1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49
50 /**
51 * __fwnode_link_add - Create a link between two fwnode_handles.
52 * @con: Consumer end of the link.
53 * @sup: Supplier end of the link.
54 * @flags: Link flags.
55 *
56 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57 * represents the detail that the firmware lists @sup fwnode as supplying a
58 * resource to @con.
59 *
60 * The driver core will use the fwnode link to create a device link between the
61 * two device objects corresponding to @con and @sup when they are created. The
62 * driver core will automatically delete the fwnode link between @con and @sup
63 * after doing that.
64 *
65 * Attempts to create duplicate links between the same pair of fwnode handles
66 * are ignored and there is no reference counting.
67 */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 struct fwnode_handle *sup, u8 flags)
70 {
71 struct fwnode_link *link;
72
73 list_for_each_entry(link, &sup->consumers, s_hook)
74 if (link->consumer == con) {
75 link->flags |= flags;
76 return 0;
77 }
78
79 link = kzalloc(sizeof(*link), GFP_KERNEL);
80 if (!link)
81 return -ENOMEM;
82
83 link->supplier = sup;
84 INIT_LIST_HEAD(&link->s_hook);
85 link->consumer = con;
86 INIT_LIST_HEAD(&link->c_hook);
87 link->flags = flags;
88
89 list_add(&link->s_hook, &sup->consumers);
90 list_add(&link->c_hook, &con->suppliers);
91 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 con, sup);
93
94 return 0;
95 }
96
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 u8 flags)
99 {
100 guard(mutex)(&fwnode_link_lock);
101
102 return __fwnode_link_add(con, sup, flags);
103 }
104
105 /**
106 * __fwnode_link_del - Delete a link between two fwnode_handles.
107 * @link: the fwnode_link to be deleted
108 *
109 * The fwnode_link_lock needs to be held when this function is called.
110 */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 link->consumer, link->supplier);
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119
120 /**
121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122 * @link: the fwnode_link to be marked
123 *
124 * The fwnode_link_lock needs to be held when this function is called.
125 */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 link->consumer, link->supplier);
130 link->flags |= FWLINK_FLAG_CYCLE;
131 }
132
133 /**
134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135 * @fwnode: fwnode whose supplier links need to be deleted
136 *
137 * Deletes all supplier links connecting directly to @fwnode.
138 */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 struct fwnode_link *link, *tmp;
142
143 guard(mutex)(&fwnode_link_lock);
144
145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 __fwnode_link_del(link);
147 }
148
149 /**
150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151 * @fwnode: fwnode whose consumer links need to be deleted
152 *
153 * Deletes all consumer links connecting directly to @fwnode.
154 */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 struct fwnode_link *link, *tmp;
158
159 guard(mutex)(&fwnode_link_lock);
160
161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 __fwnode_link_del(link);
163 }
164
165 /**
166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167 * @fwnode: fwnode whose links needs to be deleted
168 *
169 * Deletes all links connecting directly to a fwnode.
170 */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 fwnode_links_purge_suppliers(fwnode);
174 fwnode_links_purge_consumers(fwnode);
175 }
176
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 struct fwnode_handle *child;
180
181 /* Don't purge consumer links of an added child */
182 if (fwnode->dev)
183 return;
184
185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 fwnode_links_purge_consumers(fwnode);
187
188 fwnode_for_each_available_child_node(fwnode, child)
189 fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192
193 /**
194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195 * @from: move consumers away from this fwnode
196 * @to: move consumers to this fwnode
197 *
198 * Move all consumer links from @from fwnode to @to fwnode.
199 */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 struct fwnode_handle *to)
202 {
203 struct fwnode_link *link, *tmp;
204
205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 __fwnode_link_add(link->consumer, to, link->flags);
207 __fwnode_link_del(link);
208 }
209 }
210
211 /**
212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213 * @fwnode: fwnode from which to pick up dangling consumers
214 * @new_sup: fwnode of new supplier
215 *
216 * If the @fwnode has a corresponding struct device and the device supports
217 * probing (that is, added to a bus), then we want to let fw_devlink create
218 * MANAGED device links to this device, so leave @fwnode and its descendant's
219 * fwnode links alone.
220 *
221 * Otherwise, move its consumers to the new supplier @new_sup.
222 */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 struct fwnode_handle *new_sup)
225 {
226 struct fwnode_handle *child;
227
228 if (fwnode->dev && fwnode->dev->bus)
229 return;
230
231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 __fwnode_links_move_consumers(fwnode, new_sup);
233
234 fwnode_for_each_available_child_node(fwnode, child)
235 __fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 mutex_lock(&device_links_lock);
244 }
245
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 mutex_unlock(&device_links_lock);
249 }
250
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 return srcu_read_lock(&device_links_srcu);
254 }
255
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 srcu_read_unlock(&device_links_srcu, idx);
259 }
260
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 return srcu_read_lock_held(&device_links_srcu);
264 }
265
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 synchronize_srcu(&device_links_srcu);
269 }
270
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 list_del_rcu(&link->s_node);
274 list_del_rcu(&link->c_node);
275 }
276
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 while (target->parent) {
280 target = target->parent;
281 if (dev == target)
282 return true;
283 }
284 return false;
285 }
286
287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
288 DL_FLAG_CYCLE | \
289 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294
295 /**
296 * device_is_dependent - Check if one device depends on another one
297 * @dev: Device to check dependencies for.
298 * @target: Device to check against.
299 *
300 * Check if @target depends on @dev or any device dependent on it (its child or
301 * its consumer etc). Return 1 if that is the case or 0 otherwise.
302 */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 struct device_link *link;
306 int ret;
307
308 /*
309 * The "ancestors" check is needed to catch the case when the target
310 * device has not been completely initialized yet and it is still
311 * missing from the list of children of its parent device.
312 */
313 if (dev == target || device_is_ancestor(dev, target))
314 return 1;
315
316 ret = device_for_each_child(dev, target, device_is_dependent);
317 if (ret)
318 return ret;
319
320 list_for_each_entry(link, &dev->links.consumers, s_node) {
321 if (device_link_flag_is_sync_state_only(link->flags))
322 continue;
323
324 if (link->consumer == target)
325 return 1;
326
327 ret = device_is_dependent(link->consumer, target);
328 if (ret)
329 break;
330 }
331 return ret;
332 }
333
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 struct device *consumer,
336 struct device *supplier)
337 {
338 switch (supplier->links.status) {
339 case DL_DEV_PROBING:
340 switch (consumer->links.status) {
341 case DL_DEV_PROBING:
342 /*
343 * A consumer driver can create a link to a supplier
344 * that has not completed its probing yet as long as it
345 * knows that the supplier is already functional (for
346 * example, it has just acquired some resources from the
347 * supplier).
348 */
349 link->status = DL_STATE_CONSUMER_PROBE;
350 break;
351 default:
352 link->status = DL_STATE_DORMANT;
353 break;
354 }
355 break;
356 case DL_DEV_DRIVER_BOUND:
357 switch (consumer->links.status) {
358 case DL_DEV_PROBING:
359 link->status = DL_STATE_CONSUMER_PROBE;
360 break;
361 case DL_DEV_DRIVER_BOUND:
362 link->status = DL_STATE_ACTIVE;
363 break;
364 default:
365 link->status = DL_STATE_AVAILABLE;
366 break;
367 }
368 break;
369 case DL_DEV_UNBINDING:
370 link->status = DL_STATE_SUPPLIER_UNBIND;
371 break;
372 default:
373 link->status = DL_STATE_DORMANT;
374 break;
375 }
376 }
377
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 struct device_link *link;
381
382 /*
383 * Devices that have not been registered yet will be put to the ends
384 * of the lists during the registration, so skip them here.
385 */
386 if (device_is_registered(dev))
387 devices_kset_move_last(dev);
388
389 if (device_pm_initialized(dev))
390 device_pm_move_last(dev);
391
392 device_for_each_child(dev, NULL, device_reorder_to_tail);
393 list_for_each_entry(link, &dev->links.consumers, s_node) {
394 if (device_link_flag_is_sync_state_only(link->flags))
395 continue;
396 device_reorder_to_tail(link->consumer, NULL);
397 }
398
399 return 0;
400 }
401
402 /**
403 * device_pm_move_to_tail - Move set of devices to the end of device lists
404 * @dev: Device to move
405 *
406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407 *
408 * It moves the @dev along with all of its children and all of its consumers
409 * to the ends of the device_kset and dpm_list, recursively.
410 */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 int idx;
414
415 idx = device_links_read_lock();
416 device_pm_lock();
417 device_reorder_to_tail(dev, NULL);
418 device_pm_unlock();
419 device_links_read_unlock(idx);
420 }
421
422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
423
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 const char *output;
428
429 switch (to_devlink(dev)->status) {
430 case DL_STATE_NONE:
431 output = "not tracked";
432 break;
433 case DL_STATE_DORMANT:
434 output = "dormant";
435 break;
436 case DL_STATE_AVAILABLE:
437 output = "available";
438 break;
439 case DL_STATE_CONSUMER_PROBE:
440 output = "consumer probing";
441 break;
442 case DL_STATE_ACTIVE:
443 output = "active";
444 break;
445 case DL_STATE_SUPPLIER_UNBIND:
446 output = "supplier unbinding";
447 break;
448 default:
449 output = "unknown";
450 break;
451 }
452
453 return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 struct device_attribute *attr, char *buf)
459 {
460 struct device_link *link = to_devlink(dev);
461 const char *output;
462
463 if (device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
464 output = "supplier unbind";
465 else if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER))
466 output = "consumer unbind";
467 else
468 output = "never";
469
470 return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 struct device_attribute *attr, char *buf)
476 {
477 struct device_link *link = to_devlink(dev);
478
479 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 struct device_attribute *attr, char *buf)
485 {
486 struct device_link *link = to_devlink(dev);
487
488 return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
489 }
490 static DEVICE_ATTR_RO(sync_state_only);
491
492 static struct attribute *devlink_attrs[] = {
493 &dev_attr_status.attr,
494 &dev_attr_auto_remove_on.attr,
495 &dev_attr_runtime_pm.attr,
496 &dev_attr_sync_state_only.attr,
497 NULL,
498 };
499 ATTRIBUTE_GROUPS(devlink);
500
device_link_release_fn(struct work_struct * work)501 static void device_link_release_fn(struct work_struct *work)
502 {
503 struct device_link *link = container_of(work, struct device_link, rm_work);
504
505 /* Ensure that all references to the link object have been dropped. */
506 device_link_synchronize_removal();
507
508 pm_runtime_release_supplier(link);
509 /*
510 * If supplier_preactivated is set, the link has been dropped between
511 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
512 * in __driver_probe_device(). In that case, drop the supplier's
513 * PM-runtime usage counter to remove the reference taken by
514 * pm_runtime_get_suppliers().
515 */
516 if (link->supplier_preactivated)
517 pm_runtime_put_noidle(link->supplier);
518
519 pm_request_idle(link->supplier);
520
521 put_device(link->consumer);
522 put_device(link->supplier);
523 kfree(link);
524 }
525
devlink_dev_release(struct device * dev)526 static void devlink_dev_release(struct device *dev)
527 {
528 struct device_link *link = to_devlink(dev);
529
530 INIT_WORK(&link->rm_work, device_link_release_fn);
531 /*
532 * It may take a while to complete this work because of the SRCU
533 * synchronization in device_link_release_fn() and if the consumer or
534 * supplier devices get deleted when it runs, so put it into the
535 * dedicated workqueue.
536 */
537 queue_work(device_link_wq, &link->rm_work);
538 }
539
540 /**
541 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
542 */
device_link_wait_removal(void)543 void device_link_wait_removal(void)
544 {
545 /*
546 * devlink removal jobs are queued in the dedicated work queue.
547 * To be sure that all removal jobs are terminated, ensure that any
548 * scheduled work has run to completion.
549 */
550 flush_workqueue(device_link_wq);
551 }
552 EXPORT_SYMBOL_GPL(device_link_wait_removal);
553
554 static const struct class devlink_class = {
555 .name = "devlink",
556 .dev_groups = devlink_groups,
557 .dev_release = devlink_dev_release,
558 };
559
devlink_add_symlinks(struct device * dev)560 static int devlink_add_symlinks(struct device *dev)
561 {
562 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
563 int ret;
564 struct device_link *link = to_devlink(dev);
565 struct device *sup = link->supplier;
566 struct device *con = link->consumer;
567
568 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
569 if (ret)
570 goto out;
571
572 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
573 if (ret)
574 goto err_con;
575
576 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
577 if (!buf_con) {
578 ret = -ENOMEM;
579 goto err_con_dev;
580 }
581
582 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
583 if (ret)
584 goto err_con_dev;
585
586 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
587 if (!buf_sup) {
588 ret = -ENOMEM;
589 goto err_sup_dev;
590 }
591
592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
593 if (ret)
594 goto err_sup_dev;
595
596 goto out;
597
598 err_sup_dev:
599 sysfs_remove_link(&sup->kobj, buf_con);
600 err_con_dev:
601 sysfs_remove_link(&link->link_dev.kobj, "consumer");
602 err_con:
603 sysfs_remove_link(&link->link_dev.kobj, "supplier");
604 out:
605 return ret;
606 }
607
devlink_remove_symlinks(struct device * dev)608 static void devlink_remove_symlinks(struct device *dev)
609 {
610 char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
611 struct device_link *link = to_devlink(dev);
612 struct device *sup = link->supplier;
613 struct device *con = link->consumer;
614
615 sysfs_remove_link(&link->link_dev.kobj, "consumer");
616 sysfs_remove_link(&link->link_dev.kobj, "supplier");
617
618 if (device_is_registered(con)) {
619 buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
620 if (!buf_sup)
621 goto out;
622 sysfs_remove_link(&con->kobj, buf_sup);
623 }
624
625 buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
626 if (!buf_con)
627 goto out;
628 sysfs_remove_link(&sup->kobj, buf_con);
629
630 return;
631
632 out:
633 WARN(1, "Unable to properly free device link symlinks!\n");
634 }
635
636 static struct class_interface devlink_class_intf = {
637 .class = &devlink_class,
638 .add_dev = devlink_add_symlinks,
639 .remove_dev = devlink_remove_symlinks,
640 };
641
devlink_class_init(void)642 static int __init devlink_class_init(void)
643 {
644 int ret;
645
646 ret = class_register(&devlink_class);
647 if (ret)
648 return ret;
649
650 ret = class_interface_register(&devlink_class_intf);
651 if (ret)
652 class_unregister(&devlink_class);
653
654 return ret;
655 }
656 postcore_initcall(devlink_class_init);
657
658 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
659 DL_FLAG_AUTOREMOVE_SUPPLIER | \
660 DL_FLAG_AUTOPROBE_CONSUMER | \
661 DL_FLAG_SYNC_STATE_ONLY | \
662 DL_FLAG_INFERRED | \
663 DL_FLAG_CYCLE)
664
665 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
666 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
667
668 /**
669 * device_link_add - Create a link between two devices.
670 * @consumer: Consumer end of the link.
671 * @supplier: Supplier end of the link.
672 * @flags: Link flags.
673 *
674 * Return: On success, a device_link struct will be returned.
675 * On error or invalid flag settings, NULL will be returned.
676 *
677 * The caller is responsible for the proper synchronization of the link creation
678 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
679 * runtime PM framework to take the link into account. Second, if the
680 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
681 * be forced into the active meta state and reference-counted upon the creation
682 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
683 * ignored.
684 *
685 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
686 * expected to release the link returned by it directly with the help of either
687 * device_link_del() or device_link_remove().
688 *
689 * If that flag is not set, however, the caller of this function is handing the
690 * management of the link over to the driver core entirely and its return value
691 * can only be used to check whether or not the link is present. In that case,
692 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
693 * flags can be used to indicate to the driver core when the link can be safely
694 * deleted. Namely, setting one of them in @flags indicates to the driver core
695 * that the link is not going to be used (by the given caller of this function)
696 * after unbinding the consumer or supplier driver, respectively, from its
697 * device, so the link can be deleted at that point. If none of them is set,
698 * the link will be maintained until one of the devices pointed to by it (either
699 * the consumer or the supplier) is unregistered.
700 *
701 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
702 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
703 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
704 * be used to request the driver core to automatically probe for a consumer
705 * driver after successfully binding a driver to the supplier device.
706 *
707 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
708 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
709 * the same time is invalid and will cause NULL to be returned upfront.
710 * However, if a device link between the given @consumer and @supplier pair
711 * exists already when this function is called for them, the existing link will
712 * be returned regardless of its current type and status (the link's flags may
713 * be modified then). The caller of this function is then expected to treat
714 * the link as though it has just been created, so (in particular) if
715 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
716 * explicitly when not needed any more (as stated above).
717 *
718 * A side effect of the link creation is re-ordering of dpm_list and the
719 * devices_kset list by moving the consumer device and all devices depending
720 * on it to the ends of these lists (that does not happen to devices that have
721 * not been registered when this function is called).
722 *
723 * The supplier device is required to be registered when this function is called
724 * and NULL will be returned if that is not the case. The consumer device need
725 * not be registered, however.
726 */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)727 struct device_link *device_link_add(struct device *consumer,
728 struct device *supplier, u32 flags)
729 {
730 struct device_link *link;
731
732 if (!consumer || !supplier || consumer == supplier ||
733 flags & ~DL_ADD_VALID_FLAGS ||
734 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
735 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
736 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
737 DL_FLAG_AUTOREMOVE_SUPPLIER)))
738 return NULL;
739
740 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
741 if (pm_runtime_get_sync(supplier) < 0) {
742 pm_runtime_put_noidle(supplier);
743 return NULL;
744 }
745 }
746
747 if (!(flags & DL_FLAG_STATELESS))
748 flags |= DL_FLAG_MANAGED;
749
750 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
751 !device_link_flag_is_sync_state_only(flags))
752 return NULL;
753
754 device_links_write_lock();
755 device_pm_lock();
756
757 /*
758 * If the supplier has not been fully registered yet or there is a
759 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
760 * the supplier already in the graph, return NULL. If the link is a
761 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
762 * because it only affects sync_state() callbacks.
763 */
764 if (!device_pm_initialized(supplier)
765 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
766 device_is_dependent(consumer, supplier))) {
767 link = NULL;
768 goto out;
769 }
770
771 /*
772 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
773 * So, only create it if the consumer hasn't probed yet.
774 */
775 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
776 consumer->links.status != DL_DEV_NO_DRIVER &&
777 consumer->links.status != DL_DEV_PROBING) {
778 link = NULL;
779 goto out;
780 }
781
782 /*
783 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
784 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
785 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
786 */
787 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
788 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
789
790 list_for_each_entry(link, &supplier->links.consumers, s_node) {
791 if (link->consumer != consumer)
792 continue;
793
794 if (device_link_test(link, DL_FLAG_INFERRED) &&
795 !(flags & DL_FLAG_INFERRED))
796 link->flags &= ~DL_FLAG_INFERRED;
797
798 if (flags & DL_FLAG_PM_RUNTIME) {
799 if (!device_link_test(link, DL_FLAG_PM_RUNTIME)) {
800 pm_runtime_new_link(consumer);
801 link->flags |= DL_FLAG_PM_RUNTIME;
802 }
803 if (flags & DL_FLAG_RPM_ACTIVE)
804 refcount_inc(&link->rpm_active);
805 }
806
807 if (flags & DL_FLAG_STATELESS) {
808 kref_get(&link->kref);
809 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
810 !device_link_test(link, DL_FLAG_STATELESS)) {
811 link->flags |= DL_FLAG_STATELESS;
812 goto reorder;
813 } else {
814 link->flags |= DL_FLAG_STATELESS;
815 goto out;
816 }
817 }
818
819 /*
820 * If the life time of the link following from the new flags is
821 * longer than indicated by the flags of the existing link,
822 * update the existing link to stay around longer.
