xref: /linux/drivers/base/core.c (revision 22c5696e3fe029f4fc2decbe7cc6663b5d281223)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/blkdev.h>
13 #include <linux/cleanup.h>
14 #include <linux/cpufreq.h>
15 #include <linux/device.h>
16 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
17 #include <linux/err.h>
18 #include <linux/fwnode.h>
19 #include <linux/init.h>
20 #include <linux/kdev_t.h>
21 #include <linux/kstrtox.h>
22 #include <linux/module.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/notifier.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sched/signal.h>
31 #include <linux/slab.h>
32 #include <linux/string_helpers.h>
33 #include <linux/swiotlb.h>
34 #include <linux/sysfs.h>
35 
36 #include "base.h"
37 #include "physical_location.h"
38 #include "power/power.h"
39 
40 /* Device links support. */
41 static LIST_HEAD(deferred_sync);
42 static unsigned int defer_sync_state_count = 1;
43 static DEFINE_MUTEX(fwnode_link_lock);
44 static bool fw_devlink_is_permissive(void);
45 static void __fw_devlink_link_to_consumers(struct device *dev);
46 static bool fw_devlink_drv_reg_done;
47 static bool fw_devlink_best_effort;
48 static struct workqueue_struct *device_link_wq;
49 
50 /**
51  * __fwnode_link_add - Create a link between two fwnode_handles.
52  * @con: Consumer end of the link.
53  * @sup: Supplier end of the link.
54  * @flags: Link flags.
55  *
56  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
57  * represents the detail that the firmware lists @sup fwnode as supplying a
58  * resource to @con.
59  *
60  * The driver core will use the fwnode link to create a device link between the
61  * two device objects corresponding to @con and @sup when they are created. The
62  * driver core will automatically delete the fwnode link between @con and @sup
63  * after doing that.
64  *
65  * Attempts to create duplicate links between the same pair of fwnode handles
66  * are ignored and there is no reference counting.
67  */
__fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)68 static int __fwnode_link_add(struct fwnode_handle *con,
69 			     struct fwnode_handle *sup, u8 flags)
70 {
71 	struct fwnode_link *link;
72 
73 	list_for_each_entry(link, &sup->consumers, s_hook)
74 		if (link->consumer == con) {
75 			link->flags |= flags;
76 			return 0;
77 		}
78 
79 	link = kzalloc(sizeof(*link), GFP_KERNEL);
80 	if (!link)
81 		return -ENOMEM;
82 
83 	link->supplier = sup;
84 	INIT_LIST_HEAD(&link->s_hook);
85 	link->consumer = con;
86 	INIT_LIST_HEAD(&link->c_hook);
87 	link->flags = flags;
88 
89 	list_add(&link->s_hook, &sup->consumers);
90 	list_add(&link->c_hook, &con->suppliers);
91 	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
92 		 con, sup);
93 
94 	return 0;
95 }
96 
fwnode_link_add(struct fwnode_handle * con,struct fwnode_handle * sup,u8 flags)97 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
98 		    u8 flags)
99 {
100 	guard(mutex)(&fwnode_link_lock);
101 
102 	return __fwnode_link_add(con, sup, flags);
103 }
104 
105 /**
106  * __fwnode_link_del - Delete a link between two fwnode_handles.
107  * @link: the fwnode_link to be deleted
108  *
109  * The fwnode_link_lock needs to be held when this function is called.
110  */
__fwnode_link_del(struct fwnode_link * link)111 static void __fwnode_link_del(struct fwnode_link *link)
112 {
113 	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
114 		 link->consumer, link->supplier);
115 	list_del(&link->s_hook);
116 	list_del(&link->c_hook);
117 	kfree(link);
118 }
119 
120 /**
121  * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
122  * @link: the fwnode_link to be marked
123  *
124  * The fwnode_link_lock needs to be held when this function is called.
125  */
__fwnode_link_cycle(struct fwnode_link * link)126 static void __fwnode_link_cycle(struct fwnode_link *link)
127 {
128 	pr_debug("%pfwf: cycle: depends on %pfwf\n",
129 		 link->consumer, link->supplier);
130 	link->flags |= FWLINK_FLAG_CYCLE;
131 }
132 
133 /**
134  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
135  * @fwnode: fwnode whose supplier links need to be deleted
136  *
137  * Deletes all supplier links connecting directly to @fwnode.
138  */
fwnode_links_purge_suppliers(struct fwnode_handle * fwnode)139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
140 {
141 	struct fwnode_link *link, *tmp;
142 
143 	guard(mutex)(&fwnode_link_lock);
144 
145 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
146 		__fwnode_link_del(link);
147 }
148 
149 /**
150  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
151  * @fwnode: fwnode whose consumer links need to be deleted
152  *
153  * Deletes all consumer links connecting directly to @fwnode.
154  */
fwnode_links_purge_consumers(struct fwnode_handle * fwnode)155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
156 {
157 	struct fwnode_link *link, *tmp;
158 
159 	guard(mutex)(&fwnode_link_lock);
160 
161 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
162 		__fwnode_link_del(link);
163 }
164 
165 /**
166  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
167  * @fwnode: fwnode whose links needs to be deleted
168  *
169  * Deletes all links connecting directly to a fwnode.
170  */
fwnode_links_purge(struct fwnode_handle * fwnode)171 void fwnode_links_purge(struct fwnode_handle *fwnode)
172 {
173 	fwnode_links_purge_suppliers(fwnode);
174 	fwnode_links_purge_consumers(fwnode);
175 }
176 
fw_devlink_purge_absent_suppliers(struct fwnode_handle * fwnode)177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
178 {
179 	struct fwnode_handle *child;
180 
181 	/* Don't purge consumer links of an added child */
182 	if (fwnode->dev)
183 		return;
184 
185 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
186 	fwnode_links_purge_consumers(fwnode);
187 
188 	fwnode_for_each_available_child_node(fwnode, child)
189 		fw_devlink_purge_absent_suppliers(child);
190 }
191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
192 
193 /**
194  * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
195  * @from: move consumers away from this fwnode
196  * @to: move consumers to this fwnode
197  *
198  * Move all consumer links from @from fwnode to @to fwnode.
199  */
__fwnode_links_move_consumers(struct fwnode_handle * from,struct fwnode_handle * to)200 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
201 					  struct fwnode_handle *to)
202 {
203 	struct fwnode_link *link, *tmp;
204 
205 	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
206 		__fwnode_link_add(link->consumer, to, link->flags);
207 		__fwnode_link_del(link);
208 	}
209 }
210 
211 /**
212  * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
213  * @fwnode: fwnode from which to pick up dangling consumers
214  * @new_sup: fwnode of new supplier
215  *
216  * If the @fwnode has a corresponding struct device and the device supports
217  * probing (that is, added to a bus), then we want to let fw_devlink create
218  * MANAGED device links to this device, so leave @fwnode and its descendant's
219  * fwnode links alone.
220  *
221  * Otherwise, move its consumers to the new supplier @new_sup.
222  */
__fw_devlink_pickup_dangling_consumers(struct fwnode_handle * fwnode,struct fwnode_handle * new_sup)223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
224 						   struct fwnode_handle *new_sup)
225 {
226 	struct fwnode_handle *child;
227 
228 	if (fwnode->dev && fwnode->dev->bus)
229 		return;
230 
231 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
232 	__fwnode_links_move_consumers(fwnode, new_sup);
233 
234 	fwnode_for_each_available_child_node(fwnode, child)
235 		__fw_devlink_pickup_dangling_consumers(child, new_sup);
236 }
237 
238 static DEFINE_MUTEX(device_links_lock);
239 DEFINE_STATIC_SRCU(device_links_srcu);
240 
device_links_write_lock(void)241 static inline void device_links_write_lock(void)
242 {
243 	mutex_lock(&device_links_lock);
244 }
245 
device_links_write_unlock(void)246 static inline void device_links_write_unlock(void)
247 {
248 	mutex_unlock(&device_links_lock);
249 }
250 
device_links_read_lock(void)251 int device_links_read_lock(void) __acquires(&device_links_srcu)
252 {
253 	return srcu_read_lock(&device_links_srcu);
254 }
255 
device_links_read_unlock(int idx)256 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
257 {
258 	srcu_read_unlock(&device_links_srcu, idx);
259 }
260 
device_links_read_lock_held(void)261 int device_links_read_lock_held(void)
262 {
263 	return srcu_read_lock_held(&device_links_srcu);
264 }
265 
device_link_synchronize_removal(void)266 static void device_link_synchronize_removal(void)
267 {
268 	synchronize_srcu(&device_links_srcu);
269 }
270 
device_link_remove_from_lists(struct device_link * link)271 static void device_link_remove_from_lists(struct device_link *link)
272 {
273 	list_del_rcu(&link->s_node);
274 	list_del_rcu(&link->c_node);
275 }
276 
device_is_ancestor(struct device * dev,struct device * target)277 static bool device_is_ancestor(struct device *dev, struct device *target)
278 {
279 	while (target->parent) {
280 		target = target->parent;
281 		if (dev == target)
282 			return true;
283 	}
284 	return false;
285 }
286 
287 #define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
288 				 DL_FLAG_CYCLE | \
289 				 DL_FLAG_MANAGED)
device_link_flag_is_sync_state_only(u32 flags)290 static inline bool device_link_flag_is_sync_state_only(u32 flags)
291 {
292 	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
293 }
294 
295 /**
296  * device_is_dependent - Check if one device depends on another one
297  * @dev: Device to check dependencies for.
298  * @target: Device to check against.
299  *
300  * Check if @target depends on @dev or any device dependent on it (its child or
301  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
302  */
device_is_dependent(struct device * dev,void * target)303 static int device_is_dependent(struct device *dev, void *target)
304 {
305 	struct device_link *link;
306 	int ret;
307 
308 	/*
309 	 * The "ancestors" check is needed to catch the case when the target
310 	 * device has not been completely initialized yet and it is still
311 	 * missing from the list of children of its parent device.
312 	 */
313 	if (dev == target || device_is_ancestor(dev, target))
314 		return 1;
315 
316 	ret = device_for_each_child(dev, target, device_is_dependent);
317 	if (ret)
318 		return ret;
319 
320 	list_for_each_entry(link, &dev->links.consumers, s_node) {
321 		if (device_link_flag_is_sync_state_only(link->flags))
322 			continue;
323 
324 		if (link->consumer == target)
325 			return 1;
326 
327 		ret = device_is_dependent(link->consumer, target);
328 		if (ret)
329 			break;
330 	}
331 	return ret;
332 }
333 
device_link_init_status(struct device_link * link,struct device * consumer,struct device * supplier)334 static void device_link_init_status(struct device_link *link,
335 				    struct device *consumer,
336 				    struct device *supplier)
337 {
338 	switch (supplier->links.status) {
339 	case DL_DEV_PROBING:
340 		switch (consumer->links.status) {
341 		case DL_DEV_PROBING:
342 			/*
343 			 * A consumer driver can create a link to a supplier
344 			 * that has not completed its probing yet as long as it
345 			 * knows that the supplier is already functional (for
346 			 * example, it has just acquired some resources from the
347 			 * supplier).
348 			 */
349 			link->status = DL_STATE_CONSUMER_PROBE;
350 			break;
351 		default:
352 			link->status = DL_STATE_DORMANT;
353 			break;
354 		}
355 		break;
356 	case DL_DEV_DRIVER_BOUND:
357 		switch (consumer->links.status) {
358 		case DL_DEV_PROBING:
359 			link->status = DL_STATE_CONSUMER_PROBE;
360 			break;
361 		case DL_DEV_DRIVER_BOUND:
362 			link->status = DL_STATE_ACTIVE;
363 			break;
364 		default:
365 			link->status = DL_STATE_AVAILABLE;
366 			break;
367 		}
368 		break;
369 	case DL_DEV_UNBINDING:
370 		link->status = DL_STATE_SUPPLIER_UNBIND;
371 		break;
372 	default:
373 		link->status = DL_STATE_DORMANT;
374 		break;
375 	}
376 }
377 
device_reorder_to_tail(struct device * dev,void * not_used)378 static int device_reorder_to_tail(struct device *dev, void *not_used)
379 {
380 	struct device_link *link;
381 
382 	/*
383 	 * Devices that have not been registered yet will be put to the ends
384 	 * of the lists during the registration, so skip them here.
385 	 */
386 	if (device_is_registered(dev))
387 		devices_kset_move_last(dev);
388 
389 	if (device_pm_initialized(dev))
390 		device_pm_move_last(dev);
391 
392 	device_for_each_child(dev, NULL, device_reorder_to_tail);
393 	list_for_each_entry(link, &dev->links.consumers, s_node) {
394 		if (device_link_flag_is_sync_state_only(link->flags))
395 			continue;
396 		device_reorder_to_tail(link->consumer, NULL);
397 	}
398 
399 	return 0;
400 }
401 
402 /**
403  * device_pm_move_to_tail - Move set of devices to the end of device lists
404  * @dev: Device to move
405  *
406  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
407  *
408  * It moves the @dev along with all of its children and all of its consumers
409  * to the ends of the device_kset and dpm_list, recursively.
410  */
device_pm_move_to_tail(struct device * dev)411 void device_pm_move_to_tail(struct device *dev)
412 {
413 	int idx;
414 
415 	idx = device_links_read_lock();
416 	device_pm_lock();
417 	device_reorder_to_tail(dev, NULL);
418 	device_pm_unlock();
419 	device_links_read_unlock(idx);
420 }
421 
422 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
423 
status_show(struct device * dev,struct device_attribute * attr,char * buf)424 static ssize_t status_show(struct device *dev,
425 			   struct device_attribute *attr, char *buf)
426 {
427 	const char *output;
428 
429 	switch (to_devlink(dev)->status) {
430 	case DL_STATE_NONE:
431 		output = "not tracked";
432 		break;
433 	case DL_STATE_DORMANT:
434 		output = "dormant";
435 		break;
436 	case DL_STATE_AVAILABLE:
437 		output = "available";
438 		break;
439 	case DL_STATE_CONSUMER_PROBE:
440 		output = "consumer probing";
441 		break;
442 	case DL_STATE_ACTIVE:
443 		output = "active";
444 		break;
445 	case DL_STATE_SUPPLIER_UNBIND:
446 		output = "supplier unbinding";
447 		break;
448 	default:
449 		output = "unknown";
450 		break;
451 	}
452 
453 	return sysfs_emit(buf, "%s\n", output);
454 }
455 static DEVICE_ATTR_RO(status);
456 
auto_remove_on_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t auto_remove_on_show(struct device *dev,
458 				   struct device_attribute *attr, char *buf)
459 {
460 	struct device_link *link = to_devlink(dev);
461 	const char *output;
462 
463 	if (device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
464 		output = "supplier unbind";
465 	else if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER))
466 		output = "consumer unbind";
467 	else
468 		output = "never";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 static DEVICE_ATTR_RO(auto_remove_on);
473 
runtime_pm_show(struct device * dev,struct device_attribute * attr,char * buf)474 static ssize_t runtime_pm_show(struct device *dev,
475 			       struct device_attribute *attr, char *buf)
476 {
477 	struct device_link *link = to_devlink(dev);
478 
479 	return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_PM_RUNTIME));
480 }
481 static DEVICE_ATTR_RO(runtime_pm);
482 
sync_state_only_show(struct device * dev,struct device_attribute * attr,char * buf)483 static ssize_t sync_state_only_show(struct device *dev,
484 				    struct device_attribute *attr, char *buf)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	return sysfs_emit(buf, "%d\n", device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
489 }
490 static DEVICE_ATTR_RO(sync_state_only);
491 
492 static struct attribute *devlink_attrs[] = {
493 	&dev_attr_status.attr,
494 	&dev_attr_auto_remove_on.attr,
495 	&dev_attr_runtime_pm.attr,
496 	&dev_attr_sync_state_only.attr,
497 	NULL,
498 };
499 ATTRIBUTE_GROUPS(devlink);
500 
device_link_release_fn(struct work_struct * work)501 static void device_link_release_fn(struct work_struct *work)
502 {
503 	struct device_link *link = container_of(work, struct device_link, rm_work);
504 
505 	/* Ensure that all references to the link object have been dropped. */
506 	device_link_synchronize_removal();
507 
508 	pm_runtime_release_supplier(link);
509 	/*
510 	 * If supplier_preactivated is set, the link has been dropped between
511 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
512 	 * in __driver_probe_device().  In that case, drop the supplier's
513 	 * PM-runtime usage counter to remove the reference taken by
514 	 * pm_runtime_get_suppliers().
515 	 */
516 	if (link->supplier_preactivated)
517 		pm_runtime_put_noidle(link->supplier);
518 
519 	pm_request_idle(link->supplier);
520 
521 	put_device(link->consumer);
522 	put_device(link->supplier);
523 	kfree(link);
524 }
525 
devlink_dev_release(struct device * dev)526 static void devlink_dev_release(struct device *dev)
527 {
528 	struct device_link *link = to_devlink(dev);
529 
530 	INIT_WORK(&link->rm_work, device_link_release_fn);
531 	/*
532 	 * It may take a while to complete this work because of the SRCU
533 	 * synchronization in device_link_release_fn() and if the consumer or
534 	 * supplier devices get deleted when it runs, so put it into the
535 	 * dedicated workqueue.
536 	 */
537 	queue_work(device_link_wq, &link->rm_work);
538 }
539 
540 /**
541  * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
542  */
device_link_wait_removal(void)543 void device_link_wait_removal(void)
544 {
545 	/*
546 	 * devlink removal jobs are queued in the dedicated work queue.
547 	 * To be sure that all removal jobs are terminated, ensure that any
548 	 * scheduled work has run to completion.
549 	 */
550 	flush_workqueue(device_link_wq);
551 }
552 EXPORT_SYMBOL_GPL(device_link_wait_removal);
553 
554 static const struct class devlink_class = {
555 	.name = "devlink",
556 	.dev_groups = devlink_groups,
557 	.dev_release = devlink_dev_release,
558 };
559 
devlink_add_symlinks(struct device * dev)560 static int devlink_add_symlinks(struct device *dev)
561 {
562 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
563 	int ret;
564 	struct device_link *link = to_devlink(dev);
565 	struct device *sup = link->supplier;
566 	struct device *con = link->consumer;
567 
568 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
569 	if (ret)
570 		goto out;
571 
572 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
573 	if (ret)
574 		goto err_con;
575 
576 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
577 	if (!buf_con) {
578 		ret = -ENOMEM;
579 		goto err_con_dev;
580 	}
581 
582 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf_con);
583 	if (ret)
584 		goto err_con_dev;
585 
586 	buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
587 	if (!buf_sup) {
588 		ret = -ENOMEM;
589 		goto err_sup_dev;
590 	}
591 
592 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf_sup);
593 	if (ret)
594 		goto err_sup_dev;
595 
596 	goto out;
597 
598 err_sup_dev:
599 	sysfs_remove_link(&sup->kobj, buf_con);
600 err_con_dev:
601 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
602 err_con:
603 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
604 out:
605 	return ret;
606 }
607 
devlink_remove_symlinks(struct device * dev)608 static void devlink_remove_symlinks(struct device *dev)
609 {
610 	char *buf_con __free(kfree) = NULL, *buf_sup __free(kfree) = NULL;
611 	struct device_link *link = to_devlink(dev);
612 	struct device *sup = link->supplier;
613 	struct device *con = link->consumer;
614 
615 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
616 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
617 
618 	if (device_is_registered(con)) {
619 		buf_sup = kasprintf(GFP_KERNEL, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
620 		if (!buf_sup)
621 			goto out;
622 		sysfs_remove_link(&con->kobj, buf_sup);
623 	}
624 
625 	buf_con = kasprintf(GFP_KERNEL, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
626 	if (!buf_con)
627 		goto out;
628 	sysfs_remove_link(&sup->kobj, buf_con);
629 
630 	return;
631 
632 out:
633 	WARN(1, "Unable to properly free device link symlinks!\n");
634 }
635 
636 static struct class_interface devlink_class_intf = {
637 	.class = &devlink_class,
638 	.add_dev = devlink_add_symlinks,
639 	.remove_dev = devlink_remove_symlinks,
640 };
641 
devlink_class_init(void)642 static int __init devlink_class_init(void)
643 {
644 	int ret;
645 
646 	ret = class_register(&devlink_class);
647 	if (ret)
648 		return ret;
649 
650 	ret = class_interface_register(&devlink_class_intf);
651 	if (ret)
652 		class_unregister(&devlink_class);
653 
654 	return ret;
655 }
656 postcore_initcall(devlink_class_init);
657 
658 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
659 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
660 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
661 			       DL_FLAG_SYNC_STATE_ONLY | \
662 			       DL_FLAG_INFERRED | \
663 			       DL_FLAG_CYCLE)
664 
665 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
666 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
667 
668 /**
669  * device_link_add - Create a link between two devices.
670  * @consumer: Consumer end of the link.
671  * @supplier: Supplier end of the link.
672  * @flags: Link flags.
673  *
674  * Return: On success, a device_link struct will be returned.
675  *         On error or invalid flag settings, NULL will be returned.
676  *
677  * The caller is responsible for the proper synchronization of the link creation
678  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
679  * runtime PM framework to take the link into account.  Second, if the
680  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
681  * be forced into the active meta state and reference-counted upon the creation
682  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
683  * ignored.
684  *
685  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
686  * expected to release the link returned by it directly with the help of either
687  * device_link_del() or device_link_remove().
688  *
689  * If that flag is not set, however, the caller of this function is handing the
690  * management of the link over to the driver core entirely and its return value
691  * can only be used to check whether or not the link is present.  In that case,
692  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
693  * flags can be used to indicate to the driver core when the link can be safely
694  * deleted.  Namely, setting one of them in @flags indicates to the driver core
695  * that the link is not going to be used (by the given caller of this function)
696  * after unbinding the consumer or supplier driver, respectively, from its
697  * device, so the link can be deleted at that point.  If none of them is set,
698  * the link will be maintained until one of the devices pointed to by it (either
699  * the consumer or the supplier) is unregistered.
700  *
701  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
702  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
703  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
704  * be used to request the driver core to automatically probe for a consumer
705  * driver after successfully binding a driver to the supplier device.
706  *
707  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
708  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
709  * the same time is invalid and will cause NULL to be returned upfront.
