xref: /qemu/hw/arm/armsse.c (revision 2cd09e47aa522dfc7bb206f13d6dccb68dd09887)
1 /*
2  * Arm SSE (Subsystems for Embedded): IoTKit
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qemu/units.h"
17 #include "qapi/error.h"
18 #include "trace.h"
19 #include "hw/sysbus.h"
20 #include "migration/vmstate.h"
21 #include "hw/registerfields.h"
22 #include "hw/arm/armsse.h"
23 #include "hw/arm/armsse-version.h"
24 #include "hw/arm/boot.h"
25 #include "hw/irq.h"
26 #include "hw/qdev-clock.h"
27 
28 /*
29  * The SSE-300 puts some devices in different places to the
30  * SSE-200 (and original IoTKit). We use an array of these structs
31  * to define how each variant lays out these devices. (Parts of the
32  * SoC that are the same for all variants aren't handled via these
33  * data structures.)
34  */
35 
36 #define NO_IRQ -1
37 #define NO_PPC -1
38 /*
39  * Special values for ARMSSEDeviceInfo::irq to indicate that this
40  * device uses one of the inputs to the OR gate that feeds into the
41  * CPU NMI input.
42  */
43 #define NMI_0 10000
44 #define NMI_1 10001
45 
46 typedef struct ARMSSEDeviceInfo {
47     const char *name; /* name to use for the QOM object; NULL terminates list */
48     const char *type; /* QOM type name */
49     unsigned int index; /* Which of the N devices of this type is this ? */
50     hwaddr addr;
51     hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */
52     int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */
53     int ppc_port; /* Port number of this device on the PPC */
54     int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */
55     bool slowclk; /* true if device uses the slow 32KHz clock */
56 } ARMSSEDeviceInfo;
57 
58 struct ARMSSEInfo {
59     const char *name;
60     const char *cpu_type;
61     uint32_t sse_version;
62     int sram_banks;
63     uint32_t sram_bank_base;
64     int num_cpus;
65     uint32_t sys_version;
66     uint32_t iidr;
67     uint32_t cpuwait_rst;
68     bool has_mhus;
69     bool has_cachectrl;
70     bool has_cpusecctrl;
71     bool has_cpuid;
72     bool has_cpu_pwrctrl;
73     bool has_sse_counter;
74     bool has_tcms;
75     uint8_t props_count;
76     const Property *props;
77     const ARMSSEDeviceInfo *devinfo;
78     const bool *irq_is_common;
79 };
80 
81 static const Property iotkit_properties[] = {
82     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
83                      MemoryRegion *),
84     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
85     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
86     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
87     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
88     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
89     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
90     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
91 };
92 
93 static const Property sse200_properties[] = {
94     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
95                      MemoryRegion *),
96     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
97     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
98     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
99     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
100     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
101     DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
102     DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
103     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
104     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
105     DEFINE_PROP_UINT32("CPU1_MPU_NS", ARMSSE, cpu_mpu_ns[1], 8),
106     DEFINE_PROP_UINT32("CPU1_MPU_S", ARMSSE, cpu_mpu_s[1], 8),
107 };
108 
109 static const Property sse300_properties[] = {
110     DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
111                      MemoryRegion *),
112     DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
113     DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18),
114     DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
115     DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
116     DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
117     DEFINE_PROP_UINT32("CPU0_MPU_NS", ARMSSE, cpu_mpu_ns[0], 8),
118     DEFINE_PROP_UINT32("CPU0_MPU_S", ARMSSE, cpu_mpu_s[0], 8),
119 };
120 
121 static const ARMSSEDeviceInfo iotkit_devices[] = {
122     {
123         .name = "timer0",
124         .type = TYPE_CMSDK_APB_TIMER,
125         .index = 0,
126         .addr = 0x40000000,
127         .ppc = 0,
128         .ppc_port = 0,
129         .irq = 3,
130     },
131     {
132         .name = "timer1",
133         .type = TYPE_CMSDK_APB_TIMER,
134         .index = 1,
135         .addr = 0x40001000,
136         .ppc = 0,
137         .ppc_port = 1,
138         .irq = 4,
139     },
140     {
141         .name = "s32ktimer",
142         .type = TYPE_CMSDK_APB_TIMER,
143         .index = 2,
144         .addr = 0x4002f000,
145         .ppc = 1,
146         .ppc_port = 0,
147         .irq = 2,
148         .slowclk = true,
149     },
150     {
151         .name = "dualtimer",
152         .type = TYPE_CMSDK_APB_DUALTIMER,
153         .index = 0,
154         .addr = 0x40002000,
155         .ppc = 0,
156         .ppc_port = 2,
157         .irq = 5,
158     },
159     {
160         .name = "s32kwatchdog",
161         .type = TYPE_CMSDK_APB_WATCHDOG,
162         .index = 0,
163         .addr = 0x5002e000,
164         .ppc = NO_PPC,
165         .irq = NMI_0,
166         .slowclk = true,
167     },
168     {
169         .name = "nswatchdog",
170         .type = TYPE_CMSDK_APB_WATCHDOG,
171         .index = 1,
172         .addr = 0x40081000,
173         .ppc = NO_PPC,
174         .irq = 1,
175     },
176     {
177         .name = "swatchdog",
178         .type = TYPE_CMSDK_APB_WATCHDOG,
179         .index = 2,
180         .addr = 0x50081000,
181         .ppc = NO_PPC,
182         .irq = NMI_1,
183     },
184     {
185         .name = "armsse-sysinfo",
186         .type = TYPE_IOTKIT_SYSINFO,
187         .index = 0,
188         .addr = 0x40020000,
189         .ppc = NO_PPC,
190         .irq = NO_IRQ,
191     },
192     {
193         .name = "armsse-sysctl",
194         .type = TYPE_IOTKIT_SYSCTL,
195         .index = 0,
196         .addr = 0x50021000,
197         .ppc = NO_PPC,
198         .irq = NO_IRQ,
199     },
200     {
201         .name = NULL,
202     }
203 };
204 
205 static const ARMSSEDeviceInfo sse200_devices[] = {
206     {
207         .name = "timer0",
208         .type = TYPE_CMSDK_APB_TIMER,
209         .index = 0,
210         .addr = 0x40000000,
211         .ppc = 0,
212         .ppc_port = 0,
213         .irq = 3,
214     },
215     {
216         .name = "timer1",
217         .type = TYPE_CMSDK_APB_TIMER,
218         .index = 1,
219         .addr = 0x40001000,
220         .ppc = 0,
221         .ppc_port = 1,