823 */
824 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
825 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
826 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
827 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
828 }
829 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
830 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
831 DL_FLAG_AUTOREMOVE_SUPPLIER);
832 }
833 if (!device_link_test(link, DL_FLAG_MANAGED)) {
834 kref_get(&link->kref);
835 link->flags |= DL_FLAG_MANAGED;
836 device_link_init_status(link, consumer, supplier);
837 }
838 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
839 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
840 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
841 goto reorder;
842 }
843
844 goto out;
845 }
846
847 link = kzalloc(sizeof(*link), GFP_KERNEL);
848 if (!link)
849 goto out;
850
851 refcount_set(&link->rpm_active, 1);
852
853 get_device(supplier);
854 link->supplier = supplier;
855 INIT_LIST_HEAD(&link->s_node);
856 get_device(consumer);
857 link->consumer = consumer;
858 INIT_LIST_HEAD(&link->c_node);
859 link->flags = flags;
860 kref_init(&link->kref);
861
862 link->link_dev.class = &devlink_class;
863 device_set_pm_not_required(&link->link_dev);
864 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
865 dev_bus_name(supplier), dev_name(supplier),
866 dev_bus_name(consumer), dev_name(consumer));
867 if (device_register(&link->link_dev)) {
868 put_device(&link->link_dev);
869 link = NULL;
870 goto out;
871 }
872
873 if (flags & DL_FLAG_PM_RUNTIME) {
874 if (flags & DL_FLAG_RPM_ACTIVE)
875 refcount_inc(&link->rpm_active);
876
877 pm_runtime_new_link(consumer);
878 }
879
880 /* Determine the initial link state. */
881 if (flags & DL_FLAG_STATELESS)
882 link->status = DL_STATE_NONE;
883 else
884 device_link_init_status(link, consumer, supplier);
885
886 /*
887 * Some callers expect the link creation during consumer driver probe to
888 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
889 */
890 if (link->status == DL_STATE_CONSUMER_PROBE &&
891 flags & DL_FLAG_PM_RUNTIME)
892 pm_runtime_resume(supplier);
893
894 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
895 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
896
897 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
898 dev_dbg(consumer,
899 "Linked as a sync state only consumer to %s\n",
900 dev_name(supplier));
901 goto out;
902 }
903
904 reorder:
905 /*
906 * Move the consumer and all of the devices depending on it to the end
907 * of dpm_list and the devices_kset list.
908 *
909 * It is necessary to hold dpm_list locked throughout all that or else
910 * we may end up suspending with a wrong ordering of it.
911 */
912 device_reorder_to_tail(consumer, NULL);
913
914 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
915
916 out:
917 device_pm_unlock();
918 device_links_write_unlock();
919
920 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
921 pm_runtime_put(supplier);
922
923 return link;
924 }
925 EXPORT_SYMBOL_GPL(device_link_add);
926
__device_link_del(struct kref * kref)927 static void __device_link_del(struct kref *kref)
928 {
929 struct device_link *link = container_of(kref, struct device_link, kref);
930
931 dev_dbg(link->consumer, "Dropping the link to %s\n",
932 dev_name(link->supplier));
933
934 pm_runtime_drop_link(link);
935
936 device_link_remove_from_lists(link);
937 device_unregister(&link->link_dev);
938 }
939
device_link_put_kref(struct device_link * link)940 static void device_link_put_kref(struct device_link *link)
941 {
942 if (device_link_test(link, DL_FLAG_STATELESS))
943 kref_put(&link->kref, __device_link_del);
944 else if (!device_is_registered(link->consumer))
945 __device_link_del(&link->kref);
946 else
947 WARN(1, "Unable to drop a managed device link reference\n");
948 }
949
950 /**
951 * device_link_del - Delete a stateless link between two devices.
952 * @link: Device link to delete.
953 *
954 * The caller must ensure proper synchronization of this function with runtime
955 * PM. If the link was added multiple times, it needs to be deleted as often.
956 * Care is required for hotplugged devices: Their links are purged on removal
957 * and calling device_link_del() is then no longer allowed.
958 */
device_link_del(struct device_link * link)959 void device_link_del(struct device_link *link)
960 {
961 device_links_write_lock();
962 device_link_put_kref(link);
963 device_links_write_unlock();
964 }
965 EXPORT_SYMBOL_GPL(device_link_del);
966
967 /**
968 * device_link_remove - Delete a stateless link between two devices.
969 * @consumer: Consumer end of the link.
970 * @supplier: Supplier end of the link.
971 *
972 * The caller must ensure proper synchronization of this function with runtime
973 * PM.
974 */
device_link_remove(void * consumer,struct device * supplier)975 void device_link_remove(void *consumer, struct device *supplier)
976 {
977 struct device_link *link;
978
979 if (WARN_ON(consumer == supplier))
980 return;
981
982 device_links_write_lock();
983
984 list_for_each_entry(link, &supplier->links.consumers, s_node) {
985 if (link->consumer == consumer) {
986 device_link_put_kref(link);
987 break;
988 }
989 }
990
991 device_links_write_unlock();
992 }
993 EXPORT_SYMBOL_GPL(device_link_remove);
994
device_links_missing_supplier(struct device * dev)995 static void device_links_missing_supplier(struct device *dev)
996 {
997 struct device_link *link;
998
999 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1000 if (link->status != DL_STATE_CONSUMER_PROBE)
1001 continue;
1002
1003 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1004 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1005 } else {
1006 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1007 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1008 }
1009 }
1010 }
1011
dev_is_best_effort(struct device * dev)1012 static bool dev_is_best_effort(struct device *dev)
1013 {
1014 return (fw_devlink_best_effort && dev->can_match) ||
1015 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1016 }
1017
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1018 static struct fwnode_handle *fwnode_links_check_suppliers(
1019 struct fwnode_handle *fwnode)
1020 {
1021 struct fwnode_link *link;
1022
1023 if (!fwnode || fw_devlink_is_permissive())
1024 return NULL;
1025
1026 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1027 if (!(link->flags &
1028 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1029 return link->supplier;
1030
1031 return NULL;
1032 }
1033
1034 /**
1035 * device_links_check_suppliers - Check presence of supplier drivers.
1036 * @dev: Consumer device.
1037 *
1038 * Check links from this device to any suppliers. Walk the list of the device's
1039 * links to suppliers and see if all of them are available. If not, simply
1040 * return -EPROBE_DEFER.
1041 *
1042 * We need to guarantee that the supplier will not go away after the check has
1043 * been positive here. It only can go away in __device_release_driver() and
1044 * that function checks the device's links to consumers. This means we need to
1045 * mark the link as "consumer probe in progress" to make the supplier removal
1046 * wait for us to complete (or bad things may happen).
1047 *
1048 * Links without the DL_FLAG_MANAGED flag set are ignored.
1049 */
device_links_check_suppliers(struct device * dev)1050 int device_links_check_suppliers(struct device *dev)
1051 {
1052 struct device_link *link;
1053 int ret = 0, fwnode_ret = 0;
1054 struct fwnode_handle *sup_fw;
1055
1056 /*
1057 * Device waiting for supplier to become available is not allowed to
1058 * probe.
1059 */
1060 scoped_guard(mutex, &fwnode_link_lock) {
1061 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1062 if (sup_fw) {
1063 if (dev_is_best_effort(dev))
1064 fwnode_ret = -EAGAIN;
1065 else
1066 return dev_err_probe(dev, -EPROBE_DEFER,
1067 "wait for supplier %pfwf\n", sup_fw);
1068 }
1069 }
1070
1071 device_links_write_lock();
1072
1073 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1074 if (!device_link_test(link, DL_FLAG_MANAGED))
1075 continue;
1076
1077 if (link->status != DL_STATE_AVAILABLE &&
1078 !device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1079
1080 if (dev_is_best_effort(dev) &&
1081 device_link_test(link, DL_FLAG_INFERRED) &&
1082 !link->supplier->can_match) {
1083 ret = -EAGAIN;
1084 continue;
1085 }
1086
1087 device_links_missing_supplier(dev);
1088 ret = dev_err_probe(dev, -EPROBE_DEFER,
1089 "supplier %s not ready\n", dev_name(link->supplier));
1090 break;
1091 }
1092 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1093 }
1094 dev->links.status = DL_DEV_PROBING;
1095
1096 device_links_write_unlock();
1097
1098 return ret ? ret : fwnode_ret;
1099 }
1100
1101 /**
1102 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1103 * @dev: Device to call sync_state() on
1104 * @list: List head to queue the @dev on
1105 *
1106 * Queues a device for a sync_state() callback when the device links write lock
1107 * isn't held. This allows the sync_state() execution flow to use device links
1108 * APIs. The caller must ensure this function is called with
1109 * device_links_write_lock() held.
1110 *
1111 * This function does a get_device() to make sure the device is not freed while
1112 * on this list.
1113 *
1114 * So the caller must also ensure that device_links_flush_sync_list() is called
1115 * as soon as the caller releases device_links_write_lock(). This is necessary
1116 * to make sure the sync_state() is called in a timely fashion and the
1117 * put_device() is called on this device.
1118 */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1119 static void __device_links_queue_sync_state(struct device *dev,
1120 struct list_head *list)
1121 {
1122 struct device_link *link;
1123
1124 if (!dev_has_sync_state(dev))
1125 return;
1126 if (dev->state_synced)
1127 return;
1128
1129 list_for_each_entry(link, &dev->links.consumers, s_node) {
1130 if (!device_link_test(link, DL_FLAG_MANAGED))
1131 continue;
1132 if (link->status != DL_STATE_ACTIVE)
1133 return;
1134 }
1135
1136 /*
1137 * Set the flag here to avoid adding the same device to a list more
1138 * than once. This can happen if new consumers get added to the device
1139 * and probed before the list is flushed.
1140 */
1141 dev->state_synced = true;
1142
1143 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1144 return;
1145
1146 get_device(dev);
1147 list_add_tail(&dev->links.defer_sync, list);
1148 }
1149
1150 /**
1151 * device_links_flush_sync_list - Call sync_state() on a list of devices
1152 * @list: List of devices to call sync_state() on
1153 * @dont_lock_dev: Device for which lock is already held by the caller
1154 *
1155 * Calls sync_state() on all the devices that have been queued for it. This
1156 * function is used in conjunction with __device_links_queue_sync_state(). The
1157 * @dont_lock_dev parameter is useful when this function is called from a
1158 * context where a device lock is already held.
1159 */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1160 static void device_links_flush_sync_list(struct list_head *list,
1161 struct device *dont_lock_dev)
1162 {
1163 struct device *dev, *tmp;
1164
1165 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1166 list_del_init(&dev->links.defer_sync);
1167
1168 if (dev != dont_lock_dev)
1169 device_lock(dev);
1170
1171 dev_sync_state(dev);
1172
1173 if (dev != dont_lock_dev)
1174 device_unlock(dev);
1175
1176 put_device(dev);
1177 }
1178 }
1179
device_links_supplier_sync_state_pause(void)1180 void device_links_supplier_sync_state_pause(void)
1181 {
1182 device_links_write_lock();
1183 defer_sync_state_count++;
1184 device_links_write_unlock();
1185 }
1186
device_links_supplier_sync_state_resume(void)1187 void device_links_supplier_sync_state_resume(void)
1188 {
1189 struct device *dev, *tmp;
1190 LIST_HEAD(sync_list);
1191
1192 device_links_write_lock();
1193 if (!defer_sync_state_count) {
1194 WARN(true, "Unmatched sync_state pause/resume!");
1195 goto out;
1196 }
1197 defer_sync_state_count--;
1198 if (defer_sync_state_count)
1199 goto out;
1200
1201 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1202 /*
1203 * Delete from deferred_sync list before queuing it to
1204 * sync_list because defer_sync is used for both lists.
1205 */
1206 list_del_init(&dev->links.defer_sync);
1207 __device_links_queue_sync_state(dev, &sync_list);
1208 }
1209 out:
1210 device_links_write_unlock();
1211
1212 device_links_flush_sync_list(&sync_list, NULL);
1213 }
1214
sync_state_resume_initcall(void)1215 static int sync_state_resume_initcall(void)
1216 {
1217 device_links_supplier_sync_state_resume();
1218 return 0;
1219 }
1220 late_initcall(sync_state_resume_initcall);
1221
__device_links_supplier_defer_sync(struct device * sup)1222 static void __device_links_supplier_defer_sync(struct device *sup)
1223 {
1224 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1225 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1226 }
1227
device_link_drop_managed(struct device_link * link)1228 static void device_link_drop_managed(struct device_link *link)
1229 {
1230 link->flags &= ~DL_FLAG_MANAGED;
1231 WRITE_ONCE(link->status, DL_STATE_NONE);
1232 kref_put(&link->kref, __device_link_del);
1233 }
1234
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1235 static ssize_t waiting_for_supplier_show(struct device *dev,
1236 struct device_attribute *attr,
1237 char *buf)
1238 {
1239 bool val;
1240
1241 device_lock(dev);
1242 scoped_guard(mutex, &fwnode_link_lock)
1243 val = !!fwnode_links_check_suppliers(dev->fwnode);
1244 device_unlock(dev);
1245 return sysfs_emit(buf, "%u\n", val);
1246 }
1247 static DEVICE_ATTR_RO(waiting_for_supplier);
1248
1249 /**
1250 * device_links_force_bind - Prepares device to be force bound
1251 * @dev: Consumer device.
1252 *
1253 * device_bind_driver() force binds a device to a driver without calling any
1254 * driver probe functions. So the consumer really isn't going to wait for any
1255 * supplier before it's bound to the driver. We still want the device link
1256 * states to be sensible when this happens.
1257 *
1258 * In preparation for device_bind_driver(), this function goes through each
1259 * supplier device links and checks if the supplier is bound. If it is, then
1260 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1261 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1262 */
device_links_force_bind(struct device * dev)1263 void device_links_force_bind(struct device *dev)
1264 {
1265 struct device_link *link, *ln;
1266
1267 device_links_write_lock();
1268
1269 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1270 if (!device_link_test(link, DL_FLAG_MANAGED))
1271 continue;
1272
1273 if (link->status != DL_STATE_AVAILABLE) {
1274 device_link_drop_managed(link);
1275 continue;
1276 }
1277 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1278 }
1279 dev->links.status = DL_DEV_PROBING;
1280
1281 device_links_write_unlock();
1282 }
1283
1284 /**
1285 * device_links_driver_bound - Update device links after probing its driver.
1286 * @dev: Device to update the links for.
1287 *
1288 * The probe has been successful, so update links from this device to any
1289 * consumers by changing their status to "available".
1290 *
1291 * Also change the status of @dev's links to suppliers to "active".
1292 *
1293 * Links without the DL_FLAG_MANAGED flag set are ignored.
1294 */
device_links_driver_bound(struct device * dev)1295 void device_links_driver_bound(struct device *dev)
1296 {
1297 struct device_link *link, *ln;
1298 LIST_HEAD(sync_list);
1299
1300 /*
1301 * If a device binds successfully, it's expected to have created all
1302 * the device links it needs to or make new device links as it needs
1303 * them. So, fw_devlink no longer needs to create device links to any
1304 * of the device's suppliers.
1305 *
1306 * Also, if a child firmware node of this bound device is not added as a
1307 * device by now, assume it is never going to be added. Make this bound
1308 * device the fallback supplier to the dangling consumers of the child
1309 * firmware node because this bound device is probably implementing the
1310 * child firmware node functionality and we don't want the dangling
1311 * consumers to defer probe indefinitely waiting for a device for the
1312 * child firmware node.
1313 */
1314 if (dev->fwnode && dev->fwnode->dev == dev) {
1315 struct fwnode_handle *child;
1316
1317 fwnode_links_purge_suppliers(dev->fwnode);
1318
1319 guard(mutex)(&fwnode_link_lock);
1320
1321 fwnode_for_each_available_child_node(dev->fwnode, child)
1322 __fw_devlink_pickup_dangling_consumers(child,
1323 dev->fwnode);
1324 __fw_devlink_link_to_consumers(dev);
1325 }
1326 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1327
1328 device_links_write_lock();
1329
1330 list_for_each_entry(link, &dev->links.consumers, s_node) {
1331 if (!device_link_test(link, DL_FLAG_MANAGED))
1332 continue;
1333
1334 /*
1335 * Links created during consumer probe may be in the "consumer
1336 * probe" state to start with if the supplier is still probing
1337 * when they are created and they may become "active" if the
1338 * consumer probe returns first. Skip them here.
1339 */
1340 if (link->status == DL_STATE_CONSUMER_PROBE ||
1341 link->status == DL_STATE_ACTIVE)
1342 continue;
1343
1344 WARN_ON(link->status != DL_STATE_DORMANT);
1345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1346
1347 if (device_link_test(link, DL_FLAG_AUTOPROBE_CONSUMER))
1348 driver_deferred_probe_add(link->consumer);
1349 }
1350
1351 if (defer_sync_state_count)
1352 __device_links_supplier_defer_sync(dev);
1353 else
1354 __device_links_queue_sync_state(dev, &sync_list);
1355
1356 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1357 struct device *supplier;
1358
1359 if (!device_link_test(link, DL_FLAG_MANAGED))
1360 continue;
1361
1362 supplier = link->supplier;
1363 if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1364 /*
1365 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1366 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1367 * save to drop the managed link completely.
1368 */
1369 device_link_drop_managed(link);
1370 } else if (dev_is_best_effort(dev) &&
1371 device_link_test(link, DL_FLAG_INFERRED) &&
1372 link->status != DL_STATE_CONSUMER_PROBE &&
1373 !link->supplier->can_match) {
1374 /*
1375 * When dev_is_best_effort() is true, we ignore device
1376 * links to suppliers that don't have a driver. If the
1377 * consumer device still managed to probe, there's no
1378 * point in maintaining a device link in a weird state
1379 * (consumer probed before supplier). So delete it.
1380 */
1381 device_link_drop_managed(link);
1382 } else {
1383 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1384 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1385 }
1386
1387 /*
1388 * This needs to be done even for the deleted
1389 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1390 * device link that was preventing the supplier from getting a
1391 * sync_state() call.
1392 */
1393 if (defer_sync_state_count)
1394 __device_links_supplier_defer_sync(supplier);
1395 else
1396 __device_links_queue_sync_state(supplier, &sync_list);
1397 }
1398
1399 dev->links.status = DL_DEV_DRIVER_BOUND;
1400
1401 device_links_write_unlock();
1402
1403 device_links_flush_sync_list(&sync_list, dev);
1404 }
1405
1406 /**
1407 * __device_links_no_driver - Update links of a device without a driver.
1408 * @dev: Device without a drvier.
1409 *
1410 * Delete all non-persistent links from this device to any suppliers.
1411 *
1412 * Persistent links stay around, but their status is changed to "available",
1413 * unless they already are in the "supplier unbind in progress" state in which
1414 * case they need not be updated.
1415 *
1416 * Links without the DL_FLAG_MANAGED flag set are ignored.
1417 */
__device_links_no_driver(struct device * dev)1418 static void __device_links_no_driver(struct device *dev)
1419 {
1420 struct device_link *link, *ln;
1421
1422 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1423 if (!device_link_test(link, DL_FLAG_MANAGED))
1424 continue;
1425
1426 if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
1427 device_link_drop_managed(link);
1428 continue;
1429 }
1430
1431 if (link->status != DL_STATE_CONSUMER_PROBE &&
1432 link->status != DL_STATE_ACTIVE)
1433 continue;
1434
1435 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1436 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1437 } else {
1438 WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1439 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1440 }
1441 }
1442
1443 dev->links.status = DL_DEV_NO_DRIVER;
1444 }
1445
1446 /**
1447 * device_links_no_driver - Update links after failing driver probe.
1448 * @dev: Device whose driver has just failed to probe.
1449 *
1450 * Clean up leftover links to consumers for @dev and invoke
1451 * %__device_links_no_driver() to update links to suppliers for it as
1452 * appropriate.
1453 *
1454 * Links without the DL_FLAG_MANAGED flag set are ignored.
1455 */
device_links_no_driver(struct device * dev)1456 void device_links_no_driver(struct device *dev)
1457 {
1458 struct device_link *link;
1459
1460 device_links_write_lock();
1461
1462 list_for_each_entry(link, &dev->links.consumers, s_node) {
1463 if (!device_link_test(link, DL_FLAG_MANAGED))
1464 continue;
1465
1466 /*
1467 * The probe has failed, so if the status of the link is
1468 * "consumer probe" or "active", it must have been added by
1469 * a probing consumer while this device was still probing.
1470 * Change its state to "dormant", as it represents a valid
1471 * relationship, but it is not functionally meaningful.