710  * However, if a device link between the given @consumer and @supplier pair
711  * exists already when this function is called for them, the existing link will
712  * be returned regardless of its current type and status (the link's flags may
713  * be modified then).  The caller of this function is then expected to treat
714  * the link as though it has just been created, so (in particular) if
715  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
716  * explicitly when not needed any more (as stated above).
717  *
718  * A side effect of the link creation is re-ordering of dpm_list and the
719  * devices_kset list by moving the consumer device and all devices depending
720  * on it to the ends of these lists (that does not happen to devices that have
721  * not been registered when this function is called).
722  *
723  * The supplier device is required to be registered when this function is called
724  * and NULL will be returned if that is not the case.  The consumer device need
725  * not be registered, however.
726  */
device_link_add(struct device * consumer,struct device * supplier,u32 flags)727 struct device_link *device_link_add(struct device *consumer,
728 				    struct device *supplier, u32 flags)
729 {
730 	struct device_link *link;
731 
732 	if (!consumer || !supplier || consumer == supplier ||
733 	    flags & ~DL_ADD_VALID_FLAGS ||
734 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
735 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
736 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
737 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
738 		return NULL;
739 
740 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
741 		if (pm_runtime_get_sync(supplier) < 0) {
742 			pm_runtime_put_noidle(supplier);
743 			return NULL;
744 		}
745 	}
746 
747 	if (!(flags & DL_FLAG_STATELESS))
748 		flags |= DL_FLAG_MANAGED;
749 
750 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
751 	    !device_link_flag_is_sync_state_only(flags))
752 		return NULL;
753 
754 	device_links_write_lock();
755 	device_pm_lock();
756 
757 	/*
758 	 * If the supplier has not been fully registered yet or there is a
759 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
760 	 * the supplier already in the graph, return NULL. If the link is a
761 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
762 	 * because it only affects sync_state() callbacks.
763 	 */
764 	if (!device_pm_initialized(supplier)
765 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
766 		  device_is_dependent(consumer, supplier))) {
767 		link = NULL;
768 		goto out;
769 	}
770 
771 	/*
772 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
773 	 * So, only create it if the consumer hasn't probed yet.
774 	 */
775 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
776 	    consumer->links.status != DL_DEV_NO_DRIVER &&
777 	    consumer->links.status != DL_DEV_PROBING) {
778 		link = NULL;
779 		goto out;
780 	}
781 
782 	/*
783 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
784 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
785 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
786 	 */
787 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
788 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
789 
790 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
791 		if (link->consumer != consumer)
792 			continue;
793 
794 		if (device_link_test(link, DL_FLAG_INFERRED) &&
795 		    !(flags & DL_FLAG_INFERRED))
796 			link->flags &= ~DL_FLAG_INFERRED;
797 
798 		if (flags & DL_FLAG_PM_RUNTIME) {
799 			if (!device_link_test(link, DL_FLAG_PM_RUNTIME)) {
800 				pm_runtime_new_link(consumer);
801 				link->flags |= DL_FLAG_PM_RUNTIME;
802 			}
803 			if (flags & DL_FLAG_RPM_ACTIVE)
804 				refcount_inc(&link->rpm_active);
805 		}
806 
807 		if (flags & DL_FLAG_STATELESS) {
808 			kref_get(&link->kref);
809 			if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
810 			    !device_link_test(link, DL_FLAG_STATELESS)) {
811 				link->flags |= DL_FLAG_STATELESS;
812 				goto reorder;
813 			} else {
814 				link->flags |= DL_FLAG_STATELESS;
815 				goto out;
816 			}
817 		}
818 
819 		/*
820 		 * If the life time of the link following from the new flags is
821 		 * longer than indicated by the flags of the existing link,
822 		 * update the existing link to stay around longer.
823 		 */
824 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
825 			if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
826 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
827 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
828 			}
829 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
830 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
831 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
832 		}
833 		if (!device_link_test(link, DL_FLAG_MANAGED)) {
834 			kref_get(&link->kref);
835 			link->flags |= DL_FLAG_MANAGED;
836 			device_link_init_status(link, consumer, supplier);
837 		}
838 		if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY) &&
839 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
840 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
841 			goto reorder;
842 		}
843 
844 		goto out;
845 	}
846 
847 	link = kzalloc(sizeof(*link), GFP_KERNEL);
848 	if (!link)
849 		goto out;
850 
851 	refcount_set(&link->rpm_active, 1);
852 
853 	get_device(supplier);
854 	link->supplier = supplier;
855 	INIT_LIST_HEAD(&link->s_node);
856 	get_device(consumer);
857 	link->consumer = consumer;
858 	INIT_LIST_HEAD(&link->c_node);
859 	link->flags = flags;
860 	kref_init(&link->kref);
861 
862 	link->link_dev.class = &devlink_class;
863 	device_set_pm_not_required(&link->link_dev);
864 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
865 		     dev_bus_name(supplier), dev_name(supplier),
866 		     dev_bus_name(consumer), dev_name(consumer));
867 	if (device_register(&link->link_dev)) {
868 		put_device(&link->link_dev);
869 		link = NULL;
870 		goto out;
871 	}
872 
873 	if (flags & DL_FLAG_PM_RUNTIME) {
874 		if (flags & DL_FLAG_RPM_ACTIVE)
875 			refcount_inc(&link->rpm_active);
876 
877 		pm_runtime_new_link(consumer);
878 	}
879 
880 	/* Determine the initial link state. */
881 	if (flags & DL_FLAG_STATELESS)
882 		link->status = DL_STATE_NONE;
883 	else
884 		device_link_init_status(link, consumer, supplier);
885 
886 	/*
887 	 * Some callers expect the link creation during consumer driver probe to
888 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
889 	 */
890 	if (link->status == DL_STATE_CONSUMER_PROBE &&
891 	    flags & DL_FLAG_PM_RUNTIME)
892 		pm_runtime_resume(supplier);
893 
894 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
895 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
896 
897 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
898 		dev_dbg(consumer,
899 			"Linked as a sync state only consumer to %s\n",
900 			dev_name(supplier));
901 		goto out;
902 	}
903 
904 reorder:
905 	/*
906 	 * Move the consumer and all of the devices depending on it to the end
907 	 * of dpm_list and the devices_kset list.
908 	 *
909 	 * It is necessary to hold dpm_list locked throughout all that or else
910 	 * we may end up suspending with a wrong ordering of it.
911 	 */
912 	device_reorder_to_tail(consumer, NULL);
913 
914 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
915 
916 out:
917 	device_pm_unlock();
918 	device_links_write_unlock();
919 
920 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
921 		pm_runtime_put(supplier);
922 
923 	return link;
924 }
925 EXPORT_SYMBOL_GPL(device_link_add);
926 
__device_link_del(struct kref * kref)927 static void __device_link_del(struct kref *kref)
928 {
929 	struct device_link *link = container_of(kref, struct device_link, kref);
930 
931 	dev_dbg(link->consumer, "Dropping the link to %s\n",
932 		dev_name(link->supplier));
933 
934 	pm_runtime_drop_link(link);
935 
936 	device_link_remove_from_lists(link);
937 	device_unregister(&link->link_dev);
938 }
939 
device_link_put_kref(struct device_link * link)940 static void device_link_put_kref(struct device_link *link)
941 {
942 	if (device_link_test(link, DL_FLAG_STATELESS))
943 		kref_put(&link->kref, __device_link_del);
944 	else if (!device_is_registered(link->consumer))
945 		__device_link_del(&link->kref);
946 	else
947 		WARN(1, "Unable to drop a managed device link reference\n");
948 }
949 
950 /**
951  * device_link_del - Delete a stateless link between two devices.
952  * @link: Device link to delete.
953  *
954  * The caller must ensure proper synchronization of this function with runtime
955  * PM.  If the link was added multiple times, it needs to be deleted as often.
956  * Care is required for hotplugged devices:  Their links are purged on removal
957  * and calling device_link_del() is then no longer allowed.
958  */
device_link_del(struct device_link * link)959 void device_link_del(struct device_link *link)
960 {
961 	device_links_write_lock();
962 	device_link_put_kref(link);
963 	device_links_write_unlock();
964 }
965 EXPORT_SYMBOL_GPL(device_link_del);
966 
967 /**
968  * device_link_remove - Delete a stateless link between two devices.
969  * @consumer: Consumer end of the link.
970  * @supplier: Supplier end of the link.
971  *
972  * The caller must ensure proper synchronization of this function with runtime
973  * PM.
974  */
device_link_remove(void * consumer,struct device * supplier)975 void device_link_remove(void *consumer, struct device *supplier)
976 {
977 	struct device_link *link;
978 
979 	if (WARN_ON(consumer == supplier))
980 		return;
981 
982 	device_links_write_lock();
983 
984 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
985 		if (link->consumer == consumer) {
986 			device_link_put_kref(link);
987 			break;
988 		}
989 	}
990 
991 	device_links_write_unlock();
992 }
993 EXPORT_SYMBOL_GPL(device_link_remove);
994 
device_links_missing_supplier(struct device * dev)995 static void device_links_missing_supplier(struct device *dev)
996 {
997 	struct device_link *link;
998 
999 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1000 		if (link->status != DL_STATE_CONSUMER_PROBE)
1001 			continue;
1002 
1003 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1004 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1005 		} else {
1006 			WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1007 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1008 		}
1009 	}
1010 }
1011 
dev_is_best_effort(struct device * dev)1012 static bool dev_is_best_effort(struct device *dev)
1013 {
1014 	return (fw_devlink_best_effort && dev->can_match) ||
1015 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1016 }
1017 
fwnode_links_check_suppliers(struct fwnode_handle * fwnode)1018 static struct fwnode_handle *fwnode_links_check_suppliers(
1019 						struct fwnode_handle *fwnode)
1020 {
1021 	struct fwnode_link *link;
1022 
1023 	if (!fwnode || fw_devlink_is_permissive())
1024 		return NULL;
1025 
1026 	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1027 		if (!(link->flags &
1028 		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1029 			return link->supplier;
1030 
1031 	return NULL;
1032 }
1033 
1034 /**
1035  * device_links_check_suppliers - Check presence of supplier drivers.
1036  * @dev: Consumer device.
1037  *
1038  * Check links from this device to any suppliers.  Walk the list of the device's
1039  * links to suppliers and see if all of them are available.  If not, simply
1040  * return -EPROBE_DEFER.
1041  *
1042  * We need to guarantee that the supplier will not go away after the check has
1043  * been positive here.  It only can go away in __device_release_driver() and
1044  * that function  checks the device's links to consumers.  This means we need to
1045  * mark the link as "consumer probe in progress" to make the supplier removal
1046  * wait for us to complete (or bad things may happen).
1047  *
1048  * Links without the DL_FLAG_MANAGED flag set are ignored.
1049  */
device_links_check_suppliers(struct device * dev)1050 int device_links_check_suppliers(struct device *dev)
1051 {
1052 	struct device_link *link;
1053 	int ret = 0, fwnode_ret = 0;
1054 	struct fwnode_handle *sup_fw;
1055 
1056 	/*
1057 	 * Device waiting for supplier to become available is not allowed to
1058 	 * probe.
1059 	 */
1060 	scoped_guard(mutex, &fwnode_link_lock) {
1061 		sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1062 		if (sup_fw) {
1063 			if (dev_is_best_effort(dev))
1064 				fwnode_ret = -EAGAIN;
1065 			else
1066 				return dev_err_probe(dev, -EPROBE_DEFER,
1067 						     "wait for supplier %pfwf\n", sup_fw);
1068 		}
1069 	}
1070 
1071 	device_links_write_lock();
1072 
1073 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1074 		if (!device_link_test(link, DL_FLAG_MANAGED))
1075 			continue;
1076 
1077 		if (link->status != DL_STATE_AVAILABLE &&
1078 		    !device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1079 
1080 			if (dev_is_best_effort(dev) &&
1081 			    device_link_test(link, DL_FLAG_INFERRED) &&
1082 			    !link->supplier->can_match) {
1083 				ret = -EAGAIN;
1084 				continue;
1085 			}
1086 
1087 			device_links_missing_supplier(dev);
1088 			ret = dev_err_probe(dev, -EPROBE_DEFER,
1089 					    "supplier %s not ready\n", dev_name(link->supplier));
1090 			break;
1091 		}
1092 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1093 	}
1094 	dev->links.status = DL_DEV_PROBING;
1095 
1096 	device_links_write_unlock();
1097 
1098 	return ret ? ret : fwnode_ret;
1099 }
1100 
1101 /**
1102  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1103  * @dev: Device to call sync_state() on
1104  * @list: List head to queue the @dev on
1105  *
1106  * Queues a device for a sync_state() callback when the device links write lock
1107  * isn't held. This allows the sync_state() execution flow to use device links
1108  * APIs.  The caller must ensure this function is called with
1109  * device_links_write_lock() held.
1110  *
1111  * This function does a get_device() to make sure the device is not freed while
1112  * on this list.
1113  *
1114  * So the caller must also ensure that device_links_flush_sync_list() is called
1115  * as soon as the caller releases device_links_write_lock().  This is necessary
1116  * to make sure the sync_state() is called in a timely fashion and the
1117  * put_device() is called on this device.
1118  */
__device_links_queue_sync_state(struct device * dev,struct list_head * list)1119 static void __device_links_queue_sync_state(struct device *dev,
1120 					    struct list_head *list)
1121 {
1122 	struct device_link *link;
1123 
1124 	if (!dev_has_sync_state(dev))
1125 		return;
1126 	if (dev->state_synced)
1127 		return;
1128 
1129 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1130 		if (!device_link_test(link, DL_FLAG_MANAGED))
1131 			continue;
1132 		if (link->status != DL_STATE_ACTIVE)
1133 			return;
1134 	}
1135 
1136 	/*
1137 	 * Set the flag here to avoid adding the same device to a list more
1138 	 * than once. This can happen if new consumers get added to the device
1139 	 * and probed before the list is flushed.
1140 	 */
1141 	dev->state_synced = true;
1142 
1143 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1144 		return;
1145 
1146 	get_device(dev);
1147 	list_add_tail(&dev->links.defer_sync, list);
1148 }
1149 
1150 /**
1151  * device_links_flush_sync_list - Call sync_state() on a list of devices
1152  * @list: List of devices to call sync_state() on
1153  * @dont_lock_dev: Device for which lock is already held by the caller
1154  *
1155  * Calls sync_state() on all the devices that have been queued for it. This
1156  * function is used in conjunction with __device_links_queue_sync_state(). The
1157  * @dont_lock_dev parameter is useful when this function is called from a
1158  * context where a device lock is already held.
1159  */
device_links_flush_sync_list(struct list_head * list,struct device * dont_lock_dev)1160 static void device_links_flush_sync_list(struct list_head *list,
1161 					 struct device *dont_lock_dev)
1162 {
1163 	struct device *dev, *tmp;
1164 
1165 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1166 		list_del_init(&dev->links.defer_sync);
1167 
1168 		if (dev != dont_lock_dev)
1169 			device_lock(dev);
1170 
1171 		dev_sync_state(dev);
1172 
1173 		if (dev != dont_lock_dev)
1174 			device_unlock(dev);
1175 
1176 		put_device(dev);
1177 	}
1178 }
1179 
device_links_supplier_sync_state_pause(void)1180 void device_links_supplier_sync_state_pause(void)
1181 {
1182 	device_links_write_lock();
1183 	defer_sync_state_count++;
1184 	device_links_write_unlock();
1185 }
1186 
device_links_supplier_sync_state_resume(void)1187 void device_links_supplier_sync_state_resume(void)
1188 {
1189 	struct device *dev, *tmp;
1190 	LIST_HEAD(sync_list);
1191 
1192 	device_links_write_lock();
1193 	if (!defer_sync_state_count) {
1194 		WARN(true, "Unmatched sync_state pause/resume!");
1195 		goto out;
1196 	}
1197 	defer_sync_state_count--;
1198 	if (defer_sync_state_count)
1199 		goto out;
1200 
1201 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1202 		/*
1203 		 * Delete from deferred_sync list before queuing it to
1204 		 * sync_list because defer_sync is used for both lists.
1205 		 */
1206 		list_del_init(&dev->links.defer_sync);
1207 		__device_links_queue_sync_state(dev, &sync_list);
1208 	}
1209 out:
1210 	device_links_write_unlock();
1211 
1212 	device_links_flush_sync_list(&sync_list, NULL);
1213 }
1214 
sync_state_resume_initcall(void)1215 static int sync_state_resume_initcall(void)
1216 {
1217 	device_links_supplier_sync_state_resume();
1218 	return 0;
1219 }
1220 late_initcall(sync_state_resume_initcall);
1221 
__device_links_supplier_defer_sync(struct device * sup)1222 static void __device_links_supplier_defer_sync(struct device *sup)
1223 {
1224 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1225 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1226 }
1227 
device_link_drop_managed(struct device_link * link)1228 static void device_link_drop_managed(struct device_link *link)
1229 {
1230 	link->flags &= ~DL_FLAG_MANAGED;
1231 	WRITE_ONCE(link->status, DL_STATE_NONE);
1232 	kref_put(&link->kref, __device_link_del);
1233 }
1234 
waiting_for_supplier_show(struct device * dev,struct device_attribute * attr,char * buf)1235 static ssize_t waiting_for_supplier_show(struct device *dev,
1236 					 struct device_attribute *attr,
1237 					 char *buf)
1238 {
1239 	bool val;
1240 
1241 	device_lock(dev);
1242 	scoped_guard(mutex, &fwnode_link_lock)
1243 		val = !!fwnode_links_check_suppliers(dev->fwnode);
1244 	device_unlock(dev);
1245 	return sysfs_emit(buf, "%u\n", val);
1246 }
1247 static DEVICE_ATTR_RO(waiting_for_supplier);
1248 
1249 /**
1250  * device_links_force_bind - Prepares device to be force bound
1251  * @dev: Consumer device.
1252  *
1253  * device_bind_driver() force binds a device to a driver without calling any
1254  * driver probe functions. So the consumer really isn't going to wait for any
1255  * supplier before it's bound to the driver. We still want the device link
1256  * states to be sensible when this happens.
1257  *
1258  * In preparation for device_bind_driver(), this function goes through each
1259  * supplier device links and checks if the supplier is bound. If it is, then
1260  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1261  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1262  */
device_links_force_bind(struct device * dev)1263 void device_links_force_bind(struct device *dev)
1264 {
1265 	struct device_link *link, *ln;
1266 
1267 	device_links_write_lock();
1268 
1269 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1270 		if (!device_link_test(link, DL_FLAG_MANAGED))
1271 			continue;
1272 
1273 		if (link->status != DL_STATE_AVAILABLE) {
1274 			device_link_drop_managed(link);
1275 			continue;
1276 		}
1277 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1278 	}
1279 	dev->links.status = DL_DEV_PROBING;
1280 
1281 	device_links_write_unlock();
1282 }
1283 
1284 /**
1285  * device_links_driver_bound - Update device links after probing its driver.
1286  * @dev: Device to update the links for.
1287  *
1288  * The probe has been successful, so update links from this device to any
1289  * consumers by changing their status to "available".
1290  *
1291  * Also change the status of @dev's links to suppliers to "active".
1292  *
1293  * Links without the DL_FLAG_MANAGED flag set are ignored.
1294  */
device_links_driver_bound(struct device * dev)1295 void device_links_driver_bound(struct device *dev)
1296 {
1297 	struct device_link *link, *ln;
1298 	LIST_HEAD(sync_list);
1299 
1300 	/*
1301 	 * If a device binds successfully, it's expected to have created all
1302 	 * the device links it needs to or make new device links as it needs
1303 	 * them. So, fw_devlink no longer needs to create device links to any
1304 	 * of the device's suppliers.
1305 	 *
1306 	 * Also, if a child firmware node of this bound device is not added as a
1307 	 * device by now, assume it is never going to be added. Make this bound
1308 	 * device the fallback supplier to the dangling consumers of the child
1309 	 * firmware node because this bound device is probably implementing the
1310 	 * child firmware node functionality and we don't want the dangling
1311 	 * consumers to defer probe indefinitely waiting for a device for the
1312 	 * child firmware node.
1313 	 */
1314 	if (dev->fwnode && dev->fwnode->dev == dev) {
1315 		struct fwnode_handle *child;
1316 
1317 		fwnode_links_purge_suppliers(dev->fwnode);
1318 
1319 		guard(mutex)(&fwnode_link_lock);
1320 
1321 		fwnode_for_each_available_child_node(dev->fwnode, child)
1322 			__fw_devlink_pickup_dangling_consumers(child,
1323 							       dev->fwnode);
1324 		__fw_devlink_link_to_consumers(dev);
1325 	}
1326 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1327 
1328 	device_links_write_lock();
1329 
1330 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1331 		if (!device_link_test(link, DL_FLAG_MANAGED))
1332 			continue;
1333 
1334 		/*
1335 		 * Links created during consumer probe may be in the "consumer
1336 		 * probe" state to start with if the supplier is still probing
1337 		 * when they are created and they may become "active" if the
1338 		 * consumer probe returns first.  Skip them here.
1339 		 */
1340 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1341 		    link->status == DL_STATE_ACTIVE)
1342 			continue;
1343 
1344 		WARN_ON(link->status != DL_STATE_DORMANT);
1345 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1346 
1347 		if (device_link_test(link, DL_FLAG_AUTOPROBE_CONSUMER))
1348 			driver_deferred_probe_add(link->consumer);
1349 	}
1350 
1351 	if (defer_sync_state_count)
1352 		__device_links_supplier_defer_sync(dev);
1353 	else
1354 		__device_links_queue_sync_state(dev, &sync_list);
1355 
1356 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1357 		struct device *supplier;
1358 
1359 		if (!device_link_test(link, DL_FLAG_MANAGED))
1360 			continue;
1361 
1362 		supplier = link->supplier;
1363 		if (device_link_test(link, DL_FLAG_SYNC_STATE_ONLY)) {
1364 			/*
1365 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1366 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1367 			 * save to drop the managed link completely.
1368 			 */
1369 			device_link_drop_managed(link);
1370 		} else if (dev_is_best_effort(dev) &&
1371 			   device_link_test(link, DL_FLAG_INFERRED) &&
1372 			   link->status != DL_STATE_CONSUMER_PROBE &&
1373 			   !link->supplier->can_match) {
1374 			/*
1375 			 * When dev_is_best_effort() is true, we ignore device
1376 			 * links to suppliers that don't have a driver.  If the
1377 			 * consumer device still managed to probe, there's no
1378 			 * point in maintaining a device link in a weird state
1379 			 * (consumer probed before supplier). So delete it.
