xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 	struct drm_device *dev = crtc->dev;
57 	struct drm_encoder *encoder;
58 
59 	drm_for_each_encoder(encoder, dev)
60 		if (encoder->crtc == crtc)
61 			return encoder;
62 
63 	return NULL;
64 }
65 
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 	if (!src_name ||
69 	    !strcmp(src_name, "none"))
70 		return DPU_CRTC_CRC_SOURCE_NONE;
71 	if (!strcmp(src_name, "auto") ||
72 	    !strcmp(src_name, "lm"))
73 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 	if (!strcmp(src_name, "encoder"))
75 		return DPU_CRTC_CRC_SOURCE_ENCODER;
76 
77 	return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79 
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 		const char *src_name, size_t *values_cnt)
82 {
83 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85 
86 	if (source < 0) {
87 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 		return -EINVAL;
89 	}
90 
91 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 		*values_cnt = crtc_state->num_mixers;
93 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 		struct drm_encoder *drm_enc;
95 
96 		*values_cnt = 0;
97 
98 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 	}
101 
102 	return 0;
103 }
104 
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 	struct dpu_crtc_mixer *m;
108 	int i;
109 
110 	for (i = 0; i < crtc_state->num_mixers; ++i) {
111 		m = &crtc_state->mixers[i];
112 
113 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 			continue;
115 
116 		/* Calculate MISR over 1 frame */
117 		m->hw_lm->ops.setup_misr(m->hw_lm);
118 	}
119 }
120 
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 	struct drm_encoder *drm_enc;
124 
125 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 		dpu_encoder_setup_misr(drm_enc);
127 }
128 
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 	enum dpu_crtc_crc_source current_source;
133 	struct dpu_crtc_state *crtc_state;
134 	struct drm_device *drm_dev = crtc->dev;
135 
136 	bool was_enabled;
137 	bool enable = false;
138 	int ret = 0;
139 
140 	if (source < 0) {
141 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 		return -EINVAL;
143 	}
144 
145 	ret = drm_modeset_lock(&crtc->mutex, NULL);
146 
147 	if (ret)
148 		return ret;
149 
150 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 	crtc_state = to_dpu_crtc_state(crtc->state);
152 
153 	spin_lock_irq(&drm_dev->event_lock);
154 	current_source = crtc_state->crc_source;
155 	spin_unlock_irq(&drm_dev->event_lock);
156 
157 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158 
159 	if (!was_enabled && enable) {
160 		ret = drm_crtc_vblank_get(crtc);
161 
162 		if (ret)
163 			goto cleanup;
164 
165 	} else if (was_enabled && !enable) {
166 		drm_crtc_vblank_put(crtc);
167 	}
168 
169 	spin_lock_irq(&drm_dev->event_lock);
170 	crtc_state->crc_source = source;
171 	spin_unlock_irq(&drm_dev->event_lock);
172 
173 	crtc_state->crc_frame_skip_count = 0;
174 
175 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 		dpu_crtc_setup_lm_misr(crtc_state);
177 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 		dpu_crtc_setup_encoder_misr(crtc);
179 	else
180 		ret = -EINVAL;
181 
182 cleanup:
183 	drm_modeset_unlock(&crtc->mutex);
184 
185 	return ret;
186 }
187 
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 	if (!encoder) {
192 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 		return 0;
194 	}
195 
196 	return dpu_encoder_get_vsync_count(encoder);
197 }
198 
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 		struct dpu_crtc_state *crtc_state)
201 {
202 	struct dpu_crtc_mixer *m;
203 	u32 crcs[CRTC_DUAL_MIXERS];
204 
205 	int rc = 0;
206 	int i;
207 
208 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209 
210 	for (i = 0; i < crtc_state->num_mixers; ++i) {
211 
212 		m = &crtc_state->mixers[i];
213 
214 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 			continue;
216 
217 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218 
219 		if (rc) {
220 			if (rc != -ENODATA)
221 				DRM_DEBUG_DRIVER("MISR read failed\n");
222 			return rc;
223 		}
224 	}
225 
226 	return drm_crtc_add_crc_entry(crtc, true,
227 			drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229 
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 	struct drm_encoder *drm_enc;
233 	int rc, pos = 0;
234 	u32 crcs[INTF_MAX];
235 
236 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 		if (rc < 0) {
239 			if (rc != -ENODATA)
240 				DRM_DEBUG_DRIVER("MISR read failed\n");
241 
242 			return rc;
243 		}
244 
245 		pos += rc;
246 	}
247 
248 	return drm_crtc_add_crc_entry(crtc, true,
249 			drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251 
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255 
256 	/* Skip first 2 frames in case of "uncooked" CRCs */
257 	if (crtc_state->crc_frame_skip_count < 2) {
258 		crtc_state->crc_frame_skip_count++;
259 		return 0;
260 	}
261 
262 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 		return dpu_crtc_get_encoder_crc(crtc);
266 
267 	return -EINVAL;
268 }
269 
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 					   bool in_vblank_irq,
272 					   int *vpos, int *hpos,
273 					   ktime_t *stime, ktime_t *etime,
274 					   const struct drm_display_mode *mode)
275 {
276 	unsigned int pipe = crtc->index;
277 	struct drm_encoder *encoder;
278 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279 
280 	encoder = get_encoder_from_crtc(crtc);
281 	if (!encoder) {
282 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 		return false;
284 	}
285 
286 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288 
289 	/*
290 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 	 * the end of VFP. Translate the porch values relative to the line
292 	 * counter positions.