222         .irq = 4,
223     },
224     {
225         .name = "s32ktimer",
226         .type = TYPE_CMSDK_APB_TIMER,
227         .index = 2,
228         .addr = 0x4002f000,
229         .ppc = 1,
230         .ppc_port = 0,
231         .irq = 2,
232         .slowclk = true,
233     },
234     {
235         .name = "dualtimer",
236         .type = TYPE_CMSDK_APB_DUALTIMER,
237         .index = 0,
238         .addr = 0x40002000,
239         .ppc = 0,
240         .ppc_port = 2,
241         .irq = 5,
242     },
243     {
244         .name = "s32kwatchdog",
245         .type = TYPE_CMSDK_APB_WATCHDOG,
246         .index = 0,
247         .addr = 0x5002e000,
248         .ppc = NO_PPC,
249         .irq = NMI_0,
250         .slowclk = true,
251     },
252     {
253         .name = "nswatchdog",
254         .type = TYPE_CMSDK_APB_WATCHDOG,
255         .index = 1,
256         .addr = 0x40081000,
257         .ppc = NO_PPC,
258         .irq = 1,
259     },
260     {
261         .name = "swatchdog",
262         .type = TYPE_CMSDK_APB_WATCHDOG,
263         .index = 2,
264         .addr = 0x50081000,
265         .ppc = NO_PPC,
266         .irq = NMI_1,
267     },
268     {
269         .name = "armsse-sysinfo",
270         .type = TYPE_IOTKIT_SYSINFO,
271         .index = 0,
272         .addr = 0x40020000,
273         .ppc = NO_PPC,
274         .irq = NO_IRQ,
275     },
276     {
277         .name = "armsse-sysctl",
278         .type = TYPE_IOTKIT_SYSCTL,
279         .index = 0,
280         .addr = 0x50021000,
281         .ppc = NO_PPC,
282         .irq = NO_IRQ,
283     },
284     {
285         .name = "CPU0CORE_PPU",
286         .type = TYPE_UNIMPLEMENTED_DEVICE,
287         .index = 0,
288         .addr = 0x50023000,
289         .size = 0x1000,
290         .ppc = NO_PPC,
291         .irq = NO_IRQ,
292     },
293     {
294         .name = "CPU1CORE_PPU",
295         .type = TYPE_UNIMPLEMENTED_DEVICE,
296         .index = 1,
297         .addr = 0x50025000,
298         .size = 0x1000,
299         .ppc = NO_PPC,
300         .irq = NO_IRQ,
301     },
302     {
303         .name = "DBG_PPU",
304         .type = TYPE_UNIMPLEMENTED_DEVICE,
305         .index = 2,
306         .addr = 0x50029000,
307         .size = 0x1000,
308         .ppc = NO_PPC,
309         .irq = NO_IRQ,
310     },
311     {
312         .name = "RAM0_PPU",
313         .type = TYPE_UNIMPLEMENTED_DEVICE,
314         .index = 3,
315         .addr = 0x5002a000,
316         .size = 0x1000,
317         .ppc = NO_PPC,
318         .irq = NO_IRQ,
319     },
320     {
321         .name = "RAM1_PPU",
322         .type = TYPE_UNIMPLEMENTED_DEVICE,
323         .index = 4,
324         .addr = 0x5002b000,
325         .size = 0x1000,
326         .ppc = NO_PPC,
327         .irq = NO_IRQ,
328     },
329     {
330         .name = "RAM2_PPU",
331         .type = TYPE_UNIMPLEMENTED_DEVICE,
332         .index = 5,
333         .addr = 0x5002c000,
334         .size = 0x1000,
335         .ppc = NO_PPC,
336         .irq = NO_IRQ,
337     },
338     {
339         .name = "RAM3_PPU",
340         .type = TYPE_UNIMPLEMENTED_DEVICE,
341         .index = 6,
342         .addr = 0x5002d000,
343         .size = 0x1000,
344         .ppc = NO_PPC,
345         .irq = NO_IRQ,
346     },
347     {
348         .name = "SYS_PPU",
349         .type = TYPE_UNIMPLEMENTED_DEVICE,
350         .index = 7,
351         .addr = 0x50022000,
352         .size = 0x1000,
353         .ppc = NO_PPC,
354         .irq = NO_IRQ,
355     },
356     {
357         .name = NULL,
358     }
359 };
360 
361 static const ARMSSEDeviceInfo sse300_devices[] = {
362     {
363         .name = "timer0",
364         .type = TYPE_SSE_TIMER,
365         .index = 0,
366         .addr = 0x48000000,
367         .ppc = 0,
368         .ppc_port = 0,
369         .irq = 3,
370     },
371     {
372         .name = "timer1",
373         .type = TYPE_SSE_TIMER,
374         .index = 1,
375         .addr = 0x48001000,
376         .ppc = 0,
377         .ppc_port = 1,
378         .irq = 4,
379     },
380     {
381         .name = "timer2",
382         .type = TYPE_SSE_TIMER,
383         .index = 2,
384         .addr = 0x48002000,
385         .ppc = 0,
386         .ppc_port = 2,
387         .irq = 5,
388     },
389     {
390         .name = "timer3",
391         .type = TYPE_SSE_TIMER,
392         .index = 3,
393         .addr = 0x48003000,
394         .ppc = 0,
395         .ppc_port = 5,
396         .irq = 27,
397     },
398     {
399         .name = "s32ktimer",
400         .type = TYPE_CMSDK_APB_TIMER,
401         .index = 0,
402         .addr = 0x4802f000,
403         .ppc = 1,
404         .ppc_port = 0,
405         .irq = 2,
406         .slowclk = true,
407     },
408     {
409         .name = "s32kwatchdog",
410         .type = TYPE_CMSDK_APB_WATCHDOG,
411         .index = 0,
412         .addr = 0x4802e000,
413         .ppc = NO_PPC,
414         .irq = NMI_0,
415         .slowclk = true,
416     },
417     {
418         .name = "watchdog",
419         .type = TYPE_UNIMPLEMENTED_DEVICE,
420         .index = 0,
421         .addr = 0x48040000,
422         .size = 0x2000,
423         .ppc = NO_PPC,
424         .irq = NO_IRQ,
425     },
426     {
427         .name = "armsse-sysinfo",
428         .type = TYPE_IOTKIT_SYSINFO,
429         .index = 0,
430         .addr = 0x48020000,
431         .ppc = NO_PPC,
432         .irq = NO_IRQ,
433     },
434     {
435         .name = "armsse-sysctl",
436         .type = TYPE_IOTKIT_SYSCTL,
437         .index = 0,
438         .addr = 0x58021000,
439         .ppc = NO_PPC,
440         .irq = NO_IRQ,
441     },
442     {
443         .name = "SYS_PPU",
444         .type = TYPE_UNIMPLEMENTED_DEVICE,
445         .index = 1,
446         .addr = 0x58022000,
447         .size = 0x1000,
448         .ppc = NO_PPC,
449         .irq = NO_IRQ,
450     },
451     {
452         .name = "CPU0CORE_PPU",
453         .type = TYPE_UNIMPLEMENTED_DEVICE,
454         .index = 2,
455         .addr = 0x50023000,
456         .size = 0x1000,
457         .ppc = NO_PPC,
458         .irq = NO_IRQ,
459     },
460     {
461         .name = "MGMT_PPU",
462         .type = TYPE_UNIMPLEMENTED_DEVICE,
463         .index = 3,
464         .addr = 0x50028000,
465         .size = 0x1000,
466         .ppc = NO_PPC,
467         .irq = NO_IRQ,
468     },
469     {
470         .name = "DEBUG_PPU",
471         .type = TYPE_UNIMPLEMENTED_DEVICE,
472         .index = 4,
473         .addr = 0x50029000,
474         .size = 0x1000,
475         .ppc = NO_PPC,
476         .irq = NO_IRQ,
477     },
478     {
479         .name = NULL,
480     }
481 };
482 
483 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
484 static const bool sse200_irq_is_common[32] = {
485     [0 ... 5] = true,
486     /* 6, 7: per-CPU MHU interrupts */
487     [8 ... 12] = true,
488     /* 13: per-CPU icache interrupt */
489     /* 14: reserved */
