xref: /linux/drivers/gpu/drm/drm_edid.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright (c) 2006 Luc Verhaegen (quirks list)
3  * Copyright (c) 2007-2008 Intel Corporation
4  *   Jesse Barnes <jesse.barnes@intel.com>
5  * Copyright 2010 Red Hat, Inc.
6  *
7  * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8  * FB layer.
9  *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10  *
11  * Permission is hereby granted, free of charge, to any person obtaining a
12  * copy of this software and associated documentation files (the "Software"),
13  * to deal in the Software without restriction, including without limitation
14  * the rights to use, copy, modify, merge, publish, distribute, sub license,
15  * and/or sell copies of the Software, and to permit persons to whom the
16  * Software is furnished to do so, subject to the following conditions:
17  *
18  * The above copyright notice and this permission notice (including the
19  * next paragraph) shall be included in all copies or substantial portions
20  * of the Software.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28  * DEALINGS IN THE SOFTWARE.
29  */
30 
31 #include <linux/bitfield.h>
32 #include <linux/byteorder/generic.h>
33 #include <linux/cec.h>
34 #include <linux/export.h>
35 #include <linux/hdmi.h>
36 #include <linux/i2c.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/seq_buf.h>
41 #include <linux/slab.h>
42 #include <linux/vga_switcheroo.h>
43 
44 #include <drm/drm_drv.h>
45 #include <drm/drm_edid.h>
46 #include <drm/drm_eld.h>
47 #include <drm/drm_encoder.h>
48 #include <drm/drm_print.h>
49 
50 #include "drm_crtc_internal.h"
51 #include "drm_displayid_internal.h"
52 #include "drm_internal.h"
53 
oui(u8 first,u8 second,u8 third)54 static int oui(u8 first, u8 second, u8 third)
55 {
56 	return (first << 16) | (second << 8) | third;
57 }
58 
59 #define EDID_EST_TIMINGS 16
60 #define EDID_STD_TIMINGS 8
61 #define EDID_DETAILED_TIMINGS 4
62 
63 /*
64  * EDID blocks out in the wild have a variety of bugs, try to collect
65  * them here (note that userspace may work around broken monitors first,
66  * but fixes should make their way here so that the kernel "just works"
67  * on as many displays as possible).
68  */
69 
70 enum drm_edid_internal_quirk {
71 	/* First detailed mode wrong, use largest 60Hz mode */
72 	EDID_QUIRK_PREFER_LARGE_60 = DRM_EDID_QUIRK_NUM,
73 	/* Reported 135MHz pixel clock is too high, needs adjustment */
74 	EDID_QUIRK_135_CLOCK_TOO_HIGH,
75 	/* Prefer the largest mode at 75 Hz */
76 	EDID_QUIRK_PREFER_LARGE_75,
77 	/* Detail timing is in cm not mm */
78 	EDID_QUIRK_DETAILED_IN_CM,
79 	/* Detailed timing descriptors have bogus size values, so just take the
80 	 * maximum size and use that.
81 	 */
82 	EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE,
83 	/* use +hsync +vsync for detailed mode */
84 	EDID_QUIRK_DETAILED_SYNC_PP,
85 	/* Force reduced-blanking timings for detailed modes */
86 	EDID_QUIRK_FORCE_REDUCED_BLANKING,
87 	/* Force 8bpc */
88 	EDID_QUIRK_FORCE_8BPC,
89 	/* Force 12bpc */
90 	EDID_QUIRK_FORCE_12BPC,
91 	/* Force 6bpc */
92 	EDID_QUIRK_FORCE_6BPC,
93 	/* Force 10bpc */
94 	EDID_QUIRK_FORCE_10BPC,
95 	/* Non desktop display (i.e. HMD) */
96 	EDID_QUIRK_NON_DESKTOP,
97 	/* Cap the DSC target bitrate to 15bpp */
98 	EDID_QUIRK_CAP_DSC_15BPP,
99 };
100 
101 #define MICROSOFT_IEEE_OUI	0xca125c
102 
103 struct detailed_mode_closure {
104 	struct drm_connector *connector;
105 	const struct drm_edid *drm_edid;
106 	bool preferred;
107 	int modes;
108 };
109 
110 struct drm_edid_match_closure {
111 	const struct drm_edid_ident *ident;
112 	bool matched;
113 };
114 
115 #define LEVEL_DMT	0
116 #define LEVEL_GTF	1
117 #define LEVEL_GTF2	2
118 #define LEVEL_CVT	3
119 
120 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \
121 { \
122 	.ident = { \
123 		.panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \
124 						     vend_chr_2, product_id), \
125 	}, \
126 	.quirks = _quirks \
127 }
128 
129 static const struct edid_quirk {
130 	const struct drm_edid_ident ident;
131 	u32 quirks;
132 } edid_quirk_list[] = {
133 	/* Acer AL1706 */
134 	EDID_QUIRK('A', 'C', 'R', 44358, BIT(EDID_QUIRK_PREFER_LARGE_60)),
135 	/* Acer F51 */
136 	EDID_QUIRK('A', 'P', 'I', 0x7602, BIT(EDID_QUIRK_PREFER_LARGE_60)),
137 
138 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
139 	EDID_QUIRK('A', 'E', 'O', 0, BIT(EDID_QUIRK_FORCE_6BPC)),
140 
141 	/* BenQ GW2765 */
142 	EDID_QUIRK('B', 'N', 'Q', 0x78d6, BIT(EDID_QUIRK_FORCE_8BPC)),
143 
144 	/* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */
145 	EDID_QUIRK('B', 'O', 'E', 0x78b, BIT(EDID_QUIRK_FORCE_6BPC)),
146 
147 	/* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
148 	EDID_QUIRK('C', 'P', 'T', 0x17df, BIT(EDID_QUIRK_FORCE_6BPC)),
149 
150 	/* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */
151 	EDID_QUIRK('S', 'D', 'C', 0x3652, BIT(EDID_QUIRK_FORCE_6BPC)),
152 
153 	/* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */
154 	EDID_QUIRK('B', 'O', 'E', 0x0771, BIT(EDID_QUIRK_FORCE_6BPC)),
155 
156 	/* Belinea 10 15 55 */
157 	EDID_QUIRK('M', 'A', 'X', 1516, BIT(EDID_QUIRK_PREFER_LARGE_60)),
158 	EDID_QUIRK('M', 'A', 'X', 0x77e, BIT(EDID_QUIRK_PREFER_LARGE_60)),
159 
160 	/* Envision Peripherals, Inc. EN-7100e */
161 	EDID_QUIRK('E', 'P', 'I', 59264, BIT(EDID_QUIRK_135_CLOCK_TOO_HIGH)),
162 	/* Envision EN2028 */
163 	EDID_QUIRK('E', 'P', 'I', 8232, BIT(EDID_QUIRK_PREFER_LARGE_60)),
164 
165 	/* Funai Electronics PM36B */
166 	EDID_QUIRK('F', 'C', 'M', 13600, BIT(EDID_QUIRK_PREFER_LARGE_75) |
167 					 BIT(EDID_QUIRK_DETAILED_IN_CM)),
168 
169 	/* LG 27GP950 */
170 	EDID_QUIRK('G', 'S', 'M', 0x5bbf, BIT(EDID_QUIRK_CAP_DSC_15BPP)),
171 
172 	/* LG 27GN950 */
173 	EDID_QUIRK('G', 'S', 'M', 0x5b9a, BIT(EDID_QUIRK_CAP_DSC_15BPP)),
174 
175 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
176 	EDID_QUIRK('L', 'G', 'D', 764, BIT(EDID_QUIRK_FORCE_10BPC)),
177 
178 	/* LG Philips LCD LP154W01-A5 */
179 	EDID_QUIRK('L', 'P', 'L', 0, BIT(EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE)),
180 	EDID_QUIRK('L', 'P', 'L', 0x2a00, BIT(EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE)),
181 
182 	/* Samsung SyncMaster 205BW.  Note: irony */
183 	EDID_QUIRK('S', 'A', 'M', 541, BIT(EDID_QUIRK_DETAILED_SYNC_PP)),
184 	/* Samsung SyncMaster 22[5-6]BW */
185 	EDID_QUIRK('S', 'A', 'M', 596, BIT(EDID_QUIRK_PREFER_LARGE_60)),
186 	EDID_QUIRK('S', 'A', 'M', 638, BIT(EDID_QUIRK_PREFER_LARGE_60)),
187 
188 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
189 	EDID_QUIRK('S', 'N', 'Y', 0x2541, BIT(EDID_QUIRK_FORCE_12BPC)),
190 
191 	/* ViewSonic VA2026w */
192 	EDID_QUIRK('V', 'S', 'C', 5020, BIT(EDID_QUIRK_FORCE_REDUCED_BLANKING)),
193 
194 	/* Medion MD 30217 PG */
195 	EDID_QUIRK('M', 'E', 'D', 0x7b8, BIT(EDID_QUIRK_PREFER_LARGE_75)),
196 
197 	/* Lenovo G50 */
198 	EDID_QUIRK('S', 'D', 'C', 18514, BIT(EDID_QUIRK_FORCE_6BPC)),
199 
200 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
201 	EDID_QUIRK('S', 'E', 'C', 0xd033, BIT(EDID_QUIRK_FORCE_8BPC)),
202 
203 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
204 	EDID_QUIRK('E', 'T', 'R', 13896, BIT(EDID_QUIRK_FORCE_8BPC)),
205 
206 	/* Valve Index Headset */
207 	EDID_QUIRK('V', 'L', 'V', 0x91a8, BIT(EDID_QUIRK_NON_DESKTOP)),
208 	EDID_QUIRK('V', 'L', 'V', 0x91b0, BIT(EDID_QUIRK_NON_DESKTOP)),
209 	EDID_QUIRK('V', 'L', 'V', 0x91b1, BIT(EDID_QUIRK_NON_DESKTOP)),
210 	EDID_QUIRK('V', 'L', 'V', 0x91b2, BIT(EDID_QUIRK_NON_DESKTOP)),
211 	EDID_QUIRK('V', 'L', 'V', 0x91b3, BIT(EDID_QUIRK_NON_DESKTOP)),
212 	EDID_QUIRK('V', 'L', 'V', 0x91b4, BIT(EDID_QUIRK_NON_DESKTOP)),
213 	EDID_QUIRK('V', 'L', 'V', 0x91b5, BIT(EDID_QUIRK_NON_DESKTOP)),
214 	EDID_QUIRK('V', 'L', 'V', 0x91b6, BIT(EDID_QUIRK_NON_DESKTOP)),
215 	EDID_QUIRK('V', 'L', 'V', 0x91b7, BIT(EDID_QUIRK_NON_DESKTOP)),
216 	EDID_QUIRK('V', 'L', 'V', 0x91b8, BIT(EDID_QUIRK_NON_DESKTOP)),
217 	EDID_QUIRK('V', 'L', 'V', 0x91b9, BIT(EDID_QUIRK_NON_DESKTOP)),
218 	EDID_QUIRK('V', 'L', 'V', 0x91ba, BIT(EDID_QUIRK_NON_DESKTOP)),
219 	EDID_QUIRK('V', 'L', 'V', 0x91bb, BIT(EDID_QUIRK_NON_DESKTOP)),
220 	EDID_QUIRK('V', 'L', 'V', 0x91bc, BIT(EDID_QUIRK_NON_DESKTOP)),
221 	EDID_QUIRK('V', 'L', 'V', 0x91bd, BIT(EDID_QUIRK_NON_DESKTOP)),
222 	EDID_QUIRK('V', 'L', 'V', 0x91be, BIT(EDID_QUIRK_NON_DESKTOP)),
223 	EDID_QUIRK('V', 'L', 'V', 0x91bf, BIT(EDID_QUIRK_NON_DESKTOP)),
224 
225 	/* HTC Vive and Vive Pro VR Headsets */
226 	EDID_QUIRK('H', 'V', 'R', 0xaa01, BIT(EDID_QUIRK_NON_DESKTOP)),
227 	EDID_QUIRK('H', 'V', 'R', 0xaa02, BIT(EDID_QUIRK_NON_DESKTOP)),
228 
229 	/* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */
230 	EDID_QUIRK('O', 'V', 'R', 0x0001, BIT(EDID_QUIRK_NON_DESKTOP)),
231 	EDID_QUIRK('O', 'V', 'R', 0x0003, BIT(EDID_QUIRK_NON_DESKTOP)),
232 	EDID_QUIRK('O', 'V', 'R', 0x0004, BIT(EDID_QUIRK_NON_DESKTOP)),
233 	EDID_QUIRK('O', 'V', 'R', 0x0012, BIT(EDID_QUIRK_NON_DESKTOP)),
234 
235 	/* Windows Mixed Reality Headsets */
236 	EDID_QUIRK('A', 'C', 'R', 0x7fce, BIT(EDID_QUIRK_NON_DESKTOP)),
237 	EDID_QUIRK('L', 'E', 'N', 0x0408, BIT(EDID_QUIRK_NON_DESKTOP)),
238 	EDID_QUIRK('F', 'U', 'J', 0x1970, BIT(EDID_QUIRK_NON_DESKTOP)),
239 	EDID_QUIRK('D', 'E', 'L', 0x7fce, BIT(EDID_QUIRK_NON_DESKTOP)),
240 	EDID_QUIRK('S', 'E', 'C', 0x144a, BIT(EDID_QUIRK_NON_DESKTOP)),
241 	EDID_QUIRK('A', 'U', 'S', 0xc102, BIT(EDID_QUIRK_NON_DESKTOP)),
242 
243 	/* Sony PlayStation VR Headset */
244 	EDID_QUIRK('S', 'N', 'Y', 0x0704, BIT(EDID_QUIRK_NON_DESKTOP)),
245 
246 	/* Sensics VR Headsets */
247 	EDID_QUIRK('S', 'E', 'N', 0x1019, BIT(EDID_QUIRK_NON_DESKTOP)),
248 
249 	/* OSVR HDK and HDK2 VR Headsets */
250 	EDID_QUIRK('S', 'V', 'R', 0x1019, BIT(EDID_QUIRK_NON_DESKTOP)),
251 	EDID_QUIRK('A', 'U', 'O', 0x1111, BIT(EDID_QUIRK_NON_DESKTOP)),
252 
253 	/*
254 	 * @drm_edid_internal_quirk entries end here, following with the
255 	 * @drm_edid_quirk entries.
256 	 */
257 
258 	/* HP ZR24w DP AUX DPCD access requires probing to prevent corruption. */
259 	EDID_QUIRK('H', 'W', 'P', 0x2869, BIT(DRM_EDID_QUIRK_DP_DPCD_PROBE)),
260 };
261 
262 /*
263  * Autogenerated from the DMT spec.
264  * This table is copied from xfree86/modes/xf86EdidModes.c.
265  */
266 static const struct drm_display_mode drm_dmt_modes[] = {
267 	/* 0x01 - 640x350@85Hz */
268 	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
269 		   736, 832, 0, 350, 382, 385, 445, 0,
270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
271 	/* 0x02 - 640x400@85Hz */
272 	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
273 		   736, 832, 0, 400, 401, 404, 445, 0,
274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
275 	/* 0x03 - 720x400@85Hz */
276 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
277 		   828, 936, 0, 400, 401, 404, 446, 0,
278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
279 	/* 0x04 - 640x480@60Hz */
280 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
281 		   752, 800, 0, 480, 490, 492, 525, 0,
282 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
283 	/* 0x05 - 640x480@72Hz */
284 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
285 		   704, 832, 0, 480, 489, 492, 520, 0,
286 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
287 	/* 0x06 - 640x480@75Hz */
288 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
289 		   720, 840, 0, 480, 481, 484, 500, 0,
290 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
291 	/* 0x07 - 640x480@85Hz */
292 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
293 		   752, 832, 0, 480, 481, 484, 509, 0,
294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
295 	/* 0x08 - 800x600@56Hz */
296 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
297 		   896, 1024, 0, 600, 601, 603, 625, 0,
298 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
299 	/* 0x09 - 800x600@60Hz */
300 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
301 		   968, 1056, 0, 600, 601, 605, 628, 0,
302 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
303 	/* 0x0a - 800x600@72Hz */
304 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
305 		   976, 1040, 0, 600, 637, 643, 666, 0,
306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
307 	/* 0x0b - 800x600@75Hz */
308 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
309 		   896, 1056, 0, 600, 601, 604, 625, 0,
310 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
311 	/* 0x0c - 800x600@85Hz */
312 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
313 		   896, 1048, 0, 600, 601, 604, 631, 0,
314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
315 	/* 0x0d - 800x600@120Hz RB */
316 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
317 		   880, 960, 0, 600, 603, 607, 636, 0,
318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
319 	/* 0x0e - 848x480@60Hz */
320 	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
321 		   976, 1088, 0, 480, 486, 494, 517, 0,
322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
323 	/* 0x0f - 1024x768@43Hz, interlace */
324 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
325 		   1208, 1264, 0, 768, 768, 776, 817, 0,
326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
327 		   DRM_MODE_FLAG_INTERLACE) },
328 	/* 0x10 - 1024x768@60Hz */
329 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
330 		   1184, 1344, 0, 768, 771, 777, 806, 0,
331 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
332 	/* 0x11 - 1024x768@70Hz */
333 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
334 		   1184, 1328, 0, 768, 771, 777, 806, 0,
335 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
336 	/* 0x12 - 1024x768@75Hz */
337 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
338 		   1136, 1312, 0, 768, 769, 772, 800, 0,
339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
340 	/* 0x13 - 1024x768@85Hz */
341 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
342 		   1168, 1376, 0, 768, 769, 772, 808, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
344 	/* 0x14 - 1024x768@120Hz RB */
345 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
346 		   1104, 1184, 0, 768, 771, 775, 813, 0,
347 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
348 	/* 0x15 - 1152x864@75Hz */
349 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
350 		   1344, 1600, 0, 864, 865, 868, 900, 0,
351 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
352 	/* 0x55 - 1280x720@60Hz */
353 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
354 		   1430, 1650, 0, 720, 725, 730, 750, 0,
355 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
356 	/* 0x16 - 1280x768@60Hz RB */
357 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
358 		   1360, 1440, 0, 768, 771, 778, 790, 0,
359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
360 	/* 0x17 - 1280x768@60Hz */
361 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
362 		   1472, 1664, 0, 768, 771, 778, 798, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
364 	/* 0x18 - 1280x768@75Hz */
365 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
366 		   1488, 1696, 0, 768, 771, 778, 805, 0,
367 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
368 	/* 0x19 - 1280x768@85Hz */
369 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
370 		   1496, 1712, 0, 768, 771, 778, 809, 0,
371 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
372 	/* 0x1a - 1280x768@120Hz RB */
373 	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
374 		   1360, 1440, 0, 768, 771, 778, 813, 0,
375 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
376 	/* 0x1b - 1280x800@60Hz RB */
377 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
378 		   1360, 1440, 0, 800, 803, 809, 823, 0,
379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
380 	/* 0x1c - 1280x800@60Hz */
381 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
382 		   1480, 1680, 0, 800, 803, 809, 831, 0,
383 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
384 	/* 0x1d - 1280x800@75Hz */
385 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
386 		   1488, 1696, 0, 800, 803, 809, 838, 0,
387 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
388 	/* 0x1e - 1280x800@85Hz */
389 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
390 		   1496, 1712, 0, 800, 803, 809, 843, 0,
391 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
392 	/* 0x1f - 1280x800@120Hz RB */
393 	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
394 		   1360, 1440, 0, 800, 803, 809, 847, 0,
395 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
396 	/* 0x20 - 1280x960@60Hz */
397 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
398 		   1488, 1800, 0, 960, 961, 964, 1000, 0,
399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
400 	/* 0x21 - 1280x960@85Hz */
401 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
402 		   1504, 1728, 0, 960, 961, 964, 1011, 0,
403 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
404 	/* 0x22 - 1280x960@120Hz RB */
405 	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
406 		   1360, 1440, 0, 960, 963, 967, 1017, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
408 	/* 0x23 - 1280x1024@60Hz */
409 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
410 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
411 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
412 	/* 0x24 - 1280x1024@75Hz */
413 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
414 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
415 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
416 	/* 0x25 - 1280x1024@85Hz */
417 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
418 		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
420 	/* 0x26 - 1280x1024@120Hz RB */
421 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
422 		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
424 	/* 0x27 - 1360x768@60Hz */
425 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
426 		   1536, 1792, 0, 768, 771, 777, 795, 0,
427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
428 	/* 0x28 - 1360x768@120Hz RB */
429 	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
430 		   1440, 1520, 0, 768, 771, 776, 813, 0,
431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
432 	/* 0x51 - 1366x768@60Hz */
433 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
434 		   1579, 1792, 0, 768, 771, 774, 798, 0,
435 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
436 	/* 0x56 - 1366x768@60Hz */
437 	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
438 		   1436, 1500, 0, 768, 769, 772, 800, 0,
439 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
440 	/* 0x29 - 1400x1050@60Hz RB */
441 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
442 		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
443 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
444 	/* 0x2a - 1400x1050@60Hz */
445 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
446 		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
447 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
448 	/* 0x2b - 1400x1050@75Hz */
449 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
450 		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
451 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
452 	/* 0x2c - 1400x1050@85Hz */
453 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
454 		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
455 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
456 	/* 0x2d - 1400x1050@120Hz RB */
457 	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
458 		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
459 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
460 	/* 0x2e - 1440x900@60Hz RB */
461 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
462 		   1520, 1600, 0, 900, 903, 909, 926, 0,
463 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
464 	/* 0x2f - 1440x900@60Hz */
465 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
466 		   1672, 1904, 0, 900, 903, 909, 934, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
468 	/* 0x30 - 1440x900@75Hz */
469 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
470 		   1688, 1936, 0, 900, 903, 909, 942, 0,
471 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
472 	/* 0x31 - 1440x900@85Hz */
473 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
474 		   1696, 1952, 0, 900, 903, 909, 948, 0,
475 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
476 	/* 0x32 - 1440x900@120Hz RB */
477 	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
478 		   1520, 1600, 0, 900, 903, 909, 953, 0,
479 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
480 	/* 0x53 - 1600x900@60Hz */
481 	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
482 		   1704, 1800, 0, 900, 901, 904, 1000, 0,
483 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
484 	/* 0x33 - 1600x1200@60Hz */
485 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
486 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
488 	/* 0x34 - 1600x1200@65Hz */
489 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
490 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
491 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
492 	/* 0x35 - 1600x1200@70Hz */
493 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
494 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
495 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
496 	/* 0x36 - 1600x1200@75Hz */
497 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
498 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
500 	/* 0x37 - 1600x1200@85Hz */
501 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
502 		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
503 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
504 	/* 0x38 - 1600x1200@120Hz RB */
505 	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
506 		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
508 	/* 0x39 - 1680x1050@60Hz RB */
509 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
510 		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
512 	/* 0x3a - 1680x1050@60Hz */
513 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
514 		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
515 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
516 	/* 0x3b - 1680x1050@75Hz */
517 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
518 		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
519 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
520 	/* 0x3c - 1680x1050@85Hz */
521 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
522 		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
523 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
524 	/* 0x3d - 1680x1050@120Hz RB */
525 	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
526 		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
528 	/* 0x3e - 1792x1344@60Hz */
529 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
530 		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
531 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
532 	/* 0x3f - 1792x1344@75Hz */
533 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
534 		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
535 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
536 	/* 0x40 - 1792x1344@120Hz RB */
537 	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
538 		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
540 	/* 0x41 - 1856x1392@60Hz */
541 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
542 		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
543 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
544 	/* 0x42 - 1856x1392@75Hz */
545 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
546 		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
547 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
548 	/* 0x43 - 1856x1392@120Hz RB */
549 	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
550 		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
551 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
552 	/* 0x52 - 1920x1080@60Hz */
553 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
554 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
555 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
556 	/* 0x44 - 1920x1200@60Hz RB */
557 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
558 		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
559 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
560 	/* 0x45 - 1920x1200@60Hz */
561 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
562 		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
563 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
564 	/* 0x46 - 1920x1200@75Hz */
565 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
566 		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
567 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
568 	/* 0x47 - 1920x1200@85Hz */
569 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
570 		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
571 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
572 	/* 0x48 - 1920x1200@120Hz RB */
573 	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
574 		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
575 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
576 	/* 0x49 - 1920x1440@60Hz */
577 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
578 		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
579 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
580 	/* 0x4a - 1920x1440@75Hz */
581 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
582 		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
583 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
584 	/* 0x4b - 1920x1440@120Hz RB */
585 	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
586 		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
587 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
588 	/* 0x54 - 2048x1152@60Hz */
589 	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
590 		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
591 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
592 	/* 0x4c - 2560x1600@60Hz RB */
593 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
594 		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
595 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
596 	/* 0x4d - 2560x1600@60Hz */
597 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
598 		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
599 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
600 	/* 0x4e - 2560x1600@75Hz */
601 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
602 		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
603 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
604 	/* 0x4f - 2560x1600@85Hz */
605 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
606 		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
607 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
608 	/* 0x50 - 2560x1600@120Hz RB */
609 	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
610 		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
611 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
612 	/* 0x57 - 4096x2160@60Hz RB */
613 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
614 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
615 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
616 	/* 0x58 - 4096x2160@59.94Hz RB */
617 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
618 		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
619 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
620 };
621 
622 /*
623  * These more or less come from the DMT spec.  The 720x400 modes are
624  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
625  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
626  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
627  * mode.
628  *
629  * The DMT modes have been fact-checked; the rest are mild guesses.
630  */
631 static const struct drm_display_mode edid_est_modes[] = {
632 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
633 		   968, 1056, 0, 600, 601, 605, 628, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
635 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
636 		   896, 1024, 0, 600, 601, 603,  625, 0,
637 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
638 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
639 		   720, 840, 0, 480, 481, 484, 500, 0,
640 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
641 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
642 		   704,  832, 0, 480, 489, 492, 520, 0,
643 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
644 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
645 		   768,  864, 0, 480, 483, 486, 525, 0,
646 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
647 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
648 		   752, 800, 0, 480, 490, 492, 525, 0,
649 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
650 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
651 		   846, 900, 0, 400, 421, 423,  449, 0,
652 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
653 	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
654 		   846,  900, 0, 400, 412, 414, 449, 0,
655 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
656 	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
657 		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
658 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
659 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
660 		   1136, 1312, 0,  768, 769, 772, 800, 0,
661 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
662 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
663 		   1184, 1328, 0,  768, 771, 777, 806, 0,
664 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
665 	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
666 		   1184, 1344, 0,  768, 771, 777, 806, 0,
667 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
668 	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
669 		   1208, 1264, 0, 768, 768, 776, 817, 0,
670 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
671 	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
672 		   928, 1152, 0, 624, 625, 628, 667, 0,
673 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
674 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
675 		   896, 1056, 0, 600, 601, 604,  625, 0,
676 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
677 	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
678 		   976, 1040, 0, 600, 637, 643, 666, 0,
679 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
680 	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
681 		   1344, 1600, 0,  864, 865, 868, 900, 0,
682 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
683 };
684 
685 struct minimode {
686 	short w;
687 	short h;
688 	short r;
689 	short rb;
690 };
691 
692 static const struct minimode est3_modes[] = {
693 	/* byte 6 */
694 	{ 640, 350, 85, 0 },
695 	{ 640, 400, 85, 0 },
696 	{ 720, 400, 85, 0 },
697 	{ 640, 480, 85, 0 },
698 	{ 848, 480, 60, 0 },
699 	{ 800, 600, 85, 0 },
700 	{ 1024, 768, 85, 0 },
701 	{ 1152, 864, 75, 0 },
702 	/* byte 7 */
703 	{ 1280, 768, 60, 1 },
704 	{ 1280, 768, 60, 0 },
705 	{ 1280, 768, 75, 0 },
706 	{ 1280, 768, 85, 0 },
707 	{ 1280, 960, 60, 0 },
708 	{ 1280, 960, 85, 0 },
709 	{ 1280, 1024, 60, 0 },
710 	{ 1280, 1024, 85, 0 },
711 	/* byte 8 */
712 	{ 1360, 768, 60, 0 },
713 	{ 1440, 900, 60, 1 },
714 	{ 1440, 900, 60, 0 },
715 	{ 1440, 900, 75, 0 },
716 	{ 1440, 900, 85, 0 },
717 	{ 1400, 1050, 60, 1 },
718 	{ 1400, 1050, 60, 0 },
719 	{ 1400, 1050, 75, 0 },
720 	/* byte 9 */
721 	{ 1400, 1050, 85, 0 },
722 	{ 1680, 1050, 60, 1 },
723 	{ 1680, 1050, 60, 0 },
724 	{ 1680, 1050, 75, 0 },
725 	{ 1680, 1050, 85, 0 },
726 	{ 1600, 1200, 60, 0 },
727 	{ 1600, 1200, 65, 0 },
728 	{ 1600, 1200, 70, 0 },
729 	/* byte 10 */
730 	{ 1600, 1200, 75, 0 },
731 	{ 1600, 1200, 85, 0 },
732 	{ 1792, 1344, 60, 0 },
733 	{ 1792, 1344, 75, 0 },
734 	{ 1856, 1392, 60, 0 },
735 	{ 1856, 1392, 75, 0 },
736 	{ 1920, 1200, 60, 1 },
737 	{ 1920, 1200, 60, 0 },
738 	/* byte 11 */
739 	{ 1920, 1200, 75, 0 },
740 	{ 1920, 1200, 85, 0 },
741 	{ 1920, 1440, 60, 0 },
742 	{ 1920, 1440, 75, 0 },
743 };
744 
745 static const struct minimode extra_modes[] = {
746 	{ 1024, 576,  60, 0 },
747 	{ 1366, 768,  60, 0 },
748 	{ 1600, 900,  60, 0 },
749 	{ 1680, 945,  60, 0 },
750 	{ 1920, 1080, 60, 0 },
751 	{ 2048, 1152, 60, 0 },
752 	{ 2048, 1536, 60, 0 },
753 };
754 
755 /*
756  * From CEA/CTA-861 spec.
757  *
758  * Do not access directly, instead always use cea_mode_for_vic().
