xref: /qemu/linux-user/signal.c (revision 7cef6d686309e2792186504ae17cf4f3eb57ef68)
1 /*
2  *  Emulation of Linux signals
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "qemu/cutils.h"
22 #include "gdbstub/user.h"
23 #include "exec/page-protection.h"
24 #include "accel/tcg/cpu-ops.h"
25 
26 #include <sys/ucontext.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "user-internals.h"
31 #include "strace.h"
32 #include "loader.h"
33 #include "trace.h"
34 #include "signal-common.h"
35 #include "host-signal.h"
36 #include "user/cpu_loop.h"
37 #include "user/page-protection.h"
38 #include "user/safe-syscall.h"
39 #include "user/signal.h"
40 #include "tcg/tcg.h"
41 
42 /* target_siginfo_t must fit in gdbstub's siginfo save area. */
43 QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH);
44 
45 static struct target_sigaction sigact_table[TARGET_NSIG];
46 
47 static void host_signal_handler(int host_signum, siginfo_t *info,
48                                 void *puc);
49 
50 /* Fallback addresses into sigtramp page. */
51 abi_ulong default_sigreturn;
52 abi_ulong default_rt_sigreturn;
53 
54 /*
55  * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
56  * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
57  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
58  * a process exists without sending it a signal.
59  */
60 #ifdef __SIGRTMAX
61 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
62 #endif
63 static uint8_t host_to_target_signal_table[_NSIG] = {
64 #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig,
65         MAKE_SIGNAL_LIST
66 #undef MAKE_SIG_ENTRY
67 };
68 
69 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
70 
71 /* valid sig is between 1 and _NSIG - 1 */
host_to_target_signal(int sig)72 int host_to_target_signal(int sig)
73 {
74     if (sig < 1) {
75         return sig;
76     }
77     if (sig >= _NSIG) {
78         return TARGET_NSIG + 1;
79     }
80     return host_to_target_signal_table[sig];
81 }
82 
83 /* valid sig is between 1 and TARGET_NSIG */
target_to_host_signal(int sig)84 int target_to_host_signal(int sig)
85 {
86     if (sig < 1) {
87         return sig;
88     }
89     if (sig > TARGET_NSIG) {
90         return _NSIG;
91     }
92     return target_to_host_signal_table[sig];
93 }
94 
target_sigaddset(target_sigset_t * set,int signum)95 static inline void target_sigaddset(target_sigset_t *set, int signum)
96 {
97     signum--;
98     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
99     set->sig[signum / TARGET_NSIG_BPW] |= mask;
100 }
101 
target_sigismember(const target_sigset_t * set,int signum)102 static inline int target_sigismember(const target_sigset_t *set, int signum)
103 {
104     signum--;
105     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
106     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
107 }
108 
host_to_target_sigset_internal(target_sigset_t * d,const sigset_t * s)109 void host_to_target_sigset_internal(target_sigset_t *d,
110                                     const sigset_t *s)
111 {
112     int host_sig, target_sig;
113     target_sigemptyset(d);
114     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
115         target_sig = host_to_target_signal(host_sig);
116         if (target_sig < 1 || target_sig > TARGET_NSIG) {
117             continue;
118         }
119         if (sigismember(s, host_sig)) {
120             target_sigaddset(d, target_sig);
121         }
122     }
123 }
124 
host_to_target_sigset(target_sigset_t * d,const sigset_t * s)125 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
126 {
127     target_sigset_t d1;
128     int i;
129 
130     host_to_target_sigset_internal(&d1, s);
131     for(i = 0;i < TARGET_NSIG_WORDS; i++)
132         d->sig[i] = tswapal(d1.sig[i]);
133 }
134 
target_to_host_sigset_internal(sigset_t * d,const target_sigset_t * s)135 void target_to_host_sigset_internal(sigset_t *d,
136                                     const target_sigset_t *s)
137 {
138     int host_sig, target_sig;
139     sigemptyset(d);
140     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
141         host_sig = target_to_host_signal(target_sig);
142         if (host_sig < 1 || host_sig >= _NSIG) {
143             continue;
144         }
145         if (target_sigismember(s, target_sig)) {
146             sigaddset(d, host_sig);
147         }
148     }
149 }
150 
target_to_host_sigset(sigset_t * d,const target_sigset_t * s)151 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
152 {
153     target_sigset_t s1;
154     int i;
155 
156     for(i = 0;i < TARGET_NSIG_WORDS; i++)
157         s1.sig[i] = tswapal(s->sig[i]);
158     target_to_host_sigset_internal(d, &s1);
159 }
160 
host_to_target_old_sigset(abi_ulong * old_sigset,const sigset_t * sigset)161 void host_to_target_old_sigset(abi_ulong *old_sigset,
162                                const sigset_t *sigset)
163 {
164     target_sigset_t d;
165     host_to_target_sigset(&d, sigset);
166     *old_sigset = d.sig[0];
167 }
168 
target_to_host_old_sigset(sigset_t * sigset,const abi_ulong * old_sigset)169 void target_to_host_old_sigset(sigset_t *sigset,
170                                const abi_ulong *old_sigset)
171 {
172     target_sigset_t d;
173     int i;
174 
175     d.sig[0] = *old_sigset;
176     for(i = 1;i < TARGET_NSIG_WORDS; i++)
177         d.sig[i] = 0;
178     target_to_host_sigset(sigset, &d);
179 }
180 
block_signals(void)181 int block_signals(void)
182 {
183     TaskState *ts = get_task_state(thread_cpu);
184     sigset_t set;
185 
186     /* It's OK to block everything including SIGSEGV, because we won't
187      * run any further guest code before unblocking signals in
188      * process_pending_signals().
189      */
190     sigfillset(&set);
191     sigprocmask(SIG_SETMASK, &set, 0);
192 
193     return qatomic_xchg(&ts->signal_pending, 1);
194 }
195 
196 /* Wrapper for sigprocmask function
197  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
198  * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
199  * a signal was already pending and the syscall must be restarted, or
200  * 0 on success.
201  * If set is NULL, this is guaranteed not to fail.
