632 *
1633 * 1. Disable Memory space.
1634 *
1635 * 2. Perform an MMIO to the device. This should result in an error
1636 * (CA / UR) being raised by the device which results in an EEH
1637 * PE freeze. Using the in_8() accessor skips the eeh detection hook
1638 * so the freeze hook so the EEH Detection machinery won't be
1639 * triggered here. This is to match the usual behaviour of EEH
1640 * where the HW will asynchronously freeze a PE and it's up to
1641 * the kernel to notice and deal with it.
1642 *
1643 * 3. Turn Memory space back on. This is more important for VFs
1644 * since recovery will probably fail if we don't. For normal
1645 * the COMMAND register is reset as a part of re-initialising
1646 * the device.
1647 *
1648 * Breaking stuff is the point so who cares if it's racy ;)
1649 */
1650 pci_read_config_word(pdev, pos, &old);
1651
1652 mapped = ioremap(bar->start, PAGE_SIZE);
1653 if (!mapped) {
1654 pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
1655 return -ENXIO;
1656 }
1657
1658 pci_write_config_word(pdev, pos, old & ~bit);
1659 in_8(mapped);
1660 pci_write_config_word(pdev, pos, old);
1661
1662 iounmap(mapped);
1663
1664 return 0;
1665 }
1666
eeh_pe_inject_mmio_error(struct pci_dev * pdev)1667 int eeh_pe_inject_mmio_error(struct pci_dev *pdev)
1668 {
1669 return eeh_break_device(pdev);
1670 }
1671
1672 #ifdef CONFIG_DEBUG_FS
1673
1674
eeh_debug_lookup_pdev(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1675 static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
1676 const char __user *user_buf,
1677 size_t count, loff_t *ppos)
1678 {
1679 uint32_t domain, bus, dev, fn;
1680 struct pci_dev *pdev;
1681 char buf[20];
1682 int ret;
1683
1684 memset(buf, 0, sizeof(buf));
1685 ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
1686 if (!ret)
1687 return ERR_PTR(-EFAULT);
1688
1689 ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
1690 if (ret != 4) {
1691 pr_err("%s: expected 4 args, got %d\n", __func__, ret);
1692 return ERR_PTR(-EINVAL);
1693 }
1694
1695 pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
1696 if (!pdev)
1697 return ERR_PTR(-ENODEV);
1698
1699 return pdev;
1700 }
1701
eeh_enable_dbgfs_set(void * data,u64 val)1702 static int eeh_enable_dbgfs_set(void *data, u64 val)
1703 {
1704 if (val)
1705 eeh_clear_flag(EEH_FORCE_DISABLED);
1706 else
1707 eeh_add_flag(EEH_FORCE_DISABLED);
1708
1709 return 0;
1710 }
1711
eeh_enable_dbgfs_get(void * data,u64 * val)1712 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1713 {
1714 if (eeh_enabled())
1715 *val = 0x1ul;
1716 else
1717 *val = 0x0ul;
1718 return 0;
1719 }
1720
1721 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1722 eeh_enable_dbgfs_set, "0x%llx\n");
1723
eeh_force_recover_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1724 static ssize_t eeh_force_recover_write(struct file *filp,
1725 const char __user *user_buf,
1726 size_t count, loff_t *ppos)
1727 {
1728 struct pci_controller *hose;
1729 uint32_t phbid, pe_no;
1730 struct eeh_pe *pe;
1731 char buf[20];
1732 int ret;
1733
1734 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1735 if (!ret)
1736 return -EFAULT;
1737
1738 /*
1739 * When PE is NULL the event is a "special" event. Rather than
1740 * recovering a specific PE it forces the EEH core to scan for failed
1741 * PHBs and recovers each. This needs to be done before any device
1742 * recoveries can occur.
