1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 static const int page_cluster_max = 31;
49
50 struct cpu_fbatches {
51 /*
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
54 */
55 local_lock_t lock;
56 struct folio_batch lru_add;
57 struct folio_batch lru_deactivate_file;
58 struct folio_batch lru_deactivate;
59 struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 struct folio_batch lru_activate;
62 #endif
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq;
65 struct folio_batch lru_move_tail;
66 };
67
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 .lock = INIT_LOCAL_LOCK(lock),
70 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
71 };
72
__page_cache_release(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flagsp)73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 unsigned long *flagsp)
75 {
76 if (folio_test_lru(folio)) {
77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 lruvec_del_folio(*lruvecp, folio);
79 __folio_clear_lru_flags(folio);
80 }
81 }
82
83 /*
84 * This path almost never happens for VM activity - pages are normally freed
85 * in batches. But it gets used by networking - and for compound pages.
86 */
page_cache_release(struct folio * folio)87 static void page_cache_release(struct folio *folio)
88 {
89 struct lruvec *lruvec = NULL;
90 unsigned long flags;
91
92 __page_cache_release(folio, &lruvec, &flags);
93 if (lruvec)
94 unlock_page_lruvec_irqrestore(lruvec, flags);
95 }
96
__folio_put(struct folio * folio)97 void __folio_put(struct folio *folio)
98 {
99 if (unlikely(folio_is_zone_device(folio))) {
100 free_zone_device_folio(folio);
101 return;
102 }
103
104 if (folio_test_hugetlb(folio)) {
105 free_huge_folio(folio);
106 return;
107 }
108
109 page_cache_release(folio);
110 folio_unqueue_deferred_split(folio);
111 mem_cgroup_uncharge(folio);
112 free_frozen_pages(&folio->page, folio_order(folio));
113 }
114 EXPORT_SYMBOL(__folio_put);
115
116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
117
lru_add(struct lruvec * lruvec,struct folio * folio)118 static void lru_add(struct lruvec *lruvec, struct folio *folio)
119 {
120 int was_unevictable = folio_test_clear_unevictable(folio);
121 long nr_pages = folio_nr_pages(folio);
122
123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
124
125 /*
126 * Is an smp_mb__after_atomic() still required here, before
127 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 * of stranding an evictable folio on an unevictable LRU? I think
129 * not, because __munlock_folio() only clears the mlocked flag
130 * while the LRU lock is held.
131 *
132 * (That is not true of __page_cache_release(), and not necessarily
133 * true of folios_put(): but those only clear the mlocked flag after
134 * folio_put_testzero() has excluded any other users of the folio.)
135 */
136 if (folio_evictable(folio)) {
137 if (was_unevictable)
138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 } else {
140 folio_clear_active(folio);
141 folio_set_unevictable(folio);
142 /*
143 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 * But that leaves __mlock_folio() in doubt whether another
145 * actor has already counted the mlock or not. Err on the
146 * safe side, underestimate, let page reclaim fix it, rather
147 * than leaving a page on the unevictable LRU indefinitely.
148 */
149 folio->mlock_count = 0;
150 if (!was_unevictable)
151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
152 }
153
154 lruvec_add_folio(lruvec, folio);
155 trace_mm_lru_insertion(folio);
156 }
157
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
159 {
160 int i;
161 struct lruvec *lruvec = NULL;
162 unsigned long flags = 0;
163
164 for (i = 0; i < folio_batch_count(fbatch); i++) {
165 struct folio *folio = fbatch->folios[i];
166
167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 move_fn(lruvec, folio);
169
170 folio_set_lru(folio);
171 }
172
173 if (lruvec)
174 unlock_page_lruvec_irqrestore(lruvec, flags);
175 folios_put(fbatch);
176 }
177
__folio_batch_add_and_move(struct folio_batch __percpu * fbatch,struct folio * folio,move_fn_t move_fn,bool on_lru,bool disable_irq)178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 struct folio *folio, move_fn_t move_fn,
180 bool on_lru, bool disable_irq)
181 {
182 unsigned long flags;
183
184 if (on_lru && !folio_test_clear_lru(folio))
185 return;
186
187 folio_get(folio);
188
189 if (disable_irq)
190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 else
192 local_lock(&cpu_fbatches.lock);
193
194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 lru_cache_disabled())
196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
197
198 if (disable_irq)
199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 else
201 local_unlock(&cpu_fbatches.lock);
202 }
203
204 #define folio_batch_add_and_move(folio, op, on_lru) \
205 __folio_batch_add_and_move( \
206 &cpu_fbatches.op, \
207 folio, \
208 op, \
209 on_lru, \
210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
211 )
212
lru_move_tail(struct lruvec * lruvec,struct folio * folio)213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
214 {
215 if (folio_test_unevictable(folio))
216 return;
217
218 lruvec_del_folio(lruvec, folio);
219 folio_clear_active(folio);
220 lruvec_add_folio_tail(lruvec, folio);
221 __count_vm_events(PGROTATED, folio_nr_pages(folio));
222 }
223
224 /*
225 * Writeback is about to end against a folio which has been marked for
226 * immediate reclaim. If it still appears to be reclaimable, move it
227 * to the tail of the inactive list.
