1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35
36 #define DM_MSG_PREFIX "core"
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 /*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50 #define REQ_DM_POLL_LIST REQ_DRV
51
52 static const char *_name = DM_NAME;
53
54 static unsigned int major;
55 static unsigned int _major;
56
57 static DEFINE_IDR(_minor_idr);
58
59 static DEFINE_SPINLOCK(_minor_lock);
60
61 static void do_deferred_remove(struct work_struct *w);
62
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65 static struct workqueue_struct *deferred_remove_workqueue;
66
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74 }
75
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80 /*
81 * One of these is allocated (on-stack) per original bio.
82 */
83 struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91 };
92
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 return container_of(clone, struct dm_target_io, clone);
96 }
97
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123 #define MINOR_ALLOCED ((void *)-1)
124
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137 }
138
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143 };
144
145 /*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170 }
171
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188 }
189
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202
local_init(void)203 static int __init local_init(void)
204 {
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227 out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233 }
234
local_exit(void)235 static void local_exit(void)
236 {
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245 }
246
247 static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256 };
257
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267 };
268
dm_init(void)269 static int __init dm_init(void)
270 {
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286 bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291 }
292
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304 }
305
306 /*
307 * Block device functions
308 */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 return test_bit(DMF_DELETING, &md->flags);
312 }
313
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332 out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336 }
337
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353 out:
354 spin_unlock(&_minor_lock);
355 }
356
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 return atomic_read(&md->open_count);
360 }
361
362 /*
363 * Guarantees nothing is using the device before it's deleted.
364 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383 }
384
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399 }
400
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 dm_deferred_remove();
404 }
405
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev)
415 {
416 struct dm_target *ti;
417 struct dm_table *map;
418 int r;
419
420 retry:
421 r = -ENOTTY;
422 map = dm_get_live_table(md, srcu_idx);
423 if (!map || !dm_table_get_size(map))
424 return r;
425
426 /* We only support devices that have a single target */
427 if (map->num_targets != 1)
428 return r;
429
430 ti = dm_table_get_target(map, 0);
431 if (!ti->type->prepare_ioctl)
432 return r;
433
434 if (dm_suspended_md(md))
435 return -EAGAIN;
436
437 r = ti->type->prepare_ioctl(ti, bdev);
438 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
439 dm_put_live_table(md, *srcu_idx);
440 fsleep(10000);
441 goto retry;
442 }
443
444 return r;
445 }
446
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
448 {
449 dm_put_live_table(md, srcu_idx);
450 }
451
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
453 unsigned int cmd, unsigned long arg)
454 {
455 struct mapped_device *md = bdev->bd_disk->private_data;
456 int r, srcu_idx;
457
458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
459 if (r < 0)
460 goto out;
461
462 if (r > 0) {
463 /*
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
466 */
467 if (!capable(CAP_SYS_RAWIO)) {
468 DMDEBUG_LIMIT(
469 "%s: sending ioctl %x to DM device without required privilege.",
470 current->comm, cmd);
471 r = -ENOIOCTLCMD;
472 goto out;
473 }
474 }
475
476 if (!bdev->bd_disk->fops->ioctl)
477 r = -ENOTTY;
478 else
479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 out:
481 dm_unprepare_ioctl(md, srcu_idx);
482 return r;
483 }
484
dm_start_time_ns_from_clone(struct bio * bio)485 u64 dm_start_time_ns_from_clone(struct bio *bio)
486 {
487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
488 }
489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
490
bio_is_flush_with_data(struct bio * bio)491 static inline bool bio_is_flush_with_data(struct bio *bio)
492 {
493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
494 }
495
dm_io_sectors(struct dm_io * io,struct bio * bio)496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
497 {
498 /*
499 * If REQ_PREFLUSH set, don't account payload, it will be
500 * submitted (and accounted) after this flush completes.
501 */
502 if (bio_is_flush_with_data(bio))
503 return 0;
504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return io->sectors;
506 return bio_sectors(bio);
507 }
508
dm_io_acct(struct dm_io * io,bool end)509 static void dm_io_acct(struct dm_io *io, bool end)
510 {
511 struct bio *bio = io->orig_bio;
512
513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 if (!end)
515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
516 io->start_time);
517 else
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
519 dm_io_sectors(io, bio),
520 io->start_time);
521 }
522
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&io->md->stats))) {
525 sector_t sector;
526
527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio_end_sector(bio) - io->sector_offset;
529 else
530 sector = bio->bi_iter.bi_sector;
531
532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
533 sector, dm_io_sectors(io, bio),
534 end, io->start_time, &io->stats_aux);
535 }
536 }
537
__dm_start_io_acct(struct dm_io * io)538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 dm_io_acct(io, false);
541 }
542
dm_start_io_acct(struct dm_io * io,struct bio * clone)543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 /*
546 * Ensure IO accounting is only ever started once.
547 */
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 return;
550
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 } else {
555 unsigned long flags;
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
560 return;
561 }
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
564 }
565
566 __dm_start_io_acct(io);
567 }
568
dm_end_io_acct(struct dm_io * io)569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 dm_io_acct(io, true);
572 }
573
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
575 {
576 struct dm_io *io;
577 struct dm_target_io *tio;
578 struct bio *clone;
579
580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
581 if (unlikely(!clone))
582 return NULL;
583 tio = clone_to_tio(clone);
584 tio->flags = 0;
585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
586 tio->io = NULL;
587
588 io = container_of(tio, struct dm_io, tio);
589 io->magic = DM_IO_MAGIC;
590 io->status = BLK_STS_OK;
591
592 /* one ref is for submission, the other is for completion */
593 atomic_set(&io->io_count, 2);
594 this_cpu_inc(*md->pending_io);
595 io->orig_bio = bio;
596 io->md = md;
597 spin_lock_init(&io->lock);
598 io->start_time = jiffies;
599 io->flags = 0;
600 if (blk_queue_io_stat(md->queue))
601 dm_io_set_flag(io, DM_IO_BLK_STAT);
602
603 if (static_branch_unlikely(&stats_enabled) &&
604 unlikely(dm_stats_used(&md->stats)))
605 dm_stats_record_start(&md->stats, &io->stats_aux);
606
607 return io;
608 }
609
free_io(struct dm_io * io)610 static void free_io(struct dm_io *io)
611 {
612 bio_put(&io->tio.clone);
613 }
614
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
617 {
618 struct mapped_device *md = ci->io->md;
619 struct dm_target_io *tio;
620 struct bio *clone;
621
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 /* alloc_io() already initialized embedded clone */
626 clone = &tio->clone;
627 } else {
628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 &md->mempools->bs);
630 if (!clone)
631 return NULL;
632
633 /* REQ_DM_POLL_LIST shouldn't be inherited */
634 clone->bi_opf &= ~REQ_DM_POLL_LIST;
635
636 tio = clone_to_tio(clone);
637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
638 }
639
640 tio->magic = DM_TIO_MAGIC;
641 tio->io = ci->io;
642 tio->ti = ti;
643 tio->target_bio_nr = target_bio_nr;
644 tio->len_ptr = len;
645 tio->old_sector = 0;
646
647 /* Set default bdev, but target must bio_set_dev() before issuing IO */
648 clone->bi_bdev = md->disk->part0;
649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
650 bio_set_dev(clone, md->disk->part0);
651
652 if (len) {
653 clone->bi_iter.bi_size = to_bytes(*len);
654 if (bio_integrity(clone))
655 bio_integrity_trim(clone);
656 }
657
658 return clone;
659 }
660
free_tio(struct bio * clone)661 static void free_tio(struct bio *clone)
662 {
663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
664 return;
665 bio_put(clone);
666 }
667
668 /*
669 * Add the bio to the list of deferred io.
670 */
queue_io(struct mapped_device * md,struct bio * bio)671 static void queue_io(struct mapped_device *md, struct bio *bio)
672 {
673 unsigned long flags;
674
675 spin_lock_irqsave(&md->deferred_lock, flags);
676 bio_list_add(&md->deferred, bio);
677 spin_unlock_irqrestore(&md->deferred_lock, flags);
678 queue_work(md->wq, &md->work);
679 }
680
681 /*
682 * Everyone (including functions in this file), should use this
683 * function to access the md->map field, and make sure they call
684 * dm_put_live_table() when finished.
685 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)686 struct dm_table *dm_get_live_table(struct mapped_device *md,
687 int *srcu_idx) __acquires(md->io_barrier)
688 {
689 *srcu_idx = srcu_read_lock(&md->io_barrier);
690
691 return srcu_dereference(md->map, &md->io_barrier);
692 }
693
dm_put_live_table(struct mapped_device * md,int srcu_idx)694 void dm_put_live_table(struct mapped_device *md,
695 int srcu_idx) __releases(md->io_barrier)
696 {
697 srcu_read_unlock(&md->io_barrier, srcu_idx);
698 }
699
dm_sync_table(struct mapped_device * md)700 void dm_sync_table(struct mapped_device *md)
701 {
702 synchronize_srcu(&md->io_barrier);
703 synchronize_rcu_expedited();
704 }
705
706 /*
707 * A fast alternative to dm_get_live_table/dm_put_live_table.
708 * The caller must not block between these two functions.
709 */
dm_get_live_table_fast(struct mapped_device * md)710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
711 {
712 rcu_read_lock();
713 return rcu_dereference(md->map);
714 }
715
dm_put_live_table_fast(struct mapped_device * md)716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
717 {
718 rcu_read_unlock();
719 }
720
721 static char *_dm_claim_ptr = "I belong to device-mapper";
722
723 /*
724 * Open a table device so we can use it as a map destination.
725 */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)726 static struct table_device *open_table_device(struct mapped_device *md,
727 dev_t dev, blk_mode_t mode)
728 {
729 struct table_device *td;
730 struct file *bdev_file;
731 struct block_device *bdev;
732 u64 part_off;
733 int r;
734
735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
736 if (!td)
737 return ERR_PTR(-ENOMEM);
738 refcount_set(&td->count, 1);
739
740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
741 if (IS_ERR(bdev_file)) {
742 r = PTR_ERR(bdev_file);
743 goto out_free_td;
744 }
745
746 bdev = file_bdev(bdev_file);
747
748 /*
749 * We can be called before the dm disk is added. In that case we can't
750 * register the holder relation here. It will be done once add_disk was
751 * called.
752 */
753 if (md->disk->slave_dir) {
754 r = bd_link_disk_holder(bdev, md->disk);
755 if (r)
756 goto out_blkdev_put;
757 }
758
759 td->dm_dev.mode = mode;
760 td->dm_dev.bdev = bdev;
761 td->dm_dev.bdev_file = bdev_file;
762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
763 NULL, NULL);
764 format_dev_t(td->dm_dev.name, dev);
765 list_add(&td->list, &md->table_devices);
766 return td;
767
768 out_blkdev_put:
769 __fput_sync(bdev_file);
770 out_free_td:
771 kfree(td);
772 return ERR_PTR(r);
773 }
774
775 /*
776 * Close a table device that we've been using.
777 */
close_table_device(struct table_device * td,struct mapped_device * md)778 static void close_table_device(struct table_device *td, struct mapped_device *md)
779 {
780 if (md->disk->slave_dir)
781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
782
783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
785 fput(td->dm_dev.bdev_file);
786 else
787 __fput_sync(td->dm_dev.bdev_file);
788
789 put_dax(td->dm_dev.dax_dev);
790 list_del(&td->list);
791 kfree(td);
792 }
793
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 blk_mode_t mode)
796 {
797 struct table_device *td;
798
799 list_for_each_entry(td, l, list)
800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 return td;
802
803 return NULL;
804 }
805
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
807 struct dm_dev **result)
808 {
809 struct table_device *td;
810
811 mutex_lock(&md->table_devices_lock);
812 td = find_table_device(&md->table_devices, dev, mode);
813 if (!td) {
814 td = open_table_device(md, dev, mode);
815 if (IS_ERR(td)) {
816 mutex_unlock(&md->table_devices_lock);
817 return PTR_ERR(td);
818 }
819 } else {
820 refcount_inc(&td->count);
821 }
822 mutex_unlock(&md->table_devices_lock);
823
824 *result = &td->dm_dev;
825 return 0;
826 }
827
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (refcount_dec_and_test(&td->count))
834 close_table_device(td, md);
835 mutex_unlock(&md->table_devices_lock);
836 }
837
838 /*
839 * Get the geometry associated with a dm device
840 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
842 {
843 *geo = md->geometry;
844
845 return 0;
846 }
847
848 /*
849 * Set the geometry of a device.
