1 /*
2 * QEMU Sparc32 DMA controller emulation
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Modifications:
7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/sparc/sparc32_dma.h"
32 #include "hw/sparc/sun4m_iommu.h"
33 #include "hw/sysbus.h"
34 #include "migration/vmstate.h"
35 #include "system/dma.h"
36 #include "qapi/error.h"
37 #include "qemu/module.h"
38 #include "trace.h"
39
40 /*
41 * This is the DMA controller part of chip STP2000 (Master I/O), also
42 * produced as NCR89C100. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
44 * and
45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
46 */
47
48 #define DMA_SIZE (4 * sizeof(uint32_t))
49 /* We need the mask, because one instance of the device is not page
50 aligned (ledma, start address 0x0010) */
51 #define DMA_MASK (DMA_SIZE - 1)
52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
55
56 #define DMA_VER 0xa0000000
57 #define DMA_INTR 1
58 #define DMA_INTREN 0x10
59 #define DMA_WRITE_MEM 0x100
60 #define DMA_EN 0x200
61 #define DMA_LOADED 0x04000000
62 #define DMA_DRAIN_FIFO 0x40
63 #define DMA_RESET 0x80
64
65 /* XXX SCSI and ethernet should have different read-only bit masks */
66 #define DMA_CSR_RO_MASK 0xfe000007
67
68 enum {
69 GPIO_RESET = 0,
70 GPIO_DMA,
71 };
72
73 /* Note: on sparc, the lance 16 bit bus is swapped */
ledma_memory_read(void * opaque,hwaddr addr,uint8_t * buf,int len,int do_bswap)74 void ledma_memory_read(void *opaque, hwaddr addr,
75 uint8_t *buf, int len, int do_bswap)
76 {
77 DMADeviceState *s = opaque;
78 IOMMUState *is = (IOMMUState *)s->iommu;
79 int i;
80
81 addr |= s->dmaregs[3];
82 trace_ledma_memory_read(addr, len);
83 if (do_bswap) {
84 dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
85 } else {
86 addr &= ~1;
87 len &= ~1;
88 dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
89 for(i = 0; i < len; i += 2) {
90 bswap16s((uint16_t *)(buf + i));
91 }
92 }
93 }
94
ledma_memory_write(void * opaque,hwaddr addr,uint8_t * buf,int len,int do_bswap)95 void ledma_memory_write(void *opaque, hwaddr addr,
96 uint8_t *buf, int len, int do_bswap)
97 {
98 DMADeviceState *s = opaque;
99 IOMMUState *is = (IOMMUState *)s->iommu;
100 int l, i;
101 uint16_t tmp_buf[32];
102
103 addr |= s->dmaregs[3];
104 trace_ledma_memory_write(addr, len);
105 if (do_bswap) {
106 dma_memory_write(&is->iommu_as, addr, buf, len,
107 MEMTXATTRS_UNSPECIFIED);
108 } else {
109 addr &= ~1;
110 len &= ~1;
111 while (len > 0) {
112 l = len;
113 if (l > sizeof(tmp_buf))
114 l = sizeof(tmp_buf);
115 for(i = 0; i < l; i += 2) {
116 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
117 }
118 dma_memory_write(&is->iommu_as, addr, tmp_buf, l,
119 MEMTXATTRS_UNSPECIFIED);
120 len -= l;
121 buf += l;
122 addr += l;
123 }
124 }
125 }
126
dma_set_irq(void * opaque,int irq,int level)127 static void dma_set_irq(void *opaque, int irq, int level)
128 {
129 DMADeviceState *s = opaque;
130 if (level) {
131 s->dmaregs[0] |= DMA_INTR;
132 if (s->dmaregs[0] & DMA_INTREN) {
133 trace_sparc32_dma_set_irq_raise();
134 qemu_irq_raise(s->irq);
135 }
136 } else {
137 if (s->dmaregs[0] & DMA_INTR) {
138 s->dmaregs[0] &= ~DMA_INTR;
139 if (s->dmaregs[0] & DMA_INTREN) {
140 trace_sparc32_dma_set_irq_lower();
141 qemu_irq_lower(s->irq);
142 }
143 }
144 }
145 }
146
espdma_memory_read(void * opaque,uint8_t * buf,int len)147 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
148 {
149 DMADeviceState *s = opaque;
150 IOMMUState *is = (IOMMUState *)s->iommu;
151
152 trace_espdma_memory_read(s->dmaregs[1], len);
153 dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len,
154 MEMTXATTRS_UNSPECIFIED);
155 s->dmaregs[1] += len;
156 }
157
espdma_memory_write(void * opaque,uint8_t * buf,int len)158 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
159 {
160 DMADeviceState *s = opaque;
161 IOMMUState *is = (IOMMUState *)s->iommu;
162
163 trace_espdma_memory_write(s->dmaregs[1], len);
164 dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len,
165 MEMTXATTRS_UNSPECIFIED);
166 s->dmaregs[1] += len;
167 }
168
dma_mem_read(void * opaque,hwaddr addr,unsigned size)169 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
170 unsigned size)
171 {
172 DMADeviceState *s = opaque;
173 uint32_t saddr;
174
175 saddr = (addr & DMA_MASK) >> 2;
176 trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
177 return s->dmaregs[saddr];
178 }
179
dma_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)180 static void dma_mem_write(void *opaque, hwaddr addr,
181 uint64_t val, unsigned size)
182 {