490     [15 ... 20] = true,
491     /* 21: reserved */
492     [22 ... 26] = true,
493     /* 27: reserved */
494     /* 28, 29: per-CPU CTI interrupts */
495     /* 30, 31: reserved */
496 };
497 
498 static const bool sse300_irq_is_common[32] = {
499     [0 ... 5] = true,
500     /* 6, 7: per-CPU MHU interrupts */
501     [8 ... 12] = true,
502     /* 13: reserved */
503     [14 ... 16] = true,
504     /* 17-25: reserved */
505     [26 ... 27] = true,
506     /* 28, 29: per-CPU CTI interrupts */
507     /* 30, 31: reserved */
508 };
509 
510 static const ARMSSEInfo armsse_variants[] = {
511     {
512         .name = TYPE_IOTKIT,
513         .sse_version = ARMSSE_IOTKIT,
514         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
515         .sram_banks = 1,
516         .sram_bank_base = 0x20000000,
517         .num_cpus = 1,
518         .sys_version = 0x41743,
519         .iidr = 0,
520         .cpuwait_rst = 0,
521         .has_mhus = false,
522         .has_cachectrl = false,
523         .has_cpusecctrl = false,
524         .has_cpuid = false,
525         .has_cpu_pwrctrl = false,
526         .has_sse_counter = false,
527         .has_tcms = false,
528         .props = iotkit_properties,
529         .props_count = ARRAY_SIZE(iotkit_properties),
530         .devinfo = iotkit_devices,
531         .irq_is_common = sse200_irq_is_common,
532     },
533     {
534         .name = TYPE_SSE200,
535         .sse_version = ARMSSE_SSE200,
536         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"),
537         .sram_banks = 4,
538         .sram_bank_base = 0x20000000,
539         .num_cpus = 2,
540         .sys_version = 0x22041743,
541         .iidr = 0,
542         .cpuwait_rst = 2,
543         .has_mhus = true,
544         .has_cachectrl = true,
545         .has_cpusecctrl = true,
546         .has_cpuid = true,
547         .has_cpu_pwrctrl = false,
548         .has_sse_counter = false,
549         .has_tcms = false,
550         .props = sse200_properties,
551         .props_count = ARRAY_SIZE(sse200_properties),
552         .devinfo = sse200_devices,
553         .irq_is_common = sse200_irq_is_common,
554     },
555     {
556         .name = TYPE_SSE300,
557         .sse_version = ARMSSE_SSE300,
558         .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"),
559         .sram_banks = 2,
560         .sram_bank_base = 0x21000000,
561         .num_cpus = 1,
562         .sys_version = 0x7e00043b,
563         .iidr = 0x74a0043b,
564         .cpuwait_rst = 0,
565         .has_mhus = false,
566         .has_cachectrl = false,
567         .has_cpusecctrl = true,
568         .has_cpuid = true,
569         .has_cpu_pwrctrl = true,
570         .has_sse_counter = true,
571         .has_tcms = true,
572         .props = sse300_properties,
573         .props_count = ARRAY_SIZE(sse300_properties),
574         .devinfo = sse300_devices,
575         .irq_is_common = sse300_irq_is_common,
576     },
577 };
578 
armsse_sys_config_value(ARMSSE * s,const ARMSSEInfo * info)579 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
580 {
581     /* Return the SYS_CONFIG value for this SSE */
582     uint32_t sys_config;
583 
584     switch (info->sse_version) {
585     case ARMSSE_IOTKIT:
586         sys_config = 0;
587         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
588         sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
589         break;
590     case ARMSSE_SSE200:
591         sys_config = 0;
592         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
593         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
594         sys_config = deposit32(sys_config, 24, 4, 2);
595         if (info->num_cpus > 1) {
596             sys_config = deposit32(sys_config, 10, 1, 1);
597             sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
598             sys_config = deposit32(sys_config, 28, 4, 2);
599         }
600         break;
601     case ARMSSE_SSE300:
602         sys_config = 0;
603         sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
604         sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
605         sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */
606         break;
607     default:
608         g_assert_not_reached();
609     }
610     return sys_config;
611 }
612 
613 /* Clock frequency in HZ of the 32KHz "slow clock" */
614 #define S32KCLK (32 * 1000)
615 
616 /*
617  * Create an alias region in @container of @size bytes starting at @base
618  * which mirrors the memory starting at @orig.
619  */
make_alias(ARMSSE * s,MemoryRegion * mr,MemoryRegion * container,const char * name,hwaddr base,hwaddr size,hwaddr orig)620 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
621                        const char *name, hwaddr base, hwaddr size, hwaddr orig)
622 {
623     memory_region_init_alias(mr, NULL, name, container, orig, size);
624     /* The alias is even lower priority than unimplemented_device regions */
625     memory_region_add_subregion_overlap(container, base, mr, -1500);
626 }
627 
irq_status_forwarder(void * opaque,int n,int level)628 static void irq_status_forwarder(void *opaque, int n, int level)
629 {
630     qemu_irq destirq = opaque;
631 
632     qemu_set_irq(destirq, level);
633 }
634 
nsccfg_handler(void * opaque,int n,int level)635 static void nsccfg_handler(void *opaque, int n, int level)
636 {
637     ARMSSE *s = ARM_SSE(opaque);
638 
639     s->nsccfg = level;
640 }
641 
armsse_forward_ppc(ARMSSE * s,const char * ppcname,int ppcnum)642 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
643 {
644     /* Each of the 4 AHB and 4 APB PPCs that might be present in a
645      * system using the ARMSSE has a collection of control lines which
646      * are provided by the security controller and which we want to
647      * expose as control lines on the ARMSSE device itself, so the
648      * code using the ARMSSE can wire them up to the PPCs.
649      */
650     SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
651     DeviceState *armssedev = DEVICE(s);
652     DeviceState *dev_secctl = DEVICE(&s->secctl);
653     DeviceState *dev_splitter = DEVICE(splitter);
654     char *name;
655 
656     name = g_strdup_printf("%s_nonsec", ppcname);
657     qdev_pass_gpios(dev_secctl, armssedev, name);
658     g_free(name);
659     name = g_strdup_printf("%s_ap", ppcname);
660     qdev_pass_gpios(dev_secctl, armssedev, name);
661     g_free(name);
662     name = g_strdup_printf("%s_irq_enable", ppcname);
663     qdev_pass_gpios(dev_secctl, armssedev, name);
664     g_free(name);
665     name = g_strdup_printf("%s_irq_clear", ppcname);
666     qdev_pass_gpios(dev_secctl, armssedev, name);
667     g_free(name);
668 
669     /* irq_status is a little more tricky, because we need to
670      * split it so we can send it both to the security controller
671      * and to our OR gate for the NVIC interrupt line.