1380 			 */
1381 			device_link_drop_managed(link);
1382 		} else {
1383 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1384 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1385 		}
1386 
1387 		/*
1388 		 * This needs to be done even for the deleted
1389 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1390 		 * device link that was preventing the supplier from getting a
1391 		 * sync_state() call.
1392 		 */
1393 		if (defer_sync_state_count)
1394 			__device_links_supplier_defer_sync(supplier);
1395 		else
1396 			__device_links_queue_sync_state(supplier, &sync_list);
1397 	}
1398 
1399 	dev->links.status = DL_DEV_DRIVER_BOUND;
1400 
1401 	device_links_write_unlock();
1402 
1403 	device_links_flush_sync_list(&sync_list, dev);
1404 }
1405 
1406 /**
1407  * __device_links_no_driver - Update links of a device without a driver.
1408  * @dev: Device without a drvier.
1409  *
1410  * Delete all non-persistent links from this device to any suppliers.
1411  *
1412  * Persistent links stay around, but their status is changed to "available",
1413  * unless they already are in the "supplier unbind in progress" state in which
1414  * case they need not be updated.
1415  *
1416  * Links without the DL_FLAG_MANAGED flag set are ignored.
1417  */
__device_links_no_driver(struct device * dev)1418 static void __device_links_no_driver(struct device *dev)
1419 {
1420 	struct device_link *link, *ln;
1421 
1422 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1423 		if (!device_link_test(link, DL_FLAG_MANAGED))
1424 			continue;
1425 
1426 		if (device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER)) {
1427 			device_link_drop_managed(link);
1428 			continue;
1429 		}
1430 
1431 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1432 		    link->status != DL_STATE_ACTIVE)
1433 			continue;
1434 
1435 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1436 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1437 		} else {
1438 			WARN_ON(!device_link_test(link, DL_FLAG_SYNC_STATE_ONLY));
1439 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1440 		}
1441 	}
1442 
1443 	dev->links.status = DL_DEV_NO_DRIVER;
1444 }
1445 
1446 /**
1447  * device_links_no_driver - Update links after failing driver probe.
1448  * @dev: Device whose driver has just failed to probe.
1449  *
1450  * Clean up leftover links to consumers for @dev and invoke
1451  * %__device_links_no_driver() to update links to suppliers for it as
1452  * appropriate.
1453  *
1454  * Links without the DL_FLAG_MANAGED flag set are ignored.
1455  */
device_links_no_driver(struct device * dev)1456 void device_links_no_driver(struct device *dev)
1457 {
1458 	struct device_link *link;
1459 
1460 	device_links_write_lock();
1461 
1462 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1463 		if (!device_link_test(link, DL_FLAG_MANAGED))
1464 			continue;
1465 
1466 		/*
1467 		 * The probe has failed, so if the status of the link is
1468 		 * "consumer probe" or "active", it must have been added by
1469 		 * a probing consumer while this device was still probing.
1470 		 * Change its state to "dormant", as it represents a valid
1471 		 * relationship, but it is not functionally meaningful.
1472 		 */
1473 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1474 		    link->status == DL_STATE_ACTIVE)
1475 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1476 	}
1477 
1478 	__device_links_no_driver(dev);
1479 
1480 	device_links_write_unlock();
1481 }
1482 
1483 /**
1484  * device_links_driver_cleanup - Update links after driver removal.
1485  * @dev: Device whose driver has just gone away.
1486  *
1487  * Update links to consumers for @dev by changing their status to "dormant" and
1488  * invoke %__device_links_no_driver() to update links to suppliers for it as
1489  * appropriate.
1490  *
1491  * Links without the DL_FLAG_MANAGED flag set are ignored.
1492  */
device_links_driver_cleanup(struct device * dev)1493 void device_links_driver_cleanup(struct device *dev)
1494 {
1495 	struct device_link *link, *ln;
1496 
1497 	device_links_write_lock();
1498 
1499 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1500 		if (!device_link_test(link, DL_FLAG_MANAGED))
1501 			continue;
1502 
1503 		WARN_ON(device_link_test(link, DL_FLAG_AUTOREMOVE_CONSUMER));
1504 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1505 
1506 		/*
1507 		 * autoremove the links between this @dev and its consumer
1508 		 * devices that are not active, i.e. where the link state
1509 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1510 		 */
1511 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1512 		    device_link_test(link, DL_FLAG_AUTOREMOVE_SUPPLIER))
1513 			device_link_drop_managed(link);
1514 
1515 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1516 	}
1517 
1518 	list_del_init(&dev->links.defer_sync);
1519 	__device_links_no_driver(dev);
1520 
1521 	device_links_write_unlock();
1522 }
1523 
1524 /**
1525  * device_links_busy - Check if there are any busy links to consumers.
1526  * @dev: Device to check.
1527  *
1528  * Check each consumer of the device and return 'true' if its link's status
1529  * is one of "consumer probe" or "active" (meaning that the given consumer is
1530  * probing right now or its driver is present).  Otherwise, change the link
1531  * state to "supplier unbind" to prevent the consumer from being probed
1532  * successfully going forward.
1533  *
1534  * Return 'false' if there are no probing or active consumers.
1535  *
1536  * Links without the DL_FLAG_MANAGED flag set are ignored.
1537  */
device_links_busy(struct device * dev)1538 bool device_links_busy(struct device *dev)
1539 {
1540 	struct device_link *link;
1541 	bool ret = false;
1542 
1543 	device_links_write_lock();
1544 
1545 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1546 		if (!device_link_test(link, DL_FLAG_MANAGED))
1547 			continue;
1548 
1549 		if (link->status == DL_STATE_CONSUMER_PROBE
1550 		    || link->status == DL_STATE_ACTIVE) {
1551 			ret = true;
1552 			break;
1553 		}
1554 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555 	}
1556 
1557 	dev->links.status = DL_DEV_UNBINDING;
1558 
1559 	device_links_write_unlock();
1560 	return ret;
1561 }
1562 
1563 /**
1564  * device_links_unbind_consumers - Force unbind consumers of the given device.
1565  * @dev: Device to unbind the consumers of.
1566  *
1567  * Walk the list of links to consumers for @dev and if any of them is in the
1568  * "consumer probe" state, wait for all device probes in progress to complete
1569  * and start over.
1570  *
1571  * If that's not the case, change the status of the link to "supplier unbind"
1572  * and check if the link was in the "active" state.  If so, force the consumer
1573  * driver to unbind and start over (the consumer will not re-probe as we have
1574  * changed the state of the link already).
1575  *
1576  * Links without the DL_FLAG_MANAGED flag set are ignored.
1577  */
device_links_unbind_consumers(struct device * dev)1578 void device_links_unbind_consumers(struct device *dev)
1579 {
1580 	struct device_link *link;
1581 
1582  start:
1583 	device_links_write_lock();
1584 
1585 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1586 		enum device_link_state status;
1587 
1588 		if (!device_link_test(link, DL_FLAG_MANAGED) ||
1589 		    device_link_test(link, DL_FLAG_SYNC_STATE_ONLY))
1590 			continue;
1591 
1592 		status = link->status;
1593 		if (status == DL_STATE_CONSUMER_PROBE) {
1594 			device_links_write_unlock();
1595 
1596 			wait_for_device_probe();
1597 			goto start;
1598 		}
1599 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1600 		if (status == DL_STATE_ACTIVE) {
1601 			struct device *consumer = link->consumer;
1602 
1603 			get_device(consumer);
1604 
1605 			device_links_write_unlock();
1606 
1607 			device_release_driver_internal(consumer, NULL,
1608 						       consumer->parent);
1609 			put_device(consumer);
1610 			goto start;
1611 		}
1612 	}
1613 
1614 	device_links_write_unlock();
1615 }
1616 
1617 /**
1618  * device_links_purge - Delete existing links to other devices.
1619  * @dev: Target device.
1620  */
device_links_purge(struct device * dev)1621 static void device_links_purge(struct device *dev)
1622 {
1623 	struct device_link *link, *ln;
1624 
1625 	if (dev->class == &devlink_class)
1626 		return;
1627 
1628 	/*
1629 	 * Delete all of the remaining links from this device to any other
1630 	 * devices (either consumers or suppliers).
1631 	 */
1632 	device_links_write_lock();
1633 
1634 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1635 		WARN_ON(link->status == DL_STATE_ACTIVE);
1636 		__device_link_del(&link->kref);
1637 	}
1638 
1639 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1640 		WARN_ON(link->status != DL_STATE_DORMANT &&
1641 			link->status != DL_STATE_NONE);
1642 		__device_link_del(&link->kref);
1643 	}
1644 
1645 	device_links_write_unlock();
1646 }
1647 
1648 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1649 					 DL_FLAG_SYNC_STATE_ONLY)
1650 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1651 					 DL_FLAG_AUTOPROBE_CONSUMER)
1652 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1653 					 DL_FLAG_PM_RUNTIME)
1654 
1655 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
fw_devlink_setup(char * arg)1656 static int __init fw_devlink_setup(char *arg)
1657 {
1658 	if (!arg)
1659 		return -EINVAL;
1660 
1661 	if (strcmp(arg, "off") == 0) {
1662 		fw_devlink_flags = 0;
1663 	} else if (strcmp(arg, "permissive") == 0) {
1664 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1665 	} else if (strcmp(arg, "on") == 0) {
1666 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1667 	} else if (strcmp(arg, "rpm") == 0) {
1668 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1669 	}
1670 	return 0;
1671 }
1672 early_param("fw_devlink", fw_devlink_setup);
1673 
1674 static bool fw_devlink_strict;
fw_devlink_strict_setup(char * arg)1675 static int __init fw_devlink_strict_setup(char *arg)
1676 {
1677 	return kstrtobool(arg, &fw_devlink_strict);
1678 }
1679 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1680 
1681 #define FW_DEVLINK_SYNC_STATE_STRICT	0
1682 #define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1683 
1684 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1685 static int fw_devlink_sync_state;
1686 #else
1687 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1688 #endif
1689 
fw_devlink_sync_state_setup(char * arg)1690 static int __init fw_devlink_sync_state_setup(char *arg)
1691 {
1692 	if (!arg)
1693 		return -EINVAL;
1694 
1695 	if (strcmp(arg, "strict") == 0) {
1696 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1697 		return 0;
1698 	} else if (strcmp(arg, "timeout") == 0) {
1699 		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1700 		return 0;
1701 	}
1702 	return -EINVAL;
1703 }
1704 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1705 
fw_devlink_get_flags(u8 fwlink_flags)1706 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1707 {
1708 	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1709 		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1710 
1711 	return fw_devlink_flags;
1712 }
1713 
fw_devlink_is_permissive(void)1714 static bool fw_devlink_is_permissive(void)
1715 {
1716 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1717 }
1718 
fw_devlink_is_strict(void)1719 bool fw_devlink_is_strict(void)
1720 {
1721 	return fw_devlink_strict && !fw_devlink_is_permissive();
1722 }
1723 
fw_devlink_parse_fwnode(struct fwnode_handle * fwnode)1724 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1725 {
1726 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1727 		return;
1728 
1729 	fwnode_call_int_op(fwnode, add_links);
1730 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1731 }
1732 
fw_devlink_parse_fwtree(struct fwnode_handle * fwnode)1733 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1734 {
1735 	struct fwnode_handle *child = NULL;
1736 
1737 	fw_devlink_parse_fwnode(fwnode);
1738 
1739 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1740 		fw_devlink_parse_fwtree(child);
1741 }
1742 
fw_devlink_relax_link(struct device_link * link)1743 static void fw_devlink_relax_link(struct device_link *link)
1744 {
1745 	if (!device_link_test(link, DL_FLAG_INFERRED))
1746 		return;
1747 
1748 	if (device_link_flag_is_sync_state_only(link->flags))
1749 		return;
1750 
1751 	pm_runtime_drop_link(link);
1752 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1753 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1754 		dev_name(link->supplier));
1755 }
1756 
fw_devlink_no_driver(struct device * dev,void * data)1757 static int fw_devlink_no_driver(struct device *dev, void *data)
1758 {
1759 	struct device_link *link = to_devlink(dev);
1760 
1761 	if (!link->supplier->can_match)
1762 		fw_devlink_relax_link(link);
1763 
1764 	return 0;
1765 }
1766 
fw_devlink_drivers_done(void)1767 void fw_devlink_drivers_done(void)
1768 {
1769 	fw_devlink_drv_reg_done = true;
1770 	device_links_write_lock();
1771 	class_for_each_device(&devlink_class, NULL, NULL,
1772 			      fw_devlink_no_driver);
1773 	device_links_write_unlock();
1774 }
1775 
fw_devlink_dev_sync_state(struct device * dev,void * data)1776 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1777 {
1778 	struct device_link *link = to_devlink(dev);
1779 	struct device *sup = link->supplier;
1780 
1781 	if (!device_link_test(link, DL_FLAG_MANAGED) ||
1782 	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1783 	    !dev_has_sync_state(sup))
1784 		return 0;
1785 
1786 	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1787 		dev_warn(sup, "sync_state() pending due to %s\n",
1788 			 dev_name(link->consumer));
1789 		return 0;
1790 	}
1791 
1792 	if (!list_empty(&sup->links.defer_sync))
1793 		return 0;
1794 
1795 	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1796 	sup->state_synced = true;
1797 	get_device(sup);
1798 	list_add_tail(&sup->links.defer_sync, data);
1799 
1800 	return 0;
1801 }
1802 
fw_devlink_probing_done(void)1803 void fw_devlink_probing_done(void)
1804 {
1805 	LIST_HEAD(sync_list);
1806 
1807 	device_links_write_lock();
1808 	class_for_each_device(&devlink_class, NULL, &sync_list,
1809 			      fw_devlink_dev_sync_state);
1810 	device_links_write_unlock();
1811 	device_links_flush_sync_list(&sync_list, NULL);
1812 }
1813 
1814 /**
1815  * wait_for_init_devices_probe - Try to probe any device needed for init
1816  *
1817  * Some devices might need to be probed and bound successfully before the kernel
1818  * boot sequence can finish and move on to init/userspace. For example, a
1819  * network interface might need to be bound to be able to mount a NFS rootfs.
1820  *
1821  * With fw_devlink=on by default, some of these devices might be blocked from
1822  * probing because they are waiting on a optional supplier that doesn't have a
1823  * driver. While fw_devlink will eventually identify such devices and unblock
1824  * the probing automatically, it might be too late by the time it unblocks the
1825  * probing of devices. For example, the IP4 autoconfig might timeout before
1826  * fw_devlink unblocks probing of the network interface.
1827  *
1828  * This function is available to temporarily try and probe all devices that have
1829  * a driver even if some of their suppliers haven't been added or don't have
1830  * drivers.
1831  *
1832  * The drivers can then decide which of the suppliers are optional vs mandatory
1833  * and probe the device if possible. By the time this function returns, all such
1834  * "best effort" probes are guaranteed to be completed. If a device successfully
1835  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1836  * device where the supplier hasn't yet probed successfully because they have to
1837  * be optional dependencies.
1838  *
1839  * Any devices that didn't successfully probe go back to being treated as if
1840  * this function was never called.
1841  *
1842  * This also means that some devices that aren't needed for init and could have
1843  * waited for their optional supplier to probe (when the supplier's module is
1844  * loaded later on) would end up probing prematurely with limited functionality.
1845  * So call this function only when boot would fail without it.
1846  */
wait_for_init_devices_probe(void)1847 void __init wait_for_init_devices_probe(void)
1848 {
1849 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1850 		return;
1851 
1852 	/*
1853 	 * Wait for all ongoing probes to finish so that the "best effort" is
1854 	 * only applied to devices that can't probe otherwise.
1855 	 */
1856 	wait_for_device_probe();
1857 
1858 	pr_info("Trying to probe devices needed for running init ...\n");
1859 	fw_devlink_best_effort = true;
1860 	driver_deferred_probe_trigger();
1861 
1862 	/*
1863 	 * Wait for all "best effort" probes to finish before going back to
1864 	 * normal enforcement.
1865 	 */
1866 	wait_for_device_probe();
1867 	fw_devlink_best_effort = false;
1868 }
1869 
fw_devlink_unblock_consumers(struct device * dev)1870 static void fw_devlink_unblock_consumers(struct device *dev)
1871 {
1872 	struct device_link *link;
1873 
1874 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1875 		return;
1876 
1877 	device_links_write_lock();
1878 	list_for_each_entry(link, &dev->links.consumers, s_node)
1879 		fw_devlink_relax_link(link);
1880 	device_links_write_unlock();
1881 }
1882 
fwnode_init_without_drv(struct fwnode_handle * fwnode)1883 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1884 {
1885 	struct device *dev;
1886 	bool ret;
1887 
1888 	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1889 		return false;
1890 
1891 	dev = get_dev_from_fwnode(fwnode);
1892 	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1893 	put_device(dev);
1894 
1895 	return ret;
1896 }
1897 
fwnode_ancestor_init_without_drv(struct fwnode_handle * fwnode)1898 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1899 {
1900 	struct fwnode_handle *parent;
1901 
1902 	fwnode_for_each_parent_node(fwnode, parent) {
1903 		if (fwnode_init_without_drv(parent)) {
1904 			fwnode_handle_put(parent);
1905 			return true;
1906 		}
1907 	}
1908 
1909 	return false;
1910 }
1911 
1912 /**
1913  * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1914  * @ancestor: Firmware which is tested for being an ancestor
1915  * @child: Firmware which is tested for being the child
1916  *
1917  * A node is considered an ancestor of itself too.
1918  *
1919  * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1920  */
fwnode_is_ancestor_of(const struct fwnode_handle * ancestor,const struct fwnode_handle * child)1921 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1922 				  const struct fwnode_handle *child)
1923 {
1924 	struct fwnode_handle *parent;
1925 
1926 	if (IS_ERR_OR_NULL(ancestor))
1927 		return false;
1928 
1929 	if (child == ancestor)
1930 		return true;
1931 
1932 	fwnode_for_each_parent_node(child, parent) {
1933 		if (parent == ancestor) {
1934 			fwnode_handle_put(parent);
1935 			return true;
1936 		}
1937 	}
1938 	return false;
1939 }
1940 
1941 /**
1942  * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1943  * @fwnode: firmware node
1944  *
1945  * Given a firmware node (@fwnode), this function finds its closest ancestor
1946  * firmware node that has a corresponding struct device and returns that struct
1947  * device.
1948  *
1949  * The caller is responsible for calling put_device() on the returned device
1950  * pointer.
1951  *
1952  * Return: a pointer to the device of the @fwnode's closest ancestor.
1953  */
fwnode_get_next_parent_dev(const struct fwnode_handle * fwnode)1954 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1955 {
1956 	struct fwnode_handle *parent;
1957 	struct device *dev;
1958 
1959 	fwnode_for_each_parent_node(fwnode, parent) {
1960 		dev = get_dev_from_fwnode(parent);
1961 		if (dev) {
1962 			fwnode_handle_put(parent);
1963 			return dev;
1964 		}
1965 	}
1966 	return NULL;
1967 }
1968 
1969 /**
1970  * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1971  * @con_handle: Potential consumer device fwnode.
1972  * @sup_handle: Potential supplier's fwnode.
1973  *
1974  * Needs to be called with fwnode_lock and device link lock held.
1975  *
1976  * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1977  * depend on @con. This function can detect multiple cyles between @sup_handle
1978  * and @con. When such dependency cycles are found, convert all device links
1979  * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1980  * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1981  * converted into a device link in the future, they are created as
1982  * SYNC_STATE_ONLY device links. This is the equivalent of doing
1983  * fw_devlink=permissive just between the devices in the cycle. We need to do
1984  * this because, at this point, fw_devlink can't tell which of these
1985  * dependencies is not a real dependency.
1986  *
1987  * Return true if one or more cycles were found. Otherwise, return false.
1988  */
__fw_devlink_relax_cycles(struct fwnode_handle * con_handle,struct fwnode_handle * sup_handle)1989 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle,
1990 				 struct fwnode_handle *sup_handle)
1991 {
1992 	struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL;
1993 	struct fwnode_link *link;
1994 	struct device_link *dev_link;
1995 	bool ret = false;
1996 
1997 	if (!sup_handle)
1998 		return false;
1999 
2000 	/*
2001 	 * We aren't trying to find all cycles. Just a cycle between con and
2002 	 * sup_handle.
2003 	 */
2004 	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2005 		return false;
2006 
2007 	sup_handle->flags |= FWNODE_FLAG_VISITED;
2008 
2009 	/* Termination condition. */
2010 	if (sup_handle == con_handle) {
2011 		pr_debug("----- cycle: start -----\n");
2012 		ret = true;
2013 		goto out;
2014 	}
2015 
2016 	sup_dev = get_dev_from_fwnode(sup_handle);
2017 	con_dev = get_dev_from_fwnode(con_handle);
2018 	/*
2019 	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2020 	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2021 	 * further.
2022 	 */
2023 	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2024 	    con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) {
2025 		ret = false;
2026 		goto out;
2027 	}
2028 
2029 	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2030 		if (link->flags & FWLINK_FLAG_IGNORE)
2031 			continue;
2032 
2033 		if (__fw_devlink_relax_cycles(con_handle, link->supplier)) {
2034 			__fwnode_link_cycle(link);
2035 			ret = true;
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * Give priority to device parent over fwnode parent to account for any
2041 	 * quirks in how fwnodes are converted to devices.
2042 	 */
2043 	if (sup_dev)
2044 		par_dev = get_device(sup_dev->parent);
2045 	else
2046 		par_dev = fwnode_get_next_parent_dev(sup_handle);
2047 
2048 	if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) {
2049 		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2050 			 par_dev->fwnode);
2051 		ret = true;
2052 	}
2053 
2054 	if (!sup_dev)
2055 		goto out;
2056 
2057 	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2058 		/*
2059 		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2060 		 * such due to a cycle.