202  */
do_sigprocmask(int how,const sigset_t * set,sigset_t * oldset)203 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
204 {
205     TaskState *ts = get_task_state(thread_cpu);
206 
207     if (oldset) {
208         *oldset = ts->signal_mask;
209     }
210 
211     if (set) {
212         int i;
213 
214         if (block_signals()) {
215             return -QEMU_ERESTARTSYS;
216         }
217 
218         switch (how) {
219         case SIG_BLOCK:
220             sigorset(&ts->signal_mask, &ts->signal_mask, set);
221             break;
222         case SIG_UNBLOCK:
223             for (i = 1; i <= NSIG; ++i) {
224                 if (sigismember(set, i)) {
225                     sigdelset(&ts->signal_mask, i);
226                 }
227             }
228             break;
229         case SIG_SETMASK:
230             ts->signal_mask = *set;
231             break;
232         default:
233             g_assert_not_reached();
234         }
235 
236         /* Silently ignore attempts to change blocking status of KILL or STOP */
237         sigdelset(&ts->signal_mask, SIGKILL);
238         sigdelset(&ts->signal_mask, SIGSTOP);
239     }
240     return 0;
241 }
242 
243 /* Just set the guest's signal mask to the specified value; the
244  * caller is assumed to have called block_signals() already.
245  */
set_sigmask(const sigset_t * set)246 void set_sigmask(const sigset_t *set)
247 {
248     TaskState *ts = get_task_state(thread_cpu);
249 
250     ts->signal_mask = *set;
251 }
252 
253 /* sigaltstack management */
254 
on_sig_stack(unsigned long sp)255 int on_sig_stack(unsigned long sp)
256 {
257     TaskState *ts = get_task_state(thread_cpu);
258 
259     return (sp - ts->sigaltstack_used.ss_sp
260             < ts->sigaltstack_used.ss_size);
261 }
262 
sas_ss_flags(unsigned long sp)263 int sas_ss_flags(unsigned long sp)
264 {
265     TaskState *ts = get_task_state(thread_cpu);
266 
267     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
268             : on_sig_stack(sp) ? SS_ONSTACK : 0);
269 }
270 
target_sigsp(abi_ulong sp,struct target_sigaction * ka)271 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
272 {
273     /*
274      * This is the X/Open sanctioned signal stack switching.
275      */
276     TaskState *ts = get_task_state(thread_cpu);
277 
278     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
279         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
280     }
281     return sp;
282 }
283 
target_save_altstack(target_stack_t * uss,CPUArchState * env)284 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
285 {
286     TaskState *ts = get_task_state(thread_cpu);
287 
288     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
289     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
290     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
291 }
292 
target_restore_altstack(target_stack_t * uss,CPUArchState * env)293 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
294 {
295     TaskState *ts = get_task_state(thread_cpu);
296     size_t minstacksize = TARGET_MINSIGSTKSZ;
297     target_stack_t ss;
298 
299 #if defined(TARGET_PPC64)
300     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
301     struct image_info *image = ts->info;
302     if (get_ppc64_abi(image) > 1) {
303         minstacksize = 4096;
304     }
305 #endif
306 
307     __get_user(ss.ss_sp, &uss->ss_sp);
308     __get_user(ss.ss_size, &uss->ss_size);
309     __get_user(ss.ss_flags, &uss->ss_flags);
310 
311     if (on_sig_stack(get_sp_from_cpustate(env))) {
312         return -TARGET_EPERM;
313     }
314 
315     switch (ss.ss_flags) {
316     default:
317         return -TARGET_EINVAL;
318 
319     case TARGET_SS_DISABLE:
320         ss.ss_size = 0;
321         ss.ss_sp = 0;
322         break;
323 
324     case TARGET_SS_ONSTACK:
325     case 0:
326         if (ss.ss_size < minstacksize) {
327             return -TARGET_ENOMEM;
328         }
329         break;
330     }
331 
332     ts->sigaltstack_used.ss_sp = ss.ss_sp;
333     ts->sigaltstack_used.ss_size = ss.ss_size;
334     return 0;
335 }
336 
337 /* siginfo conversion */
338 
host_to_target_siginfo_noswap(target_siginfo_t * tinfo,const siginfo_t * info)339 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
340                                                  const siginfo_t *info)
341 {
342     int sig = host_to_target_signal(info->si_signo);
343     int si_code = info->si_code;
344     int si_type;
345     tinfo->si_signo = sig;
346     tinfo->si_errno = 0;
347     tinfo->si_code = info->si_code;
348 
349     /* This memset serves two purposes:
350      * (1) ensure we don't leak random junk to the guest later
351      * (2) placate false positives from gcc about fields
352      *     being used uninitialized if it chooses to inline both this
353      *     function and tswap_siginfo() into host_to_target_siginfo().
354      */
355     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
356 
357     /* This is awkward, because we have to use a combination of
358      * the si_code and si_signo to figure out which of the union's
359      * members are valid. (Within the host kernel it is always possible
360      * to tell, but the kernel carefully avoids giving userspace the
361      * high 16 bits of si_code, so we don't have the information to
362      * do this the easy way...) We therefore make our best guess,
363      * bearing in mind that a guest can spoof most of the si_codes
364      * via rt_sigqueueinfo() if it likes.
365      *
366      * Once we have made our guess, we record it in the top 16 bits of
367      * the si_code, so that tswap_siginfo() later can use it.
368      * tswap_siginfo() will strip these top bits out before writing
369      * si_code to the guest (sign-extending the lower bits).
370      */
371 
372     switch (si_code) {
373     case SI_USER:
374     case SI_TKILL:
375     case SI_KERNEL:
376         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
377          * These are the only unspoofable si_code values.
