1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56
57 static int rdtgroup_setup_root(struct rdt_fs_context *ctx);
58 static void rdtgroup_destroy_root(void);
59
60 struct dentry *debugfs_resctrl;
61
62 static bool resctrl_debug;
63
rdt_last_cmd_clear(void)64 void rdt_last_cmd_clear(void)
65 {
66 lockdep_assert_held(&rdtgroup_mutex);
67 seq_buf_clear(&last_cmd_status);
68 }
69
rdt_last_cmd_puts(const char * s)70 void rdt_last_cmd_puts(const char *s)
71 {
72 lockdep_assert_held(&rdtgroup_mutex);
73 seq_buf_puts(&last_cmd_status, s);
74 }
75
rdt_last_cmd_printf(const char * fmt,...)76 void rdt_last_cmd_printf(const char *fmt, ...)
77 {
78 va_list ap;
79
80 va_start(ap, fmt);
81 lockdep_assert_held(&rdtgroup_mutex);
82 seq_buf_vprintf(&last_cmd_status, fmt, ap);
83 va_end(ap);
84 }
85
rdt_staged_configs_clear(void)86 void rdt_staged_configs_clear(void)
87 {
88 struct rdt_resource *r;
89 struct rdt_domain *dom;
90
91 lockdep_assert_held(&rdtgroup_mutex);
92
93 for_each_alloc_capable_rdt_resource(r) {
94 list_for_each_entry(dom, &r->domains, list)
95 memset(dom->staged_config, 0, sizeof(dom->staged_config));
96 }
97 }
98
99 /*
100 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
101 * we can keep a bitmap of free CLOSIDs in a single integer.
102 *
103 * Using a global CLOSID across all resources has some advantages and
104 * some drawbacks:
105 * + We can simply set "current->closid" to assign a task to a resource
106 * group.
107 * + Context switch code can avoid extra memory references deciding which
108 * CLOSID to load into the PQR_ASSOC MSR
109 * - We give up some options in configuring resource groups across multi-socket
110 * systems.
111 * - Our choices on how to configure each resource become progressively more
112 * limited as the number of resources grows.
113 */
114 static int closid_free_map;
115 static int closid_free_map_len;
116
closids_supported(void)117 int closids_supported(void)
118 {
119 return closid_free_map_len;
120 }
121
closid_init(void)122 static void closid_init(void)
123 {
124 struct resctrl_schema *s;
125 u32 rdt_min_closid = 32;
126
127 /* Compute rdt_min_closid across all resources */
128 list_for_each_entry(s, &resctrl_schema_all, list)
129 rdt_min_closid = min(rdt_min_closid, s->num_closid);
130
131 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
132
133 /* CLOSID 0 is always reserved for the default group */
134 closid_free_map &= ~1;
135 closid_free_map_len = rdt_min_closid;
136 }
137
closid_alloc(void)138 static int closid_alloc(void)
139 {
140 u32 closid = ffs(closid_free_map);
141
142 if (closid == 0)
143 return -ENOSPC;
144 closid--;
145 closid_free_map &= ~(1 << closid);
146
147 return closid;
148 }
149
closid_free(int closid)150 void closid_free(int closid)
151 {
152 closid_free_map |= 1 << closid;
153 }
154
155 /**
156 * closid_allocated - test if provided closid is in use
157 * @closid: closid to be tested
158 *
159 * Return: true if @closid is currently associated with a resource group,
160 * false if @closid is free
161 */
closid_allocated(unsigned int closid)162 static bool closid_allocated(unsigned int closid)
163 {
164 return (closid_free_map & (1 << closid)) == 0;
165 }
166
167 /**
168 * rdtgroup_mode_by_closid - Return mode of resource group with closid
169 * @closid: closid if the resource group
170 *
171 * Each resource group is associated with a @closid. Here the mode
172 * of a resource group can be queried by searching for it using its closid.
173 *
174 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
175 */
rdtgroup_mode_by_closid(int closid)176 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
177 {
178 struct rdtgroup *rdtgrp;
179
180 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
181 if (rdtgrp->closid == closid)
182 return rdtgrp->mode;
183 }
184
185 return RDT_NUM_MODES;
186 }
187
188 static const char * const rdt_mode_str[] = {
189 [RDT_MODE_SHAREABLE] = "shareable",
190 [RDT_MODE_EXCLUSIVE] = "exclusive",
191 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
192 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
193 };
194
195 /**
196 * rdtgroup_mode_str - Return the string representation of mode
197 * @mode: the resource group mode as &enum rdtgroup_mode
198 *
199 * Return: string representation of valid mode, "unknown" otherwise
200 */
rdtgroup_mode_str(enum rdtgrp_mode mode)201 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
202 {
203 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
204 return "unknown";
205
206 return rdt_mode_str[mode];
207 }
208
209 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)210 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
211 {
212 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
213 .ia_uid = current_fsuid(),
214 .ia_gid = current_fsgid(), };
215
216 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
217 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
218 return 0;
219
220 return kernfs_setattr(kn, &iattr);
221 }
222
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)223 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
224 {
225 struct kernfs_node *kn;
226 int ret;
227
228 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
229 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
230 0, rft->kf_ops, rft, NULL, NULL);
231 if (IS_ERR(kn))
232 return PTR_ERR(kn);
233
234 ret = rdtgroup_kn_set_ugid(kn);
235 if (ret) {
236 kernfs_remove(kn);
237 return ret;
238 }
239
240 return 0;
241 }
242
rdtgroup_seqfile_show(struct seq_file * m,void * arg)243 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
244 {
245 struct kernfs_open_file *of = m->private;
246 struct rftype *rft = of->kn->priv;
247
248 if (rft->seq_show)
249 return rft->seq_show(of, m, arg);
250 return 0;
251 }
252
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)253 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
254 size_t nbytes, loff_t off)
255 {
256 struct rftype *rft = of->kn->priv;
257
258 if (rft->write)
259 return rft->write(of, buf, nbytes, off);
260
261 return -EINVAL;
262 }
263
264 static const struct kernfs_ops rdtgroup_kf_single_ops = {
265 .atomic_write_len = PAGE_SIZE,
266 .write = rdtgroup_file_write,
267 .seq_show = rdtgroup_seqfile_show,
268 };
269
270 static const struct kernfs_ops kf_mondata_ops = {
271 .atomic_write_len = PAGE_SIZE,
272 .seq_show = rdtgroup_mondata_show,
273 };
274
is_cpu_list(struct kernfs_open_file * of)275 static bool is_cpu_list(struct kernfs_open_file *of)
276 {
277 struct rftype *rft = of->kn->priv;
278
279 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
280 }
281
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)282 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
283 struct seq_file *s, void *v)
284 {
285 struct rdtgroup *rdtgrp;
286 struct cpumask *mask;
287 int ret = 0;
288
289 rdtgrp = rdtgroup_kn_lock_live(of->kn);
290
291 if (rdtgrp) {
292 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
293 if (!rdtgrp->plr->d) {
294 rdt_last_cmd_clear();
295 rdt_last_cmd_puts("Cache domain offline\n");
296 ret = -ENODEV;
297 } else {
298 mask = &rdtgrp->plr->d->cpu_mask;
299 seq_printf(s, is_cpu_list(of) ?
300 "%*pbl\n" : "%*pb\n",
301 cpumask_pr_args(mask));
302 }
303 } else {
304 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
305 cpumask_pr_args(&rdtgrp->cpu_mask));
306 }
307 } else {
308 ret = -ENOENT;
309 }
310 rdtgroup_kn_unlock(of->kn);
311
312 return ret;
313 }
314
315 /*
316 * This is safe against resctrl_sched_in() called from __switch_to()
317 * because __switch_to() is executed with interrupts disabled. A local call
318 * from update_closid_rmid() is protected against __switch_to() because
319 * preemption is disabled.
320 */
update_cpu_closid_rmid(void * info)321 static void update_cpu_closid_rmid(void *info)
322 {
323 struct rdtgroup *r = info;
324
325 if (r) {
326 this_cpu_write(pqr_state.default_closid, r->closid);
327 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
328 }
329
330 /*
331 * We cannot unconditionally write the MSR because the current
332 * executing task might have its own closid selected. Just reuse
333 * the context switch code.
334 */
335 resctrl_sched_in(current);
336 }
337
338 /*
339 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
340 *
341 * Per task closids/rmids must have been set up before calling this function.
342 */
343 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)344 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
345 {
346 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
347 }
348
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)349 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
350 cpumask_var_t tmpmask)
351 {
352 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
353 struct list_head *head;
354
355 /* Check whether cpus belong to parent ctrl group */
356 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
357 if (!cpumask_empty(tmpmask)) {
358 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
359 return -EINVAL;
360 }
361
362 /* Check whether cpus are dropped from this group */
363 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
364 if (!cpumask_empty(tmpmask)) {
365 /* Give any dropped cpus to parent rdtgroup */
366 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
367 update_closid_rmid(tmpmask, prgrp);
368 }
369
370 /*
371 * If we added cpus, remove them from previous group that owned them
372 * and update per-cpu rmid
373 */
374 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
375 if (!cpumask_empty(tmpmask)) {
376 head = &prgrp->mon.crdtgrp_list;
377 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
378 if (crgrp == rdtgrp)
379 continue;
380 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
381 tmpmask);
382 }
383 update_closid_rmid(tmpmask, rdtgrp);
384 }
385
386 /* Done pushing/pulling - update this group with new mask */
387 cpumask_copy(&rdtgrp->cpu_mask, newmask);
388
389 return 0;
390 }
391
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)392 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
393 {
394 struct rdtgroup *crgrp;
395
396 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
397 /* update the child mon group masks as well*/
398 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
399 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
400 }
401
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)402 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
403 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
404 {
405 struct rdtgroup *r, *crgrp;
406 struct list_head *head;
407
408 /* Check whether cpus are dropped from this group */
409 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
410 if (!cpumask_empty(tmpmask)) {
411 /* Can't drop from default group */
412 if (rdtgrp == &rdtgroup_default) {
413 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
414 return -EINVAL;
415 }
416
417 /* Give any dropped cpus to rdtgroup_default */
418 cpumask_or(&rdtgroup_default.cpu_mask,
419 &rdtgroup_default.cpu_mask, tmpmask);
420 update_closid_rmid(tmpmask, &rdtgroup_default);
421 }
422
423 /*
424 * If we added cpus, remove them from previous group and
425 * the prev group's child groups that owned them
426 * and update per-cpu closid/rmid.
427 */
428 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
429 if (!cpumask_empty(tmpmask)) {
430 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
431 if (r == rdtgrp)
432 continue;
433 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
434 if (!cpumask_empty(tmpmask1))
435 cpumask_rdtgrp_clear(r, tmpmask1);
436 }
437 update_closid_rmid(tmpmask, rdtgrp);
438 }
439
440 /* Done pushing/pulling - update this group with new mask */
441 cpumask_copy(&rdtgrp->cpu_mask, newmask);
442
443 /*
444 * Clear child mon group masks since there is a new parent mask
445 * now and update the rmid for the cpus the child lost.
446 */
447 head = &rdtgrp->mon.crdtgrp_list;
448 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
449 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
450 update_closid_rmid(tmpmask, rdtgrp);
451 cpumask_clear(&crgrp->cpu_mask);
452 }
453
454 return 0;
455 }
456
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)457 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
458 char *buf, size_t nbytes, loff_t off)
459 {
460 cpumask_var_t tmpmask, newmask, tmpmask1;
461 struct rdtgroup *rdtgrp;
462 int ret;
463
464 if (!buf)
465 return -EINVAL;
466
467 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
468 return -ENOMEM;
469 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
470 free_cpumask_var(tmpmask);
471 return -ENOMEM;
472 }
473 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
474 free_cpumask_var(tmpmask);
475 free_cpumask_var(newmask);
476 return -ENOMEM;
477 }
478
479 rdtgrp = rdtgroup_kn_lock_live(of->kn);
480 if (!rdtgrp) {
481 ret = -ENOENT;
482 goto unlock;
483 }
484
485 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
486 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
487 ret = -EINVAL;
488 rdt_last_cmd_puts("Pseudo-locking in progress\n");
489 goto unlock;
490 }
491
492 if (is_cpu_list(of))
493 ret = cpulist_parse(buf, newmask);
494 else
495 ret = cpumask_parse(buf, newmask);
496
497 if (ret) {
498 rdt_last_cmd_puts("Bad CPU list/mask\n");
499 goto unlock;
500 }
501
502 /* check that user didn't specify any offline cpus */
503 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
504 if (!cpumask_empty(tmpmask)) {
505 ret = -EINVAL;
506 rdt_last_cmd_puts("Can only assign online CPUs\n");
507 goto unlock;
508 }
509
510 if (rdtgrp->type == RDTCTRL_GROUP)
511 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
512 else if (rdtgrp->type == RDTMON_GROUP)
513 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
514 else
515 ret = -EINVAL;
516
517 unlock:
518 rdtgroup_kn_unlock(of->kn);
519 free_cpumask_var(tmpmask);
520 free_cpumask_var(newmask);
521 free_cpumask_var(tmpmask1);
522
523 return ret ?: nbytes;
524 }
525
526 /**
527 * rdtgroup_remove - the helper to remove resource group safely
528 * @rdtgrp: resource group to remove
529 *
530 * On resource group creation via a mkdir, an extra kernfs_node reference is
531 * taken to ensure that the rdtgroup structure remains accessible for the
532 * rdtgroup_kn_unlock() calls where it is removed.
533 *
534 * Drop the extra reference here, then free the rdtgroup structure.
535 *
536 * Return: void
537 */
rdtgroup_remove(struct rdtgroup * rdtgrp)538 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
539 {
540 kernfs_put(rdtgrp->kn);
541 kfree(rdtgrp);
542 }
543
_update_task_closid_rmid(void * task)544 static void _update_task_closid_rmid(void *task)
545 {
546 /*
547 * If the task is still current on this CPU, update PQR_ASSOC MSR.
548 * Otherwise, the MSR is updated when the task is scheduled in.
549 */
550 if (task == current)
551 resctrl_sched_in(task);
552 }
553
update_task_closid_rmid(struct task_struct * t)554 static void update_task_closid_rmid(struct task_struct *t)
555 {
556 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
557 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
558 else
559 _update_task_closid_rmid(t);
560 }
561
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)562 static int __rdtgroup_move_task(struct task_struct *tsk,
563 struct rdtgroup *rdtgrp)
564 {
565 /* If the task is already in rdtgrp, no need to move the task. */
566 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
567 tsk->rmid == rdtgrp->mon.rmid) ||
568 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
569 tsk->closid == rdtgrp->mon.parent->closid))
570 return 0;
571
572 /*
573 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
574 * updated by them.
575 *
576 * For ctrl_mon groups, move both closid and rmid.
