1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "system/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "system/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "system/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "system/dirtylimit.h"
63 #include "system/kvm.h"
64
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70
71 /***********************************************************/
72 /* ram save/restore */
73
74 /*
75 * mapped-ram migration supports O_DIRECT, so we need to make sure the
76 * userspace buffer, the IO operation size and the file offset are
77 * aligned according to the underlying device's block size. The first
78 * two are already aligned to page size, but we need to add padding to
79 * the file to align the offset. We cannot read the block size
80 * dynamically because the migration file can be moved between
81 * different systems, so use 1M to cover most block sizes and to keep
82 * the file offset aligned at page size as well.
83 */
84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
85
86 /*
87 * When doing mapped-ram migration, this is the amount we read from
88 * the pages region in the migration file at a time.
89 */
90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
91
92 XBZRLECacheStats xbzrle_counters;
93
94 /*
95 * This structure locates a specific location of a guest page. In QEMU,
96 * it's described in a tuple of (ramblock, offset).
97 */
98 struct PageLocation {
99 RAMBlock *block;
100 unsigned long offset;
101 };
102 typedef struct PageLocation PageLocation;
103
104 /**
105 * PageLocationHint: describes a hint to a page location
106 *
107 * @valid set if the hint is vaild and to be consumed
108 * @location: the hint content
109 *
110 * In postcopy preempt mode, the urgent channel may provide hints to the
111 * background channel, so that QEMU source can try to migrate whatever is
112 * right after the requested urgent pages.
113 *
114 * This is based on the assumption that the VM (already running on the
115 * destination side) tends to access the memory with spatial locality.
116 * This is also the default behavior of vanilla postcopy (preempt off).
117 */
118 struct PageLocationHint {
119 bool valid;
120 PageLocation location;
121 };
122 typedef struct PageLocationHint PageLocationHint;
123
124 /* used by the search for pages to send */
125 struct PageSearchStatus {
126 /* The migration channel used for a specific host page */
127 QEMUFile *pss_channel;
128 /* Last block from where we have sent data */
129 RAMBlock *last_sent_block;
130 /* Current block being searched */
131 RAMBlock *block;
132 /* Current page to search from */
133 unsigned long page;
134 /* Set once we wrap around */
135 bool complete_round;
136 /* Whether we're sending a host page */
137 bool host_page_sending;
138 /* The start/end of current host page. Invalid if host_page_sending==false */
139 unsigned long host_page_start;
140 unsigned long host_page_end;
141 };
142 typedef struct PageSearchStatus PageSearchStatus;
143
144 /* struct contains XBZRLE cache and a static page
145 used by the compression */
146 static struct {
147 /* buffer used for XBZRLE encoding */
148 uint8_t *encoded_buf;
149 /* buffer for storing page content */
150 uint8_t *current_buf;
151 /* Cache for XBZRLE, Protected by lock. */
152 PageCache *cache;
153 QemuMutex lock;
154 /* it will store a page full of zeros */
155 uint8_t *zero_target_page;
156 /* buffer used for XBZRLE decoding */
157 uint8_t *decoded_buf;
158 } XBZRLE;
159
XBZRLE_cache_lock(void)160 static void XBZRLE_cache_lock(void)
161 {
162 if (migrate_xbzrle()) {
163 qemu_mutex_lock(&XBZRLE.lock);
164 }
165 }
166
XBZRLE_cache_unlock(void)167 static void XBZRLE_cache_unlock(void)
168 {
169 if (migrate_xbzrle()) {
170 qemu_mutex_unlock(&XBZRLE.lock);
171 }
172 }
173
174 /**
175 * xbzrle_cache_resize: resize the xbzrle cache
176 *
177 * This function is called from migrate_params_apply in main
178 * thread, possibly while a migration is in progress. A running
179 * migration may be using the cache and might finish during this call,
180 * hence changes to the cache are protected by XBZRLE.lock().
181 *
182 * Returns 0 for success or -1 for error
183 *
184 * @new_size: new cache size
185 * @errp: set *errp if the check failed, with reason
186 */
xbzrle_cache_resize(uint64_t new_size,Error ** errp)187 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
188 {
189 PageCache *new_cache;
190 int64_t ret = 0;
191
192 /* Check for truncation */
193 if (new_size != (size_t)new_size) {
194 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
195 "exceeding address space");
196 return -1;
197 }
198
199 if (new_size == migrate_xbzrle_cache_size()) {
200 /* nothing to do */
201 return 0;
202 }
203
204 XBZRLE_cache_lock();
205
206 if (XBZRLE.cache != NULL) {
207 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
208 if (!new_cache) {
209 ret = -1;
210 goto out;
211 }
212
213 cache_fini(XBZRLE.cache);
214 XBZRLE.cache = new_cache;
215 }
216 out:
217 XBZRLE_cache_unlock();
218 return ret;
219 }
220
postcopy_preempt_active(void)221 static bool postcopy_preempt_active(void)
222 {
223 return migrate_postcopy_preempt() && migration_in_postcopy();
224 }
225
migrate_ram_is_ignored(RAMBlock * block)226 bool migrate_ram_is_ignored(RAMBlock *block)
227 {
228 MigMode mode = migrate_mode();
229 return !qemu_ram_is_migratable(block) ||
230 mode == MIG_MODE_CPR_TRANSFER ||
231 (migrate_ignore_shared() && qemu_ram_is_shared(block)
232 && qemu_ram_is_named_file(block));
233 }
234
235 #undef RAMBLOCK_FOREACH
236
foreach_not_ignored_block(RAMBlockIterFunc func,void * opaque)237 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
238 {
239 RAMBlock *block;
240 int ret = 0;
241
242 RCU_READ_LOCK_GUARD();
243
244 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
245 ret = func(block, opaque);
246 if (ret) {
247 break;
248 }
249 }
250 return ret;
251 }
252
ramblock_recv_map_init(void)253 static void ramblock_recv_map_init(void)
254 {
255 RAMBlock *rb;
256
257 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
258 assert(!rb->receivedmap);
259 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
260 }
261 }
262
ramblock_recv_bitmap_test(RAMBlock * rb,void * host_addr)263 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
264 {
265 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
266 rb->receivedmap);
267 }
268
ramblock_recv_bitmap_test_byte_offset(RAMBlock * rb,uint64_t byte_offset)269 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
270 {
271 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
272 }
273
ramblock_recv_bitmap_set(RAMBlock * rb,void * host_addr)274 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
275 {
276 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
277 }
278
ramblock_recv_bitmap_set_range(RAMBlock * rb,void * host_addr,size_t nr)279 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
280 size_t nr)
281 {
282 bitmap_set_atomic(rb->receivedmap,
283 ramblock_recv_bitmap_offset(host_addr, rb),
284 nr);
285 }
286
ramblock_recv_bitmap_set_offset(RAMBlock * rb,uint64_t byte_offset)287 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
288 {
289 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
290 }
291 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
292
293 /*
294 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
295 *
296 * Returns >0 if success with sent bytes, or <0 if error.
297 */
ramblock_recv_bitmap_send(QEMUFile * file,const char * block_name)298 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
299 const char *block_name)
300 {
301 RAMBlock *block = qemu_ram_block_by_name(block_name);
302 unsigned long *le_bitmap, nbits;
303 uint64_t size;
304
305 if (!block) {
306 error_report("%s: invalid block name: %s", __func__, block_name);
307 return -1;
308 }
309
310 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
311
312 /*
313 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
314 * machines we may need 4 more bytes for padding (see below
315 * comment). So extend it a bit before hand.
316 */
317 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
318
319 /*
320 * Always use little endian when sending the bitmap. This is
321 * required that when source and destination VMs are not using the
322 * same endianness. (Note: big endian won't work.)
323 */
324 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
325
326 /* Size of the bitmap, in bytes */
327 size = DIV_ROUND_UP(nbits, 8);
328
329 /*
330 * size is always aligned to 8 bytes for 64bit machines, but it
331 * may not be true for 32bit machines. We need this padding to
332 * make sure the migration can survive even between 32bit and
333 * 64bit machines.
334 */
335 size = ROUND_UP(size, 8);
336
337 qemu_put_be64(file, size);
338 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
339 g_free(le_bitmap);
340 /*
341 * Mark as an end, in case the middle part is screwed up due to
342 * some "mysterious" reason.
343 */
344 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
345 int ret = qemu_fflush(file);
346 if (ret) {
347 return ret;
348 }
349
350 return size + sizeof(size);
351 }
352
353 /*
354 * An outstanding page request, on the source, having been received
355 * and queued
356 */
357 struct RAMSrcPageRequest {
358 RAMBlock *rb;
359 hwaddr offset;
360 hwaddr len;
361
362 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
363 };
364
365 /* State of RAM for migration */
366 struct RAMState {
367 /*
368 * PageSearchStatus structures for the channels when send pages.
369 * Protected by the bitmap_mutex.
370 */
371 PageSearchStatus pss[RAM_CHANNEL_MAX];
372 /* UFFD file descriptor, used in 'write-tracking' migration */
373 int uffdio_fd;
374 /* total ram size in bytes */
375 uint64_t ram_bytes_total;
376 /* Last block that we have visited searching for dirty pages */
377 RAMBlock *last_seen_block;
378 /* Last dirty target page we have sent */
379 ram_addr_t last_page;
380 /* last ram version we have seen */
381 uint32_t last_version;
382 /* How many times we have dirty too many pages */
383 int dirty_rate_high_cnt;
384 /* these variables are used for bitmap sync */
385 /* last time we did a full bitmap_sync */
386 int64_t time_last_bitmap_sync;
387 /* bytes transferred at start_time */
388 uint64_t bytes_xfer_prev;
389 /* number of dirty pages since start_time */
390 uint64_t num_dirty_pages_period;
391 /* xbzrle misses since the beginning of the period */
392 uint64_t xbzrle_cache_miss_prev;
393 /* Amount of xbzrle pages since the beginning of the period */
394 uint64_t xbzrle_pages_prev;
395 /* Amount of xbzrle encoded bytes since the beginning of the period */
396 uint64_t xbzrle_bytes_prev;
397 /* Are we really using XBZRLE (e.g., after the first round). */
398 bool xbzrle_started;
399 /* Are we on the last stage of migration */
400 bool last_stage;
401
402 /* total handled target pages at the beginning of period */
403 uint64_t target_page_count_prev;
404 /* total handled target pages since start */
405 uint64_t target_page_count;
406 /* number of dirty bits in the bitmap */
407 uint64_t migration_dirty_pages;
408 /*
409 * Protects:
410 * - dirty/clear bitmap
411 * - migration_dirty_pages
412 * - pss structures
413 */
414 QemuMutex bitmap_mutex;
415 /* The RAMBlock used in the last src_page_requests */
416 RAMBlock *last_req_rb;
417 /* Queue of outstanding page requests from the destination */
418 QemuMutex src_page_req_mutex;
419 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
420
421 /*
422 * This is only used when postcopy is in recovery phase, to communicate
423 * between the migration thread and the return path thread on dirty
424 * bitmap synchronizations. This field is unused in other stages of
425 * RAM migration.
426 */
427 unsigned int postcopy_bmap_sync_requested;
428 /*
429 * Page hint during postcopy when preempt mode is on. Return path
430 * thread sets it, while background migration thread consumes it.
431 *
432 * Protected by @bitmap_mutex.
433 */
434 PageLocationHint page_hint;
435 };
436 typedef struct RAMState RAMState;
437
438 static RAMState *ram_state;
439
440 static NotifierWithReturnList precopy_notifier_list;
441
442 /* Whether postcopy has queued requests? */
postcopy_has_request(RAMState * rs)443 static bool postcopy_has_request(RAMState *rs)
444 {
445 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
446 }
447
precopy_infrastructure_init(void)448 void precopy_infrastructure_init(void)
449 {
450 notifier_with_return_list_init(&precopy_notifier_list);
451 }
452
precopy_add_notifier(NotifierWithReturn * n)453 void precopy_add_notifier(NotifierWithReturn *n)
454 {
455 notifier_with_return_list_add(&precopy_notifier_list, n);
456 }
457
precopy_remove_notifier(NotifierWithReturn * n)458 void precopy_remove_notifier(NotifierWithReturn *n)
459 {
460 notifier_with_return_remove(n);
461 }
462
precopy_notify(PrecopyNotifyReason reason,Error ** errp)463 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
464 {
465 PrecopyNotifyData pnd;
466 pnd.reason = reason;
467
468 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
469 }
470
ram_bytes_remaining(void)471 uint64_t ram_bytes_remaining(void)
472 {
473 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
474 0;
475 }
476
ram_transferred_add(uint64_t bytes)477 void ram_transferred_add(uint64_t bytes)
478 {
479 if (runstate_is_running()) {
480 stat64_add(&mig_stats.precopy_bytes, bytes);
481 } else if (migration_in_postcopy()) {
482 stat64_add(&mig_stats.postcopy_bytes, bytes);
483 } else {
484 stat64_add(&mig_stats.downtime_bytes, bytes);
485 }
486 }
487
488 static int ram_save_host_page_urgent(PageSearchStatus *pss);
489
490 /* NOTE: page is the PFN not real ram_addr_t. */
pss_init(PageSearchStatus * pss,RAMBlock * rb,ram_addr_t page)491 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
492 {
493 pss->block = rb;
494 pss->page = page;
495 pss->complete_round = false;
496 }
497
498 /*
499 * Check whether two PSSs are actively sending the same page. Return true
500 * if it is, false otherwise.
501 */
pss_overlap(PageSearchStatus * pss1,PageSearchStatus * pss2)502 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
503 {
504 return pss1->host_page_sending && pss2->host_page_sending &&
505 (pss1->host_page_start == pss2->host_page_start);
506 }
507
508 /**
509 * save_page_header: write page header to wire
510 *
511 * If this is the 1st block, it also writes the block identification
512 *
513 * Returns the number of bytes written
514 *
515 * @pss: current PSS channel status
516 * @block: block that contains the page we want to send
517 * @offset: offset inside the block for the page
518 * in the lower bits, it contains flags
519 */
save_page_header(PageSearchStatus * pss,QEMUFile * f,RAMBlock * block,ram_addr_t offset)520 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
521 RAMBlock *block, ram_addr_t offset)
522 {
523 size_t size, len;
524 bool same_block = (block == pss->last_sent_block);
525
526 if (same_block) {
527 offset |= RAM_SAVE_FLAG_CONTINUE;
528 }
529 qemu_put_be64(f, offset);
530 size = 8;
531
532 if (!same_block) {
533 len = strlen(block->idstr);
534 qemu_put_byte(f, len);
535 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
536 size += 1 + len;
537 pss->last_sent_block = block;
538 }
539 return size;
540 }
541
542 /**
543 * mig_throttle_guest_down: throttle down the guest
544 *
545 * Reduce amount of guest cpu execution to hopefully slow down memory
546 * writes. If guest dirty memory rate is reduced below the rate at
547 * which we can transfer pages to the destination then we should be
548 * able to complete migration. Some workloads dirty memory way too
549 * fast and will not effectively converge, even with auto-converge.
550 */
mig_throttle_guest_down(uint64_t bytes_dirty_period,uint64_t bytes_dirty_threshold)551 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
552 uint64_t bytes_dirty_threshold)
553 {
554 uint64_t pct_initial = migrate_cpu_throttle_initial();
555 uint64_t pct_increment = migrate_cpu_throttle_increment();
556 bool pct_tailslow = migrate_cpu_throttle_tailslow();
557 int pct_max = migrate_max_cpu_throttle();
558
559 uint64_t throttle_now = cpu_throttle_get_percentage();
560 uint64_t cpu_now, cpu_ideal, throttle_inc;
561
562 /* We have not started throttling yet. Let's start it. */
563 if (!cpu_throttle_active()) {
564 cpu_throttle_set(pct_initial);
565 } else {
566 /* Throttling already on, just increase the rate */
567 if (!pct_tailslow) {
568 throttle_inc = pct_increment;
569 } else {
570 /* Compute the ideal CPU percentage used by Guest, which may
571 * make the dirty rate match the dirty rate threshold. */
572 cpu_now = 100 - throttle_now;
573 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
574 bytes_dirty_period);
575 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
576 }
577 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
578 }
579 }
580
mig_throttle_counter_reset(void)581 void mig_throttle_counter_reset(void)
582 {
583 RAMState *rs = ram_state;
584
585 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
586 rs->num_dirty_pages_period = 0;
587 rs->bytes_xfer_prev = migration_transferred_bytes();
588 }
589
590 /**
591 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
592 *
593 * @current_addr: address for the zero page
594 *
595 * Update the xbzrle cache to reflect a page that's been sent as all 0.
596 * The important thing is that a stale (not-yet-0'd) page be replaced
597 * by the new data.
598 * As a bonus, if the page wasn't in the cache it gets added so that
599 * when a small write is made into the 0'd page it gets XBZRLE sent.