672      * Connect up the splitter's outputs, and create a GPIO input
673      * which will pass the line state to the input splitter.
674      */
675     name = g_strdup_printf("%s_irq_status", ppcname);
676     qdev_connect_gpio_out(dev_splitter, 0,
677                           qdev_get_gpio_in_named(dev_secctl,
678                                                  name, 0));
679     qdev_connect_gpio_out(dev_splitter, 1,
680                           qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
681     s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
682     qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
683                                         s->irq_status_in[ppcnum], name, 1);
684     g_free(name);
685 }
686 
armsse_forward_sec_resp_cfg(ARMSSE * s)687 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
688 {
689     /* Forward the 3rd output from the splitter device as a
690      * named GPIO output of the armsse object.
691      */
692     DeviceState *dev = DEVICE(s);
693     DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
694 
695     qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
696     s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
697                                            s->sec_resp_cfg, 1);
698     qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
699 }
700 
armsse_init(Object * obj)701 static void armsse_init(Object *obj)
702 {
703     ARMSSE *s = ARM_SSE(obj);
704     ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
705     const ARMSSEInfo *info = asc->info;
706     const ARMSSEDeviceInfo *devinfo;
707     int i;
708 
709     assert(info->sram_banks <= MAX_SRAM_BANKS);
710     assert(info->num_cpus <= SSE_MAX_CPUS);
711 
712     s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0);
713     s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0);
714 
715     memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
716 
717     for (i = 0; i < info->num_cpus; i++) {
718         /*
719          * We put each CPU in its own cluster as they are logically
720          * distinct and may be configured differently.
721          */
722         char *name;
723 
724         name = g_strdup_printf("cluster%d", i);
725         object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
726         qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
727         g_free(name);
728 
729         name = g_strdup_printf("armv7m%d", i);
730         object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
731                                 TYPE_ARMV7M);
732         qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type);
733         g_free(name);
734         name = g_strdup_printf("arm-sse-cpu-container%d", i);
735         memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
736         g_free(name);
737         if (i > 0) {
738             name = g_strdup_printf("arm-sse-container-alias%d", i);
739             memory_region_init_alias(&s->container_alias[i - 1], obj,
740                                      name, &s->container, 0, UINT64_MAX);
741             g_free(name);
742         }
743     }
744 
745     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
746         assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc));
747         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
748             assert(devinfo->index < ARRAY_SIZE(s->timer));
749             object_initialize_child(obj, devinfo->name,
750                                     &s->timer[devinfo->index],
751                                     TYPE_CMSDK_APB_TIMER);
752         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
753             assert(devinfo->index == 0);
754             object_initialize_child(obj, devinfo->name, &s->dualtimer,
755                                     TYPE_CMSDK_APB_DUALTIMER);
756         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
757             assert(devinfo->index < ARRAY_SIZE(s->sse_timer));
758             object_initialize_child(obj, devinfo->name,
759                                     &s->sse_timer[devinfo->index],
760                                     TYPE_SSE_TIMER);
761         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
762             assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog));
763             object_initialize_child(obj, devinfo->name,
764                                     &s->cmsdk_watchdog[devinfo->index],
765                                     TYPE_CMSDK_APB_WATCHDOG);
766         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
767             assert(devinfo->index == 0);
768             object_initialize_child(obj, devinfo->name, &s->sysinfo,
769                                     TYPE_IOTKIT_SYSINFO);
770         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
771             assert(devinfo->index == 0);
772             object_initialize_child(obj, devinfo->name, &s->sysctl,
773                                     TYPE_IOTKIT_SYSCTL);
774         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
775             assert(devinfo->index < ARRAY_SIZE(s->unimp));
776             object_initialize_child(obj, devinfo->name,
777                                     &s->unimp[devinfo->index],
778                                     TYPE_UNIMPLEMENTED_DEVICE);
779         } else {
780             g_assert_not_reached();
781         }
782     }
783 
784     object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
785 
786     for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) {
787         g_autofree char *name = g_strdup_printf("apb-ppc%d", i);
788         object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC);
789     }
790 
791     for (i = 0; i < info->sram_banks; i++) {
792         char *name = g_strdup_printf("mpc%d", i);
793         object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
794         g_free(name);
795     }
796     object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
797                             TYPE_OR_IRQ);
798 
799     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
800         char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
801         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
802 
803         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
804         g_free(name);
805     }
806 
807     if (info->has_mhus) {
808         object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
809         object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
810     }
811     if (info->has_cachectrl) {
812         for (i = 0; i < info->num_cpus; i++) {
813             char *name = g_strdup_printf("cachectrl%d", i);
814 
815             object_initialize_child(obj, name, &s->cachectrl[i],
816                                     TYPE_UNIMPLEMENTED_DEVICE);
817             g_free(name);
818         }
819     }
820     if (info->has_cpusecctrl) {
821         for (i = 0; i < info->num_cpus; i++) {
822             char *name = g_strdup_printf("cpusecctrl%d", i);
823 
824             object_initialize_child(obj, name, &s->cpusecctrl[i],
825                                     TYPE_UNIMPLEMENTED_DEVICE);
826             g_free(name);
827         }
828     }
829     if (info->has_cpuid) {
830         for (i = 0; i < info->num_cpus; i++) {
831             char *name = g_strdup_printf("cpuid%d", i);
832 
833             object_initialize_child(obj, name, &s->cpuid[i],
834                                     TYPE_ARMSSE_CPUID);
835             g_free(name);
836         }
837     }
838     if (info->has_cpu_pwrctrl) {
839         for (i = 0; i < info->num_cpus; i++) {
840             char *name = g_strdup_printf("cpu_pwrctrl%d", i);
841 
842             object_initialize_child(obj, name, &s->cpu_pwrctrl[i],
843                                     TYPE_ARMSSE_CPU_PWRCTRL);
844             g_free(name);
845         }
846     }
847     if (info->has_sse_counter) {
848         object_initialize_child(obj, "sse-counter", &s->sse_counter,
849                                 TYPE_SSE_COUNTER);
850     }
851 
852     object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
853     object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
854                             TYPE_OR_IRQ);
855     object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
856                             TYPE_SPLIT_IRQ);
857     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
858         char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
859         SplitIRQ *splitter = &s->ppc_irq_splitter[i];
860 
861         object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
862         g_free(name);
863     }
864     if (info->num_cpus > 1) {
865         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
866             if (info->irq_is_common[i]) {
867                 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
868                 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
869 
870                 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
871                 g_free(name);
872             }
873         }
874     }
875 }
876 
armsse_exp_irq(void * opaque,int n,int level)877 static void armsse_exp_irq(void *opaque, int n, int level)
878 {
879     qemu_irq *irqarray = opaque;
880 
881     qemu_set_irq(irqarray[n], level);
882 }
883 
armsse_mpcexp_status(void * opaque,int n,int level)884 static void armsse_mpcexp_status(void *opaque, int n, int level)
885 {
886     ARMSSE *s = ARM_SSE(opaque);
887     qemu_set_irq(s->mpcexp_status_in[n], level);
888 }
889 
armsse_get_common_irq_in(ARMSSE * s,int irqno)890 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
891 {
892     /*
893      * Return a qemu_irq which can be used to signal IRQ n to
894      * all CPUs in the SSE.