577 * For monitor groups, can move the tasks only from
578 * their parent CTRL group.
579 */
580
581 if (rdtgrp->type == RDTCTRL_GROUP) {
582 WRITE_ONCE(tsk->closid, rdtgrp->closid);
583 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
584 } else if (rdtgrp->type == RDTMON_GROUP) {
585 if (rdtgrp->mon.parent->closid == tsk->closid) {
586 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
587 } else {
588 rdt_last_cmd_puts("Can't move task to different control group\n");
589 return -EINVAL;
590 }
591 }
592
593 /*
594 * Ensure the task's closid and rmid are written before determining if
595 * the task is current that will decide if it will be interrupted.
596 * This pairs with the full barrier between the rq->curr update and
597 * resctrl_sched_in() during context switch.
598 */
599 smp_mb();
600
601 /*
602 * By now, the task's closid and rmid are set. If the task is current
603 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
604 * group go into effect. If the task is not current, the MSR will be
605 * updated when the task is scheduled in.
606 */
607 update_task_closid_rmid(tsk);
608
609 return 0;
610 }
611
is_closid_match(struct task_struct * t,struct rdtgroup * r)612 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
613 {
614 return (rdt_alloc_capable &&
615 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
616 }
617
is_rmid_match(struct task_struct * t,struct rdtgroup * r)618 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
619 {
620 return (rdt_mon_capable &&
621 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
622 }
623
624 /**
625 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
626 * @r: Resource group
627 *
628 * Return: 1 if tasks have been assigned to @r, 0 otherwise
629 */
rdtgroup_tasks_assigned(struct rdtgroup * r)630 int rdtgroup_tasks_assigned(struct rdtgroup *r)
631 {
632 struct task_struct *p, *t;
633 int ret = 0;
634
635 lockdep_assert_held(&rdtgroup_mutex);
636
637 rcu_read_lock();
638 for_each_process_thread(p, t) {
639 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
640 ret = 1;
641 break;
642 }
643 }
644 rcu_read_unlock();
645
646 return ret;
647 }
648
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)649 static int rdtgroup_task_write_permission(struct task_struct *task,
650 struct kernfs_open_file *of)
651 {
652 const struct cred *tcred = get_task_cred(task);
653 const struct cred *cred = current_cred();
654 int ret = 0;
655
656 /*
657 * Even if we're attaching all tasks in the thread group, we only
658 * need to check permissions on one of them.
659 */
660 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
661 !uid_eq(cred->euid, tcred->uid) &&
662 !uid_eq(cred->euid, tcred->suid)) {
663 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
664 ret = -EPERM;
665 }
666
667 put_cred(tcred);
668 return ret;
669 }
670
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)671 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
672 struct kernfs_open_file *of)
673 {
674 struct task_struct *tsk;
675 int ret;
676
677 rcu_read_lock();
678 if (pid) {
679 tsk = find_task_by_vpid(pid);
680 if (!tsk) {
681 rcu_read_unlock();
682 rdt_last_cmd_printf("No task %d\n", pid);
683 return -ESRCH;
684 }
685 } else {
686 tsk = current;
687 }
688
689 get_task_struct(tsk);
690 rcu_read_unlock();
691
692 ret = rdtgroup_task_write_permission(tsk, of);
693 if (!ret)
694 ret = __rdtgroup_move_task(tsk, rdtgrp);
695
696 put_task_struct(tsk);
697 return ret;
698 }
699
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)700 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
701 char *buf, size_t nbytes, loff_t off)
702 {
703 struct rdtgroup *rdtgrp;
704 char *pid_str;
705 int ret = 0;
706 pid_t pid;
707
708 rdtgrp = rdtgroup_kn_lock_live(of->kn);
709 if (!rdtgrp) {
710 rdtgroup_kn_unlock(of->kn);
711 return -ENOENT;
712 }
713 rdt_last_cmd_clear();
714
715 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
716 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
717 ret = -EINVAL;
718 rdt_last_cmd_puts("Pseudo-locking in progress\n");
719 goto unlock;
720 }
721
722 while (buf && buf[0] != '\0' && buf[0] != '\n') {
723 pid_str = strim(strsep(&buf, ","));
724
725 if (kstrtoint(pid_str, 0, &pid)) {
726 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str);
727 ret = -EINVAL;
728 break;
729 }
730
731 if (pid < 0) {
732 rdt_last_cmd_printf("Invalid pid %d\n", pid);
733 ret = -EINVAL;
734 break;
735 }
736
737 ret = rdtgroup_move_task(pid, rdtgrp, of);
738 if (ret) {
739 rdt_last_cmd_printf("Error while processing task %d\n", pid);
740 break;
741 }
742 }
743
744 unlock:
745 rdtgroup_kn_unlock(of->kn);
746
747 return ret ?: nbytes;
748 }
749
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)750 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
751 {
752 struct task_struct *p, *t;
753 pid_t pid;
754
755 rcu_read_lock();
756 for_each_process_thread(p, t) {
757 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
758 pid = task_pid_vnr(t);
759 if (pid)
760 seq_printf(s, "%d\n", pid);
761 }
762 }
763 rcu_read_unlock();
764 }
765
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)766 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
767 struct seq_file *s, void *v)
768 {
769 struct rdtgroup *rdtgrp;
770 int ret = 0;
771
772 rdtgrp = rdtgroup_kn_lock_live(of->kn);
773 if (rdtgrp)
774 show_rdt_tasks(rdtgrp, s);
775 else
776 ret = -ENOENT;
777 rdtgroup_kn_unlock(of->kn);
778
779 return ret;
780 }
781
rdtgroup_closid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)782 static int rdtgroup_closid_show(struct kernfs_open_file *of,
783 struct seq_file *s, void *v)
784 {
785 struct rdtgroup *rdtgrp;
786 int ret = 0;
787
788 rdtgrp = rdtgroup_kn_lock_live(of->kn);
789 if (rdtgrp)
790 seq_printf(s, "%u\n", rdtgrp->closid);
791 else
792 ret = -ENOENT;
793 rdtgroup_kn_unlock(of->kn);
794
795 return ret;
796 }
797
rdtgroup_rmid_show(struct kernfs_open_file * of,struct seq_file * s,void * v)798 static int rdtgroup_rmid_show(struct kernfs_open_file *of,
799 struct seq_file *s, void *v)
800 {
801 struct rdtgroup *rdtgrp;
802 int ret = 0;
803
804 rdtgrp = rdtgroup_kn_lock_live(of->kn);
805 if (rdtgrp)
806 seq_printf(s, "%u\n", rdtgrp->mon.rmid);
807 else
808 ret = -ENOENT;
809 rdtgroup_kn_unlock(of->kn);
810
811 return ret;
812 }
813
814 #ifdef CONFIG_PROC_CPU_RESCTRL
815
816 /*
817 * A task can only be part of one resctrl control group and of one monitor
818 * group which is associated to that control group.
819 *
820 * 1) res:
821 * mon:
822 *
823 * resctrl is not available.
824 *
825 * 2) res:/
826 * mon:
827 *
828 * Task is part of the root resctrl control group, and it is not associated
829 * to any monitor group.
830 *
831 * 3) res:/
832 * mon:mon0
833 *
834 * Task is part of the root resctrl control group and monitor group mon0.
835 *
836 * 4) res:group0
837 * mon:
838 *
839 * Task is part of resctrl control group group0, and it is not associated
840 * to any monitor group.
841 *
842 * 5) res:group0
843 * mon:mon1
844 *
845 * Task is part of resctrl control group group0 and monitor group mon1.
846 */
proc_resctrl_show(struct seq_file * s,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)847 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
848 struct pid *pid, struct task_struct *tsk)
849 {
850 struct rdtgroup *rdtg;
851 int ret = 0;
852
853 mutex_lock(&rdtgroup_mutex);
854
855 /* Return empty if resctrl has not been mounted. */
856 if (!static_branch_unlikely(&rdt_enable_key)) {
857 seq_puts(s, "res:\nmon:\n");
858 goto unlock;
859 }
860
861 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
862 struct rdtgroup *crg;
863
864 /*
865 * Task information is only relevant for shareable
866 * and exclusive groups.
867 */
868 if (rdtg->mode != RDT_MODE_SHAREABLE &&
869 rdtg->mode != RDT_MODE_EXCLUSIVE)
870 continue;
871
872 if (rdtg->closid != tsk->closid)
873 continue;
874
875 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
876 rdtg->kn->name);
877 seq_puts(s, "mon:");
878 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
879 mon.crdtgrp_list) {
880 if (tsk->rmid != crg->mon.rmid)
881 continue;
882 seq_printf(s, "%s", crg->kn->name);
883 break;
884 }
885 seq_putc(s, '\n');
886 goto unlock;
887 }
888 /*
889 * The above search should succeed. Otherwise return
890 * with an error.
891 */
892 ret = -ENOENT;
893 unlock:
894 mutex_unlock(&rdtgroup_mutex);
895
896 return ret;
897 }
898 #endif
899
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)900 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
901 struct seq_file *seq, void *v)
902 {
903 int len;
904
905 mutex_lock(&rdtgroup_mutex);
906 len = seq_buf_used(&last_cmd_status);
907 if (len)
908 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
909 else
910 seq_puts(seq, "ok\n");
911 mutex_unlock(&rdtgroup_mutex);
912 return 0;
913 }
914
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)915 static int rdt_num_closids_show(struct kernfs_open_file *of,
916 struct seq_file *seq, void *v)
917 {
918 struct resctrl_schema *s = of->kn->parent->priv;
919
920 seq_printf(seq, "%u\n", s->num_closid);
921 return 0;
922 }
923
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)924 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
925 struct seq_file *seq, void *v)
926 {
927 struct resctrl_schema *s = of->kn->parent->priv;
928 struct rdt_resource *r = s->res;
929
930 seq_printf(seq, "%x\n", r->default_ctrl);
931 return 0;
932 }
933
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)934 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
935 struct seq_file *seq, void *v)
936 {
937 struct resctrl_schema *s = of->kn->parent->priv;
938 struct rdt_resource *r = s->res;
939
940 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
941 return 0;
942 }
943
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)944 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
945 struct seq_file *seq, void *v)
946 {
947 struct resctrl_schema *s = of->kn->parent->priv;
948 struct rdt_resource *r = s->res;
949
950 seq_printf(seq, "%x\n", r->cache.shareable_bits);
951 return 0;
952 }
953
954 /*
955 * rdt_bit_usage_show - Display current usage of resources
956 *
957 * A domain is a shared resource that can now be allocated differently. Here
958 * we display the current regions of the domain as an annotated bitmask.
959 * For each domain of this resource its allocation bitmask
960 * is annotated as below to indicate the current usage of the corresponding bit:
961 * 0 - currently unused
962 * X - currently available for sharing and used by software and hardware
963 * H - currently used by hardware only but available for software use
964 * S - currently used and shareable by software only
965 * E - currently used exclusively by one resource group
966 * P - currently pseudo-locked by one resource group
967 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)968 static int rdt_bit_usage_show(struct kernfs_open_file *of,
969 struct seq_file *seq, void *v)
970 {
971 struct resctrl_schema *s = of->kn->parent->priv;
972 /*
973 * Use unsigned long even though only 32 bits are used to ensure
974 * test_bit() is used safely.
975 */
976 unsigned long sw_shareable = 0, hw_shareable = 0;
977 unsigned long exclusive = 0, pseudo_locked = 0;
978 struct rdt_resource *r = s->res;
979 struct rdt_domain *dom;
980 int i, hwb, swb, excl, psl;
981 enum rdtgrp_mode mode;
982 bool sep = false;
983 u32 ctrl_val;
984
985 mutex_lock(&rdtgroup_mutex);
986 hw_shareable = r->cache.shareable_bits;
987 list_for_each_entry(dom, &r->domains, list) {
988 if (sep)
989 seq_putc(seq, ';');
990 sw_shareable = 0;
991 exclusive = 0;
992 seq_printf(seq, "%d=", dom->id);
993 for (i = 0; i < closids_supported(); i++) {
994 if (!closid_allocated(i))
995 continue;
996 ctrl_val = resctrl_arch_get_config(r, dom, i,
997 s->conf_type);
998 mode = rdtgroup_mode_by_closid(i);
999 switch (mode) {
1000 case RDT_MODE_SHAREABLE:
1001 sw_shareable |= ctrl_val;
1002 break;
1003 case RDT_MODE_EXCLUSIVE:
1004 exclusive |= ctrl_val;
1005 break;
1006 case RDT_MODE_PSEUDO_LOCKSETUP:
1007 /*
1008 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1009 * here but not included since the CBM
1010 * associated with this CLOSID in this mode
1011 * is not initialized and no task or cpu can be
1012 * assigned this CLOSID.
