1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118
119 #include <trace/events/sched.h>
120
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123
124 #include <kunit/visibility.h>
125
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 /*
137 * Protected counters by write_lock_irq(&tasklist_lock)
138 */
139 unsigned long total_forks; /* Handle normal Linux uptimes. */
140 int nr_threads; /* The idle threads do not count.. */
141
142 static int max_threads; /* tunable limit on nr_threads */
143
144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
145
146 static const char * const resident_page_types[] = {
147 NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
156
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164
nr_processes(void)165 int nr_processes(void)
166 {
167 int cpu;
168 int total = 0;
169
170 for_each_possible_cpu(cpu)
171 total += per_cpu(process_counts, cpu);
172
173 return total;
174 }
175
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179
180 static struct kmem_cache *task_struct_cachep;
181
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 kmem_cache_free(task_struct_cachep, tsk);
190 }
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200 * Allocated stacks are cached and later reused by new threads, so memcg
201 * accounting is performed by the code assigning/releasing stacks to tasks.
202 * We need a zeroed memory without __GFP_ACCOUNT.
203 */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205
206 struct vm_stack {
207 struct rcu_head rcu;
208 struct vm_struct *stack_vm_area;
209 };
210
try_release_thread_stack_to_cache(struct vm_struct * vm_area)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
212 {
213 unsigned int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *tmp = NULL;
217
218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
219 return true;
220 }
221 return false;
222 }
223
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227 struct vm_struct *vm_area = vm_stack->stack_vm_area;
228
229 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 return;
231
232 vfree(vm_area->addr);
233 }
234
thread_stack_delayed_free(struct task_struct * tsk)235 static void thread_stack_delayed_free(struct task_struct *tsk)
236 {
237 struct vm_stack *vm_stack = tsk->stack;
238
239 vm_stack->stack_vm_area = tsk->stack_vm_area;
240 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
241 }
242
free_vm_stack_cache(unsigned int cpu)243 static int free_vm_stack_cache(unsigned int cpu)
244 {
245 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
246 int i;
247
248 for (i = 0; i < NR_CACHED_STACKS; i++) {
249 struct vm_struct *vm_area = cached_vm_stack_areas[i];
250
251 if (!vm_area)
252 continue;
253
254 vfree(vm_area->addr);
255 cached_vm_stack_areas[i] = NULL;
256 }
257
258 return 0;
259 }
260
memcg_charge_kernel_stack(struct vm_struct * vm_area)261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
262 {
263 int i;
264 int ret;
265 int nr_charged = 0;
266
267 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
268
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
270 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
271 if (ret)
272 goto err;
273 nr_charged++;
274 }
275 return 0;
276 err:
277 for (i = 0; i < nr_charged; i++)
278 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
279 return ret;
280 }
281
alloc_thread_stack_node(struct task_struct * tsk,int node)282 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
283 {
284 struct vm_struct *vm_area;
285 void *stack;
286 int i;
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 vm_area = this_cpu_xchg(cached_stacks[i], NULL);
290 if (!vm_area)
291 continue;
292
293 /* Reset stack metadata. */
294 kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
295
296 stack = kasan_reset_tag(vm_area->addr);
297
298 /* Clear stale pointers from reused stack. */
299 memset(stack, 0, THREAD_SIZE);
300
301 if (memcg_charge_kernel_stack(vm_area)) {
302 vfree(vm_area->addr);
303 return -ENOMEM;
304 }
305
306 tsk->stack_vm_area = vm_area;
307 tsk->stack = stack;
308 return 0;
309 }
310
311 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
312 GFP_VMAP_STACK,
313 node, __builtin_return_address(0));
314 if (!stack)
315 return -ENOMEM;
316
317 vm_area = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm_area)) {
319 vfree(stack);
320 return -ENOMEM;
321 }
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
327 tsk->stack_vm_area = vm_area;
328 stack = kasan_reset_tag(stack);
329 tsk->stack = stack;
330 return 0;
331 }
332
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
337
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340 }
341
342 #else /* !CONFIG_VMAP_STACK */
343
344 /*
345 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
346 * kmemcache based allocator.
347 */
348 #if THREAD_SIZE >= PAGE_SIZE
349
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 struct rcu_head *rh = tsk->stack;
358
359 call_rcu(rh, thread_stack_free_rcu);
360 }
361
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 THREAD_SIZE_ORDER);
366
367 if (likely(page)) {
368 tsk->stack = kasan_reset_tag(page_address(page));
369 return 0;
370 }
371 return -ENOMEM;
372 }
373
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 thread_stack_delayed_free(tsk);
377 tsk->stack = NULL;
378 }
379
380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
381
382 static struct kmem_cache *thread_stack_cache;
383
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 kmem_cache_free(thread_stack_cache, rh);
387 }
388
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 struct rcu_head *rh = tsk->stack;
392
393 call_rcu(rh, thread_stack_free_rcu);
394 }
395
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
403 }
404
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
409 }
410
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
417 }
418
419 #endif /* THREAD_SIZE >= PAGE_SIZE */
420 #endif /* CONFIG_VMAP_STACK */
421
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436
account_kernel_stack(struct task_struct * tsk,int account)437 static void account_kernel_stack(struct task_struct *tsk, int account)
438 {
439 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
440 struct vm_struct *vm_area = task_stack_vm_area(tsk);
441 int i;
442
443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
444 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
445 account * (PAGE_SIZE / 1024));
446 } else {
447 void *stack = task_stack_page(tsk);
448
449 /* All stack pages are in the same node. */
450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
451 account * (THREAD_SIZE / 1024));
452 }
453 }
454
exit_task_stack_account(struct task_struct * tsk)455 void exit_task_stack_account(struct task_struct *tsk)
456 {
457 account_kernel_stack(tsk, -1);
458
459 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
460 struct vm_struct *vm_area;
461 int i;
462
463 vm_area = task_stack_vm_area(tsk);
464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
465 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
466 }
467 }
468
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 return; /* Better to leak the stack than to free prematurely */
473
474 free_thread_stack(tsk);
475 }
476
477 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)478 void put_task_stack(struct task_struct *tsk)
479 {
480 if (refcount_dec_and_test(&tsk->stack_refcount))
481 release_task_stack(tsk);
482 }
483 #endif
484
free_task(struct task_struct * tsk)485 void free_task(struct task_struct *tsk)
486 {
487 #ifdef CONFIG_SECCOMP
488 WARN_ON_ONCE(tsk->seccomp.filter);
489 #endif
490 release_user_cpus_ptr(tsk);
491 scs_release(tsk);
492
493 #ifndef CONFIG_THREAD_INFO_IN_TASK
494 /*
495 * The task is finally done with both the stack and thread_info,
496 * so free both.
497 */
498 release_task_stack(tsk);
499 #else
500 /*
501 * If the task had a separate stack allocation, it should be gone
502 * by now.
503 */
504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
505 #endif
506 rt_mutex_debug_task_free(tsk);
507 ftrace_graph_exit_task(tsk);
508 arch_release_task_struct(tsk);
509 if (tsk->flags & PF_KTHREAD)
510 free_kthread_struct(tsk);
511 bpf_task_storage_free(tsk);
512 free_task_struct(tsk);
513 }
514 EXPORT_SYMBOL(free_task);
515
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
517 {
518 struct file *exe_file;
519
520 exe_file = get_mm_exe_file(oldmm);
521 RCU_INIT_POINTER(mm->exe_file, exe_file);
522 /*
523 * We depend on the oldmm having properly denied write access to the
524 * exe_file already.
525 */
526 if (exe_file && exe_file_deny_write_access(exe_file))
527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
528 }
529
530 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)531 static inline int mm_alloc_pgd(struct mm_struct *mm)
532 {
533 mm->pgd = pgd_alloc(mm);
534 if (unlikely(!mm->pgd))
535 return -ENOMEM;
536 return 0;
537 }
538
mm_free_pgd(struct mm_struct * mm)539 static inline void mm_free_pgd(struct mm_struct *mm)
540 {
541 pgd_free(mm, mm->pgd);
542 }
543 #else
544 #define mm_alloc_pgd(mm) (0)
545 #define mm_free_pgd(mm)
546 #endif /* CONFIG_MMU */
547
548 #ifdef CONFIG_MM_ID
549 static DEFINE_IDA(mm_ida);
550
mm_alloc_id(struct mm_struct * mm)551 static inline int mm_alloc_id(struct mm_struct *mm)
552 {
553 int ret;
554
555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
556 if (ret < 0)
557 return ret;
558 mm->mm_id = ret;
559 return 0;
560 }
561
mm_free_id(struct mm_struct * mm)562 static inline void mm_free_id(struct mm_struct *mm)
563 {
564 const mm_id_t id = mm->mm_id;
565
566 mm->mm_id = MM_ID_DUMMY;
567 if (id == MM_ID_DUMMY)
568 return;
569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
570 return;
571 ida_free(&mm_ida, id);
572 }
573 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)575 static inline void mm_free_id(struct mm_struct *mm) {}
576 #endif /* CONFIG_MM_ID */
577
check_mm(struct mm_struct * mm)578 static void check_mm(struct mm_struct *mm)
579 {
580 int i;
581
582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
583 "Please make sure 'struct resident_page_types[]' is updated as well");
584
585 for (i = 0; i < NR_MM_COUNTERS; i++) {
586 long x = percpu_counter_sum(&mm->rss_stat[i]);
587
588 if (unlikely(x)) {
589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
590 mm, resident_page_types[i], x,
591 current->comm,
592 task_pid_nr(current));
593 }
594 }
595
596 if (mm_pgtables_bytes(mm))
597 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
598 mm_pgtables_bytes(mm));
599
600 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
601 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
602 #endif
603 }
604
605 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
606 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
607
do_check_lazy_tlb(void * arg)608 static void do_check_lazy_tlb(void *arg)
609 {
610 struct mm_struct *mm = arg;
611
612 WARN_ON_ONCE(current->active_mm == mm);
613 }
614
do_shoot_lazy_tlb(void * arg)615 static void do_shoot_lazy_tlb(void *arg)
616 {
617 struct mm_struct *mm = arg;
618
619 if (current->active_mm == mm) {
620 WARN_ON_ONCE(current->mm);
621 current->active_mm = &init_mm;
622 switch_mm(mm, &init_mm, current);
623 }
624 }
625
cleanup_lazy_tlbs(struct mm_struct * mm)626 static void cleanup_lazy_tlbs(struct mm_struct *mm)
627 {
628 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
629 /*
630 * In this case, lazy tlb mms are refounted and would not reach
631 * __mmdrop until all CPUs have switched away and mmdrop()ed.
632 */
633 return;
634 }
635
636 /*
637 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
638 * requires lazy mm users to switch to another mm when the refcount
639 * drops to zero, before the mm is freed. This requires IPIs here to
640 * switch kernel threads to init_mm.
641 *
642 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
643 * switch with the final userspace teardown TLB flush which leaves the
644 * mm lazy on this CPU but no others, reducing the need for additional
645 * IPIs here. There are cases where a final IPI is still required here,
646 * such as the final mmdrop being performed on a different CPU than the
647 * one exiting, or kernel threads using the mm when userspace exits.
648 *
649 * IPI overheads have not found to be expensive, but they could be
650 * reduced in a number of possible ways, for example (roughly
651 * increasing order of complexity):
652 * - The last lazy reference created by exit_mm() could instead switch
653 * to init_mm, however it's probable this will run on the same CPU
654 * immediately afterwards, so this may not reduce IPIs much.
655 * - A batch of mms requiring IPIs could be gathered and freed at once.
656 * - CPUs store active_mm where it can be remotely checked without a
657 * lock, to filter out false-positives in the cpumask.