2061 		 */
2062 		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2063 		    !device_link_test(dev_link, DL_FLAG_CYCLE))
2064 			continue;
2065 
2066 		if (__fw_devlink_relax_cycles(con_handle,
2067 					      dev_link->supplier->fwnode)) {
2068 			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2069 				 dev_link->supplier->fwnode);
2070 			fw_devlink_relax_link(dev_link);
2071 			dev_link->flags |= DL_FLAG_CYCLE;
2072 			ret = true;
2073 		}
2074 	}
2075 
2076 out:
2077 	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2078 	put_device(sup_dev);
2079 	put_device(con_dev);
2080 	put_device(par_dev);
2081 	return ret;
2082 }
2083 
2084 /**
2085  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2086  * @con: consumer device for the device link
2087  * @sup_handle: fwnode handle of supplier
2088  * @link: fwnode link that's being converted to a device link
2089  *
2090  * This function will try to create a device link between the consumer device
2091  * @con and the supplier device represented by @sup_handle.
2092  *
2093  * The supplier has to be provided as a fwnode because incorrect cycles in
2094  * fwnode links can sometimes cause the supplier device to never be created.
2095  * This function detects such cases and returns an error if it cannot create a
2096  * device link from the consumer to a missing supplier.
2097  *
2098  * Returns,
2099  * 0 on successfully creating a device link
2100  * -EINVAL if the device link cannot be created as expected
2101  * -EAGAIN if the device link cannot be created right now, but it may be
2102  *  possible to do that in the future
2103  */
fw_devlink_create_devlink(struct device * con,struct fwnode_handle * sup_handle,struct fwnode_link * link)2104 static int fw_devlink_create_devlink(struct device *con,
2105 				     struct fwnode_handle *sup_handle,
2106 				     struct fwnode_link *link)
2107 {
2108 	struct device *sup_dev;
2109 	int ret = 0;
2110 	u32 flags;
2111 
2112 	if (link->flags & FWLINK_FLAG_IGNORE)
2113 		return 0;
2114 
2115 	/*
2116 	 * In some cases, a device P might also be a supplier to its child node
2117 	 * C. However, this would defer the probe of C until the probe of P
2118 	 * completes successfully. This is perfectly fine in the device driver
2119 	 * model. device_add() doesn't guarantee probe completion of the device
2120 	 * by the time it returns.
2121 	 *
2122 	 * However, there are a few drivers that assume C will finish probing
2123 	 * as soon as it's added and before P finishes probing. So, we provide
2124 	 * a flag to let fw_devlink know not to delay the probe of C until the
2125 	 * probe of P completes successfully.
2126 	 *
2127 	 * When such a flag is set, we can't create device links where P is the
2128 	 * supplier of C as that would delay the probe of C.
2129 	 */
2130 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2131 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2132 		return -EINVAL;
2133 
2134 	/*
2135 	 * Don't try to optimize by not calling the cycle detection logic under
2136 	 * certain conditions. There's always some corner case that won't get
2137 	 * detected.
2138 	 */
2139 	device_links_write_lock();
2140 	if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) {
2141 		__fwnode_link_cycle(link);
2142 		pr_debug("----- cycle: end -----\n");
2143 		pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n",
2144 			link->consumer, sup_handle);
2145 	}
2146 	device_links_write_unlock();
2147 
2148 	if (con->fwnode == link->consumer)
2149 		flags = fw_devlink_get_flags(link->flags);
2150 	else
2151 		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2152 
2153 	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2154 		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2155 	else
2156 		sup_dev = get_dev_from_fwnode(sup_handle);
2157 
2158 	if (sup_dev) {
2159 		/*
2160 		 * If it's one of those drivers that don't actually bind to
2161 		 * their device using driver core, then don't wait on this
2162 		 * supplier device indefinitely.
2163 		 */
2164 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2165 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2166 			dev_dbg(con,
2167 				"Not linking %pfwf - dev might never probe\n",
2168 				sup_handle);
2169 			ret = -EINVAL;
2170 			goto out;
2171 		}
2172 
2173 		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2174 			dev_err(con, "Failed to create device link (0x%x) with supplier %s for %pfwf\n",
2175 				flags, dev_name(sup_dev), link->consumer);
2176 			ret = -EINVAL;
2177 		}
2178 
2179 		goto out;
2180 	}
2181 
2182 	/*
2183 	 * Supplier or supplier's ancestor already initialized without a struct
2184 	 * device or being probed by a driver.
2185 	 */
2186 	if (fwnode_init_without_drv(sup_handle) ||
2187 	    fwnode_ancestor_init_without_drv(sup_handle)) {
2188 		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2189 			sup_handle);
2190 		return -EINVAL;
2191 	}
2192 
2193 	ret = -EAGAIN;
2194 out:
2195 	put_device(sup_dev);
2196 	return ret;
2197 }
2198 
2199 /**
2200  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2201  * @dev: Device that needs to be linked to its consumers
2202  *
2203  * This function looks at all the consumer fwnodes of @dev and creates device
2204  * links between the consumer device and @dev (supplier).
2205  *
2206  * If the consumer device has not been added yet, then this function creates a
2207  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2208  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2209  * sync_state() callback before the real consumer device gets to be added and
2210  * then probed.
2211  *
2212  * Once device links are created from the real consumer to @dev (supplier), the
2213  * fwnode links are deleted.
2214  */
__fw_devlink_link_to_consumers(struct device * dev)2215 static void __fw_devlink_link_to_consumers(struct device *dev)
2216 {
2217 	struct fwnode_handle *fwnode = dev->fwnode;
2218 	struct fwnode_link *link, *tmp;
2219 
2220 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2221 		struct device *con_dev;
2222 		bool own_link = true;
2223 		int ret;
2224 
2225 		con_dev = get_dev_from_fwnode(link->consumer);
2226 		/*
2227 		 * If consumer device is not available yet, make a "proxy"
2228 		 * SYNC_STATE_ONLY link from the consumer's parent device to
2229 		 * the supplier device. This is necessary to make sure the
2230 		 * supplier doesn't get a sync_state() callback before the real
2231 		 * consumer can create a device link to the supplier.
2232 		 *
2233 		 * This proxy link step is needed to handle the case where the
2234 		 * consumer's parent device is added before the supplier.
2235 		 */
2236 		if (!con_dev) {
2237 			con_dev = fwnode_get_next_parent_dev(link->consumer);
2238 			/*
2239 			 * However, if the consumer's parent device is also the
2240 			 * parent of the supplier, don't create a
2241 			 * consumer-supplier link from the parent to its child
2242 			 * device. Such a dependency is impossible.
2243 			 */
2244 			if (con_dev &&
2245 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2246 				put_device(con_dev);
2247 				con_dev = NULL;
2248 			} else {
2249 				own_link = false;
2250 			}
2251 		}
2252 
2253 		if (!con_dev)
2254 			continue;
2255 
2256 		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2257 		put_device(con_dev);
2258 		if (!own_link || ret == -EAGAIN)
2259 			continue;
2260 
2261 		__fwnode_link_del(link);
2262 	}
2263 }
2264 
2265 /**
2266  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2267  * @dev: The consumer device that needs to be linked to its suppliers
2268  * @fwnode: Root of the fwnode tree that is used to create device links
2269  *
2270  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2271  * @fwnode and creates device links between @dev (consumer) and all the
2272  * supplier devices of the entire fwnode tree at @fwnode.
2273  *
2274  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2275  * and the real suppliers of @dev. Once these device links are created, the
2276  * fwnode links are deleted.
2277  *
2278  * In addition, it also looks at all the suppliers of the entire fwnode tree
2279  * because some of the child devices of @dev that have not been added yet
2280  * (because @dev hasn't probed) might already have their suppliers added to
2281  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2282  * @dev (consumer) and these suppliers to make sure they don't execute their
2283  * sync_state() callbacks before these child devices have a chance to create
2284  * their device links. The fwnode links that correspond to the child devices
2285  * aren't delete because they are needed later to create the device links
2286  * between the real consumer and supplier devices.
2287  */
__fw_devlink_link_to_suppliers(struct device * dev,struct fwnode_handle * fwnode)2288 static void __fw_devlink_link_to_suppliers(struct device *dev,
2289 					   struct fwnode_handle *fwnode)
2290 {
2291 	bool own_link = (dev->fwnode == fwnode);
2292 	struct fwnode_link *link, *tmp;
2293 	struct fwnode_handle *child = NULL;
2294 
2295 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2296 		int ret;
2297 		struct fwnode_handle *sup = link->supplier;
2298 
2299 		ret = fw_devlink_create_devlink(dev, sup, link);
2300 		if (!own_link || ret == -EAGAIN)
2301 			continue;
2302 
2303 		__fwnode_link_del(link);
2304 	}
2305 
2306 	/*
2307 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2308 	 * all the descendants. This proxy link step is needed to handle the
2309 	 * case where the supplier is added before the consumer's parent device
2310 	 * (@dev).
2311 	 */
2312 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2313 		__fw_devlink_link_to_suppliers(dev, child);
2314 }
2315 
fw_devlink_link_device(struct device * dev)2316 static void fw_devlink_link_device(struct device *dev)
2317 {
2318 	struct fwnode_handle *fwnode = dev->fwnode;
2319 
2320 	if (!fw_devlink_flags)
2321 		return;
2322 
2323 	fw_devlink_parse_fwtree(fwnode);
2324 
2325 	guard(mutex)(&fwnode_link_lock);
2326 
2327 	__fw_devlink_link_to_consumers(dev);
2328 	__fw_devlink_link_to_suppliers(dev, fwnode);
2329 }
2330 
2331 /* Device links support end. */
2332 
2333 static struct kobject *dev_kobj;
2334 
2335 /* /sys/dev/char */
2336 static struct kobject *sysfs_dev_char_kobj;
2337 
2338 /* /sys/dev/block */
2339 static struct kobject *sysfs_dev_block_kobj;
2340 
2341 static DEFINE_MUTEX(device_hotplug_lock);
2342 
lock_device_hotplug(void)2343 void lock_device_hotplug(void)
2344 {
2345 	mutex_lock(&device_hotplug_lock);
2346 }
2347 
unlock_device_hotplug(void)2348 void unlock_device_hotplug(void)
2349 {
2350 	mutex_unlock(&device_hotplug_lock);
2351 }
2352 
lock_device_hotplug_sysfs(void)2353 int lock_device_hotplug_sysfs(void)
2354 {
2355 	if (mutex_trylock(&device_hotplug_lock))
2356 		return 0;
2357 
2358 	/* Avoid busy looping (5 ms of sleep should do). */
2359 	msleep(5);
2360 	return restart_syscall();
2361 }
2362 
2363 #ifdef CONFIG_BLOCK
device_is_not_partition(struct device * dev)2364 static inline int device_is_not_partition(struct device *dev)
2365 {
2366 	return !(dev->type == &part_type);
2367 }
2368 #else
device_is_not_partition(struct device * dev)2369 static inline int device_is_not_partition(struct device *dev)
2370 {
2371 	return 1;
2372 }
2373 #endif
2374 
device_platform_notify(struct device * dev)2375 static void device_platform_notify(struct device *dev)
2376 {
2377 	acpi_device_notify(dev);
2378 
2379 	software_node_notify(dev);
2380 }
2381 
device_platform_notify_remove(struct device * dev)2382 static void device_platform_notify_remove(struct device *dev)
2383 {
2384 	software_node_notify_remove(dev);
2385 
2386 	acpi_device_notify_remove(dev);
2387 }
2388 
2389 /**
2390  * dev_driver_string - Return a device's driver name, if at all possible
2391  * @dev: struct device to get the name of
2392  *
2393  * Will return the device's driver's name if it is bound to a device.  If
2394  * the device is not bound to a driver, it will return the name of the bus
2395  * it is attached to.  If it is not attached to a bus either, an empty
2396  * string will be returned.
2397  */
dev_driver_string(const struct device * dev)2398 const char *dev_driver_string(const struct device *dev)
2399 {
2400 	struct device_driver *drv;
2401 
2402 	/* dev->driver can change to NULL underneath us because of unbinding,
2403 	 * so be careful about accessing it.  dev->bus and dev->class should
2404 	 * never change once they are set, so they don't need special care.
2405 	 */
2406 	drv = READ_ONCE(dev->driver);
2407 	return drv ? drv->name : dev_bus_name(dev);
2408 }
2409 EXPORT_SYMBOL(dev_driver_string);
2410 
2411 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2412 
dev_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)2413 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2414 			     char *buf)
2415 {
2416 	struct device_attribute *dev_attr = to_dev_attr(attr);
2417 	struct device *dev = kobj_to_dev(kobj);
2418 	ssize_t ret = -EIO;
2419 
2420 	if (dev_attr->show)
2421 		ret = dev_attr->show(dev, dev_attr, buf);
2422 	if (ret >= (ssize_t)PAGE_SIZE) {
2423 		printk("dev_attr_show: %pS returned bad count\n",
2424 				dev_attr->show);
2425 	}
2426 	return ret;
2427 }
2428 
dev_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)2429 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2430 			      const char *buf, size_t count)
2431 {
2432 	struct device_attribute *dev_attr = to_dev_attr(attr);
2433 	struct device *dev = kobj_to_dev(kobj);
2434 	ssize_t ret = -EIO;
2435 
2436 	if (dev_attr->store)
2437 		ret = dev_attr->store(dev, dev_attr, buf, count);
2438 	return ret;
2439 }
2440 
2441 static const struct sysfs_ops dev_sysfs_ops = {
2442 	.show	= dev_attr_show,
2443 	.store	= dev_attr_store,
2444 };
2445 
2446 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2447 
device_store_ulong(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2448 ssize_t device_store_ulong(struct device *dev,
2449 			   struct device_attribute *attr,
2450 			   const char *buf, size_t size)
2451 {
2452 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2453 	int ret;
2454 	unsigned long new;
2455 
2456 	ret = kstrtoul(buf, 0, &new);
2457 	if (ret)
2458 		return ret;
2459 	*(unsigned long *)(ea->var) = new;
2460 	/* Always return full write size even if we didn't consume all */
2461 	return size;
2462 }
2463 EXPORT_SYMBOL_GPL(device_store_ulong);
2464 
device_show_ulong(struct device * dev,struct device_attribute * attr,char * buf)2465 ssize_t device_show_ulong(struct device *dev,
2466 			  struct device_attribute *attr,
2467 			  char *buf)
2468 {
2469 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2470 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2471 }
2472 EXPORT_SYMBOL_GPL(device_show_ulong);
2473 
device_store_int(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2474 ssize_t device_store_int(struct device *dev,
2475 			 struct device_attribute *attr,
2476 			 const char *buf, size_t size)
2477 {
2478 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2479 	int ret;
2480 	long new;
2481 
2482 	ret = kstrtol(buf, 0, &new);
2483 	if (ret)
2484 		return ret;
2485 
2486 	if (new > INT_MAX || new < INT_MIN)
2487 		return -EINVAL;
2488 	*(int *)(ea->var) = new;
2489 	/* Always return full write size even if we didn't consume all */
2490 	return size;
2491 }
2492 EXPORT_SYMBOL_GPL(device_store_int);
2493 
device_show_int(struct device * dev,struct device_attribute * attr,char * buf)2494 ssize_t device_show_int(struct device *dev,
2495 			struct device_attribute *attr,
2496 			char *buf)
2497 {
2498 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2499 
2500 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2501 }
2502 EXPORT_SYMBOL_GPL(device_show_int);
2503 
device_store_bool(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)2504 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2505 			  const char *buf, size_t size)
2506 {
2507 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2508 
2509 	if (kstrtobool(buf, ea->var) < 0)
2510 		return -EINVAL;
2511 
2512 	return size;
2513 }
2514 EXPORT_SYMBOL_GPL(device_store_bool);
2515 
device_show_bool(struct device * dev,struct device_attribute * attr,char * buf)2516 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2517 			 char *buf)
2518 {
2519 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2520 
2521 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2522 }
2523 EXPORT_SYMBOL_GPL(device_show_bool);
2524 
device_show_string(struct device * dev,struct device_attribute * attr,char * buf)2525 ssize_t device_show_string(struct device *dev,
2526 			   struct device_attribute *attr, char *buf)
2527 {
2528 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2529 
2530 	return sysfs_emit(buf, "%s\n", (char *)ea->var);
2531 }
2532 EXPORT_SYMBOL_GPL(device_show_string);
2533 
2534 /**
2535  * device_release - free device structure.
2536  * @kobj: device's kobject.
2537  *
2538  * This is called once the reference count for the object
2539  * reaches 0. We forward the call to the device's release
2540  * method, which should handle actually freeing the structure.
2541  */
device_release(struct kobject * kobj)2542 static void device_release(struct kobject *kobj)
2543 {
2544 	struct device *dev = kobj_to_dev(kobj);
2545 	struct device_private *p = dev->p;
2546 
2547 	/*
2548 	 * Some platform devices are driven without driver attached
2549 	 * and managed resources may have been acquired.  Make sure
2550 	 * all resources are released.
2551 	 *
2552 	 * Drivers still can add resources into device after device
2553 	 * is deleted but alive, so release devres here to avoid
2554 	 * possible memory leak.
2555 	 */
2556 	devres_release_all(dev);
2557 
2558 	kfree(dev->dma_range_map);
2559 
2560 	if (dev->release)
2561 		dev->release(dev);
2562 	else if (dev->type && dev->type->release)
2563 		dev->type->release(dev);
2564 	else if (dev->class && dev->class->dev_release)
2565 		dev->class->dev_release(dev);
2566 	else
2567 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2568 			dev_name(dev));
2569 	kfree(p);
2570 }
2571 
device_namespace(const struct kobject * kobj)2572 static const void *device_namespace(const struct kobject *kobj)
2573 {
2574 	const struct device *dev = kobj_to_dev(kobj);
2575 	const void *ns = NULL;
2576 
2577 	if (dev->class && dev->class->namespace)
2578 		ns = dev->class->namespace(dev);
2579 
2580 	return ns;
2581 }
2582 
device_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)2583 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2584 {
2585 	const struct device *dev = kobj_to_dev(kobj);
2586 
2587 	if (dev->class && dev->class->get_ownership)
2588 		dev->class->get_ownership(dev, uid, gid);
2589 }
2590 
2591 static const struct kobj_type device_ktype = {
2592 	.release	= device_release,
2593 	.sysfs_ops	= &dev_sysfs_ops,
2594 	.namespace	= device_namespace,
2595 	.get_ownership	= device_get_ownership,
2596 };
2597 
2598 
dev_uevent_filter(const struct kobject * kobj)2599 static int dev_uevent_filter(const struct kobject *kobj)
2600 {
2601 	const struct kobj_type *ktype = get_ktype(kobj);
2602 
2603 	if (ktype == &device_ktype) {
2604 		const struct device *dev = kobj_to_dev(kobj);
2605 		if (dev->bus)
2606 			return 1;
2607 		if (dev->class)
2608 			return 1;
2609 	}
2610 	return 0;
2611 }
2612 
dev_uevent_name(const struct kobject * kobj)2613 static const char *dev_uevent_name(const struct kobject *kobj)
2614 {
2615 	const struct device *dev = kobj_to_dev(kobj);
2616 
2617 	if (dev->bus)
2618 		return dev->bus->name;
2619 	if (dev->class)
2620 		return dev->class->name;
2621 	return NULL;
2622 }
2623 
2624 /*
2625  * Try filling "DRIVER=<name>" uevent variable for a device. Because this
2626  * function may race with binding and unbinding the device from a driver,
2627  * we need to be careful. Binding is generally safe, at worst we miss the
2628  * fact that the device is already bound to a driver (but the driver
2629  * information that is delivered through uevents is best-effort, it may
2630  * become obsolete as soon as it is generated anyways). Unbinding is more
2631  * risky as driver pointer is transitioning to NULL, so READ_ONCE() should
2632  * be used to make sure we are dealing with the same pointer, and to
2633  * ensure that driver structure is not going to disappear from under us
2634  * we take bus' drivers klist lock. The assumption that only registered
2635  * driver can be bound to a device, and to unregister a driver bus code
2636  * will take the same lock.
