xref: /linux/arch/arm64/kernel/sdei.c (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
4 
5 #include <linux/arm-smccc.h>
6 #include <linux/arm_sdei.h>
7 #include <linux/hardirq.h>
8 #include <linux/irqflags.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/scs.h>
11 #include <linux/uaccess.h>
12 
13 #include <asm/alternative.h>
14 #include <asm/exception.h>
15 #include <asm/kprobes.h>
16 #include <asm/mmu.h>
17 #include <asm/ptrace.h>
18 #include <asm/sections.h>
19 #include <asm/stacktrace.h>
20 #include <asm/sysreg.h>
21 #include <asm/vmap_stack.h>
22 
23 unsigned long sdei_exit_mode;
24 
25 /*
26  * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
27  * register, meaning SDEI has to switch to its own stack. We need two stacks as
28  * a critical event may interrupt a normal event that has just taken a
29  * synchronous exception, and is using sp as scratch register. For a critical
30  * event interrupting a normal event, we can't reliably tell if we were on the
31  * sdei stack.
32  * For now, we allocate stacks when the driver is probed.
33  */
34 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
35 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
36 
37 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr);
38 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr);
39 
40 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
41 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
42 
43 #ifdef CONFIG_SHADOW_CALL_STACK
44 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr);
45 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr);
46 #endif
47 
48 DEFINE_PER_CPU(struct sdei_registered_event *, sdei_active_normal_event);
49 DEFINE_PER_CPU(struct sdei_registered_event *, sdei_active_critical_event);
50 
_free_sdei_stack(unsigned long * __percpu * ptr,int cpu)51 static void _free_sdei_stack(unsigned long * __percpu *ptr, int cpu)
52 {
53 	unsigned long *p;
54 
55 	p = per_cpu(*ptr, cpu);
56 	if (p) {
57 		per_cpu(*ptr, cpu) = NULL;
58 		vfree(p);
59 	}
60 }
61 
free_sdei_stacks(void)62 static void free_sdei_stacks(void)
63 {
64 	int cpu;
65 
66 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_VMAP_STACK));
67 
68 	for_each_possible_cpu(cpu) {
69 		_free_sdei_stack(&sdei_stack_normal_ptr, cpu);
70 		_free_sdei_stack(&sdei_stack_critical_ptr, cpu);
71 	}
72 }
73 
_init_sdei_stack(unsigned long * __percpu * ptr,int cpu)74 static int _init_sdei_stack(unsigned long * __percpu *ptr, int cpu)
75 {
76 	unsigned long *p;
77 
78 	p = arch_alloc_vmap_stack(SDEI_STACK_SIZE, cpu_to_node(cpu));
79 	if (!p)
80 		return -ENOMEM;
81 	per_cpu(*ptr, cpu) = p;
82 
83 	return 0;
84 }
85 
init_sdei_stacks(void)86 static int init_sdei_stacks(void)
87 {
88 	int cpu;
89 	int err = 0;
90 
91 	BUILD_BUG_ON(!IS_ENABLED(CONFIG_VMAP_STACK));
92 
93 	for_each_possible_cpu(cpu) {
94 		err = _init_sdei_stack(&sdei_stack_normal_ptr, cpu);
95 		if (err)
96 			break;
97 		err = _init_sdei_stack(&sdei_stack_critical_ptr, cpu);
98 		if (err)
99 			break;
100 	}
101 
102 	if (err)
103 		free_sdei_stacks();
104 
105 	return err;
106 }
107 
_free_sdei_scs(unsigned long * __percpu * ptr,int cpu)108 static void _free_sdei_scs(unsigned long * __percpu *ptr, int cpu)
109 {
110 	void *s;
111 
112 	s = per_cpu(*ptr, cpu);
113 	if (s) {
114 		per_cpu(*ptr, cpu) = NULL;
115 		scs_free(s);
116 	}
117 }
118 
free_sdei_scs(void)119 static void free_sdei_scs(void)
120 {
121 	int cpu;
122 
123 	for_each_possible_cpu(cpu) {
124 		_free_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
125 		_free_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
126 	}
127 }
128 
_init_sdei_scs(unsigned long * __percpu * ptr,int cpu)129 static int _init_sdei_scs(unsigned long * __percpu *ptr, int cpu)
130 {
131 	void *s;
132 
133 	s = scs_alloc(cpu_to_node(cpu));
134 	if (!s)
135 		return -ENOMEM;
136 	per_cpu(*ptr, cpu) = s;
137 
138 	return 0;
139 }
140 
init_sdei_scs(void)141 static int init_sdei_scs(void)
142 {
143 	int cpu;
144 	int err = 0;
145 
146 	if (!scs_is_enabled())
147 		return 0;
148 
149 	for_each_possible_cpu(cpu) {
150 		err = _init_sdei_scs(&sdei_shadow_call_stack_normal_ptr, cpu);
151 		if (err)
152 			break;
153 		err = _init_sdei_scs(&sdei_shadow_call_stack_critical_ptr, cpu);
154 		if (err)
155 			break;
156 	}
157 
158 	if (err)
159 		free_sdei_scs();
160 
161 	return err;
162 }
163 
sdei_arch_get_entry_point(int conduit)164 unsigned long sdei_arch_get_entry_point(int conduit)
165 {
166 	/*
167 	 * SDEI works between adjacent exception levels. If we booted at EL1 we
168 	 * assume a hypervisor is marshalling events. If we booted at EL2 and
169 	 * dropped to EL1 because we don't support VHE, then we can't support
170 	 * SDEI.