658 * - After mm_users or mm_count reaches zero, switching away from the
659 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
660 * with some batching or delaying of the final IPIs.
661 * - A delayed freeing and RCU-like quiescing sequence based on mm
662 * switching to avoid IPIs completely.
663 */
664 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
665 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
666 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
667 }
668
669 /*
670 * Called when the last reference to the mm
671 * is dropped: either by a lazy thread or by
672 * mmput. Free the page directory and the mm.
673 */
__mmdrop(struct mm_struct * mm)674 void __mmdrop(struct mm_struct *mm)
675 {
676 BUG_ON(mm == &init_mm);
677 WARN_ON_ONCE(mm == current->mm);
678
679 /* Ensure no CPUs are using this as their lazy tlb mm */
680 cleanup_lazy_tlbs(mm);
681
682 WARN_ON_ONCE(mm == current->active_mm);
683 mm_free_pgd(mm);
684 mm_free_id(mm);
685 destroy_context(mm);
686 mmu_notifier_subscriptions_destroy(mm);
687 check_mm(mm);
688 put_user_ns(mm->user_ns);
689 mm_pasid_drop(mm);
690 mm_destroy_cid(mm);
691 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
692
693 free_mm(mm);
694 }
695 EXPORT_SYMBOL_GPL(__mmdrop);
696
mmdrop_async_fn(struct work_struct * work)697 static void mmdrop_async_fn(struct work_struct *work)
698 {
699 struct mm_struct *mm;
700
701 mm = container_of(work, struct mm_struct, async_put_work);
702 __mmdrop(mm);
703 }
704
mmdrop_async(struct mm_struct * mm)705 static void mmdrop_async(struct mm_struct *mm)
706 {
707 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
708 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
709 schedule_work(&mm->async_put_work);
710 }
711 }
712
free_signal_struct(struct signal_struct * sig)713 static inline void free_signal_struct(struct signal_struct *sig)
714 {
715 taskstats_tgid_free(sig);
716 sched_autogroup_exit(sig);
717 /*
718 * __mmdrop is not safe to call from softirq context on x86 due to
719 * pgd_dtor so postpone it to the async context
720 */
721 if (sig->oom_mm)
722 mmdrop_async(sig->oom_mm);
723 kmem_cache_free(signal_cachep, sig);
724 }
725
put_signal_struct(struct signal_struct * sig)726 static inline void put_signal_struct(struct signal_struct *sig)
727 {
728 if (refcount_dec_and_test(&sig->sigcnt))
729 free_signal_struct(sig);
730 }
731
__put_task_struct(struct task_struct * tsk)732 void __put_task_struct(struct task_struct *tsk)
733 {
734 WARN_ON(!tsk->exit_state);
735 WARN_ON(refcount_read(&tsk->usage));
736 WARN_ON(tsk == current);
737
738 unwind_task_free(tsk);
739 sched_ext_free(tsk);
740 io_uring_free(tsk);
741 cgroup_free(tsk);
742 task_numa_free(tsk, true);
743 security_task_free(tsk);
744 exit_creds(tsk);
745 delayacct_tsk_free(tsk);
746 put_signal_struct(tsk->signal);
747 sched_core_free(tsk);
748 free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751
__put_task_struct_rcu_cb(struct rcu_head * rhp)752 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
753 {
754 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
755
756 __put_task_struct(task);
757 }
758 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
759
arch_task_cache_init(void)760 void __init __weak arch_task_cache_init(void) { }
761
762 /*
763 * set_max_threads
764 */
set_max_threads(unsigned int max_threads_suggested)765 static void __init set_max_threads(unsigned int max_threads_suggested)
766 {
767 u64 threads;
768 unsigned long nr_pages = memblock_estimated_nr_free_pages();
769
770 /*
771 * The number of threads shall be limited such that the thread
772 * structures may only consume a small part of the available memory.
773 */
774 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
775 threads = MAX_THREADS;
776 else
777 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
778 (u64) THREAD_SIZE * 8UL);
779
780 if (threads > max_threads_suggested)
781 threads = max_threads_suggested;
782
783 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
784 }
785
786 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
787 /* Initialized by the architecture: */
788 int arch_task_struct_size __read_mostly;
789 #endif
790
task_struct_whitelist(unsigned long * offset,unsigned long * size)791 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
792 {
793 /* Fetch thread_struct whitelist for the architecture. */
794 arch_thread_struct_whitelist(offset, size);
795
796 /*
797 * Handle zero-sized whitelist or empty thread_struct, otherwise
798 * adjust offset to position of thread_struct in task_struct.
799 */
800 if (unlikely(*size == 0))
801 *offset = 0;
802 else
803 *offset += offsetof(struct task_struct, thread);
804 }
805
fork_init(void)806 void __init fork_init(void)
807 {
808 int i;
809 #ifndef ARCH_MIN_TASKALIGN
810 #define ARCH_MIN_TASKALIGN 0
811 #endif
812 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
813 unsigned long useroffset, usersize;
814
815 /* create a slab on which task_structs can be allocated */
816 task_struct_whitelist(&useroffset, &usersize);
817 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
818 arch_task_struct_size, align,
819 SLAB_PANIC|SLAB_ACCOUNT,
820 useroffset, usersize, NULL);
821
822 /* do the arch specific task caches init */
823 arch_task_cache_init();
824
825 set_max_threads(MAX_THREADS);
826
827 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
828 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
829 init_task.signal->rlim[RLIMIT_SIGPENDING] =
830 init_task.signal->rlim[RLIMIT_NPROC];
831
832 for (i = 0; i < UCOUNT_COUNTS; i++)
833 init_user_ns.ucount_max[i] = max_threads/2;
834
835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
836 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
837 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
838 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
839
840 #ifdef CONFIG_VMAP_STACK
841 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
842 NULL, free_vm_stack_cache);
843 #endif
844
845 scs_init();
846
847 lockdep_init_task(&init_task);
848 uprobes_init();
849 }
850
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)851 int __weak arch_dup_task_struct(struct task_struct *dst,
852 struct task_struct *src)
853 {
854 *dst = *src;
855 return 0;
856 }
857
set_task_stack_end_magic(struct task_struct * tsk)858 void set_task_stack_end_magic(struct task_struct *tsk)
859 {
860 unsigned long *stackend;
861
862 stackend = end_of_stack(tsk);
863 *stackend = STACK_END_MAGIC; /* for overflow detection */
864 }
865
dup_task_struct(struct task_struct * orig,int node)866 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
867 {
868 struct task_struct *tsk;
869 int err;
870
871 if (node == NUMA_NO_NODE)
872 node = tsk_fork_get_node(orig);
873 tsk = alloc_task_struct_node(node);
874 if (!tsk)
875 return NULL;
876
877 err = arch_dup_task_struct(tsk, orig);
878 if (err)
879 goto free_tsk;
880
881 err = alloc_thread_stack_node(tsk, node);
882 if (err)
883 goto free_tsk;
884
885 #ifdef CONFIG_THREAD_INFO_IN_TASK
886 refcount_set(&tsk->stack_refcount, 1);
887 #endif
888 account_kernel_stack(tsk, 1);
889
890 err = scs_prepare(tsk, node);
891 if (err)
892 goto free_stack;
893
894 #ifdef CONFIG_SECCOMP
895 /*
896 * We must handle setting up seccomp filters once we're under
897 * the sighand lock in case orig has changed between now and
898 * then. Until then, filter must be NULL to avoid messing up
899 * the usage counts on the error path calling free_task.
900 */
901 tsk->seccomp.filter = NULL;
902 #endif
903
904 setup_thread_stack(tsk, orig);
905 clear_user_return_notifier(tsk);
906 clear_tsk_need_resched(tsk);
907 set_task_stack_end_magic(tsk);
908 clear_syscall_work_syscall_user_dispatch(tsk);
909
910 #ifdef CONFIG_STACKPROTECTOR
911 tsk->stack_canary = get_random_canary();
912 #endif
913 if (orig->cpus_ptr == &orig->cpus_mask)
914 tsk->cpus_ptr = &tsk->cpus_mask;
915 dup_user_cpus_ptr(tsk, orig, node);
916
917 /*
918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
920 */
921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926 #endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930 tsk->worker_private = NULL;
931
932 kcov_task_init(tsk);
933 kmsan_task_create(tsk);
934 kmap_local_fork(tsk);
935
936 #ifdef CONFIG_FAULT_INJECTION
937 tsk->fail_nth = 0;
938 #endif
939
940 #ifdef CONFIG_BLK_CGROUP
941 tsk->throttle_disk = NULL;
942 tsk->use_memdelay = 0;
943 #endif
944
945 #ifdef CONFIG_ARCH_HAS_CPU_PASID
946 tsk->pasid_activated = 0;
947 #endif
948
949 #ifdef CONFIG_MEMCG
950 tsk->active_memcg = NULL;
951 #endif
952
953 #ifdef CONFIG_X86_BUS_LOCK_DETECT
954 tsk->reported_split_lock = 0;
955 #endif
956
957 #ifdef CONFIG_SCHED_MM_CID
958 tsk->mm_cid = -1;
959 tsk->last_mm_cid = -1;
960 tsk->mm_cid_active = 0;
961 tsk->migrate_from_cpu = -1;
962 #endif
963 return tsk;
964
965 free_stack:
966 exit_task_stack_account(tsk);
967 free_thread_stack(tsk);
968 free_tsk:
969 free_task_struct(tsk);
970 return NULL;
971 }
972
973 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
974
975 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
976
coredump_filter_setup(char * s)977 static int __init coredump_filter_setup(char *s)
978 {
979 default_dump_filter =
980 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
981 MMF_DUMP_FILTER_MASK;
982 return 1;
983 }
984
985 __setup("coredump_filter=", coredump_filter_setup);
986
987 #include <linux/init_task.h>
988
mm_init_aio(struct mm_struct * mm)989 static void mm_init_aio(struct mm_struct *mm)
990 {
991 #ifdef CONFIG_AIO
992 spin_lock_init(&mm->ioctx_lock);
993 mm->ioctx_table = NULL;
994 #endif
995 }
996
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)997 static __always_inline void mm_clear_owner(struct mm_struct *mm,
998 struct task_struct *p)
999 {
1000 #ifdef CONFIG_MEMCG
1001 if (mm->owner == p)
1002 WRITE_ONCE(mm->owner, NULL);
1003 #endif
1004 }
1005
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1006 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1007 {
1008 #ifdef CONFIG_MEMCG
1009 mm->owner = p;
1010 #endif
1011 }
1012
mm_init_uprobes_state(struct mm_struct * mm)1013 static void mm_init_uprobes_state(struct mm_struct *mm)
1014 {
1015 #ifdef CONFIG_UPROBES
1016 mm->uprobes_state.xol_area = NULL;
1017 #endif
1018 }
1019
mmap_init_lock(struct mm_struct * mm)1020 static void mmap_init_lock(struct mm_struct *mm)
1021 {
1022 init_rwsem(&mm->mmap_lock);
1023 mm_lock_seqcount_init(mm);
1024 #ifdef CONFIG_PER_VMA_LOCK
1025 rcuwait_init(&mm->vma_writer_wait);
1026 #endif
1027 }
1028
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1029 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1030 struct user_namespace *user_ns)
1031 {
1032 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1033 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1034 atomic_set(&mm->mm_users, 1);
1035 atomic_set(&mm->mm_count, 1);
1036 seqcount_init(&mm->write_protect_seq);
1037 mmap_init_lock(mm);
1038 INIT_LIST_HEAD(&mm->mmlist);
1039 mm_pgtables_bytes_init(mm);
1040 mm->map_count = 0;
1041 mm->locked_vm = 0;
1042 atomic64_set(&mm->pinned_vm, 0);
1043 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1044 spin_lock_init(&mm->page_table_lock);
1045 spin_lock_init(&mm->arg_lock);
1046 mm_init_cpumask(mm);
1047 mm_init_aio(mm);
1048 mm_init_owner(mm, p);
1049 mm_pasid_init(mm);
1050 RCU_INIT_POINTER(mm->exe_file, NULL);
1051 mmu_notifier_subscriptions_init(mm);
1052 init_tlb_flush_pending(mm);
1053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1054 mm->pmd_huge_pte = NULL;
1055 #endif
1056 mm_init_uprobes_state(mm);
1057 hugetlb_count_init(mm);
1058
1059 if (current->mm) {
1060 mm->flags = mmf_init_flags(current->mm->flags);
1061 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1062 } else {
1063 mm->flags = default_dump_filter;
1064 mm->def_flags = 0;
1065 }
1066
1067 if (futex_mm_init(mm))
1068 goto fail_mm_init;
1069
1070 if (mm_alloc_pgd(mm))
1071 goto fail_nopgd;
1072
1073 if (mm_alloc_id(mm))
1074 goto fail_noid;
1075
1076 if (init_new_context(p, mm))
1077 goto fail_nocontext;
1078
1079 if (mm_alloc_cid(mm, p))
1080 goto fail_cid;
1081
1082 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1083 NR_MM_COUNTERS))
1084 goto fail_pcpu;
1085
1086 mm->user_ns = get_user_ns(user_ns);
1087 lru_gen_init_mm(mm);
1088 return mm;
1089
1090 fail_pcpu:
1091 mm_destroy_cid(mm);
1092 fail_cid:
1093 destroy_context(mm);
1094 fail_nocontext:
1095 mm_free_id(mm);
1096 fail_noid:
1097 mm_free_pgd(mm);
1098 fail_nopgd:
1099 futex_hash_free(mm);
1100 fail_mm_init:
1101 free_mm(mm);
1102 return NULL;
1103 }
1104
1105 /*
1106 * Allocate and initialize an mm_struct.