600 */
xbzrle_cache_zero_page(ram_addr_t current_addr)601 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
602 {
603 /* We don't care if this fails to allocate a new cache page
604 * as long as it updated an old one */
605 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
606 stat64_get(&mig_stats.dirty_sync_count));
607 }
608
609 #define ENCODING_FLAG_XBZRLE 0x1
610
611 /**
612 * save_xbzrle_page: compress and send current page
613 *
614 * Returns: 1 means that we wrote the page
615 * 0 means that page is identical to the one already sent
616 * -1 means that xbzrle would be longer than normal
617 *
618 * @rs: current RAM state
619 * @pss: current PSS channel
620 * @current_data: pointer to the address of the page contents
621 * @current_addr: addr of the page
622 * @block: block that contains the page we want to send
623 * @offset: offset inside the block for the page
624 */
save_xbzrle_page(RAMState * rs,PageSearchStatus * pss,uint8_t ** current_data,ram_addr_t current_addr,RAMBlock * block,ram_addr_t offset)625 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
626 uint8_t **current_data, ram_addr_t current_addr,
627 RAMBlock *block, ram_addr_t offset)
628 {
629 int encoded_len = 0, bytes_xbzrle;
630 uint8_t *prev_cached_page;
631 QEMUFile *file = pss->pss_channel;
632 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
633
634 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
635 xbzrle_counters.cache_miss++;
636 if (!rs->last_stage) {
637 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
638 generation) == -1) {
639 return -1;
640 } else {
641 /* update *current_data when the page has been
642 inserted into cache */
643 *current_data = get_cached_data(XBZRLE.cache, current_addr);
644 }
645 }
646 return -1;
647 }
648
649 /*
650 * Reaching here means the page has hit the xbzrle cache, no matter what
651 * encoding result it is (normal encoding, overflow or skipping the page),
652 * count the page as encoded. This is used to calculate the encoding rate.
653 *
654 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
655 * 2nd page turns out to be skipped (i.e. no new bytes written to the
656 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
657 * skipped page included. In this way, the encoding rate can tell if the
658 * guest page is good for xbzrle encoding.
659 */
660 xbzrle_counters.pages++;
661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
662
663 /* save current buffer into memory */
664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
665
666 /* XBZRLE encoding (if there is no overflow) */
667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
669 TARGET_PAGE_SIZE);
670
671 /*
672 * Update the cache contents, so that it corresponds to the data
673 * sent, in all cases except where we skip the page.
674 */
675 if (!rs->last_stage && encoded_len != 0) {
676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
677 /*
678 * In the case where we couldn't compress, ensure that the caller
679 * sends the data from the cache, since the guest might have
680 * changed the RAM since we copied it.
681 */
682 *current_data = prev_cached_page;
683 }
684
685 if (encoded_len == 0) {
686 trace_save_xbzrle_page_skipping();
687 return 0;
688 } else if (encoded_len == -1) {
689 trace_save_xbzrle_page_overflow();
690 xbzrle_counters.overflow++;
691 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
692 return -1;
693 }
694
695 /* Send XBZRLE based compressed page */
696 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
697 offset | RAM_SAVE_FLAG_XBZRLE);
698 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
699 qemu_put_be16(file, encoded_len);
700 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
701 bytes_xbzrle += encoded_len + 1 + 2;
702 /*
703 * The xbzrle encoded bytes don't count the 8 byte header with
704 * RAM_SAVE_FLAG_CONTINUE.
705 */
706 xbzrle_counters.bytes += bytes_xbzrle - 8;
707 ram_transferred_add(bytes_xbzrle);
708
709 return 1;
710 }
711
712 /**
713 * pss_find_next_dirty: find the next dirty page of current ramblock
714 *
715 * This function updates pss->page to point to the next dirty page index
716 * within the ramblock to migrate, or the end of ramblock when nothing
717 * found. Note that when pss->host_page_sending==true it means we're
718 * during sending a host page, so we won't look for dirty page that is
719 * outside the host page boundary.
720 *
721 * @pss: the current page search status
722 */
pss_find_next_dirty(PageSearchStatus * pss)723 static void pss_find_next_dirty(PageSearchStatus *pss)
724 {
725 RAMBlock *rb = pss->block;
726 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
727 unsigned long *bitmap = rb->bmap;
728
729 if (migrate_ram_is_ignored(rb)) {
730 /* Points directly to the end, so we know no dirty page */
731 pss->page = size;
732 return;
733 }
734
735 /*
736 * If during sending a host page, only look for dirty pages within the
737 * current host page being send.
738 */
739 if (pss->host_page_sending) {
740 assert(pss->host_page_end);
741 size = MIN(size, pss->host_page_end);
742 }
743
744 pss->page = find_next_bit(bitmap, size, pss->page);
745 }
746
migration_clear_memory_region_dirty_bitmap(RAMBlock * rb,unsigned long page)747 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
748 unsigned long page)
749 {
750 uint8_t shift;
751 hwaddr size, start;
752
753 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
754 return;
755 }
756
757 shift = rb->clear_bmap_shift;
758 /*
759 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
760 * can make things easier sometimes since then start address
761 * of the small chunk will always be 64 pages aligned so the
762 * bitmap will always be aligned to unsigned long. We should
763 * even be able to remove this restriction but I'm simply
764 * keeping it.
765 */
766 assert(shift >= 6);
767
768 size = 1ULL << (TARGET_PAGE_BITS + shift);
769 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
771 memory_region_clear_dirty_bitmap(rb->mr, start, size);
772 }
773
774 static void
migration_clear_memory_region_dirty_bitmap_range(RAMBlock * rb,unsigned long start,unsigned long npages)775 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
776 unsigned long start,
777 unsigned long npages)
778 {
779 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
780 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
781 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
782
783 /*
784 * Clear pages from start to start + npages - 1, so the end boundary is
785 * exclusive.
786 */
787 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
788 migration_clear_memory_region_dirty_bitmap(rb, i);
789 }
790 }
791
792 /*
793 * colo_bitmap_find_diry:find contiguous dirty pages from start
794 *
795 * Returns the page offset within memory region of the start of the contiguout
796 * dirty page
797 *
798 * @rs: current RAM state
799 * @rb: RAMBlock where to search for dirty pages
800 * @start: page where we start the search
801 * @num: the number of contiguous dirty pages
802 */
803 static inline
colo_bitmap_find_dirty(RAMState * rs,RAMBlock * rb,unsigned long start,unsigned long * num)804 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
805 unsigned long start, unsigned long *num)
806 {
807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
808 unsigned long *bitmap = rb->bmap;
809 unsigned long first, next;
810
811 *num = 0;
812
813 if (migrate_ram_is_ignored(rb)) {
814 return size;
815 }
816
817 first = find_next_bit(bitmap, size, start);
818 if (first >= size) {
819 return first;
820 }
821 next = find_next_zero_bit(bitmap, size, first + 1);
822 assert(next >= first);
823 *num = next - first;
824 return first;
825 }
826
migration_bitmap_clear_dirty(RAMState * rs,RAMBlock * rb,unsigned long page)827 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
828 RAMBlock *rb,
829 unsigned long page)
830 {
831 bool ret;
832
833 /*
834 * During the last stage (after source VM stopped), resetting the write
835 * protections isn't needed as we know there will be either (1) no
836 * further writes if migration will complete, or (2) migration fails
837 * at last then tracking isn't needed either.
838 */
839 if (!rs->last_stage) {
840 /*
841 * Clear dirty bitmap if needed. This _must_ be called before we
842 * send any of the page in the chunk because we need to make sure
843 * we can capture further page content changes when we sync dirty
844 * log the next time. So as long as we are going to send any of
845 * the page in the chunk we clear the remote dirty bitmap for all.
846 * Clearing it earlier won't be a problem, but too late will.
847 */
848 migration_clear_memory_region_dirty_bitmap(rb, page);
849 }
850
851 ret = test_and_clear_bit(page, rb->bmap);
852 if (ret) {
853 rs->migration_dirty_pages--;
854 }
855
856 return ret;
857 }
858
dirty_bitmap_clear_section(MemoryRegionSection * section,void * opaque)859 static int dirty_bitmap_clear_section(MemoryRegionSection *section,
860 void *opaque)
861 {
862 const hwaddr offset = section->offset_within_region;
863 const hwaddr size = int128_get64(section->size);
864 const unsigned long start = offset >> TARGET_PAGE_BITS;
865 const unsigned long npages = size >> TARGET_PAGE_BITS;
866 RAMBlock *rb = section->mr->ram_block;
867 uint64_t *cleared_bits = opaque;
868
869 /*
870 * We don't grab ram_state->bitmap_mutex because we expect to run
871 * only when starting migration or during postcopy recovery where
872 * we don't have concurrent access.
873 */
874 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
875 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
876 }
877 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
878 bitmap_clear(rb->bmap, start, npages);
879 return 0;
880 }
881
882 /*
883 * Exclude all dirty pages from migration that fall into a discarded range as
884 * managed by a RamDiscardManager responsible for the mapped memory region of
885 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
886 *
887 * Discarded pages ("logically unplugged") have undefined content and must
888 * not get migrated, because even reading these pages for migration might
889 * result in undesired behavior.
890 *
891 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
892 *
893 * Note: The result is only stable while migrating (precopy/postcopy).
894 */
ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock * rb)895 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
896 {
897 uint64_t cleared_bits = 0;
898
899 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
900 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
901 MemoryRegionSection section = {
902 .mr = rb->mr,
903 .offset_within_region = 0,
904 .size = int128_make64(qemu_ram_get_used_length(rb)),
905 };
906
907 ram_discard_manager_replay_discarded(rdm, §ion,
908 dirty_bitmap_clear_section,
909 &cleared_bits);
910 }
911 return cleared_bits;
912 }
913
914 /*
915 * Check if a host-page aligned page falls into a discarded range as managed by
916 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
917 *
918 * Note: The result is only stable while migrating (precopy/postcopy).
919 */
ramblock_page_is_discarded(RAMBlock * rb,ram_addr_t start)920 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
921 {
922 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
923 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
924 MemoryRegionSection section = {
925 .mr = rb->mr,
926 .offset_within_region = start,
927 .size = int128_make64(qemu_ram_pagesize(rb)),
928 };
929
930 return !ram_discard_manager_is_populated(rdm, §ion);
931 }
932 return false;
933 }
934
935 /* Called with RCU critical section */
ramblock_sync_dirty_bitmap(RAMState * rs,RAMBlock * rb)936 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
937 {
938 uint64_t new_dirty_pages =
939 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
940
941 rs->migration_dirty_pages += new_dirty_pages;
942 rs->num_dirty_pages_period += new_dirty_pages;
943 }
944
945 /**
946 * ram_pagesize_summary: calculate all the pagesizes of a VM
947 *
948 * Returns a summary bitmap of the page sizes of all RAMBlocks
949 *
950 * For VMs with just normal pages this is equivalent to the host page
951 * size. If it's got some huge pages then it's the OR of all the
952 * different page sizes.
953 */
ram_pagesize_summary(void)954 uint64_t ram_pagesize_summary(void)
955 {
956 RAMBlock *block;
957 uint64_t summary = 0;
958
959 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
960 summary |= block->page_size;
961 }
962
963 return summary;
964 }
965
ram_get_total_transferred_pages(void)966 uint64_t ram_get_total_transferred_pages(void)
967 {
968 return stat64_get(&mig_stats.normal_pages) +
969 stat64_get(&mig_stats.zero_pages) +
970 xbzrle_counters.pages;
971 }
972
migration_update_rates(RAMState * rs,int64_t end_time)973 static void migration_update_rates(RAMState *rs, int64_t end_time)
974 {
975 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
976
977 /* calculate period counters */
978 stat64_set(&mig_stats.dirty_pages_rate,
979 rs->num_dirty_pages_period * 1000 /
980 (end_time - rs->time_last_bitmap_sync));
981
982 if (!page_count) {
983 return;
984 }
985
986 if (migrate_xbzrle()) {
987 double encoded_size, unencoded_size;
988
989 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
990 rs->xbzrle_cache_miss_prev) / page_count;
991 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
992 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
993 TARGET_PAGE_SIZE;
994 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
995 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
996 xbzrle_counters.encoding_rate = 0;
997 } else {
998 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
999 }
1000 rs->xbzrle_pages_prev = xbzrle_counters.pages;
1001 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1002 }
1003 }
1004
1005 /*
1006 * Enable dirty-limit to throttle down the guest
1007 */
migration_dirty_limit_guest(void)1008 static void migration_dirty_limit_guest(void)
1009 {
1010 /*
1011 * dirty page rate quota for all vCPUs fetched from
1012 * migration parameter 'vcpu_dirty_limit'
1013 */
1014 static int64_t quota_dirtyrate;
1015 MigrationState *s = migrate_get_current();
1016
1017 /*
1018 * If dirty limit already enabled and migration parameter
1019 * vcpu-dirty-limit untouched.
1020 */
1021 if (dirtylimit_in_service() &&
1022 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1023 return;
1024 }
1025
1026 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1027
1028 /*
1029 * Set all vCPU a quota dirtyrate, note that the second
1030 * parameter will be ignored if setting all vCPU for the vm
1031 */
1032 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1033 trace_migration_dirty_limit_guest(quota_dirtyrate);
1034 }
1035
migration_trigger_throttle(RAMState * rs)1036 static void migration_trigger_throttle(RAMState *rs)
1037 {
1038 uint64_t threshold = migrate_throttle_trigger_threshold();
1039 uint64_t bytes_xfer_period =
1040 migration_transferred_bytes() - rs->bytes_xfer_prev;
1041 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1042 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1043
1044 /*
1045 * The following detection logic can be refined later. For now:
1046 * Check to see if the ratio between dirtied bytes and the approx.
1047 * amount of bytes that just got transferred since the last time
1048 * we were in this routine reaches the threshold. If that happens
1049 * twice, start or increase throttling.
1050 */
1051 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1052 (++rs->dirty_rate_high_cnt >= 2)) {
1053 rs->dirty_rate_high_cnt = 0;
1054 if (migrate_auto_converge()) {
1055 trace_migration_throttle();
1056 mig_throttle_guest_down(bytes_dirty_period,
1057 bytes_dirty_threshold);
1058 } else if (migrate_dirty_limit()) {
1059 migration_dirty_limit_guest();
1060 }
1061 }
1062 }
1063
migration_bitmap_sync(RAMState * rs,bool last_stage)1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1065 {
1066 RAMBlock *block;
1067 int64_t end_time;
1068
1069 stat64_add(&mig_stats.dirty_sync_count, 1);
1070
1071 if (!rs->time_last_bitmap_sync) {
1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1073 }
1074
1075 trace_migration_bitmap_sync_start();
1076 memory_global_dirty_log_sync(last_stage);
1077
1078 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1079 WITH_RCU_READ_LOCK_GUARD() {
1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1081 ramblock_sync_dirty_bitmap(rs, block);
1082 }
1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1084 }
1085 }
1086
1087 memory_global_after_dirty_log_sync();
1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1089
1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1091
1092 /* more than 1 second = 1000 millisecons */
1093 if (end_time > rs->time_last_bitmap_sync + 1000) {
1094 migration_trigger_throttle(rs);
1095
1096 migration_update_rates(rs, end_time);
1097
1098 rs->target_page_count_prev = rs->target_page_count;
1099
1100 /* reset period counters */
1101 rs->time_last_bitmap_sync = end_time;
1102 rs->num_dirty_pages_period = 0;
1103 rs->bytes_xfer_prev = migration_transferred_bytes();
1104 }
1105 if (migrate_events()) {
1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1107 qapi_event_send_migration_pass(generation);
1108 }
1109 }
1110
migration_bitmap_sync_precopy(bool last_stage)1111 void migration_bitmap_sync_precopy(bool last_stage)
1112 {
1113 Error *local_err = NULL;
1114 assert(ram_state);
1115
1116 /*
1117 * The current notifier usage is just an optimization to migration, so we
1118 * don't stop the normal migration process in the error case.
1119 */
1120 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1121 error_report_err(local_err);
1122 local_err = NULL;
1123 }
1124
1125 migration_bitmap_sync(ram_state, last_stage);
1126
1127 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1128 error_report_err(local_err);
1129 }
1130 }
1131
ram_release_page(const char * rbname,uint64_t offset)1132 void ram_release_page(const char *rbname, uint64_t offset)
1133 {
1134 if (!migrate_release_ram() || !migration_in_postcopy()) {
1135 return;
1136 }
1137
1138 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1139 }
1140
1141 /**
1142 * save_zero_page: send the zero page to the stream
1143 *
1144 * Returns the number of pages written.
1145 *
1146 * @rs: current RAM state
1147 * @pss: current PSS channel
1148 * @offset: offset inside the block for the page
1149 */
save_zero_page(RAMState * rs,PageSearchStatus * pss,ram_addr_t offset)1150 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1151 ram_addr_t offset)
1152 {
1153 uint8_t *p = pss->block->host + offset;
1154 QEMUFile *file = pss->pss_channel;
1155 int len = 0;
1156
1157 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1158 return 0;
1159 }
1160
1161 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1162 return 0;
1163 }
1164
1165 stat64_add(&mig_stats.zero_pages, 1);
1166
1167 if (migrate_mapped_ram()) {
1168 /* zero pages are not transferred with mapped-ram */
1169 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1170 return 1;
1171 }
1172
1173 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1174 qemu_put_byte(file, 0);
1175 len += 1;
1176 ram_release_page(pss->block->idstr, offset);
1177 ram_transferred_add(len);
1178
1179 /*
1180 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1181 * page would be stale.
1182 */
1183 if (rs->xbzrle_started) {
1184 XBZRLE_cache_lock();
1185 xbzrle_cache_zero_page(pss->block->offset + offset);
1186 XBZRLE_cache_unlock();
1187 }
1188
1189 return len;
1190 }
1191
1192 /*
1193 * directly send the page to the stream
1194 *
1195 * Returns the number of pages written.