759  */
760 static const struct drm_display_mode edid_cea_modes_1[] = {
761 	/* 1 - 640x480@60Hz 4:3 */
762 	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
763 		   752, 800, 0, 480, 490, 492, 525, 0,
764 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
765 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
766 	/* 2 - 720x480@60Hz 4:3 */
767 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
768 		   798, 858, 0, 480, 489, 495, 525, 0,
769 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
770 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
771 	/* 3 - 720x480@60Hz 16:9 */
772 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
773 		   798, 858, 0, 480, 489, 495, 525, 0,
774 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
775 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 4 - 1280x720@60Hz 16:9 */
777 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
778 		   1430, 1650, 0, 720, 725, 730, 750, 0,
779 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
780 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
781 	/* 5 - 1920x1080i@60Hz 16:9 */
782 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
783 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
784 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
785 		   DRM_MODE_FLAG_INTERLACE),
786 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
787 	/* 6 - 720(1440)x480i@60Hz 4:3 */
788 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
789 		   801, 858, 0, 480, 488, 494, 525, 0,
790 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
791 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
792 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
793 	/* 7 - 720(1440)x480i@60Hz 16:9 */
794 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
795 		   801, 858, 0, 480, 488, 494, 525, 0,
796 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
797 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
798 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
799 	/* 8 - 720(1440)x240@60Hz 4:3 */
800 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
801 		   801, 858, 0, 240, 244, 247, 262, 0,
802 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
803 		   DRM_MODE_FLAG_DBLCLK),
804 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
805 	/* 9 - 720(1440)x240@60Hz 16:9 */
806 	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
807 		   801, 858, 0, 240, 244, 247, 262, 0,
808 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
809 		   DRM_MODE_FLAG_DBLCLK),
810 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
811 	/* 10 - 2880x480i@60Hz 4:3 */
812 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
813 		   3204, 3432, 0, 480, 488, 494, 525, 0,
814 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
815 		   DRM_MODE_FLAG_INTERLACE),
816 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
817 	/* 11 - 2880x480i@60Hz 16:9 */
818 	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
819 		   3204, 3432, 0, 480, 488, 494, 525, 0,
820 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
821 		   DRM_MODE_FLAG_INTERLACE),
822 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
823 	/* 12 - 2880x240@60Hz 4:3 */
824 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
825 		   3204, 3432, 0, 240, 244, 247, 262, 0,
826 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
827 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
828 	/* 13 - 2880x240@60Hz 16:9 */
829 	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
830 		   3204, 3432, 0, 240, 244, 247, 262, 0,
831 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
832 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
833 	/* 14 - 1440x480@60Hz 4:3 */
834 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
835 		   1596, 1716, 0, 480, 489, 495, 525, 0,
836 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
837 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
838 	/* 15 - 1440x480@60Hz 16:9 */
839 	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
840 		   1596, 1716, 0, 480, 489, 495, 525, 0,
841 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
842 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
843 	/* 16 - 1920x1080@60Hz 16:9 */
844 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
845 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
846 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
847 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
848 	/* 17 - 720x576@50Hz 4:3 */
849 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
850 		   796, 864, 0, 576, 581, 586, 625, 0,
851 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
852 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
853 	/* 18 - 720x576@50Hz 16:9 */
854 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
855 		   796, 864, 0, 576, 581, 586, 625, 0,
856 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
857 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 	/* 19 - 1280x720@50Hz 16:9 */
859 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
860 		   1760, 1980, 0, 720, 725, 730, 750, 0,
861 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
862 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
863 	/* 20 - 1920x1080i@50Hz 16:9 */
864 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
865 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
866 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
867 		   DRM_MODE_FLAG_INTERLACE),
868 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 21 - 720(1440)x576i@50Hz 4:3 */
870 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
871 		   795, 864, 0, 576, 580, 586, 625, 0,
872 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
873 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
874 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
875 	/* 22 - 720(1440)x576i@50Hz 16:9 */
876 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
877 		   795, 864, 0, 576, 580, 586, 625, 0,
878 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
879 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
880 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
881 	/* 23 - 720(1440)x288@50Hz 4:3 */
882 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
883 		   795, 864, 0, 288, 290, 293, 312, 0,
884 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
885 		   DRM_MODE_FLAG_DBLCLK),
886 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
887 	/* 24 - 720(1440)x288@50Hz 16:9 */
888 	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
889 		   795, 864, 0, 288, 290, 293, 312, 0,
890 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
891 		   DRM_MODE_FLAG_DBLCLK),
892 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
893 	/* 25 - 2880x576i@50Hz 4:3 */
894 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
895 		   3180, 3456, 0, 576, 580, 586, 625, 0,
896 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
897 		   DRM_MODE_FLAG_INTERLACE),
898 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
899 	/* 26 - 2880x576i@50Hz 16:9 */
900 	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
901 		   3180, 3456, 0, 576, 580, 586, 625, 0,
902 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
903 		   DRM_MODE_FLAG_INTERLACE),
904 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
905 	/* 27 - 2880x288@50Hz 4:3 */
906 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
907 		   3180, 3456, 0, 288, 290, 293, 312, 0,
908 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
909 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
910 	/* 28 - 2880x288@50Hz 16:9 */
911 	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
912 		   3180, 3456, 0, 288, 290, 293, 312, 0,
913 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
914 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
915 	/* 29 - 1440x576@50Hz 4:3 */
916 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
917 		   1592, 1728, 0, 576, 581, 586, 625, 0,
918 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
919 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
920 	/* 30 - 1440x576@50Hz 16:9 */
921 	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
922 		   1592, 1728, 0, 576, 581, 586, 625, 0,
923 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
924 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
925 	/* 31 - 1920x1080@50Hz 16:9 */
926 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
927 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
928 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
929 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
930 	/* 32 - 1920x1080@24Hz 16:9 */
931 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
932 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
933 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
934 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
935 	/* 33 - 1920x1080@25Hz 16:9 */
936 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
937 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
938 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
939 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940 	/* 34 - 1920x1080@30Hz 16:9 */
941 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
942 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
943 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
944 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
945 	/* 35 - 2880x480@60Hz 4:3 */
946 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
947 		   3192, 3432, 0, 480, 489, 495, 525, 0,
948 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
950 	/* 36 - 2880x480@60Hz 16:9 */
951 	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
952 		   3192, 3432, 0, 480, 489, 495, 525, 0,
953 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
954 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
955 	/* 37 - 2880x576@50Hz 4:3 */
956 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
957 		   3184, 3456, 0, 576, 581, 586, 625, 0,
958 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
959 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
960 	/* 38 - 2880x576@50Hz 16:9 */
961 	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
962 		   3184, 3456, 0, 576, 581, 586, 625, 0,
963 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
964 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
965 	/* 39 - 1920x1080i@50Hz 16:9 */
966 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
967 		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
968 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
969 		   DRM_MODE_FLAG_INTERLACE),
970 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
971 	/* 40 - 1920x1080i@100Hz 16:9 */
972 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
973 		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
974 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
975 		   DRM_MODE_FLAG_INTERLACE),
976 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 	/* 41 - 1280x720@100Hz 16:9 */
978 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
979 		   1760, 1980, 0, 720, 725, 730, 750, 0,
980 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
981 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
982 	/* 42 - 720x576@100Hz 4:3 */
983 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
984 		   796, 864, 0, 576, 581, 586, 625, 0,
985 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
986 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
987 	/* 43 - 720x576@100Hz 16:9 */
988 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
989 		   796, 864, 0, 576, 581, 586, 625, 0,
990 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
991 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
992 	/* 44 - 720(1440)x576i@100Hz 4:3 */
993 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
994 		   795, 864, 0, 576, 580, 586, 625, 0,
995 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
996 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
997 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
998 	/* 45 - 720(1440)x576i@100Hz 16:9 */
999 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1000 		   795, 864, 0, 576, 580, 586, 625, 0,
1001 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1002 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1003 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1004 	/* 46 - 1920x1080i@120Hz 16:9 */
1005 	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1006 		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
1007 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1008 		   DRM_MODE_FLAG_INTERLACE),
1009 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 	/* 47 - 1280x720@120Hz 16:9 */
1011 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1012 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1013 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1014 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1015 	/* 48 - 720x480@120Hz 4:3 */
1016 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1017 		   798, 858, 0, 480, 489, 495, 525, 0,
1018 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1019 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1020 	/* 49 - 720x480@120Hz 16:9 */
1021 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
1022 		   798, 858, 0, 480, 489, 495, 525, 0,
1023 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1024 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1025 	/* 50 - 720(1440)x480i@120Hz 4:3 */
1026 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1027 		   801, 858, 0, 480, 488, 494, 525, 0,
1028 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1029 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1030 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1031 	/* 51 - 720(1440)x480i@120Hz 16:9 */
1032 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
1033 		   801, 858, 0, 480, 488, 494, 525, 0,
1034 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1035 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1036 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1037 	/* 52 - 720x576@200Hz 4:3 */
1038 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1039 		   796, 864, 0, 576, 581, 586, 625, 0,
1040 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1041 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1042 	/* 53 - 720x576@200Hz 16:9 */
1043 	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
1044 		   796, 864, 0, 576, 581, 586, 625, 0,
1045 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1046 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1047 	/* 54 - 720(1440)x576i@200Hz 4:3 */
1048 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1049 		   795, 864, 0, 576, 580, 586, 625, 0,
1050 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1051 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1052 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1053 	/* 55 - 720(1440)x576i@200Hz 16:9 */
1054 	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
1055 		   795, 864, 0, 576, 580, 586, 625, 0,
1056 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1057 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1058 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1059 	/* 56 - 720x480@240Hz 4:3 */
1060 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1061 		   798, 858, 0, 480, 489, 495, 525, 0,
1062 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1063 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1064 	/* 57 - 720x480@240Hz 16:9 */
1065 	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
1066 		   798, 858, 0, 480, 489, 495, 525, 0,
1067 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1068 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1069 	/* 58 - 720(1440)x480i@240Hz 4:3 */
1070 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1071 		   801, 858, 0, 480, 488, 494, 525, 0,
1072 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1073 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1074 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1075 	/* 59 - 720(1440)x480i@240Hz 16:9 */
1076 	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
1077 		   801, 858, 0, 480, 488, 494, 525, 0,
1078 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1079 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1080 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1081 	/* 60 - 1280x720@24Hz 16:9 */
1082 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1083 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1084 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1085 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1086 	/* 61 - 1280x720@25Hz 16:9 */
1087 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1088 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1089 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1090 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1091 	/* 62 - 1280x720@30Hz 16:9 */
1092 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1093 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1094 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1095 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1096 	/* 63 - 1920x1080@120Hz 16:9 */
1097 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1098 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1099 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1100 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1101 	/* 64 - 1920x1080@100Hz 16:9 */
1102 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1103 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1104 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1105 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1106 	/* 65 - 1280x720@24Hz 64:27 */
1107 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1108 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1109 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1110 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1111 	/* 66 - 1280x720@25Hz 64:27 */
1112 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1113 		   3740, 3960, 0, 720, 725, 730, 750, 0,
1114 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1115 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1116 	/* 67 - 1280x720@30Hz 64:27 */
1117 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1118 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1119 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1120 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1121 	/* 68 - 1280x720@50Hz 64:27 */
1122 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1123 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1124 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1125 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1126 	/* 69 - 1280x720@60Hz 64:27 */
1127 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1128 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1129 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1130 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1131 	/* 70 - 1280x720@100Hz 64:27 */
1132 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
1133 		   1760, 1980, 0, 720, 725, 730, 750, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1135 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1136 	/* 71 - 1280x720@120Hz 64:27 */
1137 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
1138 		   1430, 1650, 0, 720, 725, 730, 750, 0,
1139 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1140 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1141 	/* 72 - 1920x1080@24Hz 64:27 */
1142 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1143 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1144 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1145 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1146 	/* 73 - 1920x1080@25Hz 64:27 */
1147 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1148 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1149 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1150 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1151 	/* 74 - 1920x1080@30Hz 64:27 */
1152 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1153 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1155 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1156 	/* 75 - 1920x1080@50Hz 64:27 */
1157 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1158 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1159 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1160 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1161 	/* 76 - 1920x1080@60Hz 64:27 */
1162 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1163 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1164 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1165 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1166 	/* 77 - 1920x1080@100Hz 64:27 */
1167 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1168 		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
1169 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1170 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1171 	/* 78 - 1920x1080@120Hz 64:27 */
1172 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1173 		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1175 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1176 	/* 79 - 1680x720@24Hz 64:27 */
1177 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
1178 		   3080, 3300, 0, 720, 725, 730, 750, 0,
1179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1180 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1181 	/* 80 - 1680x720@25Hz 64:27 */
1182 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
1183 		   2948, 3168, 0, 720, 725, 730, 750, 0,
1184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1185 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1186 	/* 81 - 1680x720@30Hz 64:27 */
1187 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
1188 		   2420, 2640, 0, 720, 725, 730, 750, 0,
1189 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1190 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1191 	/* 82 - 1680x720@50Hz 64:27 */
1192 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
1193 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1195 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1196 	/* 83 - 1680x720@60Hz 64:27 */
1197 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
1198 		   1980, 2200, 0, 720, 725, 730, 750, 0,
1199 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1200 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1201 	/* 84 - 1680x720@100Hz 64:27 */
1202 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
1203 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1204 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1205 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1206 	/* 85 - 1680x720@120Hz 64:27 */
1207 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
1208 		   1780, 2000, 0, 720, 725, 730, 825, 0,
1209 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1210 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1211 	/* 86 - 2560x1080@24Hz 64:27 */
1212 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
1213 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1215 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1216 	/* 87 - 2560x1080@25Hz 64:27 */
1217 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
1218 		   3052, 3200, 0, 1080, 1084, 1089, 1125, 0,
1219 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1220 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1221 	/* 88 - 2560x1080@30Hz 64:27 */
1222 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
1223 		   3372, 3520, 0, 1080, 1084, 1089, 1125, 0,
1224 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1225 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1226 	/* 89 - 2560x1080@50Hz 64:27 */
1227 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
1228 		   3152, 3300, 0, 1080, 1084, 1089, 1125, 0,
1229 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1230 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1231 	/* 90 - 2560x1080@60Hz 64:27 */
1232 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
1233 		   2852, 3000, 0, 1080, 1084, 1089, 1100, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1235 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1236 	/* 91 - 2560x1080@100Hz 64:27 */
1237 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
1238 		   2822, 2970, 0, 1080, 1084, 1089, 1250, 0,
1239 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1240 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1241 	/* 92 - 2560x1080@120Hz 64:27 */
1242 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
1243 		   3152, 3300, 0, 1080, 1084, 1089, 1250, 0,
1244 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1245 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1246 	/* 93 - 3840x2160@24Hz 16:9 */
1247 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1248 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1249 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1250 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1251 	/* 94 - 3840x2160@25Hz 16:9 */
1252 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1253 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1254 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1255 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1256 	/* 95 - 3840x2160@30Hz 16:9 */
1257 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1258 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1259 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1260 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1261 	/* 96 - 3840x2160@50Hz 16:9 */
1262 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1263 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1264 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1265 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1266 	/* 97 - 3840x2160@60Hz 16:9 */
1267 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1268 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1269 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1270 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1271 	/* 98 - 4096x2160@24Hz 256:135 */
1272 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1273 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1274 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1275 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1276 	/* 99 - 4096x2160@25Hz 256:135 */
1277 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1278 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1279 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1280 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1281 	/* 100 - 4096x2160@30Hz 256:135 */
1282 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1283 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1284 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1285 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1286 	/* 101 - 4096x2160@50Hz 256:135 */
1287 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1288 		   5152, 5280, 0, 2160, 2168, 2178, 2250, 0,
1289 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1290 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1291 	/* 102 - 4096x2160@60Hz 256:135 */
1292 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1293 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1294 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1295 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1296 	/* 103 - 3840x2160@24Hz 64:27 */
1297 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1298 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1299 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1300 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1301 	/* 104 - 3840x2160@25Hz 64:27 */
1302 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1303 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1304 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1305 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1306 	/* 105 - 3840x2160@30Hz 64:27 */
1307 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1308 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1309 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1310 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1311 	/* 106 - 3840x2160@50Hz 64:27 */
1312 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1313 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1314 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1315 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1316 	/* 107 - 3840x2160@60Hz 64:27 */
1317 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1318 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1319 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1320 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1321 	/* 108 - 1280x720@48Hz 16:9 */
1322 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1323 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1324 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1325 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1326 	/* 109 - 1280x720@48Hz 64:27 */
1327 	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
1328 		   2280, 2500, 0, 720, 725, 730, 750, 0,
1329 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1330 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1331 	/* 110 - 1680x720@48Hz 64:27 */
1332 	{ DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
1333 		   2530, 2750, 0, 720, 725, 730, 750, 0,
1334 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1335 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1336 	/* 111 - 1920x1080@48Hz 16:9 */
1337 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1338 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1339 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1340 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1341 	/* 112 - 1920x1080@48Hz 64:27 */
1342 	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
1343 		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
1344 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1345 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1346 	/* 113 - 2560x1080@48Hz 64:27 */
1347 	{ DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
1348 		   3602, 3750, 0, 1080, 1084, 1089, 1100, 0,
1349 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1350 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1351 	/* 114 - 3840x2160@48Hz 16:9 */
1352 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1353 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1354 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1355 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1356 	/* 115 - 4096x2160@48Hz 256:135 */
1357 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
1358 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1359 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1360 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1361 	/* 116 - 3840x2160@48Hz 64:27 */
1362 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
1363 		   5204, 5500, 0, 2160, 2168, 2178, 2250, 0,
1364 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1365 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1366 	/* 117 - 3840x2160@100Hz 16:9 */
1367 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1368 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1369 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1370 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1371 	/* 118 - 3840x2160@120Hz 16:9 */
1372 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1373 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1375 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1376 	/* 119 - 3840x2160@100Hz 64:27 */
1377 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
1378 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1379 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1380 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1381 	/* 120 - 3840x2160@120Hz 64:27 */
1382 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1383 		   4104, 4400, 0, 2160, 2168, 2178, 2250, 0,
1384 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1385 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1386 	/* 121 - 5120x2160@24Hz 64:27 */
1387 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
1388 		   7204, 7500, 0, 2160, 2168, 2178, 2200, 0,
1389 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1390 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1391 	/* 122 - 5120x2160@25Hz 64:27 */
1392 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
1393 		   6904, 7200, 0, 2160, 2168, 2178, 2200, 0,
1394 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1395 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1396 	/* 123 - 5120x2160@30Hz 64:27 */
1397 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
1398 		   5872, 6000, 0, 2160, 2168, 2178, 2200, 0,
1399 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1400 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1401 	/* 124 - 5120x2160@48Hz 64:27 */
1402 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
1403 		   5954, 6250, 0, 2160, 2168, 2178, 2475, 0,
1404 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1405 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1406 	/* 125 - 5120x2160@50Hz 64:27 */
1407 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
1408 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1409 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1410 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1411 	/* 126 - 5120x2160@60Hz 64:27 */
1412 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
1413 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1415 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1416 	/* 127 - 5120x2160@100Hz 64:27 */
1417 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
1418 		   6304, 6600, 0, 2160, 2168, 2178, 2250, 0,
1419 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1420 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1421 };
1422 
1423 /*
1424  * From CEA/CTA-861 spec.
1425  *
1426  * Do not access directly, instead always use cea_mode_for_vic().
1427  */
1428 static const struct drm_display_mode edid_cea_modes_193[] = {
1429 	/* 193 - 5120x2160@120Hz 64:27 */
1430 	{ DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
1431 		   5372, 5500, 0, 2160, 2168, 2178, 2250, 0,
1432 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1433 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1434 	/* 194 - 7680x4320@24Hz 16:9 */
1435 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1436 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1437 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1438 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1439 	/* 195 - 7680x4320@25Hz 16:9 */
1440 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1441 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1442 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1443 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1444 	/* 196 - 7680x4320@30Hz 16:9 */
1445 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1446 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1447 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1448 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1449 	/* 197 - 7680x4320@48Hz 16:9 */
1450 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1451 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 198 - 7680x4320@50Hz 16:9 */
1455 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1456 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1458 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1459 	/* 199 - 7680x4320@60Hz 16:9 */
1460 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1461 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1462 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1463 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1464 	/* 200 - 7680x4320@100Hz 16:9 */
1465 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1466 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1467 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1468 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1469 	/* 201 - 7680x4320@120Hz 16:9 */
1470 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1471 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1472 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1473 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1474 	/* 202 - 7680x4320@24Hz 64:27 */
1475 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
1476 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1477 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1478 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1479 	/* 203 - 7680x4320@25Hz 64:27 */
1480 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
1481 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1482 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1483 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1484 	/* 204 - 7680x4320@30Hz 64:27 */
1485 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1486 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1487 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1488 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1489 	/* 205 - 7680x4320@48Hz 64:27 */
1490 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
1491 		   10408, 11000, 0, 4320, 4336, 4356, 4500, 0,
1492 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1493 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1494 	/* 206 - 7680x4320@50Hz 64:27 */
1495 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1496 		   10208, 10800, 0, 4320, 4336, 4356, 4400, 0,
1497 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1498 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1499 	/* 207 - 7680x4320@60Hz 64:27 */
1500 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1501 		   8408, 9000, 0, 4320, 4336, 4356, 4400, 0,
1502 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1503 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1504 	/* 208 - 7680x4320@100Hz 64:27 */
1505 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
1506 		   9968, 10560, 0, 4320, 4336, 4356, 4500, 0,
1507 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1508 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1509 	/* 209 - 7680x4320@120Hz 64:27 */
1510 	{ DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
1511 		   8208, 8800, 0, 4320, 4336, 4356, 4500, 0,
1512 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1513 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1514 	/* 210 - 10240x4320@24Hz 64:27 */
1515 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
1516 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1517 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1518 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1519 	/* 211 - 10240x4320@25Hz 64:27 */
1520 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
1521 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1522 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1523 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1524 	/* 212 - 10240x4320@30Hz 64:27 */
1525 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
1526 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1529 	/* 213 - 10240x4320@48Hz 64:27 */
1530 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
1531 		   11908, 12500, 0, 4320, 4336, 4356, 4950, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1534 	/* 214 - 10240x4320@50Hz 64:27 */
1535 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
1536 		   12908, 13500, 0, 4320, 4336, 4356, 4400, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1539 	/* 215 - 10240x4320@60Hz 64:27 */
1540 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
1541 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1544 	/* 216 - 10240x4320@100Hz 64:27 */
1545 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
1546 		   12608, 13200, 0, 4320, 4336, 4356, 4500, 0,
1547 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1548 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1549 	/* 217 - 10240x4320@120Hz 64:27 */
1550 	{ DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
1551 		   10704, 11000, 0, 4320, 4336, 4356, 4500, 0,
1552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
1554 	/* 218 - 4096x2160@100Hz 256:135 */
1555 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
1556 		   4984, 5280, 0, 2160, 2168, 2178, 2250, 0,
1557 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1558 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1559 	/* 219 - 4096x2160@120Hz 256:135 */
1560 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
1561 		   4272, 4400, 0, 2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1564 };
1565 
1566 /*
1567  * HDMI 1.4 4k modes. Index using the VIC.
1568  */
1569 static const struct drm_display_mode edid_4k_modes[] = {
1570 	/* 0 - dummy, VICs start at 1 */
1571 	{ },
1572 	/* 1 - 3840x2160@30Hz */
1573 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1574 		   3840, 4016, 4104, 4400, 0,
1575 		   2160, 2168, 2178, 2250, 0,
1576 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1577 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1578 	/* 2 - 3840x2160@25Hz */
1579 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1580 		   3840, 4896, 4984, 5280, 0,
1581 		   2160, 2168, 2178, 2250, 0,
1582 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1583 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1584 	/* 3 - 3840x2160@24Hz */
1585 	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1586 		   3840, 5116, 5204, 5500, 0,
1587 		   2160, 2168, 2178, 2250, 0,
1588 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1589 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1590 	/* 4 - 4096x2160@24Hz (SMPTE) */
1591 	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1592 		   4096, 5116, 5204, 5500, 0,
1593 		   2160, 2168, 2178, 2250, 0,
1594 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1595 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1596 };
1597 
1598 /*** DDC fetch and block validation ***/
1599 
1600 /*
1601  * The opaque EDID type, internal to drm_edid.c.
1602  */
1603 struct drm_edid {
1604 	/* Size allocated for edid */
1605 	size_t size;
1606 	const struct edid *edid;
1607 };
1608 
1609 static int edid_hfeeodb_extension_block_count(const struct edid *edid);
1610 
edid_hfeeodb_block_count(const struct edid * edid)1611 static int edid_hfeeodb_block_count(const struct edid *edid)
1612 {
1613 	int eeodb = edid_hfeeodb_extension_block_count(edid);
1614 
1615 	return eeodb ? eeodb + 1 : 0;
1616 }
1617 
edid_extension_block_count(const struct edid * edid)1618 static int edid_extension_block_count(const struct edid *edid)
1619 {
1620 	return edid->extensions;
1621 }
1622 
edid_block_count(const struct edid * edid)1623 static int edid_block_count(const struct edid *edid)
1624 {
1625 	return edid_extension_block_count(edid) + 1;
1626 }
1627 
edid_size_by_blocks(int num_blocks)1628 static int edid_size_by_blocks(int num_blocks)
1629 {
1630 	return num_blocks * EDID_LENGTH;
1631 }
1632 
edid_size(const struct edid * edid)1633 static int edid_size(const struct edid *edid)
1634 {
1635 	return edid_size_by_blocks(edid_block_count(edid));
1636 }
1637 
edid_block_data(const struct edid * edid,int index)1638 static const void *edid_block_data(const struct edid *edid, int index)
1639 {
1640 	BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH);
1641 
1642 	return edid + index;
1643 }
1644 
edid_extension_block_data(const struct edid * edid,int index)1645 static const void *edid_extension_block_data(const struct edid *edid, int index)
1646 {
1647 	return edid_block_data(edid, index + 1);
1648 }
1649 
1650 /* EDID block count indicated in EDID, may exceed allocated size */
__drm_edid_block_count(const struct drm_edid * drm_edid)1651 static int __drm_edid_block_count(const struct drm_edid *drm_edid)
1652 {
1653 	int num_blocks;
1654 
1655 	/* Starting point */
1656 	num_blocks = edid_block_count(drm_edid->edid);
1657 
1658 	/* HF-EEODB override */
1659 	if (drm_edid->size >= edid_size_by_blocks(2)) {
1660 		int eeodb;
1661 
1662 		/*
1663 		 * Note: HF-EEODB may specify a smaller extension count than the
1664 		 * regular one. Unlike in buffer allocation, here we can use it.
1665 		 */
1666 		eeodb = edid_hfeeodb_block_count(drm_edid->edid);
1667 		if (eeodb)
1668 			num_blocks = eeodb;
1669 	}
1670 
1671 	return num_blocks;
1672 }
1673 
1674 /* EDID block count, limited by allocated size */
drm_edid_block_count(const struct drm_edid * drm_edid)1675 static int drm_edid_block_count(const struct drm_edid *drm_edid)
1676 {
1677 	/* Limit by allocated size */
1678 	return min(__drm_edid_block_count(drm_edid),
1679 		   (int)drm_edid->size / EDID_LENGTH);
1680 }
1681 
1682 /* EDID extension block count, limited by allocated size */
drm_edid_extension_block_count(const struct drm_edid * drm_edid)1683 static int drm_edid_extension_block_count(const struct drm_edid *drm_edid)
1684 {
1685 	return drm_edid_block_count(drm_edid) - 1;
1686 }
1687 
drm_edid_block_data(const struct drm_edid * drm_edid,int index)1688 static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index)
1689 {
1690 	return edid_block_data(drm_edid->edid, index);
1691 }
1692 
drm_edid_extension_block_data(const struct drm_edid * drm_edid,int index)1693 static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid,
1694 						 int index)
1695 {
1696 	return edid_extension_block_data(drm_edid->edid, index);
1697 }
1698 
1699 /*
1700  * Initializer helper for legacy interfaces, where we have no choice but to
1701  * trust edid size. Not for general purpose use.
1702  */
drm_edid_legacy_init(struct drm_edid * drm_edid,const struct edid * edid)1703 static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid,
1704 						   const struct edid *edid)
1705 {
1706 	if (!edid)
1707 		return NULL;
1708 
1709 	memset(drm_edid, 0, sizeof(*drm_edid));
1710 
1711 	drm_edid->edid = edid;
1712 	drm_edid->size = edid_size(edid);
1713 
1714 	return drm_edid;
1715 }
1716 
1717 /*
1718  * EDID base and extension block iterator.
1719  *
1720  * struct drm_edid_iter iter;
1721  * const u8 *block;
1722  *
1723  * drm_edid_iter_begin(drm_edid, &iter);
1724  * drm_edid_iter_for_each(block, &iter) {
1725  *         // do stuff with block
1726  * }
1727  * drm_edid_iter_end(&iter);
1728  */
1729 struct drm_edid_iter {
1730 	const struct drm_edid *drm_edid;
1731 
1732 	/* Current block index. */
1733 	int index;
1734 };
1735 
drm_edid_iter_begin(const struct drm_edid * drm_edid,struct drm_edid_iter * iter)1736 static void drm_edid_iter_begin(const struct drm_edid *drm_edid,
1737 				struct drm_edid_iter *iter)
1738 {
1739 	memset(iter, 0, sizeof(*iter));
1740 
1741 	iter->drm_edid = drm_edid;
1742 }
1743 
__drm_edid_iter_next(struct drm_edid_iter * iter)1744 static const void *__drm_edid_iter_next(struct drm_edid_iter *iter)
1745 {
1746 	const void *block = NULL;
1747 
1748 	if (!iter->drm_edid)
1749 		return NULL;
1750 
1751 	if (iter->index < drm_edid_block_count(iter->drm_edid))
1752 		block = drm_edid_block_data(iter->drm_edid, iter->index++);
1753 
1754 	return block;
1755 }
1756 
1757 #define drm_edid_iter_for_each(__block, __iter)			\
1758 	while (((__block) = __drm_edid_iter_next(__iter)))
1759 
drm_edid_iter_end(struct drm_edid_iter * iter)1760 static void drm_edid_iter_end(struct drm_edid_iter *iter)
1761 {
1762 	memset(iter, 0, sizeof(*iter));
1763 }
1764 
1765 static const u8 edid_header[] = {
1766 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1767 };
1768 
edid_header_fix(void * edid)1769 static void edid_header_fix(void *edid)
1770 {
1771 	memcpy(edid, edid_header, sizeof(edid_header));
1772 }
1773 
1774 /**
1775  * drm_edid_header_is_valid - sanity check the header of the base EDID block
1776  * @_edid: pointer to raw base EDID block
1777  *
1778  * Sanity check the header of the base EDID block.
1779  *
1780  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1781  */
drm_edid_header_is_valid(const void * _edid)1782 int drm_edid_header_is_valid(const void *_edid)
1783 {
1784 	const struct edid *edid = _edid;
1785 	int i, score = 0;
1786 
1787 	for (i = 0; i < sizeof(edid_header); i++) {
1788 		if (edid->header[i] == edid_header[i])
1789 			score++;
1790 	}
1791 
1792 	return score;
1793 }
1794 EXPORT_SYMBOL(drm_edid_header_is_valid);
1795 
1796 static int edid_fixup __read_mostly = 6;
1797 module_param_named(edid_fixup, edid_fixup, int, 0400);
1798 MODULE_PARM_DESC(edid_fixup,
1799 		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1800 
edid_block_compute_checksum(const void * _block)1801 static int edid_block_compute_checksum(const void *_block)
1802 {
1803 	const u8 *block = _block;
1804 	int i;
1805 	u8 csum = 0, crc = 0;
1806 
1807 	for (i = 0; i < EDID_LENGTH - 1; i++)
1808 		csum += block[i];
1809 
1810 	crc = 0x100 - csum;
1811 
1812 	return crc;
1813 }
1814 
edid_block_get_checksum(const void * _block)1815 static int edid_block_get_checksum(const void *_block)
1816 {
1817 	const struct edid *block = _block;
1818 
1819 	return block->checksum;
1820 }
1821 
edid_block_tag(const void * _block)1822 static int edid_block_tag(const void *_block)
1823 {
1824 	const u8 *block = _block;
1825 
1826 	return block[0];
1827 }
1828 
edid_block_is_zero(const void * edid)1829 static bool edid_block_is_zero(const void *edid)
1830 {
1831 	return mem_is_zero(edid, EDID_LENGTH);
1832 }
1833 
drm_edid_eq(const struct drm_edid * drm_edid,const void * raw_edid,size_t raw_edid_size)1834 static bool drm_edid_eq(const struct drm_edid *drm_edid,
1835 			const void *raw_edid, size_t raw_edid_size)
1836 {
1837 	bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size;
1838 	bool edid2_present = raw_edid && raw_edid_size;
1839 
1840 	if (edid1_present != edid2_present)
1841 		return false;
1842 
1843 	if (edid1_present) {
1844 		if (drm_edid->size != raw_edid_size)
1845 			return false;
1846 
1847 		if (memcmp(drm_edid->edid, raw_edid, drm_edid->size))
1848 			return false;
1849 	}
1850 
1851 	return true;
1852 }
1853 
1854 enum edid_block_status {
1855 	EDID_BLOCK_OK = 0,
1856 	EDID_BLOCK_READ_FAIL,
1857 	EDID_BLOCK_NULL,
1858 	EDID_BLOCK_ZERO,
1859 	EDID_BLOCK_HEADER_CORRUPT,
1860 	EDID_BLOCK_HEADER_REPAIR,
1861 	EDID_BLOCK_HEADER_FIXED,
1862 	EDID_BLOCK_CHECKSUM,
1863 	EDID_BLOCK_VERSION,
1864 };
1865 
edid_block_check(const void * _block,bool is_base_block)1866 static enum edid_block_status edid_block_check(const void *_block,
1867 					       bool is_base_block)
1868 {
1869 	const struct edid *block = _block;
1870 
1871 	if (!block)
1872 		return EDID_BLOCK_NULL;
1873 
1874 	if (is_base_block) {
1875 		int score = drm_edid_header_is_valid(block);
1876 
1877 		if (score < clamp(edid_fixup, 0, 8)) {
1878 			if (edid_block_is_zero(block))
1879 				return EDID_BLOCK_ZERO;
1880 			else
1881 				return EDID_BLOCK_HEADER_CORRUPT;
1882 		}
1883 
1884 		if (score < 8)
1885 			return EDID_BLOCK_HEADER_REPAIR;
1886 	}
1887 
1888 	if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) {
1889 		if (edid_block_is_zero(block))
1890 			return EDID_BLOCK_ZERO;
1891 		else
1892 			return EDID_BLOCK_CHECKSUM;
1893 	}
1894 
1895 	if (is_base_block) {
1896 		if (block->version != 1)
1897 			return EDID_BLOCK_VERSION;
1898 	}
1899 
1900 	return EDID_BLOCK_OK;
1901 }
1902 
edid_block_status_valid(enum edid_block_status status,int tag)1903 static bool edid_block_status_valid(enum edid_block_status status, int tag)
1904 {
1905 	return status == EDID_BLOCK_OK ||
1906 		status == EDID_BLOCK_HEADER_FIXED ||
1907 		(status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT);
1908 }
1909 
edid_block_valid(const void * block,bool base)1910 static bool edid_block_valid(const void *block, bool base)
1911 {
1912 	return edid_block_status_valid(edid_block_check(block, base),
1913 				       edid_block_tag(block));
1914 }
1915 
edid_block_status_print(enum edid_block_status status,const struct edid * block,int block_num)1916 static void edid_block_status_print(enum edid_block_status status,
1917 				    const struct edid *block,
1918 				    int block_num)
1919 {
1920 	switch (status) {
1921 	case EDID_BLOCK_OK:
1922 		break;
1923 	case EDID_BLOCK_READ_FAIL:
1924 		pr_debug("EDID block %d read failed\n", block_num);
1925 		break;
1926 	case EDID_BLOCK_NULL:
1927 		pr_debug("EDID block %d pointer is NULL\n", block_num);
1928 		break;
1929 	case EDID_BLOCK_ZERO:
1930 		pr_notice("EDID block %d is all zeroes\n", block_num);
1931 		break;
1932 	case EDID_BLOCK_HEADER_CORRUPT:
1933 		pr_notice("EDID has corrupt header\n");
1934 		break;
1935 	case EDID_BLOCK_HEADER_REPAIR:
1936 		pr_debug("EDID corrupt header needs repair\n");
1937 		break;
1938 	case EDID_BLOCK_HEADER_FIXED:
1939 		pr_debug("EDID corrupt header fixed\n");
1940 		break;
1941 	case EDID_BLOCK_CHECKSUM:
1942 		if (edid_block_status_valid(status, edid_block_tag(block))) {
1943 			pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n",
1944 				 block_num, edid_block_tag(block),
1945 				 edid_block_compute_checksum(block));
1946 		} else {
1947 			pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n",
1948 				  block_num, edid_block_tag(block),
1949 				  edid_block_compute_checksum(block));
1950 		}
1951 		break;
1952 	case EDID_BLOCK_VERSION:
1953 		pr_notice("EDID has major version %d, instead of 1\n",
1954 			  block->version);
1955 		break;
1956 	default:
1957 		WARN(1, "EDID block %d unknown edid block status code %d\n",
1958 		     block_num, status);
1959 		break;
1960 	}
1961 }
1962 
edid_block_dump(const char * level,const void * block,int block_num)1963 static void edid_block_dump(const char *level, const void *block, int block_num)
1964 {
1965 	enum edid_block_status status;
1966 	char prefix[20];
1967 
1968 	status = edid_block_check(block, block_num == 0);
1969 	if (status == EDID_BLOCK_ZERO)
1970 		sprintf(prefix, "\t[%02x] ZERO ", block_num);
1971 	else if (!edid_block_status_valid(status, edid_block_tag(block)))
1972 		sprintf(prefix, "\t[%02x] BAD  ", block_num);
1973 	else
1974 		sprintf(prefix, "\t[%02x] GOOD ", block_num);
1975 
1976 	print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1,
1977 		       block, EDID_LENGTH, false);
1978 }
1979 
1980 /*
1981  * Validate a base or extension EDID block and optionally dump bad blocks to
1982  * the console.