1013 */
1014 break;
1015 case RDT_MODE_PSEUDO_LOCKED:
1016 case RDT_NUM_MODES:
1017 WARN(1,
1018 "invalid mode for closid %d\n", i);
1019 break;
1020 }
1021 }
1022 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
1023 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
1024 hwb = test_bit(i, &hw_shareable);
1025 swb = test_bit(i, &sw_shareable);
1026 excl = test_bit(i, &exclusive);
1027 psl = test_bit(i, &pseudo_locked);
1028 if (hwb && swb)
1029 seq_putc(seq, 'X');
1030 else if (hwb && !swb)
1031 seq_putc(seq, 'H');
1032 else if (!hwb && swb)
1033 seq_putc(seq, 'S');
1034 else if (excl)
1035 seq_putc(seq, 'E');
1036 else if (psl)
1037 seq_putc(seq, 'P');
1038 else /* Unused bits remain */
1039 seq_putc(seq, '0');
1040 }
1041 sep = true;
1042 }
1043 seq_putc(seq, '\n');
1044 mutex_unlock(&rdtgroup_mutex);
1045 return 0;
1046 }
1047
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1048 static int rdt_min_bw_show(struct kernfs_open_file *of,
1049 struct seq_file *seq, void *v)
1050 {
1051 struct resctrl_schema *s = of->kn->parent->priv;
1052 struct rdt_resource *r = s->res;
1053
1054 seq_printf(seq, "%u\n", r->membw.min_bw);
1055 return 0;
1056 }
1057
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1058 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1059 struct seq_file *seq, void *v)
1060 {
1061 struct rdt_resource *r = of->kn->parent->priv;
1062
1063 seq_printf(seq, "%d\n", r->num_rmid);
1064
1065 return 0;
1066 }
1067
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1068 static int rdt_mon_features_show(struct kernfs_open_file *of,
1069 struct seq_file *seq, void *v)
1070 {
1071 struct rdt_resource *r = of->kn->parent->priv;
1072 struct mon_evt *mevt;
1073
1074 list_for_each_entry(mevt, &r->evt_list, list) {
1075 seq_printf(seq, "%s\n", mevt->name);
1076 if (mevt->configurable)
1077 seq_printf(seq, "%s_config\n", mevt->name);
1078 }
1079
1080 return 0;
1081 }
1082
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1083 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1084 struct seq_file *seq, void *v)
1085 {
1086 struct resctrl_schema *s = of->kn->parent->priv;
1087 struct rdt_resource *r = s->res;
1088
1089 seq_printf(seq, "%u\n", r->membw.bw_gran);
1090 return 0;
1091 }
1092
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1093 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1094 struct seq_file *seq, void *v)
1095 {
1096 struct resctrl_schema *s = of->kn->parent->priv;
1097 struct rdt_resource *r = s->res;
1098
1099 seq_printf(seq, "%u\n", r->membw.delay_linear);
1100 return 0;
1101 }
1102
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1103 static int max_threshold_occ_show(struct kernfs_open_file *of,
1104 struct seq_file *seq, void *v)
1105 {
1106 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1107
1108 return 0;
1109 }
1110
rdt_thread_throttle_mode_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1111 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1112 struct seq_file *seq, void *v)
1113 {
1114 struct resctrl_schema *s = of->kn->parent->priv;
1115 struct rdt_resource *r = s->res;
1116
1117 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1118 seq_puts(seq, "per-thread\n");
1119 else
1120 seq_puts(seq, "max\n");
1121
1122 return 0;
1123 }
1124
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1125 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1126 char *buf, size_t nbytes, loff_t off)
1127 {
1128 unsigned int bytes;
1129 int ret;
1130
1131 ret = kstrtouint(buf, 0, &bytes);
1132 if (ret)
1133 return ret;
1134
1135 if (bytes > resctrl_rmid_realloc_limit)
1136 return -EINVAL;
1137
1138 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1139
1140 return nbytes;
1141 }
1142
1143 /*
1144 * rdtgroup_mode_show - Display mode of this resource group
1145 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1146 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1147 struct seq_file *s, void *v)
1148 {
1149 struct rdtgroup *rdtgrp;
1150
1151 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1152 if (!rdtgrp) {
1153 rdtgroup_kn_unlock(of->kn);
1154 return -ENOENT;
1155 }
1156
1157 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1158
1159 rdtgroup_kn_unlock(of->kn);
1160 return 0;
1161 }
1162
resctrl_peer_type(enum resctrl_conf_type my_type)1163 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1164 {
1165 switch (my_type) {
1166 case CDP_CODE:
1167 return CDP_DATA;
1168 case CDP_DATA:
1169 return CDP_CODE;
1170 default:
1171 case CDP_NONE:
1172 return CDP_NONE;
1173 }
1174 }
1175
rdt_has_sparse_bitmasks_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1176 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of,
1177 struct seq_file *seq, void *v)
1178 {
1179 struct resctrl_schema *s = of->kn->parent->priv;
1180 struct rdt_resource *r = s->res;
1181
1182 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks);
1183
1184 return 0;
1185 }
1186
1187 /**
1188 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1189 * @r: Resource to which domain instance @d belongs.
1190 * @d: The domain instance for which @closid is being tested.
1191 * @cbm: Capacity bitmask being tested.
1192 * @closid: Intended closid for @cbm.
1193 * @type: CDP type of @r.
1194 * @exclusive: Only check if overlaps with exclusive resource groups
1195 *
1196 * Checks if provided @cbm intended to be used for @closid on domain
1197 * @d overlaps with any other closids or other hardware usage associated
1198 * with this domain. If @exclusive is true then only overlaps with
1199 * resource groups in exclusive mode will be considered. If @exclusive
1200 * is false then overlaps with any resource group or hardware entities
1201 * will be considered.
1202 *
1203 * @cbm is unsigned long, even if only 32 bits are used, to make the
1204 * bitmap functions work correctly.
1205 *
1206 * Return: false if CBM does not overlap, true if it does.
1207 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,enum resctrl_conf_type type,bool exclusive)1208 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1209 unsigned long cbm, int closid,
1210 enum resctrl_conf_type type, bool exclusive)
1211 {
1212 enum rdtgrp_mode mode;
1213 unsigned long ctrl_b;
1214 int i;
1215
1216 /* Check for any overlap with regions used by hardware directly */
1217 if (!exclusive) {
1218 ctrl_b = r->cache.shareable_bits;
1219 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1220 return true;
1221 }
1222
1223 /* Check for overlap with other resource groups */
1224 for (i = 0; i < closids_supported(); i++) {
1225 ctrl_b = resctrl_arch_get_config(r, d, i, type);
1226 mode = rdtgroup_mode_by_closid(i);
1227 if (closid_allocated(i) && i != closid &&
1228 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1229 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1230 if (exclusive) {
1231 if (mode == RDT_MODE_EXCLUSIVE)
1232 return true;
1233 continue;
1234 }
1235 return true;
1236 }
1237 }
1238 }
1239
1240 return false;
1241 }
1242
1243 /**
1244 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1245 * @s: Schema for the resource to which domain instance @d belongs.
1246 * @d: The domain instance for which @closid is being tested.
1247 * @cbm: Capacity bitmask being tested.
1248 * @closid: Intended closid for @cbm.
1249 * @exclusive: Only check if overlaps with exclusive resource groups
1250 *
1251 * Resources that can be allocated using a CBM can use the CBM to control
1252 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1253 * for overlap. Overlap test is not limited to the specific resource for
1254 * which the CBM is intended though - when dealing with CDP resources that
1255 * share the underlying hardware the overlap check should be performed on
1256 * the CDP resource sharing the hardware also.
1257 *
1258 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1259 * overlap test.
1260 *
1261 * Return: true if CBM overlap detected, false if there is no overlap
1262 */
rdtgroup_cbm_overlaps(struct resctrl_schema * s,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1263 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1264 unsigned long cbm, int closid, bool exclusive)
1265 {
1266 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1267 struct rdt_resource *r = s->res;
1268
1269 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1270 exclusive))
1271 return true;
1272
1273 if (!resctrl_arch_get_cdp_enabled(r->rid))
1274 return false;
1275 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1276 }
1277
1278 /**
1279 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1280 * @rdtgrp: Resource group identified through its closid.
1281 *
1282 * An exclusive resource group implies that there should be no sharing of
1283 * its allocated resources. At the time this group is considered to be
1284 * exclusive this test can determine if its current schemata supports this
1285 * setting by testing for overlap with all other resource groups.
1286 *
1287 * Return: true if resource group can be exclusive, false if there is overlap
1288 * with allocations of other resource groups and thus this resource group
1289 * cannot be exclusive.
1290 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1291 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1292 {
1293 int closid = rdtgrp->closid;
1294 struct resctrl_schema *s;
1295 struct rdt_resource *r;
1296 bool has_cache = false;
1297 struct rdt_domain *d;
1298 u32 ctrl;
1299
1300 list_for_each_entry(s, &resctrl_schema_all, list) {
1301 r = s->res;
1302 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1303 continue;
1304 has_cache = true;
1305 list_for_each_entry(d, &r->domains, list) {
1306 ctrl = resctrl_arch_get_config(r, d, closid,
1307 s->conf_type);
1308 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1309 rdt_last_cmd_puts("Schemata overlaps\n");
1310 return false;
1311 }
1312 }
1313 }
1314
1315 if (!has_cache) {
1316 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1317 return false;
1318 }
1319
1320 return true;
1321 }
1322
1323 /*
1324 * rdtgroup_mode_write - Modify the resource group's mode
1325 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1326 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1327 char *buf, size_t nbytes, loff_t off)
1328 {
1329 struct rdtgroup *rdtgrp;
1330 enum rdtgrp_mode mode;
1331 int ret = 0;
1332
1333 /* Valid input requires a trailing newline */
1334 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1335 return -EINVAL;
1336 buf[nbytes - 1] = '\0';
1337
1338 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1339 if (!rdtgrp) {
1340 rdtgroup_kn_unlock(of->kn);
1341 return -ENOENT;
1342 }
1343
1344 rdt_last_cmd_clear();
1345
1346 mode = rdtgrp->mode;
1347
1348 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1349 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1350 (!strcmp(buf, "pseudo-locksetup") &&
1351 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1352 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1353 goto out;
1354
1355 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1356 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1357 ret = -EINVAL;
1358 goto out;
1359 }
1360
1361 if (!strcmp(buf, "shareable")) {
1362 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1363 ret = rdtgroup_locksetup_exit(rdtgrp);
1364 if (ret)
1365 goto out;
1366 }
1367 rdtgrp->mode = RDT_MODE_SHAREABLE;
1368 } else if (!strcmp(buf, "exclusive")) {
1369 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1370 ret = -EINVAL;
1371 goto out;
1372 }
1373 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1374 ret = rdtgroup_locksetup_exit(rdtgrp);
1375 if (ret)
1376 goto out;
1377 }
1378 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1379 } else if (!strcmp(buf, "pseudo-locksetup")) {
1380 ret = rdtgroup_locksetup_enter(rdtgrp);
1381 if (ret)
1382 goto out;
1383 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1384 } else {
1385 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1386 ret = -EINVAL;
1387 }
1388
1389 out:
1390 rdtgroup_kn_unlock(of->kn);
1391 return ret ?: nbytes;
1392 }
1393
1394 /**
1395 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1396 * @r: RDT resource to which @d belongs.
1397 * @d: RDT domain instance.
1398 * @cbm: bitmask for which the size should be computed.
1399 *
1400 * The bitmask provided associated with the RDT domain instance @d will be
1401 * translated into how many bytes it represents. The size in bytes is
1402 * computed by first dividing the total cache size by the CBM length to
1403 * determine how many bytes each bit in the bitmask represents. The result
1404 * is multiplied with the number of bits set in the bitmask.
1405 *
1406 * @cbm is unsigned long, even if only 32 bits are used to make the
1407 * bitmap functions work correctly.
1408 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1409 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1410 struct rdt_domain *d, unsigned long cbm)
1411 {
1412 struct cpu_cacheinfo *ci;
1413 unsigned int size = 0;
1414 int num_b, i;
1415
1416 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1417 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1418 for (i = 0; i < ci->num_leaves; i++) {
1419 if (ci->info_list[i].level == r->cache_level) {
1420 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1421 break;
1422 }
1423 }
1424
1425 return size;
1426 }
1427
1428 /*
1429 * rdtgroup_size_show - Display size in bytes of allocated regions
1430 *
1431 * The "size" file mirrors the layout of the "schemata" file, printing the
1432 * size in bytes of each region instead of the capacity bitmask.
1433 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1434 static int rdtgroup_size_show(struct kernfs_open_file *of,
1435 struct seq_file *s, void *v)
1436 {
1437 struct resctrl_schema *schema;
1438 enum resctrl_conf_type type;
1439 struct rdtgroup *rdtgrp;
1440 struct rdt_resource *r;
1441 struct rdt_domain *d;
1442 unsigned int size;
1443 int ret = 0;
1444 u32 closid;
1445 bool sep;
1446 u32 ctrl;
1447
1448 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1449 if (!rdtgrp) {
1450 rdtgroup_kn_unlock(of->kn);
1451 return -ENOENT;
1452 }
1453
1454 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1455 if (!rdtgrp->plr->d) {
1456 rdt_last_cmd_clear();
1457 rdt_last_cmd_puts("Cache domain offline\n");
1458 ret = -ENODEV;
1459 } else {
1460 seq_printf(s, "%*s:", max_name_width,
1461 rdtgrp->plr->s->name);
1462 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1463 rdtgrp->plr->d,
1464 rdtgrp->plr->cbm);
1465 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1466 }
1467 goto out;
1468 }
1469
1470 closid = rdtgrp->closid;
1471
1472 list_for_each_entry(schema, &resctrl_schema_all, list) {
1473 r = schema->res;
1474 type = schema->conf_type;
1475 sep = false;
1476 seq_printf(s, "%*s:", max_name_width, schema->name);
1477 list_for_each_entry(d, &r->domains, list) {
1478 if (sep)
1479 seq_putc(s, ';');
1480 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1481 size = 0;
1482 } else {
1483 if (is_mba_sc(r))
1484 ctrl = d->mbps_val[closid];
1485 else
1486 ctrl = resctrl_arch_get_config(r, d,
1487 closid,
1488 type);
1489 if (r->rid == RDT_RESOURCE_MBA ||
1490 r->rid == RDT_RESOURCE_SMBA)
1491 size = ctrl;
1492 else
1493 size = rdtgroup_cbm_to_size(r, d, ctrl);
1494 }
1495 seq_printf(s, "%d=%u", d->id, size);
1496 sep = true;
1497 }
1498 seq_putc(s, '\n');
1499 }
1500
1501 out:
1502 rdtgroup_kn_unlock(of->kn);
1503
1504 return ret;
1505 }
1506
1507 struct mon_config_info {
1508 u32 evtid;
1509 u32 mon_config;
1510 };
1511
1512 #define INVALID_CONFIG_INDEX UINT_MAX
1513
1514 /**
1515 * mon_event_config_index_get - get the hardware index for the
1516 * configurable event
1517 * @evtid: event id.