1196 *
1197 * @pss: current PSS channel
1198 * @block: block that contains the page we want to send
1199 * @offset: offset inside the block for the page
1200 * @buf: the page to be sent
1201 * @async: send to page asyncly
1202 */
save_normal_page(PageSearchStatus * pss,RAMBlock * block,ram_addr_t offset,uint8_t * buf,bool async)1203 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1204 ram_addr_t offset, uint8_t *buf, bool async)
1205 {
1206 QEMUFile *file = pss->pss_channel;
1207
1208 if (migrate_mapped_ram()) {
1209 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1210 block->pages_offset + offset);
1211 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1212 } else {
1213 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1214 offset | RAM_SAVE_FLAG_PAGE));
1215 if (async) {
1216 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1217 migrate_release_ram() &&
1218 migration_in_postcopy());
1219 } else {
1220 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1221 }
1222 }
1223 ram_transferred_add(TARGET_PAGE_SIZE);
1224 stat64_add(&mig_stats.normal_pages, 1);
1225 return 1;
1226 }
1227
1228 /**
1229 * ram_save_page: send the given page to the stream
1230 *
1231 * Returns the number of pages written.
1232 * < 0 - error
1233 * >=0 - Number of pages written - this might legally be 0
1234 * if xbzrle noticed the page was the same.
1235 *
1236 * @rs: current RAM state
1237 * @block: block that contains the page we want to send
1238 * @offset: offset inside the block for the page
1239 */
ram_save_page(RAMState * rs,PageSearchStatus * pss)1240 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1241 {
1242 int pages = -1;
1243 uint8_t *p;
1244 bool send_async = true;
1245 RAMBlock *block = pss->block;
1246 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1247 ram_addr_t current_addr = block->offset + offset;
1248
1249 p = block->host + offset;
1250 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1251
1252 XBZRLE_cache_lock();
1253 if (rs->xbzrle_started && !migration_in_postcopy()) {
1254 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1255 block, offset);
1256 if (!rs->last_stage) {
1257 /* Can't send this cached data async, since the cache page
1258 * might get updated before it gets to the wire
1259 */
1260 send_async = false;
1261 }
1262 }
1263
1264 /* XBZRLE overflow or normal page */
1265 if (pages == -1) {
1266 pages = save_normal_page(pss, block, offset, p, send_async);
1267 }
1268
1269 XBZRLE_cache_unlock();
1270
1271 return pages;
1272 }
1273
ram_save_multifd_page(RAMBlock * block,ram_addr_t offset)1274 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1275 {
1276 if (!multifd_queue_page(block, offset)) {
1277 return -1;
1278 }
1279
1280 return 1;
1281 }
1282
1283
1284 #define PAGE_ALL_CLEAN 0
1285 #define PAGE_TRY_AGAIN 1
1286 #define PAGE_DIRTY_FOUND 2
1287 /**
1288 * find_dirty_block: find the next dirty page and update any state
1289 * associated with the search process.
1290 *
1291 * Returns:
1292 * <0: An error happened
1293 * PAGE_ALL_CLEAN: no dirty page found, give up
1294 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1295 * PAGE_DIRTY_FOUND: dirty page found
1296 *
1297 * @rs: current RAM state
1298 * @pss: data about the state of the current dirty page scan
1299 * @again: set to false if the search has scanned the whole of RAM
1300 */
find_dirty_block(RAMState * rs,PageSearchStatus * pss)1301 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1302 {
1303 /* Update pss->page for the next dirty bit in ramblock */
1304 pss_find_next_dirty(pss);
1305
1306 if (pss->complete_round && pss->block == rs->last_seen_block &&
1307 pss->page >= rs->last_page) {
1308 /*
1309 * We've been once around the RAM and haven't found anything.
1310 * Give up.
1311 */
1312 return PAGE_ALL_CLEAN;
1313 }
1314 if (!offset_in_ramblock(pss->block,
1315 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1316 /* Didn't find anything in this RAM Block */
1317 pss->page = 0;
1318 pss->block = QLIST_NEXT_RCU(pss->block, next);
1319 if (!pss->block) {
1320 if (multifd_ram_sync_per_round()) {
1321 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1322 int ret = multifd_ram_flush_and_sync(f);
1323 if (ret < 0) {
1324 return ret;
1325 }
1326 }
1327
1328 /* Hit the end of the list */
1329 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1330 /* Flag that we've looped */
1331 pss->complete_round = true;
1332 /* After the first round, enable XBZRLE. */
1333 if (migrate_xbzrle()) {
1334 rs->xbzrle_started = true;
1335 }
1336 }
1337 /* Didn't find anything this time, but try again on the new block */
1338 return PAGE_TRY_AGAIN;
1339 } else {
1340 /* We've found something */
1341 return PAGE_DIRTY_FOUND;
1342 }
1343 }
1344
1345 /**
1346 * unqueue_page: gets a page of the queue
1347 *
1348 * Helper for 'get_queued_page' - gets a page off the queue
1349 *
1350 * Returns the block of the page (or NULL if none available)
1351 *
1352 * @rs: current RAM state
1353 * @offset: used to return the offset within the RAMBlock
1354 */
unqueue_page(RAMState * rs,ram_addr_t * offset)1355 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1356 {
1357 struct RAMSrcPageRequest *entry;
1358 RAMBlock *block = NULL;
1359
1360 if (!postcopy_has_request(rs)) {
1361 return NULL;
1362 }
1363
1364 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1365
1366 /*
1367 * This should _never_ change even after we take the lock, because no one
1368 * should be taking anything off the request list other than us.
1369 */
1370 assert(postcopy_has_request(rs));
1371
1372 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1373 block = entry->rb;
1374 *offset = entry->offset;
1375
1376 if (entry->len > TARGET_PAGE_SIZE) {
1377 entry->len -= TARGET_PAGE_SIZE;
1378 entry->offset += TARGET_PAGE_SIZE;
1379 } else {
1380 memory_region_unref(block->mr);
1381 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1382 g_free(entry);
1383 migration_consume_urgent_request();
1384 }
1385
1386 return block;
1387 }
1388
1389 #if defined(__linux__)
1390 /**
1391 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1392 * is found, return RAM block pointer and page offset
1393 *
1394 * Returns pointer to the RAMBlock containing faulting page,
1395 * NULL if no write faults are pending
1396 *
1397 * @rs: current RAM state
1398 * @offset: page offset from the beginning of the block
1399 */
poll_fault_page(RAMState * rs,ram_addr_t * offset)1400 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1401 {
1402 struct uffd_msg uffd_msg;
1403 void *page_address;
1404 RAMBlock *block;
1405 int res;
1406
1407 if (!migrate_background_snapshot()) {
1408 return NULL;
1409 }
1410
1411 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1412 if (res <= 0) {
1413 return NULL;
1414 }
1415
1416 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1417 block = qemu_ram_block_from_host(page_address, false, offset);
1418 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1419 return block;
1420 }
1421
1422 /**
1423 * ram_save_release_protection: release UFFD write protection after
1424 * a range of pages has been saved
1425 *
1426 * @rs: current RAM state
1427 * @pss: page-search-status structure
1428 * @start_page: index of the first page in the range relative to pss->block
1429 *
1430 * Returns 0 on success, negative value in case of an error
1431 */
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1432 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1433 unsigned long start_page)
1434 {
1435 int res = 0;
1436
1437 /* Check if page is from UFFD-managed region. */
1438 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1439 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1440 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1441
1442 /* Flush async buffers before un-protect. */
1443 qemu_fflush(pss->pss_channel);
1444 /* Un-protect memory range. */
1445 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1446 false, false);
1447 }
1448
1449 return res;
1450 }
1451
1452 /* ram_write_tracking_available: check if kernel supports required UFFD features
1453 *
1454 * Returns true if supports, false otherwise
1455 */
ram_write_tracking_available(void)1456 bool ram_write_tracking_available(void)
1457 {
1458 uint64_t uffd_features;
1459 int res;
1460
1461 res = uffd_query_features(&uffd_features);
1462 return (res == 0 &&
1463 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1464 }
1465
1466 /* ram_write_tracking_compatible: check if guest configuration is
1467 * compatible with 'write-tracking'
1468 *
1469 * Returns true if compatible, false otherwise
1470 */
ram_write_tracking_compatible(void)1471 bool ram_write_tracking_compatible(void)
1472 {
1473 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1474 int uffd_fd;
1475 RAMBlock *block;
1476 bool ret = false;
1477
1478 /* Open UFFD file descriptor */
1479 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1480 if (uffd_fd < 0) {
1481 return false;
1482 }
1483
1484 RCU_READ_LOCK_GUARD();
1485
1486 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1487 uint64_t uffd_ioctls;
1488
1489 /* Nothing to do with read-only and MMIO-writable regions */
1490 if (block->mr->readonly || block->mr->rom_device) {
1491 continue;
1492 }
1493 /* Try to register block memory via UFFD-IO to track writes */
1494 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1495 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1496 goto out;
1497 }
1498 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1499 goto out;
1500 }
1501 }
1502 ret = true;
1503
1504 out:
1505 uffd_close_fd(uffd_fd);
1506 return ret;
1507 }
1508
populate_read_range(RAMBlock * block,ram_addr_t offset,ram_addr_t size)1509 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1510 ram_addr_t size)
1511 {
1512 const ram_addr_t end = offset + size;
1513
1514 /*
1515 * We read one byte of each page; this will preallocate page tables if
1516 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1517 * where no page was populated yet. This might require adaption when
1518 * supporting other mappings, like shmem.
1519 */
1520 for (; offset < end; offset += block->page_size) {
1521 char tmp = *((char *)block->host + offset);
1522
1523 /* Don't optimize the read out */
1524 asm volatile("" : "+r" (tmp));
1525 }
1526 }
1527
populate_read_section(MemoryRegionSection * section,void * opaque)1528 static inline int populate_read_section(MemoryRegionSection *section,
1529 void *opaque)
1530 {
1531 const hwaddr size = int128_get64(section->size);
1532 hwaddr offset = section->offset_within_region;
1533 RAMBlock *block = section->mr->ram_block;
1534
1535 populate_read_range(block, offset, size);
1536 return 0;
1537 }
1538
1539 /*
1540 * ram_block_populate_read: preallocate page tables and populate pages in the
1541 * RAM block by reading a byte of each page.
1542 *
1543 * Since it's solely used for userfault_fd WP feature, here we just
1544 * hardcode page size to qemu_real_host_page_size.
1545 *
1546 * @block: RAM block to populate
1547 */
ram_block_populate_read(RAMBlock * rb)1548 static void ram_block_populate_read(RAMBlock *rb)
1549 {
1550 /*
1551 * Skip populating all pages that fall into a discarded range as managed by
1552 * a RamDiscardManager responsible for the mapped memory region of the
1553 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1554 * must not get populated automatically. We don't have to track
1555 * modifications via userfaultfd WP reliably, because these pages will
1556 * not be part of the migration stream either way -- see
1557 * ramblock_dirty_bitmap_exclude_discarded_pages().
1558 *
1559 * Note: The result is only stable while migrating (precopy/postcopy).
1560 */
1561 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1562 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1563 MemoryRegionSection section = {
1564 .mr = rb->mr,
1565 .offset_within_region = 0,
1566 .size = rb->mr->size,
1567 };
1568
1569 ram_discard_manager_replay_populated(rdm, §ion,
1570 populate_read_section, NULL);
1571 } else {
1572 populate_read_range(rb, 0, rb->used_length);
1573 }
1574 }
1575
1576 /*
1577 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1578 */
ram_write_tracking_prepare(void)1579 void ram_write_tracking_prepare(void)
1580 {
1581 RAMBlock *block;
1582
1583 RCU_READ_LOCK_GUARD();
1584
1585 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1586 /* Nothing to do with read-only and MMIO-writable regions */
1587 if (block->mr->readonly || block->mr->rom_device) {
1588 continue;
1589 }
1590
1591 /*
1592 * Populate pages of the RAM block before enabling userfault_fd
1593 * write protection.
1594 *
1595 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1596 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1597 * pages with pte_none() entries in page table.
1598 */
1599 ram_block_populate_read(block);
1600 }
1601 }
1602
uffd_protect_section(MemoryRegionSection * section,void * opaque)1603 static inline int uffd_protect_section(MemoryRegionSection *section,
1604 void *opaque)
1605 {
1606 const hwaddr size = int128_get64(section->size);
1607 const hwaddr offset = section->offset_within_region;
1608 RAMBlock *rb = section->mr->ram_block;
1609 int uffd_fd = (uintptr_t)opaque;
1610
1611 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1612 false);
1613 }
1614
ram_block_uffd_protect(RAMBlock * rb,int uffd_fd)1615 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1616 {
1617 assert(rb->flags & RAM_UF_WRITEPROTECT);
1618
1619 /* See ram_block_populate_read() */
1620 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1621 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1622 MemoryRegionSection section = {
1623 .mr = rb->mr,
1624 .offset_within_region = 0,
1625 .size = rb->mr->size,
1626 };
1627
1628 return ram_discard_manager_replay_populated(rdm, §ion,
1629 uffd_protect_section,
1630 (void *)(uintptr_t)uffd_fd);
1631 }
1632 return uffd_change_protection(uffd_fd, rb->host,
1633 rb->used_length, true, false);
1634 }
1635
1636 /*
1637 * ram_write_tracking_start: start UFFD-WP memory tracking
1638 *
1639 * Returns 0 for success or negative value in case of error
1640 */
ram_write_tracking_start(void)1641 int ram_write_tracking_start(void)
1642 {
1643 int uffd_fd;
1644 RAMState *rs = ram_state;
1645 RAMBlock *block;
1646
1647 /* Open UFFD file descriptor */
1648 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1649 if (uffd_fd < 0) {
1650 return uffd_fd;
1651 }
1652 rs->uffdio_fd = uffd_fd;
1653
1654 RCU_READ_LOCK_GUARD();
1655
1656 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1657 /* Nothing to do with read-only and MMIO-writable regions */
1658 if (block->mr->readonly || block->mr->rom_device) {
1659 continue;
1660 }
1661
1662 /* Register block memory with UFFD to track writes */
1663 if (uffd_register_memory(rs->uffdio_fd, block->host,
1664 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1665 goto fail;
1666 }
1667 block->flags |= RAM_UF_WRITEPROTECT;
1668 memory_region_ref(block->mr);
1669
1670 /* Apply UFFD write protection to the block memory range */
1671 if (ram_block_uffd_protect(block, uffd_fd)) {
1672 goto fail;
1673 }
1674
1675 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1676 block->host, block->max_length);
1677 }
1678
1679 return 0;
1680
1681 fail:
1682 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1683
1684 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1685 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1686 continue;
1687 }
1688 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1689 /* Cleanup flags and remove reference */
1690 block->flags &= ~RAM_UF_WRITEPROTECT;
1691 memory_region_unref(block->mr);
1692 }
1693
1694 uffd_close_fd(uffd_fd);
1695 rs->uffdio_fd = -1;
1696 return -1;
1697 }
1698
1699 /**
1700 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1701 */
ram_write_tracking_stop(void)1702 void ram_write_tracking_stop(void)
1703 {
1704 RAMState *rs = ram_state;
1705 RAMBlock *block;
1706
1707 RCU_READ_LOCK_GUARD();
1708
1709 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1710 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1711 continue;
1712 }
1713 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1714
1715 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1716 block->host, block->max_length);
1717
1718 /* Cleanup flags and remove reference */
1719 block->flags &= ~RAM_UF_WRITEPROTECT;
1720 memory_region_unref(block->mr);
1721 }
1722
1723 /* Finally close UFFD file descriptor */
1724 uffd_close_fd(rs->uffdio_fd);
1725 rs->uffdio_fd = -1;
1726 }
1727
1728 #else
1729 /* No target OS support, stubs just fail or ignore */
1730
poll_fault_page(RAMState * rs,ram_addr_t * offset)1731 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1732 {
1733 (void) rs;
1734 (void) offset;
1735
1736 return NULL;
1737 }
1738
ram_save_release_protection(RAMState * rs,PageSearchStatus * pss,unsigned long start_page)1739 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1740 unsigned long start_page)
1741 {
1742 (void) rs;
1743 (void) pss;
1744 (void) start_page;
1745
1746 return 0;
1747 }
1748
ram_write_tracking_available(void)1749 bool ram_write_tracking_available(void)
1750 {
1751 return false;
1752 }
1753
ram_write_tracking_compatible(void)1754 bool ram_write_tracking_compatible(void)
1755 {
1756 g_assert_not_reached();
1757 }
1758
ram_write_tracking_start(void)1759 int ram_write_tracking_start(void)
1760 {
1761 g_assert_not_reached();
1762 }
1763
ram_write_tracking_stop(void)1764 void ram_write_tracking_stop(void)
1765 {
1766 g_assert_not_reached();
1767 }
1768 #endif /* defined(__linux__) */
1769
1770 /**
1771 * get_queued_page: unqueue a page from the postcopy requests
1772 *
1773 * Skips pages that are already sent (!dirty)
1774 *
1775 * Returns true if a queued page is found
1776 *
1777 * @rs: current RAM state
1778 * @pss: data about the state of the current dirty page scan
1779 */
get_queued_page(RAMState * rs,PageSearchStatus * pss)1780 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1781 {
1782 RAMBlock *block;
1783 ram_addr_t offset;
1784 bool dirty = false;
1785
1786 do {
1787 block = unqueue_page(rs, &offset);
1788 /*
1789 * We're sending this page, and since it's postcopy nothing else
1790 * will dirty it, and we must make sure it doesn't get sent again
1791 * even if this queue request was received after the background
1792 * search already sent it.