1107 */
mm_alloc(void)1108 struct mm_struct *mm_alloc(void)
1109 {
1110 struct mm_struct *mm;
1111
1112 mm = allocate_mm();
1113 if (!mm)
1114 return NULL;
1115
1116 memset(mm, 0, sizeof(*mm));
1117 return mm_init(mm, current, current_user_ns());
1118 }
1119 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1120
__mmput(struct mm_struct * mm)1121 static inline void __mmput(struct mm_struct *mm)
1122 {
1123 VM_BUG_ON(atomic_read(&mm->mm_users));
1124
1125 uprobe_clear_state(mm);
1126 exit_aio(mm);
1127 ksm_exit(mm);
1128 khugepaged_exit(mm); /* must run before exit_mmap */
1129 exit_mmap(mm);
1130 mm_put_huge_zero_folio(mm);
1131 set_mm_exe_file(mm, NULL);
1132 if (!list_empty(&mm->mmlist)) {
1133 spin_lock(&mmlist_lock);
1134 list_del(&mm->mmlist);
1135 spin_unlock(&mmlist_lock);
1136 }
1137 if (mm->binfmt)
1138 module_put(mm->binfmt->module);
1139 lru_gen_del_mm(mm);
1140 futex_hash_free(mm);
1141 mmdrop(mm);
1142 }
1143
1144 /*
1145 * Decrement the use count and release all resources for an mm.
1146 */
mmput(struct mm_struct * mm)1147 void mmput(struct mm_struct *mm)
1148 {
1149 might_sleep();
1150
1151 if (atomic_dec_and_test(&mm->mm_users))
1152 __mmput(mm);
1153 }
1154 EXPORT_SYMBOL_GPL(mmput);
1155
1156 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1157 static void mmput_async_fn(struct work_struct *work)
1158 {
1159 struct mm_struct *mm = container_of(work, struct mm_struct,
1160 async_put_work);
1161
1162 __mmput(mm);
1163 }
1164
mmput_async(struct mm_struct * mm)1165 void mmput_async(struct mm_struct *mm)
1166 {
1167 if (atomic_dec_and_test(&mm->mm_users)) {
1168 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1169 schedule_work(&mm->async_put_work);
1170 }
1171 }
1172 EXPORT_SYMBOL_GPL(mmput_async);
1173 #endif
1174
1175 /**
1176 * set_mm_exe_file - change a reference to the mm's executable file
1177 * @mm: The mm to change.
1178 * @new_exe_file: The new file to use.
1179 *
1180 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1181 *
1182 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1183 * invocations: in mmput() nobody alive left, in execve it happens before
1184 * the new mm is made visible to anyone.
1185 *
1186 * Can only fail if new_exe_file != NULL.
1187 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1188 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1189 {
1190 struct file *old_exe_file;
1191
1192 /*
1193 * It is safe to dereference the exe_file without RCU as
1194 * this function is only called if nobody else can access
1195 * this mm -- see comment above for justification.
1196 */
1197 old_exe_file = rcu_dereference_raw(mm->exe_file);
1198
1199 if (new_exe_file) {
1200 /*
1201 * We expect the caller (i.e., sys_execve) to already denied
1202 * write access, so this is unlikely to fail.
1203 */
1204 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1205 return -EACCES;
1206 get_file(new_exe_file);
1207 }
1208 rcu_assign_pointer(mm->exe_file, new_exe_file);
1209 if (old_exe_file) {
1210 exe_file_allow_write_access(old_exe_file);
1211 fput(old_exe_file);
1212 }
1213 return 0;
1214 }
1215
1216 /**
1217 * replace_mm_exe_file - replace a reference to the mm's executable file
1218 * @mm: The mm to change.
1219 * @new_exe_file: The new file to use.
1220 *
1221 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1222 *
1223 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1224 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1225 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1226 {
1227 struct vm_area_struct *vma;
1228 struct file *old_exe_file;
1229 int ret = 0;
1230
1231 /* Forbid mm->exe_file change if old file still mapped. */
1232 old_exe_file = get_mm_exe_file(mm);
1233 if (old_exe_file) {
1234 VMA_ITERATOR(vmi, mm, 0);
1235 mmap_read_lock(mm);
1236 for_each_vma(vmi, vma) {
1237 if (!vma->vm_file)
1238 continue;
1239 if (path_equal(&vma->vm_file->f_path,
1240 &old_exe_file->f_path)) {
1241 ret = -EBUSY;
1242 break;
1243 }
1244 }
1245 mmap_read_unlock(mm);
1246 fput(old_exe_file);
1247 if (ret)
1248 return ret;
1249 }
1250
1251 ret = exe_file_deny_write_access(new_exe_file);
1252 if (ret)
1253 return -EACCES;
1254 get_file(new_exe_file);
1255
1256 /* set the new file */
1257 mmap_write_lock(mm);
1258 old_exe_file = rcu_dereference_raw(mm->exe_file);
1259 rcu_assign_pointer(mm->exe_file, new_exe_file);
1260 mmap_write_unlock(mm);
1261
1262 if (old_exe_file) {
1263 exe_file_allow_write_access(old_exe_file);
1264 fput(old_exe_file);
1265 }
1266 return 0;
1267 }
1268
1269 /**
1270 * get_mm_exe_file - acquire a reference to the mm's executable file
1271 * @mm: The mm of interest.
1272 *
1273 * Returns %NULL if mm has no associated executable file.
1274 * User must release file via fput().
1275 */
get_mm_exe_file(struct mm_struct * mm)1276 struct file *get_mm_exe_file(struct mm_struct *mm)
1277 {
1278 struct file *exe_file;
1279
1280 rcu_read_lock();
1281 exe_file = get_file_rcu(&mm->exe_file);
1282 rcu_read_unlock();
1283 return exe_file;
1284 }
1285
1286 /**
1287 * get_task_exe_file - acquire a reference to the task's executable file
1288 * @task: The task.
1289 *
1290 * Returns %NULL if task's mm (if any) has no associated executable file or
1291 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1292 * User must release file via fput().
1293 */
get_task_exe_file(struct task_struct * task)1294 struct file *get_task_exe_file(struct task_struct *task)
1295 {
1296 struct file *exe_file = NULL;
1297 struct mm_struct *mm;
1298
1299 if (task->flags & PF_KTHREAD)
1300 return NULL;
1301
1302 task_lock(task);
1303 mm = task->mm;
1304 if (mm)
1305 exe_file = get_mm_exe_file(mm);
1306 task_unlock(task);
1307 return exe_file;
1308 }
1309
1310 /**
1311 * get_task_mm - acquire a reference to the task's mm
1312 * @task: The task.
1313 *
1314 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1315 * this kernel workthread has transiently adopted a user mm with use_mm,
1316 * to do its AIO) is not set and if so returns a reference to it, after
1317 * bumping up the use count. User must release the mm via mmput()
1318 * after use. Typically used by /proc and ptrace.
1319 */
get_task_mm(struct task_struct * task)1320 struct mm_struct *get_task_mm(struct task_struct *task)
1321 {
1322 struct mm_struct *mm;
1323
1324 if (task->flags & PF_KTHREAD)
1325 return NULL;
1326
1327 task_lock(task);
1328 mm = task->mm;
1329 if (mm)
1330 mmget(mm);
1331 task_unlock(task);
1332 return mm;
1333 }
1334 EXPORT_SYMBOL_GPL(get_task_mm);
1335
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1336 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1337 {
1338 if (mm == current->mm)
1339 return true;
1340 if (ptrace_may_access(task, mode))
1341 return true;
1342 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1343 return true;
1344 return false;
1345 }
1346
mm_access(struct task_struct * task,unsigned int mode)1347 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1348 {
1349 struct mm_struct *mm;
1350 int err;
1351
1352 err = down_read_killable(&task->signal->exec_update_lock);
1353 if (err)
1354 return ERR_PTR(err);
1355
1356 mm = get_task_mm(task);
1357 if (!mm) {
1358 mm = ERR_PTR(-ESRCH);
1359 } else if (!may_access_mm(mm, task, mode)) {
1360 mmput(mm);
1361 mm = ERR_PTR(-EACCES);
1362 }
1363 up_read(&task->signal->exec_update_lock);
1364
1365 return mm;
1366 }
1367
complete_vfork_done(struct task_struct * tsk)1368 static void complete_vfork_done(struct task_struct *tsk)
1369 {
1370 struct completion *vfork;
1371
1372 task_lock(tsk);
1373 vfork = tsk->vfork_done;
1374 if (likely(vfork)) {
1375 tsk->vfork_done = NULL;
1376 complete(vfork);
1377 }
1378 task_unlock(tsk);
1379 }
1380
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1381 static int wait_for_vfork_done(struct task_struct *child,
1382 struct completion *vfork)
1383 {
1384 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1385 int killed;
1386
1387 cgroup_enter_frozen();
1388 killed = wait_for_completion_state(vfork, state);
1389 cgroup_leave_frozen(false);
1390
1391 if (killed) {
1392 task_lock(child);
1393 child->vfork_done = NULL;
1394 task_unlock(child);
1395 }
1396
1397 put_task_struct(child);
1398 return killed;
1399 }
1400
1401 /* Please note the differences between mmput and mm_release.
1402 * mmput is called whenever we stop holding onto a mm_struct,
1403 * error success whatever.
1404 *
1405 * mm_release is called after a mm_struct has been removed
1406 * from the current process.
1407 *
1408 * This difference is important for error handling, when we
1409 * only half set up a mm_struct for a new process and need to restore
1410 * the old one. Because we mmput the new mm_struct before
1411 * restoring the old one. . .