2637  */
dev_driver_uevent(const struct device * dev,struct kobj_uevent_env * env)2638 static void dev_driver_uevent(const struct device *dev, struct kobj_uevent_env *env)
2639 {
2640 	struct subsys_private *sp = bus_to_subsys(dev->bus);
2641 
2642 	if (sp) {
2643 		scoped_guard(spinlock, &sp->klist_drivers.k_lock) {
2644 			struct device_driver *drv = READ_ONCE(dev->driver);
2645 			if (drv)
2646 				add_uevent_var(env, "DRIVER=%s", drv->name);
2647 		}
2648 
2649 		subsys_put(sp);
2650 	}
2651 }
2652 
dev_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)2653 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2654 {
2655 	const struct device *dev = kobj_to_dev(kobj);
2656 	int retval = 0;
2657 
2658 	/* add device node properties if present */
2659 	if (MAJOR(dev->devt)) {
2660 		const char *tmp;
2661 		const char *name;
2662 		umode_t mode = 0;
2663 		kuid_t uid = GLOBAL_ROOT_UID;
2664 		kgid_t gid = GLOBAL_ROOT_GID;
2665 
2666 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2667 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2668 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2669 		if (name) {
2670 			add_uevent_var(env, "DEVNAME=%s", name);
2671 			if (mode)
2672 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2673 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2674 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2675 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2676 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2677 			kfree(tmp);
2678 		}
2679 	}
2680 
2681 	if (dev->type && dev->type->name)
2682 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2683 
2684 	/* Add "DRIVER=%s" variable if the device is bound to a driver */
2685 	dev_driver_uevent(dev, env);
2686 
2687 	/* Add common DT information about the device */
2688 	of_device_uevent(dev, env);
2689 
2690 	/* have the bus specific function add its stuff */
2691 	if (dev->bus && dev->bus->uevent) {
2692 		retval = dev->bus->uevent(dev, env);
2693 		if (retval)
2694 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2695 				 dev_name(dev), __func__, retval);
2696 	}
2697 
2698 	/* have the class specific function add its stuff */
2699 	if (dev->class && dev->class->dev_uevent) {
2700 		retval = dev->class->dev_uevent(dev, env);
2701 		if (retval)
2702 			pr_debug("device: '%s': %s: class uevent() "
2703 				 "returned %d\n", dev_name(dev),
2704 				 __func__, retval);
2705 	}
2706 
2707 	/* have the device type specific function add its stuff */
2708 	if (dev->type && dev->type->uevent) {
2709 		retval = dev->type->uevent(dev, env);
2710 		if (retval)
2711 			pr_debug("device: '%s': %s: dev_type uevent() "
2712 				 "returned %d\n", dev_name(dev),
2713 				 __func__, retval);
2714 	}
2715 
2716 	return retval;
2717 }
2718 
2719 static const struct kset_uevent_ops device_uevent_ops = {
2720 	.filter =	dev_uevent_filter,
2721 	.name =		dev_uevent_name,
2722 	.uevent =	dev_uevent,
2723 };
2724 
uevent_show(struct device * dev,struct device_attribute * attr,char * buf)2725 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2726 			   char *buf)
2727 {
2728 	struct kobject *top_kobj;
2729 	struct kset *kset;
2730 	struct kobj_uevent_env *env = NULL;
2731 	int i;
2732 	int len = 0;
2733 	int retval;
2734 
2735 	/* search the kset, the device belongs to */
2736 	top_kobj = &dev->kobj;
2737 	while (!top_kobj->kset && top_kobj->parent)
2738 		top_kobj = top_kobj->parent;
2739 	if (!top_kobj->kset)
2740 		goto out;
2741 
2742 	kset = top_kobj->kset;
2743 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2744 		goto out;
2745 
2746 	/* respect filter */
2747 	if (kset->uevent_ops && kset->uevent_ops->filter)
2748 		if (!kset->uevent_ops->filter(&dev->kobj))
2749 			goto out;
2750 
2751 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2752 	if (!env)
2753 		return -ENOMEM;
2754 
2755 	/* let the kset specific function add its keys */
2756 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2757 	if (retval)
2758 		goto out;
2759 
2760 	/* copy keys to file */
2761 	for (i = 0; i < env->envp_idx; i++)
2762 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2763 out:
2764 	kfree(env);
2765 	return len;
2766 }
2767 
uevent_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2768 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2769 			    const char *buf, size_t count)
2770 {
2771 	int rc;
2772 
2773 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2774 
2775 	if (rc) {
2776 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2777 		return rc;
2778 	}
2779 
2780 	return count;
2781 }
2782 static DEVICE_ATTR_RW(uevent);
2783 
online_show(struct device * dev,struct device_attribute * attr,char * buf)2784 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2785 			   char *buf)
2786 {
2787 	bool val;
2788 
2789 	device_lock(dev);
2790 	val = !dev->offline;
2791 	device_unlock(dev);
2792 	return sysfs_emit(buf, "%u\n", val);
2793 }
2794 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2795 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2796 			    const char *buf, size_t count)
2797 {
2798 	bool val;
2799 	int ret;
2800 
2801 	ret = kstrtobool(buf, &val);
2802 	if (ret < 0)
2803 		return ret;
2804 
2805 	ret = lock_device_hotplug_sysfs();
2806 	if (ret)
2807 		return ret;
2808 
2809 	ret = val ? device_online(dev) : device_offline(dev);
2810 	unlock_device_hotplug();
2811 	return ret < 0 ? ret : count;
2812 }
2813 static DEVICE_ATTR_RW(online);
2814 
removable_show(struct device * dev,struct device_attribute * attr,char * buf)2815 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2816 			      char *buf)
2817 {
2818 	const char *loc;
2819 
2820 	switch (dev->removable) {
2821 	case DEVICE_REMOVABLE:
2822 		loc = "removable";
2823 		break;
2824 	case DEVICE_FIXED:
2825 		loc = "fixed";
2826 		break;
2827 	default:
2828 		loc = "unknown";
2829 	}
2830 	return sysfs_emit(buf, "%s\n", loc);
2831 }
2832 static DEVICE_ATTR_RO(removable);
2833 
device_add_groups(struct device * dev,const struct attribute_group ** groups)2834 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2835 {
2836 	return sysfs_create_groups(&dev->kobj, groups);
2837 }
2838 EXPORT_SYMBOL_GPL(device_add_groups);
2839 
device_remove_groups(struct device * dev,const struct attribute_group ** groups)2840 void device_remove_groups(struct device *dev,
2841 			  const struct attribute_group **groups)
2842 {
2843 	sysfs_remove_groups(&dev->kobj, groups);
2844 }
2845 EXPORT_SYMBOL_GPL(device_remove_groups);
2846 
2847 union device_attr_group_devres {
2848 	const struct attribute_group *group;
2849 	const struct attribute_group **groups;
2850 };
2851 
devm_attr_group_remove(struct device * dev,void * res)2852 static void devm_attr_group_remove(struct device *dev, void *res)
2853 {
2854 	union device_attr_group_devres *devres = res;
2855 	const struct attribute_group *group = devres->group;
2856 
2857 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2858 	sysfs_remove_group(&dev->kobj, group);
2859 }
2860 
2861 /**
2862  * devm_device_add_group - given a device, create a managed attribute group
2863  * @dev:	The device to create the group for
2864  * @grp:	The attribute group to create
2865  *
2866  * This function creates a group for the first time.  It will explicitly
2867  * warn and error if any of the attribute files being created already exist.
2868  *
2869  * Returns 0 on success or error code on failure.
2870  */
devm_device_add_group(struct device * dev,const struct attribute_group * grp)2871 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2872 {
2873 	union device_attr_group_devres *devres;
2874 	int error;
2875 
2876 	devres = devres_alloc(devm_attr_group_remove,
2877 			      sizeof(*devres), GFP_KERNEL);
2878 	if (!devres)
2879 		return -ENOMEM;
2880 
2881 	error = sysfs_create_group(&dev->kobj, grp);
2882 	if (error) {
2883 		devres_free(devres);
2884 		return error;
2885 	}
2886 
2887 	devres->group = grp;
2888 	devres_add(dev, devres);
2889 	return 0;
2890 }
2891 EXPORT_SYMBOL_GPL(devm_device_add_group);
2892 
device_add_attrs(struct device * dev)2893 static int device_add_attrs(struct device *dev)
2894 {
2895 	const struct class *class = dev->class;
2896 	const struct device_type *type = dev->type;
2897 	int error;
2898 
2899 	if (class) {
2900 		error = device_add_groups(dev, class->dev_groups);
2901 		if (error)
2902 			return error;
2903 	}
2904 
2905 	if (type) {
2906 		error = device_add_groups(dev, type->groups);
2907 		if (error)
2908 			goto err_remove_class_groups;
2909 	}
2910 
2911 	error = device_add_groups(dev, dev->groups);
2912 	if (error)
2913 		goto err_remove_type_groups;
2914 
2915 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2916 		error = device_create_file(dev, &dev_attr_online);
2917 		if (error)
2918 			goto err_remove_dev_groups;
2919 	}
2920 
2921 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2922 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2923 		if (error)
2924 			goto err_remove_dev_online;
2925 	}
2926 
2927 	if (dev_removable_is_valid(dev)) {
2928 		error = device_create_file(dev, &dev_attr_removable);
2929 		if (error)
2930 			goto err_remove_dev_waiting_for_supplier;
2931 	}
2932 
2933 	if (dev_add_physical_location(dev)) {
2934 		error = device_add_group(dev,
2935 			&dev_attr_physical_location_group);
2936 		if (error)
2937 			goto err_remove_dev_removable;
2938 	}
2939 
2940 	return 0;
2941 
2942  err_remove_dev_removable:
2943 	device_remove_file(dev, &dev_attr_removable);
2944  err_remove_dev_waiting_for_supplier:
2945 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2946  err_remove_dev_online:
2947 	device_remove_file(dev, &dev_attr_online);
2948  err_remove_dev_groups:
2949 	device_remove_groups(dev, dev->groups);
2950  err_remove_type_groups:
2951 	if (type)
2952 		device_remove_groups(dev, type->groups);
2953  err_remove_class_groups:
2954 	if (class)
2955 		device_remove_groups(dev, class->dev_groups);
2956 
2957 	return error;
2958 }
2959 
device_remove_attrs(struct device * dev)2960 static void device_remove_attrs(struct device *dev)
2961 {
2962 	const struct class *class = dev->class;
2963 	const struct device_type *type = dev->type;
2964 
2965 	if (dev->physical_location) {
2966 		device_remove_group(dev, &dev_attr_physical_location_group);
2967 		kfree(dev->physical_location);
2968 	}
2969 
2970 	device_remove_file(dev, &dev_attr_removable);
2971 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2972 	device_remove_file(dev, &dev_attr_online);
2973 	device_remove_groups(dev, dev->groups);
2974 
2975 	if (type)
2976 		device_remove_groups(dev, type->groups);
2977 
2978 	if (class)
2979 		device_remove_groups(dev, class->dev_groups);
2980 }
2981 
dev_show(struct device * dev,struct device_attribute * attr,char * buf)2982 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2983 			char *buf)
2984 {
2985 	return print_dev_t(buf, dev->devt);
2986 }
2987 static DEVICE_ATTR_RO(dev);
2988 
2989 /* /sys/devices/ */
2990 struct kset *devices_kset;
2991 
2992 /**
2993  * devices_kset_move_before - Move device in the devices_kset's list.
2994  * @deva: Device to move.
2995  * @devb: Device @deva should come before.
2996  */
devices_kset_move_before(struct device * deva,struct device * devb)2997 static void devices_kset_move_before(struct device *deva, struct device *devb)
2998 {
2999 	if (!devices_kset)
3000 		return;
3001 	pr_debug("devices_kset: Moving %s before %s\n",
3002 		 dev_name(deva), dev_name(devb));
3003 	spin_lock(&devices_kset->list_lock);
3004 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3005 	spin_unlock(&devices_kset->list_lock);
3006 }
3007 
3008 /**
3009  * devices_kset_move_after - Move device in the devices_kset's list.
3010  * @deva: Device to move
3011  * @devb: Device @deva should come after.
3012  */
devices_kset_move_after(struct device * deva,struct device * devb)3013 static void devices_kset_move_after(struct device *deva, struct device *devb)
3014 {
3015 	if (!devices_kset)
3016 		return;
3017 	pr_debug("devices_kset: Moving %s after %s\n",
3018 		 dev_name(deva), dev_name(devb));
3019 	spin_lock(&devices_kset->list_lock);
3020 	list_move(&deva->kobj.entry, &devb->kobj.entry);
3021 	spin_unlock(&devices_kset->list_lock);
3022 }
3023 
3024 /**
3025  * devices_kset_move_last - move the device to the end of devices_kset's list.
3026  * @dev: device to move
3027  */
devices_kset_move_last(struct device * dev)3028 void devices_kset_move_last(struct device *dev)
3029 {
3030 	if (!devices_kset)
3031 		return;
3032 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3033 	spin_lock(&devices_kset->list_lock);
3034 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3035 	spin_unlock(&devices_kset->list_lock);
3036 }
3037 
3038 /**
3039  * device_create_file - create sysfs attribute file for device.
3040  * @dev: device.
3041  * @attr: device attribute descriptor.
3042  */
device_create_file(struct device * dev,const struct device_attribute * attr)3043 int device_create_file(struct device *dev,
3044 		       const struct device_attribute *attr)
3045 {
3046 	int error = 0;
3047 
3048 	if (dev) {
3049 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3050 			"Attribute %s: write permission without 'store'\n",
3051 			attr->attr.name);
3052 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3053 			"Attribute %s: read permission without 'show'\n",
3054 			attr->attr.name);
3055 		error = sysfs_create_file(&dev->kobj, &attr->attr);
3056 	}
3057 
3058 	return error;
3059 }
3060 EXPORT_SYMBOL_GPL(device_create_file);
3061 
3062 /**
3063  * device_remove_file - remove sysfs attribute file.
3064  * @dev: device.
3065  * @attr: device attribute descriptor.
3066  */
device_remove_file(struct device * dev,const struct device_attribute * attr)3067 void device_remove_file(struct device *dev,
3068 			const struct device_attribute *attr)
3069 {
3070 	if (dev)
3071 		sysfs_remove_file(&dev->kobj, &attr->attr);
3072 }
3073 EXPORT_SYMBOL_GPL(device_remove_file);
3074 
3075 /**
3076  * device_remove_file_self - remove sysfs attribute file from its own method.
3077  * @dev: device.
3078  * @attr: device attribute descriptor.
3079  *
3080  * See kernfs_remove_self() for details.
3081  */
device_remove_file_self(struct device * dev,const struct device_attribute * attr)3082 bool device_remove_file_self(struct device *dev,
3083 			     const struct device_attribute *attr)
3084 {
3085 	if (dev)
3086 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3087 	else
3088 		return false;
3089 }
3090 EXPORT_SYMBOL_GPL(device_remove_file_self);
3091 
3092 /**
3093  * device_create_bin_file - create sysfs binary attribute file for device.
3094  * @dev: device.
3095  * @attr: device binary attribute descriptor.
3096  */
device_create_bin_file(struct device * dev,const struct bin_attribute * attr)3097 int device_create_bin_file(struct device *dev,
3098 			   const struct bin_attribute *attr)
3099 {
3100 	int error = -EINVAL;
3101 	if (dev)
3102 		error = sysfs_create_bin_file(&dev->kobj, attr);
3103 	return error;
3104 }
3105 EXPORT_SYMBOL_GPL(device_create_bin_file);
3106 
3107 /**
3108  * device_remove_bin_file - remove sysfs binary attribute file
3109  * @dev: device.
3110  * @attr: device binary attribute descriptor.
3111  */
device_remove_bin_file(struct device * dev,const struct bin_attribute * attr)3112 void device_remove_bin_file(struct device *dev,
3113 			    const struct bin_attribute *attr)
3114 {
3115 	if (dev)
3116 		sysfs_remove_bin_file(&dev->kobj, attr);
3117 }
3118 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3119 
klist_children_get(struct klist_node * n)3120 static void klist_children_get(struct klist_node *n)
3121 {
3122 	struct device_private *p = to_device_private_parent(n);
3123 	struct device *dev = p->device;
3124 
3125 	get_device(dev);
3126 }
3127 
klist_children_put(struct klist_node * n)3128 static void klist_children_put(struct klist_node *n)
3129 {
3130 	struct device_private *p = to_device_private_parent(n);
3131 	struct device *dev = p->device;
3132 
3133 	put_device(dev);
3134 }
3135 
3136 /**
3137  * device_initialize - init device structure.
3138  * @dev: device.
3139  *
3140  * This prepares the device for use by other layers by initializing
3141  * its fields.
3142  * It is the first half of device_register(), if called by
3143  * that function, though it can also be called separately, so one
3144  * may use @dev's fields. In particular, get_device()/put_device()
3145  * may be used for reference counting of @dev after calling this
3146  * function.
3147  *
3148  * All fields in @dev must be initialized by the caller to 0, except
3149  * for those explicitly set to some other value.  The simplest
3150  * approach is to use kzalloc() to allocate the structure containing
3151  * @dev.
3152  *
3153  * NOTE: Use put_device() to give up your reference instead of freeing
3154  * @dev directly once you have called this function.
3155  */
device_initialize(struct device * dev)3156 void device_initialize(struct device *dev)
3157 {
3158 	dev->kobj.kset = devices_kset;
3159 	kobject_init(&dev->kobj, &device_ktype);
3160 	INIT_LIST_HEAD(&dev->dma_pools);
3161 	mutex_init(&dev->mutex);
3162 	lockdep_set_novalidate_class(&dev->mutex);
3163 	spin_lock_init(&dev->devres_lock);
3164 	INIT_LIST_HEAD(&dev->devres_head);
3165 	device_pm_init(dev);
3166 	set_dev_node(dev, NUMA_NO_NODE);
3167 	INIT_LIST_HEAD(&dev->links.consumers);
3168 	INIT_LIST_HEAD(&dev->links.suppliers);
3169 	INIT_LIST_HEAD(&dev->links.defer_sync);
3170 	dev->links.status = DL_DEV_NO_DRIVER;
3171 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3172     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3173     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3174 	dev->dma_coherent = dma_default_coherent;
3175 #endif
3176 	swiotlb_dev_init(dev);
3177 }
3178 EXPORT_SYMBOL_GPL(device_initialize);
3179 
virtual_device_parent(void)3180 struct kobject *virtual_device_parent(void)
3181 {
3182 	static struct kobject *virtual_dir = NULL;
3183 
3184 	if (!virtual_dir)
3185 		virtual_dir = kobject_create_and_add("virtual",
3186 						     &devices_kset->kobj);
3187 
3188 	return virtual_dir;
3189 }
3190 
3191 struct class_dir {
3192 	struct kobject kobj;
3193 	const struct class *class;
3194 };
3195 
3196 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3197 
class_dir_release(struct kobject * kobj)3198 static void class_dir_release(struct kobject *kobj)
3199 {
3200 	struct class_dir *dir = to_class_dir(kobj);
3201 	kfree(dir);
3202 }
3203 
3204 static const
class_dir_child_ns_type(const struct kobject * kobj)3205 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3206 {
3207 	const struct class_dir *dir = to_class_dir(kobj);
3208 	return dir->class->ns_type;
3209 }
3210 
3211 static const struct kobj_type class_dir_ktype = {
3212 	.release	= class_dir_release,
3213 	.sysfs_ops	= &kobj_sysfs_ops,
3214 	.child_ns_type	= class_dir_child_ns_type
3215 };
3216 
class_dir_create_and_add(struct subsys_private * sp,struct kobject * parent_kobj)3217 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3218 						struct kobject *parent_kobj)
3219 {
3220 	struct class_dir *dir;
3221 	int retval;
3222 
3223 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3224 	if (!dir)
3225 		return ERR_PTR(-ENOMEM);
3226 
3227 	dir->class = sp->class;
3228 	kobject_init(&dir->kobj, &class_dir_ktype);
3229 
3230 	dir->kobj.kset = &sp->glue_dirs;
3231 
3232 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3233 	if (retval < 0) {
3234 		kobject_put(&dir->kobj);
3235 		return ERR_PTR(retval);
3236 	}
3237 	return &dir->kobj;
3238 }
3239 
3240 static DEFINE_MUTEX(gdp_mutex);
3241 
get_device_parent(struct device * dev,struct device * parent)3242 static struct kobject *get_device_parent(struct device *dev,
3243 					 struct device *parent)
3244 {
3245 	struct subsys_private *sp = class_to_subsys(dev->class);
3246 	struct kobject *kobj = NULL;
3247 
3248 	if (sp) {
3249 		struct kobject *parent_kobj;
3250 		struct kobject *k;
3251 
3252 		/*
3253 		 * If we have no parent, we live in "virtual".
3254 		 * Class-devices with a non class-device as parent, live
3255 		 * in a "glue" directory to prevent namespace collisions.
3256 		 */
3257 		if (parent == NULL)
3258 			parent_kobj = virtual_device_parent();
3259 		else if (parent->class && !dev->class->ns_type) {
3260 			subsys_put(sp);
3261 			return &parent->kobj;
3262 		} else {
3263 			parent_kobj = &parent->kobj;
3264 		}
3265 
3266 		mutex_lock(&gdp_mutex);
3267 
3268 		/* find our class-directory at the parent and reference it */
3269 		spin_lock(&sp->glue_dirs.list_lock);
3270 		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3271 			if (k->parent == parent_kobj) {
3272 				kobj = kobject_get(k);
3273 				break;
3274 			}
3275 		spin_unlock(&sp->glue_dirs.list_lock);
3276 		if (kobj) {
3277 			mutex_unlock(&gdp_mutex);
3278 			subsys_put(sp);
3279 			return kobj;
3280 		}
3281 
3282 		/* or create a new class-directory at the parent device */
3283 		k = class_dir_create_and_add(sp, parent_kobj);
3284 		/* do not emit an uevent for this simple "glue" directory */
3285 		mutex_unlock(&gdp_mutex);
3286 		subsys_put(sp);
3287 		return k;
3288 	}
3289 
3290 	/* subsystems can specify a default root directory for their devices */
3291 	if (!parent && dev->bus) {
3292 		struct device *dev_root = bus_get_dev_root(dev->bus);
3293 
3294 		if (dev_root) {
3295 			kobj = &dev_root->kobj;
3296 			put_device(dev_root);
3297 			return kobj;
3298 		}
3299 	}
3300 
3301 	if (parent)
3302 		return &parent->kobj;
3303 	return NULL;
3304 }
3305 
live_in_glue_dir(struct kobject * kobj,struct device * dev)3306 static inline bool live_in_glue_dir(struct kobject *kobj,
3307 				    struct device *dev)
3308 {
3309 	struct subsys_private *sp;
3310 	bool retval;
3311 
3312 	if (!kobj || !dev->class)
3313 		return false;
3314 
3315 	sp = class_to_subsys(dev->class);
3316 	if (!sp)
3317 		return false;
3318 
3319 	if (kobj->kset == &sp->glue_dirs)
3320 		retval = true;
3321 	else
3322 		retval = false;
3323 
3324 	subsys_put(sp);
3325 	return retval;
3326 }
3327 
get_glue_dir(struct device * dev)3328 static inline struct kobject *get_glue_dir(struct device *dev)
3329 {
3330 	return dev->kobj.parent;
3331 }
3332 
3333 /**
3334  * kobject_has_children - Returns whether a kobject has children.
3335  * @kobj: the object to test
3336  *
3337  * This will return whether a kobject has other kobjects as children.
3338  *
3339  * It does NOT account for the presence of attribute files, only sub
3340  * directories. It also assumes there is no concurrent addition or
3341  * removal of such children, and thus relies on external locking.
3342  */
kobject_has_children(struct kobject * kobj)3343 static inline bool kobject_has_children(struct kobject *kobj)
3344 {
3345 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3346 
3347 	return kobj->sd && kobj->sd->dir.subdirs;
3348 }
3349 
3350 /*
3351  * make sure cleaning up dir as the last step, we need to make
3352  * sure .release handler of kobject is run with holding the
3353  * global lock
3354  */
cleanup_glue_dir(struct device * dev,struct kobject * glue_dir)3355 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3356 {
3357 	unsigned int ref;
3358 
3359 	/* see if we live in a "glue" directory */
3360 	if (!live_in_glue_dir(glue_dir, dev))
3361 		return;
3362 
3363 	mutex_lock(&gdp_mutex);
3364 	/**
3365 	 * There is a race condition between removing glue directory
3366 	 * and adding a new device under the glue directory.