895      */
896     ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
897     const ARMSSEInfo *info = asc->info;
898 
899     assert(info->irq_is_common[irqno]);
900 
901     if (info->num_cpus == 1) {
902         /* Only one CPU -- just connect directly to it */
903         return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
904     } else {
905         /* Connect to the splitter which feeds all CPUs */
906         return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
907     }
908 }
909 
armsse_realize(DeviceState * dev,Error ** errp)910 static void armsse_realize(DeviceState *dev, Error **errp)
911 {
912     ERRP_GUARD();
913     ARMSSE *s = ARM_SSE(dev);
914     ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
915     const ARMSSEInfo *info = asc->info;
916     const ARMSSEDeviceInfo *devinfo;
917     int i;
918     MemoryRegion *mr;
919     SysBusDevice *sbd_apb_ppc0;
920     SysBusDevice *sbd_secctl;
921     DeviceState *dev_apb_ppc0;
922     DeviceState *dev_apb_ppc1;
923     DeviceState *dev_secctl;
924     DeviceState *dev_splitter;
925     uint32_t addr_width_max;
926 
927     if (!s->board_memory) {
928         error_setg(errp, "memory property was not set");
929         return;
930     }
931 
932     if (!clock_has_source(s->mainclk)) {
933         error_setg(errp, "MAINCLK clock was not connected");
934     }
935     if (!clock_has_source(s->s32kclk)) {
936         error_setg(errp, "S32KCLK clock was not connected");
937     }
938 
939     assert(info->num_cpus <= SSE_MAX_CPUS);
940 
941     /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
942     assert(is_power_of_2(info->sram_banks));
943     addr_width_max = 24 - ctz32(info->sram_banks);
944     if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
945         error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
946                    addr_width_max);
947         return;
948     }
949 
950     /* Handling of which devices should be available only to secure
951      * code is usually done differently for M profile than for A profile.
952      * Instead of putting some devices only into the secure address space,
953      * devices exist in both address spaces but with hard-wired security
954      * permissions that will cause the CPU to fault for non-secure accesses.
955      *
956      * The ARMSSE has an IDAU (Implementation Defined Access Unit),
957      * which specifies hard-wired security permissions for different
958      * areas of the physical address space. For the ARMSSE IDAU, the
959      * top 4 bits of the physical address are the IDAU region ID, and
960      * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
961      * region, otherwise it is an S region.
962      *
963      * The various devices and RAMs are generally all mapped twice,
964      * once into a region that the IDAU defines as secure and once
965      * into a non-secure region. They sit behind either a Memory
966      * Protection Controller (for RAM) or a Peripheral Protection
967      * Controller (for devices), which allow a more fine grained
968      * configuration of whether non-secure accesses are permitted.
969      *
970      * (The other place that guest software can configure security
971      * permissions is in the architected SAU (Security Attribution
972      * Unit), which is entirely inside the CPU. The IDAU can upgrade
973      * the security attributes for a region to more restrictive than
974      * the SAU specifies, but cannot downgrade them.)
975      *
976      * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
977      * 0x20000000..0x2007ffff  32KB FPGA block RAM
978      * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
979      * 0x40000000..0x4000ffff  base peripheral region 1
980      * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
981      * 0x40020000..0x4002ffff  system control element peripherals
982      * 0x40080000..0x400fffff  base peripheral region 2
983      * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
984      */
985 
986     memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
987 
988     for (i = 0; i < info->num_cpus; i++) {
989         DeviceState *cpudev = DEVICE(&s->armv7m[i]);
990         Object *cpuobj = OBJECT(&s->armv7m[i]);
991         int j;
992         char *gpioname;
993 
994         qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk);
995         /* The SSE subsystems do not wire up a systick refclk */
996 
997         qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS);
998         /*
999          * In real hardware the initial Secure VTOR is set from the INITSVTOR*
1000          * registers in the IoT Kit System Control Register block. In QEMU
1001          * we set the initial value here, and also the reset value of the
1002          * sysctl register, from this object's QOM init-svtor property.
1003          * If the guest changes the INITSVTOR* registers at runtime then the
1004          * code in iotkit-sysctl.c will update the CPU init-svtor property
1005          * (which will then take effect on the next CPU warm-reset).
1006          *
1007          * Note that typically a board using the SSE-200 will have a system
1008          * control processor whose boot firmware initializes the INITSVTOR*
1009          * registers before powering up the CPUs. QEMU doesn't emulate
1010          * the control processor, so instead we behave in the way that the
1011          * firmware does: the initial value should be set by the board code
1012          * (using the init-svtor property on the ARMSSE object) to match
1013          * whatever its firmware does.
1014          */
1015         qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
1016         /*
1017          * CPUs start powered down if the corresponding bit in the CPUWAIT
1018          * register is 1. In real hardware the CPUWAIT register reset value is
1019          * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
1020          * CPUWAIT1_RST parameters), but since all the boards we care about
1021          * start CPU0 and leave CPU1 powered off, we hard-code that in
1022          * info->cpuwait_rst for now. We can add QOM properties for this
1023          * later if necessary.
1024          */
1025         if (extract32(info->cpuwait_rst, i, 1)) {
1026             object_property_set_bool(cpuobj, "start-powered-off", true,
1027                                      &error_abort);
1028         }
1029         if (!s->cpu_fpu[i]) {
1030             if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
1031                 return;
1032             }
1033         }
1034         if (!s->cpu_dsp[i]) {
1035             if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
1036                 return;
1037             }
1038         }
1039         if (!object_property_set_uint(cpuobj, "mpu-ns-regions",
1040                                       s->cpu_mpu_ns[i], errp)) {
1041             return;
1042         }
1043         if (!object_property_set_uint(cpuobj, "mpu-s-regions",
1044                                       s->cpu_mpu_s[i], errp)) {
1045             return;
1046         }
1047 
1048         if (i > 0) {
1049             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1050                                                 &s->container_alias[i - 1], -1);
1051         } else {
1052             memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
1053                                                 &s->container, -1);
1054         }
1055         object_property_set_link(cpuobj, "memory",
1056                                  OBJECT(&s->cpu_container[i]), &error_abort);
1057         object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
1058         if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
1059             return;
1060         }
1061         /*
1062          * The cluster must be realized after the armv7m container, as
1063          * the container's CPU object is only created on realize, and the
1064          * CPU must exist and have been parented into the cluster before
1065          * the cluster is realized.