850 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
852 {
853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
854
855 if (geo->start > sz) {
856 DMERR("Start sector is beyond the geometry limits.");
857 return -EINVAL;
858 }
859
860 md->geometry = *geo;
861
862 return 0;
863 }
864
__noflush_suspending(struct mapped_device * md)865 static int __noflush_suspending(struct mapped_device *md)
866 {
867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
868 }
869
dm_requeue_add_io(struct dm_io * io,bool first_stage)870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
871 {
872 struct mapped_device *md = io->md;
873
874 if (first_stage) {
875 struct dm_io *next = md->requeue_list;
876
877 md->requeue_list = io;
878 io->next = next;
879 } else {
880 bio_list_add_head(&md->deferred, io->orig_bio);
881 }
882 }
883
dm_kick_requeue(struct mapped_device * md,bool first_stage)884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
885 {
886 if (first_stage)
887 queue_work(md->wq, &md->requeue_work);
888 else
889 queue_work(md->wq, &md->work);
890 }
891
892 /*
893 * Return true if the dm_io's original bio is requeued.
894 * io->status is updated with error if requeue disallowed.
895 */
dm_handle_requeue(struct dm_io * io,bool first_stage)896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
897 {
898 struct bio *bio = io->orig_bio;
899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
901 (bio->bi_opf & REQ_POLLED));
902 struct mapped_device *md = io->md;
903 bool requeued = false;
904
905 if (handle_requeue || handle_polled_eagain) {
906 unsigned long flags;
907
908 if (bio->bi_opf & REQ_POLLED) {
909 /*
910 * Upper layer won't help us poll split bio
911 * (io->orig_bio may only reflect a subset of the
912 * pre-split original) so clear REQ_POLLED.
913 */
914 bio_clear_polled(bio);
915 }
916
917 /*
918 * Target requested pushing back the I/O or
919 * polled IO hit BLK_STS_AGAIN.
920 */
921 spin_lock_irqsave(&md->deferred_lock, flags);
922 if ((__noflush_suspending(md) &&
923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
924 handle_polled_eagain || first_stage) {
925 dm_requeue_add_io(io, first_stage);
926 requeued = true;
927 } else {
928 /*
929 * noflush suspend was interrupted or this is
930 * a write to a zoned target.
931 */
932 io->status = BLK_STS_IOERR;
933 }
934 spin_unlock_irqrestore(&md->deferred_lock, flags);
935 }
936
937 if (requeued)
938 dm_kick_requeue(md, first_stage);
939
940 return requeued;
941 }
942
__dm_io_complete(struct dm_io * io,bool first_stage)943 static void __dm_io_complete(struct dm_io *io, bool first_stage)
944 {
945 struct bio *bio = io->orig_bio;
946 struct mapped_device *md = io->md;
947 blk_status_t io_error;
948 bool requeued;
949
950 requeued = dm_handle_requeue(io, first_stage);
951 if (requeued && first_stage)
952 return;
953
954 io_error = io->status;
955 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 dm_end_io_acct(io);
957 else if (!io_error) {
958 /*
959 * Must handle target that DM_MAPIO_SUBMITTED only to
960 * then bio_endio() rather than dm_submit_bio_remap()
961 */
962 __dm_start_io_acct(io);
963 dm_end_io_acct(io);
964 }
965 free_io(io);
966 smp_wmb();
967 this_cpu_dec(*md->pending_io);
968
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md->wait)))
971 wake_up(&md->wait);
972
973 /* Return early if the original bio was requeued */
974 if (requeued)
975 return;
976
977 if (bio_is_flush_with_data(bio)) {
978 /*
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
981 */
982 bio->bi_opf &= ~REQ_PREFLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 if (io_error)
987 bio->bi_status = io_error;
988 bio_endio(bio);
989 }
990 }
991
dm_wq_requeue_work(struct work_struct * work)992 static void dm_wq_requeue_work(struct work_struct *work)
993 {
994 struct mapped_device *md = container_of(work, struct mapped_device,
995 requeue_work);
996 unsigned long flags;
997 struct dm_io *io;
998
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md->deferred_lock, flags);
1001 io = md->requeue_list;
1002 md->requeue_list = NULL;
1003 spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005 while (io) {
1006 struct dm_io *next = io->next;
1007
1008 dm_io_rewind(io, &md->disk->bio_split);
1009
1010 io->next = NULL;
1011 __dm_io_complete(io, false);
1012 io = next;
1013 cond_resched();
1014 }
1015 }
1016
1017 /*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
dm_io_complete(struct dm_io * io)1025 static void dm_io_complete(struct dm_io *io)
1026 {
1027 bool first_requeue;
1028
1029 /*
1030 * Only dm_io that has been split needs two stage requeue, otherwise
1031 * we may run into long bio clone chain during suspend and OOM could
1032 * be triggered.
1033 *
1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 * also aren't handled via the first stage requeue.
1036 */
1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038 first_requeue = true;
1039 else
1040 first_requeue = false;
1041
1042 __dm_io_complete(io, first_requeue);
1043 }
1044
1045 /*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
__dm_io_dec_pending(struct dm_io * io)1049 static inline void __dm_io_dec_pending(struct dm_io *io)
1050 {
1051 if (atomic_dec_and_test(&io->io_count))
1052 dm_io_complete(io);
1053 }
1054
dm_io_set_error(struct dm_io * io,blk_status_t error)1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056 {
1057 unsigned long flags;
1058
1059 /* Push-back supersedes any I/O errors */
1060 spin_lock_irqsave(&io->lock, flags);
1061 if (!(io->status == BLK_STS_DM_REQUEUE &&
1062 __noflush_suspending(io->md))) {
1063 io->status = error;
1064 }
1065 spin_unlock_irqrestore(&io->lock, flags);
1066 }
1067
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069 {
1070 if (unlikely(error))
1071 dm_io_set_error(io, error);
1072
1073 __dm_io_dec_pending(io);
1074 }
1075
1076 /*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
dm_get_queue_limits(struct mapped_device * md)1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081 {
1082 return &md->queue->limits;
1083 }
1084
disable_discard(struct mapped_device * md)1085 void disable_discard(struct mapped_device *md)
1086 {
1087 struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089 /* device doesn't really support DISCARD, disable it */
1090 limits->max_hw_discard_sectors = 0;
1091 }
1092
disable_write_zeroes(struct mapped_device * md)1093 void disable_write_zeroes(struct mapped_device *md)
1094 {
1095 struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097 /* device doesn't really support WRITE ZEROES, disable it */
1098 limits->max_write_zeroes_sectors = 0;
1099 }
1100
swap_bios_limit(struct dm_target * ti,struct bio * bio)1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102 {
1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104 }
1105
clone_endio(struct bio * bio)1106 static void clone_endio(struct bio *bio)
1107 {
1108 blk_status_t error = bio->bi_status;
1109 struct dm_target_io *tio = clone_to_tio(bio);
1110 struct dm_target *ti = tio->ti;
1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112 struct dm_io *io = tio->io;
1113 struct mapped_device *md = io->md;
1114
1115 if (unlikely(error == BLK_STS_TARGET)) {
1116 if (bio_op(bio) == REQ_OP_DISCARD &&
1117 !bdev_max_discard_sectors(bio->bi_bdev))
1118 disable_discard(md);
1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121 disable_write_zeroes(md);
1122 }
1123
1124 if (static_branch_unlikely(&zoned_enabled) &&
1125 unlikely(bdev_is_zoned(bio->bi_bdev)))
1126 dm_zone_endio(io, bio);
1127
1128 if (endio) {
1129 int r = endio(ti, bio, &error);
1130
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1134 /*
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1138 */
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1154 }
1155 }
1156
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1160
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1163 }
1164
1165 /*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1171 {
1172 return ti->len - target_offset;
1173 }
1174
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176 unsigned int max_granularity,
1177 unsigned int max_sectors)
1178 {
1179 sector_t target_offset = dm_target_offset(ti, sector);
1180 sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182 /*
1183 * Does the target need to split IO even further?
1184 * - varied (per target) IO splitting is a tenet of DM; this
1185 * explains why stacked chunk_sectors based splitting via
1186 * bio_split_to_limits() isn't possible here.
1187 */
1188 if (!max_granularity)
1189 return len;
1190 return min_t(sector_t, len,
1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192 blk_boundary_sectors_left(target_offset, max_granularity)));
1193 }
1194
max_io_len(struct dm_target * ti,sector_t sector)1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196 {
1197 return __max_io_len(ti, sector, ti->max_io_len, 0);
1198 }
1199
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201 {
1202 if (len > UINT_MAX) {
1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 (unsigned long long)len, UINT_MAX);
1205 ti->error = "Maximum size of target IO is too large";
1206 return -EINVAL;
1207 }
1208
1209 ti->max_io_len = (uint32_t) len;
1210
1211 return 0;
1212 }
1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216 sector_t sector, int *srcu_idx)
1217 __acquires(md->io_barrier)
1218 {
1219 struct dm_table *map;
1220 struct dm_target *ti;
1221
1222 map = dm_get_live_table(md, srcu_idx);
1223 if (!map)
1224 return NULL;
1225
1226 ti = dm_table_find_target(map, sector);
1227 if (!ti)
1228 return NULL;
1229
1230 return ti;
1231 }
1232
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234 long nr_pages, enum dax_access_mode mode, void **kaddr,
1235 pfn_t *pfn)
1236 {
1237 struct mapped_device *md = dax_get_private(dax_dev);
1238 sector_t sector = pgoff * PAGE_SECTORS;
1239 struct dm_target *ti;
1240 long len, ret = -EIO;
1241 int srcu_idx;
1242
1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245 if (!ti)
1246 goto out;
1247 if (!ti->type->direct_access)
1248 goto out;
1249 len = max_io_len(ti, sector) / PAGE_SECTORS;
1250 if (len < 1)
1251 goto out;
1252 nr_pages = min(len, nr_pages);
1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256 dm_put_live_table(md, srcu_idx);
1257
1258 return ret;
1259 }
1260
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262 size_t nr_pages)
1263 {
1264 struct mapped_device *md = dax_get_private(dax_dev);
1265 sector_t sector = pgoff * PAGE_SECTORS;
1266 struct dm_target *ti;
1267 int ret = -EIO;
1268 int srcu_idx;
1269
1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271
1272 if (!ti)
1273 goto out;
1274 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275 /*
1276 * ->zero_page_range() is mandatory dax operation. If we are
1277 * here, something is wrong.
1278 */
1279 goto out;
1280 }
1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283 dm_put_live_table(md, srcu_idx);
1284
1285 return ret;
1286 }
1287
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289 void *addr, size_t bytes, struct iov_iter *i)
1290 {
1291 struct mapped_device *md = dax_get_private(dax_dev);
1292 sector_t sector = pgoff * PAGE_SECTORS;
1293 struct dm_target *ti;
1294 int srcu_idx;
1295 long ret = 0;
1296
1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298 if (!ti || !ti->type->dax_recovery_write)
1299 goto out;
1300
1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302 out:
1303 dm_put_live_table(md, srcu_idx);
1304 return ret;
1305 }
1306
1307 /*
1308 * A target may call dm_accept_partial_bio only from the map routine. It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * | 1 | 2 | 3 |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 * <----- bio_sectors ----->
1324 * <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1330 * to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1337 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1338 {
1339 struct dm_target_io *tio = clone_to_tio(bio);
1340 struct dm_io *io = tio->io;
1341 unsigned int bio_sectors = bio_sectors(bio);
1342
1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346 BUG_ON(bio_sectors > *tio->len_ptr);
1347 BUG_ON(n_sectors > bio_sectors);
1348
1349 *tio->len_ptr -= bio_sectors - n_sectors;
1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1351
1352 /*
1353 * __split_and_process_bio() may have already saved mapped part
1354 * for accounting but it is being reduced so update accordingly.