3367 	 *
3368 	 * CPU1:                                         CPU2:
3369 	 *
3370 	 * device_add()
3371 	 *   get_device_parent()
3372 	 *     class_dir_create_and_add()
3373 	 *       kobject_add_internal()
3374 	 *         create_dir()    // create glue_dir
3375 	 *
3376 	 *                                               device_add()
3377 	 *                                                 get_device_parent()
3378 	 *                                                   kobject_get() // get glue_dir
3379 	 *
3380 	 * device_del()
3381 	 *   cleanup_glue_dir()
3382 	 *     kobject_del(glue_dir)
3383 	 *
3384 	 *                                               kobject_add()
3385 	 *                                                 kobject_add_internal()
3386 	 *                                                   create_dir() // in glue_dir
3387 	 *                                                     sysfs_create_dir_ns()
3388 	 *                                                       kernfs_create_dir_ns(sd)
3389 	 *
3390 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3391 	 *       sysfs_put()        // free glue_dir->sd
3392 	 *
3393 	 *                                                         // sd is freed
3394 	 *                                                         kernfs_new_node(sd)
3395 	 *                                                           kernfs_get(glue_dir)
3396 	 *                                                           kernfs_add_one()
3397 	 *                                                           kernfs_put()
3398 	 *
3399 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3400 	 * a new device under glue dir, the glue_dir kobject reference count
3401 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3402 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3403 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3404 	 *
3405 	 * Then the CPU2 will see a stale "empty" but still potentially used
3406 	 * glue dir around in kernfs_new_node().
3407 	 *
3408 	 * In order to avoid this happening, we also should make sure that
3409 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3410 	 * for glue_dir kobj is 1.
3411 	 */
3412 	ref = kref_read(&glue_dir->kref);
3413 	if (!kobject_has_children(glue_dir) && !--ref)
3414 		kobject_del(glue_dir);
3415 	kobject_put(glue_dir);
3416 	mutex_unlock(&gdp_mutex);
3417 }
3418 
device_add_class_symlinks(struct device * dev)3419 static int device_add_class_symlinks(struct device *dev)
3420 {
3421 	struct device_node *of_node = dev_of_node(dev);
3422 	struct subsys_private *sp;
3423 	int error;
3424 
3425 	if (of_node) {
3426 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3427 		if (error)
3428 			dev_warn(dev, "Error %d creating of_node link\n",error);
3429 		/* An error here doesn't warrant bringing down the device */
3430 	}
3431 
3432 	sp = class_to_subsys(dev->class);
3433 	if (!sp)
3434 		return 0;
3435 
3436 	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3437 	if (error)
3438 		goto out_devnode;
3439 
3440 	if (dev->parent && device_is_not_partition(dev)) {
3441 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3442 					  "device");
3443 		if (error)
3444 			goto out_subsys;
3445 	}
3446 
3447 	/* link in the class directory pointing to the device */
3448 	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3449 	if (error)
3450 		goto out_device;
3451 	goto exit;
3452 
3453 out_device:
3454 	sysfs_remove_link(&dev->kobj, "device");
3455 out_subsys:
3456 	sysfs_remove_link(&dev->kobj, "subsystem");
3457 out_devnode:
3458 	sysfs_remove_link(&dev->kobj, "of_node");
3459 exit:
3460 	subsys_put(sp);
3461 	return error;
3462 }
3463 
device_remove_class_symlinks(struct device * dev)3464 static void device_remove_class_symlinks(struct device *dev)
3465 {
3466 	struct subsys_private *sp = class_to_subsys(dev->class);
3467 
3468 	if (dev_of_node(dev))
3469 		sysfs_remove_link(&dev->kobj, "of_node");
3470 
3471 	if (!sp)
3472 		return;
3473 
3474 	if (dev->parent && device_is_not_partition(dev))
3475 		sysfs_remove_link(&dev->kobj, "device");
3476 	sysfs_remove_link(&dev->kobj, "subsystem");
3477 	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3478 	subsys_put(sp);
3479 }
3480 
3481 /**
3482  * dev_set_name - set a device name
3483  * @dev: device
3484  * @fmt: format string for the device's name
3485  */
dev_set_name(struct device * dev,const char * fmt,...)3486 int dev_set_name(struct device *dev, const char *fmt, ...)
3487 {
3488 	va_list vargs;
3489 	int err;
3490 
3491 	va_start(vargs, fmt);
3492 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3493 	va_end(vargs);
3494 	return err;
3495 }
3496 EXPORT_SYMBOL_GPL(dev_set_name);
3497 
3498 /* select a /sys/dev/ directory for the device */
device_to_dev_kobj(struct device * dev)3499 static struct kobject *device_to_dev_kobj(struct device *dev)
3500 {
3501 	if (is_blockdev(dev))
3502 		return sysfs_dev_block_kobj;
3503 	else
3504 		return sysfs_dev_char_kobj;
3505 }
3506 
device_create_sys_dev_entry(struct device * dev)3507 static int device_create_sys_dev_entry(struct device *dev)
3508 {
3509 	struct kobject *kobj = device_to_dev_kobj(dev);
3510 	int error = 0;
3511 	char devt_str[15];
3512 
3513 	if (kobj) {
3514 		format_dev_t(devt_str, dev->devt);
3515 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3516 	}
3517 
3518 	return error;
3519 }
3520 
device_remove_sys_dev_entry(struct device * dev)3521 static void device_remove_sys_dev_entry(struct device *dev)
3522 {
3523 	struct kobject *kobj = device_to_dev_kobj(dev);
3524 	char devt_str[15];
3525 
3526 	if (kobj) {
3527 		format_dev_t(devt_str, dev->devt);
3528 		sysfs_remove_link(kobj, devt_str);
3529 	}
3530 }
3531 
device_private_init(struct device * dev)3532 static int device_private_init(struct device *dev)
3533 {
3534 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3535 	if (!dev->p)
3536 		return -ENOMEM;
3537 	dev->p->device = dev;
3538 	klist_init(&dev->p->klist_children, klist_children_get,
3539 		   klist_children_put);
3540 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3541 	return 0;
3542 }
3543 
3544 /**
3545  * device_add - add device to device hierarchy.
3546  * @dev: device.
3547  *
3548  * This is part 2 of device_register(), though may be called
3549  * separately _iff_ device_initialize() has been called separately.
3550  *
3551  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3552  * to the global and sibling lists for the device, then
3553  * adds it to the other relevant subsystems of the driver model.
3554  *
3555  * Do not call this routine or device_register() more than once for
3556  * any device structure.  The driver model core is not designed to work
3557  * with devices that get unregistered and then spring back to life.
3558  * (Among other things, it's very hard to guarantee that all references
3559  * to the previous incarnation of @dev have been dropped.)  Allocate
3560  * and register a fresh new struct device instead.
3561  *
3562  * NOTE: _Never_ directly free @dev after calling this function, even
3563  * if it returned an error! Always use put_device() to give up your
3564  * reference instead.
3565  *
3566  * Rule of thumb is: if device_add() succeeds, you should call
3567  * device_del() when you want to get rid of it. If device_add() has
3568  * *not* succeeded, use *only* put_device() to drop the reference
3569  * count.
3570  */
device_add(struct device * dev)3571 int device_add(struct device *dev)
3572 {
3573 	struct subsys_private *sp;
3574 	struct device *parent;
3575 	struct kobject *kobj;
3576 	struct class_interface *class_intf;
3577 	int error = -EINVAL;
3578 	struct kobject *glue_dir = NULL;
3579 
3580 	dev = get_device(dev);
3581 	if (!dev)
3582 		goto done;
3583 
3584 	if (!dev->p) {
3585 		error = device_private_init(dev);
3586 		if (error)
3587 			goto done;
3588 	}
3589 
3590 	/*
3591 	 * for statically allocated devices, which should all be converted
3592 	 * some day, we need to initialize the name. We prevent reading back
3593 	 * the name, and force the use of dev_name()
3594 	 */
3595 	if (dev->init_name) {
3596 		error = dev_set_name(dev, "%s", dev->init_name);
3597 		dev->init_name = NULL;
3598 	}
3599 
3600 	if (dev_name(dev))
3601 		error = 0;
3602 	/* subsystems can specify simple device enumeration */
3603 	else if (dev->bus && dev->bus->dev_name)
3604 		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3605 	else
3606 		error = -EINVAL;
3607 	if (error)
3608 		goto name_error;
3609 
3610 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3611 
3612 	parent = get_device(dev->parent);
3613 	kobj = get_device_parent(dev, parent);
3614 	if (IS_ERR(kobj)) {
3615 		error = PTR_ERR(kobj);
3616 		goto parent_error;
3617 	}
3618 	if (kobj)
3619 		dev->kobj.parent = kobj;
3620 
3621 	/* use parent numa_node */
3622 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3623 		set_dev_node(dev, dev_to_node(parent));
3624 
3625 	/* first, register with generic layer. */
3626 	/* we require the name to be set before, and pass NULL */
3627 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3628 	if (error) {
3629 		glue_dir = kobj;
3630 		goto Error;
3631 	}
3632 
3633 	/* notify platform of device entry */
3634 	device_platform_notify(dev);
3635 
3636 	error = device_create_file(dev, &dev_attr_uevent);
3637 	if (error)
3638 		goto attrError;
3639 
3640 	error = device_add_class_symlinks(dev);
3641 	if (error)
3642 		goto SymlinkError;
3643 	error = device_add_attrs(dev);
3644 	if (error)
3645 		goto AttrsError;
3646 	error = bus_add_device(dev);
3647 	if (error)
3648 		goto BusError;
3649 	error = dpm_sysfs_add(dev);
3650 	if (error)
3651 		goto DPMError;
3652 	device_pm_add(dev);
3653 
3654 	if (MAJOR(dev->devt)) {
3655 		error = device_create_file(dev, &dev_attr_dev);
3656 		if (error)
3657 			goto DevAttrError;
3658 
3659 		error = device_create_sys_dev_entry(dev);
3660 		if (error)
3661 			goto SysEntryError;
3662 
3663 		devtmpfs_create_node(dev);
3664 	}
3665 
3666 	/* Notify clients of device addition.  This call must come
3667 	 * after dpm_sysfs_add() and before kobject_uevent().
3668 	 */
3669 	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3670 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3671 
3672 	/*
3673 	 * Check if any of the other devices (consumers) have been waiting for
3674 	 * this device (supplier) to be added so that they can create a device
3675 	 * link to it.
3676 	 *
3677 	 * This needs to happen after device_pm_add() because device_link_add()
3678 	 * requires the supplier be registered before it's called.
3679 	 *
3680 	 * But this also needs to happen before bus_probe_device() to make sure
3681 	 * waiting consumers can link to it before the driver is bound to the
3682 	 * device and the driver sync_state callback is called for this device.
3683 	 */
3684 	if (dev->fwnode && !dev->fwnode->dev) {
3685 		dev->fwnode->dev = dev;
3686 		fw_devlink_link_device(dev);
3687 	}
3688 
3689 	bus_probe_device(dev);
3690 
3691 	/*
3692 	 * If all driver registration is done and a newly added device doesn't
3693 	 * match with any driver, don't block its consumers from probing in
3694 	 * case the consumer device is able to operate without this supplier.
3695 	 */
3696 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3697 		fw_devlink_unblock_consumers(dev);
3698 
3699 	if (parent)
3700 		klist_add_tail(&dev->p->knode_parent,
3701 			       &parent->p->klist_children);
3702 
3703 	sp = class_to_subsys(dev->class);
3704 	if (sp) {
3705 		mutex_lock(&sp->mutex);
3706 		/* tie the class to the device */
3707 		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3708 
3709 		/* notify any interfaces that the device is here */
3710 		list_for_each_entry(class_intf, &sp->interfaces, node)
3711 			if (class_intf->add_dev)
3712 				class_intf->add_dev(dev);
3713 		mutex_unlock(&sp->mutex);
3714 		subsys_put(sp);
3715 	}
3716 done:
3717 	put_device(dev);
3718 	return error;
3719  SysEntryError:
3720 	if (MAJOR(dev->devt))
3721 		device_remove_file(dev, &dev_attr_dev);
3722  DevAttrError:
3723 	device_pm_remove(dev);
3724 	dpm_sysfs_remove(dev);
3725  DPMError:
3726 	device_set_driver(dev, NULL);
3727 	bus_remove_device(dev);
3728  BusError:
3729 	device_remove_attrs(dev);
3730  AttrsError:
3731 	device_remove_class_symlinks(dev);
3732  SymlinkError:
3733 	device_remove_file(dev, &dev_attr_uevent);
3734  attrError:
3735 	device_platform_notify_remove(dev);
3736 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3737 	glue_dir = get_glue_dir(dev);
3738 	kobject_del(&dev->kobj);
3739  Error:
3740 	cleanup_glue_dir(dev, glue_dir);
3741 parent_error:
3742 	put_device(parent);
3743 name_error:
3744 	kfree(dev->p);
3745 	dev->p = NULL;
3746 	goto done;
3747 }
3748 EXPORT_SYMBOL_GPL(device_add);
3749 
3750 /**
3751  * device_register - register a device with the system.
3752  * @dev: pointer to the device structure
3753  *
3754  * This happens in two clean steps - initialize the device
3755  * and add it to the system. The two steps can be called
3756  * separately, but this is the easiest and most common.
3757  * I.e. you should only call the two helpers separately if
3758  * have a clearly defined need to use and refcount the device
3759  * before it is added to the hierarchy.
3760  *
3761  * For more information, see the kerneldoc for device_initialize()
3762  * and device_add().
3763  *
3764  * NOTE: _Never_ directly free @dev after calling this function, even
3765  * if it returned an error! Always use put_device() to give up the
3766  * reference initialized in this function instead.
3767  */
device_register(struct device * dev)3768 int device_register(struct device *dev)
3769 {
3770 	device_initialize(dev);
3771 	return device_add(dev);
3772 }
3773 EXPORT_SYMBOL_GPL(device_register);
3774 
3775 /**
3776  * get_device - increment reference count for device.
3777  * @dev: device.
3778  *
3779  * This simply forwards the call to kobject_get(), though
3780  * we do take care to provide for the case that we get a NULL
3781  * pointer passed in.
3782  */
get_device(struct device * dev)3783 struct device *get_device(struct device *dev)
3784 {
3785 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3786 }
3787 EXPORT_SYMBOL_GPL(get_device);
3788 
3789 /**
3790  * put_device - decrement reference count.
3791  * @dev: device in question.
3792  */
put_device(struct device * dev)3793 void put_device(struct device *dev)
3794 {
3795 	/* might_sleep(); */
3796 	if (dev)
3797 		kobject_put(&dev->kobj);
3798 }
3799 EXPORT_SYMBOL_GPL(put_device);
3800 
kill_device(struct device * dev)3801 bool kill_device(struct device *dev)
3802 {
3803 	/*
3804 	 * Require the device lock and set the "dead" flag to guarantee that
3805 	 * the update behavior is consistent with the other bitfields near
3806 	 * it and that we cannot have an asynchronous probe routine trying
3807 	 * to run while we are tearing out the bus/class/sysfs from
3808 	 * underneath the device.
3809 	 */
3810 	device_lock_assert(dev);
3811 
3812 	if (dev->p->dead)
3813 		return false;
3814 	dev->p->dead = true;
3815 	return true;
3816 }
3817 EXPORT_SYMBOL_GPL(kill_device);
3818 
3819 /**
3820  * device_del - delete device from system.
3821  * @dev: device.
3822  *
3823  * This is the first part of the device unregistration
3824  * sequence. This removes the device from the lists we control
3825  * from here, has it removed from the other driver model
3826  * subsystems it was added to in device_add(), and removes it
3827  * from the kobject hierarchy.
3828  *
3829  * NOTE: this should be called manually _iff_ device_add() was
3830  * also called manually.
3831  */
device_del(struct device * dev)3832 void device_del(struct device *dev)
3833 {
3834 	struct subsys_private *sp;
3835 	struct device *parent = dev->parent;
3836 	struct kobject *glue_dir = NULL;
3837 	struct class_interface *class_intf;
3838 	unsigned int noio_flag;
3839 
3840 	device_lock(dev);
3841 	kill_device(dev);
3842 	device_unlock(dev);
3843 
3844 	if (dev->fwnode && dev->fwnode->dev == dev)
3845 		dev->fwnode->dev = NULL;
3846 
3847 	/* Notify clients of device removal.  This call must come
3848 	 * before dpm_sysfs_remove().
3849 	 */
3850 	noio_flag = memalloc_noio_save();
3851 	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3852 
3853 	dpm_sysfs_remove(dev);
3854 	if (parent)
3855 		klist_del(&dev->p->knode_parent);
3856 	if (MAJOR(dev->devt)) {
3857 		devtmpfs_delete_node(dev);
3858 		device_remove_sys_dev_entry(dev);
3859 		device_remove_file(dev, &dev_attr_dev);
3860 	}
3861 
3862 	sp = class_to_subsys(dev->class);
3863 	if (sp) {
3864 		device_remove_class_symlinks(dev);
3865 
3866 		mutex_lock(&sp->mutex);
3867 		/* notify any interfaces that the device is now gone */
3868 		list_for_each_entry(class_intf, &sp->interfaces, node)
3869 			if (class_intf->remove_dev)
3870 				class_intf->remove_dev(dev);
3871 		/* remove the device from the class list */
3872 		klist_del(&dev->p->knode_class);
3873 		mutex_unlock(&sp->mutex);
3874 		subsys_put(sp);
3875 	}
3876 	device_remove_file(dev, &dev_attr_uevent);
3877 	device_remove_attrs(dev);
3878 	bus_remove_device(dev);
3879 	device_pm_remove(dev);
3880 	driver_deferred_probe_del(dev);
3881 	device_platform_notify_remove(dev);
3882 	device_links_purge(dev);
3883 
3884 	/*
3885 	 * If a device does not have a driver attached, we need to clean
3886 	 * up any managed resources. We do this in device_release(), but
3887 	 * it's never called (and we leak the device) if a managed
3888 	 * resource holds a reference to the device. So release all
3889 	 * managed resources here, like we do in driver_detach(). We
3890 	 * still need to do so again in device_release() in case someone
3891 	 * adds a new resource after this point, though.
3892 	 */
3893 	devres_release_all(dev);
3894 
3895 	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3896 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3897 	glue_dir = get_glue_dir(dev);
3898 	kobject_del(&dev->kobj);
3899 	cleanup_glue_dir(dev, glue_dir);
3900 	memalloc_noio_restore(noio_flag);
3901 	put_device(parent);
3902 }
3903 EXPORT_SYMBOL_GPL(device_del);
3904 
3905 /**
3906  * device_unregister - unregister device from system.
3907  * @dev: device going away.
3908  *
3909  * We do this in two parts, like we do device_register(). First,
3910  * we remove it from all the subsystems with device_del(), then
3911  * we decrement the reference count via put_device(). If that
3912  * is the final reference count, the device will be cleaned up
3913  * via device_release() above. Otherwise, the structure will
3914  * stick around until the final reference to the device is dropped.
3915  */
device_unregister(struct device * dev)3916 void device_unregister(struct device *dev)
3917 {
3918 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3919 	device_del(dev);
3920 	put_device(dev);
3921 }
3922 EXPORT_SYMBOL_GPL(device_unregister);
3923 
prev_device(struct klist_iter * i)3924 static struct device *prev_device(struct klist_iter *i)
3925 {
3926 	struct klist_node *n = klist_prev(i);
3927 	struct device *dev = NULL;
3928 	struct device_private *p;
3929 
3930 	if (n) {
3931 		p = to_device_private_parent(n);
3932 		dev = p->device;
3933 	}
3934 	return dev;
3935 }
3936 
next_device(struct klist_iter * i)3937 static struct device *next_device(struct klist_iter *i)
3938 {
3939 	struct klist_node *n = klist_next(i);
3940 	struct device *dev = NULL;
3941 	struct device_private *p;
3942 
3943 	if (n) {
3944 		p = to_device_private_parent(n);
3945 		dev = p->device;
3946 	}
3947 	return dev;
3948 }
3949 
3950 /**
3951  * device_get_devnode - path of device node file
3952  * @dev: device
3953  * @mode: returned file access mode
3954  * @uid: returned file owner
3955  * @gid: returned file group
3956  * @tmp: possibly allocated string
3957  *
3958  * Return the relative path of a possible device node.
3959  * Non-default names may need to allocate a memory to compose
3960  * a name. This memory is returned in tmp and needs to be
3961  * freed by the caller.
3962  */
device_get_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid,const char ** tmp)3963 const char *device_get_devnode(const struct device *dev,
3964 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3965 			       const char **tmp)
3966 {
3967 	char *s;
3968 
3969 	*tmp = NULL;
3970 
3971 	/* the device type may provide a specific name */
3972 	if (dev->type && dev->type->devnode)
3973 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3974 	if (*tmp)
3975 		return *tmp;
3976 
3977 	/* the class may provide a specific name */
3978 	if (dev->class && dev->class->devnode)
3979 		*tmp = dev->class->devnode(dev, mode);
3980 	if (*tmp)
3981 		return *tmp;
3982 
3983 	/* return name without allocation, tmp == NULL */
3984 	if (strchr(dev_name(dev), '!') == NULL)
3985 		return dev_name(dev);
3986 
3987 	/* replace '!' in the name with '/' */
3988 	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3989 	if (!s)
3990 		return NULL;
3991 	return *tmp = s;
3992 }
3993 
3994 /**
3995  * device_for_each_child - device child iterator.
3996  * @parent: parent struct device.
3997  * @fn: function to be called for each device.
3998  * @data: data for the callback.
3999  *
4000  * Iterate over @parent's child devices, and call @fn for each,
4001  * passing it @data.
4002  *
4003  * We check the return of @fn each time. If it returns anything
4004  * other than 0, we break out and return that value.
4005  */
device_for_each_child(struct device * parent,void * data,device_iter_t fn)4006 int device_for_each_child(struct device *parent, void *data,
4007 			  device_iter_t fn)
4008 {
4009 	struct klist_iter i;
4010 	struct device *child;
4011 	int error = 0;
4012 
4013 	if (!parent || !parent->p)
4014 		return 0;
4015 
4016 	klist_iter_init(&parent->p->klist_children, &i);
4017 	while (!error && (child = next_device(&i)))
4018 		error = fn(child, data);
4019 	klist_iter_exit(&i);
4020 	return error;
4021 }
4022 EXPORT_SYMBOL_GPL(device_for_each_child);
4023 
4024 /**
4025  * device_for_each_child_reverse - device child iterator in reversed order.
4026  * @parent: parent struct device.
4027  * @fn: function to be called for each device.
4028  * @data: data for the callback.