378          */
379         tinfo->_sifields._kill._pid = info->si_pid;
380         tinfo->_sifields._kill._uid = info->si_uid;
381         si_type = QEMU_SI_KILL;
382         break;
383     default:
384         /* Everything else is spoofable. Make best guess based on signal */
385         switch (sig) {
386         case TARGET_SIGCHLD:
387             tinfo->_sifields._sigchld._pid = info->si_pid;
388             tinfo->_sifields._sigchld._uid = info->si_uid;
389             if (si_code == CLD_EXITED)
390                 tinfo->_sifields._sigchld._status = info->si_status;
391             else
392                 tinfo->_sifields._sigchld._status
393                     = host_to_target_signal(info->si_status & 0x7f)
394                         | (info->si_status & ~0x7f);
395             tinfo->_sifields._sigchld._utime = info->si_utime;
396             tinfo->_sifields._sigchld._stime = info->si_stime;
397             si_type = QEMU_SI_CHLD;
398             break;
399         case TARGET_SIGIO:
400             tinfo->_sifields._sigpoll._band = info->si_band;
401             tinfo->_sifields._sigpoll._fd = info->si_fd;
402             si_type = QEMU_SI_POLL;
403             break;
404         default:
405             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
406             tinfo->_sifields._rt._pid = info->si_pid;
407             tinfo->_sifields._rt._uid = info->si_uid;
408             /* XXX: potential problem if 64 bit */
409             tinfo->_sifields._rt._sigval.sival_ptr
410                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
411             si_type = QEMU_SI_RT;
412             break;
413         }
414         break;
415     }
416 
417     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
418 }
419 
tswap_siginfo(target_siginfo_t * tinfo,const target_siginfo_t * info)420 static void tswap_siginfo(target_siginfo_t *tinfo,
421                           const target_siginfo_t *info)
422 {
423     int si_type = extract32(info->si_code, 16, 16);
424     int si_code = sextract32(info->si_code, 0, 16);
425 
426     __put_user(info->si_signo, &tinfo->si_signo);
427     __put_user(info->si_errno, &tinfo->si_errno);
428     __put_user(si_code, &tinfo->si_code);
429 
430     /* We can use our internal marker of which fields in the structure
431      * are valid, rather than duplicating the guesswork of
432      * host_to_target_siginfo_noswap() here.
433      */
434     switch (si_type) {
435     case QEMU_SI_KILL:
436         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
437         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
438         break;
439     case QEMU_SI_TIMER:
440         __put_user(info->_sifields._timer._timer1,
441                    &tinfo->_sifields._timer._timer1);
442         __put_user(info->_sifields._timer._timer2,
443                    &tinfo->_sifields._timer._timer2);
444         break;
445     case QEMU_SI_POLL:
446         __put_user(info->_sifields._sigpoll._band,
447                    &tinfo->_sifields._sigpoll._band);
448         __put_user(info->_sifields._sigpoll._fd,
449                    &tinfo->_sifields._sigpoll._fd);
450         break;
451     case QEMU_SI_FAULT:
452         __put_user(info->_sifields._sigfault._addr,
453                    &tinfo->_sifields._sigfault._addr);
454         break;
455     case QEMU_SI_CHLD:
456         __put_user(info->_sifields._sigchld._pid,
457                    &tinfo->_sifields._sigchld._pid);
458         __put_user(info->_sifields._sigchld._uid,
459                    &tinfo->_sifields._sigchld._uid);
460         __put_user(info->_sifields._sigchld._status,
461                    &tinfo->_sifields._sigchld._status);
462         __put_user(info->_sifields._sigchld._utime,
463                    &tinfo->_sifields._sigchld._utime);
464         __put_user(info->_sifields._sigchld._stime,
465                    &tinfo->_sifields._sigchld._stime);
466         break;
467     case QEMU_SI_RT:
468         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
469         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
470         __put_user(info->_sifields._rt._sigval.sival_ptr,
471                    &tinfo->_sifields._rt._sigval.sival_ptr);
472         break;
473     default:
474         g_assert_not_reached();
475     }
476 }
477 
host_to_target_siginfo(target_siginfo_t * tinfo,const siginfo_t * info)478 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
479 {
480     target_siginfo_t tgt_tmp;
481     host_to_target_siginfo_noswap(&tgt_tmp, info);
482     tswap_siginfo(tinfo, &tgt_tmp);
483 }
484 
485 /* XXX: we support only POSIX RT signals are used. */
486 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
target_to_host_siginfo(siginfo_t * info,const target_siginfo_t * tinfo)487 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
488 {
489     /* This conversion is used only for the rt_sigqueueinfo syscall,
490      * and so we know that the _rt fields are the valid ones.
491      */
492     abi_ulong sival_ptr;
493 
494     __get_user(info->si_signo, &tinfo->si_signo);
495     __get_user(info->si_errno, &tinfo->si_errno);
496     __get_user(info->si_code, &tinfo->si_code);
497     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
498     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
499     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
500     info->si_value.sival_ptr = (void *)(long)sival_ptr;
501 }
502 
503 /* returns 1 if given signal should dump core if not handled */
core_dump_signal(int sig)504 static int core_dump_signal(int sig)
505 {
506     switch (sig) {
507     case TARGET_SIGABRT:
508     case TARGET_SIGFPE:
509     case TARGET_SIGILL:
510     case TARGET_SIGQUIT:
511     case TARGET_SIGSEGV:
512     case TARGET_SIGTRAP:
513     case TARGET_SIGBUS:
514         return (1);
515     default:
516         return (0);
517     }
518 }
519 
520 int host_interrupt_signal;
521 
signal_table_init(const char * rtsig_map)522 static void signal_table_init(const char *rtsig_map)
523 {
524     int hsig, tsig, count;
525 
526     if (rtsig_map) {
527         /*
528          * Map host RT signals to target RT signals according to the
529          * user-provided specification.
530          */
531         const char *s = rtsig_map;
532 
533         while (true) {
534             int i;
535 
536             if (qemu_strtoi(s, &s, 10, &tsig) || *s++ != ' ') {
537                 fprintf(stderr, "Malformed target signal in QEMU_RTSIG_MAP\n");
538                 exit(EXIT_FAILURE);
539             }
540             if (qemu_strtoi(s, &s, 10, &hsig) || *s++ != ' ') {
541                 fprintf(stderr, "Malformed host signal in QEMU_RTSIG_MAP\n");
542                 exit(EXIT_FAILURE);
543             }
544             if (qemu_strtoi(s, &s, 10, &count) || (*s && *s != ',')) {
545                 fprintf(stderr, "Malformed signal count in QEMU_RTSIG_MAP\n");
546                 exit(EXIT_FAILURE);
547             }
548 
549             for (i = 0; i < count; i++, tsig++, hsig++) {
550                 if (tsig < TARGET_SIGRTMIN || tsig > TARGET_NSIG) {
551                     fprintf(stderr, "%d is not a target rt signal\n", tsig);
552                     exit(EXIT_FAILURE);
553                 }
554                 if (hsig < SIGRTMIN || hsig > SIGRTMAX) {
555                     fprintf(stderr, "%d is not a host rt signal\n", hsig);
556                     exit(EXIT_FAILURE);
557                 }
558                 if (host_to_target_signal_table[hsig]) {
559                     fprintf(stderr, "%d already maps %d\n",
560                             hsig, host_to_target_signal_table[hsig]);
561                     exit(EXIT_FAILURE);
562                 }
563                 host_to_target_signal_table[hsig] = tsig;
564             }
565 
566             if (*s) {
567                 s++;
568             } else {
569                 break;
570             }
571         }
572     } else {
573         /*
574          * Default host-to-target RT signal mapping.