1793 */
1794 if (block) {
1795 unsigned long page;
1796
1797 page = offset >> TARGET_PAGE_BITS;
1798 dirty = test_bit(page, block->bmap);
1799 if (!dirty) {
1800 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1801 page);
1802 } else {
1803 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1804 }
1805 }
1806
1807 } while (block && !dirty);
1808
1809 if (!block) {
1810 /*
1811 * Poll write faults too if background snapshot is enabled; that's
1812 * when we have vcpus got blocked by the write protected pages.
1813 */
1814 block = poll_fault_page(rs, &offset);
1815 }
1816
1817 if (block) {
1818 /*
1819 * We want the background search to continue from the queued page
1820 * since the guest is likely to want other pages near to the page
1821 * it just requested.
1822 */
1823 pss->block = block;
1824 pss->page = offset >> TARGET_PAGE_BITS;
1825
1826 /*
1827 * This unqueued page would break the "one round" check, even is
1828 * really rare.
1829 */
1830 pss->complete_round = false;
1831 }
1832
1833 return !!block;
1834 }
1835
1836 /**
1837 * migration_page_queue_free: drop any remaining pages in the ram
1838 * request queue
1839 *
1840 * It should be empty at the end anyway, but in error cases there may
1841 * be some left. in case that there is any page left, we drop it.
1842 *
1843 */
migration_page_queue_free(RAMState * rs)1844 static void migration_page_queue_free(RAMState *rs)
1845 {
1846 struct RAMSrcPageRequest *mspr, *next_mspr;
1847 /* This queue generally should be empty - but in the case of a failed
1848 * migration might have some droppings in.
1849 */
1850 RCU_READ_LOCK_GUARD();
1851 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1852 memory_region_unref(mspr->rb->mr);
1853 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1854 g_free(mspr);
1855 }
1856 }
1857
1858 /**
1859 * ram_save_queue_pages: queue the page for transmission
1860 *
1861 * A request from postcopy destination for example.
1862 *
1863 * Returns zero on success or negative on error
1864 *
1865 * @rbname: Name of the RAMBLock of the request. NULL means the
1866 * same that last one.
1867 * @start: starting address from the start of the RAMBlock
1868 * @len: length (in bytes) to send
1869 */
ram_save_queue_pages(const char * rbname,ram_addr_t start,ram_addr_t len,Error ** errp)1870 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1871 Error **errp)
1872 {
1873 RAMBlock *ramblock;
1874 RAMState *rs = ram_state;
1875
1876 stat64_add(&mig_stats.postcopy_requests, 1);
1877 RCU_READ_LOCK_GUARD();
1878
1879 if (!rbname) {
1880 /* Reuse last RAMBlock */
1881 ramblock = rs->last_req_rb;
1882
1883 if (!ramblock) {
1884 /*
1885 * Shouldn't happen, we can't reuse the last RAMBlock if
1886 * it's the 1st request.
1887 */
1888 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1889 return -1;
1890 }
1891 } else {
1892 ramblock = qemu_ram_block_by_name(rbname);
1893
1894 if (!ramblock) {
1895 /* We shouldn't be asked for a non-existent RAMBlock */
1896 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1897 return -1;
1898 }
1899 rs->last_req_rb = ramblock;
1900 }
1901 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1902 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1903 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1904 "start=" RAM_ADDR_FMT " len="
1905 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1906 start, len, ramblock->used_length);
1907 return -1;
1908 }
1909
1910 /*
1911 * When with postcopy preempt, we send back the page directly in the
1912 * rp-return thread.
1913 */
1914 if (postcopy_preempt_active()) {
1915 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1916 size_t page_size = qemu_ram_pagesize(ramblock);
1917 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1918 int ret = 0;
1919
1920 qemu_mutex_lock(&rs->bitmap_mutex);
1921
1922 pss_init(pss, ramblock, page_start);
1923 /*
1924 * Always use the preempt channel, and make sure it's there. It's
1925 * safe to access without lock, because when rp-thread is running
1926 * we should be the only one who operates on the qemufile
1927 */
1928 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1929 assert(pss->pss_channel);
1930
1931 /*
1932 * It must be either one or multiple of host page size. Just
1933 * assert; if something wrong we're mostly split brain anyway.
1934 */
1935 assert(len % page_size == 0);
1936 while (len) {
1937 if (ram_save_host_page_urgent(pss)) {
1938 error_setg(errp, "ram_save_host_page_urgent() failed: "
1939 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1940 ramblock->idstr, start);
1941 ret = -1;
1942 break;
1943 }
1944 /*
1945 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1946 * will automatically be moved and point to the next host page
1947 * we're going to send, so no need to update here.
1948 *
1949 * Normally QEMU never sends >1 host page in requests, so
1950 * logically we don't even need that as the loop should only
1951 * run once, but just to be consistent.
1952 */
1953 len -= page_size;
1954 };
1955 qemu_mutex_unlock(&rs->bitmap_mutex);
1956
1957 return ret;
1958 }
1959
1960 struct RAMSrcPageRequest *new_entry =
1961 g_new0(struct RAMSrcPageRequest, 1);
1962 new_entry->rb = ramblock;
1963 new_entry->offset = start;
1964 new_entry->len = len;
1965
1966 memory_region_ref(ramblock->mr);
1967 qemu_mutex_lock(&rs->src_page_req_mutex);
1968 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1969 migration_make_urgent_request();
1970 qemu_mutex_unlock(&rs->src_page_req_mutex);
1971
1972 return 0;
1973 }
1974
1975 /**
1976 * ram_save_target_page: save one target page to the precopy thread
1977 * OR to multifd workers.
1978 *
1979 * @rs: current RAM state
1980 * @pss: data about the page we want to send
1981 */
ram_save_target_page(RAMState * rs,PageSearchStatus * pss)1982 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
1983 {
1984 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1985 int res;
1986
1987 /* Hand over to RDMA first */
1988 if (migrate_rdma()) {
1989 res = rdma_control_save_page(pss->pss_channel, pss->block->offset,
1990 offset, TARGET_PAGE_SIZE);
1991
1992 if (res == RAM_SAVE_CONTROL_DELAYED) {
1993 res = 1;
1994 }
1995 return res;
1996 }
1997
1998 if (!migrate_multifd()
1999 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2000 if (save_zero_page(rs, pss, offset)) {
2001 return 1;
2002 }
2003 }
2004
2005 if (migrate_multifd() && !migration_in_postcopy()) {
2006 return ram_save_multifd_page(pss->block, offset);
2007 }
2008
2009 return ram_save_page(rs, pss);
2010 }
2011
2012 /* Should be called before sending a host page */
pss_host_page_prepare(PageSearchStatus * pss)2013 static void pss_host_page_prepare(PageSearchStatus *pss)
2014 {
2015 /* How many guest pages are there in one host page? */
2016 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2017
2018 pss->host_page_sending = true;
2019 if (guest_pfns <= 1) {
2020 /*
2021 * This covers both when guest psize == host psize, or when guest
2022 * has larger psize than the host (guest_pfns==0).
2023 *
2024 * For the latter, we always send one whole guest page per
2025 * iteration of the host page (example: an Alpha VM on x86 host
2026 * will have guest psize 8K while host psize 4K).
2027 */
2028 pss->host_page_start = pss->page;
2029 pss->host_page_end = pss->page + 1;
2030 } else {
2031 /*
2032 * The host page spans over multiple guest pages, we send them
2033 * within the same host page iteration.
2034 */
2035 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2036 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2037 }
2038 }
2039
2040 /*
2041 * Whether the page pointed by PSS is within the host page being sent.
2042 * Must be called after a previous pss_host_page_prepare().
2043 */
pss_within_range(PageSearchStatus * pss)2044 static bool pss_within_range(PageSearchStatus *pss)
2045 {
2046 ram_addr_t ram_addr;
2047
2048 assert(pss->host_page_sending);
2049
2050 /* Over host-page boundary? */
2051 if (pss->page >= pss->host_page_end) {
2052 return false;
2053 }
2054
2055 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2056
2057 return offset_in_ramblock(pss->block, ram_addr);
2058 }
2059
pss_host_page_finish(PageSearchStatus * pss)2060 static void pss_host_page_finish(PageSearchStatus *pss)
2061 {
2062 pss->host_page_sending = false;
2063 /* This is not needed, but just to reset it */
2064 pss->host_page_start = pss->host_page_end = 0;
2065 }
2066
ram_page_hint_update(RAMState * rs,PageSearchStatus * pss)2067 static void ram_page_hint_update(RAMState *rs, PageSearchStatus *pss)
2068 {
2069 PageLocationHint *hint = &rs->page_hint;
2070
2071 /* If there's a pending hint not consumed, don't bother */
2072 if (hint->valid) {
2073 return;
2074 }
2075
2076 /* Provide a hint to the background stream otherwise */
2077 hint->location.block = pss->block;
2078 hint->location.offset = pss->page;
2079 hint->valid = true;
2080 }
2081
2082 /*
2083 * Send an urgent host page specified by `pss'. Need to be called with
2084 * bitmap_mutex held.
2085 *
2086 * Returns 0 if save host page succeeded, false otherwise.
2087 */
ram_save_host_page_urgent(PageSearchStatus * pss)2088 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2089 {
2090 bool page_dirty, sent = false;
2091 RAMState *rs = ram_state;
2092 int ret = 0;
2093
2094 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2095 pss_host_page_prepare(pss);
2096
2097 /*
2098 * If precopy is sending the same page, let it be done in precopy, or
2099 * we could send the same page in two channels and none of them will
2100 * receive the whole page.
2101 */
2102 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2103 trace_postcopy_preempt_hit(pss->block->idstr,
2104 pss->page << TARGET_PAGE_BITS);
2105 return 0;
2106 }
2107
2108 do {
2109 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2110
2111 if (page_dirty) {
2112 /* Be strict to return code; it must be 1, or what else? */
2113 if (ram_save_target_page(rs, pss) != 1) {
2114 error_report_once("%s: ram_save_target_page failed", __func__);
2115 ret = -1;
2116 goto out;
2117 }
2118 sent = true;
2119 }
2120 pss_find_next_dirty(pss);
2121 } while (pss_within_range(pss));
2122 out:
2123 pss_host_page_finish(pss);
2124 /* For urgent requests, flush immediately if sent */
2125 if (sent) {
2126 qemu_fflush(pss->pss_channel);
2127 ram_page_hint_update(rs, pss);
2128 }
2129 return ret;
2130 }
2131
2132 /**
2133 * ram_save_host_page: save a whole host page
2134 *
2135 * Starting at *offset send pages up to the end of the current host
2136 * page. It's valid for the initial offset to point into the middle of
2137 * a host page in which case the remainder of the hostpage is sent.
2138 * Only dirty target pages are sent. Note that the host page size may
2139 * be a huge page for this block.
2140 *
2141 * The saving stops at the boundary of the used_length of the block
2142 * if the RAMBlock isn't a multiple of the host page size.
2143 *
2144 * The caller must be with ram_state.bitmap_mutex held to call this
2145 * function. Note that this function can temporarily release the lock, but
2146 * when the function is returned it'll make sure the lock is still held.
2147 *
2148 * Returns the number of pages written or negative on error
2149 *
2150 * @rs: current RAM state
2151 * @pss: data about the page we want to send
2152 */
ram_save_host_page(RAMState * rs,PageSearchStatus * pss)2153 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2154 {
2155 bool page_dirty, preempt_active = postcopy_preempt_active();
2156 int tmppages, pages = 0;
2157 size_t pagesize_bits =
2158 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2159 unsigned long start_page = pss->page;
2160 int res;
2161
2162 if (migrate_ram_is_ignored(pss->block)) {
2163 error_report("block %s should not be migrated !", pss->block->idstr);
2164 return 0;
2165 }
2166
2167 /* Update host page boundary information */
2168 pss_host_page_prepare(pss);
2169
2170 do {
2171 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2172
2173 /* Check the pages is dirty and if it is send it */
2174 if (page_dirty) {
2175 /*
2176 * Properly yield the lock only in postcopy preempt mode
2177 * because both migration thread and rp-return thread can
2178 * operate on the bitmaps.
2179 */
2180 if (preempt_active) {
2181 qemu_mutex_unlock(&rs->bitmap_mutex);
2182 }
2183 tmppages = ram_save_target_page(rs, pss);
2184 if (tmppages >= 0) {
2185 pages += tmppages;
2186 /*
2187 * Allow rate limiting to happen in the middle of huge pages if
2188 * something is sent in the current iteration.
2189 */
2190 if (pagesize_bits > 1 && tmppages > 0) {
2191 migration_rate_limit();
2192 }
2193 }
2194 if (preempt_active) {
2195 qemu_mutex_lock(&rs->bitmap_mutex);
2196 }
2197 } else {
2198 tmppages = 0;
2199 }
2200
2201 if (tmppages < 0) {
2202 pss_host_page_finish(pss);
2203 return tmppages;
2204 }
2205
2206 pss_find_next_dirty(pss);
2207 } while (pss_within_range(pss));
2208
2209 pss_host_page_finish(pss);
2210
2211 res = ram_save_release_protection(rs, pss, start_page);
2212 return (res < 0 ? res : pages);
2213 }
2214
ram_page_hint_valid(RAMState * rs)2215 static bool ram_page_hint_valid(RAMState *rs)
2216 {
2217 /* There's only page hint during postcopy preempt mode */
2218 if (!postcopy_preempt_active()) {
2219 return false;
2220 }
2221
2222 return rs->page_hint.valid;
2223 }
2224
ram_page_hint_collect(RAMState * rs,RAMBlock ** block,unsigned long * page)2225 static void ram_page_hint_collect(RAMState *rs, RAMBlock **block,
2226 unsigned long *page)
2227 {
2228 PageLocationHint *hint = &rs->page_hint;
2229
2230 assert(hint->valid);
2231
2232 *block = hint->location.block;
2233 *page = hint->location.offset;
2234
2235 /* Mark the hint consumed */
2236 hint->valid = false;
2237 }
2238
2239 /**
2240 * ram_find_and_save_block: finds a dirty page and sends it to f
2241 *
2242 * Called within an RCU critical section.
2243 *
2244 * Returns the number of pages written where zero means no dirty pages,
2245 * or negative on error
2246 *
2247 * @rs: current RAM state
2248 *
2249 * On systems where host-page-size > target-page-size it will send all the
2250 * pages in a host page that are dirty.
2251 */
ram_find_and_save_block(RAMState * rs)2252 static int ram_find_and_save_block(RAMState *rs)
2253 {
2254 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2255 unsigned long next_page;
2256 RAMBlock *next_block;
2257 int pages = 0;
2258
2259 /* No dirty page as there is zero RAM */
2260 if (!rs->ram_bytes_total) {
2261 return pages;
2262 }
2263
2264 /*
2265 * Always keep last_seen_block/last_page valid during this procedure,
2266 * because find_dirty_block() relies on these values (e.g., we compare
2267 * last_seen_block with pss.block to see whether we searched all the
2268 * ramblocks) to detect the completion of migration. Having NULL value
2269 * of last_seen_block can conditionally cause below loop to run forever.