4029  *
4030  * Iterate over @parent's child devices, and call @fn for each,
4031  * passing it @data.
4032  *
4033  * We check the return of @fn each time. If it returns anything
4034  * other than 0, we break out and return that value.
4035  */
device_for_each_child_reverse(struct device * parent,void * data,device_iter_t fn)4036 int device_for_each_child_reverse(struct device *parent, void *data,
4037 				  device_iter_t fn)
4038 {
4039 	struct klist_iter i;
4040 	struct device *child;
4041 	int error = 0;
4042 
4043 	if (!parent || !parent->p)
4044 		return 0;
4045 
4046 	klist_iter_init(&parent->p->klist_children, &i);
4047 	while ((child = prev_device(&i)) && !error)
4048 		error = fn(child, data);
4049 	klist_iter_exit(&i);
4050 	return error;
4051 }
4052 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4053 
4054 /**
4055  * device_for_each_child_reverse_from - device child iterator in reversed order.
4056  * @parent: parent struct device.
4057  * @from: optional starting point in child list
4058  * @fn: function to be called for each device.
4059  * @data: data for the callback.
4060  *
4061  * Iterate over @parent's child devices, starting at @from, and call @fn
4062  * for each, passing it @data. This helper is identical to
4063  * device_for_each_child_reverse() when @from is NULL.
4064  *
4065  * @fn is checked each iteration. If it returns anything other than 0,
4066  * iteration stop and that value is returned to the caller of
4067  * device_for_each_child_reverse_from();
4068  */
device_for_each_child_reverse_from(struct device * parent,struct device * from,void * data,device_iter_t fn)4069 int device_for_each_child_reverse_from(struct device *parent,
4070 				       struct device *from, void *data,
4071 				       device_iter_t fn)
4072 {
4073 	struct klist_iter i;
4074 	struct device *child;
4075 	int error = 0;
4076 
4077 	if (!parent || !parent->p)
4078 		return 0;
4079 
4080 	klist_iter_init_node(&parent->p->klist_children, &i,
4081 			     (from ? &from->p->knode_parent : NULL));
4082 	while ((child = prev_device(&i)) && !error)
4083 		error = fn(child, data);
4084 	klist_iter_exit(&i);
4085 	return error;
4086 }
4087 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from);
4088 
4089 /**
4090  * device_find_child - device iterator for locating a particular device.
4091  * @parent: parent struct device
4092  * @match: Callback function to check device
4093  * @data: Data to pass to match function
4094  *
4095  * This is similar to the device_for_each_child() function above, but it
4096  * returns a reference to a device that is 'found' for later use, as
4097  * determined by the @match callback.
4098  *
4099  * The callback should return 0 if the device doesn't match and non-zero
4100  * if it does.  If the callback returns non-zero and a reference to the
4101  * current device can be obtained, this function will return to the caller
4102  * and not iterate over any more devices.
4103  *
4104  * NOTE: you will need to drop the reference with put_device() after use.
4105  */
device_find_child(struct device * parent,const void * data,device_match_t match)4106 struct device *device_find_child(struct device *parent, const void *data,
4107 				 device_match_t match)
4108 {
4109 	struct klist_iter i;
4110 	struct device *child;
4111 
4112 	if (!parent || !parent->p)
4113 		return NULL;
4114 
4115 	klist_iter_init(&parent->p->klist_children, &i);
4116 	while ((child = next_device(&i))) {
4117 		if (match(child, data)) {
4118 			get_device(child);
4119 			break;
4120 		}
4121 	}
4122 	klist_iter_exit(&i);
4123 	return child;
4124 }
4125 EXPORT_SYMBOL_GPL(device_find_child);
4126 
devices_init(void)4127 int __init devices_init(void)
4128 {
4129 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4130 	if (!devices_kset)
4131 		return -ENOMEM;
4132 	dev_kobj = kobject_create_and_add("dev", NULL);
4133 	if (!dev_kobj)
4134 		goto dev_kobj_err;
4135 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4136 	if (!sysfs_dev_block_kobj)
4137 		goto block_kobj_err;
4138 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4139 	if (!sysfs_dev_char_kobj)
4140 		goto char_kobj_err;
4141 	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4142 	if (!device_link_wq)
4143 		goto wq_err;
4144 
4145 	return 0;
4146 
4147  wq_err:
4148 	kobject_put(sysfs_dev_char_kobj);
4149  char_kobj_err:
4150 	kobject_put(sysfs_dev_block_kobj);
4151  block_kobj_err:
4152 	kobject_put(dev_kobj);
4153  dev_kobj_err:
4154 	kset_unregister(devices_kset);
4155 	return -ENOMEM;
4156 }
4157 
device_check_offline(struct device * dev,void * not_used)4158 static int device_check_offline(struct device *dev, void *not_used)
4159 {
4160 	int ret;
4161 
4162 	ret = device_for_each_child(dev, NULL, device_check_offline);
4163 	if (ret)
4164 		return ret;
4165 
4166 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4167 }
4168 
4169 /**
4170  * device_offline - Prepare the device for hot-removal.
4171  * @dev: Device to be put offline.
4172  *
4173  * Execute the device bus type's .offline() callback, if present, to prepare
4174  * the device for a subsequent hot-removal.  If that succeeds, the device must
4175  * not be used until either it is removed or its bus type's .online() callback
4176  * is executed.
4177  *
4178  * Call under device_hotplug_lock.
4179  */
device_offline(struct device * dev)4180 int device_offline(struct device *dev)
4181 {
4182 	int ret;
4183 
4184 	if (dev->offline_disabled)
4185 		return -EPERM;
4186 
4187 	ret = device_for_each_child(dev, NULL, device_check_offline);
4188 	if (ret)
4189 		return ret;
4190 
4191 	device_lock(dev);
4192 	if (device_supports_offline(dev)) {
4193 		if (dev->offline) {
4194 			ret = 1;
4195 		} else {
4196 			ret = dev->bus->offline(dev);
4197 			if (!ret) {
4198 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4199 				dev->offline = true;
4200 			}
4201 		}
4202 	}
4203 	device_unlock(dev);
4204 
4205 	return ret;
4206 }
4207 
4208 /**
4209  * device_online - Put the device back online after successful device_offline().
4210  * @dev: Device to be put back online.
4211  *
4212  * If device_offline() has been successfully executed for @dev, but the device
4213  * has not been removed subsequently, execute its bus type's .online() callback
4214  * to indicate that the device can be used again.
4215  *
4216  * Call under device_hotplug_lock.
4217  */
device_online(struct device * dev)4218 int device_online(struct device *dev)
4219 {
4220 	int ret = 0;
4221 
4222 	device_lock(dev);
4223 	if (device_supports_offline(dev)) {
4224 		if (dev->offline) {
4225 			ret = dev->bus->online(dev);
4226 			if (!ret) {
4227 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4228 				dev->offline = false;
4229 			}
4230 		} else {
4231 			ret = 1;
4232 		}
4233 	}
4234 	device_unlock(dev);
4235 
4236 	return ret;
4237 }
4238 
4239 struct root_device {
4240 	struct device dev;
4241 	struct module *owner;
4242 };
4243 
to_root_device(struct device * d)4244 static inline struct root_device *to_root_device(struct device *d)
4245 {
4246 	return container_of(d, struct root_device, dev);
4247 }
4248 
root_device_release(struct device * dev)4249 static void root_device_release(struct device *dev)
4250 {
4251 	kfree(to_root_device(dev));
4252 }
4253 
4254 /**
4255  * __root_device_register - allocate and register a root device
4256  * @name: root device name
4257  * @owner: owner module of the root device, usually THIS_MODULE
4258  *
4259  * This function allocates a root device and registers it
4260  * using device_register(). In order to free the returned
4261  * device, use root_device_unregister().
4262  *
4263  * Root devices are dummy devices which allow other devices
4264  * to be grouped under /sys/devices. Use this function to
4265  * allocate a root device and then use it as the parent of
4266  * any device which should appear under /sys/devices/{name}
4267  *
4268  * The /sys/devices/{name} directory will also contain a
4269  * 'module' symlink which points to the @owner directory
4270  * in sysfs.
4271  *
4272  * Returns &struct device pointer on success, or ERR_PTR() on error.
4273  *
4274  * Note: You probably want to use root_device_register().
4275  */
__root_device_register(const char * name,struct module * owner)4276 struct device *__root_device_register(const char *name, struct module *owner)
4277 {
4278 	struct root_device *root;
4279 	int err = -ENOMEM;
4280 
4281 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4282 	if (!root)
4283 		return ERR_PTR(err);
4284 
4285 	err = dev_set_name(&root->dev, "%s", name);
4286 	if (err) {
4287 		kfree(root);
4288 		return ERR_PTR(err);
4289 	}
4290 
4291 	root->dev.release = root_device_release;
4292 
4293 	err = device_register(&root->dev);
4294 	if (err) {
4295 		put_device(&root->dev);
4296 		return ERR_PTR(err);
4297 	}
4298 
4299 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4300 	if (owner) {
4301 		struct module_kobject *mk = &owner->mkobj;
4302 
4303 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4304 		if (err) {
4305 			device_unregister(&root->dev);
4306 			return ERR_PTR(err);
4307 		}
4308 		root->owner = owner;
4309 	}
4310 #endif
4311 
4312 	return &root->dev;
4313 }
4314 EXPORT_SYMBOL_GPL(__root_device_register);
4315 
4316 /**
4317  * root_device_unregister - unregister and free a root device
4318  * @dev: device going away
4319  *
4320  * This function unregisters and cleans up a device that was created by
4321  * root_device_register().
4322  */
root_device_unregister(struct device * dev)4323 void root_device_unregister(struct device *dev)
4324 {
4325 	struct root_device *root = to_root_device(dev);
4326 
4327 	if (root->owner)
4328 		sysfs_remove_link(&root->dev.kobj, "module");
4329 
4330 	device_unregister(dev);
4331 }
4332 EXPORT_SYMBOL_GPL(root_device_unregister);
4333 
4334 
device_create_release(struct device * dev)4335 static void device_create_release(struct device *dev)
4336 {
4337 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4338 	kfree(dev);
4339 }
4340 
4341 static __printf(6, 0) struct device *
device_create_groups_vargs(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,va_list args)4342 device_create_groups_vargs(const struct class *class, struct device *parent,
4343 			   dev_t devt, void *drvdata,
4344 			   const struct attribute_group **groups,
4345 			   const char *fmt, va_list args)
4346 {
4347 	struct device *dev = NULL;
4348 	int retval = -ENODEV;
4349 
4350 	if (IS_ERR_OR_NULL(class))
4351 		goto error;
4352 
4353 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4354 	if (!dev) {
4355 		retval = -ENOMEM;
4356 		goto error;
4357 	}
4358 
4359 	device_initialize(dev);
4360 	dev->devt = devt;
4361 	dev->class = class;
4362 	dev->parent = parent;
4363 	dev->groups = groups;
4364 	dev->release = device_create_release;
4365 	dev_set_drvdata(dev, drvdata);
4366 
4367 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4368 	if (retval)
4369 		goto error;
4370 
4371 	retval = device_add(dev);
4372 	if (retval)
4373 		goto error;
4374 
4375 	return dev;
4376 
4377 error:
4378 	put_device(dev);
4379 	return ERR_PTR(retval);
4380 }
4381 
4382 /**
4383  * device_create - creates a device and registers it with sysfs
4384  * @class: pointer to the struct class that this device should be registered to
4385  * @parent: pointer to the parent struct device of this new device, if any
4386  * @devt: the dev_t for the char device to be added
4387  * @drvdata: the data to be added to the device for callbacks
4388  * @fmt: string for the device's name
4389  *
4390  * This function can be used by char device classes.  A struct device
4391  * will be created in sysfs, registered to the specified class.
4392  *
4393  * A "dev" file will be created, showing the dev_t for the device, if
4394  * the dev_t is not 0,0.
4395  * If a pointer to a parent struct device is passed in, the newly created
4396  * struct device will be a child of that device in sysfs.
4397  * The pointer to the struct device will be returned from the call.
4398  * Any further sysfs files that might be required can be created using this
4399  * pointer.
4400  *
4401  * Returns &struct device pointer on success, or ERR_PTR() on error.
4402  */
device_create(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const char * fmt,...)4403 struct device *device_create(const struct class *class, struct device *parent,
4404 			     dev_t devt, void *drvdata, const char *fmt, ...)
4405 {
4406 	va_list vargs;
4407 	struct device *dev;
4408 
4409 	va_start(vargs, fmt);
4410 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4411 					  fmt, vargs);
4412 	va_end(vargs);
4413 	return dev;
4414 }
4415 EXPORT_SYMBOL_GPL(device_create);
4416 
4417 /**
4418  * device_create_with_groups - creates a device and registers it with sysfs
4419  * @class: pointer to the struct class that this device should be registered to
4420  * @parent: pointer to the parent struct device of this new device, if any
4421  * @devt: the dev_t for the char device to be added
4422  * @drvdata: the data to be added to the device for callbacks
4423  * @groups: NULL-terminated list of attribute groups to be created
4424  * @fmt: string for the device's name
4425  *
4426  * This function can be used by char device classes.  A struct device
4427  * will be created in sysfs, registered to the specified class.
4428  * Additional attributes specified in the groups parameter will also
4429  * be created automatically.
4430  *
4431  * A "dev" file will be created, showing the dev_t for the device, if
4432  * the dev_t is not 0,0.
4433  * If a pointer to a parent struct device is passed in, the newly created
4434  * struct device will be a child of that device in sysfs.
4435  * The pointer to the struct device will be returned from the call.
4436  * Any further sysfs files that might be required can be created using this
4437  * pointer.
4438  *
4439  * Returns &struct device pointer on success, or ERR_PTR() on error.
4440  */
device_create_with_groups(const struct class * class,struct device * parent,dev_t devt,void * drvdata,const struct attribute_group ** groups,const char * fmt,...)4441 struct device *device_create_with_groups(const struct class *class,
4442 					 struct device *parent, dev_t devt,
4443 					 void *drvdata,
4444 					 const struct attribute_group **groups,
4445 					 const char *fmt, ...)
4446 {
4447 	va_list vargs;
4448 	struct device *dev;
4449 
4450 	va_start(vargs, fmt);
4451 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4452 					 fmt, vargs);
4453 	va_end(vargs);
4454 	return dev;
4455 }
4456 EXPORT_SYMBOL_GPL(device_create_with_groups);
4457 
4458 /**
4459  * device_destroy - removes a device that was created with device_create()
4460  * @class: pointer to the struct class that this device was registered with
4461  * @devt: the dev_t of the device that was previously registered
4462  *
4463  * This call unregisters and cleans up a device that was created with a
4464  * call to device_create().
4465  */
device_destroy(const struct class * class,dev_t devt)4466 void device_destroy(const struct class *class, dev_t devt)
4467 {
4468 	struct device *dev;
4469 
4470 	dev = class_find_device_by_devt(class, devt);
4471 	if (dev) {
4472 		put_device(dev);
4473 		device_unregister(dev);
4474 	}
4475 }
4476 EXPORT_SYMBOL_GPL(device_destroy);
4477 
4478 /**
4479  * device_rename - renames a device
4480  * @dev: the pointer to the struct device to be renamed
4481  * @new_name: the new name of the device
4482  *
4483  * It is the responsibility of the caller to provide mutual
4484  * exclusion between two different calls of device_rename
4485  * on the same device to ensure that new_name is valid and
4486  * won't conflict with other devices.
4487  *
4488  * Note: given that some subsystems (networking and infiniband) use this
4489  * function, with no immediate plans for this to change, we cannot assume or
4490  * require that this function not be called at all.
4491  *
4492  * However, if you're writing new code, do not call this function. The following
4493  * text from Kay Sievers offers some insight:
4494  *
4495  * Renaming devices is racy at many levels, symlinks and other stuff are not
4496  * replaced atomically, and you get a "move" uevent, but it's not easy to
4497  * connect the event to the old and new device. Device nodes are not renamed at
4498  * all, there isn't even support for that in the kernel now.
4499  *
4500  * In the meantime, during renaming, your target name might be taken by another
4501  * driver, creating conflicts. Or the old name is taken directly after you
4502  * renamed it -- then you get events for the same DEVPATH, before you even see
4503  * the "move" event. It's just a mess, and nothing new should ever rely on
4504  * kernel device renaming. Besides that, it's not even implemented now for
4505  * other things than (driver-core wise very simple) network devices.
4506  *
4507  * Make up a "real" name in the driver before you register anything, or add
4508  * some other attributes for userspace to find the device, or use udev to add
4509  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4510  * don't even want to get into that and try to implement the missing pieces in
4511  * the core. We really have other pieces to fix in the driver core mess. :)
4512  */
device_rename(struct device * dev,const char * new_name)4513 int device_rename(struct device *dev, const char *new_name)
4514 {
4515 	struct subsys_private *sp = NULL;
4516 	struct kobject *kobj = &dev->kobj;
4517 	char *old_device_name = NULL;
4518 	int error;
4519 	bool is_link_renamed = false;
4520 
4521 	dev = get_device(dev);
4522 	if (!dev)
4523 		return -EINVAL;
4524 
4525 	dev_dbg(dev, "renaming to %s\n", new_name);
4526 
4527 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4528 	if (!old_device_name) {
4529 		error = -ENOMEM;
4530 		goto out;
4531 	}
4532 
4533 	if (dev->class) {
4534 		sp = class_to_subsys(dev->class);
4535 
4536 		if (!sp) {
4537 			error = -EINVAL;
4538 			goto out;
4539 		}
4540 
4541 		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4542 					     new_name, kobject_namespace(kobj));
4543 		if (error)
4544 			goto out;
4545 
4546 		is_link_renamed = true;
4547 	}
4548 
4549 	error = kobject_rename(kobj, new_name);
4550 out:
4551 	if (error && is_link_renamed)
4552 		sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name,
4553 				     old_device_name, kobject_namespace(kobj));
4554 	subsys_put(sp);
4555 
4556 	put_device(dev);
4557 
4558 	kfree(old_device_name);
4559 
4560 	return error;
4561 }
4562 EXPORT_SYMBOL_GPL(device_rename);
4563 
device_move_class_links(struct device * dev,struct device * old_parent,struct device * new_parent)4564 static int device_move_class_links(struct device *dev,
4565 				   struct device *old_parent,
4566 				   struct device *new_parent)
4567 {
4568 	int error = 0;
4569 
4570 	if (old_parent)
4571 		sysfs_remove_link(&dev->kobj, "device");
4572 	if (new_parent)
4573 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4574 					  "device");
4575 	return error;
4576 }
4577 
4578 /**
4579  * device_move - moves a device to a new parent
4580  * @dev: the pointer to the struct device to be moved
4581  * @new_parent: the new parent of the device (can be NULL)
4582  * @dpm_order: how to reorder the dpm_list
4583  */
device_move(struct device * dev,struct device * new_parent,enum dpm_order dpm_order)4584 int device_move(struct device *dev, struct device *new_parent,
4585 		enum dpm_order dpm_order)
4586 {
4587 	int error;
4588 	struct device *old_parent;
4589 	struct kobject *new_parent_kobj;
4590 
4591 	dev = get_device(dev);
4592 	if (!dev)
4593 		return -EINVAL;
4594 
4595 	device_pm_lock();
4596 	new_parent = get_device(new_parent);
4597 	new_parent_kobj = get_device_parent(dev, new_parent);
4598 	if (IS_ERR(new_parent_kobj)) {
4599 		error = PTR_ERR(new_parent_kobj);
4600 		put_device(new_parent);
4601 		goto out;
4602 	}
4603 
4604 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4605 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4606 	error = kobject_move(&dev->kobj, new_parent_kobj);
4607 	if (error) {
4608 		cleanup_glue_dir(dev, new_parent_kobj);
4609 		put_device(new_parent);
4610 		goto out;
4611 	}
4612 	old_parent = dev->parent;
4613 	dev->parent = new_parent;
4614 	if (old_parent)
4615 		klist_remove(&dev->p->knode_parent);
4616 	if (new_parent) {
4617 		klist_add_tail(&dev->p->knode_parent,
4618 			       &new_parent->p->klist_children);
4619 		set_dev_node(dev, dev_to_node(new_parent));
4620 	}
4621 
4622 	if (dev->class) {
4623 		error = device_move_class_links(dev, old_parent, new_parent);
4624 		if (error) {
4625 			/* We ignore errors on cleanup since we're hosed anyway... */
4626 			device_move_class_links(dev, new_parent, old_parent);
4627 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4628 				if (new_parent)
4629 					klist_remove(&dev->p->knode_parent);
4630 				dev->parent = old_parent;
4631 				if (old_parent) {
4632 					klist_add_tail(&dev->p->knode_parent,
4633 						       &old_parent->p->klist_children);
4634 					set_dev_node(dev, dev_to_node(old_parent));
4635 				}
4636 			}
4637 			cleanup_glue_dir(dev, new_parent_kobj);
4638 			put_device(new_parent);
4639 			goto out;
4640 		}
4641 	}
4642 	switch (dpm_order) {
4643 	case DPM_ORDER_NONE:
4644 		break;
4645 	case DPM_ORDER_DEV_AFTER_PARENT:
4646 		device_pm_move_after(dev, new_parent);
4647 		devices_kset_move_after(dev, new_parent);
4648 		break;
4649 	case DPM_ORDER_PARENT_BEFORE_DEV:
4650 		device_pm_move_before(new_parent, dev);
4651 		devices_kset_move_before(new_parent, dev);
4652 		break;
4653 	case DPM_ORDER_DEV_LAST:
4654 		device_pm_move_last(dev);
4655 		devices_kset_move_last(dev);
4656 		break;
4657 	}
4658 
4659 	put_device(old_parent);
4660 out:
4661 	device_pm_unlock();
4662 	put_device(dev);
4663 	return error;
4664 }
4665 EXPORT_SYMBOL_GPL(device_move);
4666 
device_attrs_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4667 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4668 				     kgid_t kgid)
4669 {
4670 	struct kobject *kobj = &dev->kobj;
4671 	const struct class *class = dev->class;
4672 	const struct device_type *type = dev->type;
4673 	int error;
4674 
4675 	if (class) {
4676 		/*
4677 		 * Change the device groups of the device class for @dev to
4678 		 * @kuid/@kgid.