575          *
576          * Signals are supported starting from TARGET_SIGRTMIN and going up
577          * until we run out of host realtime signals.  Glibc uses the lower 2
578          * RT signals and (hopefully) nobody uses the upper ones.
579          * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
580          * To fix this properly we would need to do manual signal delivery
581          * multiplexed over a single host signal.
582          * Attempts for configure "missing" signals via sigaction will be
583          * silently ignored.
584          *
585          * Reserve two signals for internal usage (see below).
586          */
587 
588         hsig = SIGRTMIN + 2;
589         for (tsig = TARGET_SIGRTMIN;
590              hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
591              hsig++, tsig++) {
592             host_to_target_signal_table[hsig] = tsig;
593         }
594     }
595 
596     /*
597      * Remap the target SIGABRT, so that we can distinguish host abort
598      * from guest abort.  When the guest registers a signal handler or
599      * calls raise(SIGABRT), the host will raise SIG_RTn.  If the guest
600      * arrives at dump_core_and_abort(), we will map back to host SIGABRT
601      * so that the parent (native or emulated) sees the correct signal.
602      * Finally, also map host to guest SIGABRT so that the emulated
603      * parent sees the correct mapping from wait status.
604      */
605 
606     host_to_target_signal_table[SIGABRT] = 0;
607     for (hsig = SIGRTMIN; hsig <= SIGRTMAX; hsig++) {
608         if (!host_to_target_signal_table[hsig]) {
609             if (host_interrupt_signal) {
610                 host_to_target_signal_table[hsig] = TARGET_SIGABRT;
611                 break;
612             } else {
613                 host_interrupt_signal = hsig;
614             }
615         }
616     }
617     if (hsig > SIGRTMAX) {
618         fprintf(stderr,
619                 "No rt signals left for interrupt and SIGABRT mapping\n");
620         exit(EXIT_FAILURE);
621     }
622 
623     /* Invert the mapping that has already been assigned. */
624     for (hsig = 1; hsig < _NSIG; hsig++) {
625         tsig = host_to_target_signal_table[hsig];
626         if (tsig) {
627             if (target_to_host_signal_table[tsig]) {
628                 fprintf(stderr, "%d is already mapped to %d\n",
629                         tsig, target_to_host_signal_table[tsig]);
630                 exit(EXIT_FAILURE);
631             }
632             target_to_host_signal_table[tsig] = hsig;
633         }
634     }
635 
636     host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
637 
638     /* Map everything else out-of-bounds. */
639     for (hsig = 1; hsig < _NSIG; hsig++) {
640         if (host_to_target_signal_table[hsig] == 0) {
641             host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
642         }
643     }
644     for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
645         if (target_to_host_signal_table[tsig] == 0) {
646             target_to_host_signal_table[tsig] = _NSIG;
647             count++;
648         }
649     }
650 
651     trace_signal_table_init(count);
652 }
653 
signal_init(const char * rtsig_map)654 void signal_init(const char *rtsig_map)
655 {
656     TaskState *ts = get_task_state(thread_cpu);
657     struct sigaction act, oact;
658 
659     /* initialize signal conversion tables */
660     signal_table_init(rtsig_map);
661 
662     /* Set the signal mask from the host mask. */
663     sigprocmask(0, 0, &ts->signal_mask);
664 
665     sigfillset(&act.sa_mask);
666     act.sa_flags = SA_SIGINFO;
667     act.sa_sigaction = host_signal_handler;
668 
669     /*
670      * A parent process may configure ignored signals, but all other
671      * signals are default.  For any target signals that have no host
672      * mapping, set to ignore.  For all core_dump_signal, install our
673      * host signal handler so that we may invoke dump_core_and_abort.
674      * This includes SIGSEGV and SIGBUS, which are also need our signal
675      * handler for paging and exceptions.
676      */
677     for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
678         int hsig = target_to_host_signal(tsig);
679         abi_ptr thand = TARGET_SIG_IGN;
680 
681         if (hsig >= _NSIG) {
682             continue;
683         }
684 
685         /* As we force remap SIGABRT, cannot probe and install in one step. */
686         if (tsig == TARGET_SIGABRT) {
687             sigaction(SIGABRT, NULL, &oact);
688             sigaction(hsig, &act, NULL);
689         } else {
690             struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
691             sigaction(hsig, iact, &oact);
692         }
693 
694         if (oact.sa_sigaction != (void *)SIG_IGN) {
695             thand = TARGET_SIG_DFL;
696         }
697         sigact_table[tsig - 1]._sa_handler = thand;
698     }
699 
700     sigaction(host_interrupt_signal, &act, NULL);
701 }
702 
703 /* Force a synchronously taken signal. The kernel force_sig() function
704  * also forces the signal to "not blocked, not ignored", but for QEMU
705  * that work is done in process_pending_signals().
706  */
force_sig(int sig)707 void force_sig(int sig)
708 {
709     CPUState *cpu = thread_cpu;
710     target_siginfo_t info = {};
711 
712     info.si_signo = sig;
713     info.si_errno = 0;
714     info.si_code = TARGET_SI_KERNEL;
715     info._sifields._kill._pid = 0;
716     info._sifields._kill._uid = 0;
717     queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info);
718 }
719 
720 /*
721  * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
722  * 'force' part is handled in process_pending_signals().