1983  */
drm_edid_block_valid(void * _block,int block_num,bool print_bad_edid,bool * edid_corrupt)1984 static bool drm_edid_block_valid(void *_block, int block_num, bool print_bad_edid,
1985 				 bool *edid_corrupt)
1986 {
1987 	struct edid *block = _block;
1988 	enum edid_block_status status;
1989 	bool is_base_block = block_num == 0;
1990 	bool valid;
1991 
1992 	if (WARN_ON(!block))
1993 		return false;
1994 
1995 	status = edid_block_check(block, is_base_block);
1996 	if (status == EDID_BLOCK_HEADER_REPAIR) {
1997 		DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n");
1998 		edid_header_fix(block);
1999 
2000 		/* Retry with fixed header, update status if that worked. */
2001 		status = edid_block_check(block, is_base_block);
2002 		if (status == EDID_BLOCK_OK)
2003 			status = EDID_BLOCK_HEADER_FIXED;
2004 	}
2005 
2006 	if (edid_corrupt) {
2007 		/*
2008 		 * Unknown major version isn't corrupt but we can't use it. Only
2009 		 * the base block can reset edid_corrupt to false.
2010 		 */
2011 		if (is_base_block &&
2012 		    (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION))
2013 			*edid_corrupt = false;
2014 		else if (status != EDID_BLOCK_OK)
2015 			*edid_corrupt = true;
2016 	}
2017 
2018 	edid_block_status_print(status, block, block_num);
2019 
2020 	/* Determine whether we can use this block with this status. */
2021 	valid = edid_block_status_valid(status, edid_block_tag(block));
2022 
2023 	if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) {
2024 		pr_notice("Raw EDID:\n");
2025 		edid_block_dump(KERN_NOTICE, block, block_num);
2026 	}
2027 
2028 	return valid;
2029 }
2030 
2031 /**
2032  * drm_edid_is_valid - sanity check EDID data
2033  * @edid: EDID data
2034  *
2035  * Sanity-check an entire EDID record (including extensions)
2036  *
2037  * Return: True if the EDID data is valid, false otherwise.
2038  */
drm_edid_is_valid(struct edid * edid)2039 bool drm_edid_is_valid(struct edid *edid)
2040 {
2041 	int i;
2042 
2043 	if (!edid)
2044 		return false;
2045 
2046 	for (i = 0; i < edid_block_count(edid); i++) {
2047 		void *block = (void *)edid_block_data(edid, i);
2048 
2049 		if (!drm_edid_block_valid(block, i, true, NULL))
2050 			return false;
2051 	}
2052 
2053 	return true;
2054 }
2055 EXPORT_SYMBOL(drm_edid_is_valid);
2056 
2057 /**
2058  * drm_edid_valid - sanity check EDID data
2059  * @drm_edid: EDID data
2060  *
2061  * Sanity check an EDID. Cross check block count against allocated size and
2062  * checksum the blocks.
2063  *
2064  * Return: True if the EDID data is valid, false otherwise.
2065  */
drm_edid_valid(const struct drm_edid * drm_edid)2066 bool drm_edid_valid(const struct drm_edid *drm_edid)
2067 {
2068 	int i;
2069 
2070 	if (!drm_edid)
2071 		return false;
2072 
2073 	if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size)
2074 		return false;
2075 
2076 	for (i = 0; i < drm_edid_block_count(drm_edid); i++) {
2077 		const void *block = drm_edid_block_data(drm_edid, i);
2078 
2079 		if (!edid_block_valid(block, i == 0))
2080 			return false;
2081 	}
2082 
2083 	return true;
2084 }
2085 EXPORT_SYMBOL(drm_edid_valid);
2086 
edid_filter_invalid_blocks(struct edid * edid,size_t * alloc_size)2087 static struct edid *edid_filter_invalid_blocks(struct edid *edid,
2088 					       size_t *alloc_size)
2089 {
2090 	struct edid *new;
2091 	int i, valid_blocks = 0;
2092 
2093 	/*
2094 	 * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert
2095 	 * back to regular extension count here. We don't want to start
2096 	 * modifying the HF-EEODB extension too.
2097 	 */
2098 	for (i = 0; i < edid_block_count(edid); i++) {
2099 		const void *src_block = edid_block_data(edid, i);
2100 
2101 		if (edid_block_valid(src_block, i == 0)) {
2102 			void *dst_block = (void *)edid_block_data(edid, valid_blocks);
2103 
2104 			memmove(dst_block, src_block, EDID_LENGTH);
2105 			valid_blocks++;
2106 		}
2107 	}
2108 
2109 	/* We already trusted the base block to be valid here... */
2110 	if (WARN_ON(!valid_blocks)) {
2111 		kfree(edid);
2112 		return NULL;
2113 	}
2114 
2115 	edid->extensions = valid_blocks - 1;
2116 	edid->checksum = edid_block_compute_checksum(edid);
2117 
2118 	*alloc_size = edid_size_by_blocks(valid_blocks);
2119 
2120 	new = krealloc(edid, *alloc_size, GFP_KERNEL);
2121 	if (!new)
2122 		kfree(edid);
2123 
2124 	return new;
2125 }
2126 
2127 #define DDC_SEGMENT_ADDR 0x30
2128 /**
2129  * drm_do_probe_ddc_edid() - get EDID information via I2C
2130  * @data: I2C device adapter
2131  * @buf: EDID data buffer to be filled
2132  * @block: 128 byte EDID block to start fetching from
2133  * @len: EDID data buffer length to fetch
2134  *
2135  * Try to fetch EDID information by calling I2C driver functions.
2136  *
2137  * Return: 0 on success or -1 on failure.
2138  */
2139 static int
drm_do_probe_ddc_edid(void * data,u8 * buf,unsigned int block,size_t len)2140 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
2141 {
2142 	struct i2c_adapter *adapter = data;
2143 	unsigned char start = block * EDID_LENGTH;
2144 	unsigned char segment = block >> 1;
2145 	unsigned char xfers = segment ? 3 : 2;
2146 	int ret, retries = 5;
2147 
2148 	/*
2149 	 * The core I2C driver will automatically retry the transfer if the
2150 	 * adapter reports EAGAIN. However, we find that bit-banging transfers
2151 	 * are susceptible to errors under a heavily loaded machine and
2152 	 * generate spurious NAKs and timeouts. Retrying the transfer
2153 	 * of the individual block a few times seems to overcome this.
2154 	 */
2155 	do {
2156 		struct i2c_msg msgs[] = {
2157 			{
2158 				.addr	= DDC_SEGMENT_ADDR,
2159 				.flags	= 0,
2160 				.len	= 1,
2161 				.buf	= &segment,
2162 			}, {
2163 				.addr	= DDC_ADDR,
2164 				.flags	= 0,
2165 				.len	= 1,
2166 				.buf	= &start,
2167 			}, {
2168 				.addr	= DDC_ADDR,
2169 				.flags	= I2C_M_RD,
2170 				.len	= len,
2171 				.buf	= buf,
2172 			}
2173 		};
2174 
2175 		/*
2176 		 * Avoid sending the segment addr to not upset non-compliant
2177 		 * DDC monitors.
2178 		 */
2179 		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
2180 
2181 		if (ret == -ENXIO) {
2182 			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
2183 					adapter->name);
2184 			break;
2185 		}
2186 	} while (ret != xfers && --retries);
2187 
2188 	return ret == xfers ? 0 : -1;
2189 }
2190 
connector_bad_edid(struct drm_connector * connector,const struct edid * edid,int num_blocks)2191 static void connector_bad_edid(struct drm_connector *connector,
2192 			       const struct edid *edid, int num_blocks)
2193 {
2194 	int i;
2195 	u8 last_block;
2196 
2197 	/*
2198 	 * 0x7e in the EDID is the number of extension blocks. The EDID
2199 	 * is 1 (base block) + num_ext_blocks big. That means we can think
2200 	 * of 0x7e in the EDID of the _index_ of the last block in the
2201 	 * combined chunk of memory.
2202 	 */
2203 	last_block = edid->extensions;
2204 
2205 	/* Calculate real checksum for the last edid extension block data */
2206 	if (last_block < num_blocks)
2207 		connector->real_edid_checksum =
2208 			edid_block_compute_checksum(edid + last_block);
2209 
2210 	if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS))
2211 		return;
2212 
2213 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n",
2214 		    connector->base.id, connector->name);
2215 	for (i = 0; i < num_blocks; i++)
2216 		edid_block_dump(KERN_DEBUG, edid + i, i);
2217 }
2218 
2219 /* Get override or firmware EDID */
drm_edid_override_get(struct drm_connector * connector)2220 static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector)
2221 {
2222 	const struct drm_edid *override = NULL;
2223 
2224 	mutex_lock(&connector->edid_override_mutex);
2225 
2226 	if (connector->edid_override)
2227 		override = drm_edid_dup(connector->edid_override);
2228 
2229 	mutex_unlock(&connector->edid_override_mutex);
2230 
2231 	if (!override)
2232 		override = drm_edid_load_firmware(connector);
2233 
2234 	return IS_ERR(override) ? NULL : override;
2235 }
2236 
2237 /* For debugfs edid_override implementation */
drm_edid_override_show(struct drm_connector * connector,struct seq_file * m)2238 int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m)
2239 {
2240 	const struct drm_edid *drm_edid;
2241 
2242 	mutex_lock(&connector->edid_override_mutex);
2243 
2244 	drm_edid = connector->edid_override;
2245 	if (drm_edid)
2246 		seq_write(m, drm_edid->edid, drm_edid->size);
2247 
2248 	mutex_unlock(&connector->edid_override_mutex);
2249 
2250 	return 0;
2251 }
2252 
2253 /* For debugfs edid_override implementation */
drm_edid_override_set(struct drm_connector * connector,const void * edid,size_t size)2254 int drm_edid_override_set(struct drm_connector *connector, const void *edid,
2255 			  size_t size)
2256 {
2257 	const struct drm_edid *drm_edid;
2258 
2259 	drm_edid = drm_edid_alloc(edid, size);
2260 	if (!drm_edid_valid(drm_edid)) {
2261 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n",
2262 			    connector->base.id, connector->name);
2263 		drm_edid_free(drm_edid);
2264 		return -EINVAL;
2265 	}
2266 
2267 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n",
2268 		    connector->base.id, connector->name);
2269 
2270 	mutex_lock(&connector->edid_override_mutex);
2271 
2272 	drm_edid_free(connector->edid_override);
2273 	connector->edid_override = drm_edid;
2274 
2275 	mutex_unlock(&connector->edid_override_mutex);
2276 
2277 	return 0;
2278 }
2279 
2280 /* For debugfs edid_override implementation */
drm_edid_override_reset(struct drm_connector * connector)2281 int drm_edid_override_reset(struct drm_connector *connector)
2282 {
2283 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n",
2284 		    connector->base.id, connector->name);
2285 
2286 	mutex_lock(&connector->edid_override_mutex);
2287 
2288 	drm_edid_free(connector->edid_override);
2289 	connector->edid_override = NULL;
2290 
2291 	mutex_unlock(&connector->edid_override_mutex);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * drm_edid_override_connector_update - add modes from override/firmware EDID
2298  * @connector: connector we're probing
2299  *
2300  * Add modes from the override/firmware EDID, if available. Only to be used from
2301  * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe
2302  * failed during drm_get_edid() and caused the override/firmware EDID to be
2303  * skipped.
2304  *
2305  * Return: The number of modes added or 0 if we couldn't find any.
2306  */
drm_edid_override_connector_update(struct drm_connector * connector)2307 int drm_edid_override_connector_update(struct drm_connector *connector)
2308 {
2309 	const struct drm_edid *override;
2310 	int num_modes = 0;
2311 
2312 	override = drm_edid_override_get(connector);
2313 	if (override) {
2314 		if (drm_edid_connector_update(connector, override) == 0)
2315 			num_modes = drm_edid_connector_add_modes(connector);
2316 
2317 		drm_edid_free(override);
2318 
2319 		drm_dbg_kms(connector->dev,
2320 			    "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n",
2321 			    connector->base.id, connector->name, num_modes);
2322 	}
2323 
2324 	return num_modes;
2325 }
2326 EXPORT_SYMBOL(drm_edid_override_connector_update);
2327 
2328 typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len);
2329 
edid_block_read(void * block,unsigned int block_num,read_block_fn read_block,void * context)2330 static enum edid_block_status edid_block_read(void *block, unsigned int block_num,
2331 					      read_block_fn read_block,
2332 					      void *context)
2333 {
2334 	enum edid_block_status status;
2335 	bool is_base_block = block_num == 0;
2336 	int try;
2337 
2338 	for (try = 0; try < 4; try++) {
2339 		if (read_block(context, block, block_num, EDID_LENGTH))
2340 			return EDID_BLOCK_READ_FAIL;
2341 
2342 		status = edid_block_check(block, is_base_block);
2343 		if (status == EDID_BLOCK_HEADER_REPAIR) {
2344 			edid_header_fix(block);
2345 
2346 			/* Retry with fixed header, update status if that worked. */
2347 			status = edid_block_check(block, is_base_block);
2348 			if (status == EDID_BLOCK_OK)
2349 				status = EDID_BLOCK_HEADER_FIXED;
2350 		}
2351 
2352 		if (edid_block_status_valid(status, edid_block_tag(block)))
2353 			break;
2354 
2355 		/* Fail early for unrepairable base block all zeros. */
2356 		if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO)
2357 			break;
2358 	}
2359 
2360 	return status;
2361 }
2362 
_drm_do_get_edid(struct drm_connector * connector,read_block_fn read_block,void * context,size_t * size)2363 static struct edid *_drm_do_get_edid(struct drm_connector *connector,
2364 				     read_block_fn read_block, void *context,
2365 				     size_t *size)
2366 {
2367 	enum edid_block_status status;
2368 	int i, num_blocks, invalid_blocks = 0;
2369 	const struct drm_edid *override;
2370 	struct edid *edid, *new;
2371 	size_t alloc_size = EDID_LENGTH;
2372 
2373 	override = drm_edid_override_get(connector);
2374 	if (override) {
2375 		alloc_size = override->size;
2376 		edid = kmemdup(override->edid, alloc_size, GFP_KERNEL);
2377 		drm_edid_free(override);
2378 		if (!edid)
2379 			return NULL;
2380 		goto ok;
2381 	}
2382 
2383 	edid = kmalloc(alloc_size, GFP_KERNEL);
2384 	if (!edid)
2385 		return NULL;
2386 
2387 	status = edid_block_read(edid, 0, read_block, context);
2388 
2389 	edid_block_status_print(status, edid, 0);
2390 
2391 	if (status == EDID_BLOCK_READ_FAIL)
2392 		goto fail;
2393 
2394 	/* FIXME: Clarify what a corrupt EDID actually means. */
2395 	if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)
2396 		connector->edid_corrupt = false;
2397 	else
2398 		connector->edid_corrupt = true;
2399 
2400 	if (!edid_block_status_valid(status, edid_block_tag(edid))) {
2401 		if (status == EDID_BLOCK_ZERO)
2402 			connector->null_edid_counter++;
2403 
2404 		connector_bad_edid(connector, edid, 1);
2405 		goto fail;
2406 	}
2407 
2408 	if (!edid_extension_block_count(edid))
2409 		goto ok;
2410 
2411 	alloc_size = edid_size(edid);
2412 	new = krealloc(edid, alloc_size, GFP_KERNEL);
2413 	if (!new)
2414 		goto fail;
2415 	edid = new;
2416 
2417 	num_blocks = edid_block_count(edid);
2418 	for (i = 1; i < num_blocks; i++) {
2419 		void *block = (void *)edid_block_data(edid, i);
2420 
2421 		status = edid_block_read(block, i, read_block, context);
2422 
2423 		edid_block_status_print(status, block, i);
2424 
2425 		if (!edid_block_status_valid(status, edid_block_tag(block))) {
2426 			if (status == EDID_BLOCK_READ_FAIL)
2427 				goto fail;
2428 			invalid_blocks++;
2429 		} else if (i == 1) {
2430 			/*
2431 			 * If the first EDID extension is a CTA extension, and
2432 			 * the first Data Block is HF-EEODB, override the
2433 			 * extension block count.
2434 			 *
2435 			 * Note: HF-EEODB could specify a smaller extension
2436 			 * count too, but we can't risk allocating a smaller
2437 			 * amount.
2438 			 */
2439 			int eeodb = edid_hfeeodb_block_count(edid);
2440 
2441 			if (eeodb > num_blocks) {
2442 				num_blocks = eeodb;
2443 				alloc_size = edid_size_by_blocks(num_blocks);
2444 				new = krealloc(edid, alloc_size, GFP_KERNEL);
2445 				if (!new)
2446 					goto fail;
2447 				edid = new;
2448 			}
2449 		}
2450 	}
2451 
2452 	if (invalid_blocks) {
2453 		connector_bad_edid(connector, edid, num_blocks);
2454 
2455 		edid = edid_filter_invalid_blocks(edid, &alloc_size);
2456 	}
2457 
2458 ok:
2459 	if (size)
2460 		*size = alloc_size;
2461 
2462 	return edid;
2463 
2464 fail:
2465 	kfree(edid);
2466 	return NULL;
2467 }
2468 
2469 /**
2470  * drm_edid_raw - Get a pointer to the raw EDID data.
2471  * @drm_edid: drm_edid container
2472  *
2473  * Get a pointer to the raw EDID data.
2474  *
2475  * This is for transition only. Avoid using this like the plague.
2476  *
2477  * Return: Pointer to raw EDID data.
2478  */
drm_edid_raw(const struct drm_edid * drm_edid)2479 const struct edid *drm_edid_raw(const struct drm_edid *drm_edid)
2480 {
2481 	if (!drm_edid || !drm_edid->size)
2482 		return NULL;
2483 
2484 	/*
2485 	 * Do not return pointers where relying on EDID extension count would
2486 	 * lead to buffer overflow.
2487 	 */
2488 	if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size))
2489 		return NULL;
2490 
2491 	return drm_edid->edid;
2492 }
2493 EXPORT_SYMBOL(drm_edid_raw);
2494 
2495 /* Allocate struct drm_edid container *without* duplicating the edid data */
_drm_edid_alloc(const void * edid,size_t size)2496 static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size)
2497 {
2498 	struct drm_edid *drm_edid;
2499 
2500 	if (!edid || !size || size < EDID_LENGTH)
2501 		return NULL;
2502 
2503 	drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL);
2504 	if (drm_edid) {
2505 		drm_edid->edid = edid;
2506 		drm_edid->size = size;
2507 	}
2508 
2509 	return drm_edid;
2510 }
2511 
2512 /**
2513  * drm_edid_alloc - Allocate a new drm_edid container
2514  * @edid: Pointer to raw EDID data
2515  * @size: Size of memory allocated for EDID
2516  *
2517  * Allocate a new drm_edid container. Do not calculate edid size from edid, pass
2518  * the actual size that has been allocated for the data. There is no validation
2519  * of the raw EDID data against the size, but at least the EDID base block must
2520  * fit in the buffer.
2521  *
2522  * The returned pointer must be freed using drm_edid_free().
2523  *
2524  * Return: drm_edid container, or NULL on errors
2525  */
drm_edid_alloc(const void * edid,size_t size)2526 const struct drm_edid *drm_edid_alloc(const void *edid, size_t size)
2527 {
2528 	const struct drm_edid *drm_edid;
2529 
2530 	if (!edid || !size || size < EDID_LENGTH)
2531 		return NULL;
2532 
2533 	edid = kmemdup(edid, size, GFP_KERNEL);
2534 	if (!edid)
2535 		return NULL;
2536 
2537 	drm_edid = _drm_edid_alloc(edid, size);
2538 	if (!drm_edid)
2539 		kfree(edid);
2540 
2541 	return drm_edid;
2542 }
2543 EXPORT_SYMBOL(drm_edid_alloc);
2544 
2545 /**
2546  * drm_edid_dup - Duplicate a drm_edid container
2547  * @drm_edid: EDID to duplicate
2548  *
2549  * The returned pointer must be freed using drm_edid_free().
2550  *
2551  * Returns: drm_edid container copy, or NULL on errors
2552  */
drm_edid_dup(const struct drm_edid * drm_edid)2553 const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid)
2554 {
2555 	if (!drm_edid)
2556 		return NULL;
2557 
2558 	return drm_edid_alloc(drm_edid->edid, drm_edid->size);
2559 }
2560 EXPORT_SYMBOL(drm_edid_dup);
2561 
2562 /**
2563  * drm_edid_free - Free the drm_edid container
2564  * @drm_edid: EDID to free
2565  */
drm_edid_free(const struct drm_edid * drm_edid)2566 void drm_edid_free(const struct drm_edid *drm_edid)
2567 {
2568 	if (!drm_edid)
2569 		return;
2570 
2571 	kfree(drm_edid->edid);
2572 	kfree(drm_edid);
2573 }
2574 EXPORT_SYMBOL(drm_edid_free);
2575 
2576 /**
2577  * drm_probe_ddc() - probe DDC presence
2578  * @adapter: I2C adapter to probe
2579  *
2580  * Return: True on success, false on failure.
2581  */
2582 bool
drm_probe_ddc(struct i2c_adapter * adapter)2583 drm_probe_ddc(struct i2c_adapter *adapter)
2584 {
2585 	unsigned char out;
2586 
2587 	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
2588 }
2589 EXPORT_SYMBOL(drm_probe_ddc);
2590 
2591 /**
2592  * drm_get_edid - get EDID data, if available
2593  * @connector: connector we're probing
2594  * @adapter: I2C adapter to use for DDC
2595  *
2596  * Poke the given I2C channel to grab EDID data if possible.  If found,
2597  * attach it to the connector.
2598  *
2599  * Return: Pointer to valid EDID or NULL if we couldn't find any.
2600  */
drm_get_edid(struct drm_connector * connector,struct i2c_adapter * adapter)2601 struct edid *drm_get_edid(struct drm_connector *connector,
2602 			  struct i2c_adapter *adapter)
2603 {
2604 	struct edid *edid;
2605 
2606 	if (connector->force == DRM_FORCE_OFF)
2607 		return NULL;
2608 
2609 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2610 		return NULL;
2611 
2612 	edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL);
2613 	drm_connector_update_edid_property(connector, edid);
2614 	return edid;
2615 }
2616 EXPORT_SYMBOL(drm_get_edid);
2617 
2618 /**
2619  * drm_edid_read_custom - Read EDID data using given EDID block read function
2620  * @connector: Connector to use
2621  * @read_block: EDID block read function
2622  * @context: Private data passed to the block read function
2623  *
2624  * When the I2C adapter connected to the DDC bus is hidden behind a device that
2625  * exposes a different interface to read EDID blocks this function can be used
2626  * to get EDID data using a custom block read function.
2627  *
2628  * As in the general case the DDC bus is accessible by the kernel at the I2C
2629  * level, drivers must make all reasonable efforts to expose it as an I2C
2630  * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing
2631  * this function.
2632  *
2633  * The EDID may be overridden using debugfs override_edid or firmware EDID
2634  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2635  * order. Having either of them bypasses actual EDID reads.
2636  *
2637  * The returned pointer must be freed using drm_edid_free().
2638  *
2639  * Return: Pointer to EDID, or NULL if probe/read failed.
2640  */
drm_edid_read_custom(struct drm_connector * connector,read_block_fn read_block,void * context)2641 const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector,
2642 					    read_block_fn read_block,
2643 					    void *context)
2644 {
2645 	const struct drm_edid *drm_edid;
2646 	struct edid *edid;
2647 	size_t size = 0;
2648 
2649 	edid = _drm_do_get_edid(connector, read_block, context, &size);
2650 	if (!edid)
2651 		return NULL;
2652 
2653 	/* Sanity check for now */
2654 	drm_WARN_ON(connector->dev, !size);
2655 
2656 	drm_edid = _drm_edid_alloc(edid, size);
2657 	if (!drm_edid)
2658 		kfree(edid);
2659 
2660 	return drm_edid;
2661 }
2662 EXPORT_SYMBOL(drm_edid_read_custom);
2663 
2664 /**
2665  * drm_edid_read_ddc - Read EDID data using given I2C adapter
2666  * @connector: Connector to use
2667  * @adapter: I2C adapter to use for DDC
2668  *
2669  * Read EDID using the given I2C adapter.
2670  *
2671  * The EDID may be overridden using debugfs override_edid or firmware EDID
2672  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2673  * order. Having either of them bypasses actual EDID reads.
2674  *
2675  * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and
2676  * using drm_edid_read() instead of this function.
2677  *
2678  * The returned pointer must be freed using drm_edid_free().
2679  *
2680  * Return: Pointer to EDID, or NULL if probe/read failed.
2681  */
drm_edid_read_ddc(struct drm_connector * connector,struct i2c_adapter * adapter)2682 const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector,
2683 					 struct i2c_adapter *adapter)
2684 {
2685 	const struct drm_edid *drm_edid;
2686 
2687 	if (connector->force == DRM_FORCE_OFF)
2688 		return NULL;
2689 
2690 	if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter))
2691 		return NULL;
2692 
2693 	drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter);
2694 
2695 	/* Note: Do *not* call connector updates here. */
2696 
2697 	return drm_edid;
2698 }
2699 EXPORT_SYMBOL(drm_edid_read_ddc);
2700 
2701 /**
2702  * drm_edid_read - Read EDID data using connector's I2C adapter
2703  * @connector: Connector to use
2704  *
2705  * Read EDID using the connector's I2C adapter.
2706  *
2707  * The EDID may be overridden using debugfs override_edid or firmware EDID
2708  * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority
2709  * order. Having either of them bypasses actual EDID reads.
2710  *
2711  * The returned pointer must be freed using drm_edid_free().
2712  *
2713  * Return: Pointer to EDID, or NULL if probe/read failed.
2714  */
drm_edid_read(struct drm_connector * connector)2715 const struct drm_edid *drm_edid_read(struct drm_connector *connector)
2716 {
2717 	if (drm_WARN_ON(connector->dev, !connector->ddc))
2718 		return NULL;
2719 
2720 	return drm_edid_read_ddc(connector, connector->ddc);
2721 }
2722 EXPORT_SYMBOL(drm_edid_read);
2723 
2724 /**
2725  * drm_edid_get_product_id - Get the vendor and product identification
2726  * @drm_edid: EDID
2727  * @id: Where to place the product id
2728  */
drm_edid_get_product_id(const struct drm_edid * drm_edid,struct drm_edid_product_id * id)2729 void drm_edid_get_product_id(const struct drm_edid *drm_edid,
2730 			     struct drm_edid_product_id *id)
2731 {
2732 	if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH)
2733 		memcpy(id, &drm_edid->edid->product_id, sizeof(*id));
2734 	else
2735 		memset(id, 0, sizeof(*id));
2736 }
2737 EXPORT_SYMBOL(drm_edid_get_product_id);
2738 
decode_date(struct seq_buf * s,const struct drm_edid_product_id * id)2739 static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id)
2740 {
2741 	int week = id->week_of_manufacture;
2742 	int year = id->year_of_manufacture + 1990;
2743 
2744 	if (week == 0xff)
2745 		seq_buf_printf(s, "model year: %d", year);
2746 	else if (!week)
2747 		seq_buf_printf(s, "year of manufacture: %d", year);
2748 	else
2749 		seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year);
2750 }
2751 
2752 /**
2753  * drm_edid_print_product_id - Print decoded product id to printer
2754  * @p: drm printer
2755  * @id: EDID product id
2756  * @raw: If true, also print the raw hex
2757  *
2758  * See VESA E-EDID 1.4 section 3.4.
2759  */
drm_edid_print_product_id(struct drm_printer * p,const struct drm_edid_product_id * id,bool raw)2760 void drm_edid_print_product_id(struct drm_printer *p,
2761 			       const struct drm_edid_product_id *id, bool raw)
2762 {
2763 	DECLARE_SEQ_BUF(date, 40);
2764 	char vend[4];
2765 
2766 	drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend);
2767 
2768 	decode_date(&date, id);
2769 
2770 	drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n",
2771 		   vend, le16_to_cpu(id->product_code),
2772 		   le32_to_cpu(id->serial_number), seq_buf_str(&date));
2773 
2774 	if (raw)
2775 		drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id);
2776 
2777 	WARN_ON(seq_buf_has_overflowed(&date));
2778 }
2779 EXPORT_SYMBOL(drm_edid_print_product_id);
2780 
2781 /**
2782  * drm_edid_get_panel_id - Get a panel's ID from EDID
2783  * @drm_edid: EDID that contains panel ID.
2784  *
2785  * This function uses the first block of the EDID of a panel and (assuming
2786  * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value
2787  * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's
2788  * supposed to be different for each different modem of panel.
2789  *
2790  * Return: A 32-bit ID that should be different for each make/model of panel.
2791  *         See the functions drm_edid_encode_panel_id() and
2792  *         drm_edid_decode_panel_id() for some details on the structure of this
2793  *         ID. Return 0 if the EDID size is less than a base block.
2794  */
drm_edid_get_panel_id(const struct drm_edid * drm_edid)2795 u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid)
2796 {
2797 	const struct edid *edid = drm_edid->edid;
2798 
2799 	if (drm_edid->size < EDID_LENGTH)
2800 		return 0;
2801 
2802 	/*
2803 	 * We represent the ID as a 32-bit number so it can easily be compared
2804 	 * with "==".
2805 	 *
2806 	 * NOTE that we deal with endianness differently for the top half
2807 	 * of this ID than for the bottom half. The bottom half (the product
2808 	 * id) gets decoded as little endian by the EDID_PRODUCT_ID because
2809 	 * that's how everyone seems to interpret it. The top half (the mfg_id)
2810 	 * gets stored as big endian because that makes
2811 	 * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier
2812 	 * to write (it's easier to extract the ASCII). It doesn't really
2813 	 * matter, though, as long as the number here is unique.
2814 	 */
2815 	return (u32)edid->mfg_id[0] << 24   |
2816 	       (u32)edid->mfg_id[1] << 16   |
2817 	       (u32)EDID_PRODUCT_ID(edid);
2818 }
2819 EXPORT_SYMBOL(drm_edid_get_panel_id);
2820 
2821 /**
2822  * drm_edid_read_base_block - Get a panel's EDID base block
2823  * @adapter: I2C adapter to use for DDC
2824  *
2825  * This function returns the drm_edid containing the first block of the EDID of
2826  * a panel.
2827  *
2828  * This function is intended to be used during early probing on devices where
2829  * more than one panel might be present. Because of its intended use it must
2830  * assume that the EDID of the panel is correct, at least as far as the base
2831  * block is concerned (in other words, we don't process any overrides here).
2832  *
2833  * Caller should call drm_edid_free() after use.
2834  *
2835  * NOTE: it's expected that this function and drm_do_get_edid() will both
2836  * be read the EDID, but there is no caching between them. Since we're only
2837  * reading the first block, hopefully this extra overhead won't be too big.
2838  *
2839  * WARNING: Only use this function when the connector is unknown. For example,
2840  * during the early probe of panel. The EDID read from the function is temporary
2841  * and should be replaced by the full EDID returned from other drm_edid_read.