293 	 */
294 
295 	vactive_start = vsw + vbp + 1;
296 	vactive_end = vactive_start + mode->crtc_vdisplay;
297 
298 	/* last scan line before VSYNC */
299 	vfp_end = mode->crtc_vtotal;
300 
301 	if (stime)
302 		*stime = ktime_get();
303 
304 	line = dpu_encoder_get_linecount(encoder);
305 
306 	if (line < vactive_start)
307 		line -= vactive_start;
308 	else if (line > vactive_end)
309 		line = line - vfp_end - vactive_start;
310 	else
311 		line -= vactive_start;
312 
313 	*vpos = line;
314 	*hpos = 0;
315 
316 	if (etime)
317 		*etime = ktime_get();
318 
319 	return true;
320 }
321 
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format,const struct dpu_mdss_version * mdss_ver)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 				      struct dpu_plane_state *pstate,
324 				      const struct msm_format *format,
325 				      const struct dpu_mdss_version *mdss_ver)
326 {
327 	struct dpu_hw_mixer *lm = mixer->hw_lm;
328 	u32 blend_op;
329 	u32 fg_alpha, bg_alpha, max_alpha;
330 
331 	if (mdss_ver->core_major_ver < 12) {
332 		max_alpha = 0xff;
333 		fg_alpha = pstate->base.alpha >> 8;
334 	} else {
335 		max_alpha = 0x3ff;
336 		fg_alpha = pstate->base.alpha >> 6;
337 	}
338 	bg_alpha = max_alpha - fg_alpha;
339 
340 	/* default to opaque blending */
341 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
342 	    !format->alpha_enable) {
343 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
344 			DPU_BLEND_BG_ALPHA_BG_CONST;
345 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
348 		if (fg_alpha != max_alpha) {
349 			bg_alpha = fg_alpha;
350 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
351 				    DPU_BLEND_BG_INV_MOD_ALPHA;
352 		} else {
353 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
354 		}
355 	} else {
356 		/* coverage blending */
357 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
358 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
359 		if (fg_alpha != max_alpha) {
360 			bg_alpha = fg_alpha;
361 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
362 				    DPU_BLEND_FG_INV_MOD_ALPHA |
363 				    DPU_BLEND_BG_MOD_ALPHA |
364 				    DPU_BLEND_BG_INV_MOD_ALPHA;
365 		} else {
366 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
367 		}
368 	}
369 
370 	lm->ops.setup_blend_config(lm, pstate->stage,
371 				fg_alpha, bg_alpha, blend_op);
372 
373 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
374 		  &format->pixel_format, format->alpha_enable, blend_op);
375 }
376 
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)377 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
378 {
379 	struct dpu_crtc_state *crtc_state;
380 	int lm_idx, lm_horiz_position;
381 
382 	crtc_state = to_dpu_crtc_state(crtc->state);
383 
384 	lm_horiz_position = 0;
385 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
386 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
387 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
388 		struct dpu_hw_mixer_cfg cfg;
389 
390 		if (!lm_roi || !drm_rect_visible(lm_roi))
391 			continue;
392 
393 		cfg.out_width = drm_rect_width(lm_roi);
394 		cfg.out_height = drm_rect_height(lm_roi);
395 		cfg.right_mixer = lm_horiz_position++;
396 		cfg.flags = 0;
397 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
398 	}
399 }
400 
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 num_mixers,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)401 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
402 				       struct drm_plane *plane,
403 				       struct dpu_crtc_mixer *mixer,
404 				       u32 num_mixers,
405 				       enum dpu_stage stage,
406 				       const struct msm_format *format,
407 				       uint64_t modifier,
408 				       struct dpu_sw_pipe *pipe,
409 				       unsigned int stage_idx,
410 				       struct dpu_hw_stage_cfg *stage_cfg
411 				      )
412 {
413 	u32 lm_idx;
414 	enum dpu_sspp sspp_idx;
415 	struct drm_plane_state *state;
416 
417 	sspp_idx = pipe->sspp->idx;
418 
419 	state = plane->state;
420 
421 	trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
422 				   state, to_dpu_plane_state(state), stage_idx,
423 				   format->pixel_format,
424 				   modifier);
425 
426 	DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
427 			 crtc->base.id,
428 			 stage,
429 			 plane->base.id,
430 			 sspp_idx - SSPP_NONE,
431 			 state->fb ? state->fb->base.id : -1,
432 			 pipe->multirect_index);
433 
434 	stage_cfg->stage[stage][stage_idx] = sspp_idx;
435 	stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
436 
437 	/* blend config update */
438 	for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
439 		mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
440 }
441 
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)442 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
443 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
444 	struct dpu_hw_stage_cfg *stage_cfg)
445 {
446 	struct drm_plane *plane;
447 	struct drm_framebuffer *fb;
448 	struct drm_plane_state *state;
449 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
450 	struct dpu_plane_state *pstate = NULL;
451 	const struct msm_format *format;
452 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
453 	u32 lm_idx;
454 	bool bg_alpha_enable = false;
455 	DECLARE_BITMAP(active_fetch, SSPP_MAX);
456 	DECLARE_BITMAP(active_pipes, SSPP_MAX);
457 
458 	memset(active_fetch, 0, sizeof(active_fetch));
459 	memset(active_pipes, 0, sizeof(active_pipes));
460 	drm_atomic_crtc_for_each_plane(plane, crtc) {
461 		state = plane->state;
462 		if (!state)
463 			continue;
464 
465 		if (!state->visible)
466 			continue;
467 
468 		pstate = to_dpu_plane_state(state);
469 		fb = state->fb;
470 
471 		format = msm_framebuffer_format(pstate->base.fb);
472 
473 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
474 			bg_alpha_enable = true;
475 
476 		set_bit(pstate->pipe.sspp->idx, active_fetch);
477 		set_bit(pstate->pipe.sspp->idx, active_pipes);
478 		_dpu_crtc_blend_setup_pipe(crtc, plane,
479 					   mixer, cstate->num_mixers,
480 					   pstate->stage,
481 					   format, fb ? fb->modifier : 0,
482 					   &pstate->pipe, 0, stage_cfg);
483 
484 		if (pstate->r_pipe.sspp) {
485 			set_bit(pstate->r_pipe.sspp->idx, active_fetch);
486 			set_bit(pstate->r_pipe.sspp->idx, active_pipes);
487 			_dpu_crtc_blend_setup_pipe(crtc, plane,
488 						   mixer, cstate->num_mixers,
489 						   pstate->stage,
490 						   format, fb ? fb->modifier : 0,
491 						   &pstate->r_pipe, 1, stage_cfg);
492 		}
493 
494 		/* blend config update */
495 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
496 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format,
497 						  ctl->mdss_ver);
498 
499 			if (bg_alpha_enable && !format->alpha_enable)
500 				mixer[lm_idx].mixer_op_mode = 0;
501 			else
502 				mixer[lm_idx].mixer_op_mode |=
503 						1 << pstate->stage;
504 		}
505 	}
506 
507 	if (ctl->ops.set_active_fetch_pipes)
508 		ctl->ops.set_active_fetch_pipes(ctl, active_fetch);
509 
510 	if (ctl->ops.set_active_pipes)
511 		ctl->ops.set_active_pipes(ctl, active_pipes);
512 
513 	_dpu_crtc_program_lm_output_roi(crtc);
514 }
515 
516 /**
517  * _dpu_crtc_blend_setup - configure crtc mixers
518  * @crtc: Pointer to drm crtc structure
519  */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)520 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
521 {
522 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
523 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
524 	struct dpu_crtc_mixer *mixer = cstate->mixers;
525 	struct dpu_hw_ctl *ctl;
526 	struct dpu_hw_mixer *lm;
527 	struct dpu_hw_stage_cfg stage_cfg;
528 	DECLARE_BITMAP(active_lms, LM_MAX);
529 	int i;
530 
531 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
532 
533 	for (i = 0; i < cstate->num_mixers; i++) {
534 		mixer[i].mixer_op_mode = 0;
535 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
536 			mixer[i].lm_ctl->ops.clear_all_blendstages(
537 					mixer[i].lm_ctl);
538 		if (mixer[i].lm_ctl->ops.set_active_fetch_pipes)
539 			mixer[i].lm_ctl->ops.set_active_fetch_pipes(mixer[i].lm_ctl, NULL);
540 		if (mixer[i].lm_ctl->ops.set_active_pipes)
541 			mixer[i].lm_ctl->ops.set_active_pipes(mixer[i].lm_ctl, NULL);
542 
543 		if (mixer[i].hw_lm->ops.clear_all_blendstages)
544 			mixer[i].hw_lm->ops.clear_all_blendstages(mixer[i].hw_lm);
545 	}
546 
547 	/* initialize stage cfg */
548 	memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
549 	memset(active_lms, 0, sizeof(active_lms));
550 
551 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
552 
553 	for (i = 0; i < cstate->num_mixers; i++) {
554 		ctl = mixer[i].lm_ctl;
555 		lm = mixer[i].hw_lm;
556 
557 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
558 
559 		/* stage config flush mask */
560 		ctl->ops.update_pending_flush_mixer(ctl,
561 			mixer[i].hw_lm->idx);
562 
563 		set_bit(lm->idx, active_lms);
564 		if (ctl->ops.set_active_lms)
565 			ctl->ops.set_active_lms(ctl, active_lms);
566 
567 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
568 			mixer[i].hw_lm->idx - LM_0,
569 			mixer[i].mixer_op_mode,
570 			ctl->idx - CTL_0);
571 
572 		if (ctl->ops.setup_blendstage)
573 			ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
574 						  &stage_cfg);
575 
576 		if (lm->ops.setup_blendstage)
577 			lm->ops.setup_blendstage(lm, mixer[i].hw_lm->idx,
578 						 &stage_cfg);
579 	}
580 }
581 
582 /**
583  *  _dpu_crtc_complete_flip - signal pending page_flip events
584  * Any pending vblank events are added to the vblank_event_list
585  * so that the next vblank interrupt shall signal them.