1518 *
1519 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1520 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1521 * INVALID_CONFIG_INDEX for invalid evtid
1522 */
mon_event_config_index_get(u32 evtid)1523 static inline unsigned int mon_event_config_index_get(u32 evtid)
1524 {
1525 switch (evtid) {
1526 case QOS_L3_MBM_TOTAL_EVENT_ID:
1527 return 0;
1528 case QOS_L3_MBM_LOCAL_EVENT_ID:
1529 return 1;
1530 default:
1531 /* Should never reach here */
1532 return INVALID_CONFIG_INDEX;
1533 }
1534 }
1535
mon_event_config_read(void * info)1536 static void mon_event_config_read(void *info)
1537 {
1538 struct mon_config_info *mon_info = info;
1539 unsigned int index;
1540 u64 msrval;
1541
1542 index = mon_event_config_index_get(mon_info->evtid);
1543 if (index == INVALID_CONFIG_INDEX) {
1544 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1545 return;
1546 }
1547 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1548
1549 /* Report only the valid event configuration bits */
1550 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1551 }
1552
mondata_config_read(struct rdt_domain * d,struct mon_config_info * mon_info)1553 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1554 {
1555 smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1556 }
1557
mbm_config_show(struct seq_file * s,struct rdt_resource * r,u32 evtid)1558 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1559 {
1560 struct mon_config_info mon_info = {0};
1561 struct rdt_domain *dom;
1562 bool sep = false;
1563
1564 mutex_lock(&rdtgroup_mutex);
1565
1566 list_for_each_entry(dom, &r->domains, list) {
1567 if (sep)
1568 seq_puts(s, ";");
1569
1570 memset(&mon_info, 0, sizeof(struct mon_config_info));
1571 mon_info.evtid = evtid;
1572 mondata_config_read(dom, &mon_info);
1573
1574 seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1575 sep = true;
1576 }
1577 seq_puts(s, "\n");
1578
1579 mutex_unlock(&rdtgroup_mutex);
1580
1581 return 0;
1582 }
1583
mbm_total_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1584 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1585 struct seq_file *seq, void *v)
1586 {
1587 struct rdt_resource *r = of->kn->parent->priv;
1588
1589 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1590
1591 return 0;
1592 }
1593
mbm_local_bytes_config_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)1594 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1595 struct seq_file *seq, void *v)
1596 {
1597 struct rdt_resource *r = of->kn->parent->priv;
1598
1599 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1600
1601 return 0;
1602 }
1603
mon_event_config_write(void * info)1604 static void mon_event_config_write(void *info)
1605 {
1606 struct mon_config_info *mon_info = info;
1607 unsigned int index;
1608
1609 index = mon_event_config_index_get(mon_info->evtid);
1610 if (index == INVALID_CONFIG_INDEX) {
1611 pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1612 return;
1613 }
1614 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1615 }
1616
mbm_config_write_domain(struct rdt_resource * r,struct rdt_domain * d,u32 evtid,u32 val)1617 static int mbm_config_write_domain(struct rdt_resource *r,
1618 struct rdt_domain *d, u32 evtid, u32 val)
1619 {
1620 struct mon_config_info mon_info = {0};
1621 int ret = 0;
1622
1623 /* mon_config cannot be more than the supported set of events */
1624 if (val > MAX_EVT_CONFIG_BITS) {
1625 rdt_last_cmd_puts("Invalid event configuration\n");
1626 return -EINVAL;
1627 }
1628
1629 /*
1630 * Read the current config value first. If both are the same then
1631 * no need to write it again.
1632 */
1633 mon_info.evtid = evtid;
1634 mondata_config_read(d, &mon_info);
1635 if (mon_info.mon_config == val)
1636 goto out;
1637
1638 mon_info.mon_config = val;
1639
1640 /*
1641 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1642 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1643 * are scoped at the domain level. Writing any of these MSRs
1644 * on one CPU is observed by all the CPUs in the domain.
1645 */
1646 smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1647 &mon_info, 1);
1648
1649 /*
1650 * When an Event Configuration is changed, the bandwidth counters
1651 * for all RMIDs and Events will be cleared by the hardware. The
1652 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1653 * every RMID on the next read to any event for every RMID.
1654 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1655 * cleared while it is tracked by the hardware. Clear the
1656 * mbm_local and mbm_total counts for all the RMIDs.
1657 */
1658 resctrl_arch_reset_rmid_all(r, d);
1659
1660 out:
1661 return ret;
1662 }
1663
mon_config_write(struct rdt_resource * r,char * tok,u32 evtid)1664 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1665 {
1666 char *dom_str = NULL, *id_str;
1667 unsigned long dom_id, val;
1668 struct rdt_domain *d;
1669 int ret = 0;
1670
1671 next:
1672 if (!tok || tok[0] == '\0')
1673 return 0;
1674
1675 /* Start processing the strings for each domain */
1676 dom_str = strim(strsep(&tok, ";"));
1677 id_str = strsep(&dom_str, "=");
1678
1679 if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1680 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1681 return -EINVAL;
1682 }
1683
1684 if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1685 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1686 return -EINVAL;
1687 }
1688
1689 list_for_each_entry(d, &r->domains, list) {
1690 if (d->id == dom_id) {
1691 ret = mbm_config_write_domain(r, d, evtid, val);
1692 if (ret)
1693 return -EINVAL;
1694 goto next;
1695 }
1696 }
1697
1698 return -EINVAL;
1699 }
1700
mbm_total_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1701 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1702 char *buf, size_t nbytes,
1703 loff_t off)
1704 {
1705 struct rdt_resource *r = of->kn->parent->priv;
1706 int ret;
1707
1708 /* Valid input requires a trailing newline */
1709 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1710 return -EINVAL;
1711
1712 mutex_lock(&rdtgroup_mutex);
1713
1714 rdt_last_cmd_clear();
1715
1716 buf[nbytes - 1] = '\0';
1717
1718 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1719
1720 mutex_unlock(&rdtgroup_mutex);
1721
1722 return ret ?: nbytes;
1723 }
1724
mbm_local_bytes_config_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1725 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1726 char *buf, size_t nbytes,
1727 loff_t off)
1728 {
1729 struct rdt_resource *r = of->kn->parent->priv;
1730 int ret;
1731
1732 /* Valid input requires a trailing newline */
1733 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1734 return -EINVAL;
1735
1736 mutex_lock(&rdtgroup_mutex);
1737
1738 rdt_last_cmd_clear();
1739
1740 buf[nbytes - 1] = '\0';
1741
1742 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1743
1744 mutex_unlock(&rdtgroup_mutex);
1745
1746 return ret ?: nbytes;
1747 }
1748
1749 /* rdtgroup information files for one cache resource. */
1750 static struct rftype res_common_files[] = {
1751 {
1752 .name = "last_cmd_status",
1753 .mode = 0444,
1754 .kf_ops = &rdtgroup_kf_single_ops,
1755 .seq_show = rdt_last_cmd_status_show,
1756 .fflags = RFTYPE_TOP_INFO,
1757 },
1758 {
1759 .name = "num_closids",
1760 .mode = 0444,
1761 .kf_ops = &rdtgroup_kf_single_ops,
1762 .seq_show = rdt_num_closids_show,
1763 .fflags = RFTYPE_CTRL_INFO,
1764 },
1765 {
1766 .name = "mon_features",
1767 .mode = 0444,
1768 .kf_ops = &rdtgroup_kf_single_ops,
1769 .seq_show = rdt_mon_features_show,
1770 .fflags = RFTYPE_MON_INFO,
1771 },
1772 {
1773 .name = "num_rmids",
1774 .mode = 0444,
1775 .kf_ops = &rdtgroup_kf_single_ops,
1776 .seq_show = rdt_num_rmids_show,
1777 .fflags = RFTYPE_MON_INFO,
1778 },
1779 {
1780 .name = "cbm_mask",
1781 .mode = 0444,
1782 .kf_ops = &rdtgroup_kf_single_ops,
1783 .seq_show = rdt_default_ctrl_show,
1784 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1785 },
1786 {
1787 .name = "min_cbm_bits",
1788 .mode = 0444,
1789 .kf_ops = &rdtgroup_kf_single_ops,
1790 .seq_show = rdt_min_cbm_bits_show,
1791 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1792 },
1793 {
1794 .name = "shareable_bits",
1795 .mode = 0444,
1796 .kf_ops = &rdtgroup_kf_single_ops,
1797 .seq_show = rdt_shareable_bits_show,
1798 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1799 },
1800 {
1801 .name = "bit_usage",
1802 .mode = 0444,
1803 .kf_ops = &rdtgroup_kf_single_ops,
1804 .seq_show = rdt_bit_usage_show,
1805 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1806 },
1807 {
1808 .name = "min_bandwidth",
1809 .mode = 0444,
1810 .kf_ops = &rdtgroup_kf_single_ops,
1811 .seq_show = rdt_min_bw_show,
1812 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1813 },
1814 {
1815 .name = "bandwidth_gran",
1816 .mode = 0444,
1817 .kf_ops = &rdtgroup_kf_single_ops,
1818 .seq_show = rdt_bw_gran_show,
1819 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1820 },
1821 {
1822 .name = "delay_linear",
1823 .mode = 0444,
1824 .kf_ops = &rdtgroup_kf_single_ops,
1825 .seq_show = rdt_delay_linear_show,
1826 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB,
1827 },
1828 /*
1829 * Platform specific which (if any) capabilities are provided by
1830 * thread_throttle_mode. Defer "fflags" initialization to platform
1831 * discovery.
1832 */
1833 {
1834 .name = "thread_throttle_mode",
1835 .mode = 0444,
1836 .kf_ops = &rdtgroup_kf_single_ops,
1837 .seq_show = rdt_thread_throttle_mode_show,
1838 },
1839 {
1840 .name = "max_threshold_occupancy",
1841 .mode = 0644,
1842 .kf_ops = &rdtgroup_kf_single_ops,
1843 .write = max_threshold_occ_write,
1844 .seq_show = max_threshold_occ_show,
1845 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE,
1846 },
1847 {
1848 .name = "mbm_total_bytes_config",
1849 .mode = 0644,
1850 .kf_ops = &rdtgroup_kf_single_ops,
1851 .seq_show = mbm_total_bytes_config_show,
1852 .write = mbm_total_bytes_config_write,
1853 },
1854 {
1855 .name = "mbm_local_bytes_config",
1856 .mode = 0644,
1857 .kf_ops = &rdtgroup_kf_single_ops,
1858 .seq_show = mbm_local_bytes_config_show,
1859 .write = mbm_local_bytes_config_write,
1860 },
1861 {
1862 .name = "cpus",
1863 .mode = 0644,
1864 .kf_ops = &rdtgroup_kf_single_ops,
1865 .write = rdtgroup_cpus_write,
1866 .seq_show = rdtgroup_cpus_show,
1867 .fflags = RFTYPE_BASE,
1868 },
1869 {
1870 .name = "cpus_list",
1871 .mode = 0644,
1872 .kf_ops = &rdtgroup_kf_single_ops,
1873 .write = rdtgroup_cpus_write,
1874 .seq_show = rdtgroup_cpus_show,
1875 .flags = RFTYPE_FLAGS_CPUS_LIST,
1876 .fflags = RFTYPE_BASE,
1877 },
1878 {
1879 .name = "tasks",
1880 .mode = 0644,
1881 .kf_ops = &rdtgroup_kf_single_ops,
1882 .write = rdtgroup_tasks_write,
1883 .seq_show = rdtgroup_tasks_show,
1884 .fflags = RFTYPE_BASE,
1885 },
1886 {
1887 .name = "mon_hw_id",
1888 .mode = 0444,
1889 .kf_ops = &rdtgroup_kf_single_ops,
1890 .seq_show = rdtgroup_rmid_show,
1891 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG,
1892 },
1893 {
1894 .name = "schemata",
1895 .mode = 0644,
1896 .kf_ops = &rdtgroup_kf_single_ops,
1897 .write = rdtgroup_schemata_write,
1898 .seq_show = rdtgroup_schemata_show,
1899 .fflags = RFTYPE_CTRL_BASE,
1900 },
1901 {
1902 .name = "mode",
1903 .mode = 0644,
1904 .kf_ops = &rdtgroup_kf_single_ops,
1905 .write = rdtgroup_mode_write,
1906 .seq_show = rdtgroup_mode_show,
1907 .fflags = RFTYPE_CTRL_BASE,
1908 },
1909 {
1910 .name = "size",
1911 .mode = 0444,
1912 .kf_ops = &rdtgroup_kf_single_ops,
1913 .seq_show = rdtgroup_size_show,
1914 .fflags = RFTYPE_CTRL_BASE,
1915 },
1916 {
1917 .name = "sparse_masks",
1918 .mode = 0444,
1919 .kf_ops = &rdtgroup_kf_single_ops,
1920 .seq_show = rdt_has_sparse_bitmasks_show,
1921 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE,
1922 },
1923 {
1924 .name = "ctrl_hw_id",
1925 .mode = 0444,
1926 .kf_ops = &rdtgroup_kf_single_ops,
1927 .seq_show = rdtgroup_closid_show,
1928 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG,
1929 },
1930
1931 };
1932
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1933 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1934 {
1935 struct rftype *rfts, *rft;
1936 int ret, len;
1937
1938 rfts = res_common_files;
1939 len = ARRAY_SIZE(res_common_files);
1940
1941 lockdep_assert_held(&rdtgroup_mutex);
1942
1943 if (resctrl_debug)
1944 fflags |= RFTYPE_DEBUG;
1945
1946 for (rft = rfts; rft < rfts + len; rft++) {
1947 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1948 ret = rdtgroup_add_file(kn, rft);
1949 if (ret)
1950 goto error;
1951 }
1952 }
1953
1954 return 0;
1955 error:
1956 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1957 while (--rft >= rfts) {
1958 if ((fflags & rft->fflags) == rft->fflags)
1959 kernfs_remove_by_name(kn, rft->name);
1960 }
1961 return ret;
1962 }
1963
rdtgroup_get_rftype_by_name(const char * name)1964 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1965 {
1966 struct rftype *rfts, *rft;
1967 int len;
1968
1969 rfts = res_common_files;
1970 len = ARRAY_SIZE(res_common_files);
1971
1972 for (rft = rfts; rft < rfts + len; rft++) {
1973 if (!strcmp(rft->name, name))
1974 return rft;
1975 }
1976
1977 return NULL;
1978 }
1979
thread_throttle_mode_init(void)1980 void __init thread_throttle_mode_init(void)
1981 {
1982 struct rftype *rft;
1983
1984 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1985 if (!rft)
1986 return;
1987
1988 rft->fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB;
1989 }
1990
mbm_config_rftype_init(const char * config)1991 void __init mbm_config_rftype_init(const char *config)
1992 {
1993 struct rftype *rft;
1994
1995 rft = rdtgroup_get_rftype_by_name(config);
1996 if (rft)
1997 rft->fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE;
1998 }
1999
2000 /**
2001 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2002 * @r: The resource group with which the file is associated.
2003 * @name: Name of the file
2004 *
2005 * The permissions of named resctrl file, directory, or link are modified
2006 * to not allow read, write, or execute by any user.
2007 *
2008 * WARNING: This function is intended to communicate to the user that the
2009 * resctrl file has been locked down - that it is not relevant to the
2010 * particular state the system finds itself in. It should not be relied
2011 * on to protect from user access because after the file's permissions
2012 * are restricted the user can still change the permissions using chmod
2013 * from the command line.
2014 *
2015 * Return: 0 on success, <0 on failure.
2016 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)2017 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
2018 {
2019 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2020 struct kernfs_node *kn;
2021 int ret = 0;
2022
2023 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2024 if (!kn)
2025 return -ENOENT;
2026
2027 switch (kernfs_type(kn)) {
2028 case KERNFS_DIR:
2029 iattr.ia_mode = S_IFDIR;
2030 break;
2031 case KERNFS_FILE:
2032 iattr.ia_mode = S_IFREG;
2033 break;
2034 case KERNFS_LINK:
2035 iattr.ia_mode = S_IFLNK;
2036 break;
2037 }
2038
2039 ret = kernfs_setattr(kn, &iattr);
2040 kernfs_put(kn);
2041 return ret;
2042 }
2043
2044 /**
2045 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2046 * @r: The resource group with which the file is associated.