1412 * Eric Biederman 10 January 1998
1413 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1414 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1415 {
1416 uprobe_free_utask(tsk);
1417
1418 /* Get rid of any cached register state */
1419 deactivate_mm(tsk, mm);
1420
1421 /*
1422 * Signal userspace if we're not exiting with a core dump
1423 * because we want to leave the value intact for debugging
1424 * purposes.
1425 */
1426 if (tsk->clear_child_tid) {
1427 if (atomic_read(&mm->mm_users) > 1) {
1428 /*
1429 * We don't check the error code - if userspace has
1430 * not set up a proper pointer then tough luck.
1431 */
1432 put_user(0, tsk->clear_child_tid);
1433 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1434 1, NULL, NULL, 0, 0);
1435 }
1436 tsk->clear_child_tid = NULL;
1437 }
1438
1439 /*
1440 * All done, finally we can wake up parent and return this mm to him.
1441 * Also kthread_stop() uses this completion for synchronization.
1442 */
1443 if (tsk->vfork_done)
1444 complete_vfork_done(tsk);
1445 }
1446
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1447 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1448 {
1449 futex_exit_release(tsk);
1450 mm_release(tsk, mm);
1451 }
1452
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1453 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1454 {
1455 futex_exec_release(tsk);
1456 mm_release(tsk, mm);
1457 }
1458
1459 /**
1460 * dup_mm() - duplicates an existing mm structure
1461 * @tsk: the task_struct with which the new mm will be associated.
1462 * @oldmm: the mm to duplicate.
1463 *
1464 * Allocates a new mm structure and duplicates the provided @oldmm structure
1465 * content into it.
1466 *
1467 * Return: the duplicated mm or NULL on failure.
1468 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1469 static struct mm_struct *dup_mm(struct task_struct *tsk,
1470 struct mm_struct *oldmm)
1471 {
1472 struct mm_struct *mm;
1473 int err;
1474
1475 mm = allocate_mm();
1476 if (!mm)
1477 goto fail_nomem;
1478
1479 memcpy(mm, oldmm, sizeof(*mm));
1480
1481 if (!mm_init(mm, tsk, mm->user_ns))
1482 goto fail_nomem;
1483
1484 uprobe_start_dup_mmap();
1485 err = dup_mmap(mm, oldmm);
1486 if (err)
1487 goto free_pt;
1488 uprobe_end_dup_mmap();
1489
1490 mm->hiwater_rss = get_mm_rss(mm);
1491 mm->hiwater_vm = mm->total_vm;
1492
1493 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1494 goto free_pt;
1495
1496 return mm;
1497
1498 free_pt:
1499 /* don't put binfmt in mmput, we haven't got module yet */
1500 mm->binfmt = NULL;
1501 mm_init_owner(mm, NULL);
1502 mmput(mm);
1503 if (err)
1504 uprobe_end_dup_mmap();
1505
1506 fail_nomem:
1507 return NULL;
1508 }
1509
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1510 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1511 {
1512 struct mm_struct *mm, *oldmm;
1513
1514 tsk->min_flt = tsk->maj_flt = 0;
1515 tsk->nvcsw = tsk->nivcsw = 0;
1516 #ifdef CONFIG_DETECT_HUNG_TASK
1517 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1518 tsk->last_switch_time = 0;
1519 #endif
1520
1521 tsk->mm = NULL;
1522 tsk->active_mm = NULL;
1523
1524 /*
1525 * Are we cloning a kernel thread?
1526 *
1527 * We need to steal a active VM for that..
1528 */
1529 oldmm = current->mm;
1530 if (!oldmm)
1531 return 0;
1532
1533 if (clone_flags & CLONE_VM) {
1534 mmget(oldmm);
1535 mm = oldmm;
1536 } else {
1537 mm = dup_mm(tsk, current->mm);
1538 if (!mm)
1539 return -ENOMEM;
1540 }
1541
1542 tsk->mm = mm;
1543 tsk->active_mm = mm;
1544 sched_mm_cid_fork(tsk);
1545 return 0;
1546 }
1547
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1548 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 struct fs_struct *fs = current->fs;
1551 if (clone_flags & CLONE_FS) {
1552 /* tsk->fs is already what we want */
1553 read_seqlock_excl(&fs->seq);
1554 /* "users" and "in_exec" locked for check_unsafe_exec() */
1555 if (fs->in_exec) {
1556 read_sequnlock_excl(&fs->seq);
1557 return -EAGAIN;
1558 }
1559 fs->users++;
1560 read_sequnlock_excl(&fs->seq);
1561 return 0;
1562 }
1563 tsk->fs = copy_fs_struct(fs);
1564 if (!tsk->fs)
1565 return -ENOMEM;
1566 return 0;
1567 }
1568
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1569 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1570 int no_files)
1571 {
1572 struct files_struct *oldf, *newf;
1573
1574 /*
1575 * A background process may not have any files ...
1576 */
1577 oldf = current->files;
1578 if (!oldf)
1579 return 0;
1580
1581 if (no_files) {
1582 tsk->files = NULL;
1583 return 0;
1584 }
1585
1586 if (clone_flags & CLONE_FILES) {
1587 atomic_inc(&oldf->count);
1588 return 0;
1589 }
1590
1591 newf = dup_fd(oldf, NULL);
1592 if (IS_ERR(newf))
1593 return PTR_ERR(newf);
1594
1595 tsk->files = newf;
1596 return 0;
1597 }
1598
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1599 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1600 {
1601 struct sighand_struct *sig;
1602
1603 if (clone_flags & CLONE_SIGHAND) {
1604 refcount_inc(¤t->sighand->count);
1605 return 0;
1606 }
1607 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1608 RCU_INIT_POINTER(tsk->sighand, sig);
1609 if (!sig)
1610 return -ENOMEM;
1611
1612 refcount_set(&sig->count, 1);
1613 spin_lock_irq(¤t->sighand->siglock);
1614 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1615 spin_unlock_irq(¤t->sighand->siglock);
1616
1617 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1618 if (clone_flags & CLONE_CLEAR_SIGHAND)
1619 flush_signal_handlers(tsk, 0);
1620
1621 return 0;
1622 }
1623
__cleanup_sighand(struct sighand_struct * sighand)1624 void __cleanup_sighand(struct sighand_struct *sighand)
1625 {
1626 if (refcount_dec_and_test(&sighand->count)) {
1627 signalfd_cleanup(sighand);
1628 /*
1629 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1630 * without an RCU grace period, see __lock_task_sighand().
1631 */
1632 kmem_cache_free(sighand_cachep, sighand);
1633 }
1634 }
1635
1636 /*
1637 * Initialize POSIX timer handling for a thread group.
1638 */
posix_cpu_timers_init_group(struct signal_struct * sig)1639 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1640 {
1641 struct posix_cputimers *pct = &sig->posix_cputimers;
1642 unsigned long cpu_limit;
1643
1644 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1645 posix_cputimers_group_init(pct, cpu_limit);
1646 }
1647
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1648 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1649 {
1650 struct signal_struct *sig;
1651
1652 if (clone_flags & CLONE_THREAD)
1653 return 0;
1654
1655 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1656 tsk->signal = sig;
1657 if (!sig)
1658 return -ENOMEM;
1659
1660 sig->nr_threads = 1;
1661 sig->quick_threads = 1;
1662 atomic_set(&sig->live, 1);
1663 refcount_set(&sig->sigcnt, 1);
1664
1665 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1666 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1667 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1668
1669 init_waitqueue_head(&sig->wait_chldexit);
1670 sig->curr_target = tsk;
1671 init_sigpending(&sig->shared_pending);
1672 INIT_HLIST_HEAD(&sig->multiprocess);
1673 seqlock_init(&sig->stats_lock);
1674 prev_cputime_init(&sig->prev_cputime);
1675
1676 #ifdef CONFIG_POSIX_TIMERS
1677 INIT_HLIST_HEAD(&sig->posix_timers);
1678 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1679 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1680 #endif
1681
1682 task_lock(current->group_leader);
1683 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1684 task_unlock(current->group_leader);
1685
1686 posix_cpu_timers_init_group(sig);
1687
1688 tty_audit_fork(sig);
1689 sched_autogroup_fork(sig);
1690
1691 sig->oom_score_adj = current->signal->oom_score_adj;
1692 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1693
1694 mutex_init(&sig->cred_guard_mutex);
1695 init_rwsem(&sig->exec_update_lock);
1696
1697 return 0;
1698 }
1699
copy_seccomp(struct task_struct * p)1700 static void copy_seccomp(struct task_struct *p)
1701 {
1702 #ifdef CONFIG_SECCOMP
1703 /*
1704 * Must be called with sighand->lock held, which is common to
1705 * all threads in the group. Holding cred_guard_mutex is not
1706 * needed because this new task is not yet running and cannot
1707 * be racing exec.
1708 */
1709 assert_spin_locked(¤t->sighand->siglock);
1710
1711 /* Ref-count the new filter user, and assign it. */
1712 get_seccomp_filter(current);
1713 p->seccomp = current->seccomp;
1714
1715 /*
1716 * Explicitly enable no_new_privs here in case it got set
1717 * between the task_struct being duplicated and holding the
1718 * sighand lock. The seccomp state and nnp must be in sync.
1719 */
1720 if (task_no_new_privs(current))
1721 task_set_no_new_privs(p);
1722
1723 /*
1724 * If the parent gained a seccomp mode after copying thread
1725 * flags and between before we held the sighand lock, we have
1726 * to manually enable the seccomp thread flag here.
1727 */
1728 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1729 set_task_syscall_work(p, SECCOMP);
1730 #endif
1731 }
1732
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1733 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1734 {
1735 current->clear_child_tid = tidptr;
1736
1737 return task_pid_vnr(current);
1738 }
1739
rt_mutex_init_task(struct task_struct * p)1740 static void rt_mutex_init_task(struct task_struct *p)
1741 {
1742 raw_spin_lock_init(&p->pi_lock);
1743 #ifdef CONFIG_RT_MUTEXES
1744 p->pi_waiters = RB_ROOT_CACHED;
1745 p->pi_top_task = NULL;
1746 p->pi_blocked_on = NULL;
1747 #endif
1748 }
1749
init_task_pid_links(struct task_struct * task)1750 static inline void init_task_pid_links(struct task_struct *task)
1751 {
1752 enum pid_type type;
1753
1754 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1755 INIT_HLIST_NODE(&task->pid_links[type]);
1756 }
1757
1758 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1759 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1760 {
1761 if (type == PIDTYPE_PID)
1762 task->thread_pid = pid;
1763 else
1764 task->signal->pids[type] = pid;
1765 }
1766
rcu_copy_process(struct task_struct * p)1767 static inline void rcu_copy_process(struct task_struct *p)
1768 {
1769 #ifdef CONFIG_PREEMPT_RCU
1770 p->rcu_read_lock_nesting = 0;
1771 p->rcu_read_unlock_special.s = 0;
1772 p->rcu_blocked_node = NULL;
1773 INIT_LIST_HEAD(&p->rcu_node_entry);
1774 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1775 #ifdef CONFIG_TASKS_RCU
1776 p->rcu_tasks_holdout = false;
1777 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1778 p->rcu_tasks_idle_cpu = -1;
1779 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1780 #endif /* #ifdef CONFIG_TASKS_RCU */
1781 #ifdef CONFIG_TASKS_TRACE_RCU
1782 p->trc_reader_nesting = 0;
1783 p->trc_reader_special.s = 0;
1784 INIT_LIST_HEAD(&p->trc_holdout_list);
1785 INIT_LIST_HEAD(&p->trc_blkd_node);
1786 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1787 }
1788
1789 /**
1790 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1791 * @pid: the struct pid for which to create a pidfd
1792 * @flags: flags of the new @pidfd
1793 * @ret_file: return the new pidfs file
1794 *
1795 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1796 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1797 *
1798 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1799 * task identified by @pid must be a thread-group leader.