1355 */
1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357 io->sectors = n_sectors;
1358 io->sector_offset = bio_sectors(io->orig_bio);
1359 }
1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362 /*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1371 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1372 {
1373 struct dm_target_io *tio = clone_to_tio(clone);
1374 struct dm_io *io = tio->io;
1375
1376 /* establish bio that will get submitted */
1377 if (!tgt_clone)
1378 tgt_clone = clone;
1379
1380 /*
1381 * Account io->origin_bio to DM dev on behalf of target
1382 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383 */
1384 dm_start_io_acct(io, clone);
1385
1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387 tio->old_sector);
1388 submit_bio_noacct(tgt_clone);
1389 }
1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1391
__set_swap_bios_limit(struct mapped_device * md,int latch)1392 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1393 {
1394 mutex_lock(&md->swap_bios_lock);
1395 while (latch < md->swap_bios) {
1396 cond_resched();
1397 down(&md->swap_bios_semaphore);
1398 md->swap_bios--;
1399 }
1400 while (latch > md->swap_bios) {
1401 cond_resched();
1402 up(&md->swap_bios_semaphore);
1403 md->swap_bios++;
1404 }
1405 mutex_unlock(&md->swap_bios_lock);
1406 }
1407
__map_bio(struct bio * clone)1408 static void __map_bio(struct bio *clone)
1409 {
1410 struct dm_target_io *tio = clone_to_tio(clone);
1411 struct dm_target *ti = tio->ti;
1412 struct dm_io *io = tio->io;
1413 struct mapped_device *md = io->md;
1414 int r;
1415
1416 clone->bi_end_io = clone_endio;
1417
1418 /*
1419 * Map the clone.
1420 */
1421 tio->old_sector = clone->bi_iter.bi_sector;
1422
1423 if (static_branch_unlikely(&swap_bios_enabled) &&
1424 unlikely(swap_bios_limit(ti, clone))) {
1425 int latch = get_swap_bios();
1426
1427 if (unlikely(latch != md->swap_bios))
1428 __set_swap_bios_limit(md, latch);
1429 down(&md->swap_bios_semaphore);
1430 }
1431
1432 if (likely(ti->type->map == linear_map))
1433 r = linear_map(ti, clone);
1434 else if (ti->type->map == stripe_map)
1435 r = stripe_map(ti, clone);
1436 else
1437 r = ti->type->map(ti, clone);
1438
1439 switch (r) {
1440 case DM_MAPIO_SUBMITTED:
1441 /* target has assumed ownership of this io */
1442 if (!ti->accounts_remapped_io)
1443 dm_start_io_acct(io, clone);
1444 break;
1445 case DM_MAPIO_REMAPPED:
1446 dm_submit_bio_remap(clone, NULL);
1447 break;
1448 case DM_MAPIO_KILL:
1449 case DM_MAPIO_REQUEUE:
1450 if (static_branch_unlikely(&swap_bios_enabled) &&
1451 unlikely(swap_bios_limit(ti, clone)))
1452 up(&md->swap_bios_semaphore);
1453 free_tio(clone);
1454 if (r == DM_MAPIO_KILL)
1455 dm_io_dec_pending(io, BLK_STS_IOERR);
1456 else
1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458 break;
1459 default:
1460 DMCRIT("unimplemented target map return value: %d", r);
1461 BUG();
1462 }
1463 }
1464
setup_split_accounting(struct clone_info * ci,unsigned int len)1465 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1466 {
1467 struct dm_io *io = ci->io;
1468
1469 if (ci->sector_count > len) {
1470 /*
1471 * Split needed, save the mapped part for accounting.
1472 * NOTE: dm_accept_partial_bio() will update accordingly.
1473 */
1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475 io->sectors = len;
1476 io->sector_offset = bio_sectors(ci->bio);
1477 }
1478 }
1479
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1480 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481 struct dm_target *ti, unsigned int num_bios,
1482 unsigned *len)
1483 {
1484 struct bio *bio;
1485 int try;
1486
1487 for (try = 0; try < 2; try++) {
1488 int bio_nr;
1489
1490 if (try && num_bios > 1)
1491 mutex_lock(&ci->io->md->table_devices_lock);
1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493 bio = alloc_tio(ci, ti, bio_nr, len,
1494 try ? GFP_NOIO : GFP_NOWAIT);
1495 if (!bio)
1496 break;
1497
1498 bio_list_add(blist, bio);
1499 }
1500 if (try && num_bios > 1)
1501 mutex_unlock(&ci->io->md->table_devices_lock);
1502 if (bio_nr == num_bios)
1503 return;
1504
1505 while ((bio = bio_list_pop(blist)))
1506 free_tio(bio);
1507 }
1508 }
1509
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1510 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511 unsigned int num_bios, unsigned int *len)
1512 {
1513 struct bio_list blist = BIO_EMPTY_LIST;
1514 struct bio *clone;
1515 unsigned int ret = 0;
1516
1517 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1518 return 0;
1519
1520 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1521 if (len)
1522 setup_split_accounting(ci, *len);
1523
1524 /*
1525 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1526 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1527 */
1528 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1529 while ((clone = bio_list_pop(&blist))) {
1530 if (num_bios > 1)
1531 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1532 __map_bio(clone);
1533 ret += 1;
1534 }
1535
1536 return ret;
1537 }
1538
__send_empty_flush(struct clone_info * ci)1539 static void __send_empty_flush(struct clone_info *ci)
1540 {
1541 struct dm_table *t = ci->map;
1542 struct bio flush_bio;
1543 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1544
1545 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1546 (REQ_IDLE | REQ_SYNC))
1547 opf |= REQ_IDLE;
1548
1549 /*
1550 * Use an on-stack bio for this, it's safe since we don't
1551 * need to reference it after submit. It's just used as
1552 * the basis for the clone(s).
1553 */
1554 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1555
1556 ci->bio = &flush_bio;
1557 ci->sector_count = 0;
1558 ci->io->tio.clone.bi_iter.bi_size = 0;
1559
1560 if (!t->flush_bypasses_map) {
1561 for (unsigned int i = 0; i < t->num_targets; i++) {
1562 unsigned int bios;
1563 struct dm_target *ti = dm_table_get_target(t, i);
1564
1565 if (unlikely(ti->num_flush_bios == 0))
1566 continue;
1567
1568 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1569 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1570 NULL);
1571 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1572 }
1573 } else {
1574 /*
1575 * Note that there's no need to grab t->devices_lock here
1576 * because the targets that support flush optimization don't
1577 * modify the list of devices.
1578 */
1579 struct list_head *devices = dm_table_get_devices(t);
1580 unsigned int len = 0;
1581 struct dm_dev_internal *dd;
1582 list_for_each_entry(dd, devices, list) {
1583 struct bio *clone;
1584 /*
1585 * Note that the structure dm_target_io is not
1586 * associated with any target (because the device may be
1587 * used by multiple targets), so we set tio->ti = NULL.
1588 * We must check for NULL in the I/O processing path, to
1589 * avoid NULL pointer dereference.
1590 */
1591 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1592 atomic_add(1, &ci->io->io_count);
1593 bio_set_dev(clone, dd->dm_dev->bdev);
1594 clone->bi_end_io = clone_endio;
1595 dm_submit_bio_remap(clone, NULL);
1596 }
1597 }
1598
1599 /*
1600 * alloc_io() takes one extra reference for submission, so the
1601 * reference won't reach 0 without the following subtraction
1602 */
1603 atomic_sub(1, &ci->io->io_count);
1604
1605 bio_uninit(ci->bio);
1606 }
1607
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1608 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1609 unsigned int num_bios, unsigned int max_granularity,
1610 unsigned int max_sectors)
1611 {
1612 unsigned int len, bios;
1613
1614 len = min_t(sector_t, ci->sector_count,
1615 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1616
1617 atomic_add(num_bios, &ci->io->io_count);
1618 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1619 /*
1620 * alloc_io() takes one extra reference for submission, so the
1621 * reference won't reach 0 without the following (+1) subtraction
1622 */
1623 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1624
1625 ci->sector += len;
1626 ci->sector_count -= len;
1627 }
1628
is_abnormal_io(struct bio * bio)1629 static bool is_abnormal_io(struct bio *bio)
1630 {
1631 switch (bio_op(bio)) {
1632 case REQ_OP_READ:
1633 case REQ_OP_WRITE:
1634 case REQ_OP_FLUSH:
1635 return false;
1636 case REQ_OP_DISCARD:
1637 case REQ_OP_SECURE_ERASE:
1638 case REQ_OP_WRITE_ZEROES:
1639 case REQ_OP_ZONE_RESET_ALL:
1640 return true;
1641 default:
1642 return false;
1643 }
1644 }
1645
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1646 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1647 struct dm_target *ti)
1648 {
1649 unsigned int num_bios = 0;
1650 unsigned int max_granularity = 0;
1651 unsigned int max_sectors = 0;
1652 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1653
1654 switch (bio_op(ci->bio)) {
1655 case REQ_OP_DISCARD:
1656 num_bios = ti->num_discard_bios;
1657 max_sectors = limits->max_discard_sectors;
1658 if (ti->max_discard_granularity)
1659 max_granularity = max_sectors;
1660 break;
1661 case REQ_OP_SECURE_ERASE:
1662 num_bios = ti->num_secure_erase_bios;
1663 max_sectors = limits->max_secure_erase_sectors;
1664 break;
1665 case REQ_OP_WRITE_ZEROES:
1666 num_bios = ti->num_write_zeroes_bios;
1667 max_sectors = limits->max_write_zeroes_sectors;
1668 break;
1669 default:
1670 break;
1671 }
1672
1673 /*
1674 * Even though the device advertised support for this type of
1675 * request, that does not mean every target supports it, and
1676 * reconfiguration might also have changed that since the
1677 * check was performed.
1678 */
1679 if (unlikely(!num_bios))
1680 return BLK_STS_NOTSUPP;
1681
1682 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1683
1684 return BLK_STS_OK;
1685 }
1686
1687 /*
1688 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1689 * associated with this bio, and this bio's bi_private needs to be
1690 * stored in dm_io->data before the reuse.
1691 *
1692 * bio->bi_private is owned by fs or upper layer, so block layer won't
1693 * touch it after splitting. Meantime it won't be changed by anyone after
1694 * bio is submitted. So this reuse is safe.
1695 */
dm_poll_list_head(struct bio * bio)1696 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1697 {
1698 return (struct dm_io **)&bio->bi_private;
1699 }
1700
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1701 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1702 {
1703 struct dm_io **head = dm_poll_list_head(bio);
1704
1705 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1706 bio->bi_opf |= REQ_DM_POLL_LIST;
1707 /*
1708 * Save .bi_private into dm_io, so that we can reuse
1709 * .bi_private as dm_io list head for storing dm_io list
1710 */
1711 io->data = bio->bi_private;
1712
1713 /* tell block layer to poll for completion */
1714 bio->bi_cookie = ~BLK_QC_T_NONE;
1715
1716 io->next = NULL;
1717 } else {
1718 /*
1719 * bio recursed due to split, reuse original poll list,
1720 * and save bio->bi_private too.
1721 */
1722 io->data = (*head)->data;
1723 io->next = *head;
1724 }
1725
1726 *head = io;
1727 }
1728
1729 /*
1730 * Select the correct strategy for processing a non-flush bio.