723  */
force_sig_fault(int sig,int code,abi_ulong addr)724 void force_sig_fault(int sig, int code, abi_ulong addr)
725 {
726     CPUState *cpu = thread_cpu;
727     target_siginfo_t info = {};
728 
729     info.si_signo = sig;
730     info.si_errno = 0;
731     info.si_code = code;
732     info._sifields._sigfault._addr = addr;
733     queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info);
734 }
735 
736 /* Force a SIGSEGV if we couldn't write to memory trying to set
737  * up the signal frame. oldsig is the signal we were trying to handle
738  * at the point of failure.
739  */
740 #if !defined(TARGET_RISCV)
force_sigsegv(int oldsig)741 void force_sigsegv(int oldsig)
742 {
743     if (oldsig == SIGSEGV) {
744         /* Make sure we don't try to deliver the signal again; this will
745          * end up with handle_pending_signal() calling dump_core_and_abort().
746          */
747         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
748     }
749     force_sig(TARGET_SIGSEGV);
750 }
751 #endif
752 
cpu_loop_exit_sigsegv(CPUState * cpu,vaddr addr,MMUAccessType access_type,bool maperr,uintptr_t ra)753 void cpu_loop_exit_sigsegv(CPUState *cpu, vaddr addr,
754                            MMUAccessType access_type, bool maperr, uintptr_t ra)
755 {
756     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
757 
758     if (tcg_ops->record_sigsegv) {
759         tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
760     }
761 
762     force_sig_fault(TARGET_SIGSEGV,
763                     maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
764                     addr);
765     cpu->exception_index = EXCP_INTERRUPT;
766     cpu_loop_exit_restore(cpu, ra);
767 }
768 
cpu_loop_exit_sigbus(CPUState * cpu,vaddr addr,MMUAccessType access_type,uintptr_t ra)769 void cpu_loop_exit_sigbus(CPUState *cpu, vaddr addr,
770                           MMUAccessType access_type, uintptr_t ra)
771 {
772     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
773 
774     if (tcg_ops->record_sigbus) {
775         tcg_ops->record_sigbus(cpu, addr, access_type, ra);
776     }
777 
778     force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
779     cpu->exception_index = EXCP_INTERRUPT;
780     cpu_loop_exit_restore(cpu, ra);
781 }
782 
783 /* abort execution with signal */
784 static G_NORETURN
die_with_signal(int host_sig)785 void die_with_signal(int host_sig)
786 {
787     struct sigaction act = {
788         .sa_handler = SIG_DFL,
789     };
790 
791     /*
792      * The proper exit code for dying from an uncaught signal is -<signal>.
793      * The kernel doesn't allow exit() or _exit() to pass a negative value.
794      * To get the proper exit code we need to actually die from an uncaught
795      * signal.  Here the default signal handler is installed, we send
796      * the signal and we wait for it to arrive.
797      */
798     sigfillset(&act.sa_mask);
799     sigaction(host_sig, &act, NULL);
800 
801     kill(getpid(), host_sig);
802 
803     /* Make sure the signal isn't masked (reusing the mask inside of act). */
804     sigdelset(&act.sa_mask, host_sig);
805     sigsuspend(&act.sa_mask);
806 
807     /* unreachable */
808     _exit(EXIT_FAILURE);
809 }
810 
811 static G_NORETURN
dump_core_and_abort(CPUArchState * env,int target_sig)812 void dump_core_and_abort(CPUArchState *env, int target_sig)
813 {
814     CPUState *cpu = env_cpu(env);
815     TaskState *ts = get_task_state(cpu);
816     int host_sig, core_dumped = 0;
817 
818     /* On exit, undo the remapping of SIGABRT. */
819     if (target_sig == TARGET_SIGABRT) {
820         host_sig = SIGABRT;
821     } else {
822         host_sig = target_to_host_signal(target_sig);
823     }
824     trace_user_dump_core_and_abort(env, target_sig, host_sig);
825     gdb_signalled(env, target_sig);
826 
827     /* dump core if supported by target binary format */
828     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
829         stop_all_tasks();
830         core_dumped =
831             ((*ts->bprm->core_dump)(target_sig, env) == 0);
832     }
833     if (core_dumped) {
834         /* we already dumped the core of target process, we don't want
835          * a coredump of qemu itself */
836         struct rlimit nodump;
837         getrlimit(RLIMIT_CORE, &nodump);
838         nodump.rlim_cur=0;
839         setrlimit(RLIMIT_CORE, &nodump);
840         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
841             target_sig, strsignal(host_sig), "core dumped" );
842     }
843 
844     preexit_cleanup(env, 128 + target_sig);
845     die_with_signal(host_sig);
846 }
847 
848 /* queue a signal so that it will be send to the virtual CPU as soon
849    as possible */
queue_signal(CPUArchState * env,int sig,int si_type,target_siginfo_t * info)850 void queue_signal(CPUArchState *env, int sig, int si_type,
851                   target_siginfo_t *info)
852 {
853     CPUState *cpu = env_cpu(env);
854     TaskState *ts = get_task_state(cpu);
855 
856     trace_user_queue_signal(env, sig);
857 
858     info->si_code = deposit32(info->si_code, 16, 16, si_type);
859 
860     ts->sync_signal.info = *info;
861     ts->sync_signal.pending = sig;
862     /* signal that a new signal is pending */
863     qatomic_set(&ts->signal_pending, 1);
864 }
865 
866 
867 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
rewind_if_in_safe_syscall(void * puc)868 static inline void rewind_if_in_safe_syscall(void *puc)
869 {
870     host_sigcontext *uc = (host_sigcontext *)puc;
871     uintptr_t pcreg = host_signal_pc(uc);
872 
873     if (pcreg > (uintptr_t)safe_syscall_start
874         && pcreg < (uintptr_t)safe_syscall_end) {
875         host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
876     }
877 }
878 
879 static G_NORETURN
die_from_signal(siginfo_t * info)880 void die_from_signal(siginfo_t *info)
881 {
882     char sigbuf[4], codebuf[12];
883     const char *sig, *code = NULL;
884 
885     switch (info->si_signo) {
886     case SIGSEGV:
887         sig = "SEGV";
888         switch (info->si_code) {
889         case SEGV_MAPERR:
890             code = "MAPERR";
891             break;
892         case SEGV_ACCERR:
893             code = "ACCERR";
894             break;
895         }
896         break;
897     case SIGBUS:
898         sig = "BUS";
899         switch (info->si_code) {
900         case BUS_ADRALN:
901             code = "ADRALN";
902             break;
903         case BUS_ADRERR:
904             code = "ADRERR";
905             break;
906         }
907         break;
908     case SIGILL:
909         sig = "ILL";
910         switch (info->si_code) {
911         case ILL_ILLOPC:
912             code = "ILLOPC";
913             break;
914         case ILL_ILLOPN:
915             code = "ILLOPN";
916             break;
917         case ILL_ILLADR:
918             code = "ILLADR";
919             break;
920         case ILL_PRVOPC:
921             code = "PRVOPC";
922             break;
923         case ILL_PRVREG:
924             code = "PRVREG";
925             break;
926         case ILL_COPROC:
927             code = "COPROC";
928             break;
929         }
930         break;
931     case SIGFPE:
932         sig = "FPE";
933         switch (info->si_code) {
934         case FPE_INTDIV:
935             code = "INTDIV";
936             break;
937         case FPE_INTOVF:
938             code = "INTOVF";
939             break;
940         }
941         break;
942     case SIGTRAP:
943         sig = "TRAP";
944         break;
945     default:
946         snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
947         sig = sigbuf;
948         break;
949     }
950     if (code == NULL) {
951         snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
952         code = codebuf;
953     }
954 
955     error_report("QEMU internal SIG%s {code=%s, addr=%p}",
956                  sig, code, info->si_addr);
957     die_with_signal(info->si_signo);
958 }
959 
host_sigsegv_handler(CPUState * cpu,siginfo_t * info,host_sigcontext * uc)960 static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
961                                  host_sigcontext *uc)
962 {
963     uintptr_t host_addr = (uintptr_t)info->si_addr;
964     /*
965      * Convert forcefully to guest address space: addresses outside
966      * reserved_va are still valid to report via SEGV_MAPERR.