586  * However PAGE_FLIP events are not handled through the vblank_event_list.
587  * This API signals any pending PAGE_FLIP events requested through
588  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
589  * @crtc: Pointer to drm crtc structure
590  */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)591 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
592 {
593 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
594 	struct drm_device *dev = crtc->dev;
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&dev->event_lock, flags);
598 	if (dpu_crtc->event) {
599 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
600 			      dpu_crtc->event);
601 		trace_dpu_crtc_complete_flip(DRMID(crtc));
602 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
603 		dpu_crtc->event = NULL;
604 	}
605 	spin_unlock_irqrestore(&dev->event_lock, flags);
606 }
607 
608 /**
609  * dpu_crtc_get_intf_mode - get interface mode of the given crtc
610  * @crtc: Pointert to crtc
611  */
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)612 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
613 {
614 	struct drm_encoder *encoder;
615 
616 	/*
617 	 * TODO: This function is called from dpu debugfs and as part of atomic
618 	 * check. When called from debugfs, the crtc->mutex must be held to
619 	 * read crtc->state. However reading crtc->state from atomic check isn't
620 	 * allowed (unless you have a good reason, a big comment, and a deep
621 	 * understanding of how the atomic/modeset locks work (<- and this is
622 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
623 	 * really we need to figure out a better way to track our operating mode
624 	 */
625 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
626 
627 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
628 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
629 		return dpu_encoder_get_intf_mode(encoder);
630 
631 	return INTF_MODE_NONE;
632 }
633 
634 /**
635  * dpu_crtc_vblank_callback - called on vblank irq, issues completion events
636  * @crtc: Pointer to drm crtc object
637  */
dpu_crtc_vblank_callback(struct drm_crtc * crtc)638 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
639 {
640 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
641 
642 	/* keep statistics on vblank callback - with auto reset via debugfs */
643 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
644 		dpu_crtc->vblank_cb_time = ktime_get();
645 	else
646 		dpu_crtc->vblank_cb_count++;
647 
648 	dpu_crtc_get_crc(crtc);
649 
650 	drm_crtc_handle_vblank(crtc);
651 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
652 }
653 
dpu_crtc_frame_event_work(struct kthread_work * work)654 static void dpu_crtc_frame_event_work(struct kthread_work *work)
655 {
656 	struct dpu_crtc_frame_event *fevent = container_of(work,
657 			struct dpu_crtc_frame_event, work);
658 	struct drm_crtc *crtc = fevent->crtc;
659 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
660 	unsigned long flags;
661 	bool frame_done = false;
662 
663 	DPU_ATRACE_BEGIN("crtc_frame_event");
664 
665 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
666 			ktime_to_ns(fevent->ts));
667 
668 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
669 				| DPU_ENCODER_FRAME_EVENT_ERROR
670 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
671 
672 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
673 			/* ignore vblank when not pending */
674 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
675 			/* release bandwidth and other resources */
676 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
677 							fevent->event);
678 			dpu_core_perf_crtc_release_bw(crtc);
679 		} else {
680 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
681 								fevent->event);
682 		}
683 
684 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
685 					| DPU_ENCODER_FRAME_EVENT_ERROR))
686 			frame_done = true;
687 	}
688 
689 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
690 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
691 				crtc->base.id, ktime_to_ns(fevent->ts));
692 
693 	if (frame_done)
694 		complete_all(&dpu_crtc->frame_done_comp);
695 
696 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
697 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
698 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
699 	DPU_ATRACE_END("crtc_frame_event");
700 }
701 
702 /**
703  * dpu_crtc_frame_event_cb - crtc frame event callback API
704  * @crtc: Pointer to crtc
705  * @event: Event to process
706  *
707  * Encoder may call this for different events from different context - IRQ,
708  * user thread, commit_thread, etc. Each event should be carefully reviewed and
709  * should be processed in proper task context to avoid schedulin delay or
710  * properly manage the irq context's bottom half processing.
