xref: /linux/include/linux/dma-fence.h (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Fence mechanism for dma-buf to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #ifndef __LINUX_DMA_FENCE_H
14 #define __LINUX_DMA_FENCE_H
15 
16 #include <linux/err.h>
17 #include <linux/wait.h>
18 #include <linux/list.h>
19 #include <linux/bitops.h>
20 #include <linux/kref.h>
21 #include <linux/sched.h>
22 #include <linux/printk.h>
23 #include <linux/rcupdate.h>
24 #include <linux/timekeeping.h>
25 
26 struct dma_fence;
27 struct dma_fence_ops;
28 struct dma_fence_cb;
29 struct seq_file;
30 
31 /**
32  * struct dma_fence - software synchronization primitive
33  * @refcount: refcount for this fence
34  * @ops: dma_fence_ops associated with this fence
35  * @rcu: used for releasing fence with kfree_rcu
36  * @cb_list: list of all callbacks to call
37  * @lock: spin_lock_irqsave used for locking
38  * @context: execution context this fence belongs to, returned by
39  *           dma_fence_context_alloc()
40  * @seqno: the sequence number of this fence inside the execution context,
41  * can be compared to decide which fence would be signaled later.
42  * @flags: A mask of DMA_FENCE_FLAG_* defined below
43  * @timestamp: Timestamp when the fence was signaled.
44  * @error: Optional, only valid if < 0, must be set before calling
45  * dma_fence_signal, indicates that the fence has completed with an error.
46  *
47  * the flags member must be manipulated and read using the appropriate
48  * atomic ops (bit_*), so taking the spinlock will not be needed most
49  * of the time.
50  *
51  * DMA_FENCE_FLAG_SIGNALED_BIT - fence is already signaled
52  * DMA_FENCE_FLAG_TIMESTAMP_BIT - timestamp recorded for fence signaling
53  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called
54  * DMA_FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
55  * implementer of the fence for its own purposes. Can be used in different
56  * ways by different fence implementers, so do not rely on this.
57  *
58  * Since atomic bitops are used, this is not guaranteed to be the case.
59  * Particularly, if the bit was set, but dma_fence_signal was called right
60  * before this bit was set, it would have been able to set the
61  * DMA_FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
62  * Adding a check for DMA_FENCE_FLAG_SIGNALED_BIT after setting
63  * DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
64  * after dma_fence_signal was called, any enable_signaling call will have either
65  * been completed, or never called at all.
66  */
67 struct dma_fence {
68 	spinlock_t *lock;
69 	const struct dma_fence_ops *ops;
70 	/*
71 	 * We clear the callback list on kref_put so that by the time we
72 	 * release the fence it is unused. No one should be adding to the
73 	 * cb_list that they don't themselves hold a reference for.
74 	 *
75 	 * The lifetime of the timestamp is similarly tied to both the
76 	 * rcu freelist and the cb_list. The timestamp is only set upon
77 	 * signaling while simultaneously notifying the cb_list. Ergo, we
78 	 * only use either the cb_list of timestamp. Upon destruction,
79 	 * neither are accessible, and so we can use the rcu. This means
80 	 * that the cb_list is *only* valid until the signal bit is set,
81 	 * and to read either you *must* hold a reference to the fence,
82 	 * and not just the rcu_read_lock.
83 	 *
84 	 * Listed in chronological order.