1472 */
1473 if (link->status == DL_STATE_CONSUMER_PROBE ||
1474 link->status == DL_STATE_ACTIVE)
1475 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1476 }
1477
1478 __device_links_no_driver(dev);
1479
1480 device_links_write_unlock();
1481 }
1482
1483 /**
1484 * device_links_driver_cleanup - Update links after driver removal.
1485 * @dev: Device whose driver has just gone away.
1486 *
1487 * Update links to consumers for @dev by changing their status to "dormant" and
1488 * invoke %__device_links_no_driver() to update links to suppliers for it as
1489 * appropriate.
1490 *
1491 * Links without the DL_FLAG_MANAGED flag set are ignored.
1492 */
device_links_driver_cleanup(struct device * dev)1493 void device_links_driver_cleanup(struct device *dev)
1494 {
1495 struct device_link *link, *ln;
1496
1497 device_links_write_lock();
1498
1499 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1500 if (!device_link_test(link, DL_FLAG_MANAGED))
1501 continue;
1502
1503 WARN_ON(device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER));
1504 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1505
1506 /*
1507 * autoremove the links between this @dev and its consumer
1508 * devices that are not active, i.e. where the link state
1509 * has moved to DL_STATE_SUPPLIER_UNBIND.
1510 */
1511 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1512 device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
1513 device_link_drop_managed(link);
1514
1515 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1516 }
1517
1518 list_del_init(&dev->links.defer_sync);
1519 __device_links_no_driver(dev);
1520
1521 device_links_write_unlock();
1522 }
1523
1524 /**
1525 * device_links_busy - Check if there are any busy links to consumers.
1526 * @dev: Device to check.
1527 *
1528 * Check each consumer of the device and return 'true' if its link's status
1529 * is one of "consumer probe" or "active" (meaning that the given consumer is
1530 * probing right now or its driver is present). Otherwise, change the link
1531 * state to "supplier unbind" to prevent the consumer from being probed
1532 * successfully going forward.
1533 *
1534 * Return 'false' if there are no probing or active consumers.
1535 *
1536 * Links without the DL_FLAG_MANAGED flag set are ignored.
1537 */
device_links_busy(struct device * dev)1538 bool device_links_busy(struct device *dev)
1539 {
1540 struct device_link *link;
1541 bool ret = false;
1542
1543 device_links_write_lock();
1544
1545 list_for_each_entry(link, &dev->links.consumers, s_node) {
1546 if (!device_link_test(link, DL_FLAG_MANAGED))
1547 continue;
1548
1549 if (link->status == DL_STATE_CONSUMER_PROBE
1550 || link->status == DL_STATE_ACTIVE) {
1551 ret = true;
1552 break;
1553 }
1554 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555 }
1556
1557 dev->links.status = DL_DEV_UNBINDING;
1558
1559 device_links_write_unlock();
1560 return ret;
1561 }
1562
1563 /**
1564 * device_links_unbind_consumers - Force unbind consumers of the given device.
1565 * @dev: Device to unbind the consumers of.
1566 *
1567 * Walk the list of links to consumers for @dev and if any of them is in the
1568 * "consumer probe" state, wait for all device probes in progress to complete
1569 * and start over.
1570 *
1571 * If that's not the case, change the status of the link to "supplier unbind"
1572 * and check if the link was in the "active" state. If so, force the consumer
1573 * driver to unbind and start over (the consumer will not re-probe as we have
1574 * changed the state of the link already).
1575 *
1576 * Links without the DL_FLAG_MANAGED flag set are ignored.
1577 */
device_links_unbind_consumers(struct device * dev)1578 void device_links_unbind_consumers(struct device *dev)
1579 {
1580 struct device_link *link;
1581
1582 start:
1583 device_links_write_lock();
1584
1585 list_for_each_entry(link, &dev->links.consumers, s_node) {
1586 enum device_link_state status;
1587
1588 if (!device_link_test(link, DL_FLAG_MANAGED) ||
1589 device_link_test(link, DL_FLAG_SYNC_STATE_ONLY))
1590 continue;
1591
1592 status = link->status;
1593 if (status == DL_STATE_CONSUMER_PROBE) {
1594 device_links_write_unlock();
1595
1596 wait_for_device_probe();
1597 goto start;
1598 }
1599 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1600 if (status == DL_STATE_ACTIVE) {
1601 struct device *consumer = link->consumer;
1602
1603 get_device(consumer);
1604
1605 device_links_write_unlock();
1606
1607 device_release_driver_internal(consumer, NULL,
1608 consumer->parent);
1609 put_device(consumer);
1610 goto start;
1611 }
1612 }
1613
1614 device_links_write_unlock();
1615 }
1616
1617 /**
1618 * device_links_purge - Delete existing links to other devices.
1619 * @dev: Target device.
1620 */
device_links_purge(struct device * dev)1621 static void device_links_purge(struct device *dev)
1622 {
1623 struct device_link *link, *ln;
1624
1625 if (dev->class == &devlink_class)
1626 return;
1627
1628 /*
1629 * Delete all of the remaining links from this device to any other
1630 * devices (either consumers or suppliers).
1631 */
1632 device_links_write_lock();
1633
1634 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1635 WARN_ON(link->status == DL_STATE_ACTIVE);
1636 __device_link_del(&link->kref);
1637 }
1638
1639 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1640 WARN_ON(link->status != DL_STATE_DORMANT &&
1641 link->status != DL_STATE_NONE);
1642 __device_link_del(&link->kref);
1643 }
1644
1645 device_links_write_unlock();
1646 }
1647
1648 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1649 DL_FLAG_SYNC_STATE_ONLY)
1650 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1651 DL_FLAG_AUTOPROBE_CONSUMER)
1652 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1653 DL_FLAG_PM_RUNTIME)
1654
1655 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1656 static int __init fw_devlink_setup(char *arg)
1657 {
1658 if (!arg)
1659 return -EINVAL;
1660
1661 if (strcmp(arg, "off") == 0) {
1662 fw_devlink_flags = 0;
1663 } else if (strcmp(arg, "permissive") == 0) {
1664 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1665 } else if (strcmp(arg, "on") == 0) {
1666 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1667 } else if (strcmp(arg, "rpm") == 0) {
1668 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1669 }
1670 return 0;
1671 }
1672 early_param("fw_devlink", fw_devlink_setup);
1673
1674 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1675 static int __init fw_devlink_strict_setup(char *arg)
1676 {
1677 return kstrtobool(arg, &fw_devlink_strict);
1678 }
1679 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1680
1681 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1682 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1683
1684 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1685 static int fw_devlink_sync_state;
1686 #else
1687 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1688 #endif
1689
fw_devlink_sync_state_setup(char * arg)1690 static int __init fw_devlink_sync_state_setup(char *arg)
1691 {
1692 if (!arg)
1693 return -EINVAL;
1694
1695 if (strcmp(arg, "strict") == 0) {
1696 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1697 return 0;
1698 } else if (strcmp(arg, "timeout") == 0) {
1699 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1700 return 0;
1701 }
1702 return -EINVAL;
1703 }
1704 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1705
fw_devlink_get_flags(u8 fwlink_flags)1706 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1707 {
1708 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1709 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1710
1711 return fw_devlink_flags;
1712 }
1713
fw_devlink_is_permissive(void)1714 static bool fw_devlink_is_permissive(void)
1715 {
1716 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1717 }
1718
fw_devlink_is_strict(void)1719 bool fw_devlink_is_strict(void)
1720 {
1721 return fw_devlink_strict && !fw_devlink_is_permissive();
1722 }
1723
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1724 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1725 {
1726 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1727 return;
1728
1729 fwnode_call_int_op(fwnode, add_links);
1730 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1731 }
1732
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1733 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1734 {
1735 struct fwnode_handle *child = NULL;
1736
1737 fw_devlink_parse_fwnode(fwnode);
1738
1739 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1740 fw_devlink_parse_fwtree(child);
1741 }
1742
fw_devlink_relax_link(struct device_link * link)1743 static void fw_devlink_relax_link(struct device_link *link)
1744 {
1745 if (!device_link_test(link, DL_FLAG_INFERRED))
1746 return;
1747
1748 if (device_link_flag_is_sync_state_only(link->flags))
1749 return;
1750
1751 pm_runtime_drop_link(link);
1752 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1753 dev_dbg(link->consumer, "Relaxing link with %s\n",
1754 dev_name(link->supplier));
1755 }
1756
fw_devlink_no_driver(struct device * dev,void * data)1757 static int fw_devlink_no_driver(struct device *dev, void *data)
1758 {
1759 struct device_link *link = to_devlink(dev);
1760
1761 if (!link->supplier->can_match)
1762 fw_devlink_relax_link(link);
1763
1764 return 0;
1765 }
1766
fw_devlink_drivers_done(void)1767 void fw_devlink_drivers_done(void)
1768 {
1769 fw_devlink_drv_reg_done = true;
1770 device_links_write_lock();
1771 class_for_each_device(&devlink_class, NULL, NULL,
1772 fw_devlink_no_driver);
1773 device_links_write_unlock();
1774 }
1775
fw_devlink_dev_sync_state(struct device * dev,void * data)1776 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1777 {
1778 struct device_link *link = to_devlink(dev);
1779 struct device *sup = link->supplier;
1780
1781 if (!device_link_test(link, DL_FLAG_MANAGED) ||
1782 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1783 !dev_has_sync_state(sup))
1784 return 0;
1785
1786 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1787 dev_warn(sup, "sync_state() pending due to %s\n",
1788 dev_name(link->consumer));
1789 return 0;
1790 }
1791
1792 if (!list_empty(&sup->links.defer_sync))
1793 return 0;
1794
1795 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1796 sup->state_synced = true;
1797 get_device(sup);
1798 list_add_tail(&sup->links.defer_sync, data);
1799
1800 return 0;
1801 }
1802
fw_devlink_probing_done(void)1803 void fw_devlink_probing_done(void)
1804 {
1805 LIST_HEAD(sync_list);
1806
1807 device_links_write_lock();
1808 class_for_each_device(&devlink_class, NULL, &sync_list,
1809 fw_devlink_dev_sync_state);
1810 device_links_write_unlock();
1811 device_links_flush_sync_list(&sync_list, NULL);
1812 }
1813
1814 /**
1815 * wait_for_init_devices_probe - Try to probe any device needed for init
1816 *
1817 * Some devices might need to be probed and bound successfully before the kernel
1818 * boot sequence can finish and move on to init/userspace. For example, a
1819 * network interface might need to be bound to be able to mount a NFS rootfs.
1820 *
1821 * With fw_devlink=on by default, some of these devices might be blocked from
1822 * probing because they are waiting on a optional supplier that doesn't have a
1823 * driver. While fw_devlink will eventually identify such devices and unblock
1824 * the probing automatically, it might be too late by the time it unblocks the
1825 * probing of devices. For example, the IP4 autoconfig might timeout before
1826 * fw_devlink unblocks probing of the network interface.
1827 *
1828 * This function is available to temporarily try and probe all devices that have
1829 * a driver even if some of their suppliers haven't been added or don't have
1830 * drivers.
1831 *
1832 * The drivers can then decide which of the suppliers are optional vs mandatory
1833 * and probe the device if possible. By the time this function returns, all such
1834 * "best effort" probes are guaranteed to be completed. If a device successfully
1835 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1836 * device where the supplier hasn't yet probed successfully because they have to
1837 * be optional dependencies.
1838 *
1839 * Any devices that didn't successfully probe go back to being treated as if
1840 * this function was never called.
1841 *
1842 * This also means that some devices that aren't needed for init and could have
1843 * waited for their optional supplier to probe (when the supplier's module is
1844 * loaded later on) would end up probing prematurely with limited functionality.
1845 * So call this function only when boot would fail without it.
1846 */
wait_for_init_devices_probe(void)1847 void __init wait_for_init_devices_probe(void)
1848 {
1849 if (!fw_devlink_flags || fw_devlink_is_permissive())
1850 return;
1851
1852 /*
1853 * Wait for all ongoing probes to finish so that the "best effort" is
1854 * only applied to devices that can't probe otherwise.
1855 */
1856 wait_for_device_probe();
1857
1858 pr_info("Trying to probe devices needed for running init ...\n");
1859 fw_devlink_best_effort = true;
1860 driver_deferred_probe_trigger();
1861
1862 /*
1863 * Wait for all "best effort" probes to finish before going back to
1864 * normal enforcement.
1865 */
1866 wait_for_device_probe();
1867 fw_devlink_best_effort = false;
1868 }
1869
fw_devlink_unblock_consumers(struct device * dev)1870 static void fw_devlink_unblock_consumers(struct device *dev)
1871 {
1872 struct device_link *link;
1873
1874 if (!fw_devlink_flags || fw_devlink_is_permissive())
1875 return;
1876
1877 device_links_write_lock();
1878 list_for_each_entry(link, &dev->links.consumers, s_node)
1879 fw_devlink_relax_link(link);
1880 device_links_write_unlock();
1881 }
1882
fwnode_init_without_drv(struct fwnode_handle * fwnode)1883 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1884 {
1885 struct device *dev;
1886 bool ret;
1887
1888 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1889 return false;
1890
1891 dev = get_dev_from_fwnode(fwnode);
1892 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1893 put_device(dev);
1894
1895 return ret;
1896 }
1897
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1898 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1899 {
1900 struct fwnode_handle *parent;
1901
1902 fwnode_for_each_parent_node(fwnode, parent) {
1903 if (fwnode_init_without_drv(parent)) {
1904 fwnode_handle_put(parent);
1905 return true;
1906 }
1907 }
1908
1909 return false;
1910 }
1911
1912 /**
1913 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1914 * @ancestor: Firmware which is tested for being an ancestor
1915 * @child: Firmware which is tested for being the child
1916 *
1917 * A node is considered an ancestor of itself too.
1918 *
1919 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1920 */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1921 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1922 const struct fwnode_handle *child)
1923 {
1924 struct fwnode_handle *parent;
1925
1926 if (IS_ERR_OR_NULL(ancestor))
1927 return false;
1928
1929 if (child == ancestor)
1930 return true;
1931
1932 fwnode_for_each_parent_node(child, parent) {
1933 if (parent == ancestor) {
1934 fwnode_handle_put(parent);
1935 return true;
1936 }
1937 }
1938 return false;
1939 }
1940
1941 /**
1942 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1943 * @fwnode: firmware node
1944 *
1945 * Given a firmware node (@fwnode), this function finds its closest ancestor
1946 * firmware node that has a corresponding struct device and returns that struct
1947 * device.
1948 *
1949 * The caller is responsible for calling put_device() on the returned device
1950 * pointer.
1951 *
1952 * Return: a pointer to the device of the @fwnode's closest ancestor.
1953 */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1954 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1955 {
1956 struct fwnode_handle *parent;
1957 struct device *dev;
1958
1959 fwnode_for_each_parent_node(fwnode, parent) {
1960 dev = get_dev_from_fwnode(parent);
1961 if (dev) {
1962 fwnode_handle_put(parent);
1963 return dev;
1964 }
1965 }
1966 return NULL;
1967 }
1968
1969 /**
1970 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1971 * @con_handle: Potential consumer device fwnode.
1972 * @sup_handle: Potential supplier's fwnode.
1973 *
1974 * Needs to be called with fwnode_lock and device link lock held.
1975 *
1976 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1977 * depend on @con. This function can detect multiple cyles between @sup_handle
1978 * and @con. When such dependency cycles are found, convert all device links
1979 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1980 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1981 * converted into a device link in the future, they are created as
1982 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1983 * fw_devlink=permissive just between the devices in the cycle. We need to do
1984 * this because, at this point, fw_devlink can't tell which of these
1985 * dependencies is not a real dependency.
1986 *
1987 * Return true if one or more cycles were found. Otherwise, return false.
1988 */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1989 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1990 struct fwnode_handle *sup_handle)
1991 {
1992 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1993 struct fwnode_link *link;
1994 struct device_link *dev_link;
1995 bool ret = false;
1996
1997 if (!sup_handle)
1998 return false;
1999
2000 /*
2001 * We aren't trying to find all cycles. Just a cycle between con and
2002 * sup_handle.
2003 */
2004 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2005 return false;
2006
2007 sup_handle->flags |= FWNODE_FLAG_VISITED;
2008
2009 /* Termination condition. */
2010 if (sup_handle == con_handle) {
2011 pr_debug("----- cycle: start -----\n");
2012 ret = true;
2013 goto out;
2014 }
2015
2016 sup_dev = get_dev_from_fwnode(sup_handle);
2017 con_dev = get_dev_from_fwnode(con_handle);
2018 /*
2019 * If sup_dev is bound to a driver and @con hasn't started binding to a
2020 * driver, sup_dev can't be a consumer of @con. So, no need to check
2021 * further.
2022 */
2023 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2024 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2025 ret = false;
2026 goto out;
2027 }
2028
2029 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2030 if (link->flags & FWLINK_FLAG_IGNORE)
2031 continue;
2032
2033 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2034 __fwnode_link_cycle(link);
2035 ret = true;
2036 }
2037 }
2038
2039 /*
2040 * Give priority to device parent over fwnode parent to account for any
2041 * quirks in how fwnodes are converted to devices.
2042 */
2043 if (sup_dev)
2044 par_dev = get_device(sup_dev->parent);
2045 else
2046 par_dev = fwnode_get_next_parent_dev(sup_handle);
2047
2048 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2049 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2050 par_dev->fwnode);
2051 ret = true;
2052 }
2053
2054 if (!sup_dev)
2055 goto out;
2056
2057 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2058 /*
2059 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2060 * such due to a cycle.
2061 */
2062 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2063 !device_link_test(dev_link, DL_FLAG_CYCLE))
2064 continue;
2065
2066 if (__fw_devlink_relax_cycles(con_handle,
2067 dev_link->supplier->fwnode)) {
2068 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2069 dev_link->supplier->fwnode);
2070 fw_devlink_relax_link(dev_link);
2071 dev_link->flags |= DL_FLAG_CYCLE;
2072 ret = true;
2073 }
2074 }
2075
2076 out:
2077 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2078 put_device(sup_dev);
2079 put_device(con_dev);
2080 put_device(par_dev);
2081 return ret;
2082 }
2083
2084 /**
2085 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2086 * @con: consumer device for the device link
2087 * @sup_handle: fwnode handle of supplier
2088 * @link: fwnode link that's being converted to a device link
2089 *
2090 * This function will try to create a device link between the consumer device
2091 * @con and the supplier device represented by @sup_handle.
2092 *
2093 * The supplier has to be provided as a fwnode because incorrect cycles in
2094 * fwnode links can sometimes cause the supplier device to never be created.
2095 * This function detects such cases and returns an error if it cannot create a
2096 * device link from the consumer to a missing supplier.
2097 *
2098 * Returns,
2099 * 0 on successfully creating a device link
2100 * -EINVAL if the device link cannot be created as expected
2101 * -EAGAIN if the device link cannot be created right now, but it may be
2102 * possible to do that in the future
2103 */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2104 static int fw_devlink_create_devlink(struct device *con,
2105 struct fwnode_handle *sup_handle,
2106 struct fwnode_link *link)
2107 {
2108 struct device *sup_dev;
2109 int ret = 0;
2110 u32 flags;
2111
2112 if (link->flags & FWLINK_FLAG_IGNORE)
2113 return 0;
2114
2115 /*
2116 * In some cases, a device P might also be a supplier to its child node
2117 * C. However, this would defer the probe of C until the probe of P
2118 * completes successfully. This is perfectly fine in the device driver
2119 * model. device_add() doesn't guarantee probe completion of the device
2120 * by the time it returns.
2121 *
2122 * However, there are a few drivers that assume C will finish probing
2123 * as soon as it's added and before P finishes probing. So, we provide
2124 * a flag to let fw_devlink know not to delay the probe of C until the
2125 * probe of P completes successfully.
2126 *
2127 * When such a flag is set, we can't create device links where P is the
2128 * supplier of C as that would delay the probe of C.
2129 */
2130 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2131 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2132 return -EINVAL;
2133
2134 /*
2135 * Don't try to optimize by not calling the cycle detection logic under
2136 * certain conditions. There's always some corner case that won't get
2137 * detected.