711  */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)712 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
713 {
714 	struct dpu_crtc *dpu_crtc;
715 	struct msm_drm_private *priv;
716 	struct dpu_crtc_frame_event *fevent;
717 	unsigned long flags;
718 	u32 crtc_id;
719 
720 	/* Nothing to do on idle event */
721 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
722 		return;
723 
724 	dpu_crtc = to_dpu_crtc(crtc);
725 	priv = crtc->dev->dev_private;
726 	crtc_id = drm_crtc_index(crtc);
727 
728 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
729 
730 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
731 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
732 			struct dpu_crtc_frame_event, list);
733 	if (fevent)
734 		list_del_init(&fevent->list);
735 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
736 
737 	if (!fevent) {
738 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
739 		return;
740 	}
741 
742 	fevent->event = event;
743 	fevent->crtc = crtc;
744 	fevent->ts = ktime_get();
745 	kthread_queue_work(priv->kms->event_thread[crtc_id].worker, &fevent->work);
746 }
747 
748 /**
749  * dpu_crtc_complete_commit - callback signalling completion of current commit
750  * @crtc: Pointer to drm crtc object
751  */
dpu_crtc_complete_commit(struct drm_crtc * crtc)752 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
753 {
754 	trace_dpu_crtc_complete_commit(DRMID(crtc));
755 	dpu_core_perf_crtc_update(crtc, 0);
756 	_dpu_crtc_complete_flip(crtc);
757 }
758 
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)759 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
760 		struct drm_crtc_state *state)
761 {
762 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
763 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
764 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
765 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
766 	int i;
767 
768 	/* if we cannot merge 2 LMs (no 3d mux) better to fail earlier
769 	 * before even checking the width after the split
770 	 */
771 	if (!dpu_kms->catalog->caps->has_3d_merge &&
772 	    adj_mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
773 		return -E2BIG;
774 
775 	for (i = 0; i < cstate->num_mixers; i++) {
776 		struct drm_rect *r = &cstate->lm_bounds[i];
777 		r->x1 = crtc_split_width * i;
778 		r->y1 = 0;
779 		r->x2 = r->x1 + crtc_split_width;
780 		r->y2 = adj_mode->vdisplay;
781 
782 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
783 
784 		if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
785 			return -E2BIG;
786 	}
787 
788 	return 0;
789 }
790 
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)791 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
792 		struct dpu_hw_pcc_cfg *cfg)
793 {
794 	struct drm_color_ctm *ctm;
795 
796 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
797 
798 	ctm = (struct drm_color_ctm *)state->ctm->data;
799 
800 	if (!ctm)
801 		return;
802 
803 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
804 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
805 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
806 
807 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
808 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
809 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
810 
811 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
812 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
813 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
814 }
815 
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)816 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
817 {
818 	struct drm_crtc_state *state = crtc->state;
819 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
820 	struct dpu_crtc_mixer *mixer = cstate->mixers;
821 	struct dpu_hw_pcc_cfg cfg;
822 	struct dpu_hw_ctl *ctl;
823 	struct dpu_hw_dspp *dspp;
824 	int i;
825 
826 
827 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
828 		return;
829 
830 	for (i = 0; i < cstate->num_mixers; i++) {
831 		ctl = mixer[i].lm_ctl;
832 		dspp = mixer[i].hw_dspp;
833 
834 		if (!dspp || !dspp->ops.setup_pcc)
835 			continue;
836 
837 		if (!state->ctm) {
838 			dspp->ops.setup_pcc(dspp, NULL);
839 		} else {
840 			_dpu_crtc_get_pcc_coeff(state, &cfg);
841 			dspp->ops.setup_pcc(dspp, &cfg);
842 		}
843 
844 		/* stage config flush mask */
845 		ctl->ops.update_pending_flush_dspp(ctl,
846 			mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
847 	}
848 }
849 
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)850 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
851 		struct drm_atomic_state *state)
852 {
853 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
854 	struct drm_encoder *encoder;
855 
856 	if (!crtc->state->enable) {
857 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
858 				crtc->base.id, crtc->state->enable);
859 		return;
860 	}
861 
862 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
863 
864 	_dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
865 
866 	/* encoder will trigger pending mask now */
867 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
868 		dpu_encoder_trigger_kickoff_pending(encoder);
869 
870 	/*
871 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
872 	 * it means we are trying to flush a CRTC whose state is disabled:
873 	 * nothing else needs to be done.
874 	 */
875 	if (unlikely(!cstate->num_mixers))
876 		return;
877 
878 	_dpu_crtc_blend_setup(crtc);
879 
880 	_dpu_crtc_setup_cp_blocks(crtc);
881 
882 	/*
883 	 * PP_DONE irq is only used by command mode for now.
884 	 * It is better to request pending before FLUSH and START trigger
885 	 * to make sure no pp_done irq missed.
886 	 * This is safe because no pp_done will happen before SW trigger
887 	 * in command mode.
888 	 */
889 }
890 
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)891 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
892 		struct drm_atomic_state *state)
893 {
894 	struct dpu_crtc *dpu_crtc;
895 	struct drm_device *dev;
896 	struct drm_plane *plane;
897 	struct msm_drm_private *priv;
898 	unsigned long flags;
899 	struct dpu_crtc_state *cstate;
900 
901 	if (!crtc->state->enable) {
902 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
903 				crtc->base.id, crtc->state->enable);
904 		return;
905 	}
906 
907 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
908 
909 	dpu_crtc = to_dpu_crtc(crtc);
910 	cstate = to_dpu_crtc_state(crtc->state);
911 	dev = crtc->dev;
912 	priv = dev->dev_private;
913 
914 	if (crtc->index >= ARRAY_SIZE(priv->kms->event_thread)) {
915 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
916 		return;
917 	}
918 
919 	WARN_ON(dpu_crtc->event);
920 	spin_lock_irqsave(&dev->event_lock, flags);
921 	dpu_crtc->event = crtc->state->event;
922 	crtc->state->event = NULL;
923 	spin_unlock_irqrestore(&dev->event_lock, flags);
924 
925 	/*
926 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
927 	 * it means we are trying to flush a CRTC whose state is disabled:
928 	 * nothing else needs to be done.
929 	 */
930 	if (unlikely(!cstate->num_mixers))
931 		return;
932 
933 	/* update performance setting before crtc kickoff */
934 	dpu_core_perf_crtc_update(crtc, 1);
935 
936 	/*
937 	 * Final plane updates: Give each plane a chance to complete all
938 	 *                      required writes/flushing before crtc's "flush
939 	 *                      everything" call below.
940 	 */
941 	drm_atomic_crtc_for_each_plane(plane, crtc) {
942 		if (dpu_crtc->smmu_state.transition_error)
943 			dpu_plane_set_error(plane, true);
944 		dpu_plane_flush(plane);
945 	}
946 
947 	/* Kickoff will be scheduled by outer layer */
948 }
949 
950 /**
951  * dpu_crtc_destroy_state - state destroy hook
952  * @crtc: drm CRTC
953  * @state: CRTC state object to release
954  */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)955 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
956 		struct drm_crtc_state *state)
957 {
958 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
959 
960 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
961 
962 	__drm_atomic_helper_crtc_destroy_state(state);
963 
964 	kfree(cstate);
965 }
966 
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)967 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
968 {
969 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
970 	int ret, rc = 0;
971 
972 	if (!atomic_read(&dpu_crtc->frame_pending)) {
973 		DRM_DEBUG_ATOMIC("no frames pending\n");
974 		return 0;
975 	}
976 
977 	DPU_ATRACE_BEGIN("frame done completion wait");
978 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
979 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
980 	if (!ret) {
981 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
982 		rc = -ETIMEDOUT;
983 	}
984 	DPU_ATRACE_END("frame done completion wait");
985 
986 	return rc;
987 }
988 
dpu_crtc_kickoff_clone_mode(struct drm_crtc * crtc)989 static int dpu_crtc_kickoff_clone_mode(struct drm_crtc *crtc)
990 {
991 	struct drm_encoder *encoder;
992 	struct drm_encoder *rt_encoder = NULL, *wb_encoder = NULL;
993 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
994 
995 	/* Find encoder for real time display */
996 	drm_for_each_encoder_mask(encoder, crtc->dev,
997 				  crtc->state->encoder_mask) {
998 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
999 			wb_encoder = encoder;
1000 		else
1001 			rt_encoder = encoder;
1002 	}
1003 
1004 	if (!rt_encoder || !wb_encoder) {
1005 		DRM_DEBUG_ATOMIC("real time or wb encoder not found\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	dpu_encoder_prepare_for_kickoff(wb_encoder);
1010 	dpu_encoder_prepare_for_kickoff(rt_encoder);
1011 
1012 	dpu_vbif_clear_errors(dpu_kms);
1013 
1014 	/*
1015 	 * Kickoff real time encoder last as it's the encoder that
1016 	 * will do the flush
1017 	 */
1018 	dpu_encoder_kickoff(wb_encoder);
1019 	dpu_encoder_kickoff(rt_encoder);
1020 
1021 	/* Don't start frame done timers until the kickoffs have finished */
1022 	dpu_encoder_start_frame_done_timer(wb_encoder);
1023 	dpu_encoder_start_frame_done_timer(rt_encoder);
1024 
1025 	return 0;
1026 }
1027 
1028 /**
1029  * dpu_crtc_commit_kickoff - trigger kickoff of the commit for this crtc
1030  * @crtc: Pointer to drm crtc object
1031  */
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)1032 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
1033 {
1034 	struct drm_encoder *encoder;
1035 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1036 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1037 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1038 
1039 	/*
1040 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
1041 	 * it means we are trying to start a CRTC whose state is disabled:
1042 	 * nothing else needs to be done.