2047 * @name: Name of the file
2048 * @mask: Mask of permissions that should be restored
2049 *
2050 * Restore the permissions of the named file. If @name is a directory the
2051 * permissions of its parent will be used.
2052 *
2053 * Return: 0 on success, <0 on failure.
2054 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)2055 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
2056 umode_t mask)
2057 {
2058 struct iattr iattr = {.ia_valid = ATTR_MODE,};
2059 struct kernfs_node *kn, *parent;
2060 struct rftype *rfts, *rft;
2061 int ret, len;
2062
2063 rfts = res_common_files;
2064 len = ARRAY_SIZE(res_common_files);
2065
2066 for (rft = rfts; rft < rfts + len; rft++) {
2067 if (!strcmp(rft->name, name))
2068 iattr.ia_mode = rft->mode & mask;
2069 }
2070
2071 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
2072 if (!kn)
2073 return -ENOENT;
2074
2075 switch (kernfs_type(kn)) {
2076 case KERNFS_DIR:
2077 parent = kernfs_get_parent(kn);
2078 if (parent) {
2079 iattr.ia_mode |= parent->mode;
2080 kernfs_put(parent);
2081 }
2082 iattr.ia_mode |= S_IFDIR;
2083 break;
2084 case KERNFS_FILE:
2085 iattr.ia_mode |= S_IFREG;
2086 break;
2087 case KERNFS_LINK:
2088 iattr.ia_mode |= S_IFLNK;
2089 break;
2090 }
2091
2092 ret = kernfs_setattr(kn, &iattr);
2093 kernfs_put(kn);
2094 return ret;
2095 }
2096
rdtgroup_mkdir_info_resdir(void * priv,char * name,unsigned long fflags)2097 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2098 unsigned long fflags)
2099 {
2100 struct kernfs_node *kn_subdir;
2101 int ret;
2102
2103 kn_subdir = kernfs_create_dir(kn_info, name,
2104 kn_info->mode, priv);
2105 if (IS_ERR(kn_subdir))
2106 return PTR_ERR(kn_subdir);
2107
2108 ret = rdtgroup_kn_set_ugid(kn_subdir);
2109 if (ret)
2110 return ret;
2111
2112 ret = rdtgroup_add_files(kn_subdir, fflags);
2113 if (!ret)
2114 kernfs_activate(kn_subdir);
2115
2116 return ret;
2117 }
2118
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)2119 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2120 {
2121 struct resctrl_schema *s;
2122 struct rdt_resource *r;
2123 unsigned long fflags;
2124 char name[32];
2125 int ret;
2126
2127 /* create the directory */
2128 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2129 if (IS_ERR(kn_info))
2130 return PTR_ERR(kn_info);
2131
2132 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO);
2133 if (ret)
2134 goto out_destroy;
2135
2136 /* loop over enabled controls, these are all alloc_capable */
2137 list_for_each_entry(s, &resctrl_schema_all, list) {
2138 r = s->res;
2139 fflags = r->fflags | RFTYPE_CTRL_INFO;
2140 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2141 if (ret)
2142 goto out_destroy;
2143 }
2144
2145 for_each_mon_capable_rdt_resource(r) {
2146 fflags = r->fflags | RFTYPE_MON_INFO;
2147 sprintf(name, "%s_MON", r->name);
2148 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2149 if (ret)
2150 goto out_destroy;
2151 }
2152
2153 ret = rdtgroup_kn_set_ugid(kn_info);
2154 if (ret)
2155 goto out_destroy;
2156
2157 kernfs_activate(kn_info);
2158
2159 return 0;
2160
2161 out_destroy:
2162 kernfs_remove(kn_info);
2163 return ret;
2164 }
2165
2166 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)2167 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2168 char *name, struct kernfs_node **dest_kn)
2169 {
2170 struct kernfs_node *kn;
2171 int ret;
2172
2173 /* create the directory */
2174 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2175 if (IS_ERR(kn))
2176 return PTR_ERR(kn);
2177
2178 if (dest_kn)
2179 *dest_kn = kn;
2180
2181 ret = rdtgroup_kn_set_ugid(kn);
2182 if (ret)
2183 goto out_destroy;
2184
2185 kernfs_activate(kn);
2186
2187 return 0;
2188
2189 out_destroy:
2190 kernfs_remove(kn);
2191 return ret;
2192 }
2193
l3_qos_cfg_update(void * arg)2194 static void l3_qos_cfg_update(void *arg)
2195 {
2196 bool *enable = arg;
2197
2198 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2199 }
2200
l2_qos_cfg_update(void * arg)2201 static void l2_qos_cfg_update(void *arg)
2202 {
2203 bool *enable = arg;
2204
2205 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2206 }
2207
is_mba_linear(void)2208 static inline bool is_mba_linear(void)
2209 {
2210 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2211 }
2212
set_cache_qos_cfg(int level,bool enable)2213 static int set_cache_qos_cfg(int level, bool enable)
2214 {
2215 void (*update)(void *arg);
2216 struct rdt_resource *r_l;
2217 cpumask_var_t cpu_mask;
2218 struct rdt_domain *d;
2219 int cpu;
2220
2221 if (level == RDT_RESOURCE_L3)
2222 update = l3_qos_cfg_update;
2223 else if (level == RDT_RESOURCE_L2)
2224 update = l2_qos_cfg_update;
2225 else
2226 return -EINVAL;
2227
2228 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2229 return -ENOMEM;
2230
2231 r_l = &rdt_resources_all[level].r_resctrl;
2232 list_for_each_entry(d, &r_l->domains, list) {
2233 if (r_l->cache.arch_has_per_cpu_cfg)
2234 /* Pick all the CPUs in the domain instance */
2235 for_each_cpu(cpu, &d->cpu_mask)
2236 cpumask_set_cpu(cpu, cpu_mask);
2237 else
2238 /* Pick one CPU from each domain instance to update MSR */
2239 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2240 }
2241
2242 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2243 on_each_cpu_mask(cpu_mask, update, &enable, 1);
2244
2245 free_cpumask_var(cpu_mask);
2246
2247 return 0;
2248 }
2249
2250 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)2251 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2252 {
2253 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2254
2255 if (!r->cdp_capable)
2256 return;
2257
2258 if (r->rid == RDT_RESOURCE_L2)
2259 l2_qos_cfg_update(&hw_res->cdp_enabled);
2260
2261 if (r->rid == RDT_RESOURCE_L3)
2262 l3_qos_cfg_update(&hw_res->cdp_enabled);
2263 }
2264
mba_sc_domain_allocate(struct rdt_resource * r,struct rdt_domain * d)2265 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2266 {
2267 u32 num_closid = resctrl_arch_get_num_closid(r);
2268 int cpu = cpumask_any(&d->cpu_mask);
2269 int i;
2270
2271 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2272 GFP_KERNEL, cpu_to_node(cpu));
2273 if (!d->mbps_val)
2274 return -ENOMEM;
2275
2276 for (i = 0; i < num_closid; i++)
2277 d->mbps_val[i] = MBA_MAX_MBPS;
2278
2279 return 0;
2280 }
2281
mba_sc_domain_destroy(struct rdt_resource * r,struct rdt_domain * d)2282 static void mba_sc_domain_destroy(struct rdt_resource *r,
2283 struct rdt_domain *d)
2284 {
2285 kfree(d->mbps_val);
2286 d->mbps_val = NULL;
2287 }
2288
2289 /*
2290 * MBA software controller is supported only if
2291 * MBM is supported and MBA is in linear scale.
2292 */
supports_mba_mbps(void)2293 static bool supports_mba_mbps(void)
2294 {
2295 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2296
2297 return (is_mbm_local_enabled() &&
2298 r->alloc_capable && is_mba_linear());
2299 }
2300
2301 /*
2302 * Enable or disable the MBA software controller
2303 * which helps user specify bandwidth in MBps.
2304 */
set_mba_sc(bool mba_sc)2305 static int set_mba_sc(bool mba_sc)
2306 {
2307 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2308 u32 num_closid = resctrl_arch_get_num_closid(r);
2309 struct rdt_domain *d;
2310 int i;
2311
2312 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2313 return -EINVAL;
2314
2315 r->membw.mba_sc = mba_sc;
2316
2317 list_for_each_entry(d, &r->domains, list) {
2318 for (i = 0; i < num_closid; i++)
2319 d->mbps_val[i] = MBA_MAX_MBPS;
2320 }
2321
2322 return 0;
2323 }
2324
cdp_enable(int level)2325 static int cdp_enable(int level)
2326 {
2327 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2328 int ret;
2329
2330 if (!r_l->alloc_capable)
2331 return -EINVAL;
2332
2333 ret = set_cache_qos_cfg(level, true);
2334 if (!ret)
2335 rdt_resources_all[level].cdp_enabled = true;
2336
2337 return ret;
2338 }
2339
cdp_disable(int level)2340 static void cdp_disable(int level)
2341 {
2342 struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2343
2344 if (r_hw->cdp_enabled) {
2345 set_cache_qos_cfg(level, false);
2346 r_hw->cdp_enabled = false;
2347 }
2348 }
2349
resctrl_arch_set_cdp_enabled(enum resctrl_res_level l,bool enable)2350 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2351 {
2352 struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2353
2354 if (!hw_res->r_resctrl.cdp_capable)
2355 return -EINVAL;
2356
2357 if (enable)
2358 return cdp_enable(l);
2359
2360 cdp_disable(l);
2361
2362 return 0;
2363 }
2364
2365 /*
2366 * We don't allow rdtgroup directories to be created anywhere
2367 * except the root directory. Thus when looking for the rdtgroup
2368 * structure for a kernfs node we are either looking at a directory,
2369 * in which case the rdtgroup structure is pointed at by the "priv"
2370 * field, otherwise we have a file, and need only look to the parent
2371 * to find the rdtgroup.
2372 */
kernfs_to_rdtgroup(struct kernfs_node * kn)2373 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2374 {
2375 if (kernfs_type(kn) == KERNFS_DIR) {
2376 /*
2377 * All the resource directories use "kn->priv"
2378 * to point to the "struct rdtgroup" for the
2379 * resource. "info" and its subdirectories don't
2380 * have rdtgroup structures, so return NULL here.
2381 */
2382 if (kn == kn_info || kn->parent == kn_info)
2383 return NULL;
2384 else
2385 return kn->priv;
2386 } else {
2387 return kn->parent->priv;
2388 }
2389 }
2390
rdtgroup_kn_get(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2391 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2392 {
2393 atomic_inc(&rdtgrp->waitcount);
2394 kernfs_break_active_protection(kn);
2395 }
2396
rdtgroup_kn_put(struct rdtgroup * rdtgrp,struct kernfs_node * kn)2397 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2398 {
2399 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2400 (rdtgrp->flags & RDT_DELETED)) {
2401 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2402 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2403 rdtgroup_pseudo_lock_remove(rdtgrp);
2404 kernfs_unbreak_active_protection(kn);
2405 rdtgroup_remove(rdtgrp);
2406 } else {
2407 kernfs_unbreak_active_protection(kn);
2408 }
2409 }
2410
rdtgroup_kn_lock_live(struct kernfs_node * kn)2411 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2412 {
2413 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2414
2415 if (!rdtgrp)
2416 return NULL;
2417
2418 rdtgroup_kn_get(rdtgrp, kn);
2419
2420 mutex_lock(&rdtgroup_mutex);
2421
2422 /* Was this group deleted while we waited? */
2423 if (rdtgrp->flags & RDT_DELETED)
2424 return NULL;
2425
2426 return rdtgrp;
2427 }
2428
rdtgroup_kn_unlock(struct kernfs_node * kn)2429 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2430 {
2431 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2432
2433 if (!rdtgrp)
2434 return;
2435
2436 mutex_unlock(&rdtgroup_mutex);
2437 rdtgroup_kn_put(rdtgrp, kn);
2438 }
2439
2440 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2441 struct rdtgroup *prgrp,
2442 struct kernfs_node **mon_data_kn);
2443
rdt_disable_ctx(void)2444 static void rdt_disable_ctx(void)
2445 {
2446 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2447 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2448 set_mba_sc(false);
2449
2450 resctrl_debug = false;
2451 }
2452
rdt_enable_ctx(struct rdt_fs_context * ctx)2453 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2454 {
2455 int ret = 0;
2456
2457 if (ctx->enable_cdpl2) {
2458 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2459 if (ret)
2460 goto out_done;
2461 }
2462
2463 if (ctx->enable_cdpl3) {
2464 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2465 if (ret)
2466 goto out_cdpl2;
2467 }
2468
2469 if (ctx->enable_mba_mbps) {
2470 ret = set_mba_sc(true);
2471 if (ret)
2472 goto out_cdpl3;
2473 }
2474
2475 if (ctx->enable_debug)
2476 resctrl_debug = true;
2477
2478 return 0;
2479
2480 out_cdpl3:
2481 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2482 out_cdpl2:
2483 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2484 out_done:
2485 return ret;
2486 }
2487
schemata_list_add(struct rdt_resource * r,enum resctrl_conf_type type)2488 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2489 {
2490 struct resctrl_schema *s;
2491 const char *suffix = "";
2492 int ret, cl;
2493
2494 s = kzalloc(sizeof(*s), GFP_KERNEL);
2495 if (!s)
2496 return -ENOMEM;
2497
2498 s->res = r;
2499 s->num_closid = resctrl_arch_get_num_closid(r);
2500 if (resctrl_arch_get_cdp_enabled(r->rid))
2501 s->num_closid /= 2;
2502
2503 s->conf_type = type;
2504 switch (type) {
2505 case CDP_CODE:
2506 suffix = "CODE";
2507 break;
2508 case CDP_DATA:
2509 suffix = "DATA";
2510 break;
2511 case CDP_NONE:
2512 suffix = "";
2513 break;
2514 }
2515
2516 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2517 if (ret >= sizeof(s->name)) {
2518 kfree(s);
2519 return -EINVAL;
2520 }
2521
2522 cl = strlen(s->name);
2523
2524 /*
2525 * If CDP is supported by this resource, but not enabled,
2526 * include the suffix. This ensures the tabular format of the
2527 * schemata file does not change between mounts of the filesystem.