1800 *
1801 * If this function returns successfully the caller is responsible to either
1802 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1803 * order to install the pidfd into its file descriptor table or they must use
1804 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1805 * respectively.
1806 *
1807 * This function is useful when a pidfd must already be reserved but there
1808 * might still be points of failure afterwards and the caller wants to ensure
1809 * that no pidfd is leaked into its file descriptor table.
1810 *
1811 * Return: On success, a reserved pidfd is returned from the function and a new
1812 * pidfd file is returned in the last argument to the function. On
1813 * error, a negative error code is returned from the function and the
1814 * last argument remains unchanged.
1815 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1816 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1817 {
1818 struct file *pidfs_file;
1819
1820 /*
1821 * PIDFD_STALE is only allowed to be passed if the caller knows
1822 * that @pid is already registered in pidfs and thus
1823 * PIDFD_INFO_EXIT information is guaranteed to be available.
1824 */
1825 if (!(flags & PIDFD_STALE)) {
1826 /*
1827 * While holding the pidfd waitqueue lock removing the
1828 * task linkage for the thread-group leader pid
1829 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1830 * task linkage for PIDTYPE_PID not having thread-group
1831 * leader linkage for the pid means it wasn't a
1832 * thread-group leader in the first place.
1833 */
1834 guard(spinlock_irq)(&pid->wait_pidfd.lock);
1835
1836 /* Task has already been reaped. */
1837 if (!pid_has_task(pid, PIDTYPE_PID))
1838 return -ESRCH;
1839 /*
1840 * If this struct pid isn't used as a thread-group
1841 * leader but the caller requested to create a
1842 * thread-group leader pidfd then report ENOENT.
1843 */
1844 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1845 return -ENOENT;
1846 }
1847
1848 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1849 if (pidfd < 0)
1850 return pidfd;
1851
1852 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1853 if (IS_ERR(pidfs_file))
1854 return PTR_ERR(pidfs_file);
1855
1856 *ret_file = pidfs_file;
1857 return take_fd(pidfd);
1858 }
1859
__delayed_free_task(struct rcu_head * rhp)1860 static void __delayed_free_task(struct rcu_head *rhp)
1861 {
1862 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1863
1864 free_task(tsk);
1865 }
1866
delayed_free_task(struct task_struct * tsk)1867 static __always_inline void delayed_free_task(struct task_struct *tsk)
1868 {
1869 if (IS_ENABLED(CONFIG_MEMCG))
1870 call_rcu(&tsk->rcu, __delayed_free_task);
1871 else
1872 free_task(tsk);
1873 }
1874
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1875 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1876 {
1877 /* Skip if kernel thread */
1878 if (!tsk->mm)
1879 return;
1880
1881 /* Skip if spawning a thread or using vfork */
1882 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1883 return;
1884
1885 /* We need to synchronize with __set_oom_adj */
1886 mutex_lock(&oom_adj_mutex);
1887 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1888 /* Update the values in case they were changed after copy_signal */
1889 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1890 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1891 mutex_unlock(&oom_adj_mutex);
1892 }
1893
1894 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1895 static void rv_task_fork(struct task_struct *p)
1896 {
1897 memset(&p->rv, 0, sizeof(p->rv));
1898 }
1899 #else
1900 #define rv_task_fork(p) do {} while (0)
1901 #endif
1902
need_futex_hash_allocate_default(u64 clone_flags)1903 static bool need_futex_hash_allocate_default(u64 clone_flags)
1904 {
1905 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1906 return false;
1907 return true;
1908 }
1909
1910 /*
1911 * This creates a new process as a copy of the old one,
1912 * but does not actually start it yet.
1913 *
1914 * It copies the registers, and all the appropriate
1915 * parts of the process environment (as per the clone
1916 * flags). The actual kick-off is left to the caller.
1917 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1918 __latent_entropy struct task_struct *copy_process(
1919 struct pid *pid,
1920 int trace,
1921 int node,
1922 struct kernel_clone_args *args)
1923 {
1924 int pidfd = -1, retval;
1925 struct task_struct *p;
1926 struct multiprocess_signals delayed;
1927 struct file *pidfile = NULL;
1928 const u64 clone_flags = args->flags;
1929 struct nsproxy *nsp = current->nsproxy;
1930
1931 /*
1932 * Don't allow sharing the root directory with processes in a different
1933 * namespace
1934 */
1935 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1936 return ERR_PTR(-EINVAL);
1937
1938 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1939 return ERR_PTR(-EINVAL);
1940
1941 /*
1942 * Thread groups must share signals as well, and detached threads
1943 * can only be started up within the thread group.
1944 */
1945 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1946 return ERR_PTR(-EINVAL);
1947
1948 /*
1949 * Shared signal handlers imply shared VM. By way of the above,
1950 * thread groups also imply shared VM. Blocking this case allows
1951 * for various simplifications in other code.
1952 */
1953 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1954 return ERR_PTR(-EINVAL);
1955
1956 /*
1957 * Siblings of global init remain as zombies on exit since they are
1958 * not reaped by their parent (swapper). To solve this and to avoid
1959 * multi-rooted process trees, prevent global and container-inits
1960 * from creating siblings.
1961 */
1962 if ((clone_flags & CLONE_PARENT) &&
1963 current->signal->flags & SIGNAL_UNKILLABLE)
1964 return ERR_PTR(-EINVAL);
1965
1966 /*
1967 * If the new process will be in a different pid or user namespace
1968 * do not allow it to share a thread group with the forking task.
1969 */
1970 if (clone_flags & CLONE_THREAD) {
1971 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1972 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1973 return ERR_PTR(-EINVAL);
1974 }
1975
1976 if (clone_flags & CLONE_PIDFD) {
1977 /*
1978 * - CLONE_DETACHED is blocked so that we can potentially
1979 * reuse it later for CLONE_PIDFD.
1980 */
1981 if (clone_flags & CLONE_DETACHED)
1982 return ERR_PTR(-EINVAL);
1983 }
1984
1985 /*
1986 * Force any signals received before this point to be delivered
1987 * before the fork happens. Collect up signals sent to multiple
1988 * processes that happen during the fork and delay them so that
1989 * they appear to happen after the fork.
1990 */
1991 sigemptyset(&delayed.signal);
1992 INIT_HLIST_NODE(&delayed.node);
1993
1994 spin_lock_irq(¤t->sighand->siglock);
1995 if (!(clone_flags & CLONE_THREAD))
1996 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1997 recalc_sigpending();
1998 spin_unlock_irq(¤t->sighand->siglock);
1999 retval = -ERESTARTNOINTR;
2000 if (task_sigpending(current))
2001 goto fork_out;
2002
2003 retval = -ENOMEM;
2004 p = dup_task_struct(current, node);
2005 if (!p)
2006 goto fork_out;
2007 p->flags &= ~PF_KTHREAD;
2008 if (args->kthread)
2009 p->flags |= PF_KTHREAD;
2010 if (args->user_worker) {
2011 /*
2012 * Mark us a user worker, and block any signal that isn't
2013 * fatal or STOP
2014 */
2015 p->flags |= PF_USER_WORKER;
2016 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2017 }
2018 if (args->io_thread)
2019 p->flags |= PF_IO_WORKER;
2020
2021 if (args->name)
2022 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2023
2024 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2025 /*
2026 * Clear TID on mm_release()?
2027 */
2028 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2029
2030 ftrace_graph_init_task(p);
2031
2032 rt_mutex_init_task(p);
2033
2034 lockdep_assert_irqs_enabled();
2035 #ifdef CONFIG_PROVE_LOCKING
2036 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2037 #endif
2038 retval = copy_creds(p, clone_flags);
2039 if (retval < 0)
2040 goto bad_fork_free;
2041
2042 retval = -EAGAIN;
2043 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2044 if (p->real_cred->user != INIT_USER &&
2045 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2046 goto bad_fork_cleanup_count;
2047 }
2048 current->flags &= ~PF_NPROC_EXCEEDED;
2049
2050 /*
2051 * If multiple threads are within copy_process(), then this check
2052 * triggers too late. This doesn't hurt, the check is only there
2053 * to stop root fork bombs.
2054 */
2055 retval = -EAGAIN;
2056 if (data_race(nr_threads >= max_threads))
2057 goto bad_fork_cleanup_count;
2058
2059 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2060 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2061 p->flags |= PF_FORKNOEXEC;
2062 INIT_LIST_HEAD(&p->children);
2063 INIT_LIST_HEAD(&p->sibling);
2064 rcu_copy_process(p);
2065 p->vfork_done = NULL;
2066 spin_lock_init(&p->alloc_lock);
2067
2068 init_sigpending(&p->pending);
2069
2070 p->utime = p->stime = p->gtime = 0;
2071 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2072 p->utimescaled = p->stimescaled = 0;
2073 #endif
2074 prev_cputime_init(&p->prev_cputime);
2075
2076 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2077 seqcount_init(&p->vtime.seqcount);
2078 p->vtime.starttime = 0;
2079 p->vtime.state = VTIME_INACTIVE;
2080 #endif
2081
2082 #ifdef CONFIG_IO_URING
2083 p->io_uring = NULL;
2084 #endif
2085
2086 p->default_timer_slack_ns = current->timer_slack_ns;
2087
2088 #ifdef CONFIG_PSI
2089 p->psi_flags = 0;
2090 #endif
2091
2092 task_io_accounting_init(&p->ioac);
2093 acct_clear_integrals(p);
2094
2095 posix_cputimers_init(&p->posix_cputimers);
2096 tick_dep_init_task(p);
2097
2098 p->io_context = NULL;
2099 audit_set_context(p, NULL);
2100 cgroup_fork(p);
2101 if (args->kthread) {
2102 if (!set_kthread_struct(p))
2103 goto bad_fork_cleanup_delayacct;
2104 }
2105 #ifdef CONFIG_NUMA
2106 p->mempolicy = mpol_dup(p->mempolicy);
2107 if (IS_ERR(p->mempolicy)) {
2108 retval = PTR_ERR(p->mempolicy);
2109 p->mempolicy = NULL;
2110 goto bad_fork_cleanup_delayacct;
2111 }
2112 #endif
2113 #ifdef CONFIG_CPUSETS
2114 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2115 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2116 #endif
2117 #ifdef CONFIG_TRACE_IRQFLAGS
2118 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2119 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2120 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2121 p->softirqs_enabled = 1;
2122 p->softirq_context = 0;
2123 #endif
2124
2125 p->pagefault_disabled = 0;
2126
2127 #ifdef CONFIG_LOCKDEP
2128 lockdep_init_task(p);
2129 #endif
2130
2131 p->blocked_on = NULL; /* not blocked yet */
2132
2133 #ifdef CONFIG_BCACHE
2134 p->sequential_io = 0;
2135 p->sequential_io_avg = 0;
2136 #endif
2137 #ifdef CONFIG_BPF_SYSCALL
2138 RCU_INIT_POINTER(p->bpf_storage, NULL);
2139 p->bpf_ctx = NULL;
2140 #endif
2141
2142 unwind_task_init(p);
2143
2144 /* Perform scheduler related setup. Assign this task to a CPU. */
2145 retval = sched_fork(clone_flags, p);
2146 if (retval)
2147 goto bad_fork_cleanup_policy;
2148
2149 retval = perf_event_init_task(p, clone_flags);
2150 if (retval)
2151 goto bad_fork_sched_cancel_fork;
2152 retval = audit_alloc(p);
2153 if (retval)
2154 goto bad_fork_cleanup_perf;
2155 /* copy all the process information */
2156 shm_init_task(p);
2157 retval = security_task_alloc(p, clone_flags);
2158 if (retval)
2159 goto bad_fork_cleanup_audit;
2160 retval = copy_semundo(clone_flags, p);
2161 if (retval)
2162 goto bad_fork_cleanup_security;
2163 retval = copy_files(clone_flags, p, args->no_files);
2164 if (retval)
2165 goto bad_fork_cleanup_semundo;
2166 retval = copy_fs(clone_flags, p);
2167 if (retval)
2168 goto bad_fork_cleanup_files;
2169 retval = copy_sighand(clone_flags, p);
2170 if (retval)
2171 goto bad_fork_cleanup_fs;
2172 retval = copy_signal(clone_flags, p);
2173 if (retval)
2174 goto bad_fork_cleanup_sighand;
2175 retval = copy_mm(clone_flags, p);
2176 if (retval)
2177 goto bad_fork_cleanup_signal;
2178 retval = copy_namespaces(clone_flags, p);
2179 if (retval)
2180 goto bad_fork_cleanup_mm;
2181 retval = copy_io(clone_flags, p);
2182 if (retval)
2183 goto bad_fork_cleanup_namespaces;
2184 retval = copy_thread(p, args);
2185 if (retval)
2186 goto bad_fork_cleanup_io;
2187
2188 stackleak_task_init(p);
2189
2190 if (pid != &init_struct_pid) {
2191 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2192 args->set_tid_size);
2193 if (IS_ERR(pid)) {
2194 retval = PTR_ERR(pid);
2195 goto bad_fork_cleanup_thread;
2196 }
2197 }
2198
2199 /*
2200 * This has to happen after we've potentially unshared the file
2201 * descriptor table (so that the pidfd doesn't leak into the child
2202 * if the fd table isn't shared).