2138 */
2139 device_links_write_lock();
2140 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2141 __fwnode_link_cycle(link);
2142 pr_debug("----- cycle: end -----\n");
2143 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2144 link->consumer, sup_handle);
2145 }
2146 device_links_write_unlock();
2147
2148 if (con->fwnode == link->consumer)
2149 flags = fw_devlink_get_flags(link->flags);
2150 else
2151 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2152
2153 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2154 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2155 else
2156 sup_dev = get_dev_from_fwnode(sup_handle);
2157
2158 if (sup_dev) {
2159 /*
2160 * If it's one of those drivers that don't actually bind to
2161 * their device using driver core, then don't wait on this
2162 * supplier device indefinitely.
2163 */
2164 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2165 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2166 dev_dbg(con,
2167 "Not linking %pfwf - dev might never probe\n",
2168 sup_handle);
2169 ret = -EINVAL;
2170 goto out;
2171 }
2172
2173 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2174 dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2175 flags, dev_name(sup_dev), link->consumer);
2176 ret = -EINVAL;
2177 }
2178
2179 goto out;
2180 }
2181
2182 /*
2183 * Supplier or supplier's ancestor already initialized without a struct
2184 * device or being probed by a driver.
2185 */
2186 if (fwnode_init_without_drv(sup_handle) ||
2187 fwnode_ancestor_init_without_drv(sup_handle)) {
2188 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2189 sup_handle);
2190 return -EINVAL;
2191 }
2192
2193 ret = -EAGAIN;
2194 out:
2195 put_device(sup_dev);
2196 return ret;
2197 }
2198
2199 /**
2200 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2201 * @dev: Device that needs to be linked to its consumers
2202 *
2203 * This function looks at all the consumer fwnodes of @dev and creates device
2204 * links between the consumer device and @dev (supplier).
2205 *
2206 * If the consumer device has not been added yet, then this function creates a
2207 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2208 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2209 * sync_state() callback before the real consumer device gets to be added and
2210 * then probed.
2211 *
2212 * Once device links are created from the real consumer to @dev (supplier), the
2213 * fwnode links are deleted.
2214 */
__fw_devlink_link_to_consumers(struct device * dev)2215 static void __fw_devlink_link_to_consumers(struct device *dev)
2216 {
2217 struct fwnode_handle *fwnode = dev->fwnode;
2218 struct fwnode_link *link, *tmp;
2219
2220 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2221 struct device *con_dev;
2222 bool own_link = true;
2223 int ret;
2224
2225 con_dev = get_dev_from_fwnode(link->consumer);
2226 /*
2227 * If consumer device is not available yet, make a "proxy"
2228 * SYNC_STATE_ONLY link from the consumer's parent device to
2229 * the supplier device. This is necessary to make sure the
2230 * supplier doesn't get a sync_state() callback before the real
2231 * consumer can create a device link to the supplier.
2232 *
2233 * This proxy link step is needed to handle the case where the
2234 * consumer's parent device is added before the supplier.
2235 */
2236 if (!con_dev) {
2237 con_dev = fwnode_get_next_parent_dev(link->consumer);
2238 /*
2239 * However, if the consumer's parent device is also the
2240 * parent of the supplier, don't create a
2241 * consumer-supplier link from the parent to its child
2242 * device. Such a dependency is impossible.
2243 */
2244 if (con_dev &&
2245 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2246 put_device(con_dev);
2247 con_dev = NULL;
2248 } else {
2249 own_link = false;
2250 }
2251 }
2252
2253 if (!con_dev)
2254 continue;
2255
2256 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2257 put_device(con_dev);
2258 if (!own_link || ret == -EAGAIN)
2259 continue;
2260
2261 __fwnode_link_del(link);
2262 }
2263 }
2264
2265 /**
2266 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2267 * @dev: The consumer device that needs to be linked to its suppliers
2268 * @fwnode: Root of the fwnode tree that is used to create device links
2269 *
2270 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2271 * @fwnode and creates device links between @dev (consumer) and all the
2272 * supplier devices of the entire fwnode tree at @fwnode.
2273 *
2274 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2275 * and the real suppliers of @dev. Once these device links are created, the
2276 * fwnode links are deleted.
2277 *
2278 * In addition, it also looks at all the suppliers of the entire fwnode tree
2279 * because some of the child devices of @dev that have not been added yet
2280 * (because @dev hasn't probed) might already have their suppliers added to
2281 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2282 * @dev (consumer) and these suppliers to make sure they don't execute their
2283 * sync_state() callbacks before these child devices have a chance to create
2284 * their device links. The fwnode links that correspond to the child devices
2285 * aren't delete because they are needed later to create the device links
2286 * between the real consumer and supplier devices.
2287 */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2288 static void __fw_devlink_link_to_suppliers(struct device *dev,
2289 struct fwnode_handle *fwnode)
2290 {
2291 bool own_link = (dev->fwnode == fwnode);
2292 struct fwnode_link *link, *tmp;
2293 struct fwnode_handle *child = NULL;
2294
2295 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2296 int ret;
2297 struct fwnode_handle *sup = link->supplier;
2298
2299 ret = fw_devlink_create_devlink(dev, sup, link);
2300 if (!own_link || ret == -EAGAIN)
2301 continue;
2302
2303 __fwnode_link_del(link);
2304 }
2305
2306 /*
2307 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2308 * all the descendants. This proxy link step is needed to handle the
2309 * case where the supplier is added before the consumer's parent device
2310 * (@dev).
2311 */
2312 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2313 __fw_devlink_link_to_suppliers(dev, child);
2314 }
2315
fw_devlink_link_device(struct device * dev)2316 static void fw_devlink_link_device(struct device *dev)
2317 {
2318 struct fwnode_handle *fwnode = dev->fwnode;
2319
2320 if (!fw_devlink_flags)
2321 return;
2322
2323 fw_devlink_parse_fwtree(fwnode);
2324
2325 guard(mutex)(&fwnode_link_lock);
2326
2327 __fw_devlink_link_to_consumers(dev);
2328 __fw_devlink_link_to_suppliers(dev, fwnode);
2329 }
2330
2331 /* Device links support end. */
2332
2333 static struct kobject *dev_kobj;
2334
2335 /* /sys/dev/char */
2336 static struct kobject *sysfs_dev_char_kobj;
2337
2338 /* /sys/dev/block */
2339 static struct kobject *sysfs_dev_block_kobj;
2340
2341 static DEFINE_MUTEX(device_hotplug_lock);
2342
lock_device_hotplug(void)2343 void lock_device_hotplug(void)
2344 {
2345 mutex_lock(&device_hotplug_lock);
2346 }
2347
unlock_device_hotplug(void)2348 void unlock_device_hotplug(void)
2349 {
2350 mutex_unlock(&device_hotplug_lock);
2351 }
2352
lock_device_hotplug_sysfs(void)2353 int lock_device_hotplug_sysfs(void)
2354 {
2355 if (mutex_trylock(&device_hotplug_lock))
2356 return 0;
2357
2358 /* Avoid busy looping (5 ms of sleep should do). */
2359 msleep(5);
2360 return restart_syscall();
2361 }
2362
2363 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2364 static inline int device_is_not_partition(struct device *dev)
2365 {
2366 return !(dev->type == &part_type);
2367 }
2368 #else
device_is_not_partition(struct device * dev)2369 static inline int device_is_not_partition(struct device *dev)
2370 {
2371 return 1;
2372 }
2373 #endif
2374
device_platform_notify(struct device * dev)2375 static void device_platform_notify(struct device *dev)
2376 {
2377 acpi_device_notify(dev);
2378
2379 software_node_notify(dev);
2380 }
2381
device_platform_notify_remove(struct device * dev)2382 static void device_platform_notify_remove(struct device *dev)
2383 {
2384 software_node_notify_remove(dev);
2385
2386 acpi_device_notify_remove(dev);
2387 }
2388
2389 /**
2390 * dev_driver_string - Return a device's driver name, if at all possible
2391 * @dev: struct device to get the name of
2392 *
2393 * Will return the device's driver's name if it is bound to a device. If
2394 * the device is not bound to a driver, it will return the name of the bus
2395 * it is attached to. If it is not attached to a bus either, an empty
2396 * string will be returned.
2397 */
dev_driver_string(const struct device * dev)2398 const char *dev_driver_string(const struct device *dev)
2399 {
2400 struct device_driver *drv;
2401
2402 /* dev->driver can change to NULL underneath us because of unbinding,
2403 * so be careful about accessing it. dev->bus and dev->class should
2404 * never change once they are set, so they don't need special care.
2405 */
2406 drv = READ_ONCE(dev->driver);
2407 return drv ? drv->name : dev_bus_name(dev);
2408 }
2409 EXPORT_SYMBOL(dev_driver_string);
2410
2411 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2412
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2413 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2414 char *buf)
2415 {
2416 struct device_attribute *dev_attr = to_dev_attr(attr);
2417 struct device *dev = kobj_to_dev(kobj);
2418 ssize_t ret = -EIO;
2419
2420 if (dev_attr->show)
2421 ret = dev_attr->show(dev, dev_attr, buf);
2422 if (ret >= (ssize_t)PAGE_SIZE) {
2423 printk("dev_attr_show: %pS returned bad count\n",
2424 dev_attr->show);
2425 }
2426 return ret;
2427 }
2428
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2429 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2430 const char *buf, size_t count)
2431 {
2432 struct device_attribute *dev_attr = to_dev_attr(attr);
2433 struct device *dev = kobj_to_dev(kobj);
2434 ssize_t ret = -EIO;
2435
2436 if (dev_attr->store)
2437 ret = dev_attr->store(dev, dev_attr, buf, count);
2438 return ret;
2439 }
2440
2441 static const struct sysfs_ops dev_sysfs_ops = {
2442 .show = dev_attr_show,
2443 .store = dev_attr_store,
2444 };
2445
2446 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2447
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2448 ssize_t device_store_ulong(struct device *dev,
2449 struct device_attribute *attr,
2450 const char *buf, size_t size)
2451 {
2452 struct dev_ext_attribute *ea = to_ext_attr(attr);
2453 int ret;
2454 unsigned long new;
2455
2456 ret = kstrtoul(buf, 0, &new);
2457 if (ret)
2458 return ret;
2459 *(unsigned long *)(ea->var) = new;
2460 /* Always return full write size even if we didn't consume all */
2461 return size;
2462 }
2463 EXPORT_SYMBOL_GPL(device_store_ulong);
2464
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2465 ssize_t device_show_ulong(struct device *dev,
2466 struct device_attribute *attr,
2467 char *buf)
2468 {
2469 struct dev_ext_attribute *ea = to_ext_attr(attr);
2470 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2471 }
2472 EXPORT_SYMBOL_GPL(device_show_ulong);
2473
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2474 ssize_t device_store_int(struct device *dev,
2475 struct device_attribute *attr,
2476 const char *buf, size_t size)
2477 {
2478 struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 int ret;
2480 long new;
2481
2482 ret = kstrtol(buf, 0, &new);
2483 if (ret)
2484 return ret;
2485
2486 if (new > INT_MAX || new < INT_MIN)
2487 return -EINVAL;
2488 *(int *)(ea->var) = new;
2489 /* Always return full write size even if we didn't consume all */
2490 return size;
2491 }
2492 EXPORT_SYMBOL_GPL(device_store_int);
2493
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2494 ssize_t device_show_int(struct device *dev,
2495 struct device_attribute *attr,
2496 char *buf)
2497 {
2498 struct dev_ext_attribute *ea = to_ext_attr(attr);
2499
2500 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2501 }
2502 EXPORT_SYMBOL_GPL(device_show_int);
2503
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2504 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2505 const char *buf, size_t size)
2506 {
2507 struct dev_ext_attribute *ea = to_ext_attr(attr);
2508
2509 if (kstrtobool(buf, ea->var) < 0)
2510 return -EINVAL;
2511
2512 return size;
2513 }
2514 EXPORT_SYMBOL_GPL(device_store_bool);
2515
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2516 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2517 char *buf)
2518 {
2519 struct dev_ext_attribute *ea = to_ext_attr(attr);
2520
2521 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2522 }
2523 EXPORT_SYMBOL_GPL(device_show_bool);
2524
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2525 ssize_t device_show_string(struct device *dev,
2526 struct device_attribute *attr, char *buf)
2527 {
2528 struct dev_ext_attribute *ea = to_ext_attr(attr);
2529
2530 return sysfs_emit(buf, "%s\n", (char *)ea->var);
2531 }
2532 EXPORT_SYMBOL_GPL(device_show_string);
2533
2534 /**
2535 * device_release - free device structure.
2536 * @kobj: device's kobject.
2537 *
2538 * This is called once the reference count for the object
2539 * reaches 0. We forward the call to the device's release
2540 * method, which should handle actually freeing the structure.
2541 */
device_release(struct kobject * kobj)2542 static void device_release(struct kobject *kobj)
2543 {
2544 struct device *dev = kobj_to_dev(kobj);
2545 struct device_private *p = dev->p;
2546
2547 /*
2548 * Some platform devices are driven without driver attached
2549 * and managed resources may have been acquired. Make sure
2550 * all resources are released.
2551 *
2552 * Drivers still can add resources into device after device
2553 * is deleted but alive, so release devres here to avoid
2554 * possible memory leak.
2555 */
2556 devres_release_all(dev);
2557
2558 kfree(dev->dma_range_map);
2559
2560 if (dev->release)
2561 dev->release(dev);
2562 else if (dev->type && dev->type->release)
2563 dev->type->release(dev);
2564 else if (dev->class && dev->class->dev_release)
2565 dev->class->dev_release(dev);
2566 else
2567 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2568 dev_name(dev));
2569 kfree(p);
2570 }
2571
device_namespace(const struct kobject * kobj)2572 static const void *device_namespace(const struct kobject *kobj)
2573 {
2574 const struct device *dev = kobj_to_dev(kobj);
2575 const void *ns = NULL;
2576
2577 if (dev->class && dev->class->namespace)
2578 ns = dev->class->namespace(dev);
2579
2580 return ns;
2581 }
2582
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2583 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2584 {
2585 const struct device *dev = kobj_to_dev(kobj);
2586
2587 if (dev->class && dev->class->get_ownership)
2588 dev->class->get_ownership(dev, uid, gid);
2589 }
2590
2591 static const struct kobj_type device_ktype = {
2592 .release = device_release,
2593 .sysfs_ops = &dev_sysfs_ops,
2594 .namespace = device_namespace,
2595 .get_ownership = device_get_ownership,
2596 };
2597
2598
dev_uevent_filter(const struct kobject * kobj)2599 static int dev_uevent_filter(const struct kobject *kobj)
2600 {
2601 const struct kobj_type *ktype = get_ktype(kobj);
2602
2603 if (ktype == &device_ktype) {
2604 const struct device *dev = kobj_to_dev(kobj);
2605 if (dev->bus)
2606 return 1;
2607 if (dev->class)
2608 return 1;
2609 }
2610 return 0;
2611 }
2612
dev_uevent_name(const struct kobject * kobj)2613 static const char *dev_uevent_name(const struct kobject *kobj)
2614 {
2615 const struct device *dev = kobj_to_dev(kobj);
2616
2617 if (dev->bus)
2618 return dev->bus->name;
2619 if (dev->class)
2620 return dev->class->name;
2621 return NULL;
2622 }
2623
2624 /*
2625 * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2626 * function may race with binding and unbinding the device from a driver,
2627 * we need to be careful. Binding is generally safe, at worst we miss the
2628 * fact that the device is already bound to a driver (but the driver
2629 * information that is delivered through uevents is best-effort, it may
2630 * become obsolete as soon as it is generated anyways). Unbinding is more
2631 * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2632 * be used to make sure we are dealing with the same pointer, and to
2633 * ensure that driver structure is not going to disappear from under us
2634 * we take bus' drivers klist lock. The assumption that only registered
2635 * driver can be bound to a device, and to unregister a driver bus code
2636 * will take the same lock.
2637 */
dev_driver_uevent(const struct device * dev,struct kobj_uevent_env * env)2638 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2639 {
2640 struct subsys_private *sp = bus_to_subsys(dev->bus);
2641
2642 if (sp) {
2643 scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2644 struct device_driver *drv = READ_ONCE(dev->driver);
2645 if (drv)
2646 add_uevent_var(env, "DRIVER=%s", drv->name);
2647 }
2648
2649 subsys_put(sp);
2650 }
2651 }
2652
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2653 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2654 {
2655 const struct device *dev = kobj_to_dev(kobj);
2656 int retval = 0;
2657
2658 /* add device node properties if present */
2659 if (MAJOR(dev->devt)) {
2660 const char *tmp;
2661 const char *name;
2662 umode_t mode = 0;
2663 kuid_t uid = GLOBAL_ROOT_UID;
2664 kgid_t gid = GLOBAL_ROOT_GID;
2665
2666 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2667 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2668 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2669 if (name) {
2670 add_uevent_var(env, "DEVNAME=%s", name);
2671 if (mode)
2672 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2673 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2674 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2675 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2676 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2677 kfree(tmp);
2678 }
2679 }
2680
2681 if (dev->type && dev->type->name)
2682 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2683
2684 /* Add "DRIVER=%s" variable if the device is bound to a driver */
2685 dev_driver_uevent(dev, env);
2686
2687 /* Add common DT information about the device */
2688 of_device_uevent(dev, env);
2689
2690 /* have the bus specific function add its stuff */
2691 if (dev->bus && dev->bus->uevent) {
2692 retval = dev->bus->uevent(dev, env);
2693 if (retval)
2694 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2695 dev_name(dev), __func__, retval);
2696 }
2697
2698 /* have the class specific function add its stuff */
2699 if (dev->class && dev->class->dev_uevent) {
2700 retval = dev->class->dev_uevent(dev, env);
2701 if (retval)
2702 pr_debug("device: '%s': %s: class uevent() "
2703 "returned %d\n", dev_name(dev),
2704 __func__, retval);
2705 }
2706
2707 /* have the device type specific function add its stuff */
2708 if (dev->type && dev->type->uevent) {
2709 retval = dev->type->uevent(dev, env);
2710 if (retval)
2711 pr_debug("device: '%s': %s: dev_type uevent() "
2712 "returned %d\n", dev_name(dev),
2713 __func__, retval);
2714 }
2715
2716 return retval;
2717 }
2718
2719 static const struct kset_uevent_ops device_uevent_ops = {
2720 .filter = dev_uevent_filter,
2721 .name = dev_uevent_name,
2722 .uevent = dev_uevent,
2723 };
2724
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2725 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2726 char *buf)
2727 {
2728 struct kobject *top_kobj;
2729 struct kset *kset;
2730 struct kobj_uevent_env *env = NULL;
2731 int i;
2732 int len = 0;
2733 int retval;
2734
2735 /* search the kset, the device belongs to */
2736 top_kobj = &dev->kobj;
2737 while (!top_kobj->kset && top_kobj->parent)
2738 top_kobj = top_kobj->parent;
2739 if (!top_kobj->kset)
2740 goto out;
2741
2742 kset = top_kobj->kset;
2743 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2744 goto out;
2745
2746 /* respect filter */
2747 if (kset->uevent_ops && kset->uevent_ops->filter)
2748 if (!kset->uevent_ops->filter(&dev->kobj))
2749 goto out;
2750
2751 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2752 if (!env)
2753 return -ENOMEM;
2754
2755 /* let the kset specific function add its keys */
2756 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2757 if (retval)
2758 goto out;
2759
2760 /* copy keys to file */
2761 for (i = 0; i < env->envp_idx; i++)
2762 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2763 out:
2764 kfree(env);
2765 return len;
2766 }
2767
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2768 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2769 const char *buf, size_t count)
2770 {
2771 int rc;
2772
2773 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2774
2775 if (rc) {
2776 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2777 return rc;
2778 }
2779
2780 return count;
2781 }
2782 static DEVICE_ATTR_RW(uevent);
2783
online_show(struct device * dev,struct device_attribute * attr,char * buf)2784 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2785 char *buf)
2786 {
2787 bool val;
2788
2789 device_lock(dev);
2790 val = !dev->offline;
2791 device_unlock(dev);
2792 return sysfs_emit(buf, "%u\n", val);
2793 }
2794
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2795 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2796 const char *buf, size_t count)
2797 {
2798 bool val;
2799 int ret;
2800
2801 ret = kstrtobool(buf, &val);
2802 if (ret < 0)
2803 return ret;
2804
2805 ret = lock_device_hotplug_sysfs();
2806 if (ret)
2807 return ret;
2808
2809 ret = val ? device_online(dev) : device_offline(dev);
2810 unlock_device_hotplug();
2811 return ret < 0 ? ret : count;
2812 }
2813 static DEVICE_ATTR_RW(online);
2814
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2815 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2816 char *buf)
2817 {
2818 const char *loc;
2819
2820 switch (dev->removable) {
2821 case DEVICE_REMOVABLE:
2822 loc = "removable";
2823 break;
2824 case DEVICE_FIXED:
2825 loc = "fixed";
2826 break;
2827 default:
2828 loc = "unknown";
2829 }
2830 return sysfs_emit(buf, "%s\n", loc);
2831 }
2832 static DEVICE_ATTR_RO(removable);
2833
device_add_groups(struct device * dev,const struct attribute_group ** groups)2834 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2835 {
2836 return sysfs_create_groups(&dev->kobj, groups);
2837 }
2838 EXPORT_SYMBOL_GPL(device_add_groups);
2839
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2840 void device_remove_groups(struct device *dev,
2841 const struct attribute_group **groups)
2842 {
2843 sysfs_remove_groups(&dev->kobj, groups);
2844 }
2845 EXPORT_SYMBOL_GPL(device_remove_groups);
2846
2847 union device_attr_group_devres {
2848 const struct attribute_group *group;
2849 const struct attribute_group **groups;
2850 };
2851
devm_attr_group_remove(struct device * dev,void * res)2852 static void devm_attr_group_remove(struct device *dev, void *res)
2853 {
2854 union device_attr_group_devres *devres = res;
2855 const struct attribute_group *group = devres->group;
2856
2857 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2858 sysfs_remove_group(&dev->kobj, group);
2859 }
2860
2861 /**
2862 * devm_device_add_group - given a device, create a managed attribute group
2863 * @dev: The device to create the group for
2864 * @grp: The attribute group to create
2865 *
2866 * This function creates a group for the first time. It will explicitly
2867 * warn and error if any of the attribute files being created already exist.