2842  *
2843  * Return: Pointer to allocated EDID base block, or NULL on any failure.
2844  */
drm_edid_read_base_block(struct i2c_adapter * adapter)2845 const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter)
2846 {
2847 	enum edid_block_status status;
2848 	void *base_block;
2849 
2850 	base_block = kzalloc(EDID_LENGTH, GFP_KERNEL);
2851 	if (!base_block)
2852 		return NULL;
2853 
2854 	status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter);
2855 
2856 	edid_block_status_print(status, base_block, 0);
2857 
2858 	if (!edid_block_status_valid(status, edid_block_tag(base_block))) {
2859 		edid_block_dump(KERN_NOTICE, base_block, 0);
2860 		kfree(base_block);
2861 		return NULL;
2862 	}
2863 
2864 	return _drm_edid_alloc(base_block, EDID_LENGTH);
2865 }
2866 EXPORT_SYMBOL(drm_edid_read_base_block);
2867 
2868 /**
2869  * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output
2870  * @connector: connector we're probing
2871  * @adapter: I2C adapter to use for DDC
2872  *
2873  * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of
2874  * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily
2875  * switch DDC to the GPU which is retrieving EDID.
2876  *
2877  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2878  */
drm_get_edid_switcheroo(struct drm_connector * connector,struct i2c_adapter * adapter)2879 struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
2880 				     struct i2c_adapter *adapter)
2881 {
2882 	struct drm_device *dev = connector->dev;
2883 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2884 	struct edid *edid;
2885 
2886 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2887 		return NULL;
2888 
2889 	vga_switcheroo_lock_ddc(pdev);
2890 	edid = drm_get_edid(connector, adapter);
2891 	vga_switcheroo_unlock_ddc(pdev);
2892 
2893 	return edid;
2894 }
2895 EXPORT_SYMBOL(drm_get_edid_switcheroo);
2896 
2897 /**
2898  * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output
2899  * @connector: connector we're probing
2900  * @adapter: I2C adapter to use for DDC
2901  *
2902  * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set
2903  * of outputs. The wrapper adds the requisite vga_switcheroo calls to
2904  * temporarily switch DDC to the GPU which is retrieving EDID.
2905  *
2906  * Return: Pointer to valid EDID or %NULL if we couldn't find any.
2907  */
drm_edid_read_switcheroo(struct drm_connector * connector,struct i2c_adapter * adapter)2908 const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector,
2909 						struct i2c_adapter *adapter)
2910 {
2911 	struct drm_device *dev = connector->dev;
2912 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2913 	const struct drm_edid *drm_edid;
2914 
2915 	if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev)))
2916 		return NULL;
2917 
2918 	vga_switcheroo_lock_ddc(pdev);
2919 	drm_edid = drm_edid_read_ddc(connector, adapter);
2920 	vga_switcheroo_unlock_ddc(pdev);
2921 
2922 	return drm_edid;
2923 }
2924 EXPORT_SYMBOL(drm_edid_read_switcheroo);
2925 
2926 /**
2927  * drm_edid_duplicate - duplicate an EDID and the extensions
2928  * @edid: EDID to duplicate
2929  *
2930  * Return: Pointer to duplicated EDID or NULL on allocation failure.
2931  */
drm_edid_duplicate(const struct edid * edid)2932 struct edid *drm_edid_duplicate(const struct edid *edid)
2933 {
2934 	if (!edid)
2935 		return NULL;
2936 
2937 	return kmemdup(edid, edid_size(edid), GFP_KERNEL);
2938 }
2939 EXPORT_SYMBOL(drm_edid_duplicate);
2940 
2941 /*** EDID parsing ***/
2942 
2943 /**
2944  * edid_get_quirks - return quirk flags for a given EDID
2945  * @drm_edid: EDID to process
2946  *
2947  * This tells subsequent routines what fixes they need to apply.
2948  *
2949  * Return: A u32 represents the quirks to apply.
2950  */
edid_get_quirks(const struct drm_edid * drm_edid)2951 static u32 edid_get_quirks(const struct drm_edid *drm_edid)
2952 {
2953 	const struct edid_quirk *quirk;
2954 	int i;
2955 
2956 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
2957 		quirk = &edid_quirk_list[i];
2958 		if (drm_edid_match(drm_edid, &quirk->ident))
2959 			return quirk->quirks;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
drm_edid_has_internal_quirk(struct drm_connector * connector,enum drm_edid_internal_quirk quirk)2965 static bool drm_edid_has_internal_quirk(struct drm_connector *connector,
2966 					enum drm_edid_internal_quirk quirk)
2967 {
2968 	return connector->display_info.quirks & BIT(quirk);
2969 }
2970 
drm_edid_has_quirk(struct drm_connector * connector,enum drm_edid_quirk quirk)2971 bool drm_edid_has_quirk(struct drm_connector *connector, enum drm_edid_quirk quirk)
2972 {
2973 	return connector->display_info.quirks & BIT(quirk);
2974 }
2975 EXPORT_SYMBOL(drm_edid_has_quirk);
2976 
2977 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
2978 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
2979 
2980 /*
2981  * Walk the mode list for connector, clearing the preferred status on existing
2982  * modes and setting it anew for the right mode ala quirks.
2983  */
edid_fixup_preferred(struct drm_connector * connector)2984 static void edid_fixup_preferred(struct drm_connector *connector)
2985 {
2986 	struct drm_display_mode *t, *cur_mode, *preferred_mode;
2987 	int target_refresh = 0;
2988 	int cur_vrefresh, preferred_vrefresh;
2989 
2990 	if (list_empty(&connector->probed_modes))
2991 		return;
2992 
2993 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_PREFER_LARGE_60))
2994 		target_refresh = 60;
2995 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_PREFER_LARGE_75))
2996 		target_refresh = 75;
2997 
2998 	preferred_mode = list_first_entry(&connector->probed_modes,
2999 					  struct drm_display_mode, head);
3000 
3001 	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
3002 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
3003 
3004 		if (cur_mode == preferred_mode)
3005 			continue;
3006 
3007 		/* Largest mode is preferred */
3008 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
3009 			preferred_mode = cur_mode;
3010 
3011 		cur_vrefresh = drm_mode_vrefresh(cur_mode);
3012 		preferred_vrefresh = drm_mode_vrefresh(preferred_mode);
3013 		/* At a given size, try to get closest to target refresh */
3014 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
3015 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
3016 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
3017 			preferred_mode = cur_mode;
3018 		}
3019 	}
3020 
3021 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
3022 }
3023 
3024 static bool
mode_is_rb(const struct drm_display_mode * mode)3025 mode_is_rb(const struct drm_display_mode *mode)
3026 {
3027 	return (mode->htotal - mode->hdisplay == 160) &&
3028 	       (mode->hsync_end - mode->hdisplay == 80) &&
3029 	       (mode->hsync_end - mode->hsync_start == 32) &&
3030 	       (mode->vsync_start - mode->vdisplay == 3);
3031 }
3032 
3033 /*
3034  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
3035  * @dev: Device to duplicate against
3036  * @hsize: Mode width
3037  * @vsize: Mode height
3038  * @fresh: Mode refresh rate
3039  * @rb: Mode reduced-blanking-ness
3040  *
3041  * Walk the DMT mode list looking for a match for the given parameters.
3042  *
3043  * Return: A newly allocated copy of the mode, or NULL if not found.
3044  */
drm_mode_find_dmt(struct drm_device * dev,int hsize,int vsize,int fresh,bool rb)3045 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
3046 					   int hsize, int vsize, int fresh,
3047 					   bool rb)
3048 {
3049 	int i;
3050 
3051 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3052 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3053 
3054 		if (hsize != ptr->hdisplay)
3055 			continue;
3056 		if (vsize != ptr->vdisplay)
3057 			continue;
3058 		if (fresh != drm_mode_vrefresh(ptr))
3059 			continue;
3060 		if (rb != mode_is_rb(ptr))
3061 			continue;
3062 
3063 		return drm_mode_duplicate(dev, ptr);
3064 	}
3065 
3066 	return NULL;
3067 }
3068 EXPORT_SYMBOL(drm_mode_find_dmt);
3069 
is_display_descriptor(const struct detailed_timing * descriptor,u8 type)3070 static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type)
3071 {
3072 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3073 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2);
3074 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3);
3075 
3076 	return descriptor->pixel_clock == 0 &&
3077 		descriptor->data.other_data.pad1 == 0 &&
3078 		descriptor->data.other_data.type == type;
3079 }
3080 
is_detailed_timing_descriptor(const struct detailed_timing * descriptor)3081 static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor)
3082 {
3083 	BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0);
3084 
3085 	return descriptor->pixel_clock != 0;
3086 }
3087 
3088 typedef void detailed_cb(const struct detailed_timing *timing, void *closure);
3089 
3090 static void
cea_for_each_detailed_block(const u8 * ext,detailed_cb * cb,void * closure)3091 cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3092 {
3093 	int i, n;
3094 	u8 d = ext[0x02];
3095 	const u8 *det_base = ext + d;
3096 
3097 	if (d < 4 || d > 127)
3098 		return;
3099 
3100 	n = (127 - d) / 18;
3101 	for (i = 0; i < n; i++)
3102 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3103 }
3104 
3105 static void
vtb_for_each_detailed_block(const u8 * ext,detailed_cb * cb,void * closure)3106 vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure)
3107 {
3108 	unsigned int i, n = min((int)ext[0x02], 6);
3109 	const u8 *det_base = ext + 5;
3110 
3111 	if (ext[0x01] != 1)
3112 		return; /* unknown version */
3113 
3114 	for (i = 0; i < n; i++)
3115 		cb((const struct detailed_timing *)(det_base + 18 * i), closure);
3116 }
3117 
drm_for_each_detailed_block(const struct drm_edid * drm_edid,detailed_cb * cb,void * closure)3118 static void drm_for_each_detailed_block(const struct drm_edid *drm_edid,
3119 					detailed_cb *cb, void *closure)
3120 {
3121 	struct drm_edid_iter edid_iter;
3122 	const u8 *ext;
3123 	int i;
3124 
3125 	if (!drm_edid)
3126 		return;
3127 
3128 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3129 		cb(&drm_edid->edid->detailed_timings[i], closure);
3130 
3131 	drm_edid_iter_begin(drm_edid, &edid_iter);
3132 	drm_edid_iter_for_each(ext, &edid_iter) {
3133 		switch (*ext) {
3134 		case CEA_EXT:
3135 			cea_for_each_detailed_block(ext, cb, closure);
3136 			break;
3137 		case VTB_EXT:
3138 			vtb_for_each_detailed_block(ext, cb, closure);
3139 			break;
3140 		default:
3141 			break;
3142 		}
3143 	}
3144 	drm_edid_iter_end(&edid_iter);
3145 }
3146 
3147 static void
is_rb(const struct detailed_timing * descriptor,void * data)3148 is_rb(const struct detailed_timing *descriptor, void *data)
3149 {
3150 	bool *res = data;
3151 
3152 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3153 		return;
3154 
3155 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3156 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15);
3157 
3158 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG &&
3159 	    descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING)
3160 		*res = true;
3161 }
3162 
3163 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
3164 static bool
drm_monitor_supports_rb(const struct drm_edid * drm_edid)3165 drm_monitor_supports_rb(const struct drm_edid *drm_edid)
3166 {
3167 	if (drm_edid->edid->revision >= 4) {
3168 		bool ret = false;
3169 
3170 		drm_for_each_detailed_block(drm_edid, is_rb, &ret);
3171 		return ret;
3172 	}
3173 
3174 	return drm_edid_is_digital(drm_edid);
3175 }
3176 
3177 static void
find_gtf2(const struct detailed_timing * descriptor,void * data)3178 find_gtf2(const struct detailed_timing *descriptor, void *data)
3179 {
3180 	const struct detailed_timing **res = data;
3181 
3182 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3183 		return;
3184 
3185 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3186 
3187 	if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG)
3188 		*res = descriptor;
3189 }
3190 
3191 /* Secondary GTF curve kicks in above some break frequency */
3192 static int
drm_gtf2_hbreak(const struct drm_edid * drm_edid)3193 drm_gtf2_hbreak(const struct drm_edid *drm_edid)
3194 {
3195 	const struct detailed_timing *descriptor = NULL;
3196 
3197 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3198 
3199 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12);
3200 
3201 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0;
3202 }
3203 
3204 static int
drm_gtf2_2c(const struct drm_edid * drm_edid)3205 drm_gtf2_2c(const struct drm_edid *drm_edid)
3206 {
3207 	const struct detailed_timing *descriptor = NULL;
3208 
3209 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3210 
3211 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13);
3212 
3213 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0;
3214 }
3215 
3216 static int
drm_gtf2_m(const struct drm_edid * drm_edid)3217 drm_gtf2_m(const struct drm_edid *drm_edid)
3218 {
3219 	const struct detailed_timing *descriptor = NULL;
3220 
3221 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3222 
3223 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14);
3224 
3225 	return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0;
3226 }
3227 
3228 static int
drm_gtf2_k(const struct drm_edid * drm_edid)3229 drm_gtf2_k(const struct drm_edid *drm_edid)
3230 {
3231 	const struct detailed_timing *descriptor = NULL;
3232 
3233 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3234 
3235 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16);
3236 
3237 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0;
3238 }
3239 
3240 static int
drm_gtf2_2j(const struct drm_edid * drm_edid)3241 drm_gtf2_2j(const struct drm_edid *drm_edid)
3242 {
3243 	const struct detailed_timing *descriptor = NULL;
3244 
3245 	drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor);
3246 
3247 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17);
3248 
3249 	return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0;
3250 }
3251 
3252 static void
get_timing_level(const struct detailed_timing * descriptor,void * data)3253 get_timing_level(const struct detailed_timing *descriptor, void *data)
3254 {
3255 	int *res = data;
3256 
3257 	if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE))
3258 		return;
3259 
3260 	BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10);
3261 
3262 	switch (descriptor->data.other_data.data.range.flags) {
3263 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3264 		*res = LEVEL_GTF;
3265 		break;
3266 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3267 		*res = LEVEL_GTF2;
3268 		break;
3269 	case DRM_EDID_CVT_SUPPORT_FLAG:
3270 		*res = LEVEL_CVT;
3271 		break;
3272 	default:
3273 		break;
3274 	}
3275 }
3276 
3277 /* Get standard timing level (CVT/GTF/DMT). */
standard_timing_level(const struct drm_edid * drm_edid)3278 static int standard_timing_level(const struct drm_edid *drm_edid)
3279 {
3280 	const struct edid *edid = drm_edid->edid;
3281 
3282 	if (edid->revision >= 4) {
3283 		/*
3284 		 * If the range descriptor doesn't
3285 		 * indicate otherwise default to CVT
3286 		 */
3287 		int ret = LEVEL_CVT;
3288 
3289 		drm_for_each_detailed_block(drm_edid, get_timing_level, &ret);
3290 
3291 		return ret;
3292 	} else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) {
3293 		return LEVEL_GTF2;
3294 	} else if (edid->revision >= 2) {
3295 		return LEVEL_GTF;
3296 	} else {
3297 		return LEVEL_DMT;
3298 	}
3299 }
3300 
3301 /*
3302  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
3303  * monitors fill with ascii space (0x20) instead.
3304  */
3305 static int
bad_std_timing(u8 a,u8 b)3306 bad_std_timing(u8 a, u8 b)
3307 {
3308 	return (a == 0x00 && b == 0x00) ||
3309 	       (a == 0x01 && b == 0x01) ||
3310 	       (a == 0x20 && b == 0x20);
3311 }
3312 
drm_mode_hsync(const struct drm_display_mode * mode)3313 static int drm_mode_hsync(const struct drm_display_mode *mode)
3314 {
3315 	if (mode->htotal <= 0)
3316 		return 0;
3317 
3318 	return DIV_ROUND_CLOSEST(mode->clock, mode->htotal);
3319 }
3320 
3321 static struct drm_display_mode *
drm_gtf2_mode(struct drm_device * dev,const struct drm_edid * drm_edid,int hsize,int vsize,int vrefresh_rate)3322 drm_gtf2_mode(struct drm_device *dev,
3323 	      const struct drm_edid *drm_edid,
3324 	      int hsize, int vsize, int vrefresh_rate)
3325 {
3326 	struct drm_display_mode *mode;
3327 
3328 	/*
3329 	 * This is potentially wrong if there's ever a monitor with
3330 	 * more than one ranges section, each claiming a different
3331 	 * secondary GTF curve.  Please don't do that.
3332 	 */
3333 	mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3334 	if (!mode)
3335 		return NULL;
3336 
3337 	if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) {
3338 		drm_mode_destroy(dev, mode);
3339 		mode = drm_gtf_mode_complex(dev, hsize, vsize,
3340 					    vrefresh_rate, 0, 0,
3341 					    drm_gtf2_m(drm_edid),
3342 					    drm_gtf2_2c(drm_edid),
3343 					    drm_gtf2_k(drm_edid),
3344 					    drm_gtf2_2j(drm_edid));
3345 	}
3346 
3347 	return mode;
3348 }
3349 
3350 /*
3351  * Take the standard timing params (in this case width, aspect, and refresh)
3352  * and convert them into a real mode using CVT/GTF/DMT.
3353  */
drm_mode_std(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct std_timing * t)3354 static struct drm_display_mode *drm_mode_std(struct drm_connector *connector,
3355 					     const struct drm_edid *drm_edid,
3356 					     const struct std_timing *t)
3357 {
3358 	struct drm_device *dev = connector->dev;
3359 	struct drm_display_mode *m, *mode = NULL;
3360 	int hsize, vsize;
3361 	int vrefresh_rate;
3362 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
3363 		>> EDID_TIMING_ASPECT_SHIFT;
3364 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
3365 		>> EDID_TIMING_VFREQ_SHIFT;
3366 	int timing_level = standard_timing_level(drm_edid);
3367 
3368 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
3369 		return NULL;
3370 
3371 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
3372 	hsize = t->hsize * 8 + 248;
3373 	/* vrefresh_rate = vfreq + 60 */
3374 	vrefresh_rate = vfreq + 60;
3375 	/* the vdisplay is calculated based on the aspect ratio */
3376 	if (aspect_ratio == 0) {
3377 		if (drm_edid->edid->revision < 3)
3378 			vsize = hsize;
3379 		else
3380 			vsize = (hsize * 10) / 16;
3381 	} else if (aspect_ratio == 1)
3382 		vsize = (hsize * 3) / 4;
3383 	else if (aspect_ratio == 2)
3384 		vsize = (hsize * 4) / 5;
3385 	else
3386 		vsize = (hsize * 9) / 16;
3387 
3388 	/* HDTV hack, part 1 */
3389 	if (vrefresh_rate == 60 &&
3390 	    ((hsize == 1360 && vsize == 765) ||
3391 	     (hsize == 1368 && vsize == 769))) {
3392 		hsize = 1366;
3393 		vsize = 768;
3394 	}
3395 
3396 	/*
3397 	 * If this connector already has a mode for this size and refresh
3398 	 * rate (because it came from detailed or CVT info), use that
3399 	 * instead.  This way we don't have to guess at interlace or
3400 	 * reduced blanking.
3401 	 */
3402 	list_for_each_entry(m, &connector->probed_modes, head)
3403 		if (m->hdisplay == hsize && m->vdisplay == vsize &&
3404 		    drm_mode_vrefresh(m) == vrefresh_rate)
3405 			return NULL;
3406 
3407 	/* HDTV hack, part 2 */
3408 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
3409 		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
3410 				    false);
3411 		if (!mode)
3412 			return NULL;
3413 		mode->hdisplay = 1366;
3414 		mode->hsync_start = mode->hsync_start - 1;
3415 		mode->hsync_end = mode->hsync_end - 1;
3416 		return mode;
3417 	}
3418 
3419 	/* check whether it can be found in default mode table */
3420 	if (drm_monitor_supports_rb(drm_edid)) {
3421 		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
3422 					 true);
3423 		if (mode)
3424 			return mode;
3425 	}
3426 	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
3427 	if (mode)
3428 		return mode;
3429 
3430 	/* okay, generate it */
3431 	switch (timing_level) {
3432 	case LEVEL_DMT:
3433 		break;
3434 	case LEVEL_GTF:
3435 		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
3436 		break;
3437 	case LEVEL_GTF2:
3438 		mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate);
3439 		break;
3440 	case LEVEL_CVT:
3441 		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
3442 				    false);
3443 		break;
3444 	}
3445 	return mode;
3446 }
3447 
3448 /*
3449  * EDID is delightfully ambiguous about how interlaced modes are to be
3450  * encoded.  Our internal representation is of frame height, but some
3451  * HDTV detailed timings are encoded as field height.
3452  *
3453  * The format list here is from CEA, in frame size.  Technically we
3454  * should be checking refresh rate too.  Whatever.
3455  */
3456 static void
drm_mode_do_interlace_quirk(struct drm_display_mode * mode,const struct detailed_pixel_timing * pt)3457 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3458 			    const struct detailed_pixel_timing *pt)
3459 {
3460 	int i;
3461 	static const struct {
3462 		int w, h;
3463 	} cea_interlaced[] = {
3464 		{ 1920, 1080 },
3465 		{  720,  480 },
3466 		{ 1440,  480 },
3467 		{ 2880,  480 },
3468 		{  720,  576 },
3469 		{ 1440,  576 },
3470 		{ 2880,  576 },
3471 	};
3472 
3473 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3474 		return;
3475 
3476 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3477 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3478 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3479 			mode->vdisplay *= 2;
3480 			mode->vsync_start *= 2;
3481 			mode->vsync_end *= 2;
3482 			mode->vtotal *= 2;
3483 			mode->vtotal |= 1;
3484 		}
3485 	}
3486 
3487 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3488 }
3489 
3490 /*
3491  * Create a new mode from an EDID detailed timing section. An EDID detailed
3492  * timing block contains enough info for us to create and return a new struct
3493  * drm_display_mode.
3494  */
drm_mode_detailed(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3495 static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector,
3496 						  const struct drm_edid *drm_edid,
3497 						  const struct detailed_timing *timing)
3498 {
3499 	struct drm_device *dev = connector->dev;
3500 	struct drm_display_mode *mode;
3501 	const struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3502 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3503 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3504 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3505 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3506 	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
3507 	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
3508 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
3509 	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
3510 
3511 	/* ignore tiny modes */
3512 	if (hactive < 64 || vactive < 64)
3513 		return NULL;
3514 
3515 	if (pt->misc & DRM_EDID_PT_STEREO) {
3516 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n",
3517 			    connector->base.id, connector->name);
3518 		return NULL;
3519 	}
3520 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
3521 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n",
3522 			    connector->base.id, connector->name);
3523 	}
3524 
3525 	/* it is incorrect if hsync/vsync width is zero */
3526 	if (!hsync_pulse_width || !vsync_pulse_width) {
3527 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n",
3528 			    connector->base.id, connector->name);
3529 		return NULL;
3530 	}
3531 
3532 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_FORCE_REDUCED_BLANKING)) {
3533 		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
3534 		if (!mode)
3535 			return NULL;
3536 
3537 		goto set_size;
3538 	}
3539 
3540 	mode = drm_mode_create(dev);
3541 	if (!mode)
3542 		return NULL;
3543 
3544 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_135_CLOCK_TOO_HIGH))
3545 		mode->clock = 1088 * 10;
3546 	else
3547 		mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3548 
3549 	mode->hdisplay = hactive;
3550 	mode->hsync_start = mode->hdisplay + hsync_offset;
3551 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3552 	mode->htotal = mode->hdisplay + hblank;
3553 
3554 	mode->vdisplay = vactive;
3555 	mode->vsync_start = mode->vdisplay + vsync_offset;
3556 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3557 	mode->vtotal = mode->vdisplay + vblank;
3558 
3559 	/* Some EDIDs have bogus h/vsync_end values */
3560 	if (mode->hsync_end > mode->htotal) {
3561 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n",
3562 			    connector->base.id, connector->name,
3563 			    mode->hsync_end, mode->htotal);
3564 		mode->hsync_end = mode->htotal;
3565 	}
3566 	if (mode->vsync_end > mode->vtotal) {
3567 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n",
3568 			    connector->base.id, connector->name,
3569 			    mode->vsync_end, mode->vtotal);
3570 		mode->vsync_end = mode->vtotal;
3571 	}
3572 
3573 	drm_mode_do_interlace_quirk(mode, pt);
3574 
3575 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_DETAILED_SYNC_PP)) {
3576 		mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC;
3577 	} else {
3578 		mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3579 			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3580 		mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3581 			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3582 	}
3583 
3584 set_size:
3585 	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
3586 	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
3587 
3588 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_DETAILED_IN_CM)) {
3589 		mode->width_mm *= 10;
3590 		mode->height_mm *= 10;
3591 	}
3592 
3593 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE)) {
3594 		mode->width_mm = drm_edid->edid->width_cm * 10;
3595 		mode->height_mm = drm_edid->edid->height_cm * 10;
3596 	}
3597 
3598 	mode->type = DRM_MODE_TYPE_DRIVER;
3599 	drm_mode_set_name(mode);
3600 
3601 	return mode;
3602 }
3603 
3604 static bool
mode_in_hsync_range(const struct drm_display_mode * mode,const struct edid * edid,const u8 * t)3605 mode_in_hsync_range(const struct drm_display_mode *mode,
3606 		    const struct edid *edid, const u8 *t)
3607 {
3608 	int hsync, hmin, hmax;
3609 
3610 	hmin = t[7];
3611 	if (edid->revision >= 4)
3612 	    hmin += ((t[4] & 0x04) ? 255 : 0);
3613 	hmax = t[8];
3614 	if (edid->revision >= 4)
3615 	    hmax += ((t[4] & 0x08) ? 255 : 0);
3616 	hsync = drm_mode_hsync(mode);
3617 
3618 	return (hsync <= hmax && hsync >= hmin);
3619 }
3620 
3621 static bool
mode_in_vsync_range(const struct drm_display_mode * mode,const struct edid * edid,const u8 * t)3622 mode_in_vsync_range(const struct drm_display_mode *mode,
3623 		    const struct edid *edid, const u8 *t)
3624 {
3625 	int vsync, vmin, vmax;
3626 
3627 	vmin = t[5];
3628 	if (edid->revision >= 4)
3629 	    vmin += ((t[4] & 0x01) ? 255 : 0);
3630 	vmax = t[6];
3631 	if (edid->revision >= 4)
3632 	    vmax += ((t[4] & 0x02) ? 255 : 0);
3633 	vsync = drm_mode_vrefresh(mode);
3634 
3635 	return (vsync <= vmax && vsync >= vmin);
3636 }
3637 
3638 static u32
range_pixel_clock(const struct edid * edid,const u8 * t)3639 range_pixel_clock(const struct edid *edid, const u8 *t)
3640 {
3641 	/* unspecified */
3642 	if (t[9] == 0 || t[9] == 255)
3643 		return 0;
3644 
3645 	/* 1.4 with CVT support gives us real precision, yay */
3646 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3647 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
3648 
3649 	/* 1.3 is pathetic, so fuzz up a bit */
3650 	return t[9] * 10000 + 5001;
3651 }
3652 
mode_in_range(const struct drm_display_mode * mode,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3653 static bool mode_in_range(const struct drm_display_mode *mode,
3654 			  const struct drm_edid *drm_edid,
3655 			  const struct detailed_timing *timing)
3656 {
3657 	const struct edid *edid = drm_edid->edid;
3658 	u32 max_clock;
3659 	const u8 *t = (const u8 *)timing;
3660 
3661 	if (!mode_in_hsync_range(mode, edid, t))
3662 		return false;
3663 
3664 	if (!mode_in_vsync_range(mode, edid, t))
3665 		return false;
3666 
3667 	max_clock = range_pixel_clock(edid, t);
3668 	if (max_clock)
3669 		if (mode->clock > max_clock)
3670 			return false;
3671 
3672 	/* 1.4 max horizontal check */
3673 	if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG)
3674 		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
3675 			return false;
3676 
3677 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid))
3678 		return false;
3679 
3680 	return true;
3681 }
3682 
valid_inferred_mode(const struct drm_connector * connector,const struct drm_display_mode * mode)3683 static bool valid_inferred_mode(const struct drm_connector *connector,
3684 				const struct drm_display_mode *mode)
3685 {
3686 	const struct drm_display_mode *m;
3687 	bool ok = false;
3688 
3689 	list_for_each_entry(m, &connector->probed_modes, head) {
3690 		if (mode->hdisplay == m->hdisplay &&
3691 		    mode->vdisplay == m->vdisplay &&
3692 		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
3693 			return false; /* duplicated */
3694 		if (mode->hdisplay <= m->hdisplay &&
3695 		    mode->vdisplay <= m->vdisplay)
3696 			ok = true;
3697 	}
3698 	return ok;
3699 }
3700 
drm_dmt_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3701 static int drm_dmt_modes_for_range(struct drm_connector *connector,
3702 				   const struct drm_edid *drm_edid,
3703 				   const struct detailed_timing *timing)
3704 {
3705 	int i, modes = 0;
3706 	struct drm_display_mode *newmode;
3707 	struct drm_device *dev = connector->dev;
3708 
3709 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
3710 		if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) &&
3711 		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
3712 			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
3713 			if (newmode) {
3714 				drm_mode_probed_add(connector, newmode);
3715 				modes++;
3716 			}
3717 		}
3718 	}
3719 
3720 	return modes;
3721 }
3722 
3723 /* fix up 1366x768 mode from 1368x768;
3724  * GFT/CVT can't express 1366 width which isn't dividable by 8
3725  */
drm_mode_fixup_1366x768(struct drm_display_mode * mode)3726 void drm_mode_fixup_1366x768(struct drm_display_mode *mode)
3727 {
3728 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
3729 		mode->hdisplay = 1366;
3730 		mode->hsync_start--;
3731 		mode->hsync_end--;
3732 		drm_mode_set_name(mode);
3733 	}
3734 }
3735 
drm_gtf_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3736 static int drm_gtf_modes_for_range(struct drm_connector *connector,
3737 				   const struct drm_edid *drm_edid,
3738 				   const struct detailed_timing *timing)
3739 {
3740 	int i, modes = 0;
3741 	struct drm_display_mode *newmode;
3742 	struct drm_device *dev = connector->dev;
3743 
3744 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3745 		const struct minimode *m = &extra_modes[i];
3746 
3747 		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
3748 		if (!newmode)
3749 			return modes;
3750 
3751 		drm_mode_fixup_1366x768(newmode);
3752 		if (!mode_in_range(newmode, drm_edid, timing) ||
3753 		    !valid_inferred_mode(connector, newmode)) {
3754 			drm_mode_destroy(dev, newmode);
3755 			continue;
3756 		}
3757 
3758 		drm_mode_probed_add(connector, newmode);
3759 		modes++;
3760 	}
3761 
3762 	return modes;
3763 }
3764 
drm_gtf2_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3765 static int drm_gtf2_modes_for_range(struct drm_connector *connector,
3766 				    const struct drm_edid *drm_edid,
3767 				    const struct detailed_timing *timing)
3768 {
3769 	int i, modes = 0;
3770 	struct drm_display_mode *newmode;
3771 	struct drm_device *dev = connector->dev;
3772 
3773 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3774 		const struct minimode *m = &extra_modes[i];
3775 
3776 		newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r);
3777 		if (!newmode)
3778 			return modes;
3779 
3780 		drm_mode_fixup_1366x768(newmode);
3781 		if (!mode_in_range(newmode, drm_edid, timing) ||
3782 		    !valid_inferred_mode(connector, newmode)) {
3783 			drm_mode_destroy(dev, newmode);
3784 			continue;
3785 		}
3786 
3787 		drm_mode_probed_add(connector, newmode);
3788 		modes++;
3789 	}
3790 
3791 	return modes;
3792 }
3793 
drm_cvt_modes_for_range(struct drm_connector * connector,const struct drm_edid * drm_edid,const struct detailed_timing * timing)3794 static int drm_cvt_modes_for_range(struct drm_connector *connector,
3795 				   const struct drm_edid *drm_edid,
3796 				   const struct detailed_timing *timing)
3797 {
3798 	int i, modes = 0;
3799 	struct drm_display_mode *newmode;
3800 	struct drm_device *dev = connector->dev;
3801 	bool rb = drm_monitor_supports_rb(drm_edid);
3802 
3803 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
3804 		const struct minimode *m = &extra_modes[i];
3805 
3806 		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
3807 		if (!newmode)
3808 			return modes;
3809 
3810 		drm_mode_fixup_1366x768(newmode);
3811 		if (!mode_in_range(newmode, drm_edid, timing) ||
3812 		    !valid_inferred_mode(connector, newmode)) {
3813 			drm_mode_destroy(dev, newmode);
3814 			continue;
3815 		}
3816 
3817 		drm_mode_probed_add(connector, newmode);
3818 		modes++;
3819 	}
3820 
3821 	return modes;
3822 }
3823 
3824 static void
do_inferred_modes(const struct detailed_timing * timing,void * c)3825 do_inferred_modes(const struct detailed_timing *timing, void *c)
3826 {
3827 	struct detailed_mode_closure *closure = c;
3828 	const struct detailed_non_pixel *data = &timing->data.other_data;
3829 	const struct detailed_data_monitor_range *range = &data->data.range;
3830 
3831 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
3832 		return;
3833 
3834 	closure->modes += drm_dmt_modes_for_range(closure->connector,
3835 						  closure->drm_edid,
3836 						  timing);
3837 
3838 	if (closure->drm_edid->edid->revision < 2)
3839 		return; /* GTF not defined yet */
3840 
3841 	switch (range->flags) {
3842 	case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG:
3843 		closure->modes += drm_gtf2_modes_for_range(closure->connector,
3844 							   closure->drm_edid,
3845 							   timing);
3846 		break;
3847 	case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG:
3848 		closure->modes += drm_gtf_modes_for_range(closure->connector,
3849 							  closure->drm_edid,
3850 							  timing);
3851 		break;
3852 	case DRM_EDID_CVT_SUPPORT_FLAG:
3853 		if (closure->drm_edid->edid->revision < 4)
3854 			break;
3855 
3856 		closure->modes += drm_cvt_modes_for_range(closure->connector,
3857 							  closure->drm_edid,
3858 							  timing);
3859 		break;
3860 	case DRM_EDID_RANGE_LIMITS_ONLY_FLAG:
3861 	default:
3862 		break;
3863 	}
3864 }
3865 
add_inferred_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3866 static int add_inferred_modes(struct drm_connector *connector,
3867 			      const struct drm_edid *drm_edid)
3868 {
3869 	struct detailed_mode_closure closure = {
3870 		.connector = connector,
3871 		.drm_edid = drm_edid,
3872 	};
3873 
3874 	if (drm_edid->edid->revision >= 1)
3875 		drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure);
3876 
3877 	return closure.modes;
3878 }
3879 
3880 static int
drm_est3_modes(struct drm_connector * connector,const struct detailed_timing * timing)3881 drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing)
3882 {
3883 	int i, j, m, modes = 0;
3884 	struct drm_display_mode *mode;
3885 	const u8 *est = ((const u8 *)timing) + 6;
3886 
3887 	for (i = 0; i < 6; i++) {
3888 		for (j = 7; j >= 0; j--) {
3889 			m = (i * 8) + (7 - j);
3890 			if (m >= ARRAY_SIZE(est3_modes))
3891 				break;
3892 			if (est[i] & (1 << j)) {
3893 				mode = drm_mode_find_dmt(connector->dev,
3894 							 est3_modes[m].w,
3895 							 est3_modes[m].h,
3896 							 est3_modes[m].r,
3897 							 est3_modes[m].rb);
3898 				if (mode) {
3899 					drm_mode_probed_add(connector, mode);
3900 					modes++;
3901 				}
3902 			}
3903 		}
3904 	}
3905 
3906 	return modes;
3907 }
3908 
3909 static void
do_established_modes(const struct detailed_timing * timing,void * c)3910 do_established_modes(const struct detailed_timing *timing, void *c)
3911 {
3912 	struct detailed_mode_closure *closure = c;
3913 
3914 	if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS))
3915 		return;
3916 
3917 	closure->modes += drm_est3_modes(closure->connector, timing);
3918 }
3919 
3920 /*
3921  * Get established modes from EDID and add them. Each EDID block contains a
3922  * bitmap of the supported "established modes" list (defined above). Tease them
3923  * out and add them to the global modes list.