85 	 */
86 	union {
87 		struct list_head cb_list;
88 		/* @cb_list replaced by @timestamp on dma_fence_signal() */
89 		ktime_t timestamp;
90 		/* @timestamp replaced by @rcu on dma_fence_release() */
91 		struct rcu_head rcu;
92 	};
93 	u64 context;
94 	u64 seqno;
95 	unsigned long flags;
96 	struct kref refcount;
97 	int error;
98 };
99 
100 enum dma_fence_flag_bits {
101 	DMA_FENCE_FLAG_SEQNO64_BIT,
102 	DMA_FENCE_FLAG_SIGNALED_BIT,
103 	DMA_FENCE_FLAG_TIMESTAMP_BIT,
104 	DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
105 	DMA_FENCE_FLAG_USER_BITS, /* must always be last member */
106 };
107 
108 typedef void (*dma_fence_func_t)(struct dma_fence *fence,
109 				 struct dma_fence_cb *cb);
110 
111 /**
112  * struct dma_fence_cb - callback for dma_fence_add_callback()
113  * @node: used by dma_fence_add_callback() to append this struct to fence::cb_list
114  * @func: dma_fence_func_t to call
115  *
116  * This struct will be initialized by dma_fence_add_callback(), additional
117  * data can be passed along by embedding dma_fence_cb in another struct.
118  */
119 struct dma_fence_cb {
120 	struct list_head node;
121 	dma_fence_func_t func;
122 };
123 
124 /**
125  * struct dma_fence_ops - operations implemented for fence
126  *
127  */
128 struct dma_fence_ops {
129 	/**
130 	 * @get_driver_name:
131 	 *
132 	 * Returns the driver name. This is a callback to allow drivers to
133 	 * compute the name at runtime, without having it to store permanently
134 	 * for each fence, or build a cache of some sort.
135 	 *
136 	 * This callback is mandatory.
137 	 */
138 	const char * (*get_driver_name)(struct dma_fence *fence);
139 
140 	/**
141 	 * @get_timeline_name:
142 	 *
143 	 * Return the name of the context this fence belongs to. This is a
144 	 * callback to allow drivers to compute the name at runtime, without
145 	 * having it to store permanently for each fence, or build a cache of
146 	 * some sort.
147 	 *
148 	 * This callback is mandatory.
149 	 */
150 	const char * (*get_timeline_name)(struct dma_fence *fence);
151 
152 	/**
153 	 * @enable_signaling:
154 	 *
155 	 * Enable software signaling of fence.
156 	 *
157 	 * For fence implementations that have the capability for hw->hw
158 	 * signaling, they can implement this op to enable the necessary
159 	 * interrupts, or insert commands into cmdstream, etc, to avoid these
160 	 * costly operations for the common case where only hw->hw
161 	 * synchronization is required.  This is called in the first
162 	 * dma_fence_wait() or dma_fence_add_callback() path to let the fence
163 	 * implementation know that there is another driver waiting on the
164 	 * signal (ie. hw->sw case).
165 	 *
166 	 * This is called with irq's disabled, so only spinlocks which disable
167 	 * IRQ's can be used in the code outside of this callback.
168 	 *
169 	 * A return value of false indicates the fence already passed,
170 	 * or some failure occurred that made it impossible to enable
171 	 * signaling. True indicates successful enabling.
172 	 *
173 	 * &dma_fence.error may be set in enable_signaling, but only when false
174 	 * is returned.
175 	 *
176 	 * Since many implementations can call dma_fence_signal() even when before
177 	 * @enable_signaling has been called there's a race window, where the
178 	 * dma_fence_signal() might result in the final fence reference being
179 	 * released and its memory freed. To avoid this, implementations of this
180 	 * callback should grab their own reference using dma_fence_get(), to be
181 	 * released when the fence is signalled (through e.g. the interrupt
182 	 * handler).
183 	 *
184 	 * This callback is optional. If this callback is not present, then the
185 	 * driver must always have signaling enabled.
186 	 */
187 	bool (*enable_signaling)(struct dma_fence *fence);
188 
189 	/**
190 	 * @signaled:
191 	 *
192 	 * Peek whether the fence is signaled, as a fastpath optimization for
193 	 * e.g. dma_fence_wait() or dma_fence_add_callback(). Note that this
194 	 * callback does not need to make any guarantees beyond that a fence
195 	 * once indicates as signalled must always return true from this
196 	 * callback. This callback may return false even if the fence has
197 	 * completed already, in this case information hasn't propogated throug
198 	 * the system yet. See also dma_fence_is_signaled().
199 	 *
200 	 * May set &dma_fence.error if returning true.