2528 */
2529 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2530 cl += 4;
2531
2532 if (cl > max_name_width)
2533 max_name_width = cl;
2534
2535 INIT_LIST_HEAD(&s->list);
2536 list_add(&s->list, &resctrl_schema_all);
2537
2538 return 0;
2539 }
2540
schemata_list_create(void)2541 static int schemata_list_create(void)
2542 {
2543 struct rdt_resource *r;
2544 int ret = 0;
2545
2546 for_each_alloc_capable_rdt_resource(r) {
2547 if (resctrl_arch_get_cdp_enabled(r->rid)) {
2548 ret = schemata_list_add(r, CDP_CODE);
2549 if (ret)
2550 break;
2551
2552 ret = schemata_list_add(r, CDP_DATA);
2553 } else {
2554 ret = schemata_list_add(r, CDP_NONE);
2555 }
2556
2557 if (ret)
2558 break;
2559 }
2560
2561 return ret;
2562 }
2563
schemata_list_destroy(void)2564 static void schemata_list_destroy(void)
2565 {
2566 struct resctrl_schema *s, *tmp;
2567
2568 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2569 list_del(&s->list);
2570 kfree(s);
2571 }
2572 }
2573
rdt_get_tree(struct fs_context * fc)2574 static int rdt_get_tree(struct fs_context *fc)
2575 {
2576 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2577 unsigned long flags = RFTYPE_CTRL_BASE;
2578 struct rdt_domain *dom;
2579 struct rdt_resource *r;
2580 int ret;
2581
2582 cpus_read_lock();
2583 mutex_lock(&rdtgroup_mutex);
2584 /*
2585 * resctrl file system can only be mounted once.
2586 */
2587 if (static_branch_unlikely(&rdt_enable_key)) {
2588 ret = -EBUSY;
2589 goto out;
2590 }
2591
2592 ret = rdtgroup_setup_root(ctx);
2593 if (ret)
2594 goto out;
2595
2596 ret = rdt_enable_ctx(ctx);
2597 if (ret)
2598 goto out_root;
2599
2600 ret = schemata_list_create();
2601 if (ret) {
2602 schemata_list_destroy();
2603 goto out_ctx;
2604 }
2605
2606 closid_init();
2607
2608 if (rdt_mon_capable)
2609 flags |= RFTYPE_MON;
2610
2611 ret = rdtgroup_add_files(rdtgroup_default.kn, flags);
2612 if (ret)
2613 goto out_schemata_free;
2614
2615 kernfs_activate(rdtgroup_default.kn);
2616
2617 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2618 if (ret < 0)
2619 goto out_schemata_free;
2620
2621 if (rdt_mon_capable) {
2622 ret = mongroup_create_dir(rdtgroup_default.kn,
2623 &rdtgroup_default, "mon_groups",
2624 &kn_mongrp);
2625 if (ret < 0)
2626 goto out_info;
2627
2628 ret = mkdir_mondata_all(rdtgroup_default.kn,
2629 &rdtgroup_default, &kn_mondata);
2630 if (ret < 0)
2631 goto out_mongrp;
2632 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2633 }
2634
2635 ret = rdt_pseudo_lock_init();
2636 if (ret)
2637 goto out_mondata;
2638
2639 ret = kernfs_get_tree(fc);
2640 if (ret < 0)
2641 goto out_psl;
2642
2643 if (rdt_alloc_capable)
2644 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2645 if (rdt_mon_capable)
2646 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2647
2648 if (rdt_alloc_capable || rdt_mon_capable)
2649 static_branch_enable_cpuslocked(&rdt_enable_key);
2650
2651 if (is_mbm_enabled()) {
2652 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2653 list_for_each_entry(dom, &r->domains, list)
2654 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2655 }
2656
2657 goto out;
2658
2659 out_psl:
2660 rdt_pseudo_lock_release();
2661 out_mondata:
2662 if (rdt_mon_capable)
2663 kernfs_remove(kn_mondata);
2664 out_mongrp:
2665 if (rdt_mon_capable)
2666 kernfs_remove(kn_mongrp);
2667 out_info:
2668 kernfs_remove(kn_info);
2669 out_schemata_free:
2670 schemata_list_destroy();
2671 out_ctx:
2672 rdt_disable_ctx();
2673 out_root:
2674 rdtgroup_destroy_root();
2675 out:
2676 rdt_last_cmd_clear();
2677 mutex_unlock(&rdtgroup_mutex);
2678 cpus_read_unlock();
2679 return ret;
2680 }
2681
2682 enum rdt_param {
2683 Opt_cdp,
2684 Opt_cdpl2,
2685 Opt_mba_mbps,
2686 Opt_debug,
2687 nr__rdt_params
2688 };
2689
2690 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2691 fsparam_flag("cdp", Opt_cdp),
2692 fsparam_flag("cdpl2", Opt_cdpl2),
2693 fsparam_flag("mba_MBps", Opt_mba_mbps),
2694 fsparam_flag("debug", Opt_debug),
2695 {}
2696 };
2697
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2698 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2699 {
2700 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2701 struct fs_parse_result result;
2702 int opt;
2703
2704 opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2705 if (opt < 0)
2706 return opt;
2707
2708 switch (opt) {
2709 case Opt_cdp:
2710 ctx->enable_cdpl3 = true;
2711 return 0;
2712 case Opt_cdpl2:
2713 ctx->enable_cdpl2 = true;
2714 return 0;
2715 case Opt_mba_mbps:
2716 if (!supports_mba_mbps())
2717 return -EINVAL;
2718 ctx->enable_mba_mbps = true;
2719 return 0;
2720 case Opt_debug:
2721 ctx->enable_debug = true;
2722 return 0;
2723 }
2724
2725 return -EINVAL;
2726 }
2727
rdt_fs_context_free(struct fs_context * fc)2728 static void rdt_fs_context_free(struct fs_context *fc)
2729 {
2730 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2731
2732 kernfs_free_fs_context(fc);
2733 kfree(ctx);
2734 }
2735
2736 static const struct fs_context_operations rdt_fs_context_ops = {
2737 .free = rdt_fs_context_free,
2738 .parse_param = rdt_parse_param,
2739 .get_tree = rdt_get_tree,
2740 };
2741
rdt_init_fs_context(struct fs_context * fc)2742 static int rdt_init_fs_context(struct fs_context *fc)
2743 {
2744 struct rdt_fs_context *ctx;
2745
2746 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2747 if (!ctx)
2748 return -ENOMEM;
2749
2750 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2751 fc->fs_private = &ctx->kfc;
2752 fc->ops = &rdt_fs_context_ops;
2753 put_user_ns(fc->user_ns);
2754 fc->user_ns = get_user_ns(&init_user_ns);
2755 fc->global = true;
2756 return 0;
2757 }
2758
reset_all_ctrls(struct rdt_resource * r)2759 static int reset_all_ctrls(struct rdt_resource *r)
2760 {
2761 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2762 struct rdt_hw_domain *hw_dom;
2763 struct msr_param msr_param;
2764 cpumask_var_t cpu_mask;
2765 struct rdt_domain *d;
2766 int i;
2767
2768 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2769 return -ENOMEM;
2770
2771 msr_param.res = r;
2772 msr_param.low = 0;
2773 msr_param.high = hw_res->num_closid;
2774
2775 /*
2776 * Disable resource control for this resource by setting all
2777 * CBMs in all domains to the maximum mask value. Pick one CPU
2778 * from each domain to update the MSRs below.
2779 */
2780 list_for_each_entry(d, &r->domains, list) {
2781 hw_dom = resctrl_to_arch_dom(d);
2782 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2783
2784 for (i = 0; i < hw_res->num_closid; i++)
2785 hw_dom->ctrl_val[i] = r->default_ctrl;
2786 }
2787
2788 /* Update CBM on all the CPUs in cpu_mask */
2789 on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2790
2791 free_cpumask_var(cpu_mask);
2792
2793 return 0;
2794 }
2795
2796 /*
2797 * Move tasks from one to the other group. If @from is NULL, then all tasks
2798 * in the systems are moved unconditionally (used for teardown).
2799 *
2800 * If @mask is not NULL the cpus on which moved tasks are running are set
2801 * in that mask so the update smp function call is restricted to affected
2802 * cpus.
2803 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2804 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2805 struct cpumask *mask)
2806 {
2807 struct task_struct *p, *t;
2808
2809 read_lock(&tasklist_lock);
2810 for_each_process_thread(p, t) {
2811 if (!from || is_closid_match(t, from) ||
2812 is_rmid_match(t, from)) {
2813 WRITE_ONCE(t->closid, to->closid);
2814 WRITE_ONCE(t->rmid, to->mon.rmid);
2815
2816 /*
2817 * Order the closid/rmid stores above before the loads
2818 * in task_curr(). This pairs with the full barrier
2819 * between the rq->curr update and resctrl_sched_in()
2820 * during context switch.
2821 */
2822 smp_mb();
2823
2824 /*
2825 * If the task is on a CPU, set the CPU in the mask.
2826 * The detection is inaccurate as tasks might move or
2827 * schedule before the smp function call takes place.
2828 * In such a case the function call is pointless, but
2829 * there is no other side effect.
2830 */
2831 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2832 cpumask_set_cpu(task_cpu(t), mask);
2833 }
2834 }
2835 read_unlock(&tasklist_lock);
2836 }
2837
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2838 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2839 {
2840 struct rdtgroup *sentry, *stmp;
2841 struct list_head *head;
2842
2843 head = &rdtgrp->mon.crdtgrp_list;
2844 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2845 free_rmid(sentry->mon.rmid);
2846 list_del(&sentry->mon.crdtgrp_list);
2847
2848 if (atomic_read(&sentry->waitcount) != 0)
2849 sentry->flags = RDT_DELETED;
2850 else
2851 rdtgroup_remove(sentry);
2852 }
2853 }
2854
2855 /*
2856 * Forcibly remove all of subdirectories under root.
2857 */
rmdir_all_sub(void)2858 static void rmdir_all_sub(void)
2859 {
2860 struct rdtgroup *rdtgrp, *tmp;
2861
2862 /* Move all tasks to the default resource group */
2863 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2864
2865 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2866 /* Free any child rmids */
2867 free_all_child_rdtgrp(rdtgrp);
2868
2869 /* Remove each rdtgroup other than root */
2870 if (rdtgrp == &rdtgroup_default)
2871 continue;
2872
2873 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2874 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2875 rdtgroup_pseudo_lock_remove(rdtgrp);
2876
2877 /*
2878 * Give any CPUs back to the default group. We cannot copy
2879 * cpu_online_mask because a CPU might have executed the
2880 * offline callback already, but is still marked online.
2881 */
2882 cpumask_or(&rdtgroup_default.cpu_mask,
2883 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2884
2885 free_rmid(rdtgrp->mon.rmid);
2886
2887 kernfs_remove(rdtgrp->kn);
2888 list_del(&rdtgrp->rdtgroup_list);
2889
2890 if (atomic_read(&rdtgrp->waitcount) != 0)
2891 rdtgrp->flags = RDT_DELETED;
2892 else
2893 rdtgroup_remove(rdtgrp);
2894 }
2895 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2896 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2897
2898 kernfs_remove(kn_info);
2899 kernfs_remove(kn_mongrp);
2900 kernfs_remove(kn_mondata);
2901 }
2902
rdt_kill_sb(struct super_block * sb)2903 static void rdt_kill_sb(struct super_block *sb)
2904 {
2905 struct rdt_resource *r;
2906
2907 cpus_read_lock();
2908 mutex_lock(&rdtgroup_mutex);
2909
2910 rdt_disable_ctx();
2911
2912 /*Put everything back to default values. */
2913 for_each_alloc_capable_rdt_resource(r)
2914 reset_all_ctrls(r);
2915 rmdir_all_sub();
2916 rdt_pseudo_lock_release();
2917 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2918 schemata_list_destroy();
2919 rdtgroup_destroy_root();
2920 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2921 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2922 static_branch_disable_cpuslocked(&rdt_enable_key);
2923 kernfs_kill_sb(sb);
2924 mutex_unlock(&rdtgroup_mutex);
2925 cpus_read_unlock();
2926 }
2927
2928 static struct file_system_type rdt_fs_type = {
2929 .name = "resctrl",
2930 .init_fs_context = rdt_init_fs_context,
2931 .parameters = rdt_fs_parameters,
2932 .kill_sb = rdt_kill_sb,
2933 };
2934
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2935 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2936 void *priv)
2937 {
2938 struct kernfs_node *kn;
2939 int ret = 0;
2940
2941 kn = __kernfs_create_file(parent_kn, name, 0444,
2942 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2943 &kf_mondata_ops, priv, NULL, NULL);
2944 if (IS_ERR(kn))
2945 return PTR_ERR(kn);
2946
2947 ret = rdtgroup_kn_set_ugid(kn);
2948 if (ret) {
2949 kernfs_remove(kn);
2950 return ret;
2951 }
2952
2953 return ret;
2954 }
2955
2956 /*
2957 * Remove all subdirectories of mon_data of ctrl_mon groups
2958 * and monitor groups with given domain id.
2959 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2960 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2961 unsigned int dom_id)
2962 {
2963 struct rdtgroup *prgrp, *crgrp;
2964 char name[32];
2965
2966 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2967 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2968 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2969
2970 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2971 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2972 }
2973 }
2974
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2975 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2976 struct rdt_domain *d,
2977 struct rdt_resource *r, struct rdtgroup *prgrp)
2978 {
2979 union mon_data_bits priv;
2980 struct kernfs_node *kn;
2981 struct mon_evt *mevt;
2982 struct rmid_read rr;
2983 char name[32];
2984 int ret;
2985
2986 sprintf(name, "mon_%s_%02d", r->name, d->id);
2987 /* create the directory */
2988 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2989 if (IS_ERR(kn))
2990 return PTR_ERR(kn);
2991
2992 ret = rdtgroup_kn_set_ugid(kn);
2993 if (ret)
2994 goto out_destroy;
2995
2996 if (WARN_ON(list_empty(&r->evt_list))) {
2997 ret = -EPERM;
2998 goto out_destroy;
2999 }
3000
3001 priv.u.rid = r->rid;
3002 priv.u.domid = d->id;
3003 list_for_each_entry(mevt, &r->evt_list, list) {
3004 priv.u.evtid = mevt->evtid;
3005 ret = mon_addfile(kn, mevt->name, priv.priv);
3006 if (ret)
3007 goto out_destroy;
3008
3009 if (is_mbm_event(mevt->evtid))
3010 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
3011 }
3012 kernfs_activate(kn);
3013 return 0;
3014
3015 out_destroy:
3016 kernfs_remove(kn);
3017 return ret;
3018 }
3019
3020 /*
3021 * Add all subdirectories of mon_data for "ctrl_mon" groups
3022 * and "monitor" groups with given domain id.
3023 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)3024 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
3025 struct rdt_domain *d)
3026 {
3027 struct kernfs_node *parent_kn;
3028 struct rdtgroup *prgrp, *crgrp;
3029 struct list_head *head;
3030
3031 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
3032 parent_kn = prgrp->mon.mon_data_kn;
3033 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
3034
3035 head = &prgrp->mon.crdtgrp_list;
3036 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
3037 parent_kn = crgrp->mon.mon_data_kn;
3038 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
3039 }
3040 }
3041 }
3042
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)3043 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
3044 struct rdt_resource *r,
3045 struct rdtgroup *prgrp)
3046 {
3047 struct rdt_domain *dom;
3048 int ret;
3049
3050 list_for_each_entry(dom, &r->domains, list) {
3051 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
3052 if (ret)
3053 return ret;
3054 }
3055
3056 return 0;
3057 }
3058
3059 /*
3060 * This creates a directory mon_data which contains the monitored data.