1043 	 */
1044 	if (unlikely(!cstate->num_mixers))
1045 		return;
1046 
1047 	DPU_ATRACE_BEGIN("crtc_commit");
1048 
1049 	drm_for_each_encoder_mask(encoder, crtc->dev,
1050 			crtc->state->encoder_mask) {
1051 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
1052 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
1053 			goto end;
1054 		}
1055 	}
1056 
1057 	if (drm_crtc_in_clone_mode(crtc->state)) {
1058 		if (dpu_crtc_kickoff_clone_mode(crtc))
1059 			goto end;
1060 	} else {
1061 		/*
1062 		 * Encoder will flush/start now, unless it has a tx pending.
1063 		 * If so, it may delay and flush at an irq event (e.g. ppdone)
1064 		 */
1065 		drm_for_each_encoder_mask(encoder, crtc->dev,
1066 				crtc->state->encoder_mask)
1067 			dpu_encoder_prepare_for_kickoff(encoder);
1068 
1069 		dpu_vbif_clear_errors(dpu_kms);
1070 
1071 		drm_for_each_encoder_mask(encoder, crtc->dev,
1072 				crtc->state->encoder_mask) {
1073 			dpu_encoder_kickoff(encoder);
1074 			dpu_encoder_start_frame_done_timer(encoder);
1075 		}
1076 	}
1077 
1078 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
1079 		/* acquire bandwidth and other resources */
1080 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
1081 	} else
1082 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
1083 
1084 	dpu_crtc->play_count++;
1085 
1086 	reinit_completion(&dpu_crtc->frame_done_comp);
1087 
1088 end:
1089 	DPU_ATRACE_END("crtc_commit");
1090 }
1091 
dpu_crtc_reset(struct drm_crtc * crtc)1092 static void dpu_crtc_reset(struct drm_crtc *crtc)
1093 {
1094 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1095 
1096 	if (crtc->state)
1097 		dpu_crtc_destroy_state(crtc, crtc->state);
1098 
1099 	if (cstate)
1100 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1101 	else
1102 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1103 }
1104 
1105 /**
1106  * dpu_crtc_duplicate_state - state duplicate hook
1107  * @crtc: Pointer to drm crtc structure
1108  */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1109 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1110 {
1111 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1112 
1113 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1114 	if (!cstate) {
1115 		DPU_ERROR("failed to allocate state\n");
1116 		return NULL;
1117 	}
1118 
1119 	/* duplicate base helper */
1120 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1121 
1122 	return &cstate->base;
1123 }
1124 
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1125 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1126 					const struct drm_crtc_state *state)
1127 {
1128 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1129 	int i;
1130 
1131 	for (i = 0; i < cstate->num_mixers; i++) {
1132 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1133 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1134 		if (cstate->mixers[i].hw_dspp)
1135 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1136 	}
1137 }
1138 
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1139 static void dpu_crtc_disable(struct drm_crtc *crtc,
1140 			     struct drm_atomic_state *state)
1141 {
1142 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1143 									      crtc);
1144 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1145 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1146 	struct drm_encoder *encoder;
1147 	unsigned long flags;
1148 	bool release_bandwidth = false;
1149 
1150 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1151 
1152 	/* If disable is triggered while in self refresh mode,
1153 	 * reset the encoder software state so that in enable
1154 	 * it won't trigger a warn while assigning crtc.
1155 	 */
1156 	if (old_crtc_state->self_refresh_active) {
1157 		drm_for_each_encoder_mask(encoder, crtc->dev,
1158 					old_crtc_state->encoder_mask) {
1159 			dpu_encoder_assign_crtc(encoder, NULL);
1160 		}
1161 		return;
1162 	}
1163 
1164 	/* Disable/save vblank irq handling */
1165 	drm_crtc_vblank_off(crtc);
1166 
1167 	drm_for_each_encoder_mask(encoder, crtc->dev,
1168 				  old_crtc_state->encoder_mask) {
1169 		/* in video mode, we hold an extra bandwidth reference
1170 		 * as we cannot drop bandwidth at frame-done if any
1171 		 * crtc is being used in video mode.
1172 		 */
1173 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1174 			release_bandwidth = true;
1175 
1176 		/*
1177 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1178 		 * we will need encoder->crtc connection to process the device sleep &
1179 		 * preserve it during psr sequence.
1180 		 */
1181 		if (!crtc->state->self_refresh_active)
1182 			dpu_encoder_assign_crtc(encoder, NULL);
1183 	}
1184 
1185 	/* wait for frame_event_done completion */
1186 	if (_dpu_crtc_wait_for_frame_done(crtc))
1187 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1188 				crtc->base.id,
1189 				atomic_read(&dpu_crtc->frame_pending));
1190 
1191 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1192 	dpu_crtc->enabled = false;
1193 
1194 	if (atomic_read(&dpu_crtc->frame_pending)) {
1195 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1196 				     atomic_read(&dpu_crtc->frame_pending));
1197 		if (release_bandwidth)
1198 			dpu_core_perf_crtc_release_bw(crtc);
1199 		atomic_set(&dpu_crtc->frame_pending, 0);
1200 	}
1201 
1202 	dpu_core_perf_crtc_update(crtc, 0);
1203 
1204 	/* disable clk & bw control until clk & bw properties are set */
1205 	cstate->bw_control = false;
1206 	cstate->bw_split_vote = false;
1207 
1208 	if (crtc->state->event && !crtc->state->active) {
1209 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1210 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1211 		crtc->state->event = NULL;
1212 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1213 	}
1214 
1215 	pm_runtime_put_sync(crtc->dev->dev);
1216 }
1217 
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1218 static void dpu_crtc_enable(struct drm_crtc *crtc,
1219 		struct drm_atomic_state *state)
1220 {
1221 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1222 	struct drm_encoder *encoder;
1223 	bool request_bandwidth = false;
1224 	struct drm_crtc_state *old_crtc_state;
1225 
1226 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1227 
1228 	pm_runtime_get_sync(crtc->dev->dev);
1229 
1230 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1231 
1232 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1233 		/* in video mode, we hold an extra bandwidth reference
1234 		 * as we cannot drop bandwidth at frame-done if any
1235 		 * crtc is being used in video mode.