201 	 *
202 	 * This callback is optional.
203 	 */
204 	bool (*signaled)(struct dma_fence *fence);
205 
206 	/**
207 	 * @wait:
208 	 *
209 	 * Custom wait implementation, defaults to dma_fence_default_wait() if
210 	 * not set.
211 	 *
212 	 * Deprecated and should not be used by new implementations. Only used
213 	 * by existing implementations which need special handling for their
214 	 * hardware reset procedure.
215 	 *
216 	 * Must return -ERESTARTSYS if the wait is intr = true and the wait was
217 	 * interrupted, and remaining jiffies if fence has signaled, or 0 if wait
218 	 * timed out. Can also return other error values on custom implementations,
219 	 * which should be treated as if the fence is signaled. For example a hardware
220 	 * lockup could be reported like that.
221 	 */
222 	signed long (*wait)(struct dma_fence *fence,
223 			    bool intr, signed long timeout);
224 
225 	/**
226 	 * @release:
227 	 *
228 	 * Called on destruction of fence to release additional resources.
229 	 * Can be called from irq context.  This callback is optional. If it is
230 	 * NULL, then dma_fence_free() is instead called as the default
231 	 * implementation.
232 	 */
233 	void (*release)(struct dma_fence *fence);
234 
235 	/**
236 	 * @set_deadline:
237 	 *
238 	 * Callback to allow a fence waiter to inform the fence signaler of
239 	 * an upcoming deadline, such as vblank, by which point the waiter
240 	 * would prefer the fence to be signaled by.  This is intended to
241 	 * give feedback to the fence signaler to aid in power management
242 	 * decisions, such as boosting GPU frequency.
243 	 *
244 	 * This is called without &dma_fence.lock held, it can be called
245 	 * multiple times and from any context.  Locking is up to the callee
246 	 * if it has some state to manage.  If multiple deadlines are set,
247 	 * the expectation is to track the soonest one.  If the deadline is
248 	 * before the current time, it should be interpreted as an immediate
249 	 * deadline.
250 	 *
251 	 * This callback is optional.
252 	 */
253 	void (*set_deadline)(struct dma_fence *fence, ktime_t deadline);
254 };
255 
256 void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
257 		    spinlock_t *lock, u64 context, u64 seqno);
258 
259 void dma_fence_init64(struct dma_fence *fence, const struct dma_fence_ops *ops,
260 		      spinlock_t *lock, u64 context, u64 seqno);
261 
262 void dma_fence_release(struct kref *kref);
263 void dma_fence_free(struct dma_fence *fence);
264 void dma_fence_describe(struct dma_fence *fence, struct seq_file *seq);
265 
266 /**
267  * dma_fence_put - decreases refcount of the fence
268  * @fence: fence to reduce refcount of
269  */
dma_fence_put(struct dma_fence * fence)270 static inline void dma_fence_put(struct dma_fence *fence)
271 {
272 	if (fence)
273 		kref_put(&fence->refcount, dma_fence_release);
274 }
275 
276 /**
277  * dma_fence_get - increases refcount of the fence
278  * @fence: fence to increase refcount of
279  *
280  * Returns the same fence, with refcount increased by 1.
281  */
dma_fence_get(struct dma_fence * fence)282 static inline struct dma_fence *dma_fence_get(struct dma_fence *fence)
283 {
284 	if (fence)
285 		kref_get(&fence->refcount);
286 	return fence;
287 }
288 
289 /**
290  * dma_fence_get_rcu - get a fence from a dma_resv_list with
291  *                     rcu read lock
292  * @fence: fence to increase refcount of
293  *
294  * Function returns NULL if no refcount could be obtained, or the fence.
295  */
dma_fence_get_rcu(struct dma_fence * fence)296 static inline struct dma_fence *dma_fence_get_rcu(struct dma_fence *fence)
297 {
298 	if (kref_get_unless_zero(&fence->refcount))
299 		return fence;
300 	else
301 		return NULL;
302 }
303 
304 /**
305  * dma_fence_get_rcu_safe  - acquire a reference to an RCU tracked fence
306  * @fencep: pointer to fence to increase refcount of
307  *
308  * Function returns NULL if no refcount could be obtained, or the fence.