967      */
968     bool is_valid = h2g_valid(host_addr);
969     abi_ptr guest_addr = h2g_nocheck(host_addr);
970     uintptr_t pc = host_signal_pc(uc);
971     bool is_write = host_signal_write(info, uc);
972     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
973     bool maperr;
974 
975     /* If this was a write to a TB protected page, restart. */
976     if (is_write
977         && is_valid
978         && info->si_code == SEGV_ACCERR
979         && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
980                                        pc, guest_addr)) {
981         return;
982     }
983 
984     /*
985      * If the access was not on behalf of the guest, within the executable
986      * mapping of the generated code buffer, then it is a host bug.
987      */
988     if (access_type != MMU_INST_FETCH
989         && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
990         die_from_signal(info);
991     }
992 
993     maperr = true;
994     if (is_valid && info->si_code == SEGV_ACCERR) {
995         /*
996          * With reserved_va, the whole address space is PROT_NONE,
997          * which means that we may get ACCERR when we want MAPERR.
998          */
999         if (page_get_flags(guest_addr) & PAGE_VALID) {
1000             maperr = false;
1001         } else {
1002             info->si_code = SEGV_MAPERR;
1003         }
1004     }
1005 
1006     sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
1007     cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
1008 }
1009 
host_sigbus_handler(CPUState * cpu,siginfo_t * info,host_sigcontext * uc)1010 static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info,
1011                                 host_sigcontext *uc)
1012 {
1013     uintptr_t pc = host_signal_pc(uc);
1014     bool is_write = host_signal_write(info, uc);
1015     MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
1016 
1017     /*
1018      * If the access was not on behalf of the guest, within the executable
1019      * mapping of the generated code buffer, then it is a host bug.
1020      */
1021     if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
1022         die_from_signal(info);
1023     }
1024 
1025     if (info->si_code == BUS_ADRALN) {
1026         uintptr_t host_addr = (uintptr_t)info->si_addr;
1027         abi_ptr guest_addr = h2g_nocheck(host_addr);
1028 
1029         sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
1030         cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
1031     }
1032     return pc;
1033 }
1034 
host_signal_handler(int host_sig,siginfo_t * info,void * puc)1035 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
1036 {
1037     CPUState *cpu = thread_cpu;
1038     CPUArchState *env = cpu_env(cpu);
1039     TaskState *ts = get_task_state(cpu);
1040     target_siginfo_t tinfo;
1041     host_sigcontext *uc = puc;
1042     struct emulated_sigtable *k;
1043     int guest_sig;
1044     uintptr_t pc = 0;
1045     bool sync_sig = false;
1046     void *sigmask;
1047 
1048     if (host_sig == host_interrupt_signal) {
1049         ts->signal_pending = 1;
1050         cpu_exit(thread_cpu);
1051         return;
1052     }
1053 
1054     /*
1055      * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
1056      * handling wrt signal blocking and unwinding.  Non-spoofed SIGILL,
1057      * SIGFPE, SIGTRAP are always host bugs.
1058      */
1059     if (info->si_code > 0) {
1060         switch (host_sig) {
1061         case SIGSEGV:
1062             /* Only returns on handle_sigsegv_accerr_write success. */
1063             host_sigsegv_handler(cpu, info, uc);
1064             return;
1065         case SIGBUS:
1066             pc = host_sigbus_handler(cpu, info, uc);
1067             sync_sig = true;
1068             break;
1069         case SIGILL:
1070         case SIGFPE:
1071         case SIGTRAP:
1072             die_from_signal(info);
1073         }
1074     }
1075 
1076     /* get target signal number */
1077     guest_sig = host_to_target_signal(host_sig);
1078     if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
1079         return;
1080     }
1081     trace_user_host_signal(env, host_sig, guest_sig);
1082 
1083     host_to_target_siginfo_noswap(&tinfo, info);
1084     k = &ts->sigtab[guest_sig - 1];
1085     k->info = tinfo;
1086     k->pending = guest_sig;
1087     ts->signal_pending = 1;
1088 
1089     /*
1090      * For synchronous signals, unwind the cpu state to the faulting
1091      * insn and then exit back to the main loop so that the signal
1092      * is delivered immediately.