2868 *
2869 * Returns 0 on success or error code on failure.
2870 */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2871 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2872 {
2873 union device_attr_group_devres *devres;
2874 int error;
2875
2876 devres = devres_alloc(devm_attr_group_remove,
2877 sizeof(*devres), GFP_KERNEL);
2878 if (!devres)
2879 return -ENOMEM;
2880
2881 error = sysfs_create_group(&dev->kobj, grp);
2882 if (error) {
2883 devres_free(devres);
2884 return error;
2885 }
2886
2887 devres->group = grp;
2888 devres_add(dev, devres);
2889 return 0;
2890 }
2891 EXPORT_SYMBOL_GPL(devm_device_add_group);
2892
device_add_attrs(struct device * dev)2893 static int device_add_attrs(struct device *dev)
2894 {
2895 const struct class *class = dev->class;
2896 const struct device_type *type = dev->type;
2897 int error;
2898
2899 if (class) {
2900 error = device_add_groups(dev, class->dev_groups);
2901 if (error)
2902 return error;
2903 }
2904
2905 if (type) {
2906 error = device_add_groups(dev, type->groups);
2907 if (error)
2908 goto err_remove_class_groups;
2909 }
2910
2911 error = device_add_groups(dev, dev->groups);
2912 if (error)
2913 goto err_remove_type_groups;
2914
2915 if (device_supports_offline(dev) && !dev->offline_disabled) {
2916 error = device_create_file(dev, &dev_attr_online);
2917 if (error)
2918 goto err_remove_dev_groups;
2919 }
2920
2921 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2922 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2923 if (error)
2924 goto err_remove_dev_online;
2925 }
2926
2927 if (dev_removable_is_valid(dev)) {
2928 error = device_create_file(dev, &dev_attr_removable);
2929 if (error)
2930 goto err_remove_dev_waiting_for_supplier;
2931 }
2932
2933 if (dev_add_physical_location(dev)) {
2934 error = device_add_group(dev,
2935 &dev_attr_physical_location_group);
2936 if (error)
2937 goto err_remove_dev_removable;
2938 }
2939
2940 return 0;
2941
2942 err_remove_dev_removable:
2943 device_remove_file(dev, &dev_attr_removable);
2944 err_remove_dev_waiting_for_supplier:
2945 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2946 err_remove_dev_online:
2947 device_remove_file(dev, &dev_attr_online);
2948 err_remove_dev_groups:
2949 device_remove_groups(dev, dev->groups);
2950 err_remove_type_groups:
2951 if (type)
2952 device_remove_groups(dev, type->groups);
2953 err_remove_class_groups:
2954 if (class)
2955 device_remove_groups(dev, class->dev_groups);
2956
2957 return error;
2958 }
2959
device_remove_attrs(struct device * dev)2960 static void device_remove_attrs(struct device *dev)
2961 {
2962 const struct class *class = dev->class;
2963 const struct device_type *type = dev->type;
2964
2965 if (dev->physical_location) {
2966 device_remove_group(dev, &dev_attr_physical_location_group);
2967 kfree(dev->physical_location);
2968 }
2969
2970 device_remove_file(dev, &dev_attr_removable);
2971 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2972 device_remove_file(dev, &dev_attr_online);
2973 device_remove_groups(dev, dev->groups);
2974
2975 if (type)
2976 device_remove_groups(dev, type->groups);
2977
2978 if (class)
2979 device_remove_groups(dev, class->dev_groups);
2980 }
2981
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2982 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2983 char *buf)
2984 {
2985 return print_dev_t(buf, dev->devt);
2986 }
2987 static DEVICE_ATTR_RO(dev);
2988
2989 /* /sys/devices/ */
2990 struct kset *devices_kset;
2991
2992 /**
2993 * devices_kset_move_before - Move device in the devices_kset's list.
2994 * @deva: Device to move.
2995 * @devb: Device @deva should come before.
2996 */
devices_kset_move_before(struct device * deva,struct device * devb)2997 static void devices_kset_move_before(struct device *deva, struct device *devb)
2998 {
2999 if (!devices_kset)
3000 return;
3001 pr_debug("devices_kset: Moving %s before %s\n",
3002 dev_name(deva), dev_name(devb));
3003 spin_lock(&devices_kset->list_lock);
3004 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3005 spin_unlock(&devices_kset->list_lock);
3006 }
3007
3008 /**
3009 * devices_kset_move_after - Move device in the devices_kset's list.
3010 * @deva: Device to move
3011 * @devb: Device @deva should come after.
3012 */
devices_kset_move_after(struct device * deva,struct device * devb)3013 static void devices_kset_move_after(struct device *deva, struct device *devb)
3014 {
3015 if (!devices_kset)
3016 return;
3017 pr_debug("devices_kset: Moving %s after %s\n",
3018 dev_name(deva), dev_name(devb));
3019 spin_lock(&devices_kset->list_lock);
3020 list_move(&deva->kobj.entry, &devb->kobj.entry);
3021 spin_unlock(&devices_kset->list_lock);
3022 }
3023
3024 /**
3025 * devices_kset_move_last - move the device to the end of devices_kset's list.
3026 * @dev: device to move
3027 */
devices_kset_move_last(struct device * dev)3028 void devices_kset_move_last(struct device *dev)
3029 {
3030 if (!devices_kset)
3031 return;
3032 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3033 spin_lock(&devices_kset->list_lock);
3034 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3035 spin_unlock(&devices_kset->list_lock);
3036 }
3037
3038 /**
3039 * device_create_file - create sysfs attribute file for device.
3040 * @dev: device.
3041 * @attr: device attribute descriptor.
3042 */
device_create_file(struct device * dev,const struct device_attribute * attr)3043 int device_create_file(struct device *dev,
3044 const struct device_attribute *attr)
3045 {
3046 int error = 0;
3047
3048 if (dev) {
3049 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3050 "Attribute %s: write permission without 'store'\n",
3051 attr->attr.name);
3052 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3053 "Attribute %s: read permission without 'show'\n",
3054 attr->attr.name);
3055 error = sysfs_create_file(&dev->kobj, &attr->attr);
3056 }
3057
3058 return error;
3059 }
3060 EXPORT_SYMBOL_GPL(device_create_file);
3061
3062 /**
3063 * device_remove_file - remove sysfs attribute file.
3064 * @dev: device.
3065 * @attr: device attribute descriptor.
3066 */
device_remove_file(struct device * dev,const struct device_attribute * attr)3067 void device_remove_file(struct device *dev,
3068 const struct device_attribute *attr)
3069 {
3070 if (dev)
3071 sysfs_remove_file(&dev->kobj, &attr->attr);
3072 }
3073 EXPORT_SYMBOL_GPL(device_remove_file);
3074
3075 /**
3076 * device_remove_file_self - remove sysfs attribute file from its own method.
3077 * @dev: device.
3078 * @attr: device attribute descriptor.
3079 *
3080 * See kernfs_remove_self() for details.
3081 */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3082 bool device_remove_file_self(struct device *dev,
3083 const struct device_attribute *attr)
3084 {
3085 if (dev)
3086 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3087 else
3088 return false;
3089 }
3090 EXPORT_SYMBOL_GPL(device_remove_file_self);
3091
3092 /**
3093 * device_create_bin_file - create sysfs binary attribute file for device.
3094 * @dev: device.
3095 * @attr: device binary attribute descriptor.
3096 */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3097 int device_create_bin_file(struct device *dev,
3098 const struct bin_attribute *attr)
3099 {
3100 int error = -EINVAL;
3101 if (dev)
3102 error = sysfs_create_bin_file(&dev->kobj, attr);
3103 return error;
3104 }
3105 EXPORT_SYMBOL_GPL(device_create_bin_file);
3106
3107 /**
3108 * device_remove_bin_file - remove sysfs binary attribute file
3109 * @dev: device.
3110 * @attr: device binary attribute descriptor.
3111 */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3112 void device_remove_bin_file(struct device *dev,
3113 const struct bin_attribute *attr)
3114 {
3115 if (dev)
3116 sysfs_remove_bin_file(&dev->kobj, attr);
3117 }
3118 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3119
klist_children_get(struct klist_node * n)3120 static void klist_children_get(struct klist_node *n)
3121 {
3122 struct device_private *p = to_device_private_parent(n);
3123 struct device *dev = p->device;
3124
3125 get_device(dev);
3126 }
3127
klist_children_put(struct klist_node * n)3128 static void klist_children_put(struct klist_node *n)
3129 {
3130 struct device_private *p = to_device_private_parent(n);
3131 struct device *dev = p->device;
3132
3133 put_device(dev);
3134 }
3135
3136 /**
3137 * device_initialize - init device structure.
3138 * @dev: device.
3139 *
3140 * This prepares the device for use by other layers by initializing
3141 * its fields.
3142 * It is the first half of device_register(), if called by
3143 * that function, though it can also be called separately, so one
3144 * may use @dev's fields. In particular, get_device()/put_device()
3145 * may be used for reference counting of @dev after calling this
3146 * function.
3147 *
3148 * All fields in @dev must be initialized by the caller to 0, except
3149 * for those explicitly set to some other value. The simplest
3150 * approach is to use kzalloc() to allocate the structure containing
3151 * @dev.
3152 *
3153 * NOTE: Use put_device() to give up your reference instead of freeing
3154 * @dev directly once you have called this function.
3155 */
device_initialize(struct device * dev)3156 void device_initialize(struct device *dev)
3157 {
3158 dev->kobj.kset = devices_kset;
3159 kobject_init(&dev->kobj, &device_ktype);
3160 INIT_LIST_HEAD(&dev->dma_pools);
3161 mutex_init(&dev->mutex);
3162 lockdep_set_novalidate_class(&dev->mutex);
3163 spin_lock_init(&dev->devres_lock);
3164 INIT_LIST_HEAD(&dev->devres_head);
3165 device_pm_init(dev);
3166 set_dev_node(dev, NUMA_NO_NODE);
3167 INIT_LIST_HEAD(&dev->links.consumers);
3168 INIT_LIST_HEAD(&dev->links.suppliers);
3169 INIT_LIST_HEAD(&dev->links.defer_sync);
3170 dev->links.status = DL_DEV_NO_DRIVER;
3171 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3172 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3173 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3174 dev->dma_coherent = dma_default_coherent;
3175 #endif
3176 swiotlb_dev_init(dev);
3177 }
3178 EXPORT_SYMBOL_GPL(device_initialize);
3179
virtual_device_parent(void)3180 struct kobject *virtual_device_parent(void)
3181 {
3182 static struct kobject *virtual_dir = NULL;
3183
3184 if (!virtual_dir)
3185 virtual_dir = kobject_create_and_add("virtual",
3186 &devices_kset->kobj);
3187
3188 return virtual_dir;
3189 }
3190
3191 struct class_dir {
3192 struct kobject kobj;
3193 const struct class *class;
3194 };
3195
3196 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3197
class_dir_release(struct kobject * kobj)3198 static void class_dir_release(struct kobject *kobj)
3199 {
3200 struct class_dir *dir = to_class_dir(kobj);
3201 kfree(dir);
3202 }
3203
3204 static const
class_dir_child_ns_type(const struct kobject * kobj)3205 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3206 {
3207 const struct class_dir *dir = to_class_dir(kobj);
3208 return dir->class->ns_type;
3209 }
3210
3211 static const struct kobj_type class_dir_ktype = {
3212 .release = class_dir_release,
3213 .sysfs_ops = &kobj_sysfs_ops,
3214 .child_ns_type = class_dir_child_ns_type
3215 };
3216
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3217 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3218 struct kobject *parent_kobj)
3219 {
3220 struct class_dir *dir;
3221 int retval;
3222
3223 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3224 if (!dir)
3225 return ERR_PTR(-ENOMEM);
3226
3227 dir->class = sp->class;
3228 kobject_init(&dir->kobj, &class_dir_ktype);
3229
3230 dir->kobj.kset = &sp->glue_dirs;
3231
3232 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3233 if (retval < 0) {
3234 kobject_put(&dir->kobj);
3235 return ERR_PTR(retval);
3236 }
3237 return &dir->kobj;
3238 }
3239
3240 static DEFINE_MUTEX(gdp_mutex);
3241
get_device_parent(struct device * dev,struct device * parent)3242 static struct kobject *get_device_parent(struct device *dev,
3243 struct device *parent)
3244 {
3245 struct subsys_private *sp = class_to_subsys(dev->class);
3246 struct kobject *kobj = NULL;
3247
3248 if (sp) {
3249 struct kobject *parent_kobj;
3250 struct kobject *k;
3251
3252 /*
3253 * If we have no parent, we live in "virtual".
3254 * Class-devices with a non class-device as parent, live
3255 * in a "glue" directory to prevent namespace collisions.
3256 */
3257 if (parent == NULL)
3258 parent_kobj = virtual_device_parent();
3259 else if (parent->class && !dev->class->ns_type) {
3260 subsys_put(sp);
3261 return &parent->kobj;
3262 } else {
3263 parent_kobj = &parent->kobj;
3264 }
3265
3266 mutex_lock(&gdp_mutex);
3267
3268 /* find our class-directory at the parent and reference it */
3269 spin_lock(&sp->glue_dirs.list_lock);
3270 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3271 if (k->parent == parent_kobj) {
3272 kobj = kobject_get(k);
3273 break;
3274 }
3275 spin_unlock(&sp->glue_dirs.list_lock);
3276 if (kobj) {
3277 mutex_unlock(&gdp_mutex);
3278 subsys_put(sp);
3279 return kobj;
3280 }
3281
3282 /* or create a new class-directory at the parent device */
3283 k = class_dir_create_and_add(sp, parent_kobj);
3284 /* do not emit an uevent for this simple "glue" directory */
3285 mutex_unlock(&gdp_mutex);
3286 subsys_put(sp);
3287 return k;
3288 }
3289
3290 /* subsystems can specify a default root directory for their devices */
3291 if (!parent && dev->bus) {
3292 struct device *dev_root = bus_get_dev_root(dev->bus);
3293
3294 if (dev_root) {
3295 kobj = &dev_root->kobj;
3296 put_device(dev_root);
3297 return kobj;
3298 }
3299 }
3300
3301 if (parent)
3302 return &parent->kobj;
3303 return NULL;
3304 }
3305
live_in_glue_dir(struct kobject * kobj,struct device * dev)3306 static inline bool live_in_glue_dir(struct kobject *kobj,
3307 struct device *dev)
3308 {
3309 struct subsys_private *sp;
3310 bool retval;
3311
3312 if (!kobj || !dev->class)
3313 return false;
3314
3315 sp = class_to_subsys(dev->class);
3316 if (!sp)
3317 return false;
3318
3319 if (kobj->kset == &sp->glue_dirs)
3320 retval = true;
3321 else
3322 retval = false;
3323
3324 subsys_put(sp);
3325 return retval;
3326 }
3327
get_glue_dir(struct device * dev)3328 static inline struct kobject *get_glue_dir(struct device *dev)
3329 {
3330 return dev->kobj.parent;
3331 }
3332
3333 /**
3334 * kobject_has_children - Returns whether a kobject has children.
3335 * @kobj: the object to test
3336 *
3337 * This will return whether a kobject has other kobjects as children.
3338 *
3339 * It does NOT account for the presence of attribute files, only sub
3340 * directories. It also assumes there is no concurrent addition or
3341 * removal of such children, and thus relies on external locking.
3342 */
kobject_has_children(struct kobject * kobj)3343 static inline bool kobject_has_children(struct kobject *kobj)
3344 {
3345 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3346
3347 return kobj->sd && kobj->sd->dir.subdirs;
3348 }
3349
3350 /*
3351 * make sure cleaning up dir as the last step, we need to make
3352 * sure .release handler of kobject is run with holding the
3353 * global lock
3354 */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3355 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3356 {
3357 unsigned int ref;
3358
3359 /* see if we live in a "glue" directory */
3360 if (!live_in_glue_dir(glue_dir, dev))
3361 return;
3362
3363 mutex_lock(&gdp_mutex);
3364 /**
3365 * There is a race condition between removing glue directory
3366 * and adding a new device under the glue directory.
3367 *
3368 * CPU1: CPU2:
3369 *
3370 * device_add()
3371 * get_device_parent()
3372 * class_dir_create_and_add()
3373 * kobject_add_internal()
3374 * create_dir() // create glue_dir
3375 *
3376 * device_add()
3377 * get_device_parent()
3378 * kobject_get() // get glue_dir
3379 *
3380 * device_del()
3381 * cleanup_glue_dir()
3382 * kobject_del(glue_dir)
3383 *
3384 * kobject_add()
3385 * kobject_add_internal()
3386 * create_dir() // in glue_dir
3387 * sysfs_create_dir_ns()
3388 * kernfs_create_dir_ns(sd)
3389 *
3390 * sysfs_remove_dir() // glue_dir->sd=NULL
3391 * sysfs_put() // free glue_dir->sd
3392 *
3393 * // sd is freed
3394 * kernfs_new_node(sd)
3395 * kernfs_get(glue_dir)
3396 * kernfs_add_one()
3397 * kernfs_put()
3398 *
3399 * Before CPU1 remove last child device under glue dir, if CPU2 add
3400 * a new device under glue dir, the glue_dir kobject reference count
3401 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3402 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3403 * and sysfs_put(). This result in glue_dir->sd is freed.
3404 *
3405 * Then the CPU2 will see a stale "empty" but still potentially used
3406 * glue dir around in kernfs_new_node().
3407 *
3408 * In order to avoid this happening, we also should make sure that
3409 * kernfs_node for glue_dir is released in CPU1 only when refcount
3410 * for glue_dir kobj is 1.