1066          */
1067         if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
1068             return;
1069         }
1070 
1071         /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
1072         s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
1073         for (j = 0; j < s->exp_numirq; j++) {
1074             s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS);
1075         }
1076         if (i == 0) {
1077             gpioname = g_strdup("EXP_IRQ");
1078         } else {
1079             gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
1080         }
1081         qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
1082                                             s->exp_irqs[i],
1083                                             gpioname, s->exp_numirq);
1084         g_free(gpioname);
1085     }
1086 
1087     /* Wire up the splitters that connect common IRQs to all CPUs */
1088     if (info->num_cpus > 1) {
1089         for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
1090             if (info->irq_is_common[i]) {
1091                 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
1092                 DeviceState *devs = DEVICE(splitter);
1093                 int cpunum;
1094 
1095                 if (!object_property_set_int(splitter, "num-lines",
1096                                              info->num_cpus, errp)) {
1097                     return;
1098                 }
1099                 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1100                     return;
1101                 }
1102                 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1103                     DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1104 
1105                     qdev_connect_gpio_out(devs, cpunum,
1106                                           qdev_get_gpio_in(cpudev, i));
1107                 }
1108             }
1109         }
1110     }
1111 
1112     /* Set up the big aliases first */
1113     make_alias(s, &s->alias1, &s->container, "alias 1",
1114                0x10000000, 0x10000000, 0x00000000);
1115     make_alias(s, &s->alias2, &s->container,
1116                "alias 2", 0x30000000, 0x10000000, 0x20000000);
1117     /* The 0x50000000..0x5fffffff region is not a pure alias: it has
1118      * a few extra devices that only appear there (generally the
1119      * control interfaces for the protection controllers).
1120      * We implement this by mapping those devices over the top of this
1121      * alias MR at a higher priority. Some of the devices in this range
1122      * are per-CPU, so we must put this alias in the per-cpu containers.
1123      */
1124     for (i = 0; i < info->num_cpus; i++) {
1125         make_alias(s, &s->alias3[i], &s->cpu_container[i],
1126                    "alias 3", 0x50000000, 0x10000000, 0x40000000);
1127     }
1128 
1129     /* Security controller */
1130     object_property_set_int(OBJECT(&s->secctl), "sse-version",
1131                             info->sse_version, &error_abort);
1132     if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
1133         return;
1134     }
1135     sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
1136     dev_secctl = DEVICE(&s->secctl);
1137     sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
1138     sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
1139 
1140     s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
1141     qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
1142 
1143     /* The sec_resp_cfg output from the security controller must be split into
1144      * multiple lines, one for each of the PPCs within the ARMSSE and one
1145      * that will be an output from the ARMSSE to the system.
1146      */
1147     if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
1148                                  "num-lines", 3, errp)) {
1149         return;
1150     }
1151     if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
1152         return;
1153     }
1154     dev_splitter = DEVICE(&s->sec_resp_splitter);
1155     qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
1156                                 qdev_get_gpio_in(dev_splitter, 0));
1157 
1158     /* Each SRAM bank lives behind its own Memory Protection Controller */
1159     for (i = 0; i < info->sram_banks; i++) {
1160         char *ramname = g_strdup_printf("armsse.sram%d", i);
1161         SysBusDevice *sbd_mpc;
1162         uint32_t sram_bank_size = 1 << s->sram_addr_width;
1163 
1164         memory_region_init_ram(&s->sram[i], NULL, ramname,
1165                                sram_bank_size, errp);
1166         g_free(ramname);
1167         if (*errp) {
1168             return;
1169         }
1170         object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
1171                                  OBJECT(&s->sram[i]), &error_abort);
1172         if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
1173             return;
1174         }
1175         /* Map the upstream end of the MPC into the right place... */
1176         sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
1177         memory_region_add_subregion(&s->container,
1178                                     info->sram_bank_base + i * sram_bank_size,
1179                                     sysbus_mmio_get_region(sbd_mpc, 1));
1180         /* ...and its register interface */
1181         memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
1182                                     sysbus_mmio_get_region(sbd_mpc, 0));
1183     }
1184 
1185     /* We must OR together lines from the MPC splitters to go to the NVIC */
1186     if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
1187                                  IOTS_NUM_EXP_MPC + info->sram_banks,
1188                                  errp)) {
1189         return;
1190     }
1191     if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
1192         return;
1193     }
1194     qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
1195                           armsse_get_common_irq_in(s, 9));
1196 
1197     /* This OR gate wires together outputs from the secure watchdogs to NMI */
1198     if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
1199                                  errp)) {
1200         return;
1201     }
1202     if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1203         return;
1204     }
1205     qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1206                           qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1207 
1208     /* The SSE-300 has a System Counter / System Timestamp Generator */
1209     if (info->has_sse_counter) {
1210         SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter);
1211 
1212         qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk);
1213         if (!sysbus_realize(sbd, errp)) {
1214             return;
1215         }
1216         /*
1217          * The control frame is only in the Secure region;
1218          * the status frame is in the NS region (and visible in the
1219          * S region via the alias mapping).
1220          */
1221         memory_region_add_subregion(&s->container, 0x58100000,
1222                                     sysbus_mmio_get_region(sbd, 0));
1223         memory_region_add_subregion(&s->container, 0x48101000,
1224                                     sysbus_mmio_get_region(sbd, 1));
1225     }
1226 
1227     if (info->has_tcms) {
1228         /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */
1229         memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp);
1230         if (*errp) {
1231             return;
1232         }
1233         memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp);
1234         if (*errp) {
1235             return;
1236         }
1237         memory_region_add_subregion(&s->container, 0x00000000, &s->itcm);
1238         memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm);
1239     }
1240 
1241     /* Devices behind APB PPC0:
1242      *   0x40000000: timer0
1243      *   0x40001000: timer1
1244      *   0x40002000: dual timer
1245      *   0x40003000: MHU0 (SSE-200 only)
1246      *   0x40004000: MHU1 (SSE-200 only)
1247      * We must configure and realize each downstream device and connect
1248      * it to the appropriate PPC port; then we can realize the PPC and
1249      * map its upstream ends to the right place in the container.