1731 */
__split_and_process_bio(struct clone_info * ci)1732 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1733 {
1734 struct bio *clone;
1735 struct dm_target *ti;
1736 unsigned int len;
1737
1738 ti = dm_table_find_target(ci->map, ci->sector);
1739 if (unlikely(!ti))
1740 return BLK_STS_IOERR;
1741
1742 if (unlikely(ci->is_abnormal_io))
1743 return __process_abnormal_io(ci, ti);
1744
1745 /*
1746 * Only support bio polling for normal IO, and the target io is
1747 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1748 */
1749 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1750
1751 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1752 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count)
1753 return BLK_STS_IOERR;
1754
1755 setup_split_accounting(ci, len);
1756
1757 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1758 if (unlikely(!dm_target_supports_nowait(ti->type)))
1759 return BLK_STS_NOTSUPP;
1760
1761 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1762 if (unlikely(!clone))
1763 return BLK_STS_AGAIN;
1764 } else {
1765 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1766 }
1767 __map_bio(clone);
1768
1769 ci->sector += len;
1770 ci->sector_count -= len;
1771
1772 return BLK_STS_OK;
1773 }
1774
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1775 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1776 struct dm_table *map, struct bio *bio, bool is_abnormal)
1777 {
1778 ci->map = map;
1779 ci->io = io;
1780 ci->bio = bio;
1781 ci->is_abnormal_io = is_abnormal;
1782 ci->submit_as_polled = false;
1783 ci->sector = bio->bi_iter.bi_sector;
1784 ci->sector_count = bio_sectors(bio);
1785
1786 /* Shouldn't happen but sector_count was being set to 0 so... */
1787 if (static_branch_unlikely(&zoned_enabled) &&
1788 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1789 ci->sector_count = 0;
1790 }
1791
1792 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct mapped_device * md,struct bio * bio)1793 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1794 struct bio *bio)
1795 {
1796 /*
1797 * For mapped device that need zone append emulation, we must
1798 * split any large BIO that straddles zone boundaries.
1799 */
1800 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1801 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1802 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1803 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1804 {
1805 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1806 }
1807
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1808 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1809 struct dm_target *ti)
1810 {
1811 struct bio_list blist = BIO_EMPTY_LIST;
1812 struct mapped_device *md = ci->io->md;
1813 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1814 unsigned long *need_reset;
1815 unsigned int i, nr_zones, nr_reset;
1816 unsigned int num_bios = 0;
1817 blk_status_t sts = BLK_STS_OK;
1818 sector_t sector = ti->begin;
1819 struct bio *clone;
1820 int ret;
1821
1822 nr_zones = ti->len >> ilog2(zone_sectors);
1823 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1824 if (!need_reset)
1825 return BLK_STS_RESOURCE;
1826
1827 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1828 nr_zones, need_reset);
1829 if (ret) {
1830 sts = BLK_STS_IOERR;
1831 goto free_bitmap;
1832 }
1833
1834 /* If we have no zone to reset, we are done. */
1835 nr_reset = bitmap_weight(need_reset, nr_zones);
1836 if (!nr_reset)
1837 goto free_bitmap;
1838
1839 atomic_add(nr_zones, &ci->io->io_count);
1840
1841 for (i = 0; i < nr_zones; i++) {
1842
1843 if (!test_bit(i, need_reset)) {
1844 sector += zone_sectors;
1845 continue;
1846 }
1847
1848 if (bio_list_empty(&blist)) {
1849 /* This may take a while, so be nice to others */
1850 if (num_bios)
1851 cond_resched();
1852
1853 /*
1854 * We may need to reset thousands of zones, so let's
1855 * not go crazy with the clone allocation.
1856 */
1857 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1858 NULL);
1859 }
1860
1861 /* Get a clone and change it to a regular reset operation. */
1862 clone = bio_list_pop(&blist);
1863 clone->bi_opf &= ~REQ_OP_MASK;
1864 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1865 clone->bi_iter.bi_sector = sector;
1866 clone->bi_iter.bi_size = 0;
1867 __map_bio(clone);
1868
1869 sector += zone_sectors;
1870 num_bios++;
1871 nr_reset--;
1872 }
1873
1874 WARN_ON_ONCE(!bio_list_empty(&blist));
1875 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1876 ci->sector_count = 0;
1877
1878 free_bitmap:
1879 bitmap_free(need_reset);
1880
1881 return sts;
1882 }
1883
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1884 static void __send_zone_reset_all_native(struct clone_info *ci,
1885 struct dm_target *ti)
1886 {
1887 unsigned int bios;
1888
1889 atomic_add(1, &ci->io->io_count);
1890 bios = __send_duplicate_bios(ci, ti, 1, NULL);
1891 atomic_sub(1 - bios, &ci->io->io_count);
1892
1893 ci->sector_count = 0;
1894 }
1895
__send_zone_reset_all(struct clone_info * ci)1896 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1897 {
1898 struct dm_table *t = ci->map;
1899 blk_status_t sts = BLK_STS_OK;
1900
1901 for (unsigned int i = 0; i < t->num_targets; i++) {
1902 struct dm_target *ti = dm_table_get_target(t, i);
1903
1904 if (ti->zone_reset_all_supported) {
1905 __send_zone_reset_all_native(ci, ti);
1906 continue;
1907 }
1908
1909 sts = __send_zone_reset_all_emulated(ci, ti);
1910 if (sts != BLK_STS_OK)
1911 break;
1912 }
1913
1914 /* Release the reference that alloc_io() took for submission. */
1915 atomic_sub(1, &ci->io->io_count);
1916
1917 return sts;
1918 }
1919
1920 #else
dm_zone_bio_needs_split(struct mapped_device * md,struct bio * bio)1921 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1922 struct bio *bio)
1923 {
1924 return false;
1925 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1926 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1927 {
1928 return false;
1929 }
__send_zone_reset_all(struct clone_info * ci)1930 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1931 {
1932 return BLK_STS_NOTSUPP;
1933 }
1934 #endif
1935
1936 /*
1937 * Entry point to split a bio into clones and submit them to the targets.
1938 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1939 static void dm_split_and_process_bio(struct mapped_device *md,
1940 struct dm_table *map, struct bio *bio)
1941 {
1942 struct clone_info ci;
1943 struct dm_io *io;
1944 blk_status_t error = BLK_STS_OK;
1945 bool is_abnormal, need_split;
1946
1947 is_abnormal = is_abnormal_io(bio);
1948 if (static_branch_unlikely(&zoned_enabled)) {
1949 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1950 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1951 (is_abnormal || dm_zone_bio_needs_split(md, bio));
1952 } else {
1953 need_split = is_abnormal;
1954 }
1955
1956 if (unlikely(need_split)) {
1957 /*
1958 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1959 * otherwise associated queue_limits won't be imposed.
1960 * Also split the BIO for mapped devices needing zone append
1961 * emulation to ensure that the BIO does not cross zone
1962 * boundaries.
1963 */
1964 bio = bio_split_to_limits(bio);
1965 if (!bio)
1966 return;
1967 }
1968
1969 /*
1970 * Use the block layer zone write plugging for mapped devices that
1971 * need zone append emulation (e.g. dm-crypt).
1972 */
1973 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1974 return;
1975
1976 /* Only support nowait for normal IO */
1977 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1978 /*
1979 * Don't support NOWAIT for FLUSH because it may allocate
1980 * multiple bios and there's no easy way how to undo the
1981 * allocations.
1982 */
1983 if (bio->bi_opf & REQ_PREFLUSH) {
1984 bio_wouldblock_error(bio);
1985 return;
1986 }
1987 io = alloc_io(md, bio, GFP_NOWAIT);
1988 if (unlikely(!io)) {
1989 /* Unable to do anything without dm_io. */
1990 bio_wouldblock_error(bio);
1991 return;
1992 }
1993 } else {
1994 io = alloc_io(md, bio, GFP_NOIO);
1995 }
1996 init_clone_info(&ci, io, map, bio, is_abnormal);
1997
1998 if (bio->bi_opf & REQ_PREFLUSH) {
1999 __send_empty_flush(&ci);
2000 /* dm_io_complete submits any data associated with flush */
2001 goto out;
2002 }
2003
2004 if (static_branch_unlikely(&zoned_enabled) &&
2005 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2006 error = __send_zone_reset_all(&ci);
2007 goto out;
2008 }
2009
2010 error = __split_and_process_bio(&ci);
2011 if (error || !ci.sector_count)
2012 goto out;
2013 /*
2014 * Remainder must be passed to submit_bio_noacct() so it gets handled
2015 * *after* bios already submitted have been completely processed.
2016 */
2017 bio_trim(bio, io->sectors, ci.sector_count);
2018 trace_block_split(bio, bio->bi_iter.bi_sector);
2019 bio_inc_remaining(bio);
2020 submit_bio_noacct(bio);
2021 out:
2022 /*
2023 * Drop the extra reference count for non-POLLED bio, and hold one
2024 * reference for POLLED bio, which will be released in dm_poll_bio
2025 *
2026 * Add every dm_io instance into the dm_io list head which is stored
2027 * in bio->bi_private, so that dm_poll_bio can poll them all.
2028 */
2029 if (error || !ci.submit_as_polled) {
2030 /*
2031 * In case of submission failure, the extra reference for
2032 * submitting io isn't consumed yet
2033 */
2034 if (error)
2035 atomic_dec(&io->io_count);
2036 dm_io_dec_pending(io, error);
2037 } else
2038 dm_queue_poll_io(bio, io);
2039 }
2040
dm_submit_bio(struct bio * bio)2041 static void dm_submit_bio(struct bio *bio)
2042 {
2043 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2044 int srcu_idx;
2045 struct dm_table *map;
2046
2047 map = dm_get_live_table(md, &srcu_idx);
2048 if (unlikely(!map)) {
2049 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2050 dm_device_name(md));
2051 bio_io_error(bio);
2052 goto out;
2053 }
2054
2055 /* If suspended, queue this IO for later */
2056 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2057 if (bio->bi_opf & REQ_NOWAIT)
2058 bio_wouldblock_error(bio);
2059 else if (bio->bi_opf & REQ_RAHEAD)
2060 bio_io_error(bio);
2061 else
2062 queue_io(md, bio);
2063 goto out;
2064 }
2065
2066 dm_split_and_process_bio(md, map, bio);
2067 out:
2068 dm_put_live_table(md, srcu_idx);
2069 }
2070
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2071 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2072 unsigned int flags)
2073 {
2074 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2075
2076 /* don't poll if the mapped io is done */
2077 if (atomic_read(&io->io_count) > 1)
2078 bio_poll(&io->tio.clone, iob, flags);
2079
2080 /* bio_poll holds the last reference */
2081 return atomic_read(&io->io_count) == 1;
2082 }
2083
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2084 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2085 unsigned int flags)
2086 {
2087 struct dm_io **head = dm_poll_list_head(bio);
2088 struct dm_io *list = *head;
2089 struct dm_io *tmp = NULL;
2090 struct dm_io *curr, *next;
2091
2092 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2093 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2094 return 0;
2095
2096 WARN_ON_ONCE(!list);
2097
2098 /*
2099 * Restore .bi_private before possibly completing dm_io.
2100 *
2101 * bio_poll() is only possible once @bio has been completely
2102 * submitted via submit_bio_noacct()'s depth-first submission.
2103 * So there is no dm_queue_poll_io() race associated with
2104 * clearing REQ_DM_POLL_LIST here.
2105 */
2106 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2107 bio->bi_private = list->data;
2108
2109 for (curr = list, next = curr->next; curr; curr = next, next =
2110 curr ? curr->next : NULL) {
2111 if (dm_poll_dm_io(curr, iob, flags)) {
2112 /*
2113 * clone_endio() has already occurred, so no
2114 * error handling is needed here.
2115 */
2116 __dm_io_dec_pending(curr);
2117 } else {
2118 curr->next = tmp;
2119 tmp = curr;
2120 }
2121 }
2122
2123 /* Not done? */
2124 if (tmp) {
2125 bio->bi_opf |= REQ_DM_POLL_LIST;
2126 /* Reset bio->bi_private to dm_io list head */
2127 *head = tmp;
2128 return 0;
2129 }
2130 return 1;
2131 }
2132
2133 /*
2134 *---------------------------------------------------------------
2135 * An IDR is used to keep track of allocated minor numbers.