1093      */
1094     if (sync_sig) {
1095         cpu->exception_index = EXCP_INTERRUPT;
1096         cpu_loop_exit_restore(cpu, pc);
1097     }
1098 
1099     rewind_if_in_safe_syscall(puc);
1100 
1101     /*
1102      * Block host signals until target signal handler entered. We
1103      * can't block SIGSEGV or SIGBUS while we're executing guest
1104      * code in case the guest code provokes one in the window between
1105      * now and it getting out to the main loop. Signals will be
1106      * unblocked again in process_pending_signals().
1107      *
1108      * WARNING: we cannot use sigfillset() here because the sigmask
1109      * field is a kernel sigset_t, which is much smaller than the
1110      * libc sigset_t which sigfillset() operates on. Using sigfillset()
1111      * would write 0xff bytes off the end of the structure and trash
1112      * data on the struct.
1113      */
1114     sigmask = host_signal_mask(uc);
1115     memset(sigmask, 0xff, SIGSET_T_SIZE);
1116     sigdelset(sigmask, SIGSEGV);
1117     sigdelset(sigmask, SIGBUS);
1118 
1119     /* interrupt the virtual CPU as soon as possible */
1120     cpu_exit(thread_cpu);
1121 }
1122 
1123 /* do_sigaltstack() returns target values and errnos. */
1124 /* compare linux/kernel/signal.c:do_sigaltstack() */
do_sigaltstack(abi_ulong uss_addr,abi_ulong uoss_addr,CPUArchState * env)1125 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
1126                         CPUArchState *env)
1127 {
1128     target_stack_t oss, *uoss = NULL;
1129     abi_long ret = -TARGET_EFAULT;
1130 
1131     if (uoss_addr) {
1132         /* Verify writability now, but do not alter user memory yet. */
1133         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
1134             goto out;
1135         }
1136         target_save_altstack(&oss, env);
1137     }
1138 
1139     if (uss_addr) {
1140         target_stack_t *uss;
1141 
1142         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
1143             goto out;
1144         }
1145         ret = target_restore_altstack(uss, env);
1146         if (ret) {
1147             goto out;
1148         }
1149     }
1150 
1151     if (uoss_addr) {
1152         memcpy(uoss, &oss, sizeof(oss));
1153         unlock_user_struct(uoss, uoss_addr, 1);
1154         uoss = NULL;
1155     }
1156     ret = 0;
1157 
1158  out:
1159     if (uoss) {
1160         unlock_user_struct(uoss, uoss_addr, 0);
1161     }
1162     return ret;
1163 }
1164 
1165 /* do_sigaction() return target values and host errnos */
do_sigaction(int sig,const struct target_sigaction * act,struct target_sigaction * oact,abi_ulong ka_restorer)1166 int do_sigaction(int sig, const struct target_sigaction *act,
1167                  struct target_sigaction *oact, abi_ulong ka_restorer)
1168 {
1169     struct target_sigaction *k;
1170     int host_sig;
1171     int ret = 0;
1172 
1173     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
1174 
1175     if (sig < 1 || sig > TARGET_NSIG) {
1176         return -TARGET_EINVAL;
1177     }
1178 
1179     if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
1180         return -TARGET_EINVAL;
1181     }
1182 
1183     if (block_signals()) {
1184         return -QEMU_ERESTARTSYS;
1185     }
1186 
1187     k = &sigact_table[sig - 1];
1188     if (oact) {
1189         __put_user(k->_sa_handler, &oact->_sa_handler);
1190         __put_user(k->sa_flags, &oact->sa_flags);
1191 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1192         __put_user(k->sa_restorer, &oact->sa_restorer);
1193 #endif
1194         /* Not swapped.  */
1195         oact->sa_mask = k->sa_mask;
1196     }
1197     if (act) {
1198         __get_user(k->_sa_handler, &act->_sa_handler);
1199         __get_user(k->sa_flags, &act->sa_flags);
1200 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1201         __get_user(k->sa_restorer, &act->sa_restorer);
1202 #endif
1203 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1204         k->ka_restorer = ka_restorer;
1205 #endif
1206         /* To be swapped in target_to_host_sigset.  */
1207         k->sa_mask = act->sa_mask;
1208 
1209         /* we update the host linux signal state */
1210         host_sig = target_to_host_signal(sig);
1211         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1212         if (host_sig > SIGRTMAX) {
1213             /* we don't have enough host signals to map all target signals */
1214             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1215                           sig);
1216             /*
1217              * we don't return an error here because some programs try to
1218              * register an handler for all possible rt signals even if they
1219              * don't need it.
1220              * An error here can abort them whereas there can be no problem
1221              * to not have the signal available later.
1222              * This is the case for golang,
1223              *   See https://github.com/golang/go/issues/33746
1224              * So we silently ignore the error.
1225              */
1226             return 0;
1227         }
1228         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1229             struct sigaction act1;
1230 
1231             sigfillset(&act1.sa_mask);
1232             act1.sa_flags = SA_SIGINFO;
1233             if (k->_sa_handler == TARGET_SIG_IGN) {
1234                 /*
1235                  * It is important to update the host kernel signal ignore
1236                  * state to avoid getting unexpected interrupted syscalls.
1237                  */
1238                 act1.sa_sigaction = (void *)SIG_IGN;
1239             } else if (k->_sa_handler == TARGET_SIG_DFL) {
1240                 if (core_dump_signal(sig)) {
1241                     act1.sa_sigaction = host_signal_handler;
1242                 } else {
1243                     act1.sa_sigaction = (void *)SIG_DFL;
1244                 }
1245             } else {
1246                 act1.sa_sigaction = host_signal_handler;
1247                 if (k->sa_flags & TARGET_SA_RESTART) {
1248                     act1.sa_flags |= SA_RESTART;
1249                 }
1250             }
1251             ret = sigaction(host_sig, &act1, NULL);
1252         }
1253     }
1254     return ret;
1255 }
1256 
handle_pending_signal(CPUArchState * cpu_env,int sig,struct emulated_sigtable * k)1257 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1258                                   struct emulated_sigtable *k)
1259 {
1260     CPUState *cpu = env_cpu(cpu_env);
1261     abi_ulong handler;
1262     sigset_t set;
1263     target_siginfo_t unswapped;
1264     target_sigset_t target_old_set;
1265     struct target_sigaction *sa;
1266     TaskState *ts = get_task_state(cpu);
1267 
1268     trace_user_handle_signal(cpu_env, sig);
1269     /* dequeue signal */
1270     k->pending = 0;
1271 
1272     /*
1273      * Writes out siginfo values byteswapped, accordingly to the target.