3924  */
add_established_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3925 static int add_established_modes(struct drm_connector *connector,
3926 				 const struct drm_edid *drm_edid)
3927 {
3928 	struct drm_device *dev = connector->dev;
3929 	const struct edid *edid = drm_edid->edid;
3930 	unsigned long est_bits = edid->established_timings.t1 |
3931 		(edid->established_timings.t2 << 8) |
3932 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
3933 	int i, modes = 0;
3934 	struct detailed_mode_closure closure = {
3935 		.connector = connector,
3936 		.drm_edid = drm_edid,
3937 	};
3938 
3939 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
3940 		if (est_bits & (1<<i)) {
3941 			struct drm_display_mode *newmode;
3942 
3943 			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
3944 			if (newmode) {
3945 				drm_mode_probed_add(connector, newmode);
3946 				modes++;
3947 			}
3948 		}
3949 	}
3950 
3951 	if (edid->revision >= 1)
3952 		drm_for_each_detailed_block(drm_edid, do_established_modes,
3953 					    &closure);
3954 
3955 	return modes + closure.modes;
3956 }
3957 
3958 static void
do_standard_modes(const struct detailed_timing * timing,void * c)3959 do_standard_modes(const struct detailed_timing *timing, void *c)
3960 {
3961 	struct detailed_mode_closure *closure = c;
3962 	const struct detailed_non_pixel *data = &timing->data.other_data;
3963 	struct drm_connector *connector = closure->connector;
3964 	int i;
3965 
3966 	if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES))
3967 		return;
3968 
3969 	for (i = 0; i < 6; i++) {
3970 		const struct std_timing *std = &data->data.timings[i];
3971 		struct drm_display_mode *newmode;
3972 
3973 		newmode = drm_mode_std(connector, closure->drm_edid, std);
3974 		if (newmode) {
3975 			drm_mode_probed_add(connector, newmode);
3976 			closure->modes++;
3977 		}
3978 	}
3979 }
3980 
3981 /*
3982  * Get standard modes from EDID and add them. Standard modes can be calculated
3983  * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and
3984  * add them to the list.
3985  */
add_standard_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)3986 static int add_standard_modes(struct drm_connector *connector,
3987 			      const struct drm_edid *drm_edid)
3988 {
3989 	int i, modes = 0;
3990 	struct detailed_mode_closure closure = {
3991 		.connector = connector,
3992 		.drm_edid = drm_edid,
3993 	};
3994 
3995 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
3996 		struct drm_display_mode *newmode;
3997 
3998 		newmode = drm_mode_std(connector, drm_edid,
3999 				       &drm_edid->edid->standard_timings[i]);
4000 		if (newmode) {
4001 			drm_mode_probed_add(connector, newmode);
4002 			modes++;
4003 		}
4004 	}
4005 
4006 	if (drm_edid->edid->revision >= 1)
4007 		drm_for_each_detailed_block(drm_edid, do_standard_modes,
4008 					    &closure);
4009 
4010 	/* XXX should also look for standard codes in VTB blocks */
4011 
4012 	return modes + closure.modes;
4013 }
4014 
drm_cvt_modes(struct drm_connector * connector,const struct detailed_timing * timing)4015 static int drm_cvt_modes(struct drm_connector *connector,
4016 			 const struct detailed_timing *timing)
4017 {
4018 	int i, j, modes = 0;
4019 	struct drm_display_mode *newmode;
4020 	struct drm_device *dev = connector->dev;
4021 	const struct cvt_timing *cvt;
4022 	static const int rates[] = { 60, 85, 75, 60, 50 };
4023 	const u8 empty[3] = { 0, 0, 0 };
4024 
4025 	for (i = 0; i < 4; i++) {
4026 		int width, height;
4027 
4028 		cvt = &(timing->data.other_data.data.cvt[i]);
4029 
4030 		if (!memcmp(cvt->code, empty, 3))
4031 			continue;
4032 
4033 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4034 		switch (cvt->code[1] & 0x0c) {
4035 		/* default - because compiler doesn't see that we've enumerated all cases */
4036 		default:
4037 		case 0x00:
4038 			width = height * 4 / 3;
4039 			break;
4040 		case 0x04:
4041 			width = height * 16 / 9;
4042 			break;
4043 		case 0x08:
4044 			width = height * 16 / 10;
4045 			break;
4046 		case 0x0c:
4047 			width = height * 15 / 9;
4048 			break;
4049 		}
4050 
4051 		for (j = 1; j < 5; j++) {
4052 			if (cvt->code[2] & (1 << j)) {
4053 				newmode = drm_cvt_mode(dev, width, height,
4054 						       rates[j], j == 0,
4055 						       false, false);
4056 				if (newmode) {
4057 					drm_mode_probed_add(connector, newmode);
4058 					modes++;
4059 				}
4060 			}
4061 		}
4062 	}
4063 
4064 	return modes;
4065 }
4066 
4067 static void
do_cvt_mode(const struct detailed_timing * timing,void * c)4068 do_cvt_mode(const struct detailed_timing *timing, void *c)
4069 {
4070 	struct detailed_mode_closure *closure = c;
4071 
4072 	if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE))
4073 		return;
4074 
4075 	closure->modes += drm_cvt_modes(closure->connector, timing);
4076 }
4077 
4078 static int
add_cvt_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4079 add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid)
4080 {
4081 	struct detailed_mode_closure closure = {
4082 		.connector = connector,
4083 		.drm_edid = drm_edid,
4084 	};
4085 
4086 	if (drm_edid->edid->revision >= 3)
4087 		drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure);
4088 
4089 	/* XXX should also look for CVT codes in VTB blocks */
4090 
4091 	return closure.modes;
4092 }
4093 
4094 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
4095 					  struct drm_display_mode *mode);
4096 
4097 static void
do_detailed_mode(const struct detailed_timing * timing,void * c)4098 do_detailed_mode(const struct detailed_timing *timing, void *c)
4099 {
4100 	struct detailed_mode_closure *closure = c;
4101 	struct drm_display_mode *newmode;
4102 
4103 	if (!is_detailed_timing_descriptor(timing))
4104 		return;
4105 
4106 	newmode = drm_mode_detailed(closure->connector,
4107 				    closure->drm_edid, timing);
4108 	if (!newmode)
4109 		return;
4110 
4111 	if (closure->preferred)
4112 		newmode->type |= DRM_MODE_TYPE_PREFERRED;
4113 
4114 	/*
4115 	 * Detailed modes are limited to 10kHz pixel clock resolution,
4116 	 * so fix up anything that looks like CEA/HDMI mode, but the clock
4117 	 * is just slightly off.
4118 	 */
4119 	fixup_detailed_cea_mode_clock(closure->connector, newmode);
4120 
4121 	drm_mode_probed_add(closure->connector, newmode);
4122 	closure->modes++;
4123 	closure->preferred = false;
4124 }
4125 
4126 /*
4127  * add_detailed_modes - Add modes from detailed timings
4128  * @connector: attached connector
4129  * @drm_edid: EDID block to scan
4130  */
add_detailed_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4131 static int add_detailed_modes(struct drm_connector *connector,
4132 			      const struct drm_edid *drm_edid)
4133 {
4134 	struct detailed_mode_closure closure = {
4135 		.connector = connector,
4136 		.drm_edid = drm_edid,
4137 	};
4138 
4139 	if (drm_edid->edid->revision >= 4)
4140 		closure.preferred = true; /* first detailed timing is always preferred */
4141 	else
4142 		closure.preferred =
4143 			drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING;
4144 
4145 	drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure);
4146 
4147 	return closure.modes;
4148 }
4149 
4150 /* CTA-861-H Table 60 - CTA Tag Codes */
4151 #define CTA_DB_AUDIO			1
4152 #define CTA_DB_VIDEO			2
4153 #define CTA_DB_VENDOR			3
4154 #define CTA_DB_SPEAKER			4
4155 #define CTA_DB_EXTENDED_TAG		7
4156 
4157 /* CTA-861-H Table 62 - CTA Extended Tag Codes */
4158 #define CTA_EXT_DB_VIDEO_CAP		0
4159 #define CTA_EXT_DB_VENDOR		1
4160 #define CTA_EXT_DB_HDR_STATIC_METADATA	6
4161 #define CTA_EXT_DB_420_VIDEO_DATA	14
4162 #define CTA_EXT_DB_420_VIDEO_CAP_MAP	15
4163 #define CTA_EXT_DB_HF_EEODB		0x78
4164 #define CTA_EXT_DB_HF_SCDB		0x79
4165 
4166 #define EDID_BASIC_AUDIO	(1 << 6)
4167 #define EDID_CEA_YCRCB444	(1 << 5)
4168 #define EDID_CEA_YCRCB422	(1 << 4)
4169 #define EDID_CEA_VCDB_QS	(1 << 6)
4170 
4171 /*
4172  * Search EDID for CEA extension block.
4173  *
4174  * FIXME: Prefer not returning pointers to raw EDID data.
4175  */
drm_edid_find_extension(const struct drm_edid * drm_edid,int ext_id,int * ext_index)4176 const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid,
4177 				  int ext_id, int *ext_index)
4178 {
4179 	const u8 *edid_ext = NULL;
4180 	int i;
4181 
4182 	/* No EDID or EDID extensions */
4183 	if (!drm_edid || !drm_edid_extension_block_count(drm_edid))
4184 		return NULL;
4185 
4186 	/* Find CEA extension */
4187 	for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) {
4188 		edid_ext = drm_edid_extension_block_data(drm_edid, i);
4189 		if (edid_block_tag(edid_ext) == ext_id)
4190 			break;
4191 	}
4192 
4193 	if (i >= drm_edid_extension_block_count(drm_edid))
4194 		return NULL;
4195 
4196 	*ext_index = i + 1;
4197 
4198 	return edid_ext;
4199 }
4200 
4201 /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */
drm_edid_has_cta_extension(const struct drm_edid * drm_edid)4202 static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid)
4203 {
4204 	const struct displayid_block *block;
4205 	struct displayid_iter iter;
4206 	struct drm_edid_iter edid_iter;
4207 	const u8 *ext;
4208 	bool found = false;
4209 
4210 	/* Look for a top level CEA extension block */
4211 	drm_edid_iter_begin(drm_edid, &edid_iter);
4212 	drm_edid_iter_for_each(ext, &edid_iter) {
4213 		if (ext[0] == CEA_EXT) {
4214 			found = true;
4215 			break;
4216 		}
4217 	}
4218 	drm_edid_iter_end(&edid_iter);
4219 
4220 	if (found)
4221 		return true;
4222 
4223 	/* CEA blocks can also be found embedded in a DisplayID block */
4224 	displayid_iter_edid_begin(drm_edid, &iter);
4225 	displayid_iter_for_each(block, &iter) {
4226 		if (block->tag == DATA_BLOCK_CTA) {
4227 			found = true;
4228 			break;
4229 		}
4230 	}
4231 	displayid_iter_end(&iter);
4232 
4233 	return found;
4234 }
4235 
cea_mode_for_vic(u8 vic)4236 static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic)
4237 {
4238 	BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127);
4239 	BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219);
4240 
4241 	if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
4242 		return &edid_cea_modes_1[vic - 1];
4243 	if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
4244 		return &edid_cea_modes_193[vic - 193];
4245 	return NULL;
4246 }
4247 
cea_num_vics(void)4248 static u8 cea_num_vics(void)
4249 {
4250 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
4251 }
4252 
cea_next_vic(u8 vic)4253 static u8 cea_next_vic(u8 vic)
4254 {
4255 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
4256 		vic = 193;
4257 	return vic;
4258 }
4259 
4260 /*
4261  * Calculate the alternate clock for the CEA mode
4262  * (60Hz vs. 59.94Hz etc.)
4263  */
4264 static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode * cea_mode)4265 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
4266 {
4267 	unsigned int clock = cea_mode->clock;
4268 
4269 	if (drm_mode_vrefresh(cea_mode) % 6 != 0)
4270 		return clock;
4271 
4272 	/*
4273 	 * edid_cea_modes contains the 59.94Hz
4274 	 * variant for 240 and 480 line modes,
4275 	 * and the 60Hz variant otherwise.
4276 	 */
4277 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
4278 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
4279 	else
4280 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
4281 
4282 	return clock;
4283 }
4284 
4285 static bool
cea_mode_alternate_timings(u8 vic,struct drm_display_mode * mode)4286 cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode)
4287 {
4288 	/*
4289 	 * For certain VICs the spec allows the vertical
4290 	 * front porch to vary by one or two lines.
4291 	 *
4292 	 * cea_modes[] stores the variant with the shortest
4293 	 * vertical front porch. We can adjust the mode to
4294 	 * get the other variants by simply increasing the
4295 	 * vertical front porch length.
4296 	 */
4297 	BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 ||
4298 		     cea_mode_for_vic(9)->vtotal != 262 ||
4299 		     cea_mode_for_vic(12)->vtotal != 262 ||
4300 		     cea_mode_for_vic(13)->vtotal != 262 ||
4301 		     cea_mode_for_vic(23)->vtotal != 312 ||
4302 		     cea_mode_for_vic(24)->vtotal != 312 ||
4303 		     cea_mode_for_vic(27)->vtotal != 312 ||
4304 		     cea_mode_for_vic(28)->vtotal != 312);
4305 
4306 	if (((vic == 8 || vic == 9 ||
4307 	      vic == 12 || vic == 13) && mode->vtotal < 263) ||
4308 	    ((vic == 23 || vic == 24 ||
4309 	      vic == 27 || vic == 28) && mode->vtotal < 314)) {
4310 		mode->vsync_start++;
4311 		mode->vsync_end++;
4312 		mode->vtotal++;
4313 
4314 		return true;
4315 	}
4316 
4317 	return false;
4318 }
4319 
drm_match_cea_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4320 static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4321 					     unsigned int clock_tolerance)
4322 {
4323 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4324 	u8 vic;
4325 
4326 	if (!to_match->clock)
4327 		return 0;
4328 
4329 	if (to_match->picture_aspect_ratio)
4330 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4331 
4332 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4333 		struct drm_display_mode cea_mode;
4334 		unsigned int clock1, clock2;
4335 
4336 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4337 
4338 		/* Check both 60Hz and 59.94Hz */
4339 		clock1 = cea_mode.clock;
4340 		clock2 = cea_mode_alternate_clock(&cea_mode);
4341 
4342 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4343 		    abs(to_match->clock - clock2) > clock_tolerance)
4344 			continue;
4345 
4346 		do {
4347 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4348 				return vic;
4349 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4350 	}
4351 
4352 	return 0;
4353 }
4354 
4355 /**
4356  * drm_match_cea_mode - look for a CEA mode matching given mode
4357  * @to_match: display mode
4358  *
4359  * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
4360  * mode.
4361  */
drm_match_cea_mode(const struct drm_display_mode * to_match)4362 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
4363 {
4364 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4365 	u8 vic;
4366 
4367 	if (!to_match->clock)
4368 		return 0;
4369 
4370 	if (to_match->picture_aspect_ratio)
4371 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4372 
4373 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4374 		struct drm_display_mode cea_mode;
4375 		unsigned int clock1, clock2;
4376 
4377 		drm_mode_init(&cea_mode, cea_mode_for_vic(vic));
4378 
4379 		/* Check both 60Hz and 59.94Hz */
4380 		clock1 = cea_mode.clock;
4381 		clock2 = cea_mode_alternate_clock(&cea_mode);
4382 
4383 		if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) &&
4384 		    KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2))
4385 			continue;
4386 
4387 		do {
4388 			if (drm_mode_match(to_match, &cea_mode, match_flags))
4389 				return vic;
4390 		} while (cea_mode_alternate_timings(vic, &cea_mode));
4391 	}
4392 
4393 	return 0;
4394 }
4395 EXPORT_SYMBOL(drm_match_cea_mode);
4396 
drm_valid_cea_vic(u8 vic)4397 static bool drm_valid_cea_vic(u8 vic)
4398 {
4399 	return cea_mode_for_vic(vic) != NULL;
4400 }
4401 
drm_get_cea_aspect_ratio(const u8 video_code)4402 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
4403 {
4404 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
4405 
4406 	if (mode)
4407 		return mode->picture_aspect_ratio;
4408 
4409 	return HDMI_PICTURE_ASPECT_NONE;
4410 }
4411 
drm_get_hdmi_aspect_ratio(const u8 video_code)4412 static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code)
4413 {
4414 	return edid_4k_modes[video_code].picture_aspect_ratio;
4415 }
4416 
4417 /*
4418  * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
4419  * specific block).
4420  */
4421 static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode * hdmi_mode)4422 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4423 {
4424 	return cea_mode_alternate_clock(hdmi_mode);
4425 }
4426 
drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4427 static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4428 					      unsigned int clock_tolerance)
4429 {
4430 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4431 	u8 vic;
4432 
4433 	if (!to_match->clock)
4434 		return 0;
4435 
4436 	if (to_match->picture_aspect_ratio)
4437 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4438 
4439 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4440 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4441 		unsigned int clock1, clock2;
4442 
4443 		/* Make sure to also match alternate clocks */
4444 		clock1 = hdmi_mode->clock;
4445 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4446 
4447 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4448 		    abs(to_match->clock - clock2) > clock_tolerance)
4449 			continue;
4450 
4451 		if (drm_mode_match(to_match, hdmi_mode, match_flags))
4452 			return vic;
4453 	}
4454 
4455 	return 0;
4456 }
4457 
4458 /*
4459  * drm_match_hdmi_mode - look for a HDMI mode matching given mode
4460  * @to_match: display mode
4461  *
4462  * An HDMI mode is one defined in the HDMI vendor specific block.
4463  *
4464  * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
4465  */
drm_match_hdmi_mode(const struct drm_display_mode * to_match)4466 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4467 {
4468 	unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS;
4469 	u8 vic;
4470 
4471 	if (!to_match->clock)
4472 		return 0;
4473 
4474 	if (to_match->picture_aspect_ratio)
4475 		match_flags |= DRM_MODE_MATCH_ASPECT_RATIO;
4476 
4477 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4478 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4479 		unsigned int clock1, clock2;
4480 
4481 		/* Make sure to also match alternate clocks */
4482 		clock1 = hdmi_mode->clock;
4483 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4484 
4485 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4486 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4487 		    drm_mode_match(to_match, hdmi_mode, match_flags))
4488 			return vic;
4489 	}
4490 	return 0;
4491 }
4492 
drm_valid_hdmi_vic(u8 vic)4493 static bool drm_valid_hdmi_vic(u8 vic)
4494 {
4495 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
4496 }
4497 
add_alternate_cea_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)4498 static int add_alternate_cea_modes(struct drm_connector *connector,
4499 				   const struct drm_edid *drm_edid)
4500 {
4501 	struct drm_device *dev = connector->dev;
4502 	struct drm_display_mode *mode, *tmp;
4503 	LIST_HEAD(list);
4504 	int modes = 0;
4505 
4506 	/* Don't add CTA modes if the CTA extension block is missing */
4507 	if (!drm_edid_has_cta_extension(drm_edid))
4508 		return 0;
4509 
4510 	/*
4511 	 * Go through all probed modes and create a new mode
4512 	 * with the alternate clock for certain CEA modes.
4513 	 */
4514 	list_for_each_entry(mode, &connector->probed_modes, head) {
4515 		const struct drm_display_mode *cea_mode = NULL;
4516 		struct drm_display_mode *newmode;
4517 		u8 vic = drm_match_cea_mode(mode);
4518 		unsigned int clock1, clock2;
4519 
4520 		if (drm_valid_cea_vic(vic)) {
4521 			cea_mode = cea_mode_for_vic(vic);
4522 			clock2 = cea_mode_alternate_clock(cea_mode);
4523 		} else {
4524 			vic = drm_match_hdmi_mode(mode);
4525 			if (drm_valid_hdmi_vic(vic)) {
4526 				cea_mode = &edid_4k_modes[vic];
4527 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4528 			}
4529 		}
4530 
4531 		if (!cea_mode)
4532 			continue;
4533 
4534 		clock1 = cea_mode->clock;
4535 
4536 		if (clock1 == clock2)
4537 			continue;
4538 
4539 		if (mode->clock != clock1 && mode->clock != clock2)
4540 			continue;
4541 
4542 		newmode = drm_mode_duplicate(dev, cea_mode);
4543 		if (!newmode)
4544 			continue;
4545 
4546 		/* Carry over the stereo flags */
4547 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4548 
4549 		/*
4550 		 * The current mode could be either variant. Make
4551 		 * sure to pick the "other" clock for the new mode.
4552 		 */
4553 		if (mode->clock != clock1)
4554 			newmode->clock = clock1;
4555 		else
4556 			newmode->clock = clock2;
4557 
4558 		list_add_tail(&newmode->head, &list);
4559 	}
4560 
4561 	list_for_each_entry_safe(mode, tmp, &list, head) {
4562 		list_del(&mode->head);
4563 		drm_mode_probed_add(connector, mode);
4564 		modes++;
4565 	}
4566 
4567 	return modes;
4568 }
4569 
svd_to_vic(u8 svd)4570 static u8 svd_to_vic(u8 svd)
4571 {
4572 	/* 0-6 bit vic, 7th bit native mode indicator */
4573 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
4574 		return svd & 127;
4575 
4576 	return svd;
4577 }
4578 
4579 /*
4580  * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in
4581  * the EDID, or NULL on errors.
4582  */
4583 static struct drm_display_mode *
drm_display_mode_from_vic_index(struct drm_connector * connector,int vic_index)4584 drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index)
4585 {
4586 	const struct drm_display_info *info = &connector->display_info;
4587 	struct drm_device *dev = connector->dev;
4588 
4589 	if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index])
4590 		return NULL;
4591 
4592 	return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]);
4593 }
4594 
4595 /*
4596  * do_y420vdb_modes - Parse YCBCR 420 only modes
4597  * @connector: connector corresponding to the HDMI sink
4598  * @svds: start of the data block of CEA YCBCR 420 VDB
4599  * @len: length of the CEA YCBCR 420 VDB
4600  *
4601  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
4602  * which contains modes which can be supported in YCBCR 420
4603  * output format only.
4604  */
do_y420vdb_modes(struct drm_connector * connector,const u8 * svds,u8 svds_len)4605 static int do_y420vdb_modes(struct drm_connector *connector,
4606 			    const u8 *svds, u8 svds_len)
4607 {
4608 	struct drm_device *dev = connector->dev;
4609 	int modes = 0, i;
4610 
4611 	for (i = 0; i < svds_len; i++) {
4612 		u8 vic = svd_to_vic(svds[i]);
4613 		struct drm_display_mode *newmode;
4614 
4615 		if (!drm_valid_cea_vic(vic))
4616 			continue;
4617 
4618 		newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic));
4619 		if (!newmode)
4620 			break;
4621 		drm_mode_probed_add(connector, newmode);
4622 		modes++;
4623 	}
4624 
4625 	return modes;
4626 }
4627 
4628 /**
4629  * drm_display_mode_from_cea_vic() - return a mode for CEA VIC
4630  * @dev: DRM device
4631  * @video_code: CEA VIC of the mode
4632  *
4633  * Creates a new mode matching the specified CEA VIC.
4634  *
4635  * Returns: A new drm_display_mode on success or NULL on failure
4636  */
4637 struct drm_display_mode *
drm_display_mode_from_cea_vic(struct drm_device * dev,u8 video_code)4638 drm_display_mode_from_cea_vic(struct drm_device *dev,
4639 			      u8 video_code)
4640 {
4641 	const struct drm_display_mode *cea_mode;
4642 	struct drm_display_mode *newmode;
4643 
4644 	cea_mode = cea_mode_for_vic(video_code);
4645 	if (!cea_mode)
4646 		return NULL;
4647 
4648 	newmode = drm_mode_duplicate(dev, cea_mode);
4649 	if (!newmode)
4650 		return NULL;
4651 
4652 	return newmode;
4653 }
4654 EXPORT_SYMBOL(drm_display_mode_from_cea_vic);
4655 
4656 /* Add modes based on VICs parsed in parse_cta_vdb() */
add_cta_vdb_modes(struct drm_connector * connector)4657 static int add_cta_vdb_modes(struct drm_connector *connector)
4658 {
4659 	const struct drm_display_info *info = &connector->display_info;
4660 	int i, modes = 0;
4661 
4662 	if (!info->vics)
4663 		return 0;
4664 
4665 	for (i = 0; i < info->vics_len; i++) {
4666 		struct drm_display_mode *mode;
4667 
4668 		mode = drm_display_mode_from_vic_index(connector, i);
4669 		if (mode) {
4670 			drm_mode_probed_add(connector, mode);
4671 			modes++;
4672 		}
4673 	}
4674 
4675 	return modes;
4676 }
4677 
4678 struct stereo_mandatory_mode {
4679 	int width, height, vrefresh;
4680 	unsigned int flags;
4681 };
4682 
4683 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
4684 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4685 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
4686 	{ 1920, 1080, 50,
4687 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4688 	{ 1920, 1080, 60,
4689 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
4690 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4691 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
4692 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
4693 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
4694 };
4695 
4696 static bool
stereo_match_mandatory(const struct drm_display_mode * mode,const struct stereo_mandatory_mode * stereo_mode)4697 stereo_match_mandatory(const struct drm_display_mode *mode,
4698 		       const struct stereo_mandatory_mode *stereo_mode)
4699 {
4700 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
4701 
4702 	return mode->hdisplay == stereo_mode->width &&
4703 	       mode->vdisplay == stereo_mode->height &&
4704 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
4705 	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
4706 }
4707 
add_hdmi_mandatory_stereo_modes(struct drm_connector * connector)4708 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
4709 {
4710 	struct drm_device *dev = connector->dev;
4711 	const struct drm_display_mode *mode;
4712 	struct list_head stereo_modes;
4713 	int modes = 0, i;
4714 
4715 	INIT_LIST_HEAD(&stereo_modes);
4716 
4717 	list_for_each_entry(mode, &connector->probed_modes, head) {
4718 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
4719 			const struct stereo_mandatory_mode *mandatory;
4720 			struct drm_display_mode *new_mode;
4721 
4722 			if (!stereo_match_mandatory(mode,
4723 						    &stereo_mandatory_modes[i]))
4724 				continue;
4725 
4726 			mandatory = &stereo_mandatory_modes[i];
4727 			new_mode = drm_mode_duplicate(dev, mode);
4728 			if (!new_mode)
4729 				continue;
4730 
4731 			new_mode->flags |= mandatory->flags;
4732 			list_add_tail(&new_mode->head, &stereo_modes);
4733 			modes++;
4734 		}
4735 	}
4736 
4737 	list_splice_tail(&stereo_modes, &connector->probed_modes);
4738 
4739 	return modes;
4740 }
4741 
add_hdmi_mode(struct drm_connector * connector,u8 vic)4742 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
4743 {
4744 	struct drm_device *dev = connector->dev;
4745 	struct drm_display_mode *newmode;
4746 
4747 	if (!drm_valid_hdmi_vic(vic)) {
4748 		drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n",
4749 			connector->base.id, connector->name, vic);
4750 		return 0;
4751 	}
4752 
4753 	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
4754 	if (!newmode)
4755 		return 0;
4756 
4757 	drm_mode_probed_add(connector, newmode);
4758 
4759 	return 1;
4760 }
4761 
add_3d_struct_modes(struct drm_connector * connector,u16 structure,int vic_index)4762 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
4763 			       int vic_index)
4764 {
4765 	struct drm_display_mode *newmode;
4766 	int modes = 0;
4767 
4768 	if (structure & (1 << 0)) {
4769 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4770 		if (newmode) {
4771 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
4772 			drm_mode_probed_add(connector, newmode);
4773 			modes++;
4774 		}
4775 	}
4776 	if (structure & (1 << 6)) {
4777 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4778 		if (newmode) {
4779 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4780 			drm_mode_probed_add(connector, newmode);
4781 			modes++;
4782 		}
4783 	}
4784 	if (structure & (1 << 8)) {
4785 		newmode = drm_display_mode_from_vic_index(connector, vic_index);
4786 		if (newmode) {
4787 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4788 			drm_mode_probed_add(connector, newmode);
4789 			modes++;
4790 		}
4791 	}
4792 
4793 	return modes;
4794 }
4795 
hdmi_vsdb_latency_present(const u8 * db)4796 static bool hdmi_vsdb_latency_present(const u8 *db)
4797 {
4798 	return db[8] & BIT(7);
4799 }
4800 
hdmi_vsdb_i_latency_present(const u8 * db)4801 static bool hdmi_vsdb_i_latency_present(const u8 *db)
4802 {
4803 	return hdmi_vsdb_latency_present(db) && db[8] & BIT(6);
4804 }
4805 
hdmi_vsdb_latency_length(const u8 * db)4806 static int hdmi_vsdb_latency_length(const u8 *db)
4807 {
4808 	if (hdmi_vsdb_i_latency_present(db))
4809 		return 4;
4810 	else if (hdmi_vsdb_latency_present(db))
4811 		return 2;
4812 	else
4813 		return 0;
4814 }
4815 
4816 /*
4817  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
4818  * @connector: connector corresponding to the HDMI sink
4819  * @db: start of the CEA vendor specific block
4820  * @len: length of the CEA block payload, ie. one can access up to db[len]
4821  *
4822  * Parses the HDMI VSDB looking for modes to add to @connector. This function
4823  * also adds the stereo 3d modes when applicable.