2136 *---------------------------------------------------------------
2137 */
free_minor(int minor)2138 static void free_minor(int minor)
2139 {
2140 spin_lock(&_minor_lock);
2141 idr_remove(&_minor_idr, minor);
2142 spin_unlock(&_minor_lock);
2143 }
2144
2145 /*
2146 * See if the device with a specific minor # is free.
2147 */
specific_minor(int minor)2148 static int specific_minor(int minor)
2149 {
2150 int r;
2151
2152 if (minor >= (1 << MINORBITS))
2153 return -EINVAL;
2154
2155 idr_preload(GFP_KERNEL);
2156 spin_lock(&_minor_lock);
2157
2158 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2159
2160 spin_unlock(&_minor_lock);
2161 idr_preload_end();
2162 if (r < 0)
2163 return r == -ENOSPC ? -EBUSY : r;
2164 return 0;
2165 }
2166
next_free_minor(int * minor)2167 static int next_free_minor(int *minor)
2168 {
2169 int r;
2170
2171 idr_preload(GFP_KERNEL);
2172 spin_lock(&_minor_lock);
2173
2174 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2175
2176 spin_unlock(&_minor_lock);
2177 idr_preload_end();
2178 if (r < 0)
2179 return r;
2180 *minor = r;
2181 return 0;
2182 }
2183
2184 static const struct block_device_operations dm_blk_dops;
2185 static const struct block_device_operations dm_rq_blk_dops;
2186 static const struct dax_operations dm_dax_ops;
2187
2188 static void dm_wq_work(struct work_struct *work);
2189
2190 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2191 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2192 {
2193 dm_destroy_crypto_profile(q->crypto_profile);
2194 }
2195
2196 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2197
dm_queue_destroy_crypto_profile(struct request_queue * q)2198 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2199 {
2200 }
2201 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2202
cleanup_mapped_device(struct mapped_device * md)2203 static void cleanup_mapped_device(struct mapped_device *md)
2204 {
2205 if (md->wq)
2206 destroy_workqueue(md->wq);
2207 dm_free_md_mempools(md->mempools);
2208
2209 if (md->dax_dev) {
2210 dax_remove_host(md->disk);
2211 kill_dax(md->dax_dev);
2212 put_dax(md->dax_dev);
2213 md->dax_dev = NULL;
2214 }
2215
2216 if (md->disk) {
2217 spin_lock(&_minor_lock);
2218 md->disk->private_data = NULL;
2219 spin_unlock(&_minor_lock);
2220 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2221 struct table_device *td;
2222
2223 dm_sysfs_exit(md);
2224 list_for_each_entry(td, &md->table_devices, list) {
2225 bd_unlink_disk_holder(td->dm_dev.bdev,
2226 md->disk);
2227 }
2228
2229 /*
2230 * Hold lock to make sure del_gendisk() won't concurrent
2231 * with open/close_table_device().
2232 */
2233 mutex_lock(&md->table_devices_lock);
2234 del_gendisk(md->disk);
2235 mutex_unlock(&md->table_devices_lock);
2236 }
2237 dm_queue_destroy_crypto_profile(md->queue);
2238 put_disk(md->disk);
2239 }
2240
2241 if (md->pending_io) {
2242 free_percpu(md->pending_io);
2243 md->pending_io = NULL;
2244 }
2245
2246 cleanup_srcu_struct(&md->io_barrier);
2247
2248 mutex_destroy(&md->suspend_lock);
2249 mutex_destroy(&md->type_lock);
2250 mutex_destroy(&md->table_devices_lock);
2251 mutex_destroy(&md->swap_bios_lock);
2252
2253 dm_mq_cleanup_mapped_device(md);
2254 }
2255
2256 /*
2257 * Allocate and initialise a blank device with a given minor.
2258 */
alloc_dev(int minor)2259 static struct mapped_device *alloc_dev(int minor)
2260 {
2261 int r, numa_node_id = dm_get_numa_node();
2262 struct dax_device *dax_dev;
2263 struct mapped_device *md;
2264 void *old_md;
2265
2266 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2267 if (!md) {
2268 DMERR("unable to allocate device, out of memory.");
2269 return NULL;
2270 }
2271
2272 if (!try_module_get(THIS_MODULE))
2273 goto bad_module_get;
2274
2275 /* get a minor number for the dev */
2276 if (minor == DM_ANY_MINOR)
2277 r = next_free_minor(&minor);
2278 else
2279 r = specific_minor(minor);
2280 if (r < 0)
2281 goto bad_minor;
2282
2283 r = init_srcu_struct(&md->io_barrier);
2284 if (r < 0)
2285 goto bad_io_barrier;
2286
2287 md->numa_node_id = numa_node_id;
2288 md->init_tio_pdu = false;
2289 md->type = DM_TYPE_NONE;
2290 mutex_init(&md->suspend_lock);
2291 mutex_init(&md->type_lock);
2292 mutex_init(&md->table_devices_lock);
2293 spin_lock_init(&md->deferred_lock);
2294 atomic_set(&md->holders, 1);
2295 atomic_set(&md->open_count, 0);
2296 atomic_set(&md->event_nr, 0);
2297 atomic_set(&md->uevent_seq, 0);
2298 INIT_LIST_HEAD(&md->uevent_list);
2299 INIT_LIST_HEAD(&md->table_devices);
2300 spin_lock_init(&md->uevent_lock);
2301
2302 /*
2303 * default to bio-based until DM table is loaded and md->type
2304 * established. If request-based table is loaded: blk-mq will
2305 * override accordingly.
2306 */
2307 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2308 if (IS_ERR(md->disk)) {
2309 md->disk = NULL;
2310 goto bad;
2311 }
2312 md->queue = md->disk->queue;
2313
2314 init_waitqueue_head(&md->wait);
2315 INIT_WORK(&md->work, dm_wq_work);
2316 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2317 init_waitqueue_head(&md->eventq);
2318 init_completion(&md->kobj_holder.completion);
2319
2320 md->requeue_list = NULL;
2321 md->swap_bios = get_swap_bios();
2322 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2323 mutex_init(&md->swap_bios_lock);
2324
2325 md->disk->major = _major;
2326 md->disk->first_minor = minor;
2327 md->disk->minors = 1;
2328 md->disk->flags |= GENHD_FL_NO_PART;
2329 md->disk->fops = &dm_blk_dops;
2330 md->disk->private_data = md;
2331 sprintf(md->disk->disk_name, "dm-%d", minor);
2332
2333 dax_dev = alloc_dax(md, &dm_dax_ops);
2334 if (IS_ERR(dax_dev)) {
2335 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2336 goto bad;
2337 } else {
2338 set_dax_nocache(dax_dev);
2339 set_dax_nomc(dax_dev);
2340 md->dax_dev = dax_dev;
2341 if (dax_add_host(dax_dev, md->disk))
2342 goto bad;
2343 }
2344
2345 format_dev_t(md->name, MKDEV(_major, minor));
2346
2347 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2348 if (!md->wq)
2349 goto bad;
2350
2351 md->pending_io = alloc_percpu(unsigned long);
2352 if (!md->pending_io)
2353 goto bad;
2354
2355 r = dm_stats_init(&md->stats);
2356 if (r < 0)
2357 goto bad;
2358
2359 /* Populate the mapping, nobody knows we exist yet */
2360 spin_lock(&_minor_lock);
2361 old_md = idr_replace(&_minor_idr, md, minor);
2362 spin_unlock(&_minor_lock);
2363
2364 BUG_ON(old_md != MINOR_ALLOCED);
2365
2366 return md;
2367
2368 bad:
2369 cleanup_mapped_device(md);
2370 bad_io_barrier:
2371 free_minor(minor);
2372 bad_minor:
2373 module_put(THIS_MODULE);
2374 bad_module_get:
2375 kvfree(md);
2376 return NULL;
2377 }
2378
2379 static void unlock_fs(struct mapped_device *md);
2380
free_dev(struct mapped_device * md)2381 static void free_dev(struct mapped_device *md)
2382 {
2383 int minor = MINOR(disk_devt(md->disk));
2384
2385 unlock_fs(md);
2386
2387 cleanup_mapped_device(md);
2388
2389 WARN_ON_ONCE(!list_empty(&md->table_devices));
2390 dm_stats_cleanup(&md->stats);
2391 free_minor(minor);
2392
2393 module_put(THIS_MODULE);
2394 kvfree(md);
2395 }
2396
2397 /*
2398 * Bind a table to the device.
2399 */
event_callback(void * context)2400 static void event_callback(void *context)
2401 {
2402 unsigned long flags;
2403 LIST_HEAD(uevents);
2404 struct mapped_device *md = context;
2405
2406 spin_lock_irqsave(&md->uevent_lock, flags);
2407 list_splice_init(&md->uevent_list, &uevents);
2408 spin_unlock_irqrestore(&md->uevent_lock, flags);
2409
2410 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2411
2412 atomic_inc(&md->event_nr);
2413 wake_up(&md->eventq);
2414 dm_issue_global_event();
2415 }
2416
2417 /*
2418 * Returns old map, which caller must destroy.
2419 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2420 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2421 struct queue_limits *limits)
2422 {
2423 struct dm_table *old_map;
2424 sector_t size;
2425 int ret;
2426
2427 lockdep_assert_held(&md->suspend_lock);
2428
2429 size = dm_table_get_size(t);
2430
2431 /*
2432 * Wipe any geometry if the size of the table changed.
2433 */
2434 if (size != dm_get_size(md))
2435 memset(&md->geometry, 0, sizeof(md->geometry));
2436
2437 set_capacity(md->disk, size);
2438
2439 dm_table_event_callback(t, event_callback, md);
2440
2441 if (dm_table_request_based(t)) {
2442 /*
2443 * Leverage the fact that request-based DM targets are
2444 * immutable singletons - used to optimize dm_mq_queue_rq.
2445 */
2446 md->immutable_target = dm_table_get_immutable_target(t);
2447
2448 /*
2449 * There is no need to reload with request-based dm because the
2450 * size of front_pad doesn't change.
2451 *
2452 * Note for future: If you are to reload bioset, prep-ed
2453 * requests in the queue may refer to bio from the old bioset,
2454 * so you must walk through the queue to unprep.
2455 */
2456 if (!md->mempools) {
2457 md->mempools = t->mempools;
2458 t->mempools = NULL;
2459 }
2460 } else {
2461 /*
2462 * The md may already have mempools that need changing.
2463 * If so, reload bioset because front_pad may have changed
2464 * because a different table was loaded.
2465 */
2466 dm_free_md_mempools(md->mempools);
2467 md->mempools = t->mempools;
2468 t->mempools = NULL;
2469 }
2470
2471 ret = dm_table_set_restrictions(t, md->queue, limits);
2472 if (ret) {
2473 old_map = ERR_PTR(ret);
2474 goto out;
2475 }
2476
2477 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2478 rcu_assign_pointer(md->map, (void *)t);
2479 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2480
2481 if (old_map)
2482 dm_sync_table(md);
2483 out:
2484 return old_map;
2485 }
2486
2487 /*
2488 * Returns unbound table for the caller to free.
2489 */
__unbind(struct mapped_device * md)2490 static struct dm_table *__unbind(struct mapped_device *md)
2491 {
2492 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2493
2494 if (!map)
2495 return NULL;
2496
2497 dm_table_event_callback(map, NULL, NULL);
2498 RCU_INIT_POINTER(md->map, NULL);
2499 dm_sync_table(md);
2500
2501 return map;
2502 }
2503
2504 /*
2505 * Constructor for a new device.
2506 */
dm_create(int minor,struct mapped_device ** result)2507 int dm_create(int minor, struct mapped_device **result)
2508 {
2509 struct mapped_device *md;
2510
2511 md = alloc_dev(minor);
2512 if (!md)
2513 return -ENXIO;
2514
2515 dm_ima_reset_data(md);
2516
2517 *result = md;
2518 return 0;
2519 }
2520
2521 /*
2522 * Functions to manage md->type.