1236 		 */
1237 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1238 			request_bandwidth = true;
1239 	}
1240 
1241 	if (request_bandwidth)
1242 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1243 
1244 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1245 	dpu_crtc->enabled = true;
1246 
1247 	if (!old_crtc_state->self_refresh_active) {
1248 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1249 			dpu_encoder_assign_crtc(encoder, crtc);
1250 	}
1251 
1252 	/* Enable/restore vblank irq handling */
1253 	drm_crtc_vblank_on(crtc);
1254 }
1255 
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1256 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1257 {
1258 	struct drm_crtc *crtc = cstate->crtc;
1259 	struct drm_encoder *encoder;
1260 
1261 	if (cstate->self_refresh_active)
1262 		return true;
1263 
1264 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1265 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1266 			return true;
1267 		}
1268 	}
1269 
1270 	return false;
1271 }
1272 
dpu_crtc_reassign_planes(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1273 static int dpu_crtc_reassign_planes(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
1274 {
1275 	int total_planes = crtc->dev->mode_config.num_total_plane;
1276 	struct drm_atomic_state *state = crtc_state->state;
1277 	struct dpu_global_state *global_state;
1278 	struct drm_plane_state **states;
1279 	struct drm_plane *plane;
1280 	int ret;
1281 
1282 	global_state = dpu_kms_get_global_state(crtc_state->state);
1283 	if (IS_ERR(global_state))
1284 		return PTR_ERR(global_state);
1285 
1286 	dpu_rm_release_all_sspp(global_state, crtc);
1287 
1288 	if (!crtc_state->enable)
1289 		return 0;
1290 
1291 	states = kcalloc(total_planes, sizeof(*states), GFP_KERNEL);
1292 	if (!states)
1293 		return -ENOMEM;
1294 
1295 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1296 		struct drm_plane_state *plane_state =
1297 			drm_atomic_get_plane_state(state, plane);
1298 
1299 		if (IS_ERR(plane_state)) {
1300 			ret = PTR_ERR(plane_state);
1301 			goto done;
1302 		}
1303 
1304 		states[plane_state->normalized_zpos] = plane_state;
1305 	}
1306 
1307 	ret = dpu_assign_plane_resources(global_state, state, crtc, states, total_planes);
1308 
1309 done:
1310 	kfree(states);
1311 	return ret;
1312 }
1313 
1314 #define MAX_CHANNELS_PER_CRTC 2
1315 #define MAX_HDISPLAY_SPLIT 1080
1316 
dpu_crtc_get_topology(struct drm_crtc * crtc,struct dpu_kms * dpu_kms,struct drm_crtc_state * crtc_state)1317 static struct msm_display_topology dpu_crtc_get_topology(
1318 		struct drm_crtc *crtc,
1319 		struct dpu_kms *dpu_kms,
1320 		struct drm_crtc_state *crtc_state)
1321 {
1322 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1323 	struct msm_display_topology topology = {0};
1324 	struct drm_encoder *drm_enc;
1325 
1326 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc_state->encoder_mask)
1327 		dpu_encoder_update_topology(drm_enc, &topology, crtc_state->state,
1328 					    &crtc_state->adjusted_mode);
1329 
1330 	topology.cwb_enabled = drm_crtc_in_clone_mode(crtc_state);
1331 
1332 	/*
1333 	 * Datapath topology selection
1334 	 *
1335 	 * Dual display
1336 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
1337 	 *
1338 	 * Single display
1339 	 * 1 LM, 1 INTF
1340 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
1341 	 *
1342 	 * If DSC is enabled, use 2 LMs for 2:2:1 topology
1343 	 *
1344 	 * Add dspps to the reservation requirements if ctm is requested
1345 	 *
1346 	 * Only hardcode num_lm to 2 for cases where num_intf == 2 and CWB is not
1347 	 * enabled. This is because in cases where CWB is enabled, num_intf will
1348 	 * count both the WB and real-time phys encoders.
1349 	 *
1350 	 * For non-DSC CWB usecases, have the num_lm be decided by the
1351 	 * (mode->hdisplay > MAX_HDISPLAY_SPLIT) check.
1352 	 */
1353 
1354 	if (topology.num_intf == 2 && !topology.cwb_enabled)
1355 		topology.num_lm = 2;
1356 	else if (topology.num_dsc == 2)
1357 		topology.num_lm = 2;
1358 	else if (dpu_kms->catalog->caps->has_3d_merge)
1359 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
1360 	else
1361 		topology.num_lm = 1;
1362 
1363 	if (crtc_state->ctm)
1364 		topology.num_dspp = topology.num_lm;
1365 
1366 	return topology;
1367 }
1368 
dpu_crtc_assign_resources(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1369 static int dpu_crtc_assign_resources(struct drm_crtc *crtc,
1370 				     struct drm_crtc_state *crtc_state)
1371 {
1372 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_CRTC];
1373 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_CRTC];
1374 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_CRTC];
1375 	int i, num_lm, num_ctl, num_dspp;
1376 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1377 	struct dpu_global_state *global_state;
1378 	struct dpu_crtc_state *cstate;
1379 	struct msm_display_topology topology;
1380 	int ret;
1381 
1382 	/*
1383 	 * Release and Allocate resources on every modeset
1384 	 */
1385 	global_state = dpu_kms_get_global_state(crtc_state->state);
1386 	if (IS_ERR(global_state))
1387 		return PTR_ERR(global_state);
1388 
1389 	dpu_rm_release(global_state, crtc);
1390 
1391 	if (!crtc_state->enable)
1392 		return 0;
1393 
1394 	topology = dpu_crtc_get_topology(crtc, dpu_kms, crtc_state);
1395 	ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
1396 			     crtc_state->crtc, &topology);
1397 	if (ret)
1398 		return ret;
1399 
1400 	cstate = to_dpu_crtc_state(crtc_state);
1401 
1402 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1403 						crtc_state->crtc,
1404 						DPU_HW_BLK_CTL, hw_ctl,
1405 						ARRAY_SIZE(hw_ctl));
1406 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1407 					       crtc_state->crtc,
1408 					       DPU_HW_BLK_LM, hw_lm,
1409 					       ARRAY_SIZE(hw_lm));
1410 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1411 						 crtc_state->crtc,
1412 						 DPU_HW_BLK_DSPP, hw_dspp,
1413 						 ARRAY_SIZE(hw_dspp));
1414 
1415 	for (i = 0; i < num_lm; i++) {
1416 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1417 
1418 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1419 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1420 		if (i < num_dspp)
1421 			cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1422 	}
1423 
1424 	cstate->num_mixers = num_lm;
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * dpu_crtc_check_mode_changed: check if full modeset is required
1431  * @old_crtc_state:	Previous CRTC state
1432  * @new_crtc_state:	Corresponding CRTC state to be checked
1433  *
1434  * Check if the changes in the object properties demand full mode set.