4824  */
4825 static int
do_hdmi_vsdb_modes(struct drm_connector * connector,const u8 * db,u8 len)4826 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len)
4827 {
4828 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
4829 	u8 vic_len, hdmi_3d_len = 0;
4830 	u16 mask;
4831 	u16 structure_all;
4832 
4833 	if (len < 8)
4834 		goto out;
4835 
4836 	/* no HDMI_Video_Present */
4837 	if (!(db[8] & (1 << 5)))
4838 		goto out;
4839 
4840 	offset += hdmi_vsdb_latency_length(db);
4841 
4842 	/* the declared length is not long enough for the 2 first bytes
4843 	 * of additional video format capabilities */
4844 	if (len < (8 + offset + 2))
4845 		goto out;
4846 
4847 	/* 3D_Present */
4848 	offset++;
4849 	if (db[8 + offset] & (1 << 7)) {
4850 		modes += add_hdmi_mandatory_stereo_modes(connector);
4851 
4852 		/* 3D_Multi_present */
4853 		multi_present = (db[8 + offset] & 0x60) >> 5;
4854 	}
4855 
4856 	offset++;
4857 	vic_len = db[8 + offset] >> 5;
4858 	hdmi_3d_len = db[8 + offset] & 0x1f;
4859 
4860 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
4861 		u8 vic;
4862 
4863 		vic = db[9 + offset + i];
4864 		modes += add_hdmi_mode(connector, vic);
4865 	}
4866 	offset += 1 + vic_len;
4867 
4868 	if (multi_present == 1)
4869 		multi_len = 2;
4870 	else if (multi_present == 2)
4871 		multi_len = 4;
4872 	else
4873 		multi_len = 0;
4874 
4875 	if (len < (8 + offset + hdmi_3d_len - 1))
4876 		goto out;
4877 
4878 	if (hdmi_3d_len < multi_len)
4879 		goto out;
4880 
4881 	if (multi_present == 1 || multi_present == 2) {
4882 		/* 3D_Structure_ALL */
4883 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
4884 
4885 		/* check if 3D_MASK is present */
4886 		if (multi_present == 2)
4887 			mask = (db[10 + offset] << 8) | db[11 + offset];
4888 		else
4889 			mask = 0xffff;
4890 
4891 		for (i = 0; i < 16; i++) {
4892 			if (mask & (1 << i))
4893 				modes += add_3d_struct_modes(connector,
4894 							     structure_all, i);
4895 		}
4896 	}
4897 
4898 	offset += multi_len;
4899 
4900 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
4901 		int vic_index;
4902 		struct drm_display_mode *newmode = NULL;
4903 		unsigned int newflag = 0;
4904 		bool detail_present;
4905 
4906 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
4907 
4908 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
4909 			break;
4910 
4911 		/* 2D_VIC_order_X */
4912 		vic_index = db[8 + offset + i] >> 4;
4913 
4914 		/* 3D_Structure_X */
4915 		switch (db[8 + offset + i] & 0x0f) {
4916 		case 0:
4917 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
4918 			break;
4919 		case 6:
4920 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
4921 			break;
4922 		case 8:
4923 			/* 3D_Detail_X */
4924 			if ((db[9 + offset + i] >> 4) == 1)
4925 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
4926 			break;
4927 		}
4928 
4929 		if (newflag != 0) {
4930 			newmode = drm_display_mode_from_vic_index(connector,
4931 								  vic_index);
4932 
4933 			if (newmode) {
4934 				newmode->flags |= newflag;
4935 				drm_mode_probed_add(connector, newmode);
4936 				modes++;
4937 			}
4938 		}
4939 
4940 		if (detail_present)
4941 			i++;
4942 	}
4943 
4944 out:
4945 	return modes;
4946 }
4947 
4948 static int
cea_revision(const u8 * cea)4949 cea_revision(const u8 *cea)
4950 {
4951 	/*
4952 	 * FIXME is this correct for the DispID variant?
4953 	 * The DispID spec doesn't really specify whether
4954 	 * this is the revision of the CEA extension or
4955 	 * the DispID CEA data block. And the only value
4956 	 * given as an example is 0.
4957 	 */
4958 	return cea[1];
4959 }
4960 
4961 /*
4962  * CTA Data Block iterator.
4963  *
4964  * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID
4965  * CTA Data Blocks.
4966  *
4967  * struct cea_db *db:
4968  * struct cea_db_iter iter;
4969  *
4970  * cea_db_iter_edid_begin(edid, &iter);
4971  * cea_db_iter_for_each(db, &iter) {
4972  *         // do stuff with db
4973  * }
4974  * cea_db_iter_end(&iter);
4975  */
4976 struct cea_db_iter {
4977 	struct drm_edid_iter edid_iter;
4978 	struct displayid_iter displayid_iter;
4979 
4980 	/* Current Data Block Collection. */
4981 	const u8 *collection;
4982 
4983 	/* Current Data Block index in current collection. */
4984 	int index;
4985 
4986 	/* End index in current collection. */
4987 	int end;
4988 };
4989 
4990 /* CTA-861-H section 7.4 CTA Data BLock Collection */
4991 struct cea_db {
4992 	u8 tag_length;
4993 	u8 data[];
4994 } __packed;
4995 
cea_db_tag(const struct cea_db * db)4996 static int cea_db_tag(const struct cea_db *db)
4997 {
4998 	return db->tag_length >> 5;
4999 }
5000 
cea_db_payload_len(const void * _db)5001 static int cea_db_payload_len(const void *_db)
5002 {
5003 	/* FIXME: Transition to passing struct cea_db * everywhere. */
5004 	const struct cea_db *db = _db;
5005 
5006 	return db->tag_length & 0x1f;
5007 }
5008 
cea_db_data(const struct cea_db * db)5009 static const void *cea_db_data(const struct cea_db *db)
5010 {
5011 	return db->data;
5012 }
5013 
cea_db_is_extended_tag(const struct cea_db * db,int tag)5014 static bool cea_db_is_extended_tag(const struct cea_db *db, int tag)
5015 {
5016 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
5017 		cea_db_payload_len(db) >= 1 &&
5018 		db->data[0] == tag;
5019 }
5020 
cea_db_is_vendor(const struct cea_db * db,int vendor_oui)5021 static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui)
5022 {
5023 	const u8 *data = cea_db_data(db);
5024 
5025 	return cea_db_tag(db) == CTA_DB_VENDOR &&
5026 		cea_db_payload_len(db) >= 3 &&
5027 		oui(data[2], data[1], data[0]) == vendor_oui;
5028 }
5029 
cea_db_iter_edid_begin(const struct drm_edid * drm_edid,struct cea_db_iter * iter)5030 static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid,
5031 				   struct cea_db_iter *iter)
5032 {
5033 	memset(iter, 0, sizeof(*iter));
5034 
5035 	drm_edid_iter_begin(drm_edid, &iter->edid_iter);
5036 	displayid_iter_edid_begin(drm_edid, &iter->displayid_iter);
5037 }
5038 
5039 static const struct cea_db *
__cea_db_iter_current_block(const struct cea_db_iter * iter)5040 __cea_db_iter_current_block(const struct cea_db_iter *iter)
5041 {
5042 	const struct cea_db *db;
5043 
5044 	if (!iter->collection)
5045 		return NULL;
5046 
5047 	db = (const struct cea_db *)&iter->collection[iter->index];
5048 
5049 	if (iter->index + sizeof(*db) <= iter->end &&
5050 	    iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end)
5051 		return db;
5052 
5053 	return NULL;
5054 }
5055 
5056 /*
5057  * References:
5058  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5059  */
cea_db_collection_size(const u8 * cta)5060 static int cea_db_collection_size(const u8 *cta)
5061 {
5062 	u8 d = cta[2];
5063 
5064 	if (d < 4 || d > 127)
5065 		return 0;
5066 
5067 	return d - 4;
5068 }
5069 
5070 /*
5071  * References:
5072  * - VESA E-EDID v1.4
5073  * - CTA-861-H section 7.3.3 CTA Extension Version 3
5074  */
__cea_db_iter_edid_next(struct cea_db_iter * iter)5075 static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter)
5076 {
5077 	const u8 *ext;
5078 
5079 	drm_edid_iter_for_each(ext, &iter->edid_iter) {
5080 		int size;
5081 
5082 		/* Only support CTA Extension revision 3+ */
5083 		if (ext[0] != CEA_EXT || cea_revision(ext) < 3)
5084 			continue;
5085 
5086 		size = cea_db_collection_size(ext);
5087 		if (!size)
5088 			continue;
5089 
5090 		iter->index = 4;
5091 		iter->end = iter->index + size;
5092 
5093 		return ext;
5094 	}
5095 
5096 	return NULL;
5097 }
5098 
5099 /*
5100  * References:
5101  * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block
5102  * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block
5103  *
5104  * Note that the above do not specify any connection between DisplayID Data
5105  * Block revision and CTA Extension versions.
5106  */
__cea_db_iter_displayid_next(struct cea_db_iter * iter)5107 static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter)
5108 {
5109 	const struct displayid_block *block;
5110 
5111 	displayid_iter_for_each(block, &iter->displayid_iter) {
5112 		if (block->tag != DATA_BLOCK_CTA)
5113 			continue;
5114 
5115 		/*
5116 		 * The displayid iterator has already verified the block bounds
5117 		 * in displayid_iter_block().
5118 		 */
5119 		iter->index = sizeof(*block);
5120 		iter->end = iter->index + block->num_bytes;
5121 
5122 		return block;
5123 	}
5124 
5125 	return NULL;
5126 }
5127 
__cea_db_iter_next(struct cea_db_iter * iter)5128 static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter)
5129 {
5130 	const struct cea_db *db;
5131 
5132 	if (iter->collection) {
5133 		/* Current collection should always be valid. */
5134 		db = __cea_db_iter_current_block(iter);
5135 		if (WARN_ON(!db)) {
5136 			iter->collection = NULL;
5137 			return NULL;
5138 		}
5139 
5140 		/* Next block in CTA Data Block Collection */
5141 		iter->index += sizeof(*db) + cea_db_payload_len(db);
5142 
5143 		db = __cea_db_iter_current_block(iter);
5144 		if (db)
5145 			return db;
5146 	}
5147 
5148 	for (;;) {
5149 		/*
5150 		 * Find the next CTA Data Block Collection. First iterate all
5151 		 * the EDID CTA Extensions, then all the DisplayID CTA blocks.
5152 		 *
5153 		 * Per DisplayID v1.3 Appendix B: DisplayID as an EDID
5154 		 * Extension, it's recommended that DisplayID extensions are
5155 		 * exposed after all of the CTA Extensions.
5156 		 */
5157 		iter->collection = __cea_db_iter_edid_next(iter);
5158 		if (!iter->collection)
5159 			iter->collection = __cea_db_iter_displayid_next(iter);
5160 
5161 		if (!iter->collection)
5162 			return NULL;
5163 
5164 		db = __cea_db_iter_current_block(iter);
5165 		if (db)
5166 			return db;
5167 	}
5168 }
5169 
5170 #define cea_db_iter_for_each(__db, __iter) \
5171 	while (((__db) = __cea_db_iter_next(__iter)))
5172 
cea_db_iter_end(struct cea_db_iter * iter)5173 static void cea_db_iter_end(struct cea_db_iter *iter)
5174 {
5175 	displayid_iter_end(&iter->displayid_iter);
5176 	drm_edid_iter_end(&iter->edid_iter);
5177 
5178 	memset(iter, 0, sizeof(*iter));
5179 }
5180 
cea_db_is_hdmi_vsdb(const struct cea_db * db)5181 static bool cea_db_is_hdmi_vsdb(const struct cea_db *db)
5182 {
5183 	return cea_db_is_vendor(db, HDMI_IEEE_OUI) &&
5184 		cea_db_payload_len(db) >= 5;
5185 }
5186 
cea_db_is_hdmi_forum_vsdb(const struct cea_db * db)5187 static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db)
5188 {
5189 	return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) &&
5190 		cea_db_payload_len(db) >= 7;
5191 }
5192 
cea_db_is_hdmi_forum_eeodb(const void * db)5193 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
5194 {
5195 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
5196 		cea_db_payload_len(db) >= 2;
5197 }
5198 
cea_db_is_microsoft_vsdb(const struct cea_db * db)5199 static bool cea_db_is_microsoft_vsdb(const struct cea_db *db)
5200 {
5201 	return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) &&
5202 		cea_db_payload_len(db) == 21;
5203 }
5204 
cea_db_is_vcdb(const struct cea_db * db)5205 static bool cea_db_is_vcdb(const struct cea_db *db)
5206 {
5207 	return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) &&
5208 		cea_db_payload_len(db) == 2;
5209 }
5210 
cea_db_is_hdmi_forum_scdb(const struct cea_db * db)5211 static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db)
5212 {
5213 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) &&
5214 		cea_db_payload_len(db) >= 7;
5215 }
5216 
cea_db_is_y420cmdb(const struct cea_db * db)5217 static bool cea_db_is_y420cmdb(const struct cea_db *db)
5218 {
5219 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP);
5220 }
5221 
cea_db_is_y420vdb(const struct cea_db * db)5222 static bool cea_db_is_y420vdb(const struct cea_db *db)
5223 {
5224 	return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA);
5225 }
5226 
cea_db_is_hdmi_hdr_metadata_block(const struct cea_db * db)5227 static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db)
5228 {
5229 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) &&
5230 		cea_db_payload_len(db) >= 3;
5231 }
5232 
5233 /*
5234  * Get the HF-EEODB override extension block count from EDID.
5235  *
5236  * The passed in EDID may be partially read, as long as it has at least two
5237  * blocks (base block and one extension block) if EDID extension count is > 0.
5238  *
5239  * Note that this is *not* how you should parse CTA Data Blocks in general; this
5240  * is only to handle partially read EDIDs. Normally, use the CTA Data Block
5241  * iterators instead.
5242  *
5243  * References:
5244  * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block
5245  */
edid_hfeeodb_extension_block_count(const struct edid * edid)5246 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
5247 {
5248 	const u8 *cta;
5249 
5250 	/* No extensions according to base block, no HF-EEODB. */
5251 	if (!edid_extension_block_count(edid))
5252 		return 0;
5253 
5254 	/* HF-EEODB is always in the first EDID extension block only */
5255 	cta = edid_extension_block_data(edid, 0);
5256 	if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3)
5257 		return 0;
5258 
5259 	/* Need to have the data block collection, and at least 3 bytes. */
5260 	if (cea_db_collection_size(cta) < 3)
5261 		return 0;
5262 
5263 	/*
5264 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
5265 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
5266 	 * through 6 of Block 1 of the E-EDID.
5267 	 */
5268 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
5269 		return 0;
5270 
5271 	return cta[4 + 2];
5272 }
5273 
5274 /*
5275  * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB)
5276  *
5277  * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB,
5278  * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444
5279  * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can
5280  * support YCBCR420 output too.
5281  */
parse_cta_y420cmdb(struct drm_connector * connector,const struct cea_db * db,u64 * y420cmdb_map)5282 static void parse_cta_y420cmdb(struct drm_connector *connector,
5283 			       const struct cea_db *db, u64 *y420cmdb_map)
5284 {
5285 	struct drm_display_info *info = &connector->display_info;
5286 	int i, map_len = cea_db_payload_len(db) - 1;
5287 	const u8 *data = cea_db_data(db) + 1;
5288 	u64 map = 0;
5289 
5290 	if (map_len == 0) {
5291 		/* All CEA modes support ycbcr420 sampling also.*/
5292 		map = U64_MAX;
5293 		goto out;
5294 	}
5295 
5296 	/*
5297 	 * This map indicates which of the existing CEA block modes
5298 	 * from VDB can support YCBCR420 output too. So if bit=0 is
5299 	 * set, first mode from VDB can support YCBCR420 output too.
5300 	 * We will parse and keep this map, before parsing VDB itself
5301 	 * to avoid going through the same block again and again.
5302 	 *
5303 	 * Spec is not clear about max possible size of this block.
5304 	 * Clamping max bitmap block size at 8 bytes. Every byte can
5305 	 * address 8 CEA modes, in this way this map can address
5306 	 * 8*8 = first 64 SVDs.
5307 	 */
5308 	if (WARN_ON_ONCE(map_len > 8))
5309 		map_len = 8;
5310 
5311 	for (i = 0; i < map_len; i++)
5312 		map |= (u64)data[i] << (8 * i);
5313 
5314 out:
5315 	if (map)
5316 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
5317 
5318 	*y420cmdb_map = map;
5319 }
5320 
add_cea_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)5321 static int add_cea_modes(struct drm_connector *connector,
5322 			 const struct drm_edid *drm_edid)
5323 {
5324 	const struct cea_db *db;
5325 	struct cea_db_iter iter;
5326 	int modes;
5327 
5328 	/* CTA VDB block VICs parsed earlier */
5329 	modes = add_cta_vdb_modes(connector);
5330 
5331 	cea_db_iter_edid_begin(drm_edid, &iter);
5332 	cea_db_iter_for_each(db, &iter) {
5333 		if (cea_db_is_hdmi_vsdb(db)) {
5334 			modes += do_hdmi_vsdb_modes(connector, (const u8 *)db,
5335 						    cea_db_payload_len(db));
5336 		} else if (cea_db_is_y420vdb(db)) {
5337 			const u8 *vdb420 = cea_db_data(db) + 1;
5338 
5339 			/* Add 4:2:0(only) modes present in EDID */
5340 			modes += do_y420vdb_modes(connector, vdb420,
5341 						  cea_db_payload_len(db) - 1);
5342 		}
5343 	}
5344 	cea_db_iter_end(&iter);
5345 
5346 	return modes;
5347 }
5348 
fixup_detailed_cea_mode_clock(struct drm_connector * connector,struct drm_display_mode * mode)5349 static void fixup_detailed_cea_mode_clock(struct drm_connector *connector,
5350 					  struct drm_display_mode *mode)
5351 {
5352 	const struct drm_display_mode *cea_mode;
5353 	int clock1, clock2, clock;
5354 	u8 vic;
5355 	const char *type;
5356 
5357 	/*
5358 	 * allow 5kHz clock difference either way to account for
5359 	 * the 10kHz clock resolution limit of detailed timings.
5360 	 */
5361 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
5362 	if (drm_valid_cea_vic(vic)) {
5363 		type = "CEA";
5364 		cea_mode = cea_mode_for_vic(vic);
5365 		clock1 = cea_mode->clock;
5366 		clock2 = cea_mode_alternate_clock(cea_mode);
5367 	} else {
5368 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
5369 		if (drm_valid_hdmi_vic(vic)) {
5370 			type = "HDMI";
5371 			cea_mode = &edid_4k_modes[vic];
5372 			clock1 = cea_mode->clock;
5373 			clock2 = hdmi_mode_alternate_clock(cea_mode);
5374 		} else {
5375 			return;
5376 		}
5377 	}
5378 
5379 	/* pick whichever is closest */
5380 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
5381 		clock = clock1;
5382 	else
5383 		clock = clock2;
5384 
5385 	if (mode->clock == clock)
5386 		return;
5387 
5388 	drm_dbg_kms(connector->dev,
5389 		    "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
5390 		    connector->base.id, connector->name,
5391 		    type, vic, mode->clock, clock);
5392 	mode->clock = clock;
5393 }
5394 
drm_calculate_luminance_range(struct drm_connector * connector)5395 static void drm_calculate_luminance_range(struct drm_connector *connector)
5396 {
5397 	const struct hdr_static_metadata *hdr_metadata =
5398 		&connector->display_info.hdr_sink_metadata.hdmi_type1;
5399 	struct drm_luminance_range_info *luminance_range =
5400 		&connector->display_info.luminance_range;
5401 	static const u8 pre_computed_values[] = {
5402 		50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69,
5403 		71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98
5404 	};
5405 	u32 max_avg, min_cll, max, min, q, r;
5406 
5407 	if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1)))
5408 		return;
5409 
5410 	max_avg = hdr_metadata->max_fall;
5411 	min_cll = hdr_metadata->min_cll;
5412 
5413 	/*
5414 	 * From the specification (CTA-861-G), for calculating the maximum
5415 	 * luminance we need to use:
5416 	 *	Luminance = 50*2**(CV/32)
5417 	 * Where CV is a one-byte value.
5418 	 * For calculating this expression we may need float point precision;
5419 	 * to avoid this complexity level, we take advantage that CV is divided
5420 	 * by a constant. From the Euclids division algorithm, we know that CV
5421 	 * can be written as: CV = 32*q + r. Next, we replace CV in the
5422 	 * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just
5423 	 * need to pre-compute the value of r/32. For pre-computing the values
5424 	 * We just used the following Ruby line:
5425 	 *	(0...32).each {|cv| puts (50*2**(cv/32.0)).round}
5426 	 * The results of the above expressions can be verified at
5427 	 * pre_computed_values.
5428 	 */
5429 	q = max_avg >> 5;
5430 	r = max_avg % 32;
5431 	max = (1 << q) * pre_computed_values[r];
5432 
5433 	/* min luminance: maxLum * (CV/255)^2 / 100 */
5434 	q = DIV_ROUND_CLOSEST(min_cll, 255);
5435 	min = max * DIV_ROUND_CLOSEST((q * q), 100);
5436 
5437 	luminance_range->min_luminance = min;
5438 	luminance_range->max_luminance = max;
5439 }
5440 
eotf_supported(const u8 * edid_ext)5441 static uint8_t eotf_supported(const u8 *edid_ext)
5442 {
5443 	return edid_ext[2] &
5444 		(BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) |
5445 		 BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) |
5446 		 BIT(HDMI_EOTF_SMPTE_ST2084) |
5447 		 BIT(HDMI_EOTF_BT_2100_HLG));
5448 }
5449 
hdr_metadata_type(const u8 * edid_ext)5450 static uint8_t hdr_metadata_type(const u8 *edid_ext)
5451 {
5452 	return edid_ext[3] &
5453 		BIT(HDMI_STATIC_METADATA_TYPE1);
5454 }
5455 
5456 static void
drm_parse_hdr_metadata_block(struct drm_connector * connector,const u8 * db)5457 drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db)
5458 {
5459 	struct hdr_static_metadata *hdr_metadata =
5460 		&connector->display_info.hdr_sink_metadata.hdmi_type1;
5461 	u16 len;
5462 
5463 	len = cea_db_payload_len(db);
5464 
5465 	hdr_metadata->eotf = eotf_supported(db);
5466 	hdr_metadata->metadata_type = hdr_metadata_type(db);
5467 
5468 	if (len >= 4)
5469 		hdr_metadata->max_cll = db[4];
5470 	if (len >= 5)
5471 		hdr_metadata->max_fall = db[5];
5472 	if (len >= 6) {
5473 		hdr_metadata->min_cll = db[6];
5474 
5475 		/* Calculate only when all values are available */
5476 		drm_calculate_luminance_range(connector);
5477 	}
5478 }
5479 
5480 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
5481 static void
drm_parse_hdmi_vsdb_audio(struct drm_connector * connector,const u8 * db)5482 drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db)
5483 {
5484 	u8 len = cea_db_payload_len(db);
5485 
5486 	if (len >= 6 && (db[6] & (1 << 7)))
5487 		connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI;
5488 
5489 	if (len >= 10 && hdmi_vsdb_latency_present(db)) {
5490 		connector->latency_present[0] = true;
5491 		connector->video_latency[0] = db[9];
5492 		connector->audio_latency[0] = db[10];
5493 	}
5494 
5495 	if (len >= 12 && hdmi_vsdb_i_latency_present(db)) {
5496 		connector->latency_present[1] = true;
5497 		connector->video_latency[1] = db[11];
5498 		connector->audio_latency[1] = db[12];
5499 	}
5500 
5501 	drm_dbg_kms(connector->dev,
5502 		    "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n",
5503 		    connector->base.id, connector->name,
5504 		    connector->latency_present[0], connector->latency_present[1],
5505 		    connector->video_latency[0], connector->video_latency[1],
5506 		    connector->audio_latency[0], connector->audio_latency[1]);
5507 }
5508 
5509 static void
match_identity(const struct detailed_timing * timing,void * data)5510 match_identity(const struct detailed_timing *timing, void *data)
5511 {
5512 	struct drm_edid_match_closure *closure = data;
5513 	unsigned int i;
5514 	const char *name = closure->ident->name;
5515 	unsigned int name_len = strlen(name);
5516 	const char *desc = timing->data.other_data.data.str.str;
5517 	unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str);
5518 
5519 	if (name_len > desc_len ||
5520 	    !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) ||
5521 	      is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING)))
5522 		return;
5523 
5524 	if (strncmp(name, desc, name_len))
5525 		return;
5526 
5527 	for (i = name_len; i < desc_len; i++) {
5528 		if (desc[i] == '\n')
5529 			break;
5530 		/* Allow white space before EDID string terminator. */
5531 		if (!isspace(desc[i]))
5532 			return;
5533 	}
5534 
5535 	closure->matched = true;
5536 }
5537 
5538 /**
5539  * drm_edid_match - match drm_edid with given identity
5540  * @drm_edid: EDID
5541  * @ident: the EDID identity to match with
5542  *
5543  * Check if the EDID matches with the given identity.
5544  *
5545  * Return: True if the given identity matched with EDID, false otherwise.
5546  */
drm_edid_match(const struct drm_edid * drm_edid,const struct drm_edid_ident * ident)5547 bool drm_edid_match(const struct drm_edid *drm_edid,
5548 		    const struct drm_edid_ident *ident)
5549 {
5550 	if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id)
5551 		return false;
5552 
5553 	/* Match with name only if it's not NULL. */
5554 	if (ident->name) {
5555 		struct drm_edid_match_closure closure = {
5556 			.ident = ident,
5557 			.matched = false,
5558 		};
5559 
5560 		drm_for_each_detailed_block(drm_edid, match_identity, &closure);
5561 
5562 		return closure.matched;
5563 	}
5564 
5565 	return true;
5566 }
5567 EXPORT_SYMBOL(drm_edid_match);
5568 
5569 static void
monitor_name(const struct detailed_timing * timing,void * data)5570 monitor_name(const struct detailed_timing *timing, void *data)
5571 {
5572 	const char **res = data;
5573 
5574 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME))
5575 		return;
5576 
5577 	*res = timing->data.other_data.data.str.str;
5578 }
5579 
get_monitor_name(const struct drm_edid * drm_edid,char name[13])5580 static int get_monitor_name(const struct drm_edid *drm_edid, char name[13])
5581 {
5582 	const char *edid_name = NULL;
5583 	int mnl;
5584 
5585 	if (!drm_edid || !name)
5586 		return 0;
5587 
5588 	drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name);
5589 	for (mnl = 0; edid_name && mnl < 13; mnl++) {
5590 		if (edid_name[mnl] == 0x0a)
5591 			break;
5592 
5593 		name[mnl] = edid_name[mnl];
5594 	}
5595 
5596 	return mnl;
5597 }
5598 
5599 /**
5600  * drm_edid_get_monitor_name - fetch the monitor name from the edid
5601  * @edid: monitor EDID information
5602  * @name: pointer to a character array to hold the name of the monitor
5603  * @bufsize: The size of the name buffer (should be at least 14 chars.)
5604  *
5605  */
drm_edid_get_monitor_name(const struct edid * edid,char * name,int bufsize)5606 void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize)
5607 {
5608 	int name_length = 0;
5609 
5610 	if (bufsize <= 0)
5611 		return;
5612 
5613 	if (edid) {
5614 		char buf[13];
5615 		struct drm_edid drm_edid = {
5616 			.edid = edid,
5617 			.size = edid_size(edid),
5618 		};
5619 
5620 		name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1);
5621 		memcpy(name, buf, name_length);
5622 	}
5623 
5624 	name[name_length] = '\0';
5625 }
5626 EXPORT_SYMBOL(drm_edid_get_monitor_name);
5627 
clear_eld(struct drm_connector * connector)5628 static void clear_eld(struct drm_connector *connector)
5629 {
5630 	mutex_lock(&connector->eld_mutex);
5631 	memset(connector->eld, 0, sizeof(connector->eld));
5632 	mutex_unlock(&connector->eld_mutex);
5633 
5634 	connector->latency_present[0] = false;
5635 	connector->latency_present[1] = false;
5636 	connector->video_latency[0] = 0;
5637 	connector->audio_latency[0] = 0;
5638 	connector->video_latency[1] = 0;
5639 	connector->audio_latency[1] = 0;
5640 }
5641 
5642 /*
5643  * Get 3-byte SAD buffer from struct cea_sad.
5644  */
drm_edid_cta_sad_get(const struct cea_sad * cta_sad,u8 * sad)5645 void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad)
5646 {
5647 	sad[0] = cta_sad->format << 3 | cta_sad->channels;
5648 	sad[1] = cta_sad->freq;
5649 	sad[2] = cta_sad->byte2;
5650 }
5651 
5652 /*
5653  * Set struct cea_sad from 3-byte SAD buffer.
5654  */
drm_edid_cta_sad_set(struct cea_sad * cta_sad,const u8 * sad)5655 void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad)
5656 {
5657 	cta_sad->format = (sad[0] & 0x78) >> 3;
5658 	cta_sad->channels = sad[0] & 0x07;
5659 	cta_sad->freq = sad[1] & 0x7f;
5660 	cta_sad->byte2 = sad[2];
5661 }
5662 
5663 /*
5664  * drm_edid_to_eld - build ELD from EDID
5665  * @connector: connector corresponding to the HDMI/DP sink
5666  * @drm_edid: EDID to parse
5667  *
5668  * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
5669  * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
5670  */
drm_edid_to_eld(struct drm_connector * connector,const struct drm_edid * drm_edid)5671 static void drm_edid_to_eld(struct drm_connector *connector,
5672 			    const struct drm_edid *drm_edid)
5673 {
5674 	const struct drm_display_info *info = &connector->display_info;
5675 	const struct cea_db *db;
5676 	struct cea_db_iter iter;
5677 	uint8_t *eld = connector->eld;
5678 	int total_sad_count = 0;
5679 	int mnl;
5680 
5681 	if (!drm_edid)
5682 		return;
5683 
5684 	mutex_lock(&connector->eld_mutex);
5685 
5686 	mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]);
5687 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n",
5688 		    connector->base.id, connector->name,
5689 		    &eld[DRM_ELD_MONITOR_NAME_STRING]);
5690 
5691 	eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT;
5692 	eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl;
5693 
5694 	eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D;
5695 
5696 	eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0];
5697 	eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1];
5698 	eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0];
5699 	eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1];
5700 
5701 	cea_db_iter_edid_begin(drm_edid, &iter);
5702 	cea_db_iter_for_each(db, &iter) {
5703 		const u8 *data = cea_db_data(db);
5704 		int len = cea_db_payload_len(db);
5705 		int sad_count;
5706 
5707 		switch (cea_db_tag(db)) {
5708 		case CTA_DB_AUDIO:
5709 			/* Audio Data Block, contains SADs */
5710 			sad_count = min(len / 3, 15 - total_sad_count);
5711 			if (sad_count >= 1)
5712 				memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)],
5713 				       data, sad_count * 3);
5714 			total_sad_count += sad_count;
5715 			break;
5716 		case CTA_DB_SPEAKER:
5717 			/* Speaker Allocation Data Block */
5718 			if (len >= 1)
5719 				eld[DRM_ELD_SPEAKER] = data[0];
5720 			break;
5721 		case CTA_DB_VENDOR:
5722 			/* HDMI Vendor-Specific Data Block */
5723 			if (cea_db_is_hdmi_vsdb(db))
5724 				drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db);
5725 			break;
5726 		default:
5727 			break;
5728 		}
5729 	}
5730 	cea_db_iter_end(&iter);
5731 
5732 	eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT;
5733 
5734 	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5735 	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5736 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
5737 	else
5738 		eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
5739 
5740 	eld[DRM_ELD_BASELINE_ELD_LEN] =
5741 		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
5742 
5743 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n",
5744 		    connector->base.id, connector->name,
5745 		    drm_eld_size(eld), total_sad_count);
5746 
5747 	mutex_unlock(&connector->eld_mutex);
5748 }
5749 
_drm_edid_to_sad(const struct drm_edid * drm_edid,struct cea_sad ** psads)5750 static int _drm_edid_to_sad(const struct drm_edid *drm_edid,
5751 			    struct cea_sad **psads)
5752 {
5753 	const struct cea_db *db;
5754 	struct cea_db_iter iter;
5755 	int count = 0;
5756 
5757 	cea_db_iter_edid_begin(drm_edid, &iter);
5758 	cea_db_iter_for_each(db, &iter) {
5759 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5760 			struct cea_sad *sads;
5761 			int i;
5762 
5763 			count = cea_db_payload_len(db) / 3; /* SAD is 3B */
5764 			sads = kcalloc(count, sizeof(*sads), GFP_KERNEL);
5765 			*psads = sads;
5766 			if (!sads)
5767 				return -ENOMEM;
5768 			for (i = 0; i < count; i++)
5769 				drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]);
5770 			break;
5771 		}
5772 	}
5773 	cea_db_iter_end(&iter);
5774 
5775 	DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count);
5776 
5777 	return count;
5778 }
5779 
5780 /**
5781  * drm_edid_to_sad - extracts SADs from EDID
5782  * @edid: EDID to parse
5783  * @sads: pointer that will be set to the extracted SADs
5784  *
5785  * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
5786  *
5787  * Note: The returned pointer needs to be freed using kfree().
5788  *
5789  * Return: The number of found SADs or negative number on error.