3411 */
3412 ref = kref_read(&glue_dir->kref);
3413 if (!kobject_has_children(glue_dir) && !--ref)
3414 kobject_del(glue_dir);
3415 kobject_put(glue_dir);
3416 mutex_unlock(&gdp_mutex);
3417 }
3418
device_add_class_symlinks(struct device * dev)3419 static int device_add_class_symlinks(struct device *dev)
3420 {
3421 struct device_node *of_node = dev_of_node(dev);
3422 struct subsys_private *sp;
3423 int error;
3424
3425 if (of_node) {
3426 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3427 if (error)
3428 dev_warn(dev, "Error %d creating of_node link\n",error);
3429 /* An error here doesn't warrant bringing down the device */
3430 }
3431
3432 sp = class_to_subsys(dev->class);
3433 if (!sp)
3434 return 0;
3435
3436 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3437 if (error)
3438 goto out_devnode;
3439
3440 if (dev->parent && device_is_not_partition(dev)) {
3441 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3442 "device");
3443 if (error)
3444 goto out_subsys;
3445 }
3446
3447 /* link in the class directory pointing to the device */
3448 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3449 if (error)
3450 goto out_device;
3451 goto exit;
3452
3453 out_device:
3454 sysfs_remove_link(&dev->kobj, "device");
3455 out_subsys:
3456 sysfs_remove_link(&dev->kobj, "subsystem");
3457 out_devnode:
3458 sysfs_remove_link(&dev->kobj, "of_node");
3459 exit:
3460 subsys_put(sp);
3461 return error;
3462 }
3463
device_remove_class_symlinks(struct device * dev)3464 static void device_remove_class_symlinks(struct device *dev)
3465 {
3466 struct subsys_private *sp = class_to_subsys(dev->class);
3467
3468 if (dev_of_node(dev))
3469 sysfs_remove_link(&dev->kobj, "of_node");
3470
3471 if (!sp)
3472 return;
3473
3474 if (dev->parent && device_is_not_partition(dev))
3475 sysfs_remove_link(&dev->kobj, "device");
3476 sysfs_remove_link(&dev->kobj, "subsystem");
3477 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3478 subsys_put(sp);
3479 }
3480
3481 /**
3482 * dev_set_name - set a device name
3483 * @dev: device
3484 * @fmt: format string for the device's name
3485 */
dev_set_name(struct device * dev,const char * fmt,...)3486 int dev_set_name(struct device *dev, const char *fmt, ...)
3487 {
3488 va_list vargs;
3489 int err;
3490
3491 va_start(vargs, fmt);
3492 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3493 va_end(vargs);
3494 return err;
3495 }
3496 EXPORT_SYMBOL_GPL(dev_set_name);
3497
3498 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3499 static struct kobject *device_to_dev_kobj(struct device *dev)
3500 {
3501 if (is_blockdev(dev))
3502 return sysfs_dev_block_kobj;
3503 else
3504 return sysfs_dev_char_kobj;
3505 }
3506
device_create_sys_dev_entry(struct device * dev)3507 static int device_create_sys_dev_entry(struct device *dev)
3508 {
3509 struct kobject *kobj = device_to_dev_kobj(dev);
3510 int error = 0;
3511 char devt_str[15];
3512
3513 if (kobj) {
3514 format_dev_t(devt_str, dev->devt);
3515 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3516 }
3517
3518 return error;
3519 }
3520
device_remove_sys_dev_entry(struct device * dev)3521 static void device_remove_sys_dev_entry(struct device *dev)
3522 {
3523 struct kobject *kobj = device_to_dev_kobj(dev);
3524 char devt_str[15];
3525
3526 if (kobj) {
3527 format_dev_t(devt_str, dev->devt);
3528 sysfs_remove_link(kobj, devt_str);
3529 }
3530 }
3531
device_private_init(struct device * dev)3532 static int device_private_init(struct device *dev)
3533 {
3534 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3535 if (!dev->p)
3536 return -ENOMEM;
3537 dev->p->device = dev;
3538 klist_init(&dev->p->klist_children, klist_children_get,
3539 klist_children_put);
3540 INIT_LIST_HEAD(&dev->p->deferred_probe);
3541 return 0;
3542 }
3543
3544 /**
3545 * device_add - add device to device hierarchy.
3546 * @dev: device.
3547 *
3548 * This is part 2 of device_register(), though may be called
3549 * separately _iff_ device_initialize() has been called separately.
3550 *
3551 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3552 * to the global and sibling lists for the device, then
3553 * adds it to the other relevant subsystems of the driver model.
3554 *
3555 * Do not call this routine or device_register() more than once for
3556 * any device structure. The driver model core is not designed to work
3557 * with devices that get unregistered and then spring back to life.
3558 * (Among other things, it's very hard to guarantee that all references
3559 * to the previous incarnation of @dev have been dropped.) Allocate
3560 * and register a fresh new struct device instead.
3561 *
3562 * NOTE: _Never_ directly free @dev after calling this function, even
3563 * if it returned an error! Always use put_device() to give up your
3564 * reference instead.
3565 *
3566 * Rule of thumb is: if device_add() succeeds, you should call
3567 * device_del() when you want to get rid of it. If device_add() has
3568 * *not* succeeded, use *only* put_device() to drop the reference
3569 * count.
3570 */
device_add(struct device * dev)3571 int device_add(struct device *dev)
3572 {
3573 struct subsys_private *sp;
3574 struct device *parent;
3575 struct kobject *kobj;
3576 struct class_interface *class_intf;
3577 int error = -EINVAL;
3578 struct kobject *glue_dir = NULL;
3579
3580 dev = get_device(dev);
3581 if (!dev)
3582 goto done;
3583
3584 if (!dev->p) {
3585 error = device_private_init(dev);
3586 if (error)
3587 goto done;
3588 }
3589
3590 /*
3591 * for statically allocated devices, which should all be converted
3592 * some day, we need to initialize the name. We prevent reading back
3593 * the name, and force the use of dev_name()
3594 */
3595 if (dev->init_name) {
3596 error = dev_set_name(dev, "%s", dev->init_name);
3597 dev->init_name = NULL;
3598 }
3599
3600 if (dev_name(dev))
3601 error = 0;
3602 /* subsystems can specify simple device enumeration */
3603 else if (dev->bus && dev->bus->dev_name)
3604 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3605 else
3606 error = -EINVAL;
3607 if (error)
3608 goto name_error;
3609
3610 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3611
3612 parent = get_device(dev->parent);
3613 kobj = get_device_parent(dev, parent);
3614 if (IS_ERR(kobj)) {
3615 error = PTR_ERR(kobj);
3616 goto parent_error;
3617 }
3618 if (kobj)
3619 dev->kobj.parent = kobj;
3620
3621 /* use parent numa_node */
3622 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3623 set_dev_node(dev, dev_to_node(parent));
3624
3625 /* first, register with generic layer. */
3626 /* we require the name to be set before, and pass NULL */
3627 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3628 if (error) {
3629 glue_dir = kobj;
3630 goto Error;
3631 }
3632
3633 /* notify platform of device entry */
3634 device_platform_notify(dev);
3635
3636 error = device_create_file(dev, &dev_attr_uevent);
3637 if (error)
3638 goto attrError;
3639
3640 error = device_add_class_symlinks(dev);
3641 if (error)
3642 goto SymlinkError;
3643 error = device_add_attrs(dev);
3644 if (error)
3645 goto AttrsError;
3646 error = bus_add_device(dev);
3647 if (error)
3648 goto BusError;
3649 error = dpm_sysfs_add(dev);
3650 if (error)
3651 goto DPMError;
3652 device_pm_add(dev);
3653
3654 if (MAJOR(dev->devt)) {
3655 error = device_create_file(dev, &dev_attr_dev);
3656 if (error)
3657 goto DevAttrError;
3658
3659 error = device_create_sys_dev_entry(dev);
3660 if (error)
3661 goto SysEntryError;
3662
3663 devtmpfs_create_node(dev);
3664 }
3665
3666 /* Notify clients of device addition. This call must come
3667 * after dpm_sysfs_add() and before kobject_uevent().
3668 */
3669 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3670 kobject_uevent(&dev->kobj, KOBJ_ADD);
3671
3672 /*
3673 * Check if any of the other devices (consumers) have been waiting for
3674 * this device (supplier) to be added so that they can create a device
3675 * link to it.
3676 *
3677 * This needs to happen after device_pm_add() because device_link_add()
3678 * requires the supplier be registered before it's called.
3679 *
3680 * But this also needs to happen before bus_probe_device() to make sure
3681 * waiting consumers can link to it before the driver is bound to the
3682 * device and the driver sync_state callback is called for this device.
3683 */
3684 if (dev->fwnode && !dev->fwnode->dev) {
3685 dev->fwnode->dev = dev;
3686 fw_devlink_link_device(dev);
3687 }
3688
3689 bus_probe_device(dev);
3690
3691 /*
3692 * If all driver registration is done and a newly added device doesn't
3693 * match with any driver, don't block its consumers from probing in
3694 * case the consumer device is able to operate without this supplier.
3695 */
3696 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3697 fw_devlink_unblock_consumers(dev);
3698
3699 if (parent)
3700 klist_add_tail(&dev->p->knode_parent,
3701 &parent->p->klist_children);
3702
3703 sp = class_to_subsys(dev->class);
3704 if (sp) {
3705 mutex_lock(&sp->mutex);
3706 /* tie the class to the device */
3707 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3708
3709 /* notify any interfaces that the device is here */
3710 list_for_each_entry(class_intf, &sp->interfaces, node)
3711 if (class_intf->add_dev)
3712 class_intf->add_dev(dev);
3713 mutex_unlock(&sp->mutex);
3714 subsys_put(sp);
3715 }
3716 done:
3717 put_device(dev);
3718 return error;
3719 SysEntryError:
3720 if (MAJOR(dev->devt))
3721 device_remove_file(dev, &dev_attr_dev);
3722 DevAttrError:
3723 device_pm_remove(dev);
3724 dpm_sysfs_remove(dev);
3725 DPMError:
3726 device_set_driver(dev, NULL);
3727 bus_remove_device(dev);
3728 BusError:
3729 device_remove_attrs(dev);
3730 AttrsError:
3731 device_remove_class_symlinks(dev);
3732 SymlinkError:
3733 device_remove_file(dev, &dev_attr_uevent);
3734 attrError:
3735 device_platform_notify_remove(dev);
3736 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3737 glue_dir = get_glue_dir(dev);
3738 kobject_del(&dev->kobj);
3739 Error:
3740 cleanup_glue_dir(dev, glue_dir);
3741 parent_error:
3742 put_device(parent);
3743 name_error:
3744 kfree(dev->p);
3745 dev->p = NULL;
3746 goto done;
3747 }
3748 EXPORT_SYMBOL_GPL(device_add);
3749
3750 /**
3751 * device_register - register a device with the system.
3752 * @dev: pointer to the device structure
3753 *
3754 * This happens in two clean steps - initialize the device
3755 * and add it to the system. The two steps can be called
3756 * separately, but this is the easiest and most common.
3757 * I.e. you should only call the two helpers separately if
3758 * have a clearly defined need to use and refcount the device
3759 * before it is added to the hierarchy.
3760 *
3761 * For more information, see the kerneldoc for device_initialize()
3762 * and device_add().
3763 *
3764 * NOTE: _Never_ directly free @dev after calling this function, even
3765 * if it returned an error! Always use put_device() to give up the
3766 * reference initialized in this function instead.
3767 */
device_register(struct device * dev)3768 int device_register(struct device *dev)
3769 {
3770 device_initialize(dev);
3771 return device_add(dev);
3772 }
3773 EXPORT_SYMBOL_GPL(device_register);
3774
3775 /**
3776 * get_device - increment reference count for device.
3777 * @dev: device.
3778 *
3779 * This simply forwards the call to kobject_get(), though
3780 * we do take care to provide for the case that we get a NULL
3781 * pointer passed in.
3782 */
get_device(struct device * dev)3783 struct device *get_device(struct device *dev)
3784 {
3785 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3786 }
3787 EXPORT_SYMBOL_GPL(get_device);
3788
3789 /**
3790 * put_device - decrement reference count.
3791 * @dev: device in question.
3792 */
put_device(struct device * dev)3793 void put_device(struct device *dev)
3794 {
3795 /* might_sleep(); */
3796 if (dev)
3797 kobject_put(&dev->kobj);
3798 }
3799 EXPORT_SYMBOL_GPL(put_device);
3800
kill_device(struct device * dev)3801 bool kill_device(struct device *dev)
3802 {
3803 /*
3804 * Require the device lock and set the "dead" flag to guarantee that
3805 * the update behavior is consistent with the other bitfields near
3806 * it and that we cannot have an asynchronous probe routine trying
3807 * to run while we are tearing out the bus/class/sysfs from
3808 * underneath the device.
3809 */
3810 device_lock_assert(dev);
3811
3812 if (dev->p->dead)
3813 return false;
3814 dev->p->dead = true;
3815 return true;
3816 }
3817 EXPORT_SYMBOL_GPL(kill_device);
3818
3819 /**
3820 * device_del - delete device from system.
3821 * @dev: device.
3822 *
3823 * This is the first part of the device unregistration
3824 * sequence. This removes the device from the lists we control
3825 * from here, has it removed from the other driver model
3826 * subsystems it was added to in device_add(), and removes it
3827 * from the kobject hierarchy.
3828 *
3829 * NOTE: this should be called manually _iff_ device_add() was
3830 * also called manually.
3831 */
device_del(struct device * dev)3832 void device_del(struct device *dev)
3833 {
3834 struct subsys_private *sp;
3835 struct device *parent = dev->parent;
3836 struct kobject *glue_dir = NULL;
3837 struct class_interface *class_intf;
3838 unsigned int noio_flag;
3839
3840 device_lock(dev);
3841 kill_device(dev);
3842 device_unlock(dev);
3843
3844 if (dev->fwnode && dev->fwnode->dev == dev)
3845 dev->fwnode->dev = NULL;
3846
3847 /* Notify clients of device removal. This call must come
3848 * before dpm_sysfs_remove().
3849 */
3850 noio_flag = memalloc_noio_save();
3851 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3852
3853 dpm_sysfs_remove(dev);
3854 if (parent)
3855 klist_del(&dev->p->knode_parent);
3856 if (MAJOR(dev->devt)) {
3857 devtmpfs_delete_node(dev);
3858 device_remove_sys_dev_entry(dev);
3859 device_remove_file(dev, &dev_attr_dev);
3860 }
3861
3862 sp = class_to_subsys(dev->class);
3863 if (sp) {
3864 device_remove_class_symlinks(dev);
3865
3866 mutex_lock(&sp->mutex);
3867 /* notify any interfaces that the device is now gone */
3868 list_for_each_entry(class_intf, &sp->interfaces, node)
3869 if (class_intf->remove_dev)
3870 class_intf->remove_dev(dev);
3871 /* remove the device from the class list */
3872 klist_del(&dev->p->knode_class);
3873 mutex_unlock(&sp->mutex);
3874 subsys_put(sp);
3875 }
3876 device_remove_file(dev, &dev_attr_uevent);
3877 device_remove_attrs(dev);
3878 bus_remove_device(dev);
3879 device_pm_remove(dev);
3880 driver_deferred_probe_del(dev);
3881 device_platform_notify_remove(dev);
3882 device_links_purge(dev);
3883
3884 /*
3885 * If a device does not have a driver attached, we need to clean
3886 * up any managed resources. We do this in device_release(), but
3887 * it's never called (and we leak the device) if a managed
3888 * resource holds a reference to the device. So release all
3889 * managed resources here, like we do in driver_detach(). We
3890 * still need to do so again in device_release() in case someone
3891 * adds a new resource after this point, though.
3892 */
3893 devres_release_all(dev);
3894
3895 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3896 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3897 glue_dir = get_glue_dir(dev);
3898 kobject_del(&dev->kobj);
3899 cleanup_glue_dir(dev, glue_dir);
3900 memalloc_noio_restore(noio_flag);
3901 put_device(parent);
3902 }
3903 EXPORT_SYMBOL_GPL(device_del);
3904
3905 /**
3906 * device_unregister - unregister device from system.
3907 * @dev: device going away.
3908 *
3909 * We do this in two parts, like we do device_register(). First,
3910 * we remove it from all the subsystems with device_del(), then
3911 * we decrement the reference count via put_device(). If that
3912 * is the final reference count, the device will be cleaned up
3913 * via device_release() above. Otherwise, the structure will
3914 * stick around until the final reference to the device is dropped.
3915 */
device_unregister(struct device * dev)3916 void device_unregister(struct device *dev)
3917 {
3918 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3919 device_del(dev);
3920 put_device(dev);
3921 }
3922 EXPORT_SYMBOL_GPL(device_unregister);
3923
prev_device(struct klist_iter * i)3924 static struct device *prev_device(struct klist_iter *i)
3925 {
3926 struct klist_node *n = klist_prev(i);
3927 struct device *dev = NULL;
3928 struct device_private *p;
3929
3930 if (n) {
3931 p = to_device_private_parent(n);
3932 dev = p->device;
3933 }
3934 return dev;
3935 }
3936
next_device(struct klist_iter * i)3937 static struct device *next_device(struct klist_iter *i)
3938 {
3939 struct klist_node *n = klist_next(i);
3940 struct device *dev = NULL;
3941 struct device_private *p;
3942
3943 if (n) {
3944 p = to_device_private_parent(n);
3945 dev = p->device;
3946 }
3947 return dev;
3948 }
3949
3950 /**
3951 * device_get_devnode - path of device node file
3952 * @dev: device
3953 * @mode: returned file access mode
3954 * @uid: returned file owner
3955 * @gid: returned file group
3956 * @tmp: possibly allocated string
3957 *
3958 * Return the relative path of a possible device node.
3959 * Non-default names may need to allocate a memory to compose
3960 * a name. This memory is returned in tmp and needs to be
3961 * freed by the caller.
3962 */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3963 const char *device_get_devnode(const struct device *dev,
3964 umode_t *mode, kuid_t *uid, kgid_t *gid,
3965 const char **tmp)
3966 {
3967 char *s;
3968
3969 *tmp = NULL;
3970
3971 /* the device type may provide a specific name */
3972 if (dev->type && dev->type->devnode)
3973 *tmp = dev->type->devnode(dev, mode, uid, gid);
3974 if (*tmp)
3975 return *tmp;
3976
3977 /* the class may provide a specific name */
3978 if (dev->class && dev->class->devnode)
3979 *tmp = dev->class->devnode(dev, mode);
3980 if (*tmp)
3981 return *tmp;
3982
3983 /* return name without allocation, tmp == NULL */
3984 if (strchr(dev_name(dev), '!') == NULL)
3985 return dev_name(dev);
3986
3987 /* replace '!' in the name with '/' */
3988 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3989 if (!s)
3990 return NULL;
3991 return *tmp = s;
3992 }
3993
3994 /**
3995 * device_for_each_child - device child iterator.
3996 * @parent: parent struct device.
3997 * @fn: function to be called for each device.
3998 * @data: data for the callback.
3999 *
4000 * Iterate over @parent's child devices, and call @fn for each,
4001 * passing it @data.
4002 *
4003 * We check the return of @fn each time. If it returns anything
4004 * other than 0, we break out and return that value.
4005 */
device_for_each_child(struct device * parent,void * data,device_iter_t fn)4006 int device_for_each_child(struct device *parent, void *data,
4007 device_iter_t fn)
4008 {
4009 struct klist_iter i;
4010 struct device *child;
4011 int error = 0;
4012
4013 if (!parent || !parent->p)
4014 return 0;
4015
4016 klist_iter_init(&parent->p->klist_children, &i);
4017 while (!error && (child = next_device(&i)))
4018 error = fn(child, data);
4019 klist_iter_exit(&i);
4020 return error;
4021 }
4022 EXPORT_SYMBOL_GPL(device_for_each_child);
4023
4024 /**
4025 * device_for_each_child_reverse - device child iterator in reversed order.
4026 * @parent: parent struct device.
4027 * @fn: function to be called for each device.
4028 * @data: data for the callback.
4029 *
4030 * Iterate over @parent's child devices, and call @fn for each,
4031 * passing it @data.
4032 *
4033 * We check the return of @fn each time. If it returns anything
4034 * other than 0, we break out and return that value.
4035 */
device_for_each_child_reverse(struct device * parent,void * data,device_iter_t fn)4036 int device_for_each_child_reverse(struct device *parent, void *data,
4037 device_iter_t fn)
4038 {
4039 struct klist_iter i;
4040 struct device *child;
4041 int error = 0;
4042
4043 if (!parent || !parent->p)
4044 return 0;
4045
4046 klist_iter_init(&parent->p->klist_children, &i);
4047 while ((child = prev_device(&i)) && !error)
4048 error = fn(child, data);
4049 klist_iter_exit(&i);
4050 return error;
4051 }
4052 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4053
4054 /**
4055 * device_for_each_child_reverse_from - device child iterator in reversed order.