2523 * All are required to hold md->type_lock.
2524 */
dm_lock_md_type(struct mapped_device * md)2525 void dm_lock_md_type(struct mapped_device *md)
2526 {
2527 mutex_lock(&md->type_lock);
2528 }
2529
dm_unlock_md_type(struct mapped_device * md)2530 void dm_unlock_md_type(struct mapped_device *md)
2531 {
2532 mutex_unlock(&md->type_lock);
2533 }
2534
dm_get_md_type(struct mapped_device * md)2535 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2536 {
2537 return md->type;
2538 }
2539
dm_get_immutable_target_type(struct mapped_device * md)2540 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2541 {
2542 return md->immutable_target_type;
2543 }
2544
2545 /*
2546 * Setup the DM device's queue based on md's type
2547 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2548 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2549 {
2550 enum dm_queue_mode type = dm_table_get_type(t);
2551 struct queue_limits limits;
2552 struct table_device *td;
2553 int r;
2554
2555 WARN_ON_ONCE(type == DM_TYPE_NONE);
2556
2557 if (type == DM_TYPE_REQUEST_BASED) {
2558 md->disk->fops = &dm_rq_blk_dops;
2559 r = dm_mq_init_request_queue(md, t);
2560 if (r) {
2561 DMERR("Cannot initialize queue for request-based dm mapped device");
2562 return r;
2563 }
2564 }
2565
2566 r = dm_calculate_queue_limits(t, &limits);
2567 if (r) {
2568 DMERR("Cannot calculate initial queue limits");
2569 return r;
2570 }
2571 r = dm_table_set_restrictions(t, md->queue, &limits);
2572 if (r)
2573 return r;
2574
2575 /*
2576 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2577 * with open_table_device() and close_table_device().
2578 */
2579 mutex_lock(&md->table_devices_lock);
2580 r = add_disk(md->disk);
2581 mutex_unlock(&md->table_devices_lock);
2582 if (r)
2583 return r;
2584
2585 /*
2586 * Register the holder relationship for devices added before the disk
2587 * was live.
2588 */
2589 list_for_each_entry(td, &md->table_devices, list) {
2590 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2591 if (r)
2592 goto out_undo_holders;
2593 }
2594
2595 r = dm_sysfs_init(md);
2596 if (r)
2597 goto out_undo_holders;
2598
2599 md->type = type;
2600 return 0;
2601
2602 out_undo_holders:
2603 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2604 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2605 mutex_lock(&md->table_devices_lock);
2606 del_gendisk(md->disk);
2607 mutex_unlock(&md->table_devices_lock);
2608 return r;
2609 }
2610
dm_get_md(dev_t dev)2611 struct mapped_device *dm_get_md(dev_t dev)
2612 {
2613 struct mapped_device *md;
2614 unsigned int minor = MINOR(dev);
2615
2616 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2617 return NULL;
2618
2619 spin_lock(&_minor_lock);
2620
2621 md = idr_find(&_minor_idr, minor);
2622 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2623 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2624 md = NULL;
2625 goto out;
2626 }
2627 dm_get(md);
2628 out:
2629 spin_unlock(&_minor_lock);
2630
2631 return md;
2632 }
2633 EXPORT_SYMBOL_GPL(dm_get_md);
2634
dm_get_mdptr(struct mapped_device * md)2635 void *dm_get_mdptr(struct mapped_device *md)
2636 {
2637 return md->interface_ptr;
2638 }
2639
dm_set_mdptr(struct mapped_device * md,void * ptr)2640 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2641 {
2642 md->interface_ptr = ptr;
2643 }
2644
dm_get(struct mapped_device * md)2645 void dm_get(struct mapped_device *md)
2646 {
2647 atomic_inc(&md->holders);
2648 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2649 }
2650
dm_hold(struct mapped_device * md)2651 int dm_hold(struct mapped_device *md)
2652 {
2653 spin_lock(&_minor_lock);
2654 if (test_bit(DMF_FREEING, &md->flags)) {
2655 spin_unlock(&_minor_lock);
2656 return -EBUSY;
2657 }
2658 dm_get(md);
2659 spin_unlock(&_minor_lock);
2660 return 0;
2661 }
2662 EXPORT_SYMBOL_GPL(dm_hold);
2663
dm_device_name(struct mapped_device * md)2664 const char *dm_device_name(struct mapped_device *md)
2665 {
2666 return md->name;
2667 }
2668 EXPORT_SYMBOL_GPL(dm_device_name);
2669
__dm_destroy(struct mapped_device * md,bool wait)2670 static void __dm_destroy(struct mapped_device *md, bool wait)
2671 {
2672 struct dm_table *map;
2673 int srcu_idx;
2674
2675 might_sleep();
2676
2677 spin_lock(&_minor_lock);
2678 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2679 set_bit(DMF_FREEING, &md->flags);
2680 spin_unlock(&_minor_lock);
2681
2682 blk_mark_disk_dead(md->disk);
2683
2684 /*
2685 * Take suspend_lock so that presuspend and postsuspend methods
2686 * do not race with internal suspend.
2687 */
2688 mutex_lock(&md->suspend_lock);
2689 map = dm_get_live_table(md, &srcu_idx);
2690 if (!dm_suspended_md(md)) {
2691 dm_table_presuspend_targets(map);
2692 set_bit(DMF_SUSPENDED, &md->flags);
2693 set_bit(DMF_POST_SUSPENDING, &md->flags);
2694 dm_table_postsuspend_targets(map);
2695 }
2696 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2697 dm_put_live_table(md, srcu_idx);
2698 mutex_unlock(&md->suspend_lock);
2699
2700 /*
2701 * Rare, but there may be I/O requests still going to complete,
2702 * for example. Wait for all references to disappear.
2703 * No one should increment the reference count of the mapped_device,
2704 * after the mapped_device state becomes DMF_FREEING.
2705 */
2706 if (wait)
2707 while (atomic_read(&md->holders))
2708 fsleep(1000);
2709 else if (atomic_read(&md->holders))
2710 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2711 dm_device_name(md), atomic_read(&md->holders));
2712
2713 dm_table_destroy(__unbind(md));
2714 free_dev(md);
2715 }
2716
dm_destroy(struct mapped_device * md)2717 void dm_destroy(struct mapped_device *md)
2718 {
2719 __dm_destroy(md, true);
2720 }
2721
dm_destroy_immediate(struct mapped_device * md)2722 void dm_destroy_immediate(struct mapped_device *md)
2723 {
2724 __dm_destroy(md, false);
2725 }
2726
dm_put(struct mapped_device * md)2727 void dm_put(struct mapped_device *md)
2728 {
2729 atomic_dec(&md->holders);
2730 }
2731 EXPORT_SYMBOL_GPL(dm_put);
2732
dm_in_flight_bios(struct mapped_device * md)2733 static bool dm_in_flight_bios(struct mapped_device *md)
2734 {
2735 int cpu;
2736 unsigned long sum = 0;
2737
2738 for_each_possible_cpu(cpu)
2739 sum += *per_cpu_ptr(md->pending_io, cpu);
2740
2741 return sum != 0;
2742 }
2743
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2744 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2745 {
2746 int r = 0;
2747 DEFINE_WAIT(wait);
2748
2749 while (true) {
2750 prepare_to_wait(&md->wait, &wait, task_state);
2751
2752 if (!dm_in_flight_bios(md))
2753 break;
2754
2755 if (signal_pending_state(task_state, current)) {
2756 r = -ERESTARTSYS;
2757 break;
2758 }
2759
2760 io_schedule();
2761 }
2762 finish_wait(&md->wait, &wait);
2763
2764 smp_rmb();
2765
2766 return r;
2767 }
2768
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2769 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2770 {
2771 int r = 0;
2772
2773 if (!queue_is_mq(md->queue))
2774 return dm_wait_for_bios_completion(md, task_state);
2775
2776 while (true) {
2777 if (!blk_mq_queue_inflight(md->queue))
2778 break;
2779
2780 if (signal_pending_state(task_state, current)) {
2781 r = -ERESTARTSYS;
2782 break;
2783 }
2784
2785 fsleep(5000);
2786 }
2787
2788 return r;
2789 }
2790
2791 /*
2792 * Process the deferred bios
2793 */
dm_wq_work(struct work_struct * work)2794 static void dm_wq_work(struct work_struct *work)
2795 {
2796 struct mapped_device *md = container_of(work, struct mapped_device, work);
2797 struct bio *bio;
2798
2799 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2800 spin_lock_irq(&md->deferred_lock);
2801 bio = bio_list_pop(&md->deferred);
2802 spin_unlock_irq(&md->deferred_lock);
2803
2804 if (!bio)
2805 break;
2806
2807 submit_bio_noacct(bio);
2808 cond_resched();
2809 }
2810 }
2811
dm_queue_flush(struct mapped_device * md)2812 static void dm_queue_flush(struct mapped_device *md)
2813 {
2814 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2815 smp_mb__after_atomic();
2816 queue_work(md->wq, &md->work);
2817 }
2818
2819 /*
2820 * Swap in a new table, returning the old one for the caller to destroy.
2821 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2822 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2823 {
2824 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2825 struct queue_limits limits;
2826 int r;
2827
2828 mutex_lock(&md->suspend_lock);
2829
2830 /* device must be suspended */
2831 if (!dm_suspended_md(md))
2832 goto out;
2833
2834 /*
2835 * If the new table has no data devices, retain the existing limits.
2836 * This helps multipath with queue_if_no_path if all paths disappear,
2837 * then new I/O is queued based on these limits, and then some paths
2838 * reappear.
2839 */
2840 if (dm_table_has_no_data_devices(table)) {
2841 live_map = dm_get_live_table_fast(md);
2842 if (live_map)
2843 limits = md->queue->limits;
2844 dm_put_live_table_fast(md);
2845 }
2846
2847 if (!live_map) {
2848 r = dm_calculate_queue_limits(table, &limits);
2849 if (r) {
2850 map = ERR_PTR(r);
2851 goto out;
2852 }
2853 }
2854
2855 map = __bind(md, table, &limits);
2856 dm_issue_global_event();
2857
2858 out:
2859 mutex_unlock(&md->suspend_lock);
2860 return map;
2861 }
2862
2863 /*
2864 * Functions to lock and unlock any filesystem running on the
2865 * device.
2866 */
lock_fs(struct mapped_device * md)2867 static int lock_fs(struct mapped_device *md)
2868 {
2869 int r;
2870
2871 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2872
2873 r = bdev_freeze(md->disk->part0);
2874 if (!r)
2875 set_bit(DMF_FROZEN, &md->flags);
2876 return r;
2877 }
2878
unlock_fs(struct mapped_device * md)2879 static void unlock_fs(struct mapped_device *md)
2880 {
2881 if (!test_bit(DMF_FROZEN, &md->flags))
2882 return;
2883 bdev_thaw(md->disk->part0);
2884 clear_bit(DMF_FROZEN, &md->flags);
2885 }
2886
2887 /*
2888 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2889 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2890 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2891 *
2892 * If __dm_suspend returns 0, the device is completely quiescent
2893 * now. There is no request-processing activity. All new requests
2894 * are being added to md->deferred list.
2895 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2896 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2897 unsigned int suspend_flags, unsigned int task_state,
2898 int dmf_suspended_flag)
2899 {
2900 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2901 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2902 int r;
2903
2904 lockdep_assert_held(&md->suspend_lock);
2905
2906 /*
2907 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2908 * This flag is cleared before dm_suspend returns.
2909 */
2910 if (noflush)
2911 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2912 else
2913 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2914
2915 /*
2916 * This gets reverted if there's an error later and the targets
2917 * provide the .presuspend_undo hook.
2918 */
2919 dm_table_presuspend_targets(map);
2920
2921 /*
2922 * Flush I/O to the device.
2923 * Any I/O submitted after lock_fs() may not be flushed.
2924 * noflush takes precedence over do_lockfs.
2925 * (lock_fs() flushes I/Os and waits for them to complete.)