2203 */
2204 if (clone_flags & CLONE_PIDFD) {
2205 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2206
2207 /*
2208 * Note that no task has been attached to @pid yet indicate
2209 * that via CLONE_PIDFD.
2210 */
2211 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2212 if (retval < 0)
2213 goto bad_fork_free_pid;
2214 pidfd = retval;
2215
2216 retval = put_user(pidfd, args->pidfd);
2217 if (retval)
2218 goto bad_fork_put_pidfd;
2219 }
2220
2221 #ifdef CONFIG_BLOCK
2222 p->plug = NULL;
2223 #endif
2224 futex_init_task(p);
2225
2226 /*
2227 * sigaltstack should be cleared when sharing the same VM
2228 */
2229 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2230 sas_ss_reset(p);
2231
2232 /*
2233 * Syscall tracing and stepping should be turned off in the
2234 * child regardless of CLONE_PTRACE.
2235 */
2236 user_disable_single_step(p);
2237 clear_task_syscall_work(p, SYSCALL_TRACE);
2238 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2239 clear_task_syscall_work(p, SYSCALL_EMU);
2240 #endif
2241 clear_tsk_latency_tracing(p);
2242
2243 /* ok, now we should be set up.. */
2244 p->pid = pid_nr(pid);
2245 if (clone_flags & CLONE_THREAD) {
2246 p->group_leader = current->group_leader;
2247 p->tgid = current->tgid;
2248 } else {
2249 p->group_leader = p;
2250 p->tgid = p->pid;
2251 }
2252
2253 p->nr_dirtied = 0;
2254 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2255 p->dirty_paused_when = 0;
2256
2257 p->pdeath_signal = 0;
2258 p->task_works = NULL;
2259 clear_posix_cputimers_work(p);
2260
2261 #ifdef CONFIG_KRETPROBES
2262 p->kretprobe_instances.first = NULL;
2263 #endif
2264 #ifdef CONFIG_RETHOOK
2265 p->rethooks.first = NULL;
2266 #endif
2267
2268 /*
2269 * Ensure that the cgroup subsystem policies allow the new process to be
2270 * forked. It should be noted that the new process's css_set can be changed
2271 * between here and cgroup_post_fork() if an organisation operation is in
2272 * progress.
2273 */
2274 retval = cgroup_can_fork(p, args);
2275 if (retval)
2276 goto bad_fork_put_pidfd;
2277
2278 /*
2279 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2280 * the new task on the correct runqueue. All this *before* the task
2281 * becomes visible.
2282 *
2283 * This isn't part of ->can_fork() because while the re-cloning is
2284 * cgroup specific, it unconditionally needs to place the task on a
2285 * runqueue.
2286 */
2287 retval = sched_cgroup_fork(p, args);
2288 if (retval)
2289 goto bad_fork_cancel_cgroup;
2290
2291 /*
2292 * Allocate a default futex hash for the user process once the first
2293 * thread spawns.
2294 */
2295 if (need_futex_hash_allocate_default(clone_flags)) {
2296 retval = futex_hash_allocate_default();
2297 if (retval)
2298 goto bad_fork_core_free;
2299 /*
2300 * If we fail beyond this point we don't free the allocated
2301 * futex hash map. We assume that another thread will be created
2302 * and makes use of it. The hash map will be freed once the main
2303 * thread terminates.
2304 */
2305 }
2306 /*
2307 * From this point on we must avoid any synchronous user-space
2308 * communication until we take the tasklist-lock. In particular, we do
2309 * not want user-space to be able to predict the process start-time by
2310 * stalling fork(2) after we recorded the start_time but before it is
2311 * visible to the system.
2312 */
2313
2314 p->start_time = ktime_get_ns();
2315 p->start_boottime = ktime_get_boottime_ns();
2316
2317 /*
2318 * Make it visible to the rest of the system, but dont wake it up yet.
2319 * Need tasklist lock for parent etc handling!
2320 */
2321 write_lock_irq(&tasklist_lock);
2322
2323 /* CLONE_PARENT re-uses the old parent */
2324 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2325 p->real_parent = current->real_parent;
2326 p->parent_exec_id = current->parent_exec_id;
2327 if (clone_flags & CLONE_THREAD)
2328 p->exit_signal = -1;
2329 else
2330 p->exit_signal = current->group_leader->exit_signal;
2331 } else {
2332 p->real_parent = current;
2333 p->parent_exec_id = current->self_exec_id;
2334 p->exit_signal = args->exit_signal;
2335 }
2336
2337 klp_copy_process(p);
2338
2339 sched_core_fork(p);
2340
2341 spin_lock(¤t->sighand->siglock);
2342
2343 rv_task_fork(p);
2344
2345 rseq_fork(p, clone_flags);
2346
2347 /* Don't start children in a dying pid namespace */
2348 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2349 retval = -ENOMEM;
2350 goto bad_fork_core_free;
2351 }
2352
2353 /* Let kill terminate clone/fork in the middle */
2354 if (fatal_signal_pending(current)) {
2355 retval = -EINTR;
2356 goto bad_fork_core_free;
2357 }
2358
2359 /* No more failure paths after this point. */
2360
2361 /*
2362 * Copy seccomp details explicitly here, in case they were changed
2363 * before holding sighand lock.
2364 */
2365 copy_seccomp(p);
2366
2367 init_task_pid_links(p);
2368 if (likely(p->pid)) {
2369 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2370
2371 init_task_pid(p, PIDTYPE_PID, pid);
2372 if (thread_group_leader(p)) {
2373 init_task_pid(p, PIDTYPE_TGID, pid);
2374 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2375 init_task_pid(p, PIDTYPE_SID, task_session(current));
2376
2377 if (is_child_reaper(pid)) {
2378 ns_of_pid(pid)->child_reaper = p;
2379 p->signal->flags |= SIGNAL_UNKILLABLE;
2380 }
2381 p->signal->shared_pending.signal = delayed.signal;
2382 p->signal->tty = tty_kref_get(current->signal->tty);
2383 /*
2384 * Inherit has_child_subreaper flag under the same
2385 * tasklist_lock with adding child to the process tree
2386 * for propagate_has_child_subreaper optimization.
2387 */
2388 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2389 p->real_parent->signal->is_child_subreaper;
2390 list_add_tail(&p->sibling, &p->real_parent->children);
2391 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2392 attach_pid(p, PIDTYPE_TGID);
2393 attach_pid(p, PIDTYPE_PGID);
2394 attach_pid(p, PIDTYPE_SID);
2395 __this_cpu_inc(process_counts);
2396 } else {
2397 current->signal->nr_threads++;
2398 current->signal->quick_threads++;
2399 atomic_inc(¤t->signal->live);
2400 refcount_inc(¤t->signal->sigcnt);
2401 task_join_group_stop(p);
2402 list_add_tail_rcu(&p->thread_node,
2403 &p->signal->thread_head);
2404 }
2405 attach_pid(p, PIDTYPE_PID);
2406 nr_threads++;
2407 }
2408 total_forks++;
2409 hlist_del_init(&delayed.node);
2410 spin_unlock(¤t->sighand->siglock);
2411 syscall_tracepoint_update(p);
2412 write_unlock_irq(&tasklist_lock);
2413
2414 if (pidfile)
2415 fd_install(pidfd, pidfile);
2416
2417 proc_fork_connector(p);
2418 sched_post_fork(p);
2419 cgroup_post_fork(p, args);
2420 perf_event_fork(p);
2421
2422 trace_task_newtask(p, clone_flags);
2423 uprobe_copy_process(p, clone_flags);
2424 user_events_fork(p, clone_flags);
2425
2426 copy_oom_score_adj(clone_flags, p);
2427
2428 return p;
2429
2430 bad_fork_core_free:
2431 sched_core_free(p);
2432 spin_unlock(¤t->sighand->siglock);
2433 write_unlock_irq(&tasklist_lock);
2434 bad_fork_cancel_cgroup:
2435 cgroup_cancel_fork(p, args);
2436 bad_fork_put_pidfd:
2437 if (clone_flags & CLONE_PIDFD) {
2438 fput(pidfile);
2439 put_unused_fd(pidfd);
2440 }
2441 bad_fork_free_pid:
2442 if (pid != &init_struct_pid)
2443 free_pid(pid);
2444 bad_fork_cleanup_thread:
2445 exit_thread(p);
2446 bad_fork_cleanup_io:
2447 if (p->io_context)
2448 exit_io_context(p);
2449 bad_fork_cleanup_namespaces:
2450 exit_task_namespaces(p);
2451 bad_fork_cleanup_mm:
2452 if (p->mm) {
2453 mm_clear_owner(p->mm, p);
2454 mmput(p->mm);
2455 }
2456 bad_fork_cleanup_signal:
2457 if (!(clone_flags & CLONE_THREAD))
2458 free_signal_struct(p->signal);
2459 bad_fork_cleanup_sighand:
2460 __cleanup_sighand(p->sighand);
2461 bad_fork_cleanup_fs:
2462 exit_fs(p); /* blocking */
2463 bad_fork_cleanup_files:
2464 exit_files(p); /* blocking */
2465 bad_fork_cleanup_semundo:
2466 exit_sem(p);
2467 bad_fork_cleanup_security:
2468 security_task_free(p);
2469 bad_fork_cleanup_audit:
2470 audit_free(p);
2471 bad_fork_cleanup_perf:
2472 perf_event_free_task(p);
2473 bad_fork_sched_cancel_fork:
2474 sched_cancel_fork(p);
2475 bad_fork_cleanup_policy:
2476 lockdep_free_task(p);
2477 #ifdef CONFIG_NUMA
2478 mpol_put(p->mempolicy);
2479 #endif
2480 bad_fork_cleanup_delayacct:
2481 delayacct_tsk_free(p);
2482 bad_fork_cleanup_count:
2483 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2484 exit_creds(p);
2485 bad_fork_free:
2486 WRITE_ONCE(p->__state, TASK_DEAD);
2487 exit_task_stack_account(p);
2488 put_task_stack(p);
2489 delayed_free_task(p);
2490 fork_out:
2491 spin_lock_irq(¤t->sighand->siglock);
2492 hlist_del_init(&delayed.node);
2493 spin_unlock_irq(¤t->sighand->siglock);
2494 return ERR_PTR(retval);
2495 }
2496
init_idle_pids(struct task_struct * idle)2497 static inline void init_idle_pids(struct task_struct *idle)
2498 {
2499 enum pid_type type;
2500
2501 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2502 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2503 init_task_pid(idle, type, &init_struct_pid);
2504 }
2505 }
2506
idle_dummy(void * dummy)2507 static int idle_dummy(void *dummy)
2508 {
2509 /* This function is never called */
2510 return 0;
2511 }
2512
fork_idle(int cpu)2513 struct task_struct * __init fork_idle(int cpu)
2514 {
2515 struct task_struct *task;
2516 struct kernel_clone_args args = {
2517 .flags = CLONE_VM,
2518 .fn = &idle_dummy,
2519 .fn_arg = NULL,
2520 .kthread = 1,
2521 .idle = 1,
2522 };
2523
2524 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2525 if (!IS_ERR(task)) {
2526 init_idle_pids(task);
2527 init_idle(task, cpu);
2528 }
2529
2530 return task;
2531 }
2532
2533 /*
2534 * This is like kernel_clone(), but shaved down and tailored to just
2535 * creating io_uring workers. It returns a created task, or an error pointer.