4679 		 */
4680 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4681 						  kgid);
4682 		if (error)
4683 			return error;
4684 	}
4685 
4686 	if (type) {
4687 		/*
4688 		 * Change the device groups of the device type for @dev to
4689 		 * @kuid/@kgid.
4690 		 */
4691 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4692 						  kgid);
4693 		if (error)
4694 			return error;
4695 	}
4696 
4697 	/* Change the device groups of @dev to @kuid/@kgid. */
4698 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4699 	if (error)
4700 		return error;
4701 
4702 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4703 		/* Change online device attributes of @dev to @kuid/@kgid. */
4704 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4705 						kuid, kgid);
4706 		if (error)
4707 			return error;
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 /**
4714  * device_change_owner - change the owner of an existing device.
4715  * @dev: device.
4716  * @kuid: new owner's kuid
4717  * @kgid: new owner's kgid
4718  *
4719  * This changes the owner of @dev and its corresponding sysfs entries to
4720  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4721  * core.
4722  *
4723  * Returns 0 on success or error code on failure.
4724  */
device_change_owner(struct device * dev,kuid_t kuid,kgid_t kgid)4725 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4726 {
4727 	int error;
4728 	struct kobject *kobj = &dev->kobj;
4729 	struct subsys_private *sp;
4730 
4731 	dev = get_device(dev);
4732 	if (!dev)
4733 		return -EINVAL;
4734 
4735 	/*
4736 	 * Change the kobject and the default attributes and groups of the
4737 	 * ktype associated with it to @kuid/@kgid.
4738 	 */
4739 	error = sysfs_change_owner(kobj, kuid, kgid);
4740 	if (error)
4741 		goto out;
4742 
4743 	/*
4744 	 * Change the uevent file for @dev to the new owner. The uevent file
4745 	 * was created in a separate step when @dev got added and we mirror
4746 	 * that step here.
4747 	 */
4748 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4749 					kgid);
4750 	if (error)
4751 		goto out;
4752 
4753 	/*
4754 	 * Change the device groups, the device groups associated with the
4755 	 * device class, and the groups associated with the device type of @dev
4756 	 * to @kuid/@kgid.
4757 	 */
4758 	error = device_attrs_change_owner(dev, kuid, kgid);
4759 	if (error)
4760 		goto out;
4761 
4762 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4763 	if (error)
4764 		goto out;
4765 
4766 	/*
4767 	 * Change the owner of the symlink located in the class directory of
4768 	 * the device class associated with @dev which points to the actual
4769 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4770 	 * symlink shows the same permissions as its target.
4771 	 */
4772 	sp = class_to_subsys(dev->class);
4773 	if (!sp) {
4774 		error = -EINVAL;
4775 		goto out;
4776 	}
4777 	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4778 	subsys_put(sp);
4779 
4780 out:
4781 	put_device(dev);
4782 	return error;
4783 }
4784 EXPORT_SYMBOL_GPL(device_change_owner);
4785 
4786 /**
4787  * device_shutdown - call ->shutdown() on each device to shutdown.
4788  */
device_shutdown(void)4789 void device_shutdown(void)
4790 {
4791 	struct device *dev, *parent;
4792 
4793 	wait_for_device_probe();
4794 	device_block_probing();
4795 
4796 	cpufreq_suspend();
4797 
4798 	spin_lock(&devices_kset->list_lock);
4799 	/*
4800 	 * Walk the devices list backward, shutting down each in turn.
4801 	 * Beware that device unplug events may also start pulling
4802 	 * devices offline, even as the system is shutting down.
4803 	 */
4804 	while (!list_empty(&devices_kset->list)) {
4805 		dev = list_entry(devices_kset->list.prev, struct device,
4806 				kobj.entry);
4807 
4808 		/*
4809 		 * hold reference count of device's parent to
4810 		 * prevent it from being freed because parent's
4811 		 * lock is to be held
4812 		 */
4813 		parent = get_device(dev->parent);
4814 		get_device(dev);
4815 		/*
4816 		 * Make sure the device is off the kset list, in the
4817 		 * event that dev->*->shutdown() doesn't remove it.
4818 		 */
4819 		list_del_init(&dev->kobj.entry);
4820 		spin_unlock(&devices_kset->list_lock);
4821 
4822 		/* hold lock to avoid race with probe/release */
4823 		if (parent)
4824 			device_lock(parent);
4825 		device_lock(dev);
4826 
4827 		/* Don't allow any more runtime suspends */
4828 		pm_runtime_get_noresume(dev);
4829 		pm_runtime_barrier(dev);
4830 
4831 		if (dev->class && dev->class->shutdown_pre) {
4832 			if (initcall_debug)
4833 				dev_info(dev, "shutdown_pre\n");
4834 			dev->class->shutdown_pre(dev);
4835 		}
4836 		if (dev->bus && dev->bus->shutdown) {
4837 			if (initcall_debug)
4838 				dev_info(dev, "shutdown\n");
4839 			dev->bus->shutdown(dev);
4840 		} else if (dev->driver && dev->driver->shutdown) {
4841 			if (initcall_debug)
4842 				dev_info(dev, "shutdown\n");
4843 			dev->driver->shutdown(dev);
4844 		}
4845 
4846 		device_unlock(dev);
4847 		if (parent)
4848 			device_unlock(parent);
4849 
4850 		put_device(dev);
4851 		put_device(parent);
4852 
4853 		spin_lock(&devices_kset->list_lock);
4854 	}
4855 	spin_unlock(&devices_kset->list_lock);
4856 }
4857 
4858 /*
4859  * Device logging functions
4860  */
4861 
4862 #ifdef CONFIG_PRINTK
4863 static void
set_dev_info(const struct device * dev,struct dev_printk_info * dev_info)4864 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4865 {
4866 	const char *subsys;
4867 
4868 	memset(dev_info, 0, sizeof(*dev_info));
4869 
4870 	if (dev->class)
4871 		subsys = dev->class->name;
4872 	else if (dev->bus)
4873 		subsys = dev->bus->name;
4874 	else
4875 		return;
4876 
4877 	strscpy(dev_info->subsystem, subsys);
4878 
4879 	/*
4880 	 * Add device identifier DEVICE=:
4881 	 *   b12:8         block dev_t
4882 	 *   c127:3        char dev_t
4883 	 *   n8            netdev ifindex
4884 	 *   +sound:card0  subsystem:devname
4885 	 */
4886 	if (MAJOR(dev->devt)) {
4887 		char c;
4888 
4889 		if (strcmp(subsys, "block") == 0)
4890 			c = 'b';
4891 		else
4892 			c = 'c';
4893 
4894 		snprintf(dev_info->device, sizeof(dev_info->device),
4895 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4896 	} else if (strcmp(subsys, "net") == 0) {
4897 		struct net_device *net = to_net_dev(dev);
4898 
4899 		snprintf(dev_info->device, sizeof(dev_info->device),
4900 			 "n%u", net->ifindex);
4901 	} else {
4902 		snprintf(dev_info->device, sizeof(dev_info->device),
4903 			 "+%s:%s", subsys, dev_name(dev));
4904 	}
4905 }
4906 
dev_vprintk_emit(int level,const struct device * dev,const char * fmt,va_list args)4907 int dev_vprintk_emit(int level, const struct device *dev,
4908 		     const char *fmt, va_list args)
4909 {
4910 	struct dev_printk_info dev_info;
4911 
4912 	set_dev_info(dev, &dev_info);
4913 
4914 	return vprintk_emit(0, level, &dev_info, fmt, args);
4915 }
4916 EXPORT_SYMBOL(dev_vprintk_emit);
4917 
dev_printk_emit(int level,const struct device * dev,const char * fmt,...)4918 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4919 {
4920 	va_list args;
4921 	int r;
4922 
4923 	va_start(args, fmt);
4924 
4925 	r = dev_vprintk_emit(level, dev, fmt, args);
4926 
4927 	va_end(args);
4928 
4929 	return r;
4930 }
4931 EXPORT_SYMBOL(dev_printk_emit);
4932 
__dev_printk(const char * level,const struct device * dev,struct va_format * vaf)4933 static void __dev_printk(const char *level, const struct device *dev,
4934 			struct va_format *vaf)
4935 {
4936 	if (dev)
4937 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4938 				dev_driver_string(dev), dev_name(dev), vaf);
4939 	else
4940 		printk("%s(NULL device *): %pV", level, vaf);
4941 }
4942 
_dev_printk(const char * level,const struct device * dev,const char * fmt,...)4943 void _dev_printk(const char *level, const struct device *dev,
4944 		 const char *fmt, ...)
4945 {
4946 	struct va_format vaf;
4947 	va_list args;
4948 
4949 	va_start(args, fmt);
4950 
4951 	vaf.fmt = fmt;
4952 	vaf.va = &args;
4953 
4954 	__dev_printk(level, dev, &vaf);
4955 
4956 	va_end(args);
4957 }
4958 EXPORT_SYMBOL(_dev_printk);
4959 
4960 #define define_dev_printk_level(func, kern_level)		\
4961 void func(const struct device *dev, const char *fmt, ...)	\
4962 {								\
4963 	struct va_format vaf;					\
4964 	va_list args;						\
4965 								\
4966 	va_start(args, fmt);					\
4967 								\
4968 	vaf.fmt = fmt;						\
4969 	vaf.va = &args;						\
4970 								\
4971 	__dev_printk(kern_level, dev, &vaf);			\
4972 								\
4973 	va_end(args);						\
4974 }								\
4975 EXPORT_SYMBOL(func);
4976 
4977 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4978 define_dev_printk_level(_dev_alert, KERN_ALERT);
4979 define_dev_printk_level(_dev_crit, KERN_CRIT);
4980 define_dev_printk_level(_dev_err, KERN_ERR);
4981 define_dev_printk_level(_dev_warn, KERN_WARNING);
4982 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4983 define_dev_printk_level(_dev_info, KERN_INFO);
4984 
4985 #endif
4986 
__dev_probe_failed(const struct device * dev,int err,bool fatal,const char * fmt,va_list vargsp)4987 static void __dev_probe_failed(const struct device *dev, int err, bool fatal,
4988 			       const char *fmt, va_list vargsp)
4989 {
4990 	struct va_format vaf;
4991 	va_list vargs;
4992 
4993 	/*
4994 	 * On x86_64 and possibly on other architectures, va_list is actually a
4995 	 * size-1 array containing a structure.  As a result, function parameter
4996 	 * vargsp decays from T[1] to T*, and &vargsp has type T** rather than
4997 	 * T(*)[1], which is expected by its assignment to vaf.va below.
4998 	 *
4999 	 * One standard way to solve this mess is by creating a copy in a local
5000 	 * variable of type va_list and then using a pointer to that local copy
5001 	 * instead, which is the approach employed here.
5002 	 */
5003 	va_copy(vargs, vargsp);
5004 
5005 	vaf.fmt = fmt;
5006 	vaf.va = &vargs;
5007 
5008 	switch (err) {
5009 	case -EPROBE_DEFER:
5010 		device_set_deferred_probe_reason(dev, &vaf);
5011 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5012 		break;
5013 
5014 	case -ENOMEM:
5015 		/* Don't print anything on -ENOMEM, there's already enough output */
5016 		break;
5017 
5018 	default:
5019 		/* Log fatal final failures as errors, otherwise produce warnings */
5020 		if (fatal)
5021 			dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5022 		else
5023 			dev_warn(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5024 		break;
5025 	}
5026 
5027 	va_end(vargs);
5028 }
5029 
5030 /**
5031  * dev_err_probe - probe error check and log helper
5032  * @dev: the pointer to the struct device
5033  * @err: error value to test
5034  * @fmt: printf-style format string
5035  * @...: arguments as specified in the format string
5036  *
5037  * This helper implements common pattern present in probe functions for error
5038  * checking: print debug or error message depending if the error value is
5039  * -EPROBE_DEFER and propagate error upwards.
5040  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5041  * checked later by reading devices_deferred debugfs attribute.
5042  * It replaces the following code sequence::
5043  *
5044  * 	if (err != -EPROBE_DEFER)
5045  * 		dev_err(dev, ...);
5046  * 	else
5047  * 		dev_dbg(dev, ...);
5048  * 	return err;
5049  *
5050  * with::
5051  *
5052  * 	return dev_err_probe(dev, err, ...);
5053  *
5054  * Using this helper in your probe function is totally fine even if @err
5055  * is known to never be -EPROBE_DEFER.
5056  * The benefit compared to a normal dev_err() is the standardized format
5057  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5058  * instead of "-35"), and having the error code returned allows more
5059  * compact error paths.
5060  *
5061  * Returns @err.
5062  */
dev_err_probe(const struct device * dev,int err,const char * fmt,...)5063 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5064 {
5065 	va_list vargs;
5066 
5067 	va_start(vargs, fmt);
5068 
5069 	/* Use dev_err() for logging when err doesn't equal -EPROBE_DEFER */
5070 	__dev_probe_failed(dev, err, true, fmt, vargs);
5071 
5072 	va_end(vargs);
5073 
5074 	return err;
5075 }
5076 EXPORT_SYMBOL_GPL(dev_err_probe);
5077 
5078 /**
5079  * dev_warn_probe - probe error check and log helper
5080  * @dev: the pointer to the struct device
5081  * @err: error value to test
5082  * @fmt: printf-style format string
5083  * @...: arguments as specified in the format string
5084  *
5085  * This helper implements common pattern present in probe functions for error
5086  * checking: print debug or warning message depending if the error value is
5087  * -EPROBE_DEFER and propagate error upwards.
5088  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5089  * checked later by reading devices_deferred debugfs attribute.
5090  * It replaces the following code sequence::
5091  *
5092  * 	if (err != -EPROBE_DEFER)
5093  * 		dev_warn(dev, ...);
5094  * 	else
5095  * 		dev_dbg(dev, ...);
5096  * 	return err;
5097  *
5098  * with::
5099  *
5100  * 	return dev_warn_probe(dev, err, ...);
5101  *
5102  * Using this helper in your probe function is totally fine even if @err
5103  * is known to never be -EPROBE_DEFER.
5104  * The benefit compared to a normal dev_warn() is the standardized format
5105  * of the error code, which is emitted symbolically (i.e. you get "EAGAIN"
5106  * instead of "-35"), and having the error code returned allows more
5107  * compact error paths.
5108  *
5109  * Returns @err.
5110  */
dev_warn_probe(const struct device * dev,int err,const char * fmt,...)5111 int dev_warn_probe(const struct device *dev, int err, const char *fmt, ...)
5112 {
5113 	va_list vargs;
5114 
5115 	va_start(vargs, fmt);
5116 
5117 	/* Use dev_warn() for logging when err doesn't equal -EPROBE_DEFER */
5118 	__dev_probe_failed(dev, err, false, fmt, vargs);
5119 
5120 	va_end(vargs);
5121 
5122 	return err;
5123 }
5124 EXPORT_SYMBOL_GPL(dev_warn_probe);
5125 
fwnode_is_primary(struct fwnode_handle * fwnode)5126 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5127 {
5128 	return fwnode && !IS_ERR(fwnode->secondary);
5129 }
5130 
5131 /**
5132  * set_primary_fwnode - Change the primary firmware node of a given device.
5133  * @dev: Device to handle.
5134  * @fwnode: New primary firmware node of the device.
5135  *
5136  * Set the device's firmware node pointer to @fwnode, but if a secondary
5137  * firmware node of the device is present, preserve it.
5138  *
5139  * Valid fwnode cases are:
5140  *  - primary --> secondary --> -ENODEV
5141  *  - primary --> NULL
5142  *  - secondary --> -ENODEV
5143  *  - NULL
5144  */
set_primary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5145 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5146 {
5147 	struct device *parent = dev->parent;
5148 	struct fwnode_handle *fn = dev->fwnode;
5149 
5150 	if (fwnode) {
5151 		if (fwnode_is_primary(fn))
5152 			fn = fn->secondary;
5153 
5154 		if (fn) {
5155 			WARN_ON(fwnode->secondary);
5156 			fwnode->secondary = fn;
5157 		}
5158 		dev->fwnode = fwnode;
5159 	} else {
5160 		if (fwnode_is_primary(fn)) {
5161 			dev->fwnode = fn->secondary;
5162 
5163 			/* Skip nullifying fn->secondary if the primary is shared */
5164 			if (parent && fn == parent->fwnode)
5165 				return;
5166 
5167 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5168 			fn->secondary = NULL;
5169 		} else {
5170 			dev->fwnode = NULL;
5171 		}
5172 	}
5173 }
5174 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5175 
5176 /**
5177  * set_secondary_fwnode - Change the secondary firmware node of a given device.
5178  * @dev: Device to handle.
5179  * @fwnode: New secondary firmware node of the device.
5180  *
5181  * If a primary firmware node of the device is present, set its secondary
5182  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5183  * @fwnode.
5184  */
set_secondary_fwnode(struct device * dev,struct fwnode_handle * fwnode)5185 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5186 {
5187 	if (fwnode)
5188 		fwnode->secondary = ERR_PTR(-ENODEV);
5189 
5190 	if (fwnode_is_primary(dev->fwnode))
5191 		dev->fwnode->secondary = fwnode;
5192 	else
5193 		dev->fwnode = fwnode;
5194 }
5195 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5196 
5197 /**
5198  * device_remove_of_node - Remove an of_node from a device
5199  * @dev: device whose device tree node is being removed
5200  */
device_remove_of_node(struct device * dev)5201 void device_remove_of_node(struct device *dev)
5202 {
5203 	dev = get_device(dev);
5204 	if (!dev)
5205 		return;
5206 
5207 	if (!dev->of_node)
5208 		goto end;
5209 
5210 	if (dev->fwnode == of_fwnode_handle(dev->of_node))
5211 		dev->fwnode = NULL;
5212 
5213 	of_node_put(dev->of_node);
5214 	dev->of_node = NULL;
5215 
5216 end:
5217 	put_device(dev);
5218 }
5219 EXPORT_SYMBOL_GPL(device_remove_of_node);
5220 
5221 /**
5222  * device_add_of_node - Add an of_node to an existing device
5223  * @dev: device whose device tree node is being added
5224  * @of_node: of_node to add
5225  *
5226  * Return: 0 on success or error code on failure.
5227  */
device_add_of_node(struct device * dev,struct device_node * of_node)5228 int device_add_of_node(struct device *dev, struct device_node *of_node)
5229 {
5230 	int ret;
5231 
5232 	if (!of_node)
5233 		return -EINVAL;
5234 
5235 	dev = get_device(dev);
5236 	if (!dev)
5237 		return -EINVAL;
5238 
5239 	if (dev->of_node) {
5240 		dev_err(dev, "Cannot replace node %pOF with %pOF\n",
5241 			dev->of_node, of_node);
5242 		ret = -EBUSY;
5243 		goto end;
5244 	}
5245 
5246 	dev->of_node = of_node_get(of_node);
5247 
5248 	if (!dev->fwnode)
5249 		dev->fwnode = of_fwnode_handle(of_node);
5250 
5251 	ret = 0;
5252 end:
5253 	put_device(dev);
5254 	return ret;
5255 }
5256 EXPORT_SYMBOL_GPL(device_add_of_node);
5257 
5258 /**
5259  * device_set_of_node_from_dev - reuse device-tree node of another device
5260  * @dev: device whose device-tree node is being set
5261  * @dev2: device whose device-tree node is being reused
5262  *
5263  * Takes another reference to the new device-tree node after first dropping
5264  * any reference held to the old node.
5265  */
device_set_of_node_from_dev(struct device * dev,const struct device * dev2)5266 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5267 {
5268 	of_node_put(dev->of_node);
5269 	dev->of_node = of_node_get(dev2->of_node);
5270 	dev->of_node_reused = true;
5271 }
5272 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5273 
device_set_node(struct device * dev,struct fwnode_handle * fwnode)5274 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5275 {
5276 	dev->fwnode = fwnode;
5277 	dev->of_node = to_of_node(fwnode);
5278 }
5279 EXPORT_SYMBOL_GPL(device_set_node);
5280 
get_dev_from_fwnode(struct fwnode_handle * fwnode)5281 struct device *get_dev_from_fwnode(struct fwnode_handle *fwnode)
5282 {
5283 	return get_device((fwnode)->dev);
5284 }
5285 EXPORT_SYMBOL_GPL(get_dev_from_fwnode);
5286 
device_match_name(struct device * dev,const void * name)5287 int device_match_name(struct device *dev, const void *name)
5288 {
5289 	return sysfs_streq(dev_name(dev), name);
5290 }
5291 EXPORT_SYMBOL_GPL(device_match_name);
5292 
device_match_type(struct device * dev,const void * type)5293 int device_match_type(struct device *dev, const void *type)
5294 {
5295 	return dev->type == type;
5296 }
5297 EXPORT_SYMBOL_GPL(device_match_type);
5298 
device_match_of_node(struct device * dev,const void * np)5299 int device_match_of_node(struct device *dev, const void *np)
5300 {
5301 	return np && dev->of_node == np;
5302 }
5303 EXPORT_SYMBOL_GPL(device_match_of_node);
5304 
device_match_fwnode(struct device * dev,const void * fwnode)5305 int device_match_fwnode(struct device *dev, const void *fwnode)
5306 {
5307 	return fwnode && dev_fwnode(dev) == fwnode;
5308 }
5309 EXPORT_SYMBOL_GPL(device_match_fwnode);
5310 
device_match_devt(struct device * dev,const void * pdevt)5311 int device_match_devt(struct device *dev, const void *pdevt)
5312 {
5313 	return dev->devt == *(dev_t *)pdevt;
5314 }
5315 EXPORT_SYMBOL_GPL(device_match_devt);
5316 
device_match_acpi_dev(struct device * dev,const void * adev)5317 int device_match_acpi_dev(struct device *dev, const void *adev)
5318 {
5319 	return adev && ACPI_COMPANION(dev) == adev;
5320 }
5321 EXPORT_SYMBOL(device_match_acpi_dev);
5322 
device_match_acpi_handle(struct device * dev,const void * handle)5323 int device_match_acpi_handle(struct device *dev, const void *handle)
5324 {
5325 	return handle && ACPI_HANDLE(dev) == handle;
5326 }
5327 EXPORT_SYMBOL(device_match_acpi_handle);
5328 
device_match_any(struct device * dev,const void * unused)5329 int device_match_any(struct device *dev, const void *unused)
5330 {
5331 	return 1;
5332 }
5333 EXPORT_SYMBOL_GPL(device_match_any);
5334