183 DMADeviceState *s = opaque;
184 uint32_t saddr;
185
186 saddr = (addr & DMA_MASK) >> 2;
187 trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
188 switch (saddr) {
189 case 0:
190 if (val & DMA_INTREN) {
191 if (s->dmaregs[0] & DMA_INTR) {
192 trace_sparc32_dma_set_irq_raise();
193 qemu_irq_raise(s->irq);
194 }
195 } else {
196 if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
197 trace_sparc32_dma_set_irq_lower();
198 qemu_irq_lower(s->irq);
199 }
200 }
201 if (val & DMA_RESET) {
202 qemu_irq_raise(s->gpio[GPIO_RESET]);
203 qemu_irq_lower(s->gpio[GPIO_RESET]);
204 } else if (val & DMA_DRAIN_FIFO) {
205 val &= ~DMA_DRAIN_FIFO;
206 } else if (val == 0)
207 val = DMA_DRAIN_FIFO;
208
209 if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
210 trace_sparc32_dma_enable_raise();
211 qemu_irq_raise(s->gpio[GPIO_DMA]);
212 } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
213 trace_sparc32_dma_enable_lower();
214 qemu_irq_lower(s->gpio[GPIO_DMA]);
215 }
216
217 val &= ~DMA_CSR_RO_MASK;
218 val |= DMA_VER;
219 s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
220 break;
221 case 1:
222 s->dmaregs[0] |= DMA_LOADED;
223 /* fall through */
224 default:
225 s->dmaregs[saddr] = val;
226 break;
227 }
228 }
229
230 static const MemoryRegionOps dma_mem_ops = {
231 .read = dma_mem_read,
232 .write = dma_mem_write,
233 .endianness = DEVICE_NATIVE_ENDIAN,
234 .valid = {
235 .min_access_size = 4,
236 .max_access_size = 4,
237 },
238 };
239
sparc32_dma_device_reset(DeviceState * d)240 static void sparc32_dma_device_reset(DeviceState *d)
241 {
242 DMADeviceState *s = SPARC32_DMA_DEVICE(d);
243
244 memset(s->dmaregs, 0, DMA_SIZE);
245 s->dmaregs[0] = DMA_VER;
246 }
247
248 static const VMStateDescription vmstate_sparc32_dma_device = {
249 .name ="sparc32_dma",
250 .version_id = 2,
251 .minimum_version_id = 2,
252 .fields = (const VMStateField[]) {
253 VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
254 VMSTATE_END_OF_LIST()
255 }
256 };
257
sparc32_dma_device_init(Object * obj)258 static void sparc32_dma_device_init(Object *obj)
259 {
260 DeviceState *dev = DEVICE(obj);
261 DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
262 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
263
264 sysbus_init_irq(sbd, &s->irq);
265
266 sysbus_init_mmio(sbd, &s->iomem);
267
268 object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
269 (Object **) &s->iommu,
270 qdev_prop_allow_set_link_before_realize,
271 0);
272
273 qdev_init_gpio_in(dev, dma_set_irq, 1);
274 qdev_init_gpio_out(dev, s->gpio, 2);
275 }
276
sparc32_dma_device_class_init(ObjectClass * klass,const void * data)277 static void sparc32_dma_device_class_init(ObjectClass *klass, const void *data)
278 {
279 DeviceClass *dc = DEVICE_CLASS(klass);
280
281 device_class_set_legacy_reset(dc, sparc32_dma_device_reset);
282 dc->vmsd = &vmstate_sparc32_dma_device;
283 }
284
285 static const TypeInfo sparc32_dma_device_info = {
286 .name = TYPE_SPARC32_DMA_DEVICE,
287 .parent = TYPE_SYS_BUS_DEVICE,
288 .abstract = true,
289 .instance_size = sizeof(DMADeviceState),
290 .instance_init = sparc32_dma_device_init,
291 .class_init = sparc32_dma_device_class_init,
292 };
293
sparc32_espdma_device_init(Object * obj)294 static void sparc32_espdma_device_init(Object *obj)
295 {
296 DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
297 ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
298
299 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
300 "espdma-mmio", DMA_SIZE);
301
302 object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
303 }
304
sparc32_espdma_device_realize(DeviceState * dev,Error ** errp)305 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
306 {
307 ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
308 SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
309 ESPState *esp = &sysbus->esp;
310
311 esp->dma_memory_read = espdma_memory_read;
312 esp->dma_memory_write = espdma_memory_write;
313 esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
314 sysbus->it_shift = 2;
315 esp->dma_enabled = 1;
316 sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
317 }
318
sparc32_espdma_device_class_init(ObjectClass * klass,const void * data)319 static void sparc32_espdma_device_class_init(ObjectClass *klass,
320 const void *data)
321 {
322 DeviceClass *dc = DEVICE_CLASS(klass);
323
324 dc->realize = sparc32_espdma_device_realize;
325 }
326
327 static const TypeInfo sparc32_espdma_device_info = {
328 .name = TYPE_SPARC32_ESPDMA_DEVICE,
329 .parent = TYPE_SPARC32_DMA_DEVICE,