309  * This function handles acquiring a reference to a fence that may be
310  * reallocated within the RCU grace period (such as with SLAB_TYPESAFE_BY_RCU),
311  * so long as the caller is using RCU on the pointer to the fence.
312  *
313  * An alternative mechanism is to employ a seqlock to protect a bunch of
314  * fences, such as used by struct dma_resv. When using a seqlock,
315  * the seqlock must be taken before and checked after a reference to the
316  * fence is acquired (as shown here).
317  *
318  * The caller is required to hold the RCU read lock.
319  */
320 static inline struct dma_fence *
dma_fence_get_rcu_safe(struct dma_fence __rcu ** fencep)321 dma_fence_get_rcu_safe(struct dma_fence __rcu **fencep)
322 {
323 	do {
324 		struct dma_fence *fence;
325 
326 		fence = rcu_dereference(*fencep);
327 		if (!fence)
328 			return NULL;
329 
330 		if (!dma_fence_get_rcu(fence))
331 			continue;
332 
333 		/* The atomic_inc_not_zero() inside dma_fence_get_rcu()
334 		 * provides a full memory barrier upon success (such as now).
335 		 * This is paired with the write barrier from assigning
336 		 * to the __rcu protected fence pointer so that if that
337 		 * pointer still matches the current fence, we know we
338 		 * have successfully acquire a reference to it. If it no
339 		 * longer matches, we are holding a reference to some other
340 		 * reallocated pointer. This is possible if the allocator
341 		 * is using a freelist like SLAB_TYPESAFE_BY_RCU where the
342 		 * fence remains valid for the RCU grace period, but it
343 		 * may be reallocated. When using such allocators, we are
344 		 * responsible for ensuring the reference we get is to
345 		 * the right fence, as below.
346 		 */
347 		if (fence == rcu_access_pointer(*fencep))
348 			return rcu_pointer_handoff(fence);
349 
350 		dma_fence_put(fence);
351 	} while (1);
352 }
353 
354 #ifdef CONFIG_LOCKDEP
355 bool dma_fence_begin_signalling(void);
356 void dma_fence_end_signalling(bool cookie);
357 void __dma_fence_might_wait(void);
358 #else
dma_fence_begin_signalling(void)359 static inline bool dma_fence_begin_signalling(void)
360 {
361 	return true;
362 }
dma_fence_end_signalling(bool cookie)363 static inline void dma_fence_end_signalling(bool cookie) {}
__dma_fence_might_wait(void)364 static inline void __dma_fence_might_wait(void) {}
365 #endif
366 
367 int dma_fence_signal(struct dma_fence *fence);
368 int dma_fence_signal_locked(struct dma_fence *fence);
369 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp);
370 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
371 				      ktime_t timestamp);
372 signed long dma_fence_default_wait(struct dma_fence *fence,
373 				   bool intr, signed long timeout);
374 int dma_fence_add_callback(struct dma_fence *fence,
375 			   struct dma_fence_cb *cb,
376 			   dma_fence_func_t func);
377 bool dma_fence_remove_callback(struct dma_fence *fence,
378 			       struct dma_fence_cb *cb);
379 void dma_fence_enable_sw_signaling(struct dma_fence *fence);
380 
381 /**
382  * DOC: Safe external access to driver provided object members
383  *
384  * All data not stored directly in the dma-fence object, such as the
385  * &dma_fence.lock and memory potentially accessed by functions in the
386  * &dma_fence.ops table, MUST NOT be accessed after the fence has been signalled
387  * because after that point drivers are allowed to free it.
388  *
389  * All code accessing that data via the dma-fence API (or directly, which is
390  * discouraged), MUST make sure to contain the complete access within a
391  * &rcu_read_lock and &rcu_read_unlock pair.