2536 * The returned task is inactive, and the caller must fire it up through
2537 * wake_up_new_task(p). All signals are blocked in the created task.
2538 */
create_io_thread(int (* fn)(void *),void * arg,int node)2539 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2540 {
2541 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2542 CLONE_IO;
2543 struct kernel_clone_args args = {
2544 .flags = ((lower_32_bits(flags) | CLONE_VM |
2545 CLONE_UNTRACED) & ~CSIGNAL),
2546 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2547 .fn = fn,
2548 .fn_arg = arg,
2549 .io_thread = 1,
2550 .user_worker = 1,
2551 };
2552
2553 return copy_process(NULL, 0, node, &args);
2554 }
2555
2556 /*
2557 * Ok, this is the main fork-routine.
2558 *
2559 * It copies the process, and if successful kick-starts
2560 * it and waits for it to finish using the VM if required.
2561 *
2562 * args->exit_signal is expected to be checked for sanity by the caller.
2563 */
kernel_clone(struct kernel_clone_args * args)2564 pid_t kernel_clone(struct kernel_clone_args *args)
2565 {
2566 u64 clone_flags = args->flags;
2567 struct completion vfork;
2568 struct pid *pid;
2569 struct task_struct *p;
2570 int trace = 0;
2571 pid_t nr;
2572
2573 /*
2574 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2575 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2576 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2577 * field in struct clone_args and it still doesn't make sense to have
2578 * them both point at the same memory location. Performing this check
2579 * here has the advantage that we don't need to have a separate helper
2580 * to check for legacy clone().
2581 */
2582 if ((clone_flags & CLONE_PIDFD) &&
2583 (clone_flags & CLONE_PARENT_SETTID) &&
2584 (args->pidfd == args->parent_tid))
2585 return -EINVAL;
2586
2587 /*
2588 * Determine whether and which event to report to ptracer. When
2589 * called from kernel_thread or CLONE_UNTRACED is explicitly
2590 * requested, no event is reported; otherwise, report if the event
2591 * for the type of forking is enabled.
2592 */
2593 if (!(clone_flags & CLONE_UNTRACED)) {
2594 if (clone_flags & CLONE_VFORK)
2595 trace = PTRACE_EVENT_VFORK;
2596 else if (args->exit_signal != SIGCHLD)
2597 trace = PTRACE_EVENT_CLONE;
2598 else
2599 trace = PTRACE_EVENT_FORK;
2600
2601 if (likely(!ptrace_event_enabled(current, trace)))
2602 trace = 0;
2603 }
2604
2605 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2606 add_latent_entropy();
2607
2608 if (IS_ERR(p))
2609 return PTR_ERR(p);
2610
2611 /*
2612 * Do this prior waking up the new thread - the thread pointer
2613 * might get invalid after that point, if the thread exits quickly.
2614 */
2615 trace_sched_process_fork(current, p);
2616
2617 pid = get_task_pid(p, PIDTYPE_PID);
2618 nr = pid_vnr(pid);
2619
2620 if (clone_flags & CLONE_PARENT_SETTID)
2621 put_user(nr, args->parent_tid);
2622
2623 if (clone_flags & CLONE_VFORK) {
2624 p->vfork_done = &vfork;
2625 init_completion(&vfork);
2626 get_task_struct(p);
2627 }
2628
2629 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2630 /* lock the task to synchronize with memcg migration */
2631 task_lock(p);
2632 lru_gen_add_mm(p->mm);
2633 task_unlock(p);
2634 }
2635
2636 wake_up_new_task(p);
2637
2638 /* forking complete and child started to run, tell ptracer */
2639 if (unlikely(trace))
2640 ptrace_event_pid(trace, pid);
2641
2642 if (clone_flags & CLONE_VFORK) {
2643 if (!wait_for_vfork_done(p, &vfork))
2644 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2645 }
2646
2647 put_pid(pid);
2648 return nr;
2649 }
2650
2651 /*
2652 * Create a kernel thread.
2653 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2654 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2655 unsigned long flags)
2656 {
2657 struct kernel_clone_args args = {
2658 .flags = ((lower_32_bits(flags) | CLONE_VM |
2659 CLONE_UNTRACED) & ~CSIGNAL),
2660 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2661 .fn = fn,
2662 .fn_arg = arg,
2663 .name = name,
2664 .kthread = 1,
2665 };
2666
2667 return kernel_clone(&args);
2668 }
2669
2670 /*
2671 * Create a user mode thread.
2672 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2673 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2674 {
2675 struct kernel_clone_args args = {
2676 .flags = ((lower_32_bits(flags) | CLONE_VM |
2677 CLONE_UNTRACED) & ~CSIGNAL),
2678 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2679 .fn = fn,
2680 .fn_arg = arg,
2681 };
2682
2683 return kernel_clone(&args);
2684 }
2685
2686 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2687 SYSCALL_DEFINE0(fork)
2688 {
2689 #ifdef CONFIG_MMU
2690 struct kernel_clone_args args = {
2691 .exit_signal = SIGCHLD,
2692 };
2693
2694 return kernel_clone(&args);
2695 #else
2696 /* can not support in nommu mode */
2697 return -EINVAL;
2698 #endif
2699 }
2700 #endif
2701
2702 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2703 SYSCALL_DEFINE0(vfork)
2704 {
2705 struct kernel_clone_args args = {
2706 .flags = CLONE_VFORK | CLONE_VM,
2707 .exit_signal = SIGCHLD,
2708 };
2709
2710 return kernel_clone(&args);
2711 }
2712 #endif
2713
2714 #ifdef __ARCH_WANT_SYS_CLONE
2715 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2716 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2717 int __user *, parent_tidptr,
2718 unsigned long, tls,
2719 int __user *, child_tidptr)
2720 #elif defined(CONFIG_CLONE_BACKWARDS2)
2721 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2722 int __user *, parent_tidptr,
2723 int __user *, child_tidptr,
2724 unsigned long, tls)
2725 #elif defined(CONFIG_CLONE_BACKWARDS3)
2726 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2727 int, stack_size,
2728 int __user *, parent_tidptr,
2729 int __user *, child_tidptr,
2730 unsigned long, tls)
2731 #else
2732 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2733 int __user *, parent_tidptr,
2734 int __user *, child_tidptr,
2735 unsigned long, tls)
2736 #endif
2737 {
2738 struct kernel_clone_args args = {
2739 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2740 .pidfd = parent_tidptr,
2741 .child_tid = child_tidptr,
2742 .parent_tid = parent_tidptr,
2743 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2744 .stack = newsp,
2745 .tls = tls,
2746 };
2747
2748 return kernel_clone(&args);
2749 }
2750 #endif
2751
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2752 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2753 struct clone_args __user *uargs,
2754 size_t usize)
2755 {
2756 int err;
2757 struct clone_args args;
2758 pid_t *kset_tid = kargs->set_tid;
2759
2760 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2761 CLONE_ARGS_SIZE_VER0);
2762 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2763 CLONE_ARGS_SIZE_VER1);
2764 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2765 CLONE_ARGS_SIZE_VER2);
2766 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2767
2768 if (unlikely(usize > PAGE_SIZE))
2769 return -E2BIG;
2770 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2771 return -EINVAL;
2772
2773 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2774 if (err)
2775 return err;
2776
2777 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2778 return -EINVAL;
2779
2780 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2781 return -EINVAL;
2782
2783 if (unlikely(args.set_tid && args.set_tid_size == 0))
2784 return -EINVAL;
2785
2786 /*
2787 * Verify that higher 32bits of exit_signal are unset and that
2788 * it is a valid signal
2789 */
2790 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2791 !valid_signal(args.exit_signal)))
2792 return -EINVAL;
2793
2794 if ((args.flags & CLONE_INTO_CGROUP) &&
2795 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2796 return -EINVAL;
2797
2798 *kargs = (struct kernel_clone_args){
2799 .flags = args.flags,
2800 .pidfd = u64_to_user_ptr(args.pidfd),
2801 .child_tid = u64_to_user_ptr(args.child_tid),
2802 .parent_tid = u64_to_user_ptr(args.parent_tid),
2803 .exit_signal = args.exit_signal,
2804 .stack = args.stack,
2805 .stack_size = args.stack_size,
2806 .tls = args.tls,
2807 .set_tid_size = args.set_tid_size,
2808 .cgroup = args.cgroup,
2809 };
2810
2811 if (args.set_tid &&
2812 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2813 (kargs->set_tid_size * sizeof(pid_t))))
2814 return -EFAULT;
2815
2816 kargs->set_tid = kset_tid;
2817
2818 return 0;
2819 }
2820
2821 /**
2822 * clone3_stack_valid - check and prepare stack
2823 * @kargs: kernel clone args
2824 *
2825 * Verify that the stack arguments userspace gave us are sane.
2826 * In addition, set the stack direction for userspace since it's easy for us to
2827 * determine.
2828 */
clone3_stack_valid(struct kernel_clone_args * kargs)2829 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2830 {
2831 if (kargs->stack == 0) {
2832 if (kargs->stack_size > 0)
2833 return false;
2834 } else {
2835 if (kargs->stack_size == 0)
2836 return false;
2837
2838 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2839 return false;
2840
2841 #if !defined(CONFIG_STACK_GROWSUP)
2842 kargs->stack += kargs->stack_size;
2843 #endif
2844 }
2845
2846 return true;
2847 }
2848
clone3_args_valid(struct kernel_clone_args * kargs)2849 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2850 {
2851 /* Verify that no unknown flags are passed along. */
2852 if (kargs->flags &
2853 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2854 return false;
2855
2856 /*
2857 * - make the CLONE_DETACHED bit reusable for clone3
2858 * - make the CSIGNAL bits reusable for clone3
2859 */
2860 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2861 return false;
2862
2863 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2864 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2865 return false;
2866
2867 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2868 kargs->exit_signal)
2869 return false;
2870
2871 if (!clone3_stack_valid(kargs))
2872 return false;
2873
2874 return true;
2875 }
2876
2877 /**
2878 * sys_clone3 - create a new process with specific properties
2879 * @uargs: argument structure
2880 * @size: size of @uargs
2881 *
2882 * clone3() is the extensible successor to clone()/clone2().