1250      */
1251     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1252         SysBusDevice *sbd;
1253         qemu_irq irq;
1254 
1255         if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) {
1256             sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]);
1257 
1258             qdev_connect_clock_in(DEVICE(sbd), "pclk",
1259                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1260             if (!sysbus_realize(sbd, errp)) {
1261                 return;
1262             }
1263             mr = sysbus_mmio_get_region(sbd, 0);
1264         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) {
1265             sbd = SYS_BUS_DEVICE(&s->dualtimer);
1266 
1267             qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk);
1268             if (!sysbus_realize(sbd, errp)) {
1269                 return;
1270             }
1271             mr = sysbus_mmio_get_region(sbd, 0);
1272         } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) {
1273             sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]);
1274 
1275             assert(info->has_sse_counter);
1276             object_property_set_link(OBJECT(sbd), "counter",
1277                                      OBJECT(&s->sse_counter), &error_abort);
1278             if (!sysbus_realize(sbd, errp)) {
1279                 return;
1280             }
1281             mr = sysbus_mmio_get_region(sbd, 0);
1282         } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) {
1283             sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]);
1284 
1285             qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK",
1286                                   devinfo->slowclk ? s->s32kclk : s->mainclk);
1287             if (!sysbus_realize(sbd, errp)) {
1288                 return;
1289             }
1290             mr = sysbus_mmio_get_region(sbd, 0);
1291         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) {
1292             sbd = SYS_BUS_DEVICE(&s->sysinfo);
1293 
1294             object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
1295                                     info->sys_version, &error_abort);
1296             object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
1297                                     armsse_sys_config_value(s, info),
1298                                     &error_abort);
1299             object_property_set_int(OBJECT(&s->sysinfo), "sse-version",
1300                                     info->sse_version, &error_abort);
1301             object_property_set_int(OBJECT(&s->sysinfo), "IIDR",
1302                                     info->iidr, &error_abort);
1303             if (!sysbus_realize(sbd, errp)) {
1304                 return;
1305             }
1306             mr = sysbus_mmio_get_region(sbd, 0);
1307         } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) {
1308             /* System control registers */
1309             sbd = SYS_BUS_DEVICE(&s->sysctl);
1310 
1311             object_property_set_int(OBJECT(&s->sysctl), "sse-version",
1312                                     info->sse_version, &error_abort);
1313             object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
1314                                     info->cpuwait_rst, &error_abort);
1315             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
1316                                     s->init_svtor, &error_abort);
1317             object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
1318                                     s->init_svtor, &error_abort);
1319             if (!sysbus_realize(sbd, errp)) {
1320                 return;
1321             }
1322             mr = sysbus_mmio_get_region(sbd, 0);
1323         } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) {
1324             sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]);
1325 
1326             qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name);
1327             qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size);
1328             if (!sysbus_realize(sbd, errp)) {
1329                 return;
1330             }
1331             mr = sysbus_mmio_get_region(sbd, 0);
1332         } else {
1333             g_assert_not_reached();
1334         }
1335 
1336         switch (devinfo->irq) {
1337         case NO_IRQ:
1338             irq = NULL;
1339             break;
1340         case 0 ... NUM_SSE_IRQS - 1:
1341             irq = armsse_get_common_irq_in(s, devinfo->irq);
1342             break;
1343         case NMI_0:
1344         case NMI_1:
1345             irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate),
1346                                    devinfo->irq - NMI_0);
1347             break;
1348         default:
1349             g_assert_not_reached();
1350         }
1351 
1352         if (irq) {
1353             sysbus_connect_irq(sbd, 0, irq);
1354         }
1355 
1356         /*
1357          * Devices connected to a PPC are connected to the port here;
1358          * we will map the upstream end of that port to the right address
1359          * in the container later after the PPC has been realized.
1360          * Devices not connected to a PPC can be mapped immediately.
1361          */
1362         if (devinfo->ppc != NO_PPC) {
1363             TZPPC *ppc = &s->apb_ppc[devinfo->ppc];
1364             g_autofree char *portname = g_strdup_printf("port[%d]",
1365                                                         devinfo->ppc_port);
1366             object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1367                                      &error_abort);
1368         } else {
1369             memory_region_add_subregion(&s->container, devinfo->addr, mr);
1370         }
1371     }
1372 
1373     if (info->has_mhus) {
1374         /*
1375          * An SSE-200 with only one CPU should have only one MHU created,
1376          * with the region where the second MHU usually is being RAZ/WI.
1377          * We don't implement that SSE-200 config; if we want to support
1378          * it then this code needs to be enhanced to handle creating the
1379          * RAZ/WI region instead of the second MHU.
1380          */
1381         assert(info->num_cpus == ARRAY_SIZE(s->mhu));
1382 
1383         for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
1384             char *port;
1385             int cpunum;
1386             SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
1387 
1388             if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
1389                 return;
1390             }
1391             port = g_strdup_printf("port[%d]", i + 3);
1392             mr = sysbus_mmio_get_region(mhu_sbd, 0);
1393             object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr),
1394                                      &error_abort);
1395             g_free(port);
1396 
1397             /*
1398              * Each MHU has an irq line for each CPU:
1399              *  MHU 0 irq line 0 -> CPU 0 IRQ 6
1400              *  MHU 0 irq line 1 -> CPU 1 IRQ 6
1401              *  MHU 1 irq line 0 -> CPU 0 IRQ 7
1402              *  MHU 1 irq line 1 -> CPU 1 IRQ 7
1403              */
1404             for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
1405                 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
1406 
1407                 sysbus_connect_irq(mhu_sbd, cpunum,
1408                                    qdev_get_gpio_in(cpudev, 6 + i));
1409             }
1410         }
1411     }
1412 
1413     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) {
1414         return;
1415     }
1416 
1417     sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]);
1418     dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]);
1419 
1420     if (info->has_mhus) {
1421         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
1422         memory_region_add_subregion(&s->container, 0x40003000, mr);
1423         mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
1424         memory_region_add_subregion(&s->container, 0x40004000, mr);
1425     }
1426     for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
1427         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
1428                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1429                                                            "cfg_nonsec", i));
1430         qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
1431                                     qdev_get_gpio_in_named(dev_apb_ppc0,
1432                                                            "cfg_ap", i));
1433     }
1434     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
1435                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1436                                                        "irq_enable", 0));
1437     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
1438                                 qdev_get_gpio_in_named(dev_apb_ppc0,
1439                                                        "irq_clear", 0));
1440     qdev_connect_gpio_out(dev_splitter, 0,
1441                           qdev_get_gpio_in_named(dev_apb_ppc0,
1442                                                  "cfg_sec_resp", 0));
1443 
1444     /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
1445      * ones) are sent individually to the security controller, and also
1446      * ORed together to give a single combined PPC interrupt to the NVIC.
1447      */
1448     if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
1449                                  "num-lines", NUM_PPCS, errp)) {
1450         return;
1451     }
1452     if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
1453         return;
1454     }
1455     qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
1456                           armsse_get_common_irq_in(s, 10));
1457 
1458     /*
1459      * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
1460      * private per-CPU region (all these devices are SSE-200 only):
1461      *  0x50010000: L1 icache control registers
1462      *  0x50011000: CPUSECCTRL (CPU local security control registers)
1463      *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
1464      * The SSE-300 has an extra:
1465      *  0x40012000 and 0x50012000: CPU_PWRCTRL register block
1466      */
1467     if (info->has_cachectrl) {
1468         for (i = 0; i < info->num_cpus; i++) {
1469             char *name = g_strdup_printf("cachectrl%d", i);
1470 
1471             qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
1472             g_free(name);
1473             qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
1474             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
1475                 return;
1476             }
1477 
1478             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
1479             memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
1480         }
1481     }
1482     if (info->has_cpusecctrl) {
1483         for (i = 0; i < info->num_cpus; i++) {
1484             char *name = g_strdup_printf("CPUSECCTRL%d", i);
1485 
1486             qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
1487             g_free(name);
1488             qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
1489             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
1490                 return;
1491             }
1492 
1493             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
1494             memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
1495         }
1496     }
1497     if (info->has_cpuid) {
1498         for (i = 0; i < info->num_cpus; i++) {
1499 
1500             qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
1501             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
1502                 return;
1503             }
1504 
1505             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
1506             memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
1507         }
1508     }
1509     if (info->has_cpu_pwrctrl) {
1510         for (i = 0; i < info->num_cpus; i++) {
1511 
1512             if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) {
1513                 return;
1514             }
1515 
1516             mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0);
1517             memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr);
1518         }
1519     }
1520 
1521     if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) {
1522         return;
1523     }
1524 
1525     dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]);
1526     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
1527                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1528                                                        "cfg_nonsec", 0));
1529     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
1530                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1531                                                        "cfg_ap", 0));
1532     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
1533                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1534                                                        "irq_enable", 0));
1535     qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
1536                                 qdev_get_gpio_in_named(dev_apb_ppc1,
1537                                                        "irq_clear", 0));
1538     qdev_connect_gpio_out(dev_splitter, 1,
1539                           qdev_get_gpio_in_named(dev_apb_ppc1,
1540                                                  "cfg_sec_resp", 0));
1541 
1542     /*
1543      * Now both PPCs are realized we can map the upstream ends of
1544      * ports which correspond to entries in the devinfo array.