1435  */
dpu_crtc_check_mode_changed(struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)1436 int dpu_crtc_check_mode_changed(struct drm_crtc_state *old_crtc_state,
1437 				struct drm_crtc_state *new_crtc_state)
1438 {
1439 	struct drm_encoder *drm_enc;
1440 	struct drm_crtc *crtc = new_crtc_state->crtc;
1441 	bool clone_mode_enabled = drm_crtc_in_clone_mode(old_crtc_state);
1442 	bool clone_mode_requested = drm_crtc_in_clone_mode(new_crtc_state);
1443 
1444 	DRM_DEBUG_ATOMIC("%d\n", crtc->base.id);
1445 
1446 	/* there might be cases where encoder needs a modeset too */
1447 	drm_for_each_encoder_mask(drm_enc, crtc->dev, new_crtc_state->encoder_mask) {
1448 		if (dpu_encoder_needs_modeset(drm_enc, new_crtc_state->state))
1449 			new_crtc_state->mode_changed = true;
1450 	}
1451 
1452 	if ((clone_mode_requested && !clone_mode_enabled) ||
1453 	    (!clone_mode_requested && clone_mode_enabled))
1454 		new_crtc_state->mode_changed = true;
1455 
1456 	return 0;
1457 }
1458 
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1459 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1460 		struct drm_atomic_state *state)
1461 {
1462 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1463 									  crtc);
1464 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1465 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1466 
1467 	const struct drm_plane_state *pstate;
1468 	struct drm_plane *plane;
1469 
1470 	int rc = 0;
1471 
1472 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1473 
1474 	/* don't reallocate resources if only ACTIVE has beeen changed */
1475 	if (crtc_state->mode_changed || crtc_state->connectors_changed) {
1476 		rc = dpu_crtc_assign_resources(crtc, crtc_state);
1477 		if (rc < 0)
1478 			return rc;
1479 	}
1480 
1481 	if (dpu_use_virtual_planes &&
1482 	    (crtc_state->planes_changed || crtc_state->zpos_changed)) {
1483 		rc = dpu_crtc_reassign_planes(crtc, crtc_state);
1484 		if (rc < 0)
1485 			return rc;
1486 	}
1487 
1488 	if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1489 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1490 				crtc->base.id, crtc_state->enable,
1491 				crtc_state->active);
1492 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1493 		return 0;
1494 	}
1495 
1496 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1497 
1498 	if (cstate->num_mixers) {
1499 		rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1500 		if (rc)
1501 			return rc;
1502 	}
1503 
1504 	/* FIXME: move this to dpu_plane_atomic_check? */
1505 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1506 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1507 
1508 		if (IS_ERR_OR_NULL(pstate)) {
1509 			rc = PTR_ERR(pstate);
1510 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1511 					dpu_crtc->name, plane->base.id, rc);
1512 			return rc;
1513 		}
1514 
1515 		if (!pstate->visible)
1516 			continue;
1517 
1518 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1519 	}
1520 
1521 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1522 
1523 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1524 	if (rc) {
1525 		DPU_ERROR("crtc%d failed performance check %d\n",
1526 				crtc->base.id, rc);
1527 		return rc;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
dpu_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1533 static enum drm_mode_status dpu_crtc_mode_valid(struct drm_crtc *crtc,
1534 						const struct drm_display_mode *mode)
1535 {
1536 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1537 
1538 	/* if there is no 3d_mux block we cannot merge LMs so we cannot
1539 	 * split the large layer into 2 LMs, filter out such modes
1540 	 */
1541 	if (!dpu_kms->catalog->caps->has_3d_merge &&
1542 	    mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
1543 		return MODE_BAD_HVALUE;
1544 	/*
1545 	 * max crtc width is equal to the max mixer width * 2 and max height is 4K
1546 	 */
1547 	return drm_mode_validate_size(mode,
1548 				      2 * dpu_kms->catalog->caps->max_mixer_width,
1549 				      4096);
1550 }
1551 
1552 /**
1553  * dpu_crtc_vblank - enable or disable vblanks for this crtc
1554  * @crtc: Pointer to drm crtc object
1555  * @en: true to enable vblanks, false to disable
1556  */
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1557 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1558 {
1559 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1560 	struct drm_encoder *enc;
1561 
1562 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1563 
1564 	/*
1565 	 * Normally we would iterate through encoder_mask in crtc state to find
1566 	 * attached encoders. In this case, we might be disabling vblank _after_
1567 	 * encoder_mask has been cleared.
1568 	 *
1569 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1570 	 * disable (which is also after encoder_mask is cleared). So instead of
1571 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1572 	 * currently assigned to our crtc.
1573 	 *
1574 	 * Note also that this function cannot be called while crtc is disabled
1575 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1576 	 * about the assigned crtcs being inconsistent with the current state
1577 	 * (which means no need to worry about modeset locks).