5790  */
drm_edid_to_sad(const struct edid * edid,struct cea_sad ** sads)5791 int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads)
5792 {
5793 	struct drm_edid drm_edid;
5794 
5795 	return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads);
5796 }
5797 EXPORT_SYMBOL(drm_edid_to_sad);
5798 
_drm_edid_to_speaker_allocation(const struct drm_edid * drm_edid,u8 ** sadb)5799 static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid,
5800 					   u8 **sadb)
5801 {
5802 	const struct cea_db *db;
5803 	struct cea_db_iter iter;
5804 	int count = 0;
5805 
5806 	cea_db_iter_edid_begin(drm_edid, &iter);
5807 	cea_db_iter_for_each(db, &iter) {
5808 		if (cea_db_tag(db) == CTA_DB_SPEAKER &&
5809 		    cea_db_payload_len(db) == 3) {
5810 			*sadb = kmemdup(db->data, cea_db_payload_len(db),
5811 					GFP_KERNEL);
5812 			if (!*sadb)
5813 				return -ENOMEM;
5814 			count = cea_db_payload_len(db);
5815 			break;
5816 		}
5817 	}
5818 	cea_db_iter_end(&iter);
5819 
5820 	DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count);
5821 
5822 	return count;
5823 }
5824 
5825 /**
5826  * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
5827  * @edid: EDID to parse
5828  * @sadb: pointer to the speaker block
5829  *
5830  * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
5831  *
5832  * Note: The returned pointer needs to be freed using kfree().
5833  *
5834  * Return: The number of found Speaker Allocation Blocks or negative number on
5835  * error.
5836  */
drm_edid_to_speaker_allocation(const struct edid * edid,u8 ** sadb)5837 int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb)
5838 {
5839 	struct drm_edid drm_edid;
5840 
5841 	return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid),
5842 					       sadb);
5843 }
5844 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
5845 
5846 /**
5847  * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
5848  * @connector: connector associated with the HDMI/DP sink
5849  * @mode: the display mode
5850  *
5851  * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
5852  * the sink doesn't support audio or video.
5853  */
drm_av_sync_delay(struct drm_connector * connector,const struct drm_display_mode * mode)5854 int drm_av_sync_delay(struct drm_connector *connector,
5855 		      const struct drm_display_mode *mode)
5856 {
5857 	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
5858 	int a, v;
5859 
5860 	if (!connector->latency_present[0])
5861 		return 0;
5862 	if (!connector->latency_present[1])
5863 		i = 0;
5864 
5865 	a = connector->audio_latency[i];
5866 	v = connector->video_latency[i];
5867 
5868 	/*
5869 	 * HDMI/DP sink doesn't support audio or video?
5870 	 */
5871 	if (a == 255 || v == 255)
5872 		return 0;
5873 
5874 	/*
5875 	 * Convert raw EDID values to millisecond.
5876 	 * Treat unknown latency as 0ms.
5877 	 */
5878 	if (a)
5879 		a = min(2 * (a - 1), 500);
5880 	if (v)
5881 		v = min(2 * (v - 1), 500);
5882 
5883 	return max(v - a, 0);
5884 }
5885 EXPORT_SYMBOL(drm_av_sync_delay);
5886 
_drm_detect_hdmi_monitor(const struct drm_edid * drm_edid)5887 static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid)
5888 {
5889 	const struct cea_db *db;
5890 	struct cea_db_iter iter;
5891 	bool hdmi = false;
5892 
5893 	/*
5894 	 * Because HDMI identifier is in Vendor Specific Block,
5895 	 * search it from all data blocks of CEA extension.
5896 	 */
5897 	cea_db_iter_edid_begin(drm_edid, &iter);
5898 	cea_db_iter_for_each(db, &iter) {
5899 		if (cea_db_is_hdmi_vsdb(db)) {
5900 			hdmi = true;
5901 			break;
5902 		}
5903 	}
5904 	cea_db_iter_end(&iter);
5905 
5906 	return hdmi;
5907 }
5908 
5909 /**
5910  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
5911  * @edid: monitor EDID information
5912  *
5913  * Parse the CEA extension according to CEA-861-B.
5914  *
5915  * Drivers that have added the modes parsed from EDID to drm_display_info
5916  * should use &drm_display_info.is_hdmi instead of calling this function.
5917  *
5918  * Return: True if the monitor is HDMI, false if not or unknown.
5919  */
drm_detect_hdmi_monitor(const struct edid * edid)5920 bool drm_detect_hdmi_monitor(const struct edid *edid)
5921 {
5922 	struct drm_edid drm_edid;
5923 
5924 	return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid));
5925 }
5926 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
5927 
_drm_detect_monitor_audio(const struct drm_edid * drm_edid)5928 static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid)
5929 {
5930 	struct drm_edid_iter edid_iter;
5931 	const struct cea_db *db;
5932 	struct cea_db_iter iter;
5933 	const u8 *edid_ext;
5934 	bool has_audio = false;
5935 
5936 	drm_edid_iter_begin(drm_edid, &edid_iter);
5937 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
5938 		if (edid_ext[0] == CEA_EXT) {
5939 			has_audio = edid_ext[3] & EDID_BASIC_AUDIO;
5940 			if (has_audio)
5941 				break;
5942 		}
5943 	}
5944 	drm_edid_iter_end(&edid_iter);
5945 
5946 	if (has_audio) {
5947 		DRM_DEBUG_KMS("Monitor has basic audio support\n");
5948 		goto end;
5949 	}
5950 
5951 	cea_db_iter_edid_begin(drm_edid, &iter);
5952 	cea_db_iter_for_each(db, &iter) {
5953 		if (cea_db_tag(db) == CTA_DB_AUDIO) {
5954 			const u8 *data = cea_db_data(db);
5955 			int i;
5956 
5957 			for (i = 0; i < cea_db_payload_len(db); i += 3)
5958 				DRM_DEBUG_KMS("CEA audio format %d\n",
5959 					      (data[i] >> 3) & 0xf);
5960 			has_audio = true;
5961 			break;
5962 		}
5963 	}
5964 	cea_db_iter_end(&iter);
5965 
5966 end:
5967 	return has_audio;
5968 }
5969 
5970 /**
5971  * drm_detect_monitor_audio - check monitor audio capability
5972  * @edid: EDID block to scan
5973  *
5974  * Monitor should have CEA extension block.
5975  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
5976  * audio' only. If there is any audio extension block and supported
5977  * audio format, assume at least 'basic audio' support, even if 'basic
5978  * audio' is not defined in EDID.
5979  *
5980  * Return: True if the monitor supports audio, false otherwise.
5981  */
drm_detect_monitor_audio(const struct edid * edid)5982 bool drm_detect_monitor_audio(const struct edid *edid)
5983 {
5984 	struct drm_edid drm_edid;
5985 
5986 	return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid));
5987 }
5988 EXPORT_SYMBOL(drm_detect_monitor_audio);
5989 
5990 
5991 /**
5992  * drm_default_rgb_quant_range - default RGB quantization range
5993  * @mode: display mode
5994  *
5995  * Determine the default RGB quantization range for the mode,
5996  * as specified in CEA-861.
5997  *
5998  * Return: The default RGB quantization range for the mode
5999  */
6000 enum hdmi_quantization_range
drm_default_rgb_quant_range(const struct drm_display_mode * mode)6001 drm_default_rgb_quant_range(const struct drm_display_mode *mode)
6002 {
6003 	/* All CEA modes other than VIC 1 use limited quantization range. */
6004 	return drm_match_cea_mode(mode) > 1 ?
6005 		HDMI_QUANTIZATION_RANGE_LIMITED :
6006 		HDMI_QUANTIZATION_RANGE_FULL;
6007 }
6008 EXPORT_SYMBOL(drm_default_rgb_quant_range);
6009 
6010 /* CTA-861 Video Data Block (CTA VDB) */
parse_cta_vdb(struct drm_connector * connector,const struct cea_db * db)6011 static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db)
6012 {
6013 	struct drm_display_info *info = &connector->display_info;
6014 	int i, vic_index, len = cea_db_payload_len(db);
6015 	const u8 *svds = cea_db_data(db);
6016 	u8 *vics;
6017 
6018 	if (!len)
6019 		return;
6020 
6021 	/* Gracefully handle multiple VDBs, however unlikely that is */
6022 	vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL);
6023 	if (!vics)
6024 		return;
6025 
6026 	vic_index = info->vics_len;
6027 	info->vics_len += len;
6028 	info->vics = vics;
6029 
6030 	for (i = 0; i < len; i++) {
6031 		u8 vic = svd_to_vic(svds[i]);
6032 
6033 		if (!drm_valid_cea_vic(vic))
6034 			vic = 0;
6035 
6036 		info->vics[vic_index++] = vic;
6037 	}
6038 }
6039 
6040 /*
6041  * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB.
6042  *
6043  * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed
6044  * using the VICs themselves.
6045  */
update_cta_y420cmdb(struct drm_connector * connector,u64 y420cmdb_map)6046 static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map)
6047 {
6048 	struct drm_display_info *info = &connector->display_info;
6049 	struct drm_hdmi_info *hdmi = &info->hdmi;
6050 	int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map));
6051 
6052 	for (i = 0; i < len; i++) {
6053 		u8 vic = info->vics[i];
6054 
6055 		if (vic && y420cmdb_map & BIT_ULL(i))
6056 			bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
6057 	}
6058 }
6059 
cta_vdb_has_vic(const struct drm_connector * connector,u8 vic)6060 static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic)
6061 {
6062 	const struct drm_display_info *info = &connector->display_info;
6063 	int i;
6064 
6065 	if (!vic || !info->vics)
6066 		return false;
6067 
6068 	for (i = 0; i < info->vics_len; i++) {
6069 		if (info->vics[i] == vic)
6070 			return true;
6071 	}
6072 
6073 	return false;
6074 }
6075 
6076 /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */
parse_cta_y420vdb(struct drm_connector * connector,const struct cea_db * db)6077 static void parse_cta_y420vdb(struct drm_connector *connector,
6078 			      const struct cea_db *db)
6079 {
6080 	struct drm_display_info *info = &connector->display_info;
6081 	struct drm_hdmi_info *hdmi = &info->hdmi;
6082 	const u8 *svds = cea_db_data(db) + 1;
6083 	int i;
6084 
6085 	for (i = 0; i < cea_db_payload_len(db) - 1; i++) {
6086 		u8 vic = svd_to_vic(svds[i]);
6087 
6088 		if (!drm_valid_cea_vic(vic))
6089 			continue;
6090 
6091 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
6092 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR420;
6093 	}
6094 }
6095 
drm_parse_vcdb(struct drm_connector * connector,const u8 * db)6096 static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db)
6097 {
6098 	struct drm_display_info *info = &connector->display_info;
6099 
6100 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n",
6101 		    connector->base.id, connector->name, db[2]);
6102 
6103 	if (db[2] & EDID_CEA_VCDB_QS)
6104 		info->rgb_quant_range_selectable = true;
6105 }
6106 
6107 static
drm_get_max_frl_rate(int max_frl_rate,u8 * max_lanes,u8 * max_rate_per_lane)6108 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
6109 {
6110 	switch (max_frl_rate) {
6111 	case 1:
6112 		*max_lanes = 3;
6113 		*max_rate_per_lane = 3;
6114 		break;
6115 	case 2:
6116 		*max_lanes = 3;
6117 		*max_rate_per_lane = 6;
6118 		break;
6119 	case 3:
6120 		*max_lanes = 4;
6121 		*max_rate_per_lane = 6;
6122 		break;
6123 	case 4:
6124 		*max_lanes = 4;
6125 		*max_rate_per_lane = 8;
6126 		break;
6127 	case 5:
6128 		*max_lanes = 4;
6129 		*max_rate_per_lane = 10;
6130 		break;
6131 	case 6:
6132 		*max_lanes = 4;
6133 		*max_rate_per_lane = 12;
6134 		break;
6135 	case 0:
6136 	default:
6137 		*max_lanes = 0;
6138 		*max_rate_per_lane = 0;
6139 	}
6140 }
6141 
drm_parse_ycbcr420_deep_color_info(struct drm_connector * connector,const u8 * db)6142 static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector,
6143 					       const u8 *db)
6144 {
6145 	u8 dc_mask;
6146 	struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
6147 
6148 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
6149 	hdmi->y420_dc_modes = dc_mask;
6150 }
6151 
drm_parse_dsc_info(struct drm_hdmi_dsc_cap * hdmi_dsc,const u8 * hf_scds)6152 static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc,
6153 			       const u8 *hf_scds)
6154 {
6155 	hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2;
6156 
6157 	if (!hdmi_dsc->v_1p2)
6158 		return;
6159 
6160 	hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420;
6161 	hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP;
6162 
6163 	if (hf_scds[11] & DRM_EDID_DSC_16BPC)
6164 		hdmi_dsc->bpc_supported = 16;
6165 	else if (hf_scds[11] & DRM_EDID_DSC_12BPC)
6166 		hdmi_dsc->bpc_supported = 12;
6167 	else if (hf_scds[11] & DRM_EDID_DSC_10BPC)
6168 		hdmi_dsc->bpc_supported = 10;
6169 	else
6170 		/* Supports min 8 BPC if DSC 1.2 is supported*/
6171 		hdmi_dsc->bpc_supported = 8;
6172 
6173 	if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) {
6174 		u8 dsc_max_slices;
6175 		u8 dsc_max_frl_rate;
6176 
6177 		dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
6178 		drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
6179 				     &hdmi_dsc->max_frl_rate_per_lane);
6180 
6181 		dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES;
6182 
6183 		switch (dsc_max_slices) {
6184 		case 1:
6185 			hdmi_dsc->max_slices = 1;
6186 			hdmi_dsc->clk_per_slice = 340;
6187 			break;
6188 		case 2:
6189 			hdmi_dsc->max_slices = 2;
6190 			hdmi_dsc->clk_per_slice = 340;
6191 			break;
6192 		case 3:
6193 			hdmi_dsc->max_slices = 4;
6194 			hdmi_dsc->clk_per_slice = 340;
6195 			break;
6196 		case 4:
6197 			hdmi_dsc->max_slices = 8;
6198 			hdmi_dsc->clk_per_slice = 340;
6199 			break;
6200 		case 5:
6201 			hdmi_dsc->max_slices = 8;
6202 			hdmi_dsc->clk_per_slice = 400;
6203 			break;
6204 		case 6:
6205 			hdmi_dsc->max_slices = 12;
6206 			hdmi_dsc->clk_per_slice = 400;
6207 			break;
6208 		case 7:
6209 			hdmi_dsc->max_slices = 16;
6210 			hdmi_dsc->clk_per_slice = 400;
6211 			break;
6212 		case 0:
6213 		default:
6214 			hdmi_dsc->max_slices = 0;
6215 			hdmi_dsc->clk_per_slice = 0;
6216 		}
6217 	}
6218 
6219 	if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13])
6220 		hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
6221 }
6222 
6223 /* Sink Capability Data Structure */
drm_parse_hdmi_forum_scds(struct drm_connector * connector,const u8 * hf_scds)6224 static void drm_parse_hdmi_forum_scds(struct drm_connector *connector,
6225 				      const u8 *hf_scds)
6226 {
6227 	struct drm_display_info *info = &connector->display_info;
6228 	struct drm_hdmi_info *hdmi = &info->hdmi;
6229 	struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
6230 	int max_tmds_clock = 0;
6231 	u8 max_frl_rate = 0;
6232 	bool dsc_support = false;
6233 
6234 	info->has_hdmi_infoframe = true;
6235 
6236 	if (hf_scds[6] & 0x80) {
6237 		hdmi->scdc.supported = true;
6238 		if (hf_scds[6] & 0x40)
6239 			hdmi->scdc.read_request = true;
6240 	}
6241 
6242 	/*
6243 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
6244 	 * And as per the spec, three factors confirm this:
6245 	 * * Availability of a HF-VSDB block in EDID (check)
6246 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
6247 	 * * SCDC support available (let's check)
6248 	 * Lets check it out.
6249 	 */
6250 
6251 	if (hf_scds[5]) {
6252 		struct drm_scdc *scdc = &hdmi->scdc;
6253 
6254 		/* max clock is 5000 KHz times block value */
6255 		max_tmds_clock = hf_scds[5] * 5000;
6256 
6257 		if (max_tmds_clock > 340000) {
6258 			info->max_tmds_clock = max_tmds_clock;
6259 		}
6260 
6261 		if (scdc->supported) {
6262 			scdc->scrambling.supported = true;
6263 
6264 			/* Few sinks support scrambling for clocks < 340M */
6265 			if ((hf_scds[6] & 0x8))
6266 				scdc->scrambling.low_rates = true;
6267 		}
6268 	}
6269 
6270 	if (hf_scds[7]) {
6271 		max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
6272 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
6273 				     &hdmi->max_frl_rate_per_lane);
6274 	}
6275 
6276 	drm_parse_ycbcr420_deep_color_info(connector, hf_scds);
6277 
6278 	if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) {
6279 		drm_parse_dsc_info(hdmi_dsc, hf_scds);
6280 		dsc_support = true;
6281 	}
6282 
6283 	drm_dbg_kms(connector->dev,
6284 		    "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n",
6285 		    connector->base.id, connector->name,
6286 		    max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support));
6287 }
6288 
drm_parse_hdmi_deep_color_info(struct drm_connector * connector,const u8 * hdmi)6289 static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector,
6290 					   const u8 *hdmi)
6291 {
6292 	struct drm_display_info *info = &connector->display_info;
6293 	unsigned int dc_bpc = 0;
6294 
6295 	/* HDMI supports at least 8 bpc */
6296 	info->bpc = 8;
6297 
6298 	if (cea_db_payload_len(hdmi) < 6)
6299 		return;
6300 
6301 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
6302 		dc_bpc = 10;
6303 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30;
6304 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n",
6305 			    connector->base.id, connector->name);
6306 	}
6307 
6308 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
6309 		dc_bpc = 12;
6310 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36;
6311 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n",
6312 			    connector->base.id, connector->name);
6313 	}
6314 
6315 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
6316 		dc_bpc = 16;
6317 		info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48;
6318 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n",
6319 			    connector->base.id, connector->name);
6320 	}
6321 
6322 	if (dc_bpc == 0) {
6323 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n",
6324 			    connector->base.id, connector->name);
6325 		return;
6326 	}
6327 
6328 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n",
6329 		    connector->base.id, connector->name, dc_bpc);
6330 	info->bpc = dc_bpc;
6331 
6332 	/* YCRCB444 is optional according to spec. */
6333 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
6334 		info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes;
6335 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n",
6336 			    connector->base.id, connector->name);
6337 	}
6338 
6339 	/*
6340 	 * Spec says that if any deep color mode is supported at all,
6341 	 * then deep color 36 bit must be supported.
6342 	 */
6343 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
6344 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n",
6345 			    connector->base.id, connector->name);
6346 	}
6347 }
6348 
6349 /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */
6350 static void
drm_parse_hdmi_vsdb_video(struct drm_connector * connector,const u8 * db)6351 drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db)
6352 {
6353 	struct drm_display_info *info = &connector->display_info;
6354 	u8 len = cea_db_payload_len(db);
6355 
6356 	info->is_hdmi = true;
6357 
6358 	info->source_physical_address = (db[4] << 8) | db[5];
6359 
6360 	if (len >= 6)
6361 		info->dvi_dual = db[6] & 1;
6362 	if (len >= 7)
6363 		info->max_tmds_clock = db[7] * 5000;
6364 
6365 	/*
6366 	 * Try to infer whether the sink supports HDMI infoframes.
6367 	 *
6368 	 * HDMI infoframe support was first added in HDMI 1.4. Assume the sink
6369 	 * supports infoframes if HDMI_Video_present is set.
6370 	 */
6371 	if (len >= 8 && db[8] & BIT(5))
6372 		info->has_hdmi_infoframe = true;
6373 
6374 	drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n",
6375 		    connector->base.id, connector->name,
6376 		    info->dvi_dual, info->max_tmds_clock);
6377 
6378 	drm_parse_hdmi_deep_color_info(connector, db);
6379 }
6380 
6381 /*
6382  * See EDID extension for head-mounted and specialized monitors, specified at:
6383  * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension
6384  */
drm_parse_microsoft_vsdb(struct drm_connector * connector,const u8 * db)6385 static void drm_parse_microsoft_vsdb(struct drm_connector *connector,
6386 				     const u8 *db)
6387 {
6388 	struct drm_display_info *info = &connector->display_info;
6389 	u8 version = db[4];
6390 	bool desktop_usage = db[5] & BIT(6);
6391 
6392 	/* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */
6393 	if (version == 1 || version == 2 || (version == 3 && !desktop_usage))
6394 		info->non_desktop = true;
6395 
6396 	drm_dbg_kms(connector->dev,
6397 		    "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n",
6398 		    connector->base.id, connector->name, version, db[5]);
6399 }
6400 
drm_parse_cea_ext(struct drm_connector * connector,const struct drm_edid * drm_edid)6401 static void drm_parse_cea_ext(struct drm_connector *connector,
6402 			      const struct drm_edid *drm_edid)
6403 {
6404 	struct drm_display_info *info = &connector->display_info;
6405 	struct drm_edid_iter edid_iter;
6406 	const struct cea_db *db;
6407 	struct cea_db_iter iter;
6408 	const u8 *edid_ext;
6409 	u64 y420cmdb_map = 0;
6410 
6411 	drm_edid_iter_begin(drm_edid, &edid_iter);
6412 	drm_edid_iter_for_each(edid_ext, &edid_iter) {
6413 		if (edid_ext[0] != CEA_EXT)
6414 			continue;
6415 
6416 		if (!info->cea_rev)
6417 			info->cea_rev = edid_ext[1];
6418 
6419 		if (info->cea_rev != edid_ext[1])
6420 			drm_dbg_kms(connector->dev,
6421 				    "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n",
6422 				    connector->base.id, connector->name,
6423 				    info->cea_rev, edid_ext[1]);
6424 
6425 		/* The existence of a CTA extension should imply RGB support */
6426 		info->color_formats = DRM_COLOR_FORMAT_RGB444;
6427 		if (edid_ext[3] & EDID_CEA_YCRCB444)
6428 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6429 		if (edid_ext[3] & EDID_CEA_YCRCB422)
6430 			info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6431 		if (edid_ext[3] & EDID_BASIC_AUDIO)
6432 			info->has_audio = true;
6433 
6434 	}
6435 	drm_edid_iter_end(&edid_iter);
6436 
6437 	cea_db_iter_edid_begin(drm_edid, &iter);
6438 	cea_db_iter_for_each(db, &iter) {
6439 		/* FIXME: convert parsers to use struct cea_db */
6440 		const u8 *data = (const u8 *)db;
6441 
6442 		if (cea_db_is_hdmi_vsdb(db))
6443 			drm_parse_hdmi_vsdb_video(connector, data);
6444 		else if (cea_db_is_hdmi_forum_vsdb(db) ||
6445 			 cea_db_is_hdmi_forum_scdb(db))
6446 			drm_parse_hdmi_forum_scds(connector, data);
6447 		else if (cea_db_is_microsoft_vsdb(db))
6448 			drm_parse_microsoft_vsdb(connector, data);
6449 		else if (cea_db_is_y420cmdb(db))
6450 			parse_cta_y420cmdb(connector, db, &y420cmdb_map);
6451 		else if (cea_db_is_y420vdb(db))
6452 			parse_cta_y420vdb(connector, db);
6453 		else if (cea_db_is_vcdb(db))
6454 			drm_parse_vcdb(connector, data);
6455 		else if (cea_db_is_hdmi_hdr_metadata_block(db))
6456 			drm_parse_hdr_metadata_block(connector, data);
6457 		else if (cea_db_tag(db) == CTA_DB_VIDEO)
6458 			parse_cta_vdb(connector, db);
6459 		else if (cea_db_tag(db) == CTA_DB_AUDIO)
6460 			info->has_audio = true;
6461 	}
6462 	cea_db_iter_end(&iter);
6463 
6464 	if (y420cmdb_map)
6465 		update_cta_y420cmdb(connector, y420cmdb_map);
6466 }
6467 
6468 static
get_monitor_range(const struct detailed_timing * timing,void * c)6469 void get_monitor_range(const struct detailed_timing *timing, void *c)
6470 {
6471 	struct detailed_mode_closure *closure = c;
6472 	struct drm_display_info *info = &closure->connector->display_info;
6473 	struct drm_monitor_range_info *monitor_range = &info->monitor_range;
6474 	const struct detailed_non_pixel *data = &timing->data.other_data;
6475 	const struct detailed_data_monitor_range *range = &data->data.range;
6476 	const struct edid *edid = closure->drm_edid->edid;
6477 
6478 	if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE))
6479 		return;
6480 
6481 	/*
6482 	 * These limits are used to determine the VRR refresh
6483 	 * rate range. Only the "range limits only" variant
6484 	 * of the range descriptor seems to guarantee that
6485 	 * any and all timings are accepted by the sink, as
6486 	 * opposed to just timings conforming to the indicated
6487 	 * formula (GTF/GTF2/CVT). Thus other variants of the
6488 	 * range descriptor are not accepted here.
6489 	 */
6490 	if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG)
6491 		return;
6492 
6493 	monitor_range->min_vfreq = range->min_vfreq;
6494 	monitor_range->max_vfreq = range->max_vfreq;
6495 
6496 	if (edid->revision >= 4) {
6497 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ)
6498 			monitor_range->min_vfreq += 255;
6499 		if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ)
6500 			monitor_range->max_vfreq += 255;
6501 	}
6502 }
6503 
drm_get_monitor_range(struct drm_connector * connector,const struct drm_edid * drm_edid)6504 static void drm_get_monitor_range(struct drm_connector *connector,
6505 				  const struct drm_edid *drm_edid)
6506 {
6507 	const struct drm_display_info *info = &connector->display_info;
6508 	struct detailed_mode_closure closure = {
6509 		.connector = connector,
6510 		.drm_edid = drm_edid,
6511 	};
6512 
6513 	if (drm_edid->edid->revision < 4)
6514 		return;
6515 
6516 	if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ))
6517 		return;
6518 
6519 	drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure);
6520 
6521 	drm_dbg_kms(connector->dev,
6522 		    "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n",
6523 		    connector->base.id, connector->name,
6524 		    info->monitor_range.min_vfreq, info->monitor_range.max_vfreq);
6525 }
6526 
drm_parse_vesa_mso_data(struct drm_connector * connector,const struct displayid_block * block)6527 static void drm_parse_vesa_mso_data(struct drm_connector *connector,
6528 				    const struct displayid_block *block)
6529 {
6530 	struct displayid_vesa_vendor_specific_block *vesa =
6531 		(struct displayid_vesa_vendor_specific_block *)block;
6532 	struct drm_display_info *info = &connector->display_info;
6533 
6534 	if (block->num_bytes < 3) {
6535 		drm_dbg_kms(connector->dev,
6536 			    "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n",
6537 			    connector->base.id, connector->name, block->num_bytes);
6538 		return;
6539 	}
6540 
6541 	if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI)
6542 		return;
6543 
6544 	if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) {
6545 		drm_dbg_kms(connector->dev,
6546 			    "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n",
6547 			    connector->base.id, connector->name);
6548 		return;
6549 	}
6550 
6551 	switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) {
6552 	default:
6553 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n",
6554 			    connector->base.id, connector->name);
6555 		fallthrough;
6556 	case 0:
6557 		info->mso_stream_count = 0;
6558 		break;
6559 	case 1:
6560 		info->mso_stream_count = 2; /* 2 or 4 links */
6561 		break;
6562 	case 2:
6563 		info->mso_stream_count = 4; /* 4 links */
6564 		break;
6565 	}
6566 
6567 	if (!info->mso_stream_count) {
6568 		info->mso_pixel_overlap = 0;
6569 		return;
6570 	}
6571 
6572 	info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso);
6573 	if (info->mso_pixel_overlap > 8) {
6574 		drm_dbg_kms(connector->dev,
6575 			    "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n",
6576 			    connector->base.id, connector->name,
6577 			    info->mso_pixel_overlap);
6578 		info->mso_pixel_overlap = 8;
6579 	}
6580 
6581 	drm_dbg_kms(connector->dev,
6582 		    "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n",
6583 		    connector->base.id, connector->name,
6584 		    info->mso_stream_count, info->mso_pixel_overlap);
6585 }
6586 
drm_update_mso(struct drm_connector * connector,const struct drm_edid * drm_edid)6587 static void drm_update_mso(struct drm_connector *connector,
6588 			   const struct drm_edid *drm_edid)
6589 {
6590 	const struct displayid_block *block;
6591 	struct displayid_iter iter;
6592 
6593 	displayid_iter_edid_begin(drm_edid, &iter);
6594 	displayid_iter_for_each(block, &iter) {
6595 		if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC)
6596 			drm_parse_vesa_mso_data(connector, block);
6597 	}
6598 	displayid_iter_end(&iter);
6599 }
6600 
6601 /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset
6602  * all of the values which would have been set from EDID
6603  */
drm_reset_display_info(struct drm_connector * connector)6604 static void drm_reset_display_info(struct drm_connector *connector)
6605 {
6606 	struct drm_display_info *info = &connector->display_info;
6607 
6608 	info->width_mm = 0;
6609 	info->height_mm = 0;
6610 
6611 	info->bpc = 0;
6612 	info->color_formats = 0;
6613 	info->cea_rev = 0;
6614 	info->max_tmds_clock = 0;
6615 	info->dvi_dual = false;
6616 	info->is_hdmi = false;
6617 	info->has_audio = false;
6618 	info->has_hdmi_infoframe = false;
6619 	info->rgb_quant_range_selectable = false;
6620 	memset(&info->hdmi, 0, sizeof(info->hdmi));
6621 	memset(&info->hdr_sink_metadata, 0, sizeof(info->hdr_sink_metadata));
6622 
6623 	info->edid_hdmi_rgb444_dc_modes = 0;
6624 	info->edid_hdmi_ycbcr444_dc_modes = 0;
6625 
6626 	info->non_desktop = 0;
6627 	memset(&info->monitor_range, 0, sizeof(info->monitor_range));
6628 	memset(&info->luminance_range, 0, sizeof(info->luminance_range));
6629 
6630 	info->mso_stream_count = 0;
6631 	info->mso_pixel_overlap = 0;
6632 	info->max_dsc_bpp = 0;
6633 
6634 	kfree(info->vics);
6635 	info->vics = NULL;
6636 	info->vics_len = 0;
6637 
6638 	info->quirks = 0;
6639 
6640 	info->source_physical_address = CEC_PHYS_ADDR_INVALID;
6641 }
6642 
update_displayid_info(struct drm_connector * connector,const struct drm_edid * drm_edid)6643 static void update_displayid_info(struct drm_connector *connector,
6644 				  const struct drm_edid *drm_edid)
6645 {
6646 	struct drm_display_info *info = &connector->display_info;
6647 	const struct displayid_block *block;
6648 	struct displayid_iter iter;
6649 
6650 	displayid_iter_edid_begin(drm_edid, &iter);
6651 	displayid_iter_for_each(block, &iter) {
6652 		drm_dbg_kms(connector->dev,
6653 			    "[CONNECTOR:%d:%s] DisplayID extension version 0x%02x, primary use 0x%02x\n",
6654 			    connector->base.id, connector->name,
6655 			    displayid_version(&iter),
6656 			    displayid_primary_use(&iter));
6657 		if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
6658 		    (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR ||
6659 		     displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR))
6660 			info->non_desktop = true;
6661 
6662 		/*
6663 		 * We're only interested in the base section here, no need to
6664 		 * iterate further.
6665 		 */
6666 		break;
6667 	}
6668 	displayid_iter_end(&iter);
6669 }
6670 
update_display_info(struct drm_connector * connector,const struct drm_edid * drm_edid)6671 static void update_display_info(struct drm_connector *connector,
6672 				const struct drm_edid *drm_edid)
6673 {
6674 	struct drm_display_info *info = &connector->display_info;
6675 	const struct edid *edid;
6676 
6677 	drm_reset_display_info(connector);
6678 	clear_eld(connector);
6679 
6680 	if (!drm_edid)
6681 		return;
6682 
6683 	edid = drm_edid->edid;
6684 
6685 	info->quirks = edid_get_quirks(drm_edid);
6686 
6687 	info->width_mm = edid->width_cm * 10;
6688 	info->height_mm = edid->height_cm * 10;
6689 
6690 	drm_get_monitor_range(connector, drm_edid);
6691 
6692 	if (edid->revision < 3)
6693 		goto out;
6694 
6695 	if (!drm_edid_is_digital(drm_edid))
6696 		goto out;
6697 
6698 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
6699 	drm_parse_cea_ext(connector, drm_edid);
6700 
6701 	update_displayid_info(connector, drm_edid);
6702 
6703 	/*
6704 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
6705 	 *
6706 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
6707 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
6708 	 * extensions which tell otherwise.