3061 *
3062 * mon_data has one directory for each domain which are named
3063 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3064 * with L3 domain looks as below:
3065 * ./mon_data:
3066 * mon_L3_00
3067 * mon_L3_01
3068 * mon_L3_02
3069 * ...
3070 *
3071 * Each domain directory has one file per event:
3072 * ./mon_L3_00/:
3073 * llc_occupancy
3074 *
3075 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)3076 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
3077 struct rdtgroup *prgrp,
3078 struct kernfs_node **dest_kn)
3079 {
3080 struct rdt_resource *r;
3081 struct kernfs_node *kn;
3082 int ret;
3083
3084 /*
3085 * Create the mon_data directory first.
3086 */
3087 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
3088 if (ret)
3089 return ret;
3090
3091 if (dest_kn)
3092 *dest_kn = kn;
3093
3094 /*
3095 * Create the subdirectories for each domain. Note that all events
3096 * in a domain like L3 are grouped into a resource whose domain is L3
3097 */
3098 for_each_mon_capable_rdt_resource(r) {
3099 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
3100 if (ret)
3101 goto out_destroy;
3102 }
3103
3104 return 0;
3105
3106 out_destroy:
3107 kernfs_remove(kn);
3108 return ret;
3109 }
3110
3111 /**
3112 * cbm_ensure_valid - Enforce validity on provided CBM
3113 * @_val: Candidate CBM
3114 * @r: RDT resource to which the CBM belongs
3115 *
3116 * The provided CBM represents all cache portions available for use. This
3117 * may be represented by a bitmap that does not consist of contiguous ones
3118 * and thus be an invalid CBM.
3119 * Here the provided CBM is forced to be a valid CBM by only considering
3120 * the first set of contiguous bits as valid and clearing all bits.
3121 * The intention here is to provide a valid default CBM with which a new
3122 * resource group is initialized. The user can follow this with a
3123 * modification to the CBM if the default does not satisfy the
3124 * requirements.
3125 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)3126 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3127 {
3128 unsigned int cbm_len = r->cache.cbm_len;
3129 unsigned long first_bit, zero_bit;
3130 unsigned long val = _val;
3131
3132 if (!val)
3133 return 0;
3134
3135 first_bit = find_first_bit(&val, cbm_len);
3136 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3137
3138 /* Clear any remaining bits to ensure contiguous region */
3139 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3140 return (u32)val;
3141 }
3142
3143 /*
3144 * Initialize cache resources per RDT domain
3145 *
3146 * Set the RDT domain up to start off with all usable allocations. That is,
3147 * all shareable and unused bits. All-zero CBM is invalid.
3148 */
__init_one_rdt_domain(struct rdt_domain * d,struct resctrl_schema * s,u32 closid)3149 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3150 u32 closid)
3151 {
3152 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3153 enum resctrl_conf_type t = s->conf_type;
3154 struct resctrl_staged_config *cfg;
3155 struct rdt_resource *r = s->res;
3156 u32 used_b = 0, unused_b = 0;
3157 unsigned long tmp_cbm;
3158 enum rdtgrp_mode mode;
3159 u32 peer_ctl, ctrl_val;
3160 int i;
3161
3162 cfg = &d->staged_config[t];
3163 cfg->have_new_ctrl = false;
3164 cfg->new_ctrl = r->cache.shareable_bits;
3165 used_b = r->cache.shareable_bits;
3166 for (i = 0; i < closids_supported(); i++) {
3167 if (closid_allocated(i) && i != closid) {
3168 mode = rdtgroup_mode_by_closid(i);
3169 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3170 /*
3171 * ctrl values for locksetup aren't relevant
3172 * until the schemata is written, and the mode
3173 * becomes RDT_MODE_PSEUDO_LOCKED.
3174 */
3175 continue;
3176 /*
3177 * If CDP is active include peer domain's
3178 * usage to ensure there is no overlap
3179 * with an exclusive group.
3180 */
3181 if (resctrl_arch_get_cdp_enabled(r->rid))
3182 peer_ctl = resctrl_arch_get_config(r, d, i,
3183 peer_type);
3184 else
3185 peer_ctl = 0;
3186 ctrl_val = resctrl_arch_get_config(r, d, i,
3187 s->conf_type);
3188 used_b |= ctrl_val | peer_ctl;
3189 if (mode == RDT_MODE_SHAREABLE)
3190 cfg->new_ctrl |= ctrl_val | peer_ctl;
3191 }
3192 }
3193 if (d->plr && d->plr->cbm > 0)
3194 used_b |= d->plr->cbm;
3195 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3196 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3197 cfg->new_ctrl |= unused_b;
3198 /*
3199 * Force the initial CBM to be valid, user can
3200 * modify the CBM based on system availability.
3201 */
3202 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3203 /*
3204 * Assign the u32 CBM to an unsigned long to ensure that
3205 * bitmap_weight() does not access out-of-bound memory.
3206 */
3207 tmp_cbm = cfg->new_ctrl;
3208 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3209 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3210 return -ENOSPC;
3211 }
3212 cfg->have_new_ctrl = true;
3213
3214 return 0;
3215 }
3216
3217 /*
3218 * Initialize cache resources with default values.
3219 *
3220 * A new RDT group is being created on an allocation capable (CAT)
3221 * supporting system. Set this group up to start off with all usable
3222 * allocations.
3223 *
3224 * If there are no more shareable bits available on any domain then
3225 * the entire allocation will fail.
3226 */
rdtgroup_init_cat(struct resctrl_schema * s,u32 closid)3227 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3228 {
3229 struct rdt_domain *d;
3230 int ret;
3231
3232 list_for_each_entry(d, &s->res->domains, list) {
3233 ret = __init_one_rdt_domain(d, s, closid);
3234 if (ret < 0)
3235 return ret;
3236 }
3237
3238 return 0;
3239 }
3240
3241 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r,u32 closid)3242 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3243 {
3244 struct resctrl_staged_config *cfg;
3245 struct rdt_domain *d;
3246
3247 list_for_each_entry(d, &r->domains, list) {
3248 if (is_mba_sc(r)) {
3249 d->mbps_val[closid] = MBA_MAX_MBPS;
3250 continue;
3251 }
3252
3253 cfg = &d->staged_config[CDP_NONE];
3254 cfg->new_ctrl = r->default_ctrl;
3255 cfg->have_new_ctrl = true;
3256 }
3257 }
3258
3259 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)3260 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3261 {
3262 struct resctrl_schema *s;
3263 struct rdt_resource *r;
3264 int ret = 0;
3265
3266 rdt_staged_configs_clear();
3267
3268 list_for_each_entry(s, &resctrl_schema_all, list) {
3269 r = s->res;
3270 if (r->rid == RDT_RESOURCE_MBA ||
3271 r->rid == RDT_RESOURCE_SMBA) {
3272 rdtgroup_init_mba(r, rdtgrp->closid);
3273 if (is_mba_sc(r))
3274 continue;
3275 } else {
3276 ret = rdtgroup_init_cat(s, rdtgrp->closid);
3277 if (ret < 0)
3278 goto out;
3279 }
3280
3281 ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3282 if (ret < 0) {
3283 rdt_last_cmd_puts("Failed to initialize allocations\n");
3284 goto out;
3285 }
3286
3287 }
3288
3289 rdtgrp->mode = RDT_MODE_SHAREABLE;
3290
3291 out:
3292 rdt_staged_configs_clear();
3293 return ret;
3294 }
3295
mkdir_rdt_prepare(struct kernfs_node * parent_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)3296 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3297 const char *name, umode_t mode,
3298 enum rdt_group_type rtype, struct rdtgroup **r)
3299 {
3300 struct rdtgroup *prdtgrp, *rdtgrp;
3301 unsigned long files = 0;
3302 struct kernfs_node *kn;
3303 int ret;
3304
3305 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3306 if (!prdtgrp) {
3307 ret = -ENODEV;
3308 goto out_unlock;
3309 }
3310
3311 if (rtype == RDTMON_GROUP &&
3312 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3313 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3314 ret = -EINVAL;
3315 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3316 goto out_unlock;
3317 }
3318
3319 /* allocate the rdtgroup. */
3320 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3321 if (!rdtgrp) {
3322 ret = -ENOSPC;
3323 rdt_last_cmd_puts("Kernel out of memory\n");
3324 goto out_unlock;
3325 }
3326 *r = rdtgrp;
3327 rdtgrp->mon.parent = prdtgrp;
3328 rdtgrp->type = rtype;
3329 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3330
3331 /* kernfs creates the directory for rdtgrp */
3332 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3333 if (IS_ERR(kn)) {
3334 ret = PTR_ERR(kn);
3335 rdt_last_cmd_puts("kernfs create error\n");
3336 goto out_free_rgrp;
3337 }
3338 rdtgrp->kn = kn;
3339
3340 /*
3341 * kernfs_remove() will drop the reference count on "kn" which
3342 * will free it. But we still need it to stick around for the
3343 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3344 * which will be dropped by kernfs_put() in rdtgroup_remove().
3345 */
3346 kernfs_get(kn);
3347
3348 ret = rdtgroup_kn_set_ugid(kn);
3349 if (ret) {
3350 rdt_last_cmd_puts("kernfs perm error\n");
3351 goto out_destroy;
3352 }
3353
3354 if (rtype == RDTCTRL_GROUP) {
3355 files = RFTYPE_BASE | RFTYPE_CTRL;
3356 if (rdt_mon_capable)
3357 files |= RFTYPE_MON;
3358 } else {
3359 files = RFTYPE_BASE | RFTYPE_MON;
3360 }
3361
3362 ret = rdtgroup_add_files(kn, files);
3363 if (ret) {
3364 rdt_last_cmd_puts("kernfs fill error\n");
3365 goto out_destroy;
3366 }
3367
3368 if (rdt_mon_capable) {
3369 ret = alloc_rmid();
3370 if (ret < 0) {
3371 rdt_last_cmd_puts("Out of RMIDs\n");
3372 goto out_destroy;
3373 }
3374 rdtgrp->mon.rmid = ret;
3375
3376 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3377 if (ret) {
3378 rdt_last_cmd_puts("kernfs subdir error\n");
3379 goto out_idfree;
3380 }
3381 }
3382 kernfs_activate(kn);
3383
3384 /*
3385 * The caller unlocks the parent_kn upon success.
3386 */
3387 return 0;
3388
3389 out_idfree:
3390 free_rmid(rdtgrp->mon.rmid);
3391 out_destroy:
3392 kernfs_put(rdtgrp->kn);
3393 kernfs_remove(rdtgrp->kn);
3394 out_free_rgrp:
3395 kfree(rdtgrp);
3396 out_unlock:
3397 rdtgroup_kn_unlock(parent_kn);
3398 return ret;
3399 }
3400
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)3401 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3402 {
3403 kernfs_remove(rgrp->kn);
3404 free_rmid(rgrp->mon.rmid);
3405 rdtgroup_remove(rgrp);
3406 }
3407
3408 /*
3409 * Create a monitor group under "mon_groups" directory of a control
3410 * and monitor group(ctrl_mon). This is a resource group
3411 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3412 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3413 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3414 const char *name, umode_t mode)
3415 {
3416 struct rdtgroup *rdtgrp, *prgrp;
3417 int ret;
3418
3419 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3420 if (ret)
3421 return ret;
3422
3423 prgrp = rdtgrp->mon.parent;
3424 rdtgrp->closid = prgrp->closid;
3425
3426 /*
3427 * Add the rdtgrp to the list of rdtgrps the parent
3428 * ctrl_mon group has to track.
3429 */
3430 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3431
3432 rdtgroup_kn_unlock(parent_kn);
3433 return ret;
3434 }
3435
3436 /*
3437 * These are rdtgroups created under the root directory. Can be used
3438 * to allocate and monitor resources.
3439 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,const char * name,umode_t mode)3440 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3441 const char *name, umode_t mode)
3442 {
3443 struct rdtgroup *rdtgrp;
3444 struct kernfs_node *kn;
3445 u32 closid;
3446 int ret;
3447
3448 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3449 if (ret)
3450 return ret;
3451
3452 kn = rdtgrp->kn;
3453 ret = closid_alloc();
3454 if (ret < 0) {
3455 rdt_last_cmd_puts("Out of CLOSIDs\n");
3456 goto out_common_fail;
3457 }
3458 closid = ret;
3459 ret = 0;
3460
3461 rdtgrp->closid = closid;
3462 ret = rdtgroup_init_alloc(rdtgrp);
3463 if (ret < 0)
3464 goto out_id_free;
3465
3466 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3467
3468 if (rdt_mon_capable) {
3469 /*
3470 * Create an empty mon_groups directory to hold the subset
3471 * of tasks and cpus to monitor.
3472 */
3473 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3474 if (ret) {
3475 rdt_last_cmd_puts("kernfs subdir error\n");
3476 goto out_del_list;
3477 }
3478 }
3479
3480 goto out_unlock;
3481
3482 out_del_list:
3483 list_del(&rdtgrp->rdtgroup_list);
3484 out_id_free:
3485 closid_free(closid);
3486 out_common_fail:
3487 mkdir_rdt_prepare_clean(rdtgrp);
3488 out_unlock:
3489 rdtgroup_kn_unlock(parent_kn);
3490 return ret;
3491 }
3492
3493 /*
3494 * We allow creating mon groups only with in a directory called "mon_groups"
3495 * which is present in every ctrl_mon group. Check if this is a valid
3496 * "mon_groups" directory.
3497 *
3498 * 1. The directory should be named "mon_groups".
3499 * 2. The mon group itself should "not" be named "mon_groups".
3500 * This makes sure "mon_groups" directory always has a ctrl_mon group
3501 * as parent.
3502 */
is_mon_groups(struct kernfs_node * kn,const char * name)3503 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3504 {
3505 return (!strcmp(kn->name, "mon_groups") &&
3506 strcmp(name, "mon_groups"));
3507 }
3508
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)3509 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3510 umode_t mode)
3511 {
3512 /* Do not accept '\n' to avoid unparsable situation. */
3513 if (strchr(name, '\n'))
3514 return -EINVAL;
3515
3516 /*
3517 * If the parent directory is the root directory and RDT
3518 * allocation is supported, add a control and monitoring
3519 * subdirectory
3520 */
3521 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3522 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3523
3524 /*
3525 * If RDT monitoring is supported and the parent directory is a valid
3526 * "mon_groups" directory, add a monitoring subdirectory.