2270 */
2271 if (!rs->last_seen_block) {
2272 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2273 rs->last_page = 0;
2274 }
2275
2276 if (ram_page_hint_valid(rs)) {
2277 ram_page_hint_collect(rs, &next_block, &next_page);
2278 } else {
2279 next_block = rs->last_seen_block;
2280 next_page = rs->last_page;
2281 }
2282
2283 pss_init(pss, next_block, next_page);
2284
2285 while (true){
2286 if (!get_queued_page(rs, pss)) {
2287 /* priority queue empty, so just search for something dirty */
2288 int res = find_dirty_block(rs, pss);
2289 if (res != PAGE_DIRTY_FOUND) {
2290 if (res == PAGE_ALL_CLEAN) {
2291 break;
2292 } else if (res == PAGE_TRY_AGAIN) {
2293 continue;
2294 } else if (res < 0) {
2295 pages = res;
2296 break;
2297 }
2298 }
2299 }
2300 pages = ram_save_host_page(rs, pss);
2301 if (pages) {
2302 break;
2303 }
2304 }
2305
2306 rs->last_seen_block = pss->block;
2307 rs->last_page = pss->page;
2308
2309 return pages;
2310 }
2311
ram_bytes_total_with_ignored(void)2312 static uint64_t ram_bytes_total_with_ignored(void)
2313 {
2314 RAMBlock *block;
2315 uint64_t total = 0;
2316
2317 RCU_READ_LOCK_GUARD();
2318
2319 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2320 total += block->used_length;
2321 }
2322 return total;
2323 }
2324
ram_bytes_total(void)2325 uint64_t ram_bytes_total(void)
2326 {
2327 RAMBlock *block;
2328 uint64_t total = 0;
2329
2330 RCU_READ_LOCK_GUARD();
2331
2332 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2333 total += block->used_length;
2334 }
2335 return total;
2336 }
2337
xbzrle_load_setup(void)2338 static void xbzrle_load_setup(void)
2339 {
2340 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2341 }
2342
xbzrle_load_cleanup(void)2343 static void xbzrle_load_cleanup(void)
2344 {
2345 g_free(XBZRLE.decoded_buf);
2346 XBZRLE.decoded_buf = NULL;
2347 }
2348
ram_state_cleanup(RAMState ** rsp)2349 static void ram_state_cleanup(RAMState **rsp)
2350 {
2351 if (*rsp) {
2352 migration_page_queue_free(*rsp);
2353 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2354 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2355 g_free(*rsp);
2356 *rsp = NULL;
2357 }
2358 }
2359
xbzrle_cleanup(void)2360 static void xbzrle_cleanup(void)
2361 {
2362 XBZRLE_cache_lock();
2363 if (XBZRLE.cache) {
2364 cache_fini(XBZRLE.cache);
2365 g_free(XBZRLE.encoded_buf);
2366 g_free(XBZRLE.current_buf);
2367 g_free(XBZRLE.zero_target_page);
2368 XBZRLE.cache = NULL;
2369 XBZRLE.encoded_buf = NULL;
2370 XBZRLE.current_buf = NULL;
2371 XBZRLE.zero_target_page = NULL;
2372 }
2373 XBZRLE_cache_unlock();
2374 }
2375
ram_bitmaps_destroy(void)2376 static void ram_bitmaps_destroy(void)
2377 {
2378 RAMBlock *block;
2379
2380 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2381 g_free(block->clear_bmap);
2382 block->clear_bmap = NULL;
2383 g_free(block->bmap);
2384 block->bmap = NULL;
2385 g_free(block->file_bmap);
2386 block->file_bmap = NULL;
2387 }
2388 }
2389
ram_save_cleanup(void * opaque)2390 static void ram_save_cleanup(void *opaque)
2391 {
2392 RAMState **rsp = opaque;
2393
2394 /* We don't use dirty log with background snapshots */
2395 if (!migrate_background_snapshot()) {
2396 /* caller have hold BQL or is in a bh, so there is
2397 * no writing race against the migration bitmap
2398 */
2399 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2400 /*
2401 * do not stop dirty log without starting it, since
2402 * memory_global_dirty_log_stop will assert that
2403 * memory_global_dirty_log_start/stop used in pairs
2404 */
2405 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2406 }
2407 }
2408
2409 ram_bitmaps_destroy();
2410
2411 xbzrle_cleanup();
2412 multifd_ram_save_cleanup();
2413 ram_state_cleanup(rsp);
2414 }
2415
ram_page_hint_reset(PageLocationHint * hint)2416 static void ram_page_hint_reset(PageLocationHint *hint)
2417 {
2418 hint->location.block = NULL;
2419 hint->location.offset = 0;
2420 hint->valid = false;
2421 }
2422
ram_state_reset(RAMState * rs)2423 static void ram_state_reset(RAMState *rs)
2424 {
2425 int i;
2426
2427 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2428 rs->pss[i].last_sent_block = NULL;
2429 }
2430
2431 rs->last_seen_block = NULL;
2432 rs->last_page = 0;
2433 rs->last_version = ram_list.version;
2434 rs->xbzrle_started = false;
2435
2436 ram_page_hint_reset(&rs->page_hint);
2437 }
2438
2439 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2440
2441 /* **** functions for postcopy ***** */
2442
ram_postcopy_migrated_memory_release(MigrationState * ms)2443 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2444 {
2445 struct RAMBlock *block;
2446
2447 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2448 unsigned long *bitmap = block->bmap;
2449 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2450 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2451
2452 while (run_start < range) {
2453 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2454 ram_discard_range(block->idstr,
2455 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2456 ((ram_addr_t)(run_end - run_start))
2457 << TARGET_PAGE_BITS);
2458 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2459 }
2460 }
2461 }
2462
2463 /**
2464 * postcopy_send_discard_bm_ram: discard a RAMBlock
2465 *
2466 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2467 *
2468 * @ms: current migration state
2469 * @block: RAMBlock to discard
2470 */
postcopy_send_discard_bm_ram(MigrationState * ms,RAMBlock * block)2471 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2472 {
2473 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2474 unsigned long current;
2475 unsigned long *bitmap = block->bmap;
2476
2477 for (current = 0; current < end; ) {
2478 unsigned long one = find_next_bit(bitmap, end, current);
2479 unsigned long zero, discard_length;
2480
2481 if (one >= end) {
2482 break;
2483 }
2484
2485 zero = find_next_zero_bit(bitmap, end, one + 1);
2486
2487 if (zero >= end) {
2488 discard_length = end - one;
2489 } else {
2490 discard_length = zero - one;
2491 }
2492 postcopy_discard_send_range(ms, one, discard_length);
2493 current = one + discard_length;
2494 }
2495 }
2496
2497 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2498
2499 /**
2500 * postcopy_each_ram_send_discard: discard all RAMBlocks
2501 *
2502 * Utility for the outgoing postcopy code.
2503 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2504 * passing it bitmap indexes and name.
2505 * (qemu_ram_foreach_block ends up passing unscaled lengths
2506 * which would mean postcopy code would have to deal with target page)
2507 *
2508 * @ms: current migration state
2509 */
postcopy_each_ram_send_discard(MigrationState * ms)2510 static void postcopy_each_ram_send_discard(MigrationState *ms)
2511 {
2512 struct RAMBlock *block;
2513
2514 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2515 postcopy_discard_send_init(ms, block->idstr);
2516
2517 /*
2518 * Deal with TPS != HPS and huge pages. It discard any partially sent
2519 * host-page size chunks, mark any partially dirty host-page size
2520 * chunks as all dirty. In this case the host-page is the host-page
2521 * for the particular RAMBlock, i.e. it might be a huge page.
2522 */
2523 postcopy_chunk_hostpages_pass(ms, block);
2524
2525 /*
2526 * Postcopy sends chunks of bitmap over the wire, but it
2527 * just needs indexes at this point, avoids it having
2528 * target page specific code.
2529 */
2530 postcopy_send_discard_bm_ram(ms, block);
2531 postcopy_discard_send_finish(ms);
2532 }
2533 }
2534
2535 /**
2536 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2537 *
2538 * Helper for postcopy_chunk_hostpages; it's called twice to
2539 * canonicalize the two bitmaps, that are similar, but one is
2540 * inverted.
2541 *
2542 * Postcopy requires that all target pages in a hostpage are dirty or
2543 * clean, not a mix. This function canonicalizes the bitmaps.
2544 *
2545 * @ms: current migration state
2546 * @block: block that contains the page we want to canonicalize
2547 */
postcopy_chunk_hostpages_pass(MigrationState * ms,RAMBlock * block)2548 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2549 {
2550 RAMState *rs = ram_state;
2551 unsigned long *bitmap = block->bmap;
2552 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2553 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2554 unsigned long run_start;
2555
2556 if (block->page_size == TARGET_PAGE_SIZE) {
2557 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2558 return;
2559 }
2560
2561 /* Find a dirty page */
2562 run_start = find_next_bit(bitmap, pages, 0);
2563
2564 while (run_start < pages) {
2565
2566 /*
2567 * If the start of this run of pages is in the middle of a host
2568 * page, then we need to fixup this host page.
2569 */
2570 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2571 /* Find the end of this run */
2572 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2573 /*
2574 * If the end isn't at the start of a host page, then the
2575 * run doesn't finish at the end of a host page
2576 * and we need to discard.
2577 */
2578 }
2579
2580 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2581 unsigned long page;
2582 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2583 host_ratio);
2584 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2585
2586 /* Clean up the bitmap */
2587 for (page = fixup_start_addr;
2588 page < fixup_start_addr + host_ratio; page++) {
2589 /*
2590 * Remark them as dirty, updating the count for any pages
2591 * that weren't previously dirty.
2592 */
2593 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2594 }
2595 }
2596
2597 /* Find the next dirty page for the next iteration */
2598 run_start = find_next_bit(bitmap, pages, run_start);
2599 }
2600 }
2601
2602 /**
2603 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2604 *
2605 * Transmit the set of pages to be discarded after precopy to the target
2606 * these are pages that:
2607 * a) Have been previously transmitted but are now dirty again
2608 * b) Pages that have never been transmitted, this ensures that
2609 * any pages on the destination that have been mapped by background
2610 * tasks get discarded (transparent huge pages is the specific concern)
2611 * Hopefully this is pretty sparse
2612 *
2613 * @ms: current migration state
2614 */
ram_postcopy_send_discard_bitmap(MigrationState * ms)2615 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2616 {
2617 RAMState *rs = ram_state;
2618
2619 RCU_READ_LOCK_GUARD();
2620
2621 /* This should be our last sync, the src is now paused */
2622 migration_bitmap_sync(rs, false);
2623
2624 /* Easiest way to make sure we don't resume in the middle of a host-page */
2625 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2626 rs->last_seen_block = NULL;
2627 rs->last_page = 0;
2628
2629 postcopy_each_ram_send_discard(ms);
2630
2631 trace_ram_postcopy_send_discard_bitmap();
2632 }
2633
2634 /**
2635 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2636 *
2637 * Returns zero on success
2638 *
2639 * @rbname: name of the RAMBlock of the request. NULL means the
2640 * same that last one.
2641 * @start: RAMBlock starting page
2642 * @length: RAMBlock size
2643 */
ram_discard_range(const char * rbname,uint64_t start,size_t length)2644 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2645 {
2646 trace_ram_discard_range(rbname, start, length);
2647
2648 RCU_READ_LOCK_GUARD();
2649 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2650
2651 if (!rb) {
2652 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2653 return -1;
2654 }
2655
2656 /*
2657 * On source VM, we don't need to update the received bitmap since
2658 * we don't even have one.
2659 */
2660 if (rb->receivedmap) {
2661 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2662 length >> qemu_target_page_bits());
2663 }
2664
2665 return ram_block_discard_range(rb, start, length);
2666 }
2667
2668 /*
2669 * For every allocation, we will try not to crash the VM if the
2670 * allocation failed.
2671 */
xbzrle_init(Error ** errp)2672 static bool xbzrle_init(Error **errp)
2673 {
2674 if (!migrate_xbzrle()) {
2675 return true;
2676 }
2677
2678 XBZRLE_cache_lock();
2679
2680 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2681 if (!XBZRLE.zero_target_page) {
2682 error_setg(errp, "%s: Error allocating zero page", __func__);
2683 goto err_out;
2684 }
2685
2686 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2687 TARGET_PAGE_SIZE, errp);
2688 if (!XBZRLE.cache) {
2689 goto free_zero_page;
2690 }
2691
2692 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2693 if (!XBZRLE.encoded_buf) {
2694 error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2695 goto free_cache;
2696 }
2697
2698 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2699 if (!XBZRLE.current_buf) {
2700 error_setg(errp, "%s: Error allocating current_buf", __func__);
2701 goto free_encoded_buf;
2702 }
2703
2704 /* We are all good */
2705 XBZRLE_cache_unlock();
2706 return true;
2707
2708 free_encoded_buf:
2709 g_free(XBZRLE.encoded_buf);
2710 XBZRLE.encoded_buf = NULL;
2711 free_cache:
2712 cache_fini(XBZRLE.cache);
2713 XBZRLE.cache = NULL;
2714 free_zero_page:
2715 g_free(XBZRLE.zero_target_page);
2716 XBZRLE.zero_target_page = NULL;
2717 err_out:
2718 XBZRLE_cache_unlock();
2719 return false;
2720 }
2721
ram_state_init(RAMState ** rsp,Error ** errp)2722 static bool ram_state_init(RAMState **rsp, Error **errp)
2723 {
2724 *rsp = g_try_new0(RAMState, 1);
2725
2726 if (!*rsp) {
2727 error_setg(errp, "%s: Init ramstate fail", __func__);
2728 return false;
2729 }
2730
2731 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2732 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2733 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2734 (*rsp)->ram_bytes_total = ram_bytes_total();
2735
2736 /*
2737 * Count the total number of pages used by ram blocks not including any
2738 * gaps due to alignment or unplugs.
2739 * This must match with the initial values of dirty bitmap.
2740 */
2741 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2742 ram_state_reset(*rsp);
2743
2744 return true;
2745 }
2746
ram_list_init_bitmaps(void)2747 static void ram_list_init_bitmaps(void)
2748 {
2749 MigrationState *ms = migrate_get_current();
2750 RAMBlock *block;
2751 unsigned long pages;
2752 uint8_t shift;
2753
2754 /* Skip setting bitmap if there is no RAM */
2755 if (ram_bytes_total()) {
2756 shift = ms->clear_bitmap_shift;
2757 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2758 error_report("clear_bitmap_shift (%u) too big, using "
2759 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2760 shift = CLEAR_BITMAP_SHIFT_MAX;
2761 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2762 error_report("clear_bitmap_shift (%u) too small, using "
2763 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2764 shift = CLEAR_BITMAP_SHIFT_MIN;
2765 }
2766
2767 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2768 pages = block->max_length >> TARGET_PAGE_BITS;
2769 /*
2770 * The initial dirty bitmap for migration must be set with all
2771 * ones to make sure we'll migrate every guest RAM page to
2772 * destination.
2773 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2774 * new migration after a failed migration, ram_list.
2775 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2776 * guest memory.
2777 */
2778 block->bmap = bitmap_new(pages);
2779 bitmap_set(block->bmap, 0, pages);
2780 if (migrate_mapped_ram()) {
2781 block->file_bmap = bitmap_new(pages);
2782 }
2783 block->clear_bmap_shift = shift;
2784 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2785 }
2786 }
2787 }
2788
migration_bitmap_clear_discarded_pages(RAMState * rs)2789 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2790 {
2791 unsigned long pages;
2792 RAMBlock *rb;
2793
2794 RCU_READ_LOCK_GUARD();
2795
2796 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2797 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2798 rs->migration_dirty_pages -= pages;
2799 }
2800 }
2801
ram_init_bitmaps(RAMState * rs,Error ** errp)2802 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2803 {
2804 bool ret = true;
2805
2806 qemu_mutex_lock_ramlist();
2807
2808 WITH_RCU_READ_LOCK_GUARD() {
2809 ram_list_init_bitmaps();
2810 /* We don't use dirty log with background snapshots */
2811 if (!migrate_background_snapshot()) {
2812 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2813 if (!ret) {
2814 goto out_unlock;
2815 }
2816 migration_bitmap_sync_precopy(false);
2817 }
2818 }
2819 out_unlock:
2820 qemu_mutex_unlock_ramlist();
2821
2822 if (!ret) {
2823 ram_bitmaps_destroy();
2824 return false;
2825 }
2826
2827 /*
2828 * After an eventual first bitmap sync, fixup the initial bitmap
2829 * containing all 1s to exclude any discarded pages from migration.
2830 */
2831 migration_bitmap_clear_discarded_pages(rs);
2832 return true;
2833 }
2834
ram_init_all(RAMState ** rsp,Error ** errp)2835 static int ram_init_all(RAMState **rsp, Error **errp)
2836 {
2837 if (!ram_state_init(rsp, errp)) {
2838 return -1;
2839 }
2840
2841 if (!xbzrle_init(errp)) {
2842 ram_state_cleanup(rsp);
2843 return -1;
2844 }
2845
2846 if (!ram_init_bitmaps(*rsp, errp)) {
2847 return -1;
2848 }
2849
2850 return 0;
2851 }
2852
ram_state_resume_prepare(RAMState * rs,QEMUFile * out)2853 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2854 {
2855 RAMBlock *block;
2856 uint64_t pages = 0;
2857
2858 /*
2859 * Postcopy is not using xbzrle/compression, so no need for that.
2860 * Also, since source are already halted, we don't need to care
2861 * about dirty page logging as well.
2862 */
2863
2864 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2865 pages += bitmap_count_one(block->bmap,
2866 block->used_length >> TARGET_PAGE_BITS);
2867 }
2868
2869 /* This may not be aligned with current bitmaps. Recalculate. */
2870 rs->migration_dirty_pages = pages;
2871
2872 ram_state_reset(rs);
2873
2874 /* Update RAMState cache of output QEMUFile */
2875 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2876
2877 trace_ram_state_resume_prepare(pages);
2878 }
2879
2880 /*
2881 * This function clears bits of the free pages reported by the caller from the
2882 * migration dirty bitmap. @addr is the host address corresponding to the
2883 * start of the continuous guest free pages, and @len is the total bytes of
2884 * those pages.
2885 */
qemu_guest_free_page_hint(void * addr,size_t len)2886 void qemu_guest_free_page_hint(void *addr, size_t len)
2887 {
2888 RAMBlock *block;
2889 ram_addr_t offset;
2890 size_t used_len, start, npages;
2891
2892 /* This function is currently expected to be used during live migration */
2893 if (!migration_is_running()) {
2894 return;
2895 }
2896
2897 for (; len > 0; len -= used_len, addr += used_len) {
2898 block = qemu_ram_block_from_host(addr, false, &offset);
2899 if (unlikely(!block || offset >= block->used_length)) {
2900 /*
2901 * The implementation might not support RAMBlock resize during
2902 * live migration, but it could happen in theory with future
2903 * updates. So we add a check here to capture that case.
2904 */
2905 error_report_once("%s unexpected error", __func__);
2906 return;
2907 }
2908
2909 if (len <= block->used_length - offset) {
2910 used_len = len;
2911 } else {
2912 used_len = block->used_length - offset;
2913 }
2914
2915 start = offset >> TARGET_PAGE_BITS;
2916 npages = used_len >> TARGET_PAGE_BITS;
2917
2918 qemu_mutex_lock(&ram_state->bitmap_mutex);
2919 /*
2920 * The skipped free pages are equavalent to be sent from clear_bmap's
2921 * perspective, so clear the bits from the memory region bitmap which
2922 * are initially set. Otherwise those skipped pages will be sent in
2923 * the next round after syncing from the memory region bitmap.