392  *
393  * Some dma-fence API handles this automatically, while other, as for example
394  * &dma_fence_driver_name and &dma_fence_timeline_name, leave that
395  * responsibility to the caller.
396  *
397  * To enable this scheme to work drivers MUST ensure a RCU grace period elapses
398  * between signalling the fence and freeing the said data.
399  *
400  */
401 const char __rcu *dma_fence_driver_name(struct dma_fence *fence);
402 const char __rcu *dma_fence_timeline_name(struct dma_fence *fence);
403 
404 /**
405  * dma_fence_is_signaled_locked - Return an indication if the fence
406  *                                is signaled yet.
407  * @fence: the fence to check
408  *
409  * Returns true if the fence was already signaled, false if not. Since this
410  * function doesn't enable signaling, it is not guaranteed to ever return
411  * true if dma_fence_add_callback(), dma_fence_wait() or
412  * dma_fence_enable_sw_signaling() haven't been called before.
413  *
414  * This function requires &dma_fence.lock to be held.
415  *
416  * See also dma_fence_is_signaled().
417  */
418 static inline bool
dma_fence_is_signaled_locked(struct dma_fence * fence)419 dma_fence_is_signaled_locked(struct dma_fence *fence)
420 {
421 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
422 		return true;
423 
424 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
425 		dma_fence_signal_locked(fence);
426 		return true;
427 	}
428 
429 	return false;
430 }
431 
432 /**
433  * dma_fence_is_signaled - Return an indication if the fence is signaled yet.
434  * @fence: the fence to check
435  *
436  * Returns true if the fence was already signaled, false if not. Since this
437  * function doesn't enable signaling, it is not guaranteed to ever return
438  * true if dma_fence_add_callback(), dma_fence_wait() or
439  * dma_fence_enable_sw_signaling() haven't been called before.
440  *
441  * It's recommended for seqno fences to call dma_fence_signal when the
442  * operation is complete, it makes it possible to prevent issues from
443  * wraparound between time of issue and time of use by checking the return
444  * value of this function before calling hardware-specific wait instructions.
445  *
446  * See also dma_fence_is_signaled_locked().
447  */
448 static inline bool
dma_fence_is_signaled(struct dma_fence * fence)449 dma_fence_is_signaled(struct dma_fence *fence)
450 {
451 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
452 		return true;
453 
454 	if (fence->ops->signaled && fence->ops->signaled(fence)) {
455 		dma_fence_signal(fence);
456 		return true;
457 	}
458 
459 	return false;
460 }
461 
462 /**
463  * __dma_fence_is_later - return if f1 is chronologically later than f2
464  * @fence: fence in whose context to do the comparison
465  * @f1: the first fence's seqno
466  * @f2: the second fence's seqno from the same context
467  *
468  * Returns true if f1 is chronologically later than f2. Both fences must be
469  * from the same context, since a seqno is not common across contexts.
470  */
__dma_fence_is_later(struct dma_fence * fence,u64 f1,u64 f2)471 static inline bool __dma_fence_is_later(struct dma_fence *fence, u64 f1, u64 f2)
472 {
473 	/* This is for backward compatibility with drivers which can only handle
474 	 * 32bit sequence numbers. Use a 64bit compare when the driver says to
475 	 * do so.
476 	 */
477 	if (test_bit(DMA_FENCE_FLAG_SEQNO64_BIT, &fence->flags))
478 		return f1 > f2;
479 
480 	return (int)(lower_32_bits(f1) - lower_32_bits(f2)) > 0;
481 }
482 
483 /**
484  * dma_fence_is_later - return if f1 is chronologically later than f2
485  * @f1: the first fence from the same context
486  * @f2: the second fence from the same context
487  *
488  * Returns true if f1 is chronologically later than f2. Both fences must be
489  * from the same context, since a seqno is not re-used across contexts.