2926 */
2927 if (!noflush && do_lockfs) {
2928 r = lock_fs(md);
2929 if (r) {
2930 dm_table_presuspend_undo_targets(map);
2931 return r;
2932 }
2933 }
2934
2935 /*
2936 * Here we must make sure that no processes are submitting requests
2937 * to target drivers i.e. no one may be executing
2938 * dm_split_and_process_bio from dm_submit_bio.
2939 *
2940 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2941 * we take the write lock. To prevent any process from reentering
2942 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2943 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2944 * flush_workqueue(md->wq).
2945 */
2946 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2947 if (map)
2948 synchronize_srcu(&md->io_barrier);
2949
2950 /*
2951 * Stop md->queue before flushing md->wq in case request-based
2952 * dm defers requests to md->wq from md->queue.
2953 */
2954 if (dm_request_based(md))
2955 dm_stop_queue(md->queue);
2956
2957 flush_workqueue(md->wq);
2958
2959 /*
2960 * At this point no more requests are entering target request routines.
2961 * We call dm_wait_for_completion to wait for all existing requests
2962 * to finish.
2963 */
2964 r = dm_wait_for_completion(md, task_state);
2965 if (!r)
2966 set_bit(dmf_suspended_flag, &md->flags);
2967
2968 if (noflush)
2969 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2970 if (map)
2971 synchronize_srcu(&md->io_barrier);
2972
2973 /* were we interrupted ? */
2974 if (r < 0) {
2975 dm_queue_flush(md);
2976
2977 if (dm_request_based(md))
2978 dm_start_queue(md->queue);
2979
2980 unlock_fs(md);
2981 dm_table_presuspend_undo_targets(map);
2982 /* pushback list is already flushed, so skip flush */
2983 }
2984
2985 return r;
2986 }
2987
2988 /*
2989 * We need to be able to change a mapping table under a mounted
2990 * filesystem. For example we might want to move some data in
2991 * the background. Before the table can be swapped with
2992 * dm_bind_table, dm_suspend must be called to flush any in
2993 * flight bios and ensure that any further io gets deferred.
2994 */
2995 /*
2996 * Suspend mechanism in request-based dm.
2997 *
2998 * 1. Flush all I/Os by lock_fs() if needed.
2999 * 2. Stop dispatching any I/O by stopping the request_queue.
3000 * 3. Wait for all in-flight I/Os to be completed or requeued.
3001 *
3002 * To abort suspend, start the request_queue.
3003 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3004 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3005 {
3006 struct dm_table *map = NULL;
3007 int r = 0;
3008
3009 retry:
3010 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3011
3012 if (dm_suspended_md(md)) {
3013 r = -EINVAL;
3014 goto out_unlock;
3015 }
3016
3017 if (dm_suspended_internally_md(md)) {
3018 /* already internally suspended, wait for internal resume */
3019 mutex_unlock(&md->suspend_lock);
3020 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3021 if (r)
3022 return r;
3023 goto retry;
3024 }
3025
3026 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3027 if (!map) {
3028 /* avoid deadlock with fs/namespace.c:do_mount() */
3029 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3030 }
3031
3032 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3033 if (r)
3034 goto out_unlock;
3035
3036 set_bit(DMF_POST_SUSPENDING, &md->flags);
3037 dm_table_postsuspend_targets(map);
3038 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3039
3040 out_unlock:
3041 mutex_unlock(&md->suspend_lock);
3042 return r;
3043 }
3044
__dm_resume(struct mapped_device * md,struct dm_table * map)3045 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3046 {
3047 if (map) {
3048 int r = dm_table_resume_targets(map);
3049
3050 if (r)
3051 return r;
3052 }
3053
3054 dm_queue_flush(md);
3055
3056 /*
3057 * Flushing deferred I/Os must be done after targets are resumed
3058 * so that mapping of targets can work correctly.
3059 * Request-based dm is queueing the deferred I/Os in its request_queue.
3060 */
3061 if (dm_request_based(md))
3062 dm_start_queue(md->queue);
3063
3064 unlock_fs(md);
3065
3066 return 0;
3067 }
3068
dm_resume(struct mapped_device * md)3069 int dm_resume(struct mapped_device *md)
3070 {
3071 int r;
3072 struct dm_table *map = NULL;
3073
3074 retry:
3075 r = -EINVAL;
3076 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3077
3078 if (!dm_suspended_md(md))
3079 goto out;
3080
3081 if (dm_suspended_internally_md(md)) {
3082 /* already internally suspended, wait for internal resume */
3083 mutex_unlock(&md->suspend_lock);
3084 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3085 if (r)
3086 return r;
3087 goto retry;
3088 }
3089
3090 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3091 if (!map || !dm_table_get_size(map))
3092 goto out;
3093
3094 r = __dm_resume(md, map);
3095 if (r)
3096 goto out;
3097
3098 clear_bit(DMF_SUSPENDED, &md->flags);
3099 out:
3100 mutex_unlock(&md->suspend_lock);
3101
3102 return r;
3103 }
3104
3105 /*
3106 * Internal suspend/resume works like userspace-driven suspend. It waits
3107 * until all bios finish and prevents issuing new bios to the target drivers.
3108 * It may be used only from the kernel.
3109 */
3110
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3111 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3112 {
3113 struct dm_table *map = NULL;
3114
3115 lockdep_assert_held(&md->suspend_lock);
3116
3117 if (md->internal_suspend_count++)
3118 return; /* nested internal suspend */
3119
3120 if (dm_suspended_md(md)) {
3121 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3122 return; /* nest suspend */
3123 }
3124
3125 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3126
3127 /*
3128 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3129 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3130 * would require changing .presuspend to return an error -- avoid this
3131 * until there is a need for more elaborate variants of internal suspend.
3132 */
3133 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3134 DMF_SUSPENDED_INTERNALLY);
3135
3136 set_bit(DMF_POST_SUSPENDING, &md->flags);
3137 dm_table_postsuspend_targets(map);
3138 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3139 }
3140
__dm_internal_resume(struct mapped_device * md)3141 static void __dm_internal_resume(struct mapped_device *md)
3142 {
3143 int r;
3144 struct dm_table *map;
3145
3146 BUG_ON(!md->internal_suspend_count);
3147
3148 if (--md->internal_suspend_count)
3149 return; /* resume from nested internal suspend */
3150
3151 if (dm_suspended_md(md))
3152 goto done; /* resume from nested suspend */
3153
3154 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3155 r = __dm_resume(md, map);
3156 if (r) {
3157 /*
3158 * If a preresume method of some target failed, we are in a
3159 * tricky situation. We can't return an error to the caller. We
3160 * can't fake success because then the "resume" and
3161 * "postsuspend" methods would not be paired correctly, and it
3162 * would break various targets, for example it would cause list
3163 * corruption in the "origin" target.
3164 *
3165 * So, we fake normal suspend here, to make sure that the
3166 * "resume" and "postsuspend" methods will be paired correctly.
3167 */
3168 DMERR("Preresume method failed: %d", r);
3169 set_bit(DMF_SUSPENDED, &md->flags);
3170 }
3171 done:
3172 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3173 smp_mb__after_atomic();
3174 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3175 }
3176
dm_internal_suspend_noflush(struct mapped_device * md)3177 void dm_internal_suspend_noflush(struct mapped_device *md)
3178 {
3179 mutex_lock(&md->suspend_lock);
3180 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3181 mutex_unlock(&md->suspend_lock);
3182 }
3183 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3184
dm_internal_resume(struct mapped_device * md)3185 void dm_internal_resume(struct mapped_device *md)
3186 {
3187 mutex_lock(&md->suspend_lock);
3188 __dm_internal_resume(md);
3189 mutex_unlock(&md->suspend_lock);
3190 }
3191 EXPORT_SYMBOL_GPL(dm_internal_resume);
3192
3193 /*
3194 * Fast variants of internal suspend/resume hold md->suspend_lock,
3195 * which prevents interaction with userspace-driven suspend.
3196 */
3197
dm_internal_suspend_fast(struct mapped_device * md)3198 void dm_internal_suspend_fast(struct mapped_device *md)
3199 {
3200 mutex_lock(&md->suspend_lock);
3201 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3202 return;
3203
3204 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3205 synchronize_srcu(&md->io_barrier);
3206 flush_workqueue(md->wq);
3207 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3208 }
3209 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3210
dm_internal_resume_fast(struct mapped_device * md)3211 void dm_internal_resume_fast(struct mapped_device *md)
3212 {
3213 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3214 goto done;
3215
3216 dm_queue_flush(md);
3217
3218 done:
3219 mutex_unlock(&md->suspend_lock);
3220 }
3221 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3222
3223 /*
3224 *---------------------------------------------------------------
3225 * Event notification.
3226 *---------------------------------------------------------------
3227 */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3228 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3229 unsigned int cookie, bool need_resize_uevent)
3230 {
3231 int r;
3232 unsigned int noio_flag;
3233 char udev_cookie[DM_COOKIE_LENGTH];
3234 char *envp[3] = { NULL, NULL, NULL };
3235 char **envpp = envp;
3236 if (cookie) {
3237 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3238 DM_COOKIE_ENV_VAR_NAME, cookie);
3239 *envpp++ = udev_cookie;
3240 }
3241 if (need_resize_uevent) {
3242 *envpp++ = "RESIZE=1";
3243 }
3244
3245 noio_flag = memalloc_noio_save();
3246
3247 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3248
3249 memalloc_noio_restore(noio_flag);
3250
3251 return r;
3252 }
3253
dm_next_uevent_seq(struct mapped_device * md)3254 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3255 {
3256 return atomic_add_return(1, &md->uevent_seq);
3257 }
3258
dm_get_event_nr(struct mapped_device * md)3259 uint32_t dm_get_event_nr(struct mapped_device *md)
3260 {
3261 return atomic_read(&md->event_nr);
3262 }
3263
dm_wait_event(struct mapped_device * md,int event_nr)3264 int dm_wait_event(struct mapped_device *md, int event_nr)
3265 {
3266 return wait_event_interruptible(md->eventq,
3267 (event_nr != atomic_read(&md->event_nr)));
3268 }
3269
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3270 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3271 {
3272 unsigned long flags;
3273
3274 spin_lock_irqsave(&md->uevent_lock, flags);
3275 list_add(elist, &md->uevent_list);
3276 spin_unlock_irqrestore(&md->uevent_lock, flags);
3277 }
3278
3279 /*
3280 * The gendisk is only valid as long as you have a reference
3281 * count on 'md'.