2924 */
2925 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2926 ram_state->migration_dirty_pages -=
2927 bitmap_count_one_with_offset(block->bmap, start, npages);
2928 bitmap_clear(block->bmap, start, npages);
2929 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2930 }
2931 }
2932
2933 #define MAPPED_RAM_HDR_VERSION 1
2934 struct MappedRamHeader {
2935 uint32_t version;
2936 /*
2937 * The target's page size, so we know how many pages are in the
2938 * bitmap.
2939 */
2940 uint64_t page_size;
2941 /*
2942 * The offset in the migration file where the pages bitmap is
2943 * stored.
2944 */
2945 uint64_t bitmap_offset;
2946 /*
2947 * The offset in the migration file where the actual pages (data)
2948 * are stored.
2949 */
2950 uint64_t pages_offset;
2951 } QEMU_PACKED;
2952 typedef struct MappedRamHeader MappedRamHeader;
2953
mapped_ram_setup_ramblock(QEMUFile * file,RAMBlock * block)2954 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2955 {
2956 g_autofree MappedRamHeader *header = NULL;
2957 size_t header_size, bitmap_size;
2958 long num_pages;
2959
2960 header = g_new0(MappedRamHeader, 1);
2961 header_size = sizeof(MappedRamHeader);
2962
2963 num_pages = block->used_length >> TARGET_PAGE_BITS;
2964 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2965
2966 /*
2967 * Save the file offsets of where the bitmap and the pages should
2968 * go as they are written at the end of migration and during the
2969 * iterative phase, respectively.
2970 */
2971 block->bitmap_offset = qemu_get_offset(file) + header_size;
2972 block->pages_offset = ROUND_UP(block->bitmap_offset +
2973 bitmap_size,
2974 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2975
2976 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2977 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2978 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2979 header->pages_offset = cpu_to_be64(block->pages_offset);
2980
2981 qemu_put_buffer(file, (uint8_t *) header, header_size);
2982
2983 /* prepare offset for next ramblock */
2984 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2985 }
2986
mapped_ram_read_header(QEMUFile * file,MappedRamHeader * header,Error ** errp)2987 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2988 Error **errp)
2989 {
2990 size_t ret, header_size = sizeof(MappedRamHeader);
2991
2992 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2993 if (ret != header_size) {
2994 error_setg(errp, "Could not read whole mapped-ram migration header "
2995 "(expected %zd, got %zd bytes)", header_size, ret);
2996 return false;
2997 }
2998
2999 /* migration stream is big-endian */
3000 header->version = be32_to_cpu(header->version);
3001
3002 if (header->version > MAPPED_RAM_HDR_VERSION) {
3003 error_setg(errp, "Migration mapped-ram capability version not "
3004 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3005 header->version);
3006 return false;
3007 }
3008
3009 header->page_size = be64_to_cpu(header->page_size);
3010 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3011 header->pages_offset = be64_to_cpu(header->pages_offset);
3012
3013 return true;
3014 }
3015
3016 /*
3017 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3018 * long-running RCU critical section. When rcu-reclaims in the code
3019 * start to become numerous it will be necessary to reduce the
3020 * granularity of these critical sections.
3021 */
3022
3023 /**
3024 * ram_save_setup: Setup RAM for migration
3025 *
3026 * Returns zero to indicate success and negative for error
3027 *
3028 * @f: QEMUFile where to send the data
3029 * @opaque: RAMState pointer
3030 * @errp: pointer to Error*, to store an error if it happens.
3031 */
ram_save_setup(QEMUFile * f,void * opaque,Error ** errp)3032 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3033 {
3034 RAMState **rsp = opaque;
3035 RAMBlock *block;
3036 int ret, max_hg_page_size;
3037
3038 /* migration has already setup the bitmap, reuse it. */
3039 if (!migration_in_colo_state()) {
3040 if (ram_init_all(rsp, errp) != 0) {
3041 return -1;
3042 }
3043 }
3044 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3045
3046 /*
3047 * ??? Mirrors the previous value of qemu_host_page_size,
3048 * but is this really what was intended for the migration?
3049 */
3050 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3051
3052 WITH_RCU_READ_LOCK_GUARD() {
3053 qemu_put_be64(f, ram_bytes_total_with_ignored()
3054 | RAM_SAVE_FLAG_MEM_SIZE);
3055
3056 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3057 qemu_put_byte(f, strlen(block->idstr));
3058 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3059 qemu_put_be64(f, block->used_length);
3060 if (migrate_postcopy_ram() &&
3061 block->page_size != max_hg_page_size) {
3062 qemu_put_be64(f, block->page_size);
3063 }
3064 if (migrate_ignore_shared()) {
3065 qemu_put_be64(f, block->mr->addr);
3066 }
3067
3068 if (migrate_mapped_ram()) {
3069 mapped_ram_setup_ramblock(f, block);
3070 }
3071 }
3072 }
3073
3074 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3075 if (ret < 0) {
3076 error_setg(errp, "%s: failed to start RDMA registration", __func__);
3077 qemu_file_set_error(f, ret);
3078 return ret;
3079 }
3080
3081 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3082 if (ret < 0) {
3083 error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3084 qemu_file_set_error(f, ret);
3085 return ret;
3086 }
3087
3088 if (migrate_multifd()) {
3089 multifd_ram_save_setup();
3090 }
3091
3092 /*
3093 * This operation is unfortunate..
3094 *
3095 * For legacy QEMUs using per-section sync
3096 * =======================================
3097 *
3098 * This must exist because the EOS below requires the SYNC messages
3099 * per-channel to work.
3100 *
3101 * For modern QEMUs using per-round sync
3102 * =====================================
3103 *
3104 * Logically such sync is not needed, and recv threads should not run
3105 * until setup ready (using things like channels_ready on src). Then
3106 * we should be all fine.
3107 *
3108 * However even if we add channels_ready to recv side in new QEMUs, old
3109 * QEMU won't have them so this sync will still be needed to make sure
3110 * multifd recv threads won't start processing guest pages early before
3111 * ram_load_setup() is properly done.
3112 *
3113 * Let's stick with this. Fortunately the overhead is low to sync
3114 * during setup because the VM is running, so at least it's not
3115 * accounted as part of downtime.
3116 */
3117 bql_unlock();
3118 ret = multifd_ram_flush_and_sync(f);
3119 bql_lock();
3120 if (ret < 0) {
3121 error_setg(errp, "%s: multifd synchronization failed", __func__);
3122 return ret;
3123 }
3124
3125 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3126 ret = qemu_fflush(f);
3127 if (ret < 0) {
3128 error_setg_errno(errp, -ret, "%s failed", __func__);
3129 }
3130 return ret;
3131 }
3132
ram_save_file_bmap(QEMUFile * f)3133 static void ram_save_file_bmap(QEMUFile *f)
3134 {
3135 RAMBlock *block;
3136
3137 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3138 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3139 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3140
3141 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3142 block->bitmap_offset);
3143 ram_transferred_add(bitmap_size);
3144
3145 /*
3146 * Free the bitmap here to catch any synchronization issues
3147 * with multifd channels. No channels should be sending pages
3148 * after we've written the bitmap to file.
3149 */
3150 g_free(block->file_bmap);
3151 block->file_bmap = NULL;
3152 }
3153 }
3154
ramblock_set_file_bmap_atomic(RAMBlock * block,ram_addr_t offset,bool set)3155 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3156 {
3157 if (set) {
3158 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3159 } else {
3160 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3161 }
3162 }
3163
3164 /**
3165 * ram_save_iterate: iterative stage for migration
3166 *
3167 * Returns zero to indicate success and negative for error
3168 *
3169 * @f: QEMUFile where to send the data
3170 * @opaque: RAMState pointer
3171 */
ram_save_iterate(QEMUFile * f,void * opaque)3172 static int ram_save_iterate(QEMUFile *f, void *opaque)
3173 {
3174 RAMState **temp = opaque;
3175 RAMState *rs = *temp;
3176 int ret = 0;
3177 int i;
3178 int64_t t0;
3179 int done = 0;
3180
3181 /*
3182 * We'll take this lock a little bit long, but it's okay for two reasons.
3183 * Firstly, the only possible other thread to take it is who calls
3184 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3185 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3186 * guarantees that we'll at least released it in a regular basis.
3187 */
3188 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3189 WITH_RCU_READ_LOCK_GUARD() {
3190 if (ram_list.version != rs->last_version) {
3191 ram_state_reset(rs);
3192 }
3193
3194 /* Read version before ram_list.blocks */
3195 smp_rmb();
3196
3197 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3198 if (ret < 0) {
3199 qemu_file_set_error(f, ret);
3200 goto out;
3201 }
3202
3203 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3204 i = 0;
3205 while ((ret = migration_rate_exceeded(f)) == 0 ||
3206 postcopy_has_request(rs)) {
3207 int pages;
3208
3209 if (qemu_file_get_error(f)) {
3210 break;
3211 }
3212
3213 pages = ram_find_and_save_block(rs);
3214 /* no more pages to sent */
3215 if (pages == 0) {
3216 done = 1;
3217 break;
3218 }
3219
3220 if (pages < 0) {
3221 qemu_file_set_error(f, pages);
3222 break;
3223 }
3224
3225 rs->target_page_count += pages;
3226
3227 /*
3228 * we want to check in the 1st loop, just in case it was the 1st
3229 * time and we had to sync the dirty bitmap.
3230 * qemu_clock_get_ns() is a bit expensive, so we only check each
3231 * some iterations
3232 */
3233 if ((i & 63) == 0) {
3234 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3235 1000000;
3236 if (t1 > MAX_WAIT) {
3237 trace_ram_save_iterate_big_wait(t1, i);
3238 break;
3239 }
3240 }
3241 i++;
3242 }
3243 }
3244 }
3245
3246 /*
3247 * Must occur before EOS (or any QEMUFile operation)
3248 * because of RDMA protocol.
3249 */
3250 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3251 if (ret < 0) {
3252 qemu_file_set_error(f, ret);
3253 }
3254
3255 out:
3256 if (ret >= 0 && migration_is_running()) {
3257 if (multifd_ram_sync_per_section()) {
3258 ret = multifd_ram_flush_and_sync(f);
3259 if (ret < 0) {
3260 return ret;
3261 }
3262 }
3263
3264 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3265 ram_transferred_add(8);
3266 ret = qemu_fflush(f);
3267 }
3268 if (ret < 0) {
3269 return ret;
3270 }
3271
3272 return done;
3273 }
3274
3275 /**
3276 * ram_save_complete: function called to send the remaining amount of ram
3277 *
3278 * Returns zero to indicate success or negative on error
3279 *
3280 * Called with the BQL
3281 *
3282 * @f: QEMUFile where to send the data
3283 * @opaque: RAMState pointer
3284 */
ram_save_complete(QEMUFile * f,void * opaque)3285 static int ram_save_complete(QEMUFile *f, void *opaque)
3286 {
3287 RAMState **temp = opaque;
3288 RAMState *rs = *temp;
3289 int ret = 0;
3290
3291 rs->last_stage = !migration_in_colo_state();
3292
3293 WITH_RCU_READ_LOCK_GUARD() {
3294 if (!migration_in_postcopy()) {
3295 migration_bitmap_sync_precopy(true);
3296 }
3297
3298 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3299 if (ret < 0) {
3300 qemu_file_set_error(f, ret);
3301 return ret;
3302 }
3303
3304 /* try transferring iterative blocks of memory */
3305
3306 /* flush all remaining blocks regardless of rate limiting */
3307 qemu_mutex_lock(&rs->bitmap_mutex);
3308 while (true) {
3309 int pages;
3310
3311 pages = ram_find_and_save_block(rs);
3312 /* no more blocks to sent */
3313 if (pages == 0) {
3314 break;
3315 }
3316 if (pages < 0) {
3317 qemu_mutex_unlock(&rs->bitmap_mutex);
3318 return pages;
3319 }
3320 }
3321 qemu_mutex_unlock(&rs->bitmap_mutex);
3322
3323 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3324 if (ret < 0) {
3325 qemu_file_set_error(f, ret);
3326 return ret;
3327 }
3328 }
3329
3330 if (multifd_ram_sync_per_section()) {
3331 /*
3332 * Only the old dest QEMU will need this sync, because each EOS
3333 * will require one SYNC message on each channel.
3334 */
3335 ret = multifd_ram_flush_and_sync(f);
3336 if (ret < 0) {
3337 return ret;
3338 }
3339 }
3340
3341 if (migrate_mapped_ram()) {
3342 ram_save_file_bmap(f);
3343
3344 if (qemu_file_get_error(f)) {
3345 Error *local_err = NULL;
3346 int err = qemu_file_get_error_obj(f, &local_err);
3347
3348 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3349 return -err;
3350 }
3351 }
3352
3353 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3354 return qemu_fflush(f);
3355 }
3356
ram_state_pending_estimate(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3357 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3358 uint64_t *can_postcopy)
3359 {
3360 RAMState **temp = opaque;
3361 RAMState *rs = *temp;
3362
3363 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3364
3365 if (migrate_postcopy_ram()) {
3366 /* We can do postcopy, and all the data is postcopiable */
3367 *can_postcopy += remaining_size;
3368 } else {
3369 *must_precopy += remaining_size;
3370 }
3371 }
3372
ram_state_pending_exact(void * opaque,uint64_t * must_precopy,uint64_t * can_postcopy)3373 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3374 uint64_t *can_postcopy)
3375 {
3376 RAMState **temp = opaque;
3377 RAMState *rs = *temp;
3378 uint64_t remaining_size;
3379
3380 if (!migration_in_postcopy()) {
3381 bql_lock();
3382 WITH_RCU_READ_LOCK_GUARD() {
3383 migration_bitmap_sync_precopy(false);
3384 }
3385 bql_unlock();
3386 }
3387
3388 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3389
3390 if (migrate_postcopy_ram()) {
3391 /* We can do postcopy, and all the data is postcopiable */
3392 *can_postcopy += remaining_size;
3393 } else {
3394 *must_precopy += remaining_size;
3395 }
3396 }
3397
load_xbzrle(QEMUFile * f,ram_addr_t addr,void * host)3398 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3399 {
3400 unsigned int xh_len;
3401 int xh_flags;
3402 uint8_t *loaded_data;
3403
3404 /* extract RLE header */
3405 xh_flags = qemu_get_byte(f);
3406 xh_len = qemu_get_be16(f);
3407
3408 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3409 error_report("Failed to load XBZRLE page - wrong compression!");
3410 return -1;
3411 }
3412
3413 if (xh_len > TARGET_PAGE_SIZE) {
3414 error_report("Failed to load XBZRLE page - len overflow!");
3415 return -1;
3416 }
3417 loaded_data = XBZRLE.decoded_buf;
3418 /* load data and decode */
3419 /* it can change loaded_data to point to an internal buffer */
3420 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3421
3422 /* decode RLE */
3423 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3424 TARGET_PAGE_SIZE) == -1) {
3425 error_report("Failed to load XBZRLE page - decode error!");
3426 return -1;
3427 }
3428
3429 return 0;
3430 }
3431
3432 /**
3433 * ram_block_from_stream: read a RAMBlock id from the migration stream
3434 *
3435 * Must be called from within a rcu critical section.
3436 *
3437 * Returns a pointer from within the RCU-protected ram_list.
3438 *
3439 * @mis: the migration incoming state pointer
3440 * @f: QEMUFile where to read the data from
3441 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3442 * @channel: the channel we're using
3443 */
ram_block_from_stream(MigrationIncomingState * mis,QEMUFile * f,int flags,int channel)3444 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3445 QEMUFile *f, int flags,
3446 int channel)
3447 {
3448 RAMBlock *block = mis->last_recv_block[channel];
3449 char id[256];
3450 uint8_t len;
3451
3452 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3453 if (!block) {
3454 error_report("Ack, bad migration stream!");
3455 return NULL;
3456 }
3457 return block;
3458 }
3459
3460 len = qemu_get_byte(f);
3461 qemu_get_buffer(f, (uint8_t *)id, len);
3462 id[len] = 0;
3463
3464 block = qemu_ram_block_by_name(id);
3465 if (!block) {
3466 error_report("Can't find block %s", id);
3467 return NULL;
3468 }
3469
3470 if (migrate_ram_is_ignored(block)) {
3471 error_report("block %s should not be migrated !", id);
3472 return NULL;
3473 }
3474
3475 mis->last_recv_block[channel] = block;
3476
3477 return block;
3478 }
3479
host_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3480 static inline void *host_from_ram_block_offset(RAMBlock *block,
3481 ram_addr_t offset)
3482 {
3483 if (!offset_in_ramblock(block, offset)) {
3484 return NULL;
3485 }
3486
3487 return block->host + offset;
3488 }
3489
host_page_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3490 static void *host_page_from_ram_block_offset(RAMBlock *block,
3491 ram_addr_t offset)
3492 {
3493 /* Note: Explicitly no check against offset_in_ramblock(). */
3494 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3495 block->page_size);
3496 }
3497
host_page_offset_from_ram_block_offset(RAMBlock * block,ram_addr_t offset)3498 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3499 ram_addr_t offset)
3500 {
3501 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3502 }
3503
colo_record_bitmap(RAMBlock * block,ram_addr_t * normal,uint32_t pages)3504 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3505 {
3506 qemu_mutex_lock(&ram_state->bitmap_mutex);
3507 for (int i = 0; i < pages; i++) {
3508 ram_addr_t offset = normal[i];
3509 ram_state->migration_dirty_pages += !test_and_set_bit(
3510 offset >> TARGET_PAGE_BITS,
3511 block->bmap);
3512 }
3513 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3514 }
3515
colo_cache_from_block_offset(RAMBlock * block,ram_addr_t offset,bool record_bitmap)3516 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3517 ram_addr_t offset, bool record_bitmap)
3518 {
3519 if (!offset_in_ramblock(block, offset)) {
3520 return NULL;
3521 }
3522 if (!block->colo_cache) {
3523 error_report("%s: colo_cache is NULL in block :%s",
3524 __func__, block->idstr);
3525 return NULL;
3526 }
3527
3528 /*
3529 * During colo checkpoint, we need bitmap of these migrated pages.