490  */
dma_fence_is_later(struct dma_fence * f1,struct dma_fence * f2)491 static inline bool dma_fence_is_later(struct dma_fence *f1,
492 				      struct dma_fence *f2)
493 {
494 	if (WARN_ON(f1->context != f2->context))
495 		return false;
496 
497 	return __dma_fence_is_later(f1, f1->seqno, f2->seqno);
498 }
499 
500 /**
501  * dma_fence_is_later_or_same - return true if f1 is later or same as f2
502  * @f1: the first fence from the same context
503  * @f2: the second fence from the same context
504  *
505  * Returns true if f1 is chronologically later than f2 or the same fence. Both
506  * fences must be from the same context, since a seqno is not re-used across
507  * contexts.
508  */
dma_fence_is_later_or_same(struct dma_fence * f1,struct dma_fence * f2)509 static inline bool dma_fence_is_later_or_same(struct dma_fence *f1,
510 					      struct dma_fence *f2)
511 {
512 	return f1 == f2 || dma_fence_is_later(f1, f2);
513 }
514 
515 /**
516  * dma_fence_later - return the chronologically later fence
517  * @f1:	the first fence from the same context
518  * @f2:	the second fence from the same context
519  *
520  * Returns NULL if both fences are signaled, otherwise the fence that would be
521  * signaled last. Both fences must be from the same context, since a seqno is
522  * not re-used across contexts.
523  */
dma_fence_later(struct dma_fence * f1,struct dma_fence * f2)524 static inline struct dma_fence *dma_fence_later(struct dma_fence *f1,
525 						struct dma_fence *f2)
526 {
527 	if (WARN_ON(f1->context != f2->context))
528 		return NULL;
529 
530 	/*
531 	 * Can't check just DMA_FENCE_FLAG_SIGNALED_BIT here, it may never
532 	 * have been set if enable_signaling wasn't called, and enabling that
533 	 * here is overkill.
534 	 */
535 	if (dma_fence_is_later(f1, f2))
536 		return dma_fence_is_signaled(f1) ? NULL : f1;
537 	else
538 		return dma_fence_is_signaled(f2) ? NULL : f2;
539 }
540 
541 /**
542  * dma_fence_get_status_locked - returns the status upon completion
543  * @fence: the dma_fence to query
544  *
545  * Drivers can supply an optional error status condition before they signal
546  * the fence (to indicate whether the fence was completed due to an error
547  * rather than success). The value of the status condition is only valid
548  * if the fence has been signaled, dma_fence_get_status_locked() first checks
549  * the signal state before reporting the error status.
550  *
551  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
552  * been signaled without an error condition, or a negative error code
553  * if the fence has been completed in err.
554  */
dma_fence_get_status_locked(struct dma_fence * fence)555 static inline int dma_fence_get_status_locked(struct dma_fence *fence)
556 {
557 	if (dma_fence_is_signaled_locked(fence))
558 		return fence->error ?: 1;
559 	else
560 		return 0;
561 }
562 
563 int dma_fence_get_status(struct dma_fence *fence);
564 
565 /**
566  * dma_fence_set_error - flag an error condition on the fence
567  * @fence: the dma_fence
568  * @error: the error to store
569  *
570  * Drivers can supply an optional error status condition before they signal
571  * the fence, to indicate that the fence was completed due to an error
572  * rather than success. This must be set before signaling (so that the value
573  * is visible before any waiters on the signal callback are woken). This
574  * helper exists to help catching erroneous setting of #dma_fence.error.
575  *
576  * Examples of error codes which drivers should use:
577  *
578  * * %-ENODATA	 This operation produced no data, no other operation affected.
579  * * %-ECANCELED All operations from the same context have been canceled.
580  * * %-ETIME	 Operation caused a timeout and potentially device reset.
581  */
dma_fence_set_error(struct dma_fence * fence,int error)582 static inline void dma_fence_set_error(struct dma_fence *fence,
583 				       int error)
584 {
585 	WARN_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
586 	WARN_ON(error >= 0 || error < -MAX_ERRNO);
587 
588 	fence->error = error;
589 }
590 
591 /**
592  * dma_fence_timestamp - helper to get the completion timestamp of a fence
593  * @fence: fence to get the timestamp from.