2883 * It takes a struct as argument that is versioned by its size.
2884 *
2885 * Return: On success, a positive PID for the child process.
2886 * On error, a negative errno number.
2887 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2888 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2889 {
2890 int err;
2891
2892 struct kernel_clone_args kargs;
2893 pid_t set_tid[MAX_PID_NS_LEVEL];
2894
2895 #ifdef __ARCH_BROKEN_SYS_CLONE3
2896 #warning clone3() entry point is missing, please fix
2897 return -ENOSYS;
2898 #endif
2899
2900 kargs.set_tid = set_tid;
2901
2902 err = copy_clone_args_from_user(&kargs, uargs, size);
2903 if (err)
2904 return err;
2905
2906 if (!clone3_args_valid(&kargs))
2907 return -EINVAL;
2908
2909 return kernel_clone(&kargs);
2910 }
2911
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2912 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2913 {
2914 struct task_struct *leader, *parent, *child;
2915 int res;
2916
2917 read_lock(&tasklist_lock);
2918 leader = top = top->group_leader;
2919 down:
2920 for_each_thread(leader, parent) {
2921 list_for_each_entry(child, &parent->children, sibling) {
2922 res = visitor(child, data);
2923 if (res) {
2924 if (res < 0)
2925 goto out;
2926 leader = child;
2927 goto down;
2928 }
2929 up:
2930 ;
2931 }
2932 }
2933
2934 if (leader != top) {
2935 child = leader;
2936 parent = child->real_parent;
2937 leader = parent->group_leader;
2938 goto up;
2939 }
2940 out:
2941 read_unlock(&tasklist_lock);
2942 }
2943
2944 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2945 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2946 #endif
2947
sighand_ctor(void * data)2948 static void sighand_ctor(void *data)
2949 {
2950 struct sighand_struct *sighand = data;
2951
2952 spin_lock_init(&sighand->siglock);
2953 init_waitqueue_head(&sighand->signalfd_wqh);
2954 }
2955
mm_cache_init(void)2956 void __init mm_cache_init(void)
2957 {
2958 unsigned int mm_size;
2959
2960 /*
2961 * The mm_cpumask is located at the end of mm_struct, and is
2962 * dynamically sized based on the maximum CPU number this system
2963 * can have, taking hotplug into account (nr_cpu_ids).
2964 */
2965 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2966
2967 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2968 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2969 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2970 offsetof(struct mm_struct, saved_auxv),
2971 sizeof_field(struct mm_struct, saved_auxv),
2972 NULL);
2973 }
2974
proc_caches_init(void)2975 void __init proc_caches_init(void)
2976 {
2977 sighand_cachep = kmem_cache_create("sighand_cache",
2978 sizeof(struct sighand_struct), 0,
2979 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2980 SLAB_ACCOUNT, sighand_ctor);
2981 signal_cachep = kmem_cache_create("signal_cache",
2982 sizeof(struct signal_struct), 0,
2983 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2984 NULL);
2985 files_cachep = kmem_cache_create("files_cache",
2986 sizeof(struct files_struct), 0,
2987 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2988 NULL);
2989 fs_cachep = kmem_cache_create("fs_cache",
2990 sizeof(struct fs_struct), 0,
2991 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2992 NULL);
2993 mmap_init();
2994 nsproxy_cache_init();
2995 }
2996
2997 /*
2998 * Check constraints on flags passed to the unshare system call.
2999 */
check_unshare_flags(unsigned long unshare_flags)3000 static int check_unshare_flags(unsigned long unshare_flags)
3001 {
3002 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3003 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3004 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3005 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3006 CLONE_NEWTIME))
3007 return -EINVAL;
3008 /*
3009 * Not implemented, but pretend it works if there is nothing
3010 * to unshare. Note that unsharing the address space or the
3011 * signal handlers also need to unshare the signal queues (aka
3012 * CLONE_THREAD).
3013 */
3014 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3015 if (!thread_group_empty(current))
3016 return -EINVAL;
3017 }
3018 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3019 if (refcount_read(¤t->sighand->count) > 1)
3020 return -EINVAL;
3021 }
3022 if (unshare_flags & CLONE_VM) {
3023 if (!current_is_single_threaded())
3024 return -EINVAL;
3025 }
3026
3027 return 0;
3028 }
3029
3030 /*
3031 * Unshare the filesystem structure if it is being shared
3032 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3033 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3034 {
3035 struct fs_struct *fs = current->fs;
3036
3037 if (!(unshare_flags & CLONE_FS) || !fs)
3038 return 0;
3039
3040 /* don't need lock here; in the worst case we'll do useless copy */
3041 if (fs->users == 1)
3042 return 0;
3043
3044 *new_fsp = copy_fs_struct(fs);
3045 if (!*new_fsp)
3046 return -ENOMEM;
3047
3048 return 0;
3049 }
3050
3051 /*
3052 * Unshare file descriptor table if it is being shared
3053 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3054 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3055 {
3056 struct files_struct *fd = current->files;
3057
3058 if ((unshare_flags & CLONE_FILES) &&
3059 (fd && atomic_read(&fd->count) > 1)) {
3060 fd = dup_fd(fd, NULL);
3061 if (IS_ERR(fd))
3062 return PTR_ERR(fd);
3063 *new_fdp = fd;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /*
3070 * unshare allows a process to 'unshare' part of the process
3071 * context which was originally shared using clone. copy_*
3072 * functions used by kernel_clone() cannot be used here directly
3073 * because they modify an inactive task_struct that is being
3074 * constructed. Here we are modifying the current, active,
3075 * task_struct.
3076 */
ksys_unshare(unsigned long unshare_flags)3077 int ksys_unshare(unsigned long unshare_flags)
3078 {
3079 struct fs_struct *fs, *new_fs = NULL;
3080 struct files_struct *new_fd = NULL;
3081 struct cred *new_cred = NULL;
3082 struct nsproxy *new_nsproxy = NULL;
3083 int do_sysvsem = 0;
3084 int err;
3085
3086 /*
3087 * If unsharing a user namespace must also unshare the thread group
3088 * and unshare the filesystem root and working directories.
3089 */
3090 if (unshare_flags & CLONE_NEWUSER)
3091 unshare_flags |= CLONE_THREAD | CLONE_FS;
3092 /*
3093 * If unsharing vm, must also unshare signal handlers.
3094 */
3095 if (unshare_flags & CLONE_VM)
3096 unshare_flags |= CLONE_SIGHAND;
3097 /*
3098 * If unsharing a signal handlers, must also unshare the signal queues.
3099 */
3100 if (unshare_flags & CLONE_SIGHAND)
3101 unshare_flags |= CLONE_THREAD;
3102 /*
3103 * If unsharing namespace, must also unshare filesystem information.
3104 */
3105 if (unshare_flags & CLONE_NEWNS)
3106 unshare_flags |= CLONE_FS;
3107
3108 err = check_unshare_flags(unshare_flags);
3109 if (err)
3110 goto bad_unshare_out;
3111 /*
3112 * CLONE_NEWIPC must also detach from the undolist: after switching
3113 * to a new ipc namespace, the semaphore arrays from the old
3114 * namespace are unreachable.
3115 */
3116 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3117 do_sysvsem = 1;
3118 err = unshare_fs(unshare_flags, &new_fs);
3119 if (err)
3120 goto bad_unshare_out;
3121 err = unshare_fd(unshare_flags, &new_fd);
3122 if (err)
3123 goto bad_unshare_cleanup_fs;
3124 err = unshare_userns(unshare_flags, &new_cred);
3125 if (err)
3126 goto bad_unshare_cleanup_fd;
3127 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3128 new_cred, new_fs);
3129 if (err)
3130 goto bad_unshare_cleanup_cred;
3131
3132 if (new_cred) {
3133 err = set_cred_ucounts(new_cred);
3134 if (err)
3135 goto bad_unshare_cleanup_cred;
3136 }
3137
3138 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3139 if (do_sysvsem) {
3140 /*
3141 * CLONE_SYSVSEM is equivalent to sys_exit().
3142 */
3143 exit_sem(current);
3144 }
3145 if (unshare_flags & CLONE_NEWIPC) {
3146 /* Orphan segments in old ns (see sem above). */
3147 exit_shm(current);
3148 shm_init_task(current);
3149 }
3150
3151 if (new_nsproxy)
3152 switch_task_namespaces(current, new_nsproxy);
3153
3154 task_lock(current);
3155
3156 if (new_fs) {
3157 fs = current->fs;
3158 read_seqlock_excl(&fs->seq);
3159 current->fs = new_fs;
3160 if (--fs->users)
3161 new_fs = NULL;
3162 else
3163 new_fs = fs;
3164 read_sequnlock_excl(&fs->seq);
3165 }
3166
3167 if (new_fd)
3168 swap(current->files, new_fd);
3169
3170 task_unlock(current);
3171
3172 if (new_cred) {
3173 /* Install the new user namespace */
3174 commit_creds(new_cred);
3175 new_cred = NULL;
3176 }
3177 }
3178
3179 perf_event_namespaces(current);
3180
3181 bad_unshare_cleanup_cred:
3182 if (new_cred)
3183 put_cred(new_cred);
3184 bad_unshare_cleanup_fd:
3185 if (new_fd)
3186 put_files_struct(new_fd);
3187
3188 bad_unshare_cleanup_fs:
3189 if (new_fs)
3190 free_fs_struct(new_fs);
3191
3192 bad_unshare_out:
3193 return err;
3194 }
3195
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3196 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3197 {
3198 return ksys_unshare(unshare_flags);
3199 }
3200
3201 /*
3202 * Helper to unshare the files of the current task.
3203 * We don't want to expose copy_files internals to
3204 * the exec layer of the kernel.
3205 */
3206
unshare_files(void)3207 int unshare_files(void)
3208 {
3209 struct task_struct *task = current;
3210 struct files_struct *old, *copy = NULL;
3211 int error;
3212
3213 error = unshare_fd(CLONE_FILES, ©);
3214 if (error || !copy)
3215 return error;
3216
3217 old = task->files;
3218 task_lock(task);
3219 task->files = copy;
3220 task_unlock(task);
3221 put_files_struct(old);
3222 return 0;
3223 }
3224
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3225 static int sysctl_max_threads(const struct ctl_table *table, int write,
3226 void *buffer, size_t *lenp, loff_t *ppos)
3227 {
3228 struct ctl_table t;
3229 int ret;
3230 int threads = max_threads;
3231 int min = 1;
3232 int max = MAX_THREADS;
3233
3234 t = *table;
3235 t.data = &threads;
3236 t.extra1 = &min;
3237 t.extra2 = &max;
3238
3239 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3240 if (ret || !write)
3241 return ret;
3242
3243 max_threads = threads;
3244
3245 return 0;
3246 }
3247
3248 static const struct ctl_table fork_sysctl_table[] = {
3249 {
3250 .procname = "threads-max",
3251 .data = NULL,
3252 .maxlen = sizeof(int),
3253 .mode = 0644,
3254 .proc_handler = sysctl_max_threads,
3255 },
3256 };
3257
init_fork_sysctl(void)3258 static int __init init_fork_sysctl(void)
3259 {
3260 register_sysctl_init("kernel", fork_sysctl_table);
3261 return 0;
3262 }
3263
3264 subsys_initcall(init_fork_sysctl);
3265