1743 */
1744 if (!strncmp(buf, "hwcheck", 7)) {
1745 __eeh_send_failure_event(NULL);
1746 return count;
1747 }
1748
1749 ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1750 if (ret != 2)
1751 return -EINVAL;
1752
1753 hose = pci_find_controller_for_domain(phbid);
1754 if (!hose)
1755 return -ENODEV;
1756
1757 /* Retrieve PE */
1758 pe = eeh_pe_get(hose, pe_no);
1759 if (!pe)
1760 return -ENODEV;
1761
1762 /*
1763 * We don't do any state checking here since the detection
1764 * process is async to the recovery process. The recovery
1765 * thread *should* not break even if we schedule a recovery
1766 * from an odd state (e.g. PE removed, or recovery of a
1767 * non-isolated PE)
1768 */
1769 __eeh_send_failure_event(pe);
1770
1771 return ret < 0 ? ret : count;
1772 }
1773
1774 static const struct file_operations eeh_force_recover_fops = {
1775 .open = simple_open,
1776 .write = eeh_force_recover_write,
1777 };
1778
eeh_debugfs_dev_usage(struct file * filp,char __user * user_buf,size_t count,loff_t * ppos)1779 static ssize_t eeh_debugfs_dev_usage(struct file *filp,
1780 char __user *user_buf,
1781 size_t count, loff_t *ppos)
1782 {
1783 static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
1784
1785 return simple_read_from_buffer(user_buf, count, ppos,
1786 usage, sizeof(usage) - 1);
1787 }
1788
eeh_dev_check_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1789 static ssize_t eeh_dev_check_write(struct file *filp,
1790 const char __user *user_buf,
1791 size_t count, loff_t *ppos)
1792 {
1793 struct pci_dev *pdev;
1794 struct eeh_dev *edev;
1795 int ret;
1796
1797 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1798 if (IS_ERR(pdev))
1799 return PTR_ERR(pdev);
1800
1801 edev = pci_dev_to_eeh_dev(pdev);
1802 if (!edev) {
1803 pci_err(pdev, "No eeh_dev for this device!\n");
1804 pci_dev_put(pdev);
1805 return -ENODEV;
1806 }
1807
1808 ret = eeh_dev_check_failure(edev);
1809 pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
1810 pci_name(pdev), ret);
1811
1812 pci_dev_put(pdev);
1813
1814 return count;
1815 }
1816
1817 static const struct file_operations eeh_dev_check_fops = {
1818 .open = simple_open,
1819 .write = eeh_dev_check_write,
1820 .read = eeh_debugfs_dev_usage,
1821 };
1822
eeh_dev_break_write(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1823 static ssize_t eeh_dev_break_write(struct file *filp,
1824 const char __user *user_buf,
1825 size_t count, loff_t *ppos)
1826 {
1827 struct pci_dev *pdev;
1828 int ret;
1829
1830 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1831 if (IS_ERR(pdev))
1832 return PTR_ERR(pdev);
1833
1834 ret = eeh_break_device(pdev);
1835 pci_dev_put(pdev);
1836
1837 if (ret < 0)
1838 return ret;
1839
1840 return count;
1841 }
1842
1843 static const struct file_operations eeh_dev_break_fops = {
1844 .open = simple_open,
1845 .write = eeh_dev_break_write,
1846 .read = eeh_debugfs_dev_usage,
1847 };
1848
eeh_dev_can_recover(struct file * filp,const char __user * user_buf,size_t count,loff_t * ppos)1849 static ssize_t eeh_dev_can_recover(struct file *filp,
1850 const char __user *user_buf,
1851 size_t count, loff_t *ppos)
1852 {
1853 struct pci_driver *drv;
1854 struct pci_dev *pdev;
1855 size_t ret;
1856
1857 pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
1858 if (IS_ERR(pdev))
1859 return PTR_ERR(pdev);
1860
1861 /*
1862 * In order for error recovery to work the driver needs to implement
1863 * .error_detected(), so it can quiesce IO to the device, and
1864 * .slot_reset() so it can re-initialise the device after a reset.
1865 *
1866 * Ideally they'd implement .resume() too, but some drivers which
1867 * we need to support (notably IPR) don't so I guess we can tolerate
1868 * that.
1869 *
1870 * .mmio_enabled() is mostly there as a work-around for devices which
1871 * take forever to re-init after a hot reset. Implementing that is
1872 * strictly optional.
1873 */
1874 drv = pci_dev_driver(pdev);
1875 if (drv &&
1876 drv->err_handler &&
1877 drv->err_handler->error_detected &&
1878 drv->err_handler->slot_reset) {
1879 ret = count;
1880 } else {
1881 ret = -EOPNOTSUPP;
1882 }
1883
1884 pci_dev_put(pdev);
1885
1886 return ret;
1887 }
1888
1889 static const struct file_operations eeh_dev_can_recover_fops = {
1890 .open = simple_open,
1891 .write = eeh_dev_can_recover,
1892 .read = eeh_debugfs_dev_usage,
1893 };
1894
1895 #endif
1896
eeh_init_proc(void)1897 static int __init eeh_init_proc(void)
1898 {
1899 if (machine_is(pseries) || machine_is(powernv)) {
1900 proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1901 #ifdef CONFIG_DEBUG_FS
1902 debugfs_create_file_unsafe("eeh_enable", 0600,
1903 arch_debugfs_dir, NULL,
1904 &eeh_enable_dbgfs_ops);
1905 debugfs_create_u32("eeh_max_freezes", 0600,
1906 arch_debugfs_dir, &eeh_max_freezes);
1907 debugfs_create_bool("eeh_disable_recovery", 0600,
1908 arch_debugfs_dir,
1909 &eeh_debugfs_no_recover);
1910 debugfs_create_file_unsafe("eeh_dev_check", 0600,
1911 arch_debugfs_dir, NULL,
1912 &eeh_dev_check_fops);
1913 debugfs_create_file_unsafe("eeh_dev_break", 0600,
1914 arch_debugfs_dir, NULL,
1915 &eeh_dev_break_fops);
1916 debugfs_create_file_unsafe("eeh_force_recover", 0600,
1917 arch_debugfs_dir, NULL,
1918 &eeh_force_recover_fops);
1919 debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
1920 arch_debugfs_dir, NULL,
1921 &eeh_dev_can_recover_fops);
1922 eeh_cache_debugfs_init();
1923 #endif
1924 }
1925
1926 return 0;
1927 }
1928 __initcall(eeh_init_proc);
1929