4056 * @parent: parent struct device.
4057 * @from: optional starting point in child list
4058 * @fn: function to be called for each device.
4059 * @data: data for the callback.
4060 *
4061 * Iterate over @parent's child devices, starting at @from, and call @fn
4062 * for each, passing it @data. This helper is identical to
4063 * device_for_each_child_reverse() when @from is NULL.
4064 *
4065 * @fn is checked each iteration. If it returns anything other than 0,
4066 * iteration stop and that value is returned to the caller of
4067 * device_for_each_child_reverse_from();
4068 */
device_for_each_child_reverse_from(struct device * parent,struct device * from,void * data,device_iter_t fn)4069 int device_for_each_child_reverse_from(struct device *parent,
4070 struct device *from, void *data,
4071 device_iter_t fn)
4072 {
4073 struct klist_iter i;
4074 struct device *child;
4075 int error = 0;
4076
4077 if (!parent || !parent->p)
4078 return 0;
4079
4080 klist_iter_init_node(&parent->p->klist_children, &i,
4081 (from ? &from->p->knode_parent : NULL));
4082 while ((child = prev_device(&i)) && !error)
4083 error = fn(child, data);
4084 klist_iter_exit(&i);
4085 return error;
4086 }
4087 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4088
4089 /**
4090 * device_find_child - device iterator for locating a particular device.
4091 * @parent: parent struct device
4092 * @match: Callback function to check device
4093 * @data: Data to pass to match function
4094 *
4095 * This is similar to the device_for_each_child() function above, but it
4096 * returns a reference to a device that is 'found' for later use, as
4097 * determined by the @match callback.
4098 *
4099 * The callback should return 0 if the device doesn't match and non-zero
4100 * if it does. If the callback returns non-zero and a reference to the
4101 * current device can be obtained, this function will return to the caller
4102 * and not iterate over any more devices.
4103 *
4104 * NOTE: you will need to drop the reference with put_device() after use.
4105 */
device_find_child(struct device * parent,const void * data,device_match_t match)4106 struct device *device_find_child(struct device *parent, const void *data,
4107 device_match_t match)
4108 {
4109 struct klist_iter i;
4110 struct device *child;
4111
4112 if (!parent || !parent->p)
4113 return NULL;
4114
4115 klist_iter_init(&parent->p->klist_children, &i);
4116 while ((child = next_device(&i))) {
4117 if (match(child, data)) {
4118 get_device(child);
4119 break;
4120 }
4121 }
4122 klist_iter_exit(&i);
4123 return child;
4124 }
4125 EXPORT_SYMBOL_GPL(device_find_child);
4126
devices_init(void)4127 int __init devices_init(void)
4128 {
4129 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4130 if (!devices_kset)
4131 return -ENOMEM;
4132 dev_kobj = kobject_create_and_add("dev", NULL);
4133 if (!dev_kobj)
4134 goto dev_kobj_err;
4135 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4136 if (!sysfs_dev_block_kobj)
4137 goto block_kobj_err;
4138 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4139 if (!sysfs_dev_char_kobj)
4140 goto char_kobj_err;
4141 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4142 if (!device_link_wq)
4143 goto wq_err;
4144
4145 return 0;
4146
4147 wq_err:
4148 kobject_put(sysfs_dev_char_kobj);
4149 char_kobj_err:
4150 kobject_put(sysfs_dev_block_kobj);
4151 block_kobj_err:
4152 kobject_put(dev_kobj);
4153 dev_kobj_err:
4154 kset_unregister(devices_kset);
4155 return -ENOMEM;
4156 }
4157
device_check_offline(struct device * dev,void * not_used)4158 static int device_check_offline(struct device *dev, void *not_used)
4159 {
4160 int ret;
4161
4162 ret = device_for_each_child(dev, NULL, device_check_offline);
4163 if (ret)
4164 return ret;
4165
4166 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4167 }
4168
4169 /**
4170 * device_offline - Prepare the device for hot-removal.
4171 * @dev: Device to be put offline.
4172 *
4173 * Execute the device bus type's .offline() callback, if present, to prepare
4174 * the device for a subsequent hot-removal. If that succeeds, the device must
4175 * not be used until either it is removed or its bus type's .online() callback
4176 * is executed.
4177 *
4178 * Call under device_hotplug_lock.
4179 */
device_offline(struct device * dev)4180 int device_offline(struct device *dev)
4181 {
4182 int ret;
4183
4184 if (dev->offline_disabled)
4185 return -EPERM;
4186
4187 ret = device_for_each_child(dev, NULL, device_check_offline);
4188 if (ret)
4189 return ret;
4190
4191 device_lock(dev);
4192 if (device_supports_offline(dev)) {
4193 if (dev->offline) {
4194 ret = 1;
4195 } else {
4196 ret = dev->bus->offline(dev);
4197 if (!ret) {
4198 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4199 dev->offline = true;
4200 }
4201 }
4202 }
4203 device_unlock(dev);
4204
4205 return ret;
4206 }
4207
4208 /**
4209 * device_online - Put the device back online after successful device_offline().
4210 * @dev: Device to be put back online.
4211 *
4212 * If device_offline() has been successfully executed for @dev, but the device
4213 * has not been removed subsequently, execute its bus type's .online() callback
4214 * to indicate that the device can be used again.
4215 *
4216 * Call under device_hotplug_lock.
4217 */
device_online(struct device * dev)4218 int device_online(struct device *dev)
4219 {
4220 int ret = 0;
4221
4222 device_lock(dev);
4223 if (device_supports_offline(dev)) {
4224 if (dev->offline) {
4225 ret = dev->bus->online(dev);
4226 if (!ret) {
4227 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4228 dev->offline = false;
4229 }
4230 } else {
4231 ret = 1;
4232 }
4233 }
4234 device_unlock(dev);
4235
4236 return ret;
4237 }
4238
4239 struct root_device {
4240 struct device dev;
4241 struct module *owner;
4242 };
4243
to_root_device(struct device * d)4244 static inline struct root_device *to_root_device(struct device *d)
4245 {
4246 return container_of(d, struct root_device, dev);
4247 }
4248
root_device_release(struct device * dev)4249 static void root_device_release(struct device *dev)
4250 {
4251 kfree(to_root_device(dev));
4252 }
4253
4254 /**
4255 * __root_device_register - allocate and register a root device
4256 * @name: root device name
4257 * @owner: owner module of the root device, usually THIS_MODULE
4258 *
4259 * This function allocates a root device and registers it
4260 * using device_register(). In order to free the returned
4261 * device, use root_device_unregister().
4262 *
4263 * Root devices are dummy devices which allow other devices
4264 * to be grouped under /sys/devices. Use this function to
4265 * allocate a root device and then use it as the parent of
4266 * any device which should appear under /sys/devices/{name}
4267 *
4268 * The /sys/devices/{name} directory will also contain a
4269 * 'module' symlink which points to the @owner directory
4270 * in sysfs.
4271 *
4272 * Returns &struct device pointer on success, or ERR_PTR() on error.
4273 *
4274 * Note: You probably want to use root_device_register().
4275 */
__root_device_register(const char * name,struct module * owner)4276 struct device *__root_device_register(const char *name, struct module *owner)
4277 {
4278 struct root_device *root;
4279 int err = -ENOMEM;
4280
4281 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4282 if (!root)
4283 return ERR_PTR(err);
4284
4285 err = dev_set_name(&root->dev, "%s", name);
4286 if (err) {
4287 kfree(root);
4288 return ERR_PTR(err);
4289 }
4290
4291 root->dev.release = root_device_release;
4292
4293 err = device_register(&root->dev);
4294 if (err) {
4295 put_device(&root->dev);
4296 return ERR_PTR(err);
4297 }
4298
4299 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4300 if (owner) {
4301 struct module_kobject *mk = &owner->mkobj;
4302
4303 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4304 if (err) {
4305 device_unregister(&root->dev);
4306 return ERR_PTR(err);
4307 }
4308 root->owner = owner;
4309 }
4310 #endif
4311
4312 return &root->dev;
4313 }
4314 EXPORT_SYMBOL_GPL(__root_device_register);
4315
4316 /**
4317 * root_device_unregister - unregister and free a root device
4318 * @dev: device going away
4319 *
4320 * This function unregisters and cleans up a device that was created by
4321 * root_device_register().
4322 */
root_device_unregister(struct device * dev)4323 void root_device_unregister(struct device *dev)
4324 {
4325 struct root_device *root = to_root_device(dev);
4326
4327 if (root->owner)
4328 sysfs_remove_link(&root->dev.kobj, "module");
4329
4330 device_unregister(dev);
4331 }
4332 EXPORT_SYMBOL_GPL(root_device_unregister);
4333
4334
device_create_release(struct device * dev)4335 static void device_create_release(struct device *dev)
4336 {
4337 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4338 kfree(dev);
4339 }
4340
4341 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4342 device_create_groups_vargs(const struct class *class, struct device *parent,
4343 dev_t devt, void *drvdata,
4344 const struct attribute_group **groups,
4345 const char *fmt, va_list args)
4346 {
4347 struct device *dev = NULL;
4348 int retval = -ENODEV;
4349
4350 if (IS_ERR_OR_NULL(class))
4351 goto error;
4352
4353 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4354 if (!dev) {
4355 retval = -ENOMEM;
4356 goto error;
4357 }
4358
4359 device_initialize(dev);
4360 dev->devt = devt;
4361 dev->class = class;
4362 dev->parent = parent;
4363 dev->groups = groups;
4364 dev->release = device_create_release;
4365 dev_set_drvdata(dev, drvdata);
4366
4367 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4368 if (retval)
4369 goto error;
4370
4371 retval = device_add(dev);
4372 if (retval)
4373 goto error;
4374
4375 return dev;
4376
4377 error:
4378 put_device(dev);
4379 return ERR_PTR(retval);
4380 }
4381
4382 /**
4383 * device_create - creates a device and registers it with sysfs
4384 * @class: pointer to the struct class that this device should be registered to
4385 * @parent: pointer to the parent struct device of this new device, if any
4386 * @devt: the dev_t for the char device to be added
4387 * @drvdata: the data to be added to the device for callbacks
4388 * @fmt: string for the device's name
4389 *
4390 * This function can be used by char device classes. A struct device
4391 * will be created in sysfs, registered to the specified class.
4392 *
4393 * A "dev" file will be created, showing the dev_t for the device, if
4394 * the dev_t is not 0,0.
4395 * If a pointer to a parent struct device is passed in, the newly created
4396 * struct device will be a child of that device in sysfs.
4397 * The pointer to the struct device will be returned from the call.
4398 * Any further sysfs files that might be required can be created using this
4399 * pointer.
4400 *
4401 * Returns &struct device pointer on success, or ERR_PTR() on error.
4402 */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4403 struct device *device_create(const struct class *class, struct device *parent,
4404 dev_t devt, void *drvdata, const char *fmt, ...)
4405 {
4406 va_list vargs;
4407 struct device *dev;
4408
4409 va_start(vargs, fmt);
4410 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4411 fmt, vargs);
4412 va_end(vargs);
4413 return dev;
4414 }
4415 EXPORT_SYMBOL_GPL(device_create);
4416
4417 /**
4418 * device_create_with_groups - creates a device and registers it with sysfs
4419 * @class: pointer to the struct class that this device should be registered to
4420 * @parent: pointer to the parent struct device of this new device, if any
4421 * @devt: the dev_t for the char device to be added
4422 * @drvdata: the data to be added to the device for callbacks
4423 * @groups: NULL-terminated list of attribute groups to be created
4424 * @fmt: string for the device's name
4425 *
4426 * This function can be used by char device classes. A struct device
4427 * will be created in sysfs, registered to the specified class.
4428 * Additional attributes specified in the groups parameter will also
4429 * be created automatically.
4430 *
4431 * A "dev" file will be created, showing the dev_t for the device, if
4432 * the dev_t is not 0,0.
4433 * If a pointer to a parent struct device is passed in, the newly created
4434 * struct device will be a child of that device in sysfs.
4435 * The pointer to the struct device will be returned from the call.
4436 * Any further sysfs files that might be required can be created using this
4437 * pointer.
4438 *
4439 * Returns &struct device pointer on success, or ERR_PTR() on error.
4440 */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4441 struct device *device_create_with_groups(const struct class *class,
4442 struct device *parent, dev_t devt,
4443 void *drvdata,
4444 const struct attribute_group **groups,
4445 const char *fmt, ...)
4446 {
4447 va_list vargs;
4448 struct device *dev;
4449
4450 va_start(vargs, fmt);
4451 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4452 fmt, vargs);
4453 va_end(vargs);
4454 return dev;
4455 }
4456 EXPORT_SYMBOL_GPL(device_create_with_groups);
4457
4458 /**
4459 * device_destroy - removes a device that was created with device_create()
4460 * @class: pointer to the struct class that this device was registered with
4461 * @devt: the dev_t of the device that was previously registered
4462 *
4463 * This call unregisters and cleans up a device that was created with a
4464 * call to device_create().
4465 */
device_destroy(const struct class * class,dev_t devt)4466 void device_destroy(const struct class *class, dev_t devt)
4467 {
4468 struct device *dev;
4469
4470 dev = class_find_device_by_devt(class, devt);
4471 if (dev) {
4472 put_device(dev);
4473 device_unregister(dev);
4474 }
4475 }
4476 EXPORT_SYMBOL_GPL(device_destroy);
4477
4478 /**
4479 * device_rename - renames a device
4480 * @dev: the pointer to the struct device to be renamed
4481 * @new_name: the new name of the device
4482 *
4483 * It is the responsibility of the caller to provide mutual
4484 * exclusion between two different calls of device_rename
4485 * on the same device to ensure that new_name is valid and
4486 * won't conflict with other devices.
4487 *
4488 * Note: given that some subsystems (networking and infiniband) use this
4489 * function, with no immediate plans for this to change, we cannot assume or
4490 * require that this function not be called at all.
4491 *
4492 * However, if you're writing new code, do not call this function. The following
4493 * text from Kay Sievers offers some insight:
4494 *
4495 * Renaming devices is racy at many levels, symlinks and other stuff are not
4496 * replaced atomically, and you get a "move" uevent, but it's not easy to
4497 * connect the event to the old and new device. Device nodes are not renamed at
4498 * all, there isn't even support for that in the kernel now.
4499 *
4500 * In the meantime, during renaming, your target name might be taken by another
4501 * driver, creating conflicts. Or the old name is taken directly after you
4502 * renamed it -- then you get events for the same DEVPATH, before you even see
4503 * the "move" event. It's just a mess, and nothing new should ever rely on
4504 * kernel device renaming. Besides that, it's not even implemented now for
4505 * other things than (driver-core wise very simple) network devices.
4506 *
4507 * Make up a "real" name in the driver before you register anything, or add
4508 * some other attributes for userspace to find the device, or use udev to add
4509 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4510 * don't even want to get into that and try to implement the missing pieces in
4511 * the core. We really have other pieces to fix in the driver core mess. :)
4512 */
device_rename(struct device * dev,const char * new_name)4513 int device_rename(struct device *dev, const char *new_name)
4514 {
4515 struct subsys_private *sp = NULL;
4516 struct kobject *kobj = &dev->kobj;
4517 char *old_device_name = NULL;
4518 int error;
4519 bool is_link_renamed = false;
4520
4521 dev = get_device(dev);
4522 if (!dev)
4523 return -EINVAL;
4524
4525 dev_dbg(dev, "renaming to %s\n", new_name);
4526
4527 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4528 if (!old_device_name) {
4529 error = -ENOMEM;
4530 goto out;
4531 }
4532
4533 if (dev->class) {
4534 sp = class_to_subsys(dev->class);
4535
4536 if (!sp) {
4537 error = -EINVAL;
4538 goto out;
4539 }
4540
4541 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4542 new_name, kobject_namespace(kobj));
4543 if (error)
4544 goto out;
4545
4546 is_link_renamed = true;
4547 }
4548
4549 error = kobject_rename(kobj, new_name);
4550 out:
4551 if (error && is_link_renamed)
4552 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4553 old_device_name, kobject_namespace(kobj));
4554 subsys_put(sp);
4555
4556 put_device(dev);
4557
4558 kfree(old_device_name);
4559
4560 return error;
4561 }
4562 EXPORT_SYMBOL_GPL(device_rename);
4563
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4564 static int device_move_class_links(struct device *dev,
4565 struct device *old_parent,
4566 struct device *new_parent)
4567 {
4568 int error = 0;
4569
4570 if (old_parent)
4571 sysfs_remove_link(&dev->kobj, "device");
4572 if (new_parent)
4573 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4574 "device");
4575 return error;
4576 }
4577
4578 /**
4579 * device_move - moves a device to a new parent
4580 * @dev: the pointer to the struct device to be moved
4581 * @new_parent: the new parent of the device (can be NULL)
4582 * @dpm_order: how to reorder the dpm_list
4583 */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4584 int device_move(struct device *dev, struct device *new_parent,
4585 enum dpm_order dpm_order)
4586 {
4587 int error;
4588 struct device *old_parent;
4589 struct kobject *new_parent_kobj;
4590
4591 dev = get_device(dev);
4592 if (!dev)
4593 return -EINVAL;
4594
4595 device_pm_lock();
4596 new_parent = get_device(new_parent);
4597 new_parent_kobj = get_device_parent(dev, new_parent);
4598 if (IS_ERR(new_parent_kobj)) {
4599 error = PTR_ERR(new_parent_kobj);
4600 put_device(new_parent);
4601 goto out;
4602 }
4603
4604 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4605 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4606 error = kobject_move(&dev->kobj, new_parent_kobj);
4607 if (error) {
4608 cleanup_glue_dir(dev, new_parent_kobj);
4609 put_device(new_parent);
4610 goto out;
4611 }
4612 old_parent = dev->parent;
4613 dev->parent = new_parent;
4614 if (old_parent)
4615 klist_remove(&dev->p->knode_parent);
4616 if (new_parent) {
4617 klist_add_tail(&dev->p->knode_parent,
4618 &new_parent->p->klist_children);
4619 set_dev_node(dev, dev_to_node(new_parent));
4620 }
4621
4622 if (dev->class) {
4623 error = device_move_class_links(dev, old_parent, new_parent);
4624 if (error) {
4625 /* We ignore errors on cleanup since we're hosed anyway... */
4626 device_move_class_links(dev, new_parent, old_parent);
4627 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4628 if (new_parent)
4629 klist_remove(&dev->p->knode_parent);
4630 dev->parent = old_parent;
4631 if (old_parent) {
4632 klist_add_tail(&dev->p->knode_parent,
4633 &old_parent->p->klist_children);
4634 set_dev_node(dev, dev_to_node(old_parent));
4635 }
4636 }
4637 cleanup_glue_dir(dev, new_parent_kobj);
4638 put_device(new_parent);
4639 goto out;
4640 }
4641 }
4642 switch (dpm_order) {
4643 case DPM_ORDER_NONE:
4644 break;
4645 case DPM_ORDER_DEV_AFTER_PARENT:
4646 device_pm_move_after(dev, new_parent);
4647 devices_kset_move_after(dev, new_parent);
4648 break;
4649 case DPM_ORDER_PARENT_BEFORE_DEV:
4650 device_pm_move_before(new_parent, dev);
4651 devices_kset_move_before(new_parent, dev);
4652 break;
4653 case DPM_ORDER_DEV_LAST:
4654 device_pm_move_last(dev);
4655 devices_kset_move_last(dev);
4656 break;
4657 }
4658
4659 put_device(old_parent);
4660 out:
4661 device_pm_unlock();
4662 put_device(dev);
4663 return error;
4664 }
4665 EXPORT_SYMBOL_GPL(device_move);
4666
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4667 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4668 kgid_t kgid)
4669 {
4670 struct kobject *kobj = &dev->kobj;
4671 const struct class *class = dev->class;
4672 const struct device_type *type = dev->type;
4673 int error;
4674
4675 if (class) {
4676 /*
4677 * Change the device groups of the device class for @dev to
4678 * @kuid/@kgid.