594  *
595  * After a fence is signaled the timestamp is updated with the signaling time,
596  * but setting the timestamp can race with tasks waiting for the signaling. This
597  * helper busy waits for the correct timestamp to appear.
598  */
dma_fence_timestamp(struct dma_fence * fence)599 static inline ktime_t dma_fence_timestamp(struct dma_fence *fence)
600 {
601 	if (WARN_ON(!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)))
602 		return ktime_get();
603 
604 	while (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags))
605 		cpu_relax();
606 
607 	return fence->timestamp;
608 }
609 
610 signed long dma_fence_wait_timeout(struct dma_fence *,
611 				   bool intr, signed long timeout);
612 signed long dma_fence_wait_any_timeout(struct dma_fence **fences,
613 				       uint32_t count,
614 				       bool intr, signed long timeout,
615 				       uint32_t *idx);
616 
617 /**
618  * dma_fence_wait - sleep until the fence gets signaled
619  * @fence: the fence to wait on
620  * @intr: if true, do an interruptible wait
621  *
622  * This function will return -ERESTARTSYS if interrupted by a signal,
623  * or 0 if the fence was signaled. Other error values may be
624  * returned on custom implementations.
625  *
626  * Performs a synchronous wait on this fence. It is assumed the caller
627  * directly or indirectly holds a reference to the fence, otherwise the
628  * fence might be freed before return, resulting in undefined behavior.
629  *
630  * See also dma_fence_wait_timeout() and dma_fence_wait_any_timeout().
631  */
dma_fence_wait(struct dma_fence * fence,bool intr)632 static inline signed long dma_fence_wait(struct dma_fence *fence, bool intr)
633 {
634 	signed long ret;
635 
636 	/* Since dma_fence_wait_timeout cannot timeout with
637 	 * MAX_SCHEDULE_TIMEOUT, only valid return values are
638 	 * -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
639 	 */
640 	ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
641 
642 	return ret < 0 ? ret : 0;
643 }
644 
645 void dma_fence_set_deadline(struct dma_fence *fence, ktime_t deadline);
646 
647 struct dma_fence *dma_fence_get_stub(void);
648 struct dma_fence *dma_fence_allocate_private_stub(ktime_t timestamp);
649 u64 dma_fence_context_alloc(unsigned num);
650 
651 extern const struct dma_fence_ops dma_fence_array_ops;
652 extern const struct dma_fence_ops dma_fence_chain_ops;
653 
654 /**
655  * dma_fence_is_array - check if a fence is from the array subclass
656  * @fence: the fence to test
657  *
658  * Return true if it is a dma_fence_array and false otherwise.
659  */
dma_fence_is_array(struct dma_fence * fence)660 static inline bool dma_fence_is_array(struct dma_fence *fence)
661 {
662 	return fence->ops == &dma_fence_array_ops;
663 }
664 
665 /**
666  * dma_fence_is_chain - check if a fence is from the chain subclass
667  * @fence: the fence to test
668  *
669  * Return true if it is a dma_fence_chain and false otherwise.
670  */
dma_fence_is_chain(struct dma_fence * fence)671 static inline bool dma_fence_is_chain(struct dma_fence *fence)
672 {
673 	return fence->ops == &dma_fence_chain_ops;
674 }
675 
676 /**
677  * dma_fence_is_container - check if a fence is a container for other fences
678  * @fence: the fence to test
679  *
680  * Return true if this fence is a container for other fences, false otherwise.
681  * This is important since we can't build up large fence structure or otherwise
682  * we run into recursion during operation on those fences.
683  */
dma_fence_is_container(struct dma_fence * fence)684 static inline bool dma_fence_is_container(struct dma_fence *fence)
685 {
686 	return dma_fence_is_array(fence) || dma_fence_is_chain(fence);
687 }
688 
689 #endif /* __LINUX_DMA_FENCE_H */
690