1545      * The ports which are connected to non-devinfo devices have
1546      * already been mapped.
1547      */
1548     for (devinfo = info->devinfo; devinfo->name; devinfo++) {
1549         SysBusDevice *ppc_sbd;
1550 
1551         if (devinfo->ppc == NO_PPC) {
1552             continue;
1553         }
1554         ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]);
1555         mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port);
1556         memory_region_add_subregion(&s->container, devinfo->addr, mr);
1557     }
1558 
1559     for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1560         Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1561 
1562         if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1563             return;
1564         }
1565         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1566             return;
1567         }
1568     }
1569 
1570     for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1571         char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1572 
1573         armsse_forward_ppc(s, ppcname, i);
1574         g_free(ppcname);
1575     }
1576 
1577     for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1578         char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1579 
1580         armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1581         g_free(ppcname);
1582     }
1583 
1584     for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1585         /* Wire up IRQ splitter for internal PPCs */
1586         DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1587         char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1588                                          i - NUM_EXTERNAL_PPCS);
1589         TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS];
1590 
1591         qdev_connect_gpio_out(devs, 0,
1592                               qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1593         qdev_connect_gpio_out(devs, 1,
1594                               qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1595         qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1596                                     qdev_get_gpio_in(devs, 0));
1597         g_free(gpioname);
1598     }
1599 
1600     /* Wire up the splitters for the MPC IRQs */
1601     for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1602         SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1603         DeviceState *devs = DEVICE(splitter);
1604 
1605         if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1606                                      errp)) {
1607             return;
1608         }
1609         if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1610             return;
1611         }
1612 
1613         if (i < IOTS_NUM_EXP_MPC) {
1614             /* Splitter input is from GPIO input line */
1615             s->mpcexp_status_in[i] = qdev_get_gpio_in(devs, 0);
1616             qdev_connect_gpio_out(devs, 0,
1617                                   qdev_get_gpio_in_named(dev_secctl,
1618                                                          "mpcexp_status", i));
1619         } else {
1620             /* Splitter input is from our own MPC */
1621             qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1622                                         "irq", 0,
1623                                         qdev_get_gpio_in(devs, 0));
1624             qdev_connect_gpio_out(devs, 0,
1625                                   qdev_get_gpio_in_named(dev_secctl,
1626                                                          "mpc_status",
1627                                                          i - IOTS_NUM_EXP_MPC));
1628         }
1629 
1630         qdev_connect_gpio_out(devs, 1,
1631                               qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1632     }
1633     /* Create GPIO inputs which will pass the line state for our
1634      * mpcexp_irq inputs to the correct splitter devices.
1635      */
1636     qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1637                             IOTS_NUM_EXP_MPC);
1638 
1639     armsse_forward_sec_resp_cfg(s);
1640 
1641     /* Forward the MSC related signals */
1642     qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1643     qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1644     qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1645     qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1646                                 armsse_get_common_irq_in(s, 11));
1647 
1648     /*
1649      * Expose our container region to the board model; this corresponds
1650      * to the AHB Slave Expansion ports which allow bus master devices
1651      * (eg DMA controllers) in the board model to make transactions into
1652      * devices in the ARMSSE.
1653      */
1654     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1655 }
1656 
armsse_idau_check(IDAUInterface * ii,uint32_t address,int * iregion,bool * exempt,bool * ns,bool * nsc)1657 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1658                               int *iregion, bool *exempt, bool *ns, bool *nsc)
1659 {
1660     /*
1661      * For ARMSSE systems the IDAU responses are simple logical functions
1662      * of the address bits. The NSC attribute is guest-adjustable via the
1663      * NSCCFG register in the security controller.
1664      */
1665     ARMSSE *s = ARM_SSE(ii);
1666     int region = extract32(address, 28, 4);
1667 
1668     *ns = !(region & 1);
1669     *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1670     /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1671     *exempt = (address & 0xeff00000) == 0xe0000000;
1672     *iregion = region;
1673 }
1674 
1675 static const VMStateDescription armsse_vmstate = {
1676     .name = "iotkit",
1677     .version_id = 2,
1678     .minimum_version_id = 2,
1679     .fields = (const VMStateField[]) {
1680         VMSTATE_CLOCK(mainclk, ARMSSE),
1681         VMSTATE_CLOCK(s32kclk, ARMSSE),
1682         VMSTATE_UINT32(nsccfg, ARMSSE),
1683         VMSTATE_END_OF_LIST()
1684     }
1685 };
1686 
armsse_reset(DeviceState * dev)1687 static void armsse_reset(DeviceState *dev)
1688 {
1689     ARMSSE *s = ARM_SSE(dev);
1690 
1691     s->nsccfg = 0;
1692 }
1693 
armsse_class_init(ObjectClass * klass,const void * data)1694 static void armsse_class_init(ObjectClass *klass, const void *data)
1695 {
1696     DeviceClass *dc = DEVICE_CLASS(klass);
1697     IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1698     ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1699     const ARMSSEInfo *info = data;
1700 
1701     dc->realize = armsse_realize;
1702     dc->vmsd = &armsse_vmstate;
1703     device_class_set_props_n(dc, info->props, info->props_count);
1704     device_class_set_legacy_reset(dc, armsse_reset);
1705     iic->check = armsse_idau_check;
1706     asc->info = info;
1707 }
1708 
1709 static const TypeInfo armsse_info = {
1710     .name = TYPE_ARM_SSE,
1711     .parent = TYPE_SYS_BUS_DEVICE,
1712     .instance_size = sizeof(ARMSSE),
1713     .class_size = sizeof(ARMSSEClass),
1714     .instance_init = armsse_init,
1715     .abstract = true,
1716     .interfaces = (const InterfaceInfo[]) {
1717         { TYPE_IDAU_INTERFACE },
1718         { }
1719     }
1720 };
1721 
armsse_register_types(void)1722 static void armsse_register_types(void)
1723 {
1724     int i;
1725 
1726     type_register_static(&armsse_info);
1727 
1728     for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1729         TypeInfo ti = {
1730             .name = armsse_variants[i].name,
1731             .parent = TYPE_ARM_SSE,
1732             .class_init = armsse_class_init,
1733             .class_data = &armsse_variants[i],
1734         };
1735         type_register_static(&ti);
1736     }
1737 }
1738 
1739 type_init(armsse_register_types);
1740