1578 	 */
1579 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1580 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1581 					     dpu_crtc);
1582 
1583 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1590 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1591 {
1592 	struct dpu_crtc *dpu_crtc;
1593 	struct dpu_plane_state *pstate = NULL;
1594 	struct dpu_crtc_mixer *m;
1595 
1596 	struct drm_crtc *crtc;
1597 	struct drm_plane *plane;
1598 	struct drm_display_mode *mode;
1599 	struct drm_framebuffer *fb;
1600 	struct drm_plane_state *state;
1601 	struct dpu_crtc_state *cstate;
1602 
1603 	int i, out_width;
1604 
1605 	dpu_crtc = s->private;
1606 	crtc = &dpu_crtc->base;
1607 
1608 	drm_modeset_lock_all(crtc->dev);
1609 	cstate = to_dpu_crtc_state(crtc->state);
1610 
1611 	mode = &crtc->state->adjusted_mode;
1612 	out_width = mode->hdisplay / cstate->num_mixers;
1613 
1614 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1615 				mode->hdisplay, mode->vdisplay);
1616 
1617 	seq_puts(s, "\n");
1618 
1619 	for (i = 0; i < cstate->num_mixers; ++i) {
1620 		m = &cstate->mixers[i];
1621 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1622 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1623 			out_width, mode->vdisplay);
1624 	}
1625 
1626 	seq_puts(s, "\n");
1627 
1628 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1629 		pstate = to_dpu_plane_state(plane->state);
1630 		state = plane->state;
1631 
1632 		if (!pstate || !state)
1633 			continue;
1634 
1635 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1636 			pstate->stage);
1637 
1638 		if (plane->state->fb) {
1639 			fb = plane->state->fb;
1640 
1641 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1642 				fb->base.id, (char *) &fb->format->format,
1643 				fb->width, fb->height);
1644 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1645 				seq_printf(s, "cpp[%d]:%u ",
1646 						i, fb->format->cpp[i]);
1647 			seq_puts(s, "\n\t");
1648 
1649 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1650 			seq_puts(s, "\n");
1651 
1652 			seq_puts(s, "\t");
1653 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1654 				seq_printf(s, "pitches[%d]:%8u ", i,
1655 							fb->pitches[i]);
1656 			seq_puts(s, "\n");
1657 
1658 			seq_puts(s, "\t");
1659 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1660 				seq_printf(s, "offsets[%d]:%8u ", i,
1661 							fb->offsets[i]);
1662 			seq_puts(s, "\n");
1663 		}
1664 
1665 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1666 			state->src_x, state->src_y, state->src_w, state->src_h);
1667 
1668 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1669 			state->crtc_x, state->crtc_y, state->crtc_w,
1670 			state->crtc_h);
1671 		seq_printf(s, "\tsspp[0]:%s\n",
1672 			   pstate->pipe.sspp->cap->name);
1673 		seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1674 			pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1675 		if (pstate->r_pipe.sspp) {
1676 			seq_printf(s, "\tsspp[1]:%s\n",
1677 				   pstate->r_pipe.sspp->cap->name);
1678 			seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1679 				   pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1680 		}
1681 
1682 		seq_puts(s, "\n");
1683 	}
1684 	if (dpu_crtc->vblank_cb_count) {
1685 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1686 		s64 diff_ms = ktime_to_ms(diff);
1687 		s64 fps = diff_ms ? div_s64(
1688 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1689 
1690 		seq_printf(s,
1691 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1692 				fps, dpu_crtc->vblank_cb_count,
1693 				ktime_to_ms(diff), dpu_crtc->play_count);
1694 
1695 		/* reset time & count for next measurement */
1696 		dpu_crtc->vblank_cb_count = 0;
1697 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1698 	}
1699 
1700 	drm_modeset_unlock_all(crtc->dev);
1701 
1702 	return 0;
1703 }
1704 
1705 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1706 
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1707 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1708 {
1709 	struct drm_crtc *crtc = s->private;
1710 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1711 
1712 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1713 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1714 	seq_printf(s, "core_clk_rate: %llu\n",
1715 			dpu_crtc->cur_perf.core_clk_rate);
1716 	seq_printf(s, "bw_ctl: %uk\n",
1717 		   (u32)DIV_ROUND_UP_ULL(dpu_crtc->cur_perf.bw_ctl, 1000));
1718 	seq_printf(s, "max_per_pipe_ib: %u\n",
1719 				dpu_crtc->cur_perf.max_per_pipe_ib);
1720 
1721 	return 0;
1722 }
1723 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1724 
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1725 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1726 {
1727 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1728 
1729 	debugfs_create_file("status", 0400,
1730 			crtc->debugfs_entry,
1731 			dpu_crtc, &_dpu_debugfs_status_fops);
1732 	debugfs_create_file("state", 0600,
1733 			crtc->debugfs_entry,
1734 			&dpu_crtc->base,
1735 			&dpu_crtc_debugfs_state_fops);
1736 
1737 	return 0;
1738 }
1739 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1740 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1741 {
1742 	return 0;
1743 }
1744 #endif /* CONFIG_DEBUG_FS */
1745 
dpu_crtc_late_register(struct drm_crtc * crtc)1746 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1747 {
1748 	return _dpu_crtc_init_debugfs(crtc);
1749 }
1750 
1751 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1752 	.set_config = drm_atomic_helper_set_config,
1753 	.page_flip = drm_atomic_helper_page_flip,
1754 	.reset = dpu_crtc_reset,
1755 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1756 	.atomic_destroy_state = dpu_crtc_destroy_state,
1757 	.atomic_print_state = dpu_crtc_atomic_print_state,
1758 	.late_register = dpu_crtc_late_register,
1759 	.verify_crc_source = dpu_crtc_verify_crc_source,
1760 	.set_crc_source = dpu_crtc_set_crc_source,
1761 	.enable_vblank  = msm_crtc_enable_vblank,
1762 	.disable_vblank = msm_crtc_disable_vblank,
1763 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1764 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1765 };
1766 
1767 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1768 	.atomic_disable = dpu_crtc_disable,
1769 	.atomic_enable = dpu_crtc_enable,
1770 	.atomic_check = dpu_crtc_atomic_check,
1771 	.atomic_begin = dpu_crtc_atomic_begin,
1772 	.atomic_flush = dpu_crtc_atomic_flush,
1773 	.mode_valid = dpu_crtc_mode_valid,
1774 	.get_scanout_position = dpu_crtc_get_scanout_position,
1775 };
1776 
1777 /**
1778  * dpu_crtc_init - create a new crtc object
1779  * @dev: dpu device
1780  * @plane: base plane
1781  * @cursor: cursor plane
1782  * @return: new crtc object or error
1783  *
1784  * initialize CRTC
1785  */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1786 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1787 				struct drm_plane *cursor)
1788 {
1789 	struct msm_drm_private *priv = dev->dev_private;
1790 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1791 	struct drm_crtc *crtc = NULL;
1792 	struct dpu_crtc *dpu_crtc;
1793 	int i, ret;
1794 
1795 	dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1796 					       plane, cursor,
1797 					       &dpu_crtc_funcs,
1798 					       NULL);
1799 
1800 	if (IS_ERR(dpu_crtc))
1801 		return ERR_CAST(dpu_crtc);
1802 
1803 	crtc = &dpu_crtc->base;
1804 	crtc->dev = dev;
1805 
1806 	spin_lock_init(&dpu_crtc->spin_lock);
1807 	atomic_set(&dpu_crtc->frame_pending, 0);
1808 
1809 	init_completion(&dpu_crtc->frame_done_comp);
1810 
1811 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1812 
1813 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1814 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1815 		list_add(&dpu_crtc->frame_events[i].list,
1816 				&dpu_crtc->frame_event_list);
1817 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1818 				dpu_crtc_frame_event_work);
1819 	}
1820 
1821 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1822 
1823 	if (dpu_kms->catalog->dspp_count)
1824 		drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1825 
1826 	/* save user friendly CRTC name for later */
1827 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1828 
1829 	/* initialize event handling */
1830 	spin_lock_init(&dpu_crtc->event_lock);
1831 
1832 	ret = drm_self_refresh_helper_init(crtc);
1833 	if (ret) {
1834 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1835 			crtc->name, ret);
1836 		return ERR_PTR(ret);
1837 	}
1838 
1839 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1840 	return crtc;
1841 }
1842