3530 * It help us to decide which pages in ram cache should be flushed
3531 * into VM's RAM later.
3532 */
3533 if (record_bitmap) {
3534 colo_record_bitmap(block, &offset, 1);
3535 }
3536 return block->colo_cache + offset;
3537 }
3538
3539 /**
3540 * ram_handle_zero: handle the zero page case
3541 *
3542 * If a page (or a whole RDMA chunk) has been
3543 * determined to be zero, then zap it.
3544 *
3545 * @host: host address for the zero page
3546 * @ch: what the page is filled from. We only support zero
3547 * @size: size of the zero page
3548 */
ram_handle_zero(void * host,uint64_t size)3549 void ram_handle_zero(void *host, uint64_t size)
3550 {
3551 if (!buffer_is_zero(host, size)) {
3552 memset(host, 0, size);
3553 }
3554 }
3555
colo_init_ram_state(void)3556 static void colo_init_ram_state(void)
3557 {
3558 Error *local_err = NULL;
3559
3560 if (!ram_state_init(&ram_state, &local_err)) {
3561 error_report_err(local_err);
3562 }
3563 }
3564
3565 /*
3566 * colo cache: this is for secondary VM, we cache the whole
3567 * memory of the secondary VM, it is need to hold the global lock
3568 * to call this helper.
3569 */
colo_init_ram_cache(void)3570 int colo_init_ram_cache(void)
3571 {
3572 RAMBlock *block;
3573
3574 WITH_RCU_READ_LOCK_GUARD() {
3575 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3576 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3577 NULL, false, false);
3578 if (!block->colo_cache) {
3579 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3580 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3581 block->used_length);
3582 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3583 if (block->colo_cache) {
3584 qemu_anon_ram_free(block->colo_cache, block->used_length);
3585 block->colo_cache = NULL;
3586 }
3587 }
3588 return -errno;
3589 }
3590 if (!machine_dump_guest_core(current_machine)) {
3591 qemu_madvise(block->colo_cache, block->used_length,
3592 QEMU_MADV_DONTDUMP);
3593 }
3594 }
3595 }
3596
3597 /*
3598 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3599 * with to decide which page in cache should be flushed into SVM's RAM. Here
3600 * we use the same name 'ram_bitmap' as for migration.
3601 */
3602 if (ram_bytes_total()) {
3603 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3604 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3605 block->bmap = bitmap_new(pages);
3606 }
3607 }
3608
3609 colo_init_ram_state();
3610 return 0;
3611 }
3612
3613 /* TODO: duplicated with ram_init_bitmaps */
colo_incoming_start_dirty_log(void)3614 void colo_incoming_start_dirty_log(void)
3615 {
3616 RAMBlock *block = NULL;
3617 Error *local_err = NULL;
3618
3619 /* For memory_global_dirty_log_start below. */
3620 bql_lock();
3621 qemu_mutex_lock_ramlist();
3622
3623 memory_global_dirty_log_sync(false);
3624 WITH_RCU_READ_LOCK_GUARD() {
3625 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3626 ramblock_sync_dirty_bitmap(ram_state, block);
3627 /* Discard this dirty bitmap record */
3628 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3629 }
3630 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3631 &local_err)) {
3632 error_report_err(local_err);
3633 }
3634 }
3635 ram_state->migration_dirty_pages = 0;
3636 qemu_mutex_unlock_ramlist();
3637 bql_unlock();
3638 }
3639
3640 /* It is need to hold the global lock to call this helper */
colo_release_ram_cache(void)3641 void colo_release_ram_cache(void)
3642 {
3643 RAMBlock *block;
3644
3645 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3646 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3647 g_free(block->bmap);
3648 block->bmap = NULL;
3649 }
3650
3651 WITH_RCU_READ_LOCK_GUARD() {
3652 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3653 if (block->colo_cache) {
3654 qemu_anon_ram_free(block->colo_cache, block->used_length);
3655 block->colo_cache = NULL;
3656 }
3657 }
3658 }
3659 ram_state_cleanup(&ram_state);
3660 }
3661
3662 /**
3663 * ram_load_setup: Setup RAM for migration incoming side
3664 *
3665 * Returns zero to indicate success and negative for error
3666 *
3667 * @f: QEMUFile where to receive the data
3668 * @opaque: RAMState pointer
3669 * @errp: pointer to Error*, to store an error if it happens.
3670 */
ram_load_setup(QEMUFile * f,void * opaque,Error ** errp)3671 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3672 {
3673 xbzrle_load_setup();
3674 ramblock_recv_map_init();
3675
3676 return 0;
3677 }
3678
ram_load_cleanup(void * opaque)3679 static int ram_load_cleanup(void *opaque)
3680 {
3681 RAMBlock *rb;
3682
3683 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3684 if (memory_region_is_nonvolatile(rb->mr)) {
3685 qemu_ram_block_writeback(rb);
3686 }
3687 }
3688
3689 xbzrle_load_cleanup();
3690
3691 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3692 g_free(rb->receivedmap);
3693 rb->receivedmap = NULL;
3694 }
3695
3696 return 0;
3697 }
3698
3699 /**
3700 * ram_postcopy_incoming_init: allocate postcopy data structures
3701 *
3702 * Returns 0 for success and negative if there was one error
3703 *
3704 * @mis: current migration incoming state
3705 *
3706 * Allocate data structures etc needed by incoming migration with
3707 * postcopy-ram. postcopy-ram's similarly names
3708 * postcopy_ram_incoming_init does the work.
3709 */
ram_postcopy_incoming_init(MigrationIncomingState * mis)3710 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3711 {
3712 return postcopy_ram_incoming_init(mis);
3713 }
3714
3715 /**
3716 * ram_load_postcopy: load a page in postcopy case
3717 *
3718 * Returns 0 for success or -errno in case of error
3719 *
3720 * Called in postcopy mode by ram_load().
3721 * rcu_read_lock is taken prior to this being called.
3722 *
3723 * @f: QEMUFile where to send the data
3724 * @channel: the channel to use for loading
3725 */
ram_load_postcopy(QEMUFile * f,int channel)3726 int ram_load_postcopy(QEMUFile *f, int channel)
3727 {
3728 int flags = 0, ret = 0;
3729 bool place_needed = false;
3730 bool matches_target_page_size = false;
3731 MigrationIncomingState *mis = migration_incoming_get_current();
3732 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3733
3734 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3735 ram_addr_t addr;
3736 void *page_buffer = NULL;
3737 void *place_source = NULL;
3738 RAMBlock *block = NULL;
3739 uint8_t ch;
3740
3741 addr = qemu_get_be64(f);
3742
3743 /*
3744 * If qemu file error, we should stop here, and then "addr"
3745 * may be invalid
3746 */
3747 ret = qemu_file_get_error(f);
3748 if (ret) {
3749 break;
3750 }
3751
3752 flags = addr & ~TARGET_PAGE_MASK;
3753 addr &= TARGET_PAGE_MASK;
3754
3755 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3756 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3757 block = ram_block_from_stream(mis, f, flags, channel);
3758 if (!block) {
3759 ret = -EINVAL;
3760 break;
3761 }
3762
3763 /*
3764 * Relying on used_length is racy and can result in false positives.
3765 * We might place pages beyond used_length in case RAM was shrunk
3766 * while in postcopy, which is fine - trying to place via
3767 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3768 */
3769 if (!block->host || addr >= block->postcopy_length) {
3770 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3771 ret = -EINVAL;
3772 break;
3773 }
3774 tmp_page->target_pages++;
3775 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3776 /*
3777 * Postcopy requires that we place whole host pages atomically;
3778 * these may be huge pages for RAMBlocks that are backed by
3779 * hugetlbfs.
3780 * To make it atomic, the data is read into a temporary page
3781 * that's moved into place later.
3782 * The migration protocol uses, possibly smaller, target-pages
3783 * however the source ensures it always sends all the components
3784 * of a host page in one chunk.
3785 */
3786 page_buffer = tmp_page->tmp_huge_page +
3787 host_page_offset_from_ram_block_offset(block, addr);
3788 /* If all TP are zero then we can optimise the place */
3789 if (tmp_page->target_pages == 1) {
3790 tmp_page->host_addr =
3791 host_page_from_ram_block_offset(block, addr);
3792 } else if (tmp_page->host_addr !=
3793 host_page_from_ram_block_offset(block, addr)) {
3794 /* not the 1st TP within the HP */
3795 error_report("Non-same host page detected on channel %d: "
3796 "Target host page %p, received host page %p "
3797 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3798 channel, tmp_page->host_addr,
3799 host_page_from_ram_block_offset(block, addr),
3800 block->idstr, addr, tmp_page->target_pages);
3801 ret = -EINVAL;
3802 break;
3803 }
3804
3805 /*
3806 * If it's the last part of a host page then we place the host
3807 * page
3808 */
3809 if (tmp_page->target_pages ==
3810 (block->page_size / TARGET_PAGE_SIZE)) {
3811 place_needed = true;
3812 }
3813 place_source = tmp_page->tmp_huge_page;
3814 }
3815
3816 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3817 case RAM_SAVE_FLAG_ZERO:
3818 ch = qemu_get_byte(f);
3819 if (ch != 0) {
3820 error_report("Found a zero page with value %d", ch);
3821 ret = -EINVAL;
3822 break;
3823 }
3824 /*
3825 * Can skip to set page_buffer when
3826 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3827 */
3828 if (!matches_target_page_size) {
3829 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3830 }
3831 break;
3832
3833 case RAM_SAVE_FLAG_PAGE:
3834 tmp_page->all_zero = false;
3835 if (!matches_target_page_size) {
3836 /* For huge pages, we always use temporary buffer */
3837 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3838 } else {
3839 /*
3840 * For small pages that matches target page size, we
3841 * avoid the qemu_file copy. Instead we directly use
3842 * the buffer of QEMUFile to place the page. Note: we
3843 * cannot do any QEMUFile operation before using that
3844 * buffer to make sure the buffer is valid when
3845 * placing the page.
3846 */
3847 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3848 TARGET_PAGE_SIZE);
3849 }
3850 break;
3851 case RAM_SAVE_FLAG_EOS:
3852 break;
3853 default:
3854 error_report("Unknown combination of migration flags: 0x%x"
3855 " (postcopy mode)", flags);
3856 ret = -EINVAL;
3857 break;
3858 }
3859
3860 /* Detect for any possible file errors */
3861 if (!ret && qemu_file_get_error(f)) {
3862 ret = qemu_file_get_error(f);
3863 }
3864
3865 if (!ret && place_needed) {
3866 if (tmp_page->all_zero) {
3867 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3868 } else {
3869 ret = postcopy_place_page(mis, tmp_page->host_addr,
3870 place_source, block);
3871 }
3872 place_needed = false;
3873 postcopy_temp_page_reset(tmp_page);
3874 }
3875 }
3876
3877 return ret;
3878 }
3879
postcopy_is_running(void)3880 static bool postcopy_is_running(void)
3881 {
3882 PostcopyState ps = postcopy_state_get();
3883 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3884 }
3885
3886 /*
3887 * Flush content of RAM cache into SVM's memory.
3888 * Only flush the pages that be dirtied by PVM or SVM or both.
3889 */
colo_flush_ram_cache(void)3890 void colo_flush_ram_cache(void)
3891 {
3892 RAMBlock *block = NULL;
3893 void *dst_host;
3894 void *src_host;
3895 unsigned long offset = 0;
3896
3897 memory_global_dirty_log_sync(false);
3898 qemu_mutex_lock(&ram_state->bitmap_mutex);
3899 WITH_RCU_READ_LOCK_GUARD() {
3900 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3901 ramblock_sync_dirty_bitmap(ram_state, block);
3902 }
3903 }
3904
3905 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3906 WITH_RCU_READ_LOCK_GUARD() {
3907 block = QLIST_FIRST_RCU(&ram_list.blocks);
3908
3909 while (block) {
3910 unsigned long num = 0;
3911
3912 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3913 if (!offset_in_ramblock(block,
3914 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3915 offset = 0;
3916 num = 0;
3917 block = QLIST_NEXT_RCU(block, next);
3918 } else {
3919 unsigned long i = 0;
3920
3921 for (i = 0; i < num; i++) {
3922 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3923 }
3924 dst_host = block->host
3925 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3926 src_host = block->colo_cache
3927 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3928 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3929 offset += num;
3930 }
3931 }
3932 }
3933 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3934 trace_colo_flush_ram_cache_end();
3935 }
3936
ram_load_multifd_pages(void * host_addr,size_t size,uint64_t offset)3937 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3938 uint64_t offset)
3939 {
3940 MultiFDRecvData *data = multifd_get_recv_data();
3941
3942 data->opaque = host_addr;
3943 data->file_offset = offset;
3944 data->size = size;
3945
3946 if (!multifd_recv()) {
3947 return 0;
3948 }
3949
3950 return size;
3951 }
3952
read_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,long num_pages,unsigned long * bitmap,Error ** errp)3953 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3954 long num_pages, unsigned long *bitmap,
3955 Error **errp)
3956 {
3957 ERRP_GUARD();
3958 unsigned long set_bit_idx, clear_bit_idx;
3959 ram_addr_t offset;
3960 void *host;
3961 size_t read, unread, size;
3962
3963 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3964 set_bit_idx < num_pages;
3965 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3966
3967 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3968
3969 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3970 offset = set_bit_idx << TARGET_PAGE_BITS;
3971
3972 while (unread > 0) {
3973 host = host_from_ram_block_offset(block, offset);
3974 if (!host) {
3975 error_setg(errp, "page outside of ramblock %s range",
3976 block->idstr);
3977 return false;
3978 }
3979
3980 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3981
3982 if (migrate_multifd()) {
3983 read = ram_load_multifd_pages(host, size,
3984 block->pages_offset + offset);
3985 } else {
3986 read = qemu_get_buffer_at(f, host, size,
3987 block->pages_offset + offset);
3988 }
3989
3990 if (!read) {
3991 goto err;
3992 }
3993 offset += read;
3994 unread -= read;
3995 }
3996 }
3997
3998 return true;
3999
4000 err:
4001 qemu_file_get_error_obj(f, errp);
4002 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4003 "from file offset %" PRIx64 ": ", block->idstr, offset,
4004 block->pages_offset + offset);
4005 return false;
4006 }
4007
parse_ramblock_mapped_ram(QEMUFile * f,RAMBlock * block,ram_addr_t length,Error ** errp)4008 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4009 ram_addr_t length, Error **errp)
4010 {
4011 g_autofree unsigned long *bitmap = NULL;
4012 MappedRamHeader header;
4013 size_t bitmap_size;
4014 long num_pages;
4015
4016 if (!mapped_ram_read_header(f, &header, errp)) {
4017 return;
4018 }
4019
4020 block->pages_offset = header.pages_offset;
4021
4022 /*
4023 * Check the alignment of the file region that contains pages. We
4024 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4025 * value to change in the future. Do only a sanity check with page
4026 * size alignment.
4027 */
4028 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4029 error_setg(errp,
4030 "Error reading ramblock %s pages, region has bad alignment",
4031 block->idstr);
4032 return;
4033 }
4034
4035 num_pages = length / header.page_size;
4036 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4037
4038 bitmap = g_malloc0(bitmap_size);
4039 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4040 header.bitmap_offset) != bitmap_size) {
4041 error_setg(errp, "Error reading dirty bitmap");
4042 return;
4043 }
4044
4045 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4046 return;
4047 }
4048
4049 /* Skip pages array */
4050 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4051 }
4052
parse_ramblock(QEMUFile * f,RAMBlock * block,ram_addr_t length)4053 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4054 {
4055 int ret = 0;
4056 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4057 bool postcopy_advised = migration_incoming_postcopy_advised();
4058 int max_hg_page_size;
4059 Error *local_err = NULL;
4060
4061 assert(block);
4062
4063 if (migrate_mapped_ram()) {
4064 parse_ramblock_mapped_ram(f, block, length, &local_err);
4065 if (local_err) {
4066 error_report_err(local_err);
4067 return -EINVAL;
4068 }
4069 return 0;
4070 }
4071
4072 if (!qemu_ram_is_migratable(block)) {
4073 error_report("block %s should not be migrated !", block->idstr);
4074 return -EINVAL;
4075 }
4076
4077 if (length != block->used_length) {
4078 ret = qemu_ram_resize(block, length, &local_err);
4079 if (local_err) {
4080 error_report_err(local_err);
4081 return ret;
4082 }
4083 }
4084
4085 /*
4086 * ??? Mirrors the previous value of qemu_host_page_size,
4087 * but is this really what was intended for the migration?