3527 */
3528 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3529 return rdtgroup_mkdir_mon(parent_kn, name, mode);
3530
3531 return -EPERM;
3532 }
3533
rdtgroup_rmdir_mon(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3534 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3535 {
3536 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3537 int cpu;
3538
3539 /* Give any tasks back to the parent group */
3540 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3541
3542 /* Update per cpu rmid of the moved CPUs first */
3543 for_each_cpu(cpu, &rdtgrp->cpu_mask)
3544 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3545 /*
3546 * Update the MSR on moved CPUs and CPUs which have moved
3547 * task running on them.
3548 */
3549 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3550 update_closid_rmid(tmpmask, NULL);
3551
3552 rdtgrp->flags = RDT_DELETED;
3553 free_rmid(rdtgrp->mon.rmid);
3554
3555 /*
3556 * Remove the rdtgrp from the parent ctrl_mon group's list
3557 */
3558 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3559 list_del(&rdtgrp->mon.crdtgrp_list);
3560
3561 kernfs_remove(rdtgrp->kn);
3562
3563 return 0;
3564 }
3565
rdtgroup_ctrl_remove(struct rdtgroup * rdtgrp)3566 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3567 {
3568 rdtgrp->flags = RDT_DELETED;
3569 list_del(&rdtgrp->rdtgroup_list);
3570
3571 kernfs_remove(rdtgrp->kn);
3572 return 0;
3573 }
3574
rdtgroup_rmdir_ctrl(struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)3575 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3576 {
3577 int cpu;
3578
3579 /* Give any tasks back to the default group */
3580 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3581
3582 /* Give any CPUs back to the default group */
3583 cpumask_or(&rdtgroup_default.cpu_mask,
3584 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3585
3586 /* Update per cpu closid and rmid of the moved CPUs first */
3587 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3588 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3589 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3590 }
3591
3592 /*
3593 * Update the MSR on moved CPUs and CPUs which have moved
3594 * task running on them.
3595 */
3596 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3597 update_closid_rmid(tmpmask, NULL);
3598
3599 closid_free(rdtgrp->closid);
3600 free_rmid(rdtgrp->mon.rmid);
3601
3602 rdtgroup_ctrl_remove(rdtgrp);
3603
3604 /*
3605 * Free all the child monitor group rmids.
3606 */
3607 free_all_child_rdtgrp(rdtgrp);
3608
3609 return 0;
3610 }
3611
rdtgroup_rmdir(struct kernfs_node * kn)3612 static int rdtgroup_rmdir(struct kernfs_node *kn)
3613 {
3614 struct kernfs_node *parent_kn = kn->parent;
3615 struct rdtgroup *rdtgrp;
3616 cpumask_var_t tmpmask;
3617 int ret = 0;
3618
3619 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3620 return -ENOMEM;
3621
3622 rdtgrp = rdtgroup_kn_lock_live(kn);
3623 if (!rdtgrp) {
3624 ret = -EPERM;
3625 goto out;
3626 }
3627
3628 /*
3629 * If the rdtgroup is a ctrl_mon group and parent directory
3630 * is the root directory, remove the ctrl_mon group.
3631 *
3632 * If the rdtgroup is a mon group and parent directory
3633 * is a valid "mon_groups" directory, remove the mon group.
3634 */
3635 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3636 rdtgrp != &rdtgroup_default) {
3637 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3638 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3639 ret = rdtgroup_ctrl_remove(rdtgrp);
3640 } else {
3641 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3642 }
3643 } else if (rdtgrp->type == RDTMON_GROUP &&
3644 is_mon_groups(parent_kn, kn->name)) {
3645 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3646 } else {
3647 ret = -EPERM;
3648 }
3649
3650 out:
3651 rdtgroup_kn_unlock(kn);
3652 free_cpumask_var(tmpmask);
3653 return ret;
3654 }
3655
3656 /**
3657 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3658 * @rdtgrp: the MON group whose parent should be replaced
3659 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp
3660 * @cpus: cpumask provided by the caller for use during this call
3661 *
3662 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3663 * tasks' CLOSID immediately changing to that of the new parent group.
3664 * Monitoring data for the group is unaffected by this operation.
3665 */
mongrp_reparent(struct rdtgroup * rdtgrp,struct rdtgroup * new_prdtgrp,cpumask_var_t cpus)3666 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3667 struct rdtgroup *new_prdtgrp,
3668 cpumask_var_t cpus)
3669 {
3670 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3671
3672 WARN_ON(rdtgrp->type != RDTMON_GROUP);
3673 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3674
3675 /* Nothing to do when simply renaming a MON group. */
3676 if (prdtgrp == new_prdtgrp)
3677 return;
3678
3679 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3680 list_move_tail(&rdtgrp->mon.crdtgrp_list,
3681 &new_prdtgrp->mon.crdtgrp_list);
3682
3683 rdtgrp->mon.parent = new_prdtgrp;
3684 rdtgrp->closid = new_prdtgrp->closid;
3685
3686 /* Propagate updated closid to all tasks in this group. */
3687 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3688
3689 update_closid_rmid(cpus, NULL);
3690 }
3691
rdtgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name)3692 static int rdtgroup_rename(struct kernfs_node *kn,
3693 struct kernfs_node *new_parent, const char *new_name)
3694 {
3695 struct rdtgroup *new_prdtgrp;
3696 struct rdtgroup *rdtgrp;
3697 cpumask_var_t tmpmask;
3698 int ret;
3699
3700 rdtgrp = kernfs_to_rdtgroup(kn);
3701 new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3702 if (!rdtgrp || !new_prdtgrp)
3703 return -ENOENT;
3704
3705 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3706 rdtgroup_kn_get(rdtgrp, kn);
3707 rdtgroup_kn_get(new_prdtgrp, new_parent);
3708
3709 mutex_lock(&rdtgroup_mutex);
3710
3711 rdt_last_cmd_clear();
3712
3713 /*
3714 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3715 * either kernfs_node is a file.
3716 */
3717 if (kernfs_type(kn) != KERNFS_DIR ||
3718 kernfs_type(new_parent) != KERNFS_DIR) {
3719 rdt_last_cmd_puts("Source and destination must be directories");
3720 ret = -EPERM;
3721 goto out;
3722 }
3723
3724 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3725 ret = -ENOENT;
3726 goto out;
3727 }
3728
3729 if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3730 !is_mon_groups(kn->parent, kn->name)) {
3731 rdt_last_cmd_puts("Source must be a MON group\n");
3732 ret = -EPERM;
3733 goto out;
3734 }
3735
3736 if (!is_mon_groups(new_parent, new_name)) {
3737 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3738 ret = -EPERM;
3739 goto out;
3740 }
3741
3742 /*
3743 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3744 * current parent CTRL_MON group and therefore cannot be assigned to
3745 * the new parent, making the move illegal.
3746 */
3747 if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3748 rdtgrp->mon.parent != new_prdtgrp) {
3749 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3750 ret = -EPERM;
3751 goto out;
3752 }
3753
3754 /*
3755 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3756 * possibility of failing to allocate it after kernfs_rename() has
3757 * succeeded.
3758 */
3759 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3760 ret = -ENOMEM;
3761 goto out;
3762 }
3763
3764 /*
3765 * Perform all input validation and allocations needed to ensure
3766 * mongrp_reparent() will succeed before calling kernfs_rename(),
3767 * otherwise it would be necessary to revert this call if
3768 * mongrp_reparent() failed.
3769 */
3770 ret = kernfs_rename(kn, new_parent, new_name);
3771 if (!ret)
3772 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3773
3774 free_cpumask_var(tmpmask);
3775
3776 out:
3777 mutex_unlock(&rdtgroup_mutex);
3778 rdtgroup_kn_put(rdtgrp, kn);
3779 rdtgroup_kn_put(new_prdtgrp, new_parent);
3780 return ret;
3781 }
3782
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3783 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3784 {
3785 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3786 seq_puts(seq, ",cdp");
3787
3788 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3789 seq_puts(seq, ",cdpl2");
3790
3791 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3792 seq_puts(seq, ",mba_MBps");
3793
3794 if (resctrl_debug)
3795 seq_puts(seq, ",debug");
3796
3797 return 0;
3798 }
3799
3800 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3801 .mkdir = rdtgroup_mkdir,
3802 .rmdir = rdtgroup_rmdir,
3803 .rename = rdtgroup_rename,
3804 .show_options = rdtgroup_show_options,
3805 };
3806
rdtgroup_setup_root(struct rdt_fs_context * ctx)3807 static int rdtgroup_setup_root(struct rdt_fs_context *ctx)
3808 {
3809 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3810 KERNFS_ROOT_CREATE_DEACTIVATED |
3811 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3812 &rdtgroup_default);
3813 if (IS_ERR(rdt_root))
3814 return PTR_ERR(rdt_root);
3815
3816 ctx->kfc.root = rdt_root;
3817 rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3818
3819 return 0;
3820 }
3821
rdtgroup_destroy_root(void)3822 static void rdtgroup_destroy_root(void)
3823 {
3824 kernfs_destroy_root(rdt_root);
3825 rdtgroup_default.kn = NULL;
3826 }
3827
rdtgroup_setup_default(void)3828 static void __init rdtgroup_setup_default(void)
3829 {
3830 mutex_lock(&rdtgroup_mutex);
3831
3832 rdtgroup_default.closid = 0;
3833 rdtgroup_default.mon.rmid = 0;
3834 rdtgroup_default.type = RDTCTRL_GROUP;
3835 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3836
3837 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3838
3839 mutex_unlock(&rdtgroup_mutex);
3840 }
3841
domain_destroy_mon_state(struct rdt_domain * d)3842 static void domain_destroy_mon_state(struct rdt_domain *d)
3843 {
3844 bitmap_free(d->rmid_busy_llc);
3845 kfree(d->mbm_total);
3846 kfree(d->mbm_local);
3847 }
3848
resctrl_offline_domain(struct rdt_resource * r,struct rdt_domain * d)3849 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3850 {
3851 lockdep_assert_held(&rdtgroup_mutex);
3852
3853 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3854 mba_sc_domain_destroy(r, d);
3855
3856 if (!r->mon_capable)
3857 return;
3858
3859 /*
3860 * If resctrl is mounted, remove all the
3861 * per domain monitor data directories.
3862 */
3863 if (static_branch_unlikely(&rdt_mon_enable_key))
3864 rmdir_mondata_subdir_allrdtgrp(r, d->id);
3865
3866 if (is_mbm_enabled())
3867 cancel_delayed_work(&d->mbm_over);
3868 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3869 /*
3870 * When a package is going down, forcefully
3871 * decrement rmid->ebusy. There is no way to know
3872 * that the L3 was flushed and hence may lead to
3873 * incorrect counts in rare scenarios, but leaving
3874 * the RMID as busy creates RMID leaks if the
3875 * package never comes back.
3876 */
3877 __check_limbo(d, true);
3878 cancel_delayed_work(&d->cqm_limbo);
3879 }
3880
3881 domain_destroy_mon_state(d);
3882 }
3883
domain_setup_mon_state(struct rdt_resource * r,struct rdt_domain * d)3884 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3885 {
3886 size_t tsize;
3887
3888 if (is_llc_occupancy_enabled()) {
3889 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3890 if (!d->rmid_busy_llc)
3891 return -ENOMEM;
3892 }
3893 if (is_mbm_total_enabled()) {
3894 tsize = sizeof(*d->mbm_total);
3895 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3896 if (!d->mbm_total) {
3897 bitmap_free(d->rmid_busy_llc);
3898 return -ENOMEM;
3899 }
3900 }
3901 if (is_mbm_local_enabled()) {
3902 tsize = sizeof(*d->mbm_local);
3903 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3904 if (!d->mbm_local) {
3905 bitmap_free(d->rmid_busy_llc);
3906 kfree(d->mbm_total);
3907 return -ENOMEM;
3908 }
3909 }
3910
3911 return 0;
3912 }
3913
resctrl_online_domain(struct rdt_resource * r,struct rdt_domain * d)3914 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3915 {
3916 int err;
3917
3918 lockdep_assert_held(&rdtgroup_mutex);
3919
3920 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3921 /* RDT_RESOURCE_MBA is never mon_capable */
3922 return mba_sc_domain_allocate(r, d);
3923
3924 if (!r->mon_capable)
3925 return 0;
3926
3927 err = domain_setup_mon_state(r, d);
3928 if (err)
3929 return err;
3930
3931 if (is_mbm_enabled()) {
3932 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3933 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3934 }
3935
3936 if (is_llc_occupancy_enabled())
3937 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3938
3939 /* If resctrl is mounted, add per domain monitor data directories. */
3940 if (static_branch_unlikely(&rdt_mon_enable_key))
3941 mkdir_mondata_subdir_allrdtgrp(r, d);
3942
3943 return 0;
3944 }
3945
3946 /*
3947 * rdtgroup_init - rdtgroup initialization
3948 *
3949 * Setup resctrl file system including set up root, create mount point,
3950 * register rdtgroup filesystem, and initialize files under root directory.
3951 *
3952 * Return: 0 on success or -errno
3953 */
rdtgroup_init(void)3954 int __init rdtgroup_init(void)
3955 {
3956 int ret = 0;
3957
3958 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3959 sizeof(last_cmd_status_buf));
3960
3961 rdtgroup_setup_default();
3962
3963 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3964 if (ret)
3965 return ret;
3966
3967 ret = register_filesystem(&rdt_fs_type);
3968 if (ret)
3969 goto cleanup_mountpoint;
3970
3971 /*
3972 * Adding the resctrl debugfs directory here may not be ideal since
3973 * it would let the resctrl debugfs directory appear on the debugfs
3974 * filesystem before the resctrl filesystem is mounted.
3975 * It may also be ok since that would enable debugging of RDT before
3976 * resctrl is mounted.
3977 * The reason why the debugfs directory is created here and not in
3978 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3979 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3980 * (the lockdep class of inode->i_rwsem). Other filesystem
3981 * interactions (eg. SyS_getdents) have the lock ordering:
3982 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3983 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3984 * is taken, thus creating dependency:
3985 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3986 * issues considering the other two lock dependencies.
3987 * By creating the debugfs directory here we avoid a dependency
3988 * that may cause deadlock (even though file operations cannot
3989 * occur until the filesystem is mounted, but I do not know how to
3990 * tell lockdep that).
3991 */
3992 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3993
3994 return 0;
3995
3996 cleanup_mountpoint:
3997 sysfs_remove_mount_point(fs_kobj, "resctrl");
3998
3999 return ret;
4000 }
4001
rdtgroup_exit(void)4002 void __exit rdtgroup_exit(void)
4003 {
4004 debugfs_remove_recursive(debugfs_resctrl);
4005 unregister_filesystem(&rdt_fs_type);
4006 sysfs_remove_mount_point(fs_kobj, "resctrl");
4007 }
4008