171 	 */
172 	if (is_hyp_nvhe()) {
173 		pr_err("Not supported on this hardware/boot configuration\n");
174 		goto out_err;
175 	}
176 
177 	if (init_sdei_stacks())
178 		goto out_err;
179 
180 	if (init_sdei_scs())
181 		goto out_err_free_stacks;
182 
183 	sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
184 
185 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
186 	if (arm64_kernel_unmapped_at_el0()) {
187 		unsigned long offset;
188 
189 		offset = (unsigned long)__sdei_asm_entry_trampoline -
190 			 (unsigned long)__entry_tramp_text_start;
191 		return TRAMP_VALIAS + offset;
192 	} else
193 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
194 		return (unsigned long)__sdei_asm_handler;
195 
196 out_err_free_stacks:
197 	free_sdei_stacks();
198 out_err:
199 	return 0;
200 }
201 
202 /*
203  * do_sdei_event() returns one of:
204  *  SDEI_EV_HANDLED -  success, return to the interrupted context.
205  *  SDEI_EV_FAILED  -  failure, return this error code to firmare.
206  *  virtual-address -  success, return to this address.
207  */
do_sdei_event(struct pt_regs * regs,struct sdei_registered_event * arg)208 unsigned long __kprobes do_sdei_event(struct pt_regs *regs,
209 				      struct sdei_registered_event *arg)
210 {
211 	u32 mode;
212 	int i, err = 0;
213 	int clobbered_registers = 4;
214 	u64 elr = read_sysreg(elr_el1);
215 	u32 kernel_mode = read_sysreg(CurrentEL) | 1;	/* +SPSel */
216 	unsigned long vbar = read_sysreg(vbar_el1);
217 
218 	if (arm64_kernel_unmapped_at_el0())
219 		clobbered_registers++;
220 
221 	/* Retrieve the missing registers values */
222 	for (i = 0; i < clobbered_registers; i++) {
223 		/* from within the handler, this call always succeeds */
224 		sdei_api_event_context(i, &regs->regs[i]);
225 	}
226 
227 	err = sdei_event_handler(regs, arg);
228 	if (err)
229 		return SDEI_EV_FAILED;
230 
231 	if (elr != read_sysreg(elr_el1)) {
232 		/*
233 		 * We took a synchronous exception from the SDEI handler.
234 		 * This could deadlock, and if you interrupt KVM it will
235 		 * hyp-panic instead.
236 		 */
237 		pr_warn("unsafe: exception during handler\n");
238 	}
239 
240 	mode = regs->pstate & (PSR_MODE32_BIT | PSR_MODE_MASK);
241 
242 	/*
243 	 * If we interrupted the kernel with interrupts masked, we always go
244 	 * back to wherever we came from.
245 	 */
246 	if (mode == kernel_mode && !interrupts_enabled(regs))
247 		return SDEI_EV_HANDLED;
248 
249 	/*
250 	 * Otherwise, we pretend this was an IRQ. This lets user space tasks
251 	 * receive signals before we return to them, and KVM to invoke it's
252 	 * world switch to do the same.
253 	 *
254 	 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
255 	 * address'.
256 	 */
257 	if (mode == kernel_mode)
258 		return vbar + 0x280;
259 	else if (mode & PSR_MODE32_BIT)
260 		return vbar + 0x680;
261 
262 	return vbar + 0x480;
263 }
264