4088 */
4089 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4090
4091 /* For postcopy we need to check hugepage sizes match */
4092 if (postcopy_advised && migrate_postcopy_ram() &&
4093 block->page_size != max_hg_page_size) {
4094 uint64_t remote_page_size = qemu_get_be64(f);
4095 if (remote_page_size != block->page_size) {
4096 error_report("Mismatched RAM page size %s "
4097 "(local) %zd != %" PRId64, block->idstr,
4098 block->page_size, remote_page_size);
4099 return -EINVAL;
4100 }
4101 }
4102 if (migrate_ignore_shared()) {
4103 hwaddr addr = qemu_get_be64(f);
4104 if (migrate_ram_is_ignored(block) &&
4105 block->mr->addr != addr) {
4106 error_report("Mismatched GPAs for block %s "
4107 "%" PRId64 "!= %" PRId64, block->idstr,
4108 (uint64_t)addr, (uint64_t)block->mr->addr);
4109 return -EINVAL;
4110 }
4111 }
4112 ret = rdma_block_notification_handle(f, block->idstr);
4113 if (ret < 0) {
4114 qemu_file_set_error(f, ret);
4115 }
4116
4117 return ret;
4118 }
4119
parse_ramblocks(QEMUFile * f,ram_addr_t total_ram_bytes)4120 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4121 {
4122 int ret = 0;
4123
4124 /* Synchronize RAM block list */
4125 while (!ret && total_ram_bytes) {
4126 RAMBlock *block;
4127 char id[256];
4128 ram_addr_t length;
4129 int len = qemu_get_byte(f);
4130
4131 qemu_get_buffer(f, (uint8_t *)id, len);
4132 id[len] = 0;
4133 length = qemu_get_be64(f);
4134
4135 block = qemu_ram_block_by_name(id);
4136 if (block) {
4137 ret = parse_ramblock(f, block, length);
4138 } else {
4139 error_report("Unknown ramblock \"%s\", cannot accept "
4140 "migration", id);
4141 ret = -EINVAL;
4142 }
4143 total_ram_bytes -= length;
4144 }
4145
4146 return ret;
4147 }
4148
4149 /**
4150 * ram_load_precopy: load pages in precopy case
4151 *
4152 * Returns 0 for success or -errno in case of error
4153 *
4154 * Called in precopy mode by ram_load().
4155 * rcu_read_lock is taken prior to this being called.
4156 *
4157 * @f: QEMUFile where to send the data
4158 */
ram_load_precopy(QEMUFile * f)4159 static int ram_load_precopy(QEMUFile *f)
4160 {
4161 MigrationIncomingState *mis = migration_incoming_get_current();
4162 int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4163
4164 if (migrate_mapped_ram()) {
4165 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4166 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4167 RAM_SAVE_FLAG_ZERO);
4168 }
4169
4170 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4171 ram_addr_t addr;
4172 void *host = NULL, *host_bak = NULL;
4173 uint8_t ch;
4174
4175 /*
4176 * Yield periodically to let main loop run, but an iteration of
4177 * the main loop is expensive, so do it each some iterations
4178 */
4179 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4180 aio_co_schedule(qemu_get_current_aio_context(),
4181 qemu_coroutine_self());
4182 qemu_coroutine_yield();
4183 }
4184 i++;
4185
4186 addr = qemu_get_be64(f);
4187 ret = qemu_file_get_error(f);
4188 if (ret) {
4189 error_report("Getting RAM address failed");
4190 break;
4191 }
4192
4193 flags = addr & ~TARGET_PAGE_MASK;
4194 addr &= TARGET_PAGE_MASK;
4195
4196 if (flags & invalid_flags) {
4197 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4198
4199 ret = -EINVAL;
4200 break;
4201 }
4202
4203 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4204 RAM_SAVE_FLAG_XBZRLE)) {
4205 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4206 RAM_CHANNEL_PRECOPY);
4207
4208 host = host_from_ram_block_offset(block, addr);
4209 /*
4210 * After going into COLO stage, we should not load the page
4211 * into SVM's memory directly, we put them into colo_cache firstly.
4212 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4213 * Previously, we copied all these memory in preparing stage of COLO
4214 * while we need to stop VM, which is a time-consuming process.
4215 * Here we optimize it by a trick, back-up every page while in
4216 * migration process while COLO is enabled, though it affects the
4217 * speed of the migration, but it obviously reduce the downtime of
4218 * back-up all SVM'S memory in COLO preparing stage.
4219 */
4220 if (migration_incoming_colo_enabled()) {
4221 if (migration_incoming_in_colo_state()) {
4222 /* In COLO stage, put all pages into cache temporarily */
4223 host = colo_cache_from_block_offset(block, addr, true);
4224 } else {
4225 /*
4226 * In migration stage but before COLO stage,
4227 * Put all pages into both cache and SVM's memory.
4228 */
4229 host_bak = colo_cache_from_block_offset(block, addr, false);
4230 }
4231 }
4232 if (!host) {
4233 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4234 ret = -EINVAL;
4235 break;
4236 }
4237 if (!migration_incoming_in_colo_state()) {
4238 ramblock_recv_bitmap_set(block, host);
4239 }
4240
4241 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4242 }
4243
4244 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4245 case RAM_SAVE_FLAG_MEM_SIZE:
4246 ret = parse_ramblocks(f, addr);
4247 /*
4248 * For mapped-ram migration (to a file) using multifd, we sync
4249 * once and for all here to make sure all tasks we queued to
4250 * multifd threads are completed, so that all the ramblocks
4251 * (including all the guest memory pages within) are fully
4252 * loaded after this sync returns.
4253 */
4254 if (migrate_mapped_ram()) {
4255 multifd_recv_sync_main();
4256 }
4257 break;
4258
4259 case RAM_SAVE_FLAG_ZERO:
4260 ch = qemu_get_byte(f);
4261 if (ch != 0) {
4262 error_report("Found a zero page with value %d", ch);
4263 ret = -EINVAL;
4264 break;
4265 }
4266 ram_handle_zero(host, TARGET_PAGE_SIZE);
4267 break;
4268
4269 case RAM_SAVE_FLAG_PAGE:
4270 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4271 break;
4272
4273 case RAM_SAVE_FLAG_XBZRLE:
4274 if (load_xbzrle(f, addr, host) < 0) {
4275 error_report("Failed to decompress XBZRLE page at "
4276 RAM_ADDR_FMT, addr);
4277 ret = -EINVAL;
4278 break;
4279 }
4280 break;
4281 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4282 multifd_recv_sync_main();
4283 break;
4284 case RAM_SAVE_FLAG_EOS:
4285 /* normal exit */
4286 if (migrate_multifd() &&
4287 migrate_multifd_flush_after_each_section() &&
4288 /*
4289 * Mapped-ram migration flushes once and for all after
4290 * parsing ramblocks. Always ignore EOS for it.
4291 */
4292 !migrate_mapped_ram()) {
4293 multifd_recv_sync_main();
4294 }
4295 break;
4296 case RAM_SAVE_FLAG_HOOK:
4297 ret = rdma_registration_handle(f);
4298 if (ret < 0) {
4299 qemu_file_set_error(f, ret);
4300 }
4301 break;
4302 default:
4303 error_report("Unknown combination of migration flags: 0x%x", flags);
4304 ret = -EINVAL;
4305 }
4306 if (!ret) {
4307 ret = qemu_file_get_error(f);
4308 }
4309 if (!ret && host_bak) {
4310 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4311 }
4312 }
4313
4314 return ret;
4315 }
4316
ram_load(QEMUFile * f,void * opaque,int version_id)4317 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4318 {
4319 int ret = 0;
4320 static uint64_t seq_iter;
4321 /*
4322 * If system is running in postcopy mode, page inserts to host memory must
4323 * be atomic
4324 */
4325 bool postcopy_running = postcopy_is_running();
4326
4327 seq_iter++;
4328
4329 if (version_id != 4) {
4330 return -EINVAL;
4331 }
4332
4333 /*
4334 * This RCU critical section can be very long running.
4335 * When RCU reclaims in the code start to become numerous,
4336 * it will be necessary to reduce the granularity of this
4337 * critical section.
4338 */
4339 trace_ram_load_start();
4340 WITH_RCU_READ_LOCK_GUARD() {
4341 if (postcopy_running) {
4342 /*
4343 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4344 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4345 * service fast page faults.
4346 */
4347 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4348 } else {
4349 ret = ram_load_precopy(f);
4350 }
4351 }
4352 trace_ram_load_complete(ret, seq_iter);
4353
4354 return ret;
4355 }
4356
ram_has_postcopy(void * opaque)4357 static bool ram_has_postcopy(void *opaque)
4358 {
4359 RAMBlock *rb;
4360 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4361 if (ramblock_is_pmem(rb)) {
4362 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4363 "is not supported now!", rb->idstr, rb->host);
4364 return false;
4365 }
4366 }
4367
4368 return migrate_postcopy_ram();
4369 }
4370
4371 /* Sync all the dirty bitmap with destination VM. */
ram_dirty_bitmap_sync_all(MigrationState * s,RAMState * rs)4372 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4373 {
4374 RAMBlock *block;
4375 QEMUFile *file = s->to_dst_file;
4376
4377 trace_ram_dirty_bitmap_sync_start();
4378
4379 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4380 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4381 qemu_savevm_send_recv_bitmap(file, block->idstr);
4382 trace_ram_dirty_bitmap_request(block->idstr);
4383 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4384 }
4385
4386 trace_ram_dirty_bitmap_sync_wait();
4387
4388 /* Wait until all the ramblocks' dirty bitmap synced */
4389 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4390 if (migration_rp_wait(s)) {
4391 return -1;
4392 }
4393 }
4394
4395 trace_ram_dirty_bitmap_sync_complete();
4396
4397 return 0;
4398 }
4399
4400 /*
4401 * Read the received bitmap, revert it as the initial dirty bitmap.
4402 * This is only used when the postcopy migration is paused but wants
4403 * to resume from a middle point.
4404 *
4405 * Returns true if succeeded, false for errors.
4406 */
ram_dirty_bitmap_reload(MigrationState * s,RAMBlock * block,Error ** errp)4407 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4408 {
4409 /* from_dst_file is always valid because we're within rp_thread */
4410 QEMUFile *file = s->rp_state.from_dst_file;
4411 g_autofree unsigned long *le_bitmap = NULL;
4412 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4413 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4414 uint64_t size, end_mark;
4415 RAMState *rs = ram_state;
4416
4417 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4418
4419 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4420 error_setg(errp, "Reload bitmap in incorrect state %s",
4421 MigrationStatus_str(s->state));
4422 return false;
4423 }
4424
4425 /*
4426 * Note: see comments in ramblock_recv_bitmap_send() on why we
4427 * need the endianness conversion, and the paddings.
4428 */
4429 local_size = ROUND_UP(local_size, 8);
4430
4431 /* Add paddings */
4432 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4433
4434 size = qemu_get_be64(file);
4435
4436 /* The size of the bitmap should match with our ramblock */
4437 if (size != local_size) {
4438 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4439 " != 0x%"PRIx64")", block->idstr, size, local_size);
4440 return false;
4441 }
4442
4443 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4444 end_mark = qemu_get_be64(file);
4445
4446 if (qemu_file_get_error(file) || size != local_size) {
4447 error_setg(errp, "read bitmap failed for ramblock '%s': "
4448 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4449 block->idstr, local_size, size);
4450 return false;
4451 }
4452
4453 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4454 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4455 block->idstr, end_mark);
4456 return false;
4457 }
4458
4459 /*
4460 * Endianness conversion. We are during postcopy (though paused).
4461 * The dirty bitmap won't change. We can directly modify it.
4462 */
4463 bitmap_from_le(block->bmap, le_bitmap, nbits);
4464
4465 /*
4466 * What we received is "received bitmap". Revert it as the initial
4467 * dirty bitmap for this ramblock.
4468 */
4469 bitmap_complement(block->bmap, block->bmap, nbits);
4470
4471 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4472 ramblock_dirty_bitmap_clear_discarded_pages(block);
4473
4474 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4475 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4476
4477 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4478
4479 /*
4480 * We succeeded to sync bitmap for current ramblock. Always kick the
4481 * migration thread to check whether all requested bitmaps are
4482 * reloaded. NOTE: it's racy to only kick when requested==0, because
4483 * we don't know whether the migration thread may still be increasing
4484 * it.
4485 */
4486 migration_rp_kick(s);
4487
4488 return true;
4489 }
4490
ram_resume_prepare(MigrationState * s,void * opaque)4491 static int ram_resume_prepare(MigrationState *s, void *opaque)
4492 {
4493 RAMState *rs = *(RAMState **)opaque;
4494 int ret;
4495
4496 ret = ram_dirty_bitmap_sync_all(s, rs);
4497 if (ret) {
4498 return ret;
4499 }
4500
4501 ram_state_resume_prepare(rs, s->to_dst_file);
4502
4503 return 0;
4504 }
4505
ram_save_postcopy_prepare(QEMUFile * f,void * opaque,Error ** errp)4506 static bool ram_save_postcopy_prepare(QEMUFile *f, void *opaque, Error **errp)
4507 {
4508 int ret;
4509
4510 if (migrate_multifd()) {
4511 /*
4512 * When multifd is enabled, source QEMU needs to make sure all the
4513 * pages queued before postcopy starts have been flushed.
4514 *
4515 * The load of these pages must happen before switching to postcopy.
4516 * It's because loading of guest pages (so far) in multifd recv
4517 * threads is still non-atomic, so the load cannot happen with vCPUs
4518 * running on the destination side.
4519 *
4520 * This flush and sync will guarantee that those pages are loaded
4521 * _before_ postcopy starts on the destination. The rationale is,
4522 * this happens before VM stops (and before source QEMU sends all
4523 * the rest of the postcopy messages). So when the destination QEMU
4524 * receives the postcopy messages, it must have received the sync
4525 * message on the main channel (either RAM_SAVE_FLAG_MULTIFD_FLUSH,
4526 * or RAM_SAVE_FLAG_EOS), and such message would guarantee that
4527 * all previous guest pages queued in the multifd channels are
4528 * completely loaded.
4529 */
4530 ret = multifd_ram_flush_and_sync(f);
4531 if (ret < 0) {
4532 error_setg(errp, "%s: multifd flush and sync failed", __func__);
4533 return false;
4534 }
4535 }
4536
4537 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
4538
4539 return true;
4540 }
4541
postcopy_preempt_shutdown_file(MigrationState * s)4542 void postcopy_preempt_shutdown_file(MigrationState *s)
4543 {
4544 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4545 qemu_fflush(s->postcopy_qemufile_src);
4546 }
4547
4548 static SaveVMHandlers savevm_ram_handlers = {
4549 .save_setup = ram_save_setup,
4550 .save_live_iterate = ram_save_iterate,
4551 .save_live_complete_postcopy = ram_save_complete,
4552 .save_live_complete_precopy = ram_save_complete,
4553 .has_postcopy = ram_has_postcopy,
4554 .state_pending_exact = ram_state_pending_exact,
4555 .state_pending_estimate = ram_state_pending_estimate,
4556 .load_state = ram_load,
4557 .save_cleanup = ram_save_cleanup,
4558 .load_setup = ram_load_setup,
4559 .load_cleanup = ram_load_cleanup,
4560 .resume_prepare = ram_resume_prepare,
4561 .save_postcopy_prepare = ram_save_postcopy_prepare,
4562 };
4563
ram_mig_ram_block_resized(RAMBlockNotifier * n,void * host,size_t old_size,size_t new_size)4564 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4565 size_t old_size, size_t new_size)
4566 {
4567 PostcopyState ps = postcopy_state_get();
4568 ram_addr_t offset;
4569 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4570 Error *err = NULL;
4571
4572 if (!rb) {
4573 error_report("RAM block not found");
4574 return;
4575 }
4576
4577 if (migrate_ram_is_ignored(rb)) {
4578 return;
4579 }
4580
4581 if (migration_is_running()) {
4582 /*
4583 * Precopy code on the source cannot deal with the size of RAM blocks
4584 * changing at random points in time - especially after sending the
4585 * RAM block sizes in the migration stream, they must no longer change.
4586 * Abort and indicate a proper reason.
4587 */
4588 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4589 migrate_set_error(migrate_get_current(), err);
4590 error_free(err);
4591
4592 migration_cancel();
4593 }
4594
4595 switch (ps) {
4596 case POSTCOPY_INCOMING_ADVISE:
4597 /*
4598 * Update what ram_postcopy_incoming_init()->init_range() does at the
4599 * time postcopy was advised. Syncing RAM blocks with the source will
4600 * result in RAM resizes.
4601 */
4602 if (old_size < new_size) {
4603 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4604 error_report("RAM block '%s' discard of resized RAM failed",
4605 rb->idstr);
4606 }
4607 }
4608 rb->postcopy_length = new_size;
4609 break;
4610 case POSTCOPY_INCOMING_NONE:
4611 case POSTCOPY_INCOMING_RUNNING:
4612 case POSTCOPY_INCOMING_END:
4613 /*
4614 * Once our guest is running, postcopy does no longer care about
4615 * resizes. When growing, the new memory was not available on the
4616 * source, no handler needed.
4617 */
4618 break;
4619 default:
4620 error_report("RAM block '%s' resized during postcopy state: %d",
4621 rb->idstr, ps);
4622 exit(-1);
4623 }
4624 }
4625
4626 static RAMBlockNotifier ram_mig_ram_notifier = {
4627 .ram_block_resized = ram_mig_ram_block_resized,
4628 };
4629
ram_mig_init(void)4630 void ram_mig_init(void)
4631 {
4632 qemu_mutex_init(&XBZRLE.lock);
4633 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4634 ram_block_notifier_add(&ram_mig_ram_notifier);
4635 }
4636