3282 */
dm_disk(struct mapped_device * md)3283 struct gendisk *dm_disk(struct mapped_device *md)
3284 {
3285 return md->disk;
3286 }
3287 EXPORT_SYMBOL_GPL(dm_disk);
3288
dm_kobject(struct mapped_device * md)3289 struct kobject *dm_kobject(struct mapped_device *md)
3290 {
3291 return &md->kobj_holder.kobj;
3292 }
3293
dm_get_from_kobject(struct kobject * kobj)3294 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3295 {
3296 struct mapped_device *md;
3297
3298 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3299
3300 spin_lock(&_minor_lock);
3301 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3302 md = NULL;
3303 goto out;
3304 }
3305 dm_get(md);
3306 out:
3307 spin_unlock(&_minor_lock);
3308
3309 return md;
3310 }
3311
dm_suspended_md(struct mapped_device * md)3312 int dm_suspended_md(struct mapped_device *md)
3313 {
3314 return test_bit(DMF_SUSPENDED, &md->flags);
3315 }
3316
dm_post_suspending_md(struct mapped_device * md)3317 static int dm_post_suspending_md(struct mapped_device *md)
3318 {
3319 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3320 }
3321
dm_suspended_internally_md(struct mapped_device * md)3322 int dm_suspended_internally_md(struct mapped_device *md)
3323 {
3324 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3325 }
3326
dm_test_deferred_remove_flag(struct mapped_device * md)3327 int dm_test_deferred_remove_flag(struct mapped_device *md)
3328 {
3329 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3330 }
3331
dm_suspended(struct dm_target * ti)3332 int dm_suspended(struct dm_target *ti)
3333 {
3334 return dm_suspended_md(ti->table->md);
3335 }
3336 EXPORT_SYMBOL_GPL(dm_suspended);
3337
dm_post_suspending(struct dm_target * ti)3338 int dm_post_suspending(struct dm_target *ti)
3339 {
3340 return dm_post_suspending_md(ti->table->md);
3341 }
3342 EXPORT_SYMBOL_GPL(dm_post_suspending);
3343
dm_noflush_suspending(struct dm_target * ti)3344 int dm_noflush_suspending(struct dm_target *ti)
3345 {
3346 return __noflush_suspending(ti->table->md);
3347 }
3348 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3349
dm_free_md_mempools(struct dm_md_mempools * pools)3350 void dm_free_md_mempools(struct dm_md_mempools *pools)
3351 {
3352 if (!pools)
3353 return;
3354
3355 bioset_exit(&pools->bs);
3356 bioset_exit(&pools->io_bs);
3357
3358 kfree(pools);
3359 }
3360
3361 struct dm_blkdev_id {
3362 u8 *id;
3363 enum blk_unique_id type;
3364 };
3365
__dm_get_unique_id(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3366 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3367 sector_t start, sector_t len, void *data)
3368 {
3369 struct dm_blkdev_id *dm_id = data;
3370 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3371
3372 if (!fops->get_unique_id)
3373 return 0;
3374
3375 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3376 }
3377
3378 /*
3379 * Allow access to get_unique_id() for the first device returning a
3380 * non-zero result. Reasonable use expects all devices to have the
3381 * same unique id.
3382 */
dm_blk_get_unique_id(struct gendisk * disk,u8 * id,enum blk_unique_id type)3383 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3384 enum blk_unique_id type)
3385 {
3386 struct mapped_device *md = disk->private_data;
3387 struct dm_table *table;
3388 struct dm_target *ti;
3389 int ret = 0, srcu_idx;
3390
3391 struct dm_blkdev_id dm_id = {
3392 .id = id,
3393 .type = type,
3394 };
3395
3396 table = dm_get_live_table(md, &srcu_idx);
3397 if (!table || !dm_table_get_size(table))
3398 goto out;
3399
3400 /* We only support devices that have a single target */
3401 if (table->num_targets != 1)
3402 goto out;
3403 ti = dm_table_get_target(table, 0);
3404
3405 if (!ti->type->iterate_devices)
3406 goto out;
3407
3408 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3409 out:
3410 dm_put_live_table(md, srcu_idx);
3411 return ret;
3412 }
3413
3414 struct dm_pr {
3415 u64 old_key;
3416 u64 new_key;
3417 u32 flags;
3418 bool abort;
3419 bool fail_early;
3420 int ret;
3421 enum pr_type type;
3422 struct pr_keys *read_keys;
3423 struct pr_held_reservation *rsv;
3424 };
3425
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3426 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3427 struct dm_pr *pr)
3428 {
3429 struct mapped_device *md = bdev->bd_disk->private_data;
3430 struct dm_table *table;
3431 struct dm_target *ti;
3432 int ret = -ENOTTY, srcu_idx;
3433
3434 table = dm_get_live_table(md, &srcu_idx);
3435 if (!table || !dm_table_get_size(table))
3436 goto out;
3437
3438 /* We only support devices that have a single target */
3439 if (table->num_targets != 1)
3440 goto out;
3441 ti = dm_table_get_target(table, 0);
3442
3443 if (dm_suspended_md(md)) {
3444 ret = -EAGAIN;
3445 goto out;
3446 }
3447
3448 ret = -EINVAL;
3449 if (!ti->type->iterate_devices)
3450 goto out;
3451
3452 ti->type->iterate_devices(ti, fn, pr);
3453 ret = 0;
3454 out:
3455 dm_put_live_table(md, srcu_idx);
3456 return ret;
3457 }
3458
3459 /*
3460 * For register / unregister we need to manually call out to every path.
3461 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3462 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3463 sector_t start, sector_t len, void *data)
3464 {
3465 struct dm_pr *pr = data;
3466 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3467 int ret;
3468
3469 if (!ops || !ops->pr_register) {
3470 pr->ret = -EOPNOTSUPP;
3471 return -1;
3472 }
3473
3474 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3475 if (!ret)
3476 return 0;
3477
3478 if (!pr->ret)
3479 pr->ret = ret;
3480
3481 if (pr->fail_early)
3482 return -1;
3483
3484 return 0;
3485 }
3486
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3487 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3488 u32 flags)
3489 {
3490 struct dm_pr pr = {
3491 .old_key = old_key,
3492 .new_key = new_key,
3493 .flags = flags,
3494 .fail_early = true,
3495 .ret = 0,
3496 };
3497 int ret;
3498
3499 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3500 if (ret) {
3501 /* Didn't even get to register a path */
3502 return ret;
3503 }
3504
3505 if (!pr.ret)
3506 return 0;
3507 ret = pr.ret;
3508
3509 if (!new_key)
3510 return ret;
3511
3512 /* unregister all paths if we failed to register any path */
3513 pr.old_key = new_key;
3514 pr.new_key = 0;
3515 pr.flags = 0;
3516 pr.fail_early = false;
3517 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3518 return ret;
3519 }
3520
3521
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3522 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3523 sector_t start, sector_t len, void *data)
3524 {
3525 struct dm_pr *pr = data;
3526 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3527
3528 if (!ops || !ops->pr_reserve) {
3529 pr->ret = -EOPNOTSUPP;
3530 return -1;
3531 }
3532
3533 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3534 if (!pr->ret)
3535 return -1;
3536
3537 return 0;
3538 }
3539
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3540 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3541 u32 flags)
3542 {
3543 struct dm_pr pr = {
3544 .old_key = key,
3545 .flags = flags,
3546 .type = type,
3547 .fail_early = false,
3548 .ret = 0,
3549 };
3550 int ret;
3551
3552 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3553 if (ret)
3554 return ret;
3555
3556 return pr.ret;
3557 }
3558
3559 /*
3560 * If there is a non-All Registrants type of reservation, the release must be
3561 * sent down the holding path. For the cases where there is no reservation or
3562 * the path is not the holder the device will also return success, so we must
3563 * try each path to make sure we got the correct path.
3564 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3565 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3566 sector_t start, sector_t len, void *data)
3567 {
3568 struct dm_pr *pr = data;
3569 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3570
3571 if (!ops || !ops->pr_release) {
3572 pr->ret = -EOPNOTSUPP;
3573 return -1;
3574 }
3575
3576 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3577 if (pr->ret)
3578 return -1;
3579
3580 return 0;
3581 }
3582
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3583 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3584 {
3585 struct dm_pr pr = {
3586 .old_key = key,
3587 .type = type,
3588 .fail_early = false,
3589 };
3590 int ret;
3591
3592 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3593 if (ret)
3594 return ret;
3595
3596 return pr.ret;
3597 }
3598
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3599 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3600 sector_t start, sector_t len, void *data)
3601 {
3602 struct dm_pr *pr = data;
3603 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3604
3605 if (!ops || !ops->pr_preempt) {
3606 pr->ret = -EOPNOTSUPP;
3607 return -1;
3608 }
3609
3610 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3611 pr->abort);
3612 if (!pr->ret)
3613 return -1;
3614
3615 return 0;
3616 }
3617
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3618 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3619 enum pr_type type, bool abort)
3620 {
3621 struct dm_pr pr = {
3622 .new_key = new_key,
3623 .old_key = old_key,
3624 .type = type,
3625 .fail_early = false,
3626 };
3627 int ret;
3628
3629 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3630 if (ret)
3631 return ret;
3632
3633 return pr.ret;
3634 }
3635
dm_pr_clear(struct block_device * bdev,u64 key)3636 static int dm_pr_clear(struct block_device *bdev, u64 key)
3637 {
3638 struct mapped_device *md = bdev->bd_disk->private_data;
3639 const struct pr_ops *ops;
3640 int r, srcu_idx;
3641
3642 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3643 if (r < 0)
3644 goto out;
3645
3646 ops = bdev->bd_disk->fops->pr_ops;
3647 if (ops && ops->pr_clear)
3648 r = ops->pr_clear(bdev, key);
3649 else
3650 r = -EOPNOTSUPP;
3651 out:
3652 dm_unprepare_ioctl(md, srcu_idx);
3653 return r;
3654 }
3655
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3656 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3657 sector_t start, sector_t len, void *data)
3658 {
3659 struct dm_pr *pr = data;
3660 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3661
3662 if (!ops || !ops->pr_read_keys) {
3663 pr->ret = -EOPNOTSUPP;
3664 return -1;
3665 }
3666
3667 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3668 if (!pr->ret)
3669 return -1;
3670
3671 return 0;
3672 }
3673
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3674 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3675 {
3676 struct dm_pr pr = {
3677 .read_keys = keys,
3678 };
3679 int ret;
3680
3681 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3682 if (ret)
3683 return ret;
3684
3685 return pr.ret;
3686 }
3687
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3688 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3689 sector_t start, sector_t len, void *data)
3690 {
3691 struct dm_pr *pr = data;
3692 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3693
3694 if (!ops || !ops->pr_read_reservation) {
3695 pr->ret = -EOPNOTSUPP;
3696 return -1;
3697 }
3698
3699 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3700 if (!pr->ret)
3701 return -1;
3702
3703 return 0;
3704 }
3705
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3706 static int dm_pr_read_reservation(struct block_device *bdev,
3707 struct pr_held_reservation *rsv)
3708 {
3709 struct dm_pr pr = {
3710 .rsv = rsv,
3711 };
3712 int ret;
3713
3714 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3715 if (ret)
3716 return ret;
3717
3718 return pr.ret;
3719 }
3720
3721 static const struct pr_ops dm_pr_ops = {
3722 .pr_register = dm_pr_register,
3723 .pr_reserve = dm_pr_reserve,
3724 .pr_release = dm_pr_release,
3725 .pr_preempt = dm_pr_preempt,
3726 .pr_clear = dm_pr_clear,
3727 .pr_read_keys = dm_pr_read_keys,
3728 .pr_read_reservation = dm_pr_read_reservation,
3729 };
3730
3731 static const struct block_device_operations dm_blk_dops = {
3732 .submit_bio = dm_submit_bio,
3733 .poll_bio = dm_poll_bio,
3734 .open = dm_blk_open,
3735 .release = dm_blk_close,
3736 .ioctl = dm_blk_ioctl,
3737 .getgeo = dm_blk_getgeo,
3738 .report_zones = dm_blk_report_zones,
3739 .get_unique_id = dm_blk_get_unique_id,
3740 .pr_ops = &dm_pr_ops,
3741 .owner = THIS_MODULE
3742 };
3743
3744 static const struct block_device_operations dm_rq_blk_dops = {
3745 .open = dm_blk_open,
3746 .release = dm_blk_close,
3747 .ioctl = dm_blk_ioctl,
3748 .getgeo = dm_blk_getgeo,
3749 .get_unique_id = dm_blk_get_unique_id,
3750 .pr_ops = &dm_pr_ops,
3751 .owner = THIS_MODULE
3752 };
3753
3754 static const struct dax_operations dm_dax_ops = {
3755 .direct_access = dm_dax_direct_access,
3756 .zero_page_range = dm_dax_zero_page_range,
3757 .recovery_write = dm_dax_recovery_write,
3758 };
3759
3760 /*
3761 * module hooks
3762 */
3763 module_init(dm_init);
3764 module_exit(dm_exit);
3765
3766 module_param(major, uint, 0);
3767 MODULE_PARM_DESC(major, "The major number of the device mapper");
3768
3769 module_param(reserved_bio_based_ios, uint, 0644);
3770 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3771
3772 module_param(dm_numa_node, int, 0644);
3773 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3774
3775 module_param(swap_bios, int, 0644);
3776 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3777
3778 MODULE_DESCRIPTION(DM_NAME " driver");
3779 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3780 MODULE_LICENSE("GPL");
3781