4679 */
4680 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4681 kgid);
4682 if (error)
4683 return error;
4684 }
4685
4686 if (type) {
4687 /*
4688 * Change the device groups of the device type for @dev to
4689 * @kuid/@kgid.
4690 */
4691 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4692 kgid);
4693 if (error)
4694 return error;
4695 }
4696
4697 /* Change the device groups of @dev to @kuid/@kgid. */
4698 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4699 if (error)
4700 return error;
4701
4702 if (device_supports_offline(dev) && !dev->offline_disabled) {
4703 /* Change online device attributes of @dev to @kuid/@kgid. */
4704 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4705 kuid, kgid);
4706 if (error)
4707 return error;
4708 }
4709
4710 return 0;
4711 }
4712
4713 /**
4714 * device_change_owner - change the owner of an existing device.
4715 * @dev: device.
4716 * @kuid: new owner's kuid
4717 * @kgid: new owner's kgid
4718 *
4719 * This changes the owner of @dev and its corresponding sysfs entries to
4720 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4721 * core.
4722 *
4723 * Returns 0 on success or error code on failure.
4724 */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4725 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4726 {
4727 int error;
4728 struct kobject *kobj = &dev->kobj;
4729 struct subsys_private *sp;
4730
4731 dev = get_device(dev);
4732 if (!dev)
4733 return -EINVAL;
4734
4735 /*
4736 * Change the kobject and the default attributes and groups of the
4737 * ktype associated with it to @kuid/@kgid.
4738 */
4739 error = sysfs_change_owner(kobj, kuid, kgid);
4740 if (error)
4741 goto out;
4742
4743 /*
4744 * Change the uevent file for @dev to the new owner. The uevent file
4745 * was created in a separate step when @dev got added and we mirror
4746 * that step here.
4747 */
4748 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4749 kgid);
4750 if (error)
4751 goto out;
4752
4753 /*
4754 * Change the device groups, the device groups associated with the
4755 * device class, and the groups associated with the device type of @dev
4756 * to @kuid/@kgid.
4757 */
4758 error = device_attrs_change_owner(dev, kuid, kgid);
4759 if (error)
4760 goto out;
4761
4762 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4763 if (error)
4764 goto out;
4765
4766 /*
4767 * Change the owner of the symlink located in the class directory of
4768 * the device class associated with @dev which points to the actual
4769 * directory entry for @dev to @kuid/@kgid. This ensures that the
4770 * symlink shows the same permissions as its target.
4771 */
4772 sp = class_to_subsys(dev->class);
4773 if (!sp) {
4774 error = -EINVAL;
4775 goto out;
4776 }
4777 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4778 subsys_put(sp);
4779
4780 out:
4781 put_device(dev);
4782 return error;
4783 }
4784 EXPORT_SYMBOL_GPL(device_change_owner);
4785
4786 /**
4787 * device_shutdown - call ->shutdown() on each device to shutdown.
4788 */
device_shutdown(void)4789 void device_shutdown(void)
4790 {
4791 struct device *dev, *parent;
4792
4793 wait_for_device_probe();
4794 device_block_probing();
4795
4796 cpufreq_suspend();
4797
4798 spin_lock(&devices_kset->list_lock);
4799 /*
4800 * Walk the devices list backward, shutting down each in turn.
4801 * Beware that device unplug events may also start pulling
4802 * devices offline, even as the system is shutting down.
4803 */
4804 while (!list_empty(&devices_kset->list)) {
4805 dev = list_entry(devices_kset->list.prev, struct device,
4806 kobj.entry);
4807
4808 /*
4809 * hold reference count of device's parent to
4810 * prevent it from being freed because parent's
4811 * lock is to be held
4812 */
4813 parent = get_device(dev->parent);
4814 get_device(dev);
4815 /*
4816 * Make sure the device is off the kset list, in the
4817 * event that dev->*->shutdown() doesn't remove it.
4818 */
4819 list_del_init(&dev->kobj.entry);
4820 spin_unlock(&devices_kset->list_lock);
4821
4822 /* hold lock to avoid race with probe/release */
4823 if (parent)
4824 device_lock(parent);
4825 device_lock(dev);
4826
4827 /* Don't allow any more runtime suspends */
4828 pm_runtime_get_noresume(dev);
4829 pm_runtime_barrier(dev);
4830
4831 if (dev->class && dev->class->shutdown_pre) {
4832 if (initcall_debug)
4833 dev_info(dev, "shutdown_pre\n");
4834 dev->class->shutdown_pre(dev);
4835 }
4836 if (dev->bus && dev->bus->shutdown) {
4837 if (initcall_debug)
4838 dev_info(dev, "shutdown\n");
4839 dev->bus->shutdown(dev);
4840 } else if (dev->driver && dev->driver->shutdown) {
4841 if (initcall_debug)
4842 dev_info(dev, "shutdown\n");
4843 dev->driver->shutdown(dev);
4844 }
4845
4846 device_unlock(dev);
4847 if (parent)
4848 device_unlock(parent);
4849
4850 put_device(dev);
4851 put_device(parent);
4852
4853 spin_lock(&devices_kset->list_lock);
4854 }
4855 spin_unlock(&devices_kset->list_lock);
4856 }
4857
4858 /*
4859 * Device logging functions
4860 */
4861
4862 #ifdef CONFIG_PRINTK
4863 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4864 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4865 {
4866 const char *subsys;
4867
4868 memset(dev_info, 0, sizeof(*dev_info));
4869
4870 if (dev->class)
4871 subsys = dev->class->name;
4872 else if (dev->bus)
4873 subsys = dev->bus->name;
4874 else
4875 return;
4876
4877 strscpy(dev_info->subsystem, subsys);
4878
4879 /*
4880 * Add device identifier DEVICE=:
4881 * b12:8 block dev_t
4882 * c127:3 char dev_t
4883 * n8 netdev ifindex
4884 * +sound:card0 subsystem:devname
4885 */
4886 if (MAJOR(dev->devt)) {
4887 char c;
4888
4889 if (strcmp(subsys, "block") == 0)
4890 c = 'b';
4891 else
4892 c = 'c';
4893
4894 snprintf(dev_info->device, sizeof(dev_info->device),
4895 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4896 } else if (strcmp(subsys, "net") == 0) {
4897 struct net_device *net = to_net_dev(dev);
4898
4899 snprintf(dev_info->device, sizeof(dev_info->device),
4900 "n%u", net->ifindex);
4901 } else {
4902 snprintf(dev_info->device, sizeof(dev_info->device),
4903 "+%s:%s", subsys, dev_name(dev));
4904 }
4905 }
4906
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4907 int dev_vprintk_emit(int level, const struct device *dev,
4908 const char *fmt, va_list args)
4909 {
4910 struct dev_printk_info dev_info;
4911
4912 set_dev_info(dev, &dev_info);
4913
4914 return vprintk_emit(0, level, &dev_info, fmt, args);
4915 }
4916 EXPORT_SYMBOL(dev_vprintk_emit);
4917
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4918 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4919 {
4920 va_list args;
4921 int r;
4922
4923 va_start(args, fmt);
4924
4925 r = dev_vprintk_emit(level, dev, fmt, args);
4926
4927 va_end(args);
4928
4929 return r;
4930 }
4931 EXPORT_SYMBOL(dev_printk_emit);
4932
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4933 static void __dev_printk(const char *level, const struct device *dev,
4934 struct va_format *vaf)
4935 {
4936 if (dev)
4937 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4938 dev_driver_string(dev), dev_name(dev), vaf);
4939 else
4940 printk("%s(NULL device *): %pV", level, vaf);
4941 }
4942
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4943 void _dev_printk(const char *level, const struct device *dev,
4944 const char *fmt, ...)
4945 {
4946 struct va_format vaf;
4947 va_list args;
4948
4949 va_start(args, fmt);
4950
4951 vaf.fmt = fmt;
4952 vaf.va = &args;
4953
4954 __dev_printk(level, dev, &vaf);
4955
4956 va_end(args);
4957 }
4958 EXPORT_SYMBOL(_dev_printk);
4959
4960 #define define_dev_printk_level(func, kern_level) \
4961 void func(const struct device *dev, const char *fmt, ...) \
4962 { \
4963 struct va_format vaf; \
4964 va_list args; \
4965 \
4966 va_start(args, fmt); \
4967 \
4968 vaf.fmt = fmt; \
4969 vaf.va = &args; \
4970 \
4971 __dev_printk(kern_level, dev, &vaf); \
4972 \
4973 va_end(args); \
4974 } \
4975 EXPORT_SYMBOL(func);
4976
4977 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4978 define_dev_printk_level(_dev_alert, KERN_ALERT);
4979 define_dev_printk_level(_dev_crit, KERN_CRIT);
4980 define_dev_printk_level(_dev_err, KERN_ERR);
4981 define_dev_printk_level(_dev_warn, KERN_WARNING);
4982 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4983 define_dev_printk_level(_dev_info, KERN_INFO);
4984
4985 #endif
4986
__dev_probe_failed(const struct device * dev,int err,bool fatal,const char * fmt,va_list vargsp)4987 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4988 const char *fmt, va_list vargsp)
4989 {
4990 struct va_format vaf;
4991 va_list vargs;
4992
4993 /*
4994 * On x86_64 and possibly on other architectures, va_list is actually a
4995 * size-1 array containing a structure. As a result, function parameter
4996 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
4997 * T(*)[1], which is expected by its assignment to vaf.va below.
4998 *
4999 * One standard way to solve this mess is by creating a copy in a local
5000 * variable of type va_list and then using a pointer to that local copy
5001 * instead, which is the approach employed here.
5002 */
5003 va_copy(vargs, vargsp);
5004
5005 vaf.fmt = fmt;
5006 vaf.va = &vargs;
5007
5008 switch (err) {
5009 case -EPROBE_DEFER:
5010 device_set_deferred_probe_reason(dev, &vaf);
5011 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5012 break;
5013
5014 case -ENOMEM:
5015 /* Don't print anything on -ENOMEM, there's already enough output */
5016 break;
5017
5018 default:
5019 /* Log fatal final failures as errors, otherwise produce warnings */
5020 if (fatal)
5021 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5022 else
5023 dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5024 break;
5025 }
5026
5027 va_end(vargs);
5028 }
5029
5030 /**
5031 * dev_err_probe - probe error check and log helper
5032 * @dev: the pointer to the struct device
5033 * @err: error value to test
5034 * @fmt: printf-style format string
5035 * @...: arguments as specified in the format string
5036 *
5037 * This helper implements common pattern present in probe functions for error
5038 * checking: print debug or error message depending if the error value is
5039 * -EPROBE_DEFER and propagate error upwards.
5040 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5041 * checked later by reading devices_deferred debugfs attribute.
5042 * It replaces the following code sequence::
5043 *
5044 * if (err != -EPROBE_DEFER)
5045 * dev_err(dev, ...);
5046 * else
5047 * dev_dbg(dev, ...);
5048 * return err;
5049 *
5050 * with::
5051 *
5052 * return dev_err_probe(dev, err, ...);
5053 *
5054 * Using this helper in your probe function is totally fine even if @err
5055 * is known to never be -EPROBE_DEFER.
5056 * The benefit compared to a normal dev_err() is the standardized format
5057 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5058 * instead of "-35"), and having the error code returned allows more
5059 * compact error paths.
5060 *
5061 * Returns @err.
5062 */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5063 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5064 {
5065 va_list vargs;
5066
5067 va_start(vargs, fmt);
5068
5069 /* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5070 __dev_probe_failed(dev, err, true, fmt, vargs);
5071
5072 va_end(vargs);
5073
5074 return err;
5075 }
5076 EXPORT_SYMBOL_GPL(dev_err_probe);
5077
5078 /**
5079 * dev_warn_probe - probe error check and log helper
5080 * @dev: the pointer to the struct device
5081 * @err: error value to test
5082 * @fmt: printf-style format string
5083 * @...: arguments as specified in the format string
5084 *
5085 * This helper implements common pattern present in probe functions for error
5086 * checking: print debug or warning message depending if the error value is
5087 * -EPROBE_DEFER and propagate error upwards.
5088 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5089 * checked later by reading devices_deferred debugfs attribute.
5090 * It replaces the following code sequence::
5091 *
5092 * if (err != -EPROBE_DEFER)
5093 * dev_warn(dev, ...);
5094 * else
5095 * dev_dbg(dev, ...);
5096 * return err;
5097 *
5098 * with::
5099 *
5100 * return dev_warn_probe(dev, err, ...);
5101 *
5102 * Using this helper in your probe function is totally fine even if @err
5103 * is known to never be -EPROBE_DEFER.
5104 * The benefit compared to a normal dev_warn() is the standardized format
5105 * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5106 * instead of "-35"), and having the error code returned allows more
5107 * compact error paths.
5108 *
5109 * Returns @err.
5110 */
dev_warn_probe(const struct device * dev,int err,const char * fmt,...)5111 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5112 {
5113 va_list vargs;
5114
5115 va_start(vargs, fmt);
5116
5117 /* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5118 __dev_probe_failed(dev, err, false, fmt, vargs);
5119
5120 va_end(vargs);
5121
5122 return err;
5123 }
5124 EXPORT_SYMBOL_GPL(dev_warn_probe);
5125
fwnode_is_primary(struct fwnode_handle * fwnode)5126 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5127 {
5128 return fwnode && !IS_ERR(fwnode->secondary);
5129 }
5130
5131 /**
5132 * set_primary_fwnode - Change the primary firmware node of a given device.
5133 * @dev: Device to handle.
5134 * @fwnode: New primary firmware node of the device.
5135 *
5136 * Set the device's firmware node pointer to @fwnode, but if a secondary
5137 * firmware node of the device is present, preserve it.
5138 *
5139 * Valid fwnode cases are:
5140 * - primary --> secondary --> -ENODEV
5141 * - primary --> NULL
5142 * - secondary --> -ENODEV
5143 * - NULL
5144 */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5145 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5146 {
5147 struct device *parent = dev->parent;
5148 struct fwnode_handle *fn = dev->fwnode;
5149
5150 if (fwnode) {
5151 if (fwnode_is_primary(fn))
5152 fn = fn->secondary;
5153
5154 if (fn) {
5155 WARN_ON(fwnode->secondary);
5156 fwnode->secondary = fn;
5157 }
5158 dev->fwnode = fwnode;
5159 } else {
5160 if (fwnode_is_primary(fn)) {
5161 dev->fwnode = fn->secondary;
5162
5163 /* Skip nullifying fn->secondary if the primary is shared */
5164 if (parent && fn == parent->fwnode)
5165 return;
5166
5167 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5168 fn->secondary = NULL;
5169 } else {
5170 dev->fwnode = NULL;
5171 }
5172 }
5173 }
5174 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5175
5176 /**
5177 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5178 * @dev: Device to handle.
5179 * @fwnode: New secondary firmware node of the device.
5180 *
5181 * If a primary firmware node of the device is present, set its secondary
5182 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5183 * @fwnode.
5184 */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5185 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5186 {
5187 if (fwnode)
5188 fwnode->secondary = ERR_PTR(-ENODEV);
5189
5190 if (fwnode_is_primary(dev->fwnode))
5191 dev->fwnode->secondary = fwnode;
5192 else
5193 dev->fwnode = fwnode;
5194 }
5195 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5196
5197 /**
5198 * device_remove_of_node - Remove an of_node from a device
5199 * @dev: device whose device tree node is being removed
5200 */
device_remove_of_node(struct device * dev)5201 void device_remove_of_node(struct device *dev)
5202 {
5203 dev = get_device(dev);
5204 if (!dev)
5205 return;
5206
5207 if (!dev->of_node)
5208 goto end;
5209
5210 if (dev->fwnode == of_fwnode_handle(dev->of_node))
5211 dev->fwnode = NULL;
5212
5213 of_node_put(dev->of_node);
5214 dev->of_node = NULL;
5215
5216 end:
5217 put_device(dev);
5218 }
5219 EXPORT_SYMBOL_GPL(device_remove_of_node);
5220
5221 /**
5222 * device_add_of_node - Add an of_node to an existing device
5223 * @dev: device whose device tree node is being added
5224 * @of_node: of_node to add
5225 *
5226 * Return: 0 on success or error code on failure.
5227 */
device_add_of_node(struct device * dev,struct device_node * of_node)5228 int device_add_of_node(struct device *dev, struct device_node *of_node)
5229 {
5230 int ret;
5231
5232 if (!of_node)
5233 return -EINVAL;
5234
5235 dev = get_device(dev);
5236 if (!dev)
5237 return -EINVAL;
5238
5239 if (dev->of_node) {
5240 dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5241 dev->of_node, of_node);
5242 ret = -EBUSY;
5243 goto end;
5244 }
5245
5246 dev->of_node = of_node_get(of_node);
5247
5248 if (!dev->fwnode)
5249 dev->fwnode = of_fwnode_handle(of_node);
5250
5251 ret = 0;
5252 end:
5253 put_device(dev);
5254 return ret;
5255 }
5256 EXPORT_SYMBOL_GPL(device_add_of_node);
5257
5258 /**
5259 * device_set_of_node_from_dev - reuse device-tree node of another device
5260 * @dev: device whose device-tree node is being set
5261 * @dev2: device whose device-tree node is being reused
5262 *
5263 * Takes another reference to the new device-tree node after first dropping
5264 * any reference held to the old node.
5265 */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5266 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5267 {
5268 of_node_put(dev->of_node);
5269 dev->of_node = of_node_get(dev2->of_node);
5270 dev->of_node_reused = true;
5271 }
5272 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5273
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5274 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5275 {
5276 dev->fwnode = fwnode;
5277 dev->of_node = to_of_node(fwnode);
5278 }
5279 EXPORT_SYMBOL_GPL(device_set_node);
5280
get_dev_from_fwnode(struct fwnode_handle * fwnode)5281 struct device *get_dev_from_fwnode(struct fwnode_handle *fwnode)
5282 {
5283 return get_device((fwnode)->dev);
5284 }
5285 EXPORT_SYMBOL_GPL(get_dev_from_fwnode);
5286
device_match_name(struct device * dev,const void * name)5287 int device_match_name(struct device *dev, const void *name)
5288 {
5289 return sysfs_streq(dev_name(dev), name);
5290 }
5291 EXPORT_SYMBOL_GPL(device_match_name);
5292
device_match_type(struct device * dev,const void * type)5293 int device_match_type(struct device *dev, const void *type)
5294 {
5295 return dev->type == type;
5296 }
5297 EXPORT_SYMBOL_GPL(device_match_type);
5298
device_match_of_node(struct device * dev,const void * np)5299 int device_match_of_node(struct device *dev, const void *np)
5300 {
5301 return np && dev->of_node == np;
5302 }
5303 EXPORT_SYMBOL_GPL(device_match_of_node);
5304
device_match_fwnode(struct device * dev,const void * fwnode)5305 int device_match_fwnode(struct device *dev, const void *fwnode)
5306 {
5307 return fwnode && dev_fwnode(dev) == fwnode;
5308 }
5309 EXPORT_SYMBOL_GPL(device_match_fwnode);
5310
device_match_devt(struct device * dev,const void * pdevt)5311 int device_match_devt(struct device *dev, const void *pdevt)
5312 {
5313 return dev->devt == *(dev_t *)pdevt;
5314 }
5315 EXPORT_SYMBOL_GPL(device_match_devt);
5316
device_match_acpi_dev(struct device * dev,const void * adev)5317 int device_match_acpi_dev(struct device *dev, const void *adev)
5318 {
5319 return adev && ACPI_COMPANION(dev) == adev;
5320 }
5321 EXPORT_SYMBOL(device_match_acpi_dev);
5322
device_match_acpi_handle(struct device * dev,const void * handle)5323 int device_match_acpi_handle(struct device *dev, const void *handle)
5324 {
5325 return handle && ACPI_HANDLE(dev) == handle;
5326 }
5327 EXPORT_SYMBOL(device_match_acpi_handle);
5328
device_match_any(struct device * dev,const void * unused)5329 int device_match_any(struct device *dev, const void *unused)
5330 {
5331 return 1;
5332 }
5333 EXPORT_SYMBOL_GPL(device_match_any);
5334