1274      * It also cleans the si_type from si_code making it correct for
1275      * the target.  We must hold on to the original unswapped copy for
1276      * strace below, because si_type is still required there.
1277      */
1278     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1279         unswapped = k->info;
1280     }
1281     tswap_siginfo(&k->info, &k->info);
1282 
1283     sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info));
1284     if (!sig) {
1285         sa = NULL;
1286         handler = TARGET_SIG_IGN;
1287     } else {
1288         sa = &sigact_table[sig - 1];
1289         handler = sa->_sa_handler;
1290     }
1291 
1292     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1293         print_taken_signal(sig, &unswapped);
1294     }
1295 
1296     if (handler == TARGET_SIG_DFL) {
1297         /* default handler : ignore some signal. The other are job control or fatal */
1298         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1299             kill(getpid(),SIGSTOP);
1300         } else if (sig != TARGET_SIGCHLD &&
1301                    sig != TARGET_SIGURG &&
1302                    sig != TARGET_SIGWINCH &&
1303                    sig != TARGET_SIGCONT) {
1304             dump_core_and_abort(cpu_env, sig);
1305         }
1306     } else if (handler == TARGET_SIG_IGN) {
1307         /* ignore sig */
1308     } else if (handler == TARGET_SIG_ERR) {
1309         dump_core_and_abort(cpu_env, sig);
1310     } else {
1311         /* compute the blocked signals during the handler execution */
1312         sigset_t *blocked_set;
1313 
1314         target_to_host_sigset(&set, &sa->sa_mask);
1315         /* SA_NODEFER indicates that the current signal should not be
1316            blocked during the handler */
1317         if (!(sa->sa_flags & TARGET_SA_NODEFER))
1318             sigaddset(&set, target_to_host_signal(sig));
1319 
1320         /* save the previous blocked signal state to restore it at the
1321            end of the signal execution (see do_sigreturn) */
1322         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1323 
1324         /* block signals in the handler */
1325         blocked_set = ts->in_sigsuspend ?
1326             &ts->sigsuspend_mask : &ts->signal_mask;
1327         sigorset(&ts->signal_mask, blocked_set, &set);
1328         ts->in_sigsuspend = 0;
1329 
1330         /* if the CPU is in VM86 mode, we restore the 32 bit values */
1331 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1332         {
1333             CPUX86State *env = cpu_env;
1334             if (env->eflags & VM_MASK)
1335                 save_v86_state(env);
1336         }
1337 #endif
1338         /* prepare the stack frame of the virtual CPU */
1339 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1340         if (sa->sa_flags & TARGET_SA_SIGINFO) {
1341             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1342         } else {
1343             setup_frame(sig, sa, &target_old_set, cpu_env);
1344         }
1345 #else
1346         /* These targets do not have traditional signals.  */
1347         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1348 #endif
1349         if (sa->sa_flags & TARGET_SA_RESETHAND) {
1350             sa->_sa_handler = TARGET_SIG_DFL;
1351         }
1352     }
1353 }
1354 
process_pending_signals(CPUArchState * cpu_env)1355 void process_pending_signals(CPUArchState *cpu_env)
1356 {
1357     CPUState *cpu = env_cpu(cpu_env);
1358     int sig;
1359     TaskState *ts = get_task_state(cpu);
1360     sigset_t set;
1361     sigset_t *blocked_set;
1362 
1363     while (qatomic_read(&ts->signal_pending)) {
1364         sigfillset(&set);
1365         sigprocmask(SIG_SETMASK, &set, 0);
1366 
1367     restart_scan:
1368         sig = ts->sync_signal.pending;
1369         if (sig) {
1370             /* Synchronous signals are forced,
1371              * see force_sig_info() and callers in Linux
1372              * Note that not all of our queue_signal() calls in QEMU correspond
1373              * to force_sig_info() calls in Linux (some are send_sig_info()).
1374              * However it seems like a kernel bug to me to allow the process
1375              * to block a synchronous signal since it could then just end up
1376              * looping round and round indefinitely.
1377              */
1378             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1379                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1380                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1381                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1382             }
1383 
1384             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1385         }
1386 
1387         for (sig = 1; sig <= TARGET_NSIG; sig++) {
1388             blocked_set = ts->in_sigsuspend ?
1389                 &ts->sigsuspend_mask : &ts->signal_mask;
1390 
1391             if (ts->sigtab[sig - 1].pending &&
1392                 (!sigismember(blocked_set,
1393                               target_to_host_signal_table[sig]))) {
1394                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1395                 /* Restart scan from the beginning, as handle_pending_signal
1396                  * might have resulted in a new synchronous signal (eg SIGSEGV).
1397                  */
1398                 goto restart_scan;
1399             }
1400         }
1401 
1402         /* if no signal is pending, unblock signals and recheck (the act
1403          * of unblocking might cause us to take another host signal which
1404          * will set signal_pending again).
1405          */
1406         qatomic_set(&ts->signal_pending, 0);
1407         ts->in_sigsuspend = 0;
1408         set = ts->signal_mask;
1409         sigdelset(&set, SIGSEGV);
1410         sigdelset(&set, SIGBUS);
1411         sigprocmask(SIG_SETMASK, &set, 0);
1412     }
1413     ts->in_sigsuspend = 0;
1414 }
1415 
process_sigsuspend_mask(sigset_t ** pset,target_ulong sigset,target_ulong sigsize)1416 int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
1417                             target_ulong sigsize)
1418 {
1419     TaskState *ts = get_task_state(thread_cpu);
1420     sigset_t *host_set = &ts->sigsuspend_mask;
1421     target_sigset_t *target_sigset;
1422 
1423     if (sigsize != sizeof(*target_sigset)) {
1424         /* Like the kernel, we enforce correct size sigsets */
1425         return -TARGET_EINVAL;
1426     }
1427 
1428     target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
1429     if (!target_sigset) {
1430         return -TARGET_EFAULT;
1431     }
1432     target_to_host_sigset(host_set, target_sigset);
1433     unlock_user(target_sigset, sigset, 0);
1434 
1435     *pset = host_set;
1436     return 0;
1437 }
1438