330 .instance_size = sizeof(ESPDMADeviceState),
331 .instance_init = sparc32_espdma_device_init,
332 .class_init = sparc32_espdma_device_class_init,
333 };
334
sparc32_ledma_device_init(Object * obj)335 static void sparc32_ledma_device_init(Object *obj)
336 {
337 DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
338 LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
339
340 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
341 "ledma-mmio", DMA_SIZE);
342
343 object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
344 }
345
sparc32_ledma_device_realize(DeviceState * dev,Error ** errp)346 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
347 {
348 LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
349 SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
350
351 object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
352 sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
353 }
354
sparc32_ledma_device_class_init(ObjectClass * klass,const void * data)355 static void sparc32_ledma_device_class_init(ObjectClass *klass,
356 const void *data)
357 {
358 DeviceClass *dc = DEVICE_CLASS(klass);
359
360 dc->realize = sparc32_ledma_device_realize;
361 }
362
363 static const TypeInfo sparc32_ledma_device_info = {
364 .name = TYPE_SPARC32_LEDMA_DEVICE,
365 .parent = TYPE_SPARC32_DMA_DEVICE,
366 .instance_size = sizeof(LEDMADeviceState),
367 .instance_init = sparc32_ledma_device_init,
368 .class_init = sparc32_ledma_device_class_init,
369 };
370
sparc32_dma_realize(DeviceState * dev,Error ** errp)371 static void sparc32_dma_realize(DeviceState *dev, Error **errp)
372 {
373 SPARC32DMAState *s = SPARC32_DMA(dev);
374 DeviceState *espdma, *esp, *ledma, *lance;
375 SysBusDevice *sbd;
376 Object *iommu;
377
378 iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
379 if (!iommu) {
380 error_setg(errp, "unable to locate sun4m IOMMU device");
381 return;
382 }
383
384 espdma = DEVICE(&s->espdma);
385 object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
386 sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
387
388 esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
389 sbd = SYS_BUS_DEVICE(esp);
390 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
391 qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
392 qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
393
394 sbd = SYS_BUS_DEVICE(espdma);
395 memory_region_add_subregion(&s->dmamem, 0x0,
396 sysbus_mmio_get_region(sbd, 0));
397
398 ledma = DEVICE(&s->ledma);
399 object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
400 sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
401
402 lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
403 sbd = SYS_BUS_DEVICE(lance);
404 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
405 qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
406
407 sbd = SYS_BUS_DEVICE(ledma);
408 memory_region_add_subregion(&s->dmamem, 0x10,
409 sysbus_mmio_get_region(sbd, 0));
410
411 /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
412 memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
413 sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
414 memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
415 }
416
sparc32_dma_init(Object * obj)417 static void sparc32_dma_init(Object *obj)
418 {
419 SPARC32DMAState *s = SPARC32_DMA(obj);
420 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
421
422 memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
423 sysbus_init_mmio(sbd, &s->dmamem);
424
425 object_initialize_child(obj, "espdma", &s->espdma,
426 TYPE_SPARC32_ESPDMA_DEVICE);
427 object_initialize_child(obj, "ledma", &s->ledma,
428 TYPE_SPARC32_LEDMA_DEVICE);
429 }
430
sparc32_dma_class_init(ObjectClass * klass,const void * data)431 static void sparc32_dma_class_init(ObjectClass *klass, const void *data)
432 {
433 DeviceClass *dc = DEVICE_CLASS(klass);
434
435 dc->realize = sparc32_dma_realize;
436 }
437
438 static const TypeInfo sparc32_dma_info = {
439 .name = TYPE_SPARC32_DMA,
440 .parent = TYPE_SYS_BUS_DEVICE,
441 .instance_size = sizeof(SPARC32DMAState),
442 .instance_init = sparc32_dma_init,
443 .class_init = sparc32_dma_class_init,
444 };
445
446
sparc32_dma_register_types(void)447 static void sparc32_dma_register_types(void)
448 {
449 type_register_static(&sparc32_dma_device_info);
450 type_register_static(&sparc32_espdma_device_info);
451 type_register_static(&sparc32_ledma_device_info);
452 type_register_static(&sparc32_dma_info);
453 }
454
455 type_init(sparc32_dma_register_types)
456