6709 	 */
6710 	if (info->bpc == 0 && edid->revision == 3 &&
6711 	    edid->input & DRM_EDID_DIGITAL_DFP_1_X) {
6712 		info->bpc = 8;
6713 		drm_dbg_kms(connector->dev,
6714 			    "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n",
6715 			    connector->base.id, connector->name, info->bpc);
6716 	}
6717 
6718 	/* Only defined for 1.4 with digital displays */
6719 	if (edid->revision < 4)
6720 		goto out;
6721 
6722 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
6723 	case DRM_EDID_DIGITAL_DEPTH_6:
6724 		info->bpc = 6;
6725 		break;
6726 	case DRM_EDID_DIGITAL_DEPTH_8:
6727 		info->bpc = 8;
6728 		break;
6729 	case DRM_EDID_DIGITAL_DEPTH_10:
6730 		info->bpc = 10;
6731 		break;
6732 	case DRM_EDID_DIGITAL_DEPTH_12:
6733 		info->bpc = 12;
6734 		break;
6735 	case DRM_EDID_DIGITAL_DEPTH_14:
6736 		info->bpc = 14;
6737 		break;
6738 	case DRM_EDID_DIGITAL_DEPTH_16:
6739 		info->bpc = 16;
6740 		break;
6741 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
6742 	default:
6743 		info->bpc = 0;
6744 		break;
6745 	}
6746 
6747 	drm_dbg_kms(connector->dev,
6748 		    "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
6749 		    connector->base.id, connector->name, info->bpc);
6750 
6751 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
6752 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR444;
6753 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
6754 		info->color_formats |= DRM_COLOR_FORMAT_YCBCR422;
6755 
6756 	drm_update_mso(connector, drm_edid);
6757 
6758 out:
6759 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_NON_DESKTOP)) {
6760 		drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n",
6761 			    connector->base.id, connector->name,
6762 			    info->non_desktop ? " (redundant quirk)" : "");
6763 		info->non_desktop = true;
6764 	}
6765 
6766 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_CAP_DSC_15BPP))
6767 		info->max_dsc_bpp = 15;
6768 
6769 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_FORCE_6BPC))
6770 		info->bpc = 6;
6771 
6772 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_FORCE_8BPC))
6773 		info->bpc = 8;
6774 
6775 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_FORCE_10BPC))
6776 		info->bpc = 10;
6777 
6778 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_FORCE_12BPC))
6779 		info->bpc = 12;
6780 
6781 	/* Depends on info->cea_rev set by drm_parse_cea_ext() above */
6782 	drm_edid_to_eld(connector, drm_edid);
6783 }
6784 
drm_mode_displayid_detailed(struct drm_device * dev,const struct displayid_detailed_timings_1 * timings,bool type_7)6785 static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev,
6786 							    const struct displayid_detailed_timings_1 *timings,
6787 							    bool type_7)
6788 {
6789 	struct drm_display_mode *mode;
6790 	unsigned int pixel_clock = (timings->pixel_clock[0] |
6791 				    (timings->pixel_clock[1] << 8) |
6792 				    (timings->pixel_clock[2] << 16)) + 1;
6793 	unsigned int hactive = le16_to_cpu(timings->hactive) + 1;
6794 	unsigned int hblank = le16_to_cpu(timings->hblank) + 1;
6795 	unsigned int hsync = (le16_to_cpu(timings->hsync) & 0x7fff) + 1;
6796 	unsigned int hsync_width = le16_to_cpu(timings->hsw) + 1;
6797 	unsigned int vactive = le16_to_cpu(timings->vactive) + 1;
6798 	unsigned int vblank = le16_to_cpu(timings->vblank) + 1;
6799 	unsigned int vsync = (le16_to_cpu(timings->vsync) & 0x7fff) + 1;
6800 	unsigned int vsync_width = le16_to_cpu(timings->vsw) + 1;
6801 	bool hsync_positive = le16_to_cpu(timings->hsync) & (1 << 15);
6802 	bool vsync_positive = le16_to_cpu(timings->vsync) & (1 << 15);
6803 
6804 	mode = drm_mode_create(dev);
6805 	if (!mode)
6806 		return NULL;
6807 
6808 	/* resolution is kHz for type VII, and 10 kHz for type I */
6809 	mode->clock = type_7 ? pixel_clock : pixel_clock * 10;
6810 	mode->hdisplay = hactive;
6811 	mode->hsync_start = mode->hdisplay + hsync;
6812 	mode->hsync_end = mode->hsync_start + hsync_width;
6813 	mode->htotal = mode->hdisplay + hblank;
6814 
6815 	mode->vdisplay = vactive;
6816 	mode->vsync_start = mode->vdisplay + vsync;
6817 	mode->vsync_end = mode->vsync_start + vsync_width;
6818 	mode->vtotal = mode->vdisplay + vblank;
6819 
6820 	mode->flags = 0;
6821 	mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
6822 	mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
6823 	mode->type = DRM_MODE_TYPE_DRIVER;
6824 
6825 	if (timings->flags & 0x80)
6826 		mode->type |= DRM_MODE_TYPE_PREFERRED;
6827 	drm_mode_set_name(mode);
6828 
6829 	return mode;
6830 }
6831 
add_displayid_detailed_1_modes(struct drm_connector * connector,const struct displayid_block * block)6832 static int add_displayid_detailed_1_modes(struct drm_connector *connector,
6833 					  const struct displayid_block *block)
6834 {
6835 	struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block;
6836 	int i;
6837 	int num_timings;
6838 	struct drm_display_mode *newmode;
6839 	int num_modes = 0;
6840 	bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING;
6841 	/* blocks must be multiple of 20 bytes length */
6842 	if (block->num_bytes % 20)
6843 		return 0;
6844 
6845 	num_timings = block->num_bytes / 20;
6846 	for (i = 0; i < num_timings; i++) {
6847 		struct displayid_detailed_timings_1 *timings = &det->timings[i];
6848 
6849 		newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7);
6850 		if (!newmode)
6851 			continue;
6852 
6853 		drm_mode_probed_add(connector, newmode);
6854 		num_modes++;
6855 	}
6856 	return num_modes;
6857 }
6858 
drm_mode_displayid_formula(struct drm_device * dev,const struct displayid_formula_timings_9 * timings,bool type_10)6859 static struct drm_display_mode *drm_mode_displayid_formula(struct drm_device *dev,
6860 							   const struct displayid_formula_timings_9 *timings,
6861 							   bool type_10)
6862 {
6863 	struct drm_display_mode *mode;
6864 	u16 hactive = le16_to_cpu(timings->hactive) + 1;
6865 	u16 vactive = le16_to_cpu(timings->vactive) + 1;
6866 	u8 timing_formula = timings->flags & 0x7;
6867 
6868 	/* TODO: support RB-v2 & RB-v3 */
6869 	if (timing_formula > 1)
6870 		return NULL;
6871 
6872 	/* TODO: support video-optimized refresh rate */
6873 	if (timings->flags & (1 << 4))
6874 		drm_dbg_kms(dev, "Fractional vrefresh is not implemented, proceeding with non-video-optimized refresh rate");
6875 
6876 	mode = drm_cvt_mode(dev, hactive, vactive, timings->vrefresh + 1, timing_formula == 1, false, false);
6877 	if (!mode)
6878 		return NULL;
6879 
6880 	/* TODO: interpret S3D flags */
6881 
6882 	mode->type = DRM_MODE_TYPE_DRIVER;
6883 	drm_mode_set_name(mode);
6884 
6885 	return mode;
6886 }
6887 
add_displayid_formula_modes(struct drm_connector * connector,const struct displayid_block * block)6888 static int add_displayid_formula_modes(struct drm_connector *connector,
6889 				       const struct displayid_block *block)
6890 {
6891 	const struct displayid_formula_timing_block *formula_block = (struct displayid_formula_timing_block *)block;
6892 	int num_timings;
6893 	struct drm_display_mode *newmode;
6894 	int num_modes = 0;
6895 	bool type_10 = block->tag == DATA_BLOCK_2_TYPE_10_FORMULA_TIMING;
6896 	int timing_size = 6 + ((formula_block->base.rev & 0x70) >> 4);
6897 
6898 	/* extended blocks are not supported yet */
6899 	if (timing_size != 6)
6900 		return 0;
6901 
6902 	if (block->num_bytes % timing_size)
6903 		return 0;
6904 
6905 	num_timings = block->num_bytes / timing_size;
6906 	for (int i = 0; i < num_timings; i++) {
6907 		const struct displayid_formula_timings_9 *timings = &formula_block->timings[i];
6908 
6909 		newmode = drm_mode_displayid_formula(connector->dev, timings, type_10);
6910 		if (!newmode)
6911 			continue;
6912 
6913 		drm_mode_probed_add(connector, newmode);
6914 		num_modes++;
6915 	}
6916 	return num_modes;
6917 }
6918 
add_displayid_detailed_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)6919 static int add_displayid_detailed_modes(struct drm_connector *connector,
6920 					const struct drm_edid *drm_edid)
6921 {
6922 	const struct displayid_block *block;
6923 	struct displayid_iter iter;
6924 	int num_modes = 0;
6925 
6926 	displayid_iter_edid_begin(drm_edid, &iter);
6927 	displayid_iter_for_each(block, &iter) {
6928 		if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING ||
6929 		    block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING)
6930 			num_modes += add_displayid_detailed_1_modes(connector, block);
6931 		else if (block->tag == DATA_BLOCK_2_TYPE_9_FORMULA_TIMING ||
6932 			 block->tag == DATA_BLOCK_2_TYPE_10_FORMULA_TIMING)
6933 			num_modes += add_displayid_formula_modes(connector, block);
6934 	}
6935 	displayid_iter_end(&iter);
6936 
6937 	return num_modes;
6938 }
6939 
_drm_edid_connector_add_modes(struct drm_connector * connector,const struct drm_edid * drm_edid)6940 static int _drm_edid_connector_add_modes(struct drm_connector *connector,
6941 					 const struct drm_edid *drm_edid)
6942 {
6943 	int num_modes = 0;
6944 
6945 	if (!drm_edid)
6946 		return 0;
6947 
6948 	/*
6949 	 * EDID spec says modes should be preferred in this order:
6950 	 * - preferred detailed mode
6951 	 * - other detailed modes from base block
6952 	 * - detailed modes from extension blocks
6953 	 * - CVT 3-byte code modes
6954 	 * - standard timing codes
6955 	 * - established timing codes
6956 	 * - modes inferred from GTF or CVT range information
6957 	 *
6958 	 * We get this pretty much right.
6959 	 *
6960 	 * XXX order for additional mode types in extension blocks?
6961 	 */
6962 	num_modes += add_detailed_modes(connector, drm_edid);
6963 	num_modes += add_cvt_modes(connector, drm_edid);
6964 	num_modes += add_standard_modes(connector, drm_edid);
6965 	num_modes += add_established_modes(connector, drm_edid);
6966 	num_modes += add_cea_modes(connector, drm_edid);
6967 	num_modes += add_alternate_cea_modes(connector, drm_edid);
6968 	num_modes += add_displayid_detailed_modes(connector, drm_edid);
6969 	if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)
6970 		num_modes += add_inferred_modes(connector, drm_edid);
6971 
6972 	if (drm_edid_has_internal_quirk(connector, EDID_QUIRK_PREFER_LARGE_60) ||
6973 	    drm_edid_has_internal_quirk(connector, EDID_QUIRK_PREFER_LARGE_75))
6974 		edid_fixup_preferred(connector);
6975 
6976 	return num_modes;
6977 }
6978 
6979 static void _drm_update_tile_info(struct drm_connector *connector,
6980 				  const struct drm_edid *drm_edid);
6981 
_drm_edid_connector_property_update(struct drm_connector * connector,const struct drm_edid * drm_edid)6982 static int _drm_edid_connector_property_update(struct drm_connector *connector,
6983 					       const struct drm_edid *drm_edid)
6984 {
6985 	struct drm_device *dev = connector->dev;
6986 	int ret;
6987 
6988 	if (connector->edid_blob_ptr) {
6989 		const void *old_edid = connector->edid_blob_ptr->data;
6990 		size_t old_edid_size = connector->edid_blob_ptr->length;
6991 
6992 		if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) {
6993 			connector->epoch_counter++;
6994 			drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n",
6995 				    connector->base.id, connector->name,
6996 				    connector->epoch_counter);
6997 		}
6998 	}
6999 
7000 	ret = drm_property_replace_global_blob(dev,
7001 					       &connector->edid_blob_ptr,
7002 					       drm_edid ? drm_edid->size : 0,
7003 					       drm_edid ? drm_edid->edid : NULL,
7004 					       &connector->base,
7005 					       dev->mode_config.edid_property);
7006 	if (ret) {
7007 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n",
7008 			    connector->base.id, connector->name, ret);
7009 		goto out;
7010 	}
7011 
7012 	ret = drm_object_property_set_value(&connector->base,
7013 					    dev->mode_config.non_desktop_property,
7014 					    connector->display_info.non_desktop);
7015 	if (ret) {
7016 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n",
7017 			    connector->base.id, connector->name, ret);
7018 		goto out;
7019 	}
7020 
7021 	ret = drm_connector_set_tile_property(connector);
7022 	if (ret) {
7023 		drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n",
7024 			    connector->base.id, connector->name, ret);
7025 		goto out;
7026 	}
7027 
7028 out:
7029 	return ret;
7030 }
7031 
7032 /* For sysfs edid show implementation */
drm_edid_connector_property_show(struct drm_connector * connector,char * buf,loff_t off,size_t count)7033 ssize_t drm_edid_connector_property_show(struct drm_connector *connector,
7034 					 char *buf, loff_t off, size_t count)
7035 {
7036 	const void *edid;
7037 	size_t size;
7038 	ssize_t ret = 0;
7039 
7040 	mutex_lock(&connector->dev->mode_config.mutex);
7041 
7042 	if (!connector->edid_blob_ptr)
7043 		goto unlock;
7044 
7045 	edid = connector->edid_blob_ptr->data;
7046 	size = connector->edid_blob_ptr->length;
7047 	if (!edid)
7048 		goto unlock;
7049 
7050 	if (off >= size)
7051 		goto unlock;
7052 
7053 	if (off + count > size)
7054 		count = size - off;
7055 
7056 	memcpy(buf, edid + off, count);
7057 
7058 	ret = count;
7059 unlock:
7060 	mutex_unlock(&connector->dev->mode_config.mutex);
7061 
7062 	return ret;
7063 }
7064 
7065 /**
7066  * drm_edid_connector_update - Update connector information from EDID
7067  * @connector: Connector
7068  * @drm_edid: EDID
7069  *
7070  * Update the connector display info, ELD, HDR metadata, relevant properties,
7071  * etc. from the passed in EDID.
7072  *
7073  * If EDID is NULL, reset the information.
7074  *
7075  * Must be called before calling drm_edid_connector_add_modes().
7076  *
7077  * Return: 0 on success, negative error on errors.
7078  */
drm_edid_connector_update(struct drm_connector * connector,const struct drm_edid * drm_edid)7079 int drm_edid_connector_update(struct drm_connector *connector,
7080 			      const struct drm_edid *drm_edid)
7081 {
7082 	update_display_info(connector, drm_edid);
7083 
7084 	_drm_update_tile_info(connector, drm_edid);
7085 
7086 	return _drm_edid_connector_property_update(connector, drm_edid);
7087 }
7088 EXPORT_SYMBOL(drm_edid_connector_update);
7089 
7090 /**
7091  * drm_edid_connector_add_modes - Update probed modes from the EDID property
7092  * @connector: Connector
7093  *
7094  * Add the modes from the previously updated EDID property to the connector
7095  * probed modes list.
7096  *
7097  * drm_edid_connector_update() must have been called before this to update the
7098  * EDID property.
7099  *
7100  * Return: The number of modes added, or 0 if we couldn't find any.
7101  */
drm_edid_connector_add_modes(struct drm_connector * connector)7102 int drm_edid_connector_add_modes(struct drm_connector *connector)
7103 {
7104 	const struct drm_edid *drm_edid = NULL;
7105 	int count;
7106 
7107 	if (connector->edid_blob_ptr)
7108 		drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data,
7109 					  connector->edid_blob_ptr->length);
7110 
7111 	count = _drm_edid_connector_add_modes(connector, drm_edid);
7112 
7113 	drm_edid_free(drm_edid);
7114 
7115 	return count;
7116 }
7117 EXPORT_SYMBOL(drm_edid_connector_add_modes);
7118 
7119 /**
7120  * drm_connector_update_edid_property - update the edid property of a connector
7121  * @connector: drm connector
7122  * @edid: new value of the edid property
7123  *
7124  * This function creates a new blob modeset object and assigns its id to the
7125  * connector's edid property.
7126  * Since we also parse tile information from EDID's displayID block, we also
7127  * set the connector's tile property here. See drm_connector_set_tile_property()
7128  * for more details.
7129  *
7130  * This function is deprecated. Use drm_edid_connector_update() instead.
7131  *
7132  * Returns:
7133  * Zero on success, negative errno on failure.
7134  */
drm_connector_update_edid_property(struct drm_connector * connector,const struct edid * edid)7135 int drm_connector_update_edid_property(struct drm_connector *connector,
7136 				       const struct edid *edid)
7137 {
7138 	struct drm_edid drm_edid;
7139 
7140 	return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid));
7141 }
7142 EXPORT_SYMBOL(drm_connector_update_edid_property);
7143 
7144 /**
7145  * drm_add_edid_modes - add modes from EDID data, if available
7146  * @connector: connector we're probing
7147  * @edid: EDID data
7148  *
7149  * Add the specified modes to the connector's mode list. Also fills out the
7150  * &drm_display_info structure and ELD in @connector with any information which
7151  * can be derived from the edid.
7152  *
7153  * This function is deprecated. Use drm_edid_connector_add_modes() instead.
7154  *
7155  * Return: The number of modes added or 0 if we couldn't find any.
7156  */
drm_add_edid_modes(struct drm_connector * connector,struct edid * edid)7157 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
7158 {
7159 	struct drm_edid _drm_edid;
7160 	const struct drm_edid *drm_edid;
7161 
7162 	if (edid && !drm_edid_is_valid(edid)) {
7163 		drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n",
7164 			 connector->base.id, connector->name);
7165 		edid = NULL;
7166 	}
7167 
7168 	drm_edid = drm_edid_legacy_init(&_drm_edid, edid);
7169 
7170 	update_display_info(connector, drm_edid);
7171 
7172 	return _drm_edid_connector_add_modes(connector, drm_edid);
7173 }
7174 EXPORT_SYMBOL(drm_add_edid_modes);
7175 
7176 /**
7177  * drm_add_modes_noedid - add modes for the connectors without EDID
7178  * @connector: connector we're probing
7179  * @hdisplay: the horizontal display limit
7180  * @vdisplay: the vertical display limit
7181  *
7182  * Add the specified modes to the connector's mode list. Only when the
7183  * hdisplay/vdisplay is not beyond the given limit, it will be added.
7184  *
7185  * Return: The number of modes added or 0 if we couldn't find any.
7186  */
drm_add_modes_noedid(struct drm_connector * connector,unsigned int hdisplay,unsigned int vdisplay)7187 int drm_add_modes_noedid(struct drm_connector *connector,
7188 			 unsigned int hdisplay, unsigned int vdisplay)
7189 {
7190 	int i, count = ARRAY_SIZE(drm_dmt_modes), num_modes = 0;
7191 	struct drm_display_mode *mode;
7192 	struct drm_device *dev = connector->dev;
7193 
7194 	for (i = 0; i < count; i++) {
7195 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
7196 
7197 		if (hdisplay && vdisplay) {
7198 			/*
7199 			 * Only when two are valid, they will be used to check
7200 			 * whether the mode should be added to the mode list of
7201 			 * the connector.
7202 			 */
7203 			if (ptr->hdisplay > hdisplay ||
7204 					ptr->vdisplay > vdisplay)
7205 				continue;
7206 		}
7207 		if (drm_mode_vrefresh(ptr) > 61)
7208 			continue;
7209 		mode = drm_mode_duplicate(dev, ptr);
7210 		if (mode) {
7211 			drm_mode_probed_add(connector, mode);
7212 			num_modes++;
7213 		}
7214 	}
7215 	return num_modes;
7216 }
7217 EXPORT_SYMBOL(drm_add_modes_noedid);
7218 
is_hdmi2_sink(const struct drm_connector * connector)7219 static bool is_hdmi2_sink(const struct drm_connector *connector)
7220 {
7221 	/*
7222 	 * FIXME: sil-sii8620 doesn't have a connector around when
7223 	 * we need one, so we have to be prepared for a NULL connector.
7224 	 */
7225 	if (!connector)
7226 		return true;
7227 
7228 	return connector->display_info.hdmi.scdc.supported ||
7229 		connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420;
7230 }
7231 
drm_mode_hdmi_vic(const struct drm_connector * connector,const struct drm_display_mode * mode)7232 static u8 drm_mode_hdmi_vic(const struct drm_connector *connector,
7233 			    const struct drm_display_mode *mode)
7234 {
7235 	bool has_hdmi_infoframe = connector ?
7236 		connector->display_info.has_hdmi_infoframe : false;
7237 
7238 	if (!has_hdmi_infoframe)
7239 		return 0;
7240 
7241 	/* No HDMI VIC when signalling 3D video format */
7242 	if (mode->flags & DRM_MODE_FLAG_3D_MASK)
7243 		return 0;
7244 
7245 	return drm_match_hdmi_mode(mode);
7246 }
7247 
drm_mode_cea_vic(const struct drm_connector * connector,const struct drm_display_mode * mode)7248 static u8 drm_mode_cea_vic(const struct drm_connector *connector,
7249 			   const struct drm_display_mode *mode)
7250 {
7251 	/*
7252 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
7253 	 * we should send its VIC in vendor infoframes, else send the
7254 	 * VIC in AVI infoframes. Lets check if this mode is present in
7255 	 * HDMI 1.4b 4K modes
7256 	 */
7257 	if (drm_mode_hdmi_vic(connector, mode))
7258 		return 0;
7259 
7260 	return drm_match_cea_mode(mode);
7261 }
7262 
7263 /*
7264  * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that
7265  * conform to HDMI 1.4.
7266  *
7267  * HDMI 1.4 (CTA-861-D) VIC range: [1..64]
7268  * HDMI 2.0 (CTA-861-F) VIC range: [1..107]
7269  *
7270  * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI
7271  * version.
7272  */
vic_for_avi_infoframe(const struct drm_connector * connector,u8 vic)7273 static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic)
7274 {
7275 	if (!is_hdmi2_sink(connector) && vic > 64 &&
7276 	    !cta_vdb_has_vic(connector, vic))
7277 		return 0;
7278 
7279 	return vic;
7280 }
7281 
7282 /**
7283  * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
7284  *                                              data from a DRM display mode
7285  * @frame: HDMI AVI infoframe
7286  * @connector: the connector
7287  * @mode: DRM display mode
7288  *
7289  * Return: 0 on success or a negative error code on failure.
7290  */
7291 int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode)7292 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
7293 					 const struct drm_connector *connector,
7294 					 const struct drm_display_mode *mode)
7295 {
7296 	enum hdmi_picture_aspect picture_aspect;
7297 	u8 vic, hdmi_vic;
7298 
7299 	if (!frame || !mode)
7300 		return -EINVAL;
7301 
7302 	hdmi_avi_infoframe_init(frame);
7303 
7304 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
7305 		frame->pixel_repeat = 1;
7306 
7307 	vic = drm_mode_cea_vic(connector, mode);
7308 	hdmi_vic = drm_mode_hdmi_vic(connector, mode);
7309 
7310 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7311 
7312 	/*
7313 	 * As some drivers don't support atomic, we can't use connector state.
7314 	 * So just initialize the frame with default values, just the same way
7315 	 * as it's done with other properties here.
7316 	 */
7317 	frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS;
7318 	frame->itc = 0;
7319 
7320 	/*
7321 	 * Populate picture aspect ratio from either
7322 	 * user input (if specified) or from the CEA/HDMI mode lists.
7323 	 */
7324 	picture_aspect = mode->picture_aspect_ratio;
7325 	if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) {
7326 		if (vic)
7327 			picture_aspect = drm_get_cea_aspect_ratio(vic);
7328 		else if (hdmi_vic)
7329 			picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic);
7330 	}
7331 
7332 	/*
7333 	 * The infoframe can't convey anything but none, 4:3
7334 	 * and 16:9, so if the user has asked for anything else
7335 	 * we can only satisfy it by specifying the right VIC.
7336 	 */
7337 	if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) {
7338 		if (vic) {
7339 			if (picture_aspect != drm_get_cea_aspect_ratio(vic))
7340 				return -EINVAL;
7341 		} else if (hdmi_vic) {
7342 			if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic))
7343 				return -EINVAL;
7344 		} else {
7345 			return -EINVAL;
7346 		}
7347 
7348 		picture_aspect = HDMI_PICTURE_ASPECT_NONE;
7349 	}
7350 
7351 	frame->video_code = vic_for_avi_infoframe(connector, vic);
7352 	frame->picture_aspect = picture_aspect;
7353 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
7354 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
7355 
7356 	return 0;
7357 }
7358 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
7359 
7360 /**
7361  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
7362  *                                        quantization range information
7363  * @frame: HDMI AVI infoframe
7364  * @connector: the connector
7365  * @mode: DRM display mode
7366  * @rgb_quant_range: RGB quantization range (Q)
7367  */
7368 void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode,enum hdmi_quantization_range rgb_quant_range)7369 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
7370 				   const struct drm_connector *connector,
7371 				   const struct drm_display_mode *mode,
7372 				   enum hdmi_quantization_range rgb_quant_range)
7373 {
7374 	const struct drm_display_info *info = &connector->display_info;
7375 
7376 	/*
7377 	 * CEA-861:
7378 	 * "A Source shall not send a non-zero Q value that does not correspond
7379 	 *  to the default RGB Quantization Range for the transmitted Picture
7380 	 *  unless the Sink indicates support for the Q bit in a Video
7381 	 *  Capabilities Data Block."
7382 	 *
7383 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
7384 	 * default RGB quantization range for the mode, even when QS=0.
7385 	 */
7386 	if (info->rgb_quant_range_selectable ||
7387 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
7388 		frame->quantization_range = rgb_quant_range;
7389 	else
7390 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
7391 
7392 	/*
7393 	 * CEA-861-F:
7394 	 * "When transmitting any RGB colorimetry, the Source should set the
7395 	 *  YQ-field to match the RGB Quantization Range being transmitted
7396 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
7397 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
7398 	 *
7399 	 * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused
7400 	 * by non-zero YQ when receiving RGB. There doesn't seem to be any
7401 	 * good way to tell which version of CEA-861 the sink supports, so
7402 	 * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based
7403 	 * on CEA-861-F.
7404 	 */
7405 	if (!is_hdmi2_sink(connector) ||
7406 	    rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
7407 		frame->ycc_quantization_range =
7408 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
7409 	else
7410 		frame->ycc_quantization_range =
7411 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
7412 }
7413 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range);
7414 
7415 static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode * mode)7416 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
7417 {
7418 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
7419 
7420 	switch (layout) {
7421 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
7422 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
7423 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
7424 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
7425 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
7426 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
7427 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
7428 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
7429 	case DRM_MODE_FLAG_3D_L_DEPTH:
7430 		return HDMI_3D_STRUCTURE_L_DEPTH;
7431 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
7432 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
7433 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
7434 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
7435 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
7436 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
7437 	default:
7438 		return HDMI_3D_STRUCTURE_INVALID;
7439 	}
7440 }
7441 
7442 /**
7443  * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
7444  * data from a DRM display mode
7445  * @frame: HDMI vendor infoframe
7446  * @connector: the connector
7447  * @mode: DRM display mode
7448  *
7449  * Note that there's is a need to send HDMI vendor infoframes only when using a
7450  * 4k or stereoscopic 3D mode. So when giving any other mode as input this
7451  * function will return -EINVAL, error that can be safely ignored.
7452  *
7453  * Return: 0 on success or a negative error code on failure.
7454  */
7455 int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,const struct drm_connector * connector,const struct drm_display_mode * mode)7456 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
7457 					    const struct drm_connector *connector,
7458 					    const struct drm_display_mode *mode)
7459 {
7460 	/*
7461 	 * FIXME: sil-sii8620 doesn't have a connector around when
7462 	 * we need one, so we have to be prepared for a NULL connector.
7463 	 */
7464 	bool has_hdmi_infoframe = connector ?
7465 		connector->display_info.has_hdmi_infoframe : false;
7466 	int err;
7467 
7468 	if (!frame || !mode)
7469 		return -EINVAL;
7470 
7471 	if (!has_hdmi_infoframe)
7472 		return -EINVAL;
7473 
7474 	err = hdmi_vendor_infoframe_init(frame);
7475 	if (err < 0)
7476 		return err;
7477 
7478 	/*
7479 	 * Even if it's not absolutely necessary to send the infoframe
7480 	 * (ie.vic==0 and s3d_struct==0) we will still send it if we
7481 	 * know that the sink can handle it. This is based on a
7482 	 * suggestion in HDMI 2.0 Appendix F. Apparently some sinks
7483 	 * have trouble realizing that they should switch from 3D to 2D
7484 	 * mode if the source simply stops sending the infoframe when
7485 	 * it wants to switch from 3D to 2D.
7486 	 */
7487 	frame->vic = drm_mode_hdmi_vic(connector, mode);
7488 	frame->s3d_struct = s3d_structure_from_display_mode(mode);
7489 
7490 	return 0;
7491 }
7492 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
7493 
drm_parse_tiled_block(struct drm_connector * connector,const struct displayid_block * block)7494 static void drm_parse_tiled_block(struct drm_connector *connector,
7495 				  const struct displayid_block *block)
7496 {
7497 	const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
7498 	u16 w, h;
7499 	u8 tile_v_loc, tile_h_loc;
7500 	u8 num_v_tile, num_h_tile;
7501 	struct drm_tile_group *tg;
7502 
7503 	w = tile->tile_size[0] | tile->tile_size[1] << 8;
7504 	h = tile->tile_size[2] | tile->tile_size[3] << 8;
7505 
7506 	num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
7507 	num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
7508 	tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
7509 	tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
7510 
7511 	connector->has_tile = true;
7512 	if (tile->tile_cap & 0x80)
7513 		connector->tile_is_single_monitor = true;
7514 
7515 	connector->num_h_tile = num_h_tile + 1;
7516 	connector->num_v_tile = num_v_tile + 1;
7517 	connector->tile_h_loc = tile_h_loc;
7518 	connector->tile_v_loc = tile_v_loc;
7519 	connector->tile_h_size = w + 1;
7520 	connector->tile_v_size = h + 1;
7521 
7522 	drm_dbg_kms(connector->dev,
7523 		    "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c",
7524 		    connector->base.id, connector->name,
7525 		    tile->tile_cap,
7526 		    connector->tile_h_size, connector->tile_v_size,
7527 		    connector->num_h_tile, connector->num_v_tile,
7528 		    connector->tile_h_loc, connector->tile_v_loc,
7529 		    tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
7530 
7531 	tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
7532 	if (!tg)
7533 		tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
7534 	if (!tg)
7535 		return;
7536 
7537 	if (connector->tile_group != tg) {
7538 		/* if we haven't got a pointer,
7539 		   take the reference, drop ref to old tile group */
7540 		if (connector->tile_group)
7541 			drm_mode_put_tile_group(connector->dev, connector->tile_group);
7542 		connector->tile_group = tg;
7543 	} else {
7544 		/* if same tile group, then release the ref we just took. */
7545 		drm_mode_put_tile_group(connector->dev, tg);
7546 	}
7547 }
7548 
displayid_is_tiled_block(const struct displayid_iter * iter,const struct displayid_block * block)7549 static bool displayid_is_tiled_block(const struct displayid_iter *iter,
7550 				     const struct displayid_block *block)
7551 {
7552 	return (displayid_version(iter) < DISPLAY_ID_STRUCTURE_VER_20 &&
7553 		block->tag == DATA_BLOCK_TILED_DISPLAY) ||
7554 		(displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 &&
7555 		 block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY);
7556 }
7557 
_drm_update_tile_info(struct drm_connector * connector,const struct drm_edid * drm_edid)7558 static void _drm_update_tile_info(struct drm_connector *connector,
7559 				  const struct drm_edid *drm_edid)
7560 {
7561 	const struct displayid_block *block;
7562 	struct displayid_iter iter;
7563 
7564 	connector->has_tile = false;
7565 
7566 	displayid_iter_edid_begin(drm_edid, &iter);
7567 	displayid_iter_for_each(block, &iter) {
7568 		if (displayid_is_tiled_block(&iter, block))
7569 			drm_parse_tiled_block(connector, block);
7570 	}
7571 	displayid_iter_end(&iter);
7572 
7573 	if (!connector->has_tile && connector->tile_group) {
7574 		drm_mode_put_tile_group(connector->dev, connector->tile_group);
7575 		connector->tile_group = NULL;
7576 	}
7577 }
7578 
7579 /**
7580  * drm_edid_is_digital - is digital?
7581  * @drm_edid: The EDID
7582  *
7583  * Return true if input is digital.
7584  */
drm_edid_is_digital(const struct drm_edid * drm_edid)7585 bool drm_edid_is_digital(const struct drm_edid *drm_edid)
7586 {
7587 	return drm_edid && drm_edid->edid &&
7588 		drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL;
7589 }
7590 EXPORT_SYMBOL(drm_edid_is_digital);
7591