228 *
229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
230 */
folio_rotate_reclaimable(struct folio * folio)231 void folio_rotate_reclaimable(struct folio *folio)
232 {
233 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 folio_test_unevictable(folio))
235 return;
236
237 folio_batch_add_and_move(folio, lru_move_tail, true);
238 }
239
lru_note_cost_unlock_irq(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)240 void lru_note_cost_unlock_irq(struct lruvec *lruvec, bool file,
241 unsigned int nr_io, unsigned int nr_rotated)
242 __releases(lruvec->lru_lock)
243 {
244 unsigned long cost;
245
246 /*
247 * Reflect the relative cost of incurring IO and spending CPU
248 * time on rotations. This doesn't attempt to make a precise
249 * comparison, it just says: if reloads are about comparable
250 * between the LRU lists, or rotations are overwhelmingly
251 * different between them, adjust scan balance for CPU work.
252 */
253 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
254 if (!cost) {
255 spin_unlock_irq(&lruvec->lru_lock);
256 return;
257 }
258
259 for (;;) {
260 unsigned long lrusize;
261
262 /* Record cost event */
263 if (file)
264 lruvec->file_cost += cost;
265 else
266 lruvec->anon_cost += cost;
267
268 /*
269 * Decay previous events
270 *
271 * Because workloads change over time (and to avoid
272 * overflow) we keep these statistics as a floating
273 * average, which ends up weighing recent refaults
274 * more than old ones.
275 */
276 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
277 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
278 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
279 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
280
281 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
282 lruvec->file_cost /= 2;
283 lruvec->anon_cost /= 2;
284 }
285
286 spin_unlock_irq(&lruvec->lru_lock);
287 lruvec = parent_lruvec(lruvec);
288 if (!lruvec)
289 break;
290 spin_lock_irq(&lruvec->lru_lock);
291 }
292 }
293
lru_note_cost_refault(struct folio * folio)294 void lru_note_cost_refault(struct folio *folio)
295 {
296 struct lruvec *lruvec;
297
298 lruvec = folio_lruvec_lock_irq(folio);
299 lru_note_cost_unlock_irq(lruvec, folio_is_file_lru(folio),
300 folio_nr_pages(folio), 0);
301 }
302
lru_activate(struct lruvec * lruvec,struct folio * folio)303 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
304 {
305 long nr_pages = folio_nr_pages(folio);
306
307 if (folio_test_active(folio) || folio_test_unevictable(folio))
308 return;
309
310
311 lruvec_del_folio(lruvec, folio);
312 folio_set_active(folio);
313 lruvec_add_folio(lruvec, folio);
314 trace_mm_lru_activate(folio);
315
316 __count_vm_events(PGACTIVATE, nr_pages);
317 count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
318 }
319
320 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)321 static void folio_activate_drain(int cpu)
322 {
323 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
324
325 if (folio_batch_count(fbatch))
326 folio_batch_move_lru(fbatch, lru_activate);
327 }
328
folio_activate(struct folio * folio)329 void folio_activate(struct folio *folio)
330 {
331 if (folio_test_active(folio) || folio_test_unevictable(folio))
332 return;
333
334 folio_batch_add_and_move(folio, lru_activate, true);
335 }
336
337 #else
folio_activate_drain(int cpu)338 static inline void folio_activate_drain(int cpu)
339 {
340 }
341
folio_activate(struct folio * folio)342 void folio_activate(struct folio *folio)
343 {
344 struct lruvec *lruvec;
345
346 if (!folio_test_clear_lru(folio))
347 return;
348
349 lruvec = folio_lruvec_lock_irq(folio);
350 lru_activate(lruvec, folio);
351 unlock_page_lruvec_irq(lruvec);
352 folio_set_lru(folio);
353 }
354 #endif
355
__lru_cache_activate_folio(struct folio * folio)356 static void __lru_cache_activate_folio(struct folio *folio)
357 {
358 struct folio_batch *fbatch;
359 int i;
360
361 local_lock(&cpu_fbatches.lock);
362 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
363
364 /*
365 * Search backwards on the optimistic assumption that the folio being
366 * activated has just been added to this batch. Note that only
367 * the local batch is examined as a !LRU folio could be in the
368 * process of being released, reclaimed, migrated or on a remote
369 * batch that is currently being drained. Furthermore, marking
370 * a remote batch's folio active potentially hits a race where
371 * a folio is marked active just after it is added to the inactive
372 * list causing accounting errors and BUG_ON checks to trigger.
373 */
374 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
375 struct folio *batch_folio = fbatch->folios[i];
376
377 if (batch_folio == folio) {
378 folio_set_active(folio);
379 break;
380 }
381 }
382
383 local_unlock(&cpu_fbatches.lock);
384 }
385
386 #ifdef CONFIG_LRU_GEN
387
lru_gen_inc_refs(struct folio * folio)388 static void lru_gen_inc_refs(struct folio *folio)
389 {
390 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
391
392 if (folio_test_unevictable(folio))
393 return;
394
395 /* see the comment on LRU_REFS_FLAGS */
396 if (!folio_test_referenced(folio)) {
397 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
398 return;
399 }
400
401 do {
402 if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) {
403 if (!folio_test_workingset(folio))
404 folio_set_workingset(folio);
405 return;
406 }
407
408 new_flags = old_flags + BIT(LRU_REFS_PGOFF);
409 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
410 }
411
lru_gen_clear_refs(struct folio * folio)412 static bool lru_gen_clear_refs(struct folio *folio)
413 {
414 struct lru_gen_folio *lrugen;
415 int gen = folio_lru_gen(folio);
416 int type = folio_is_file_lru(folio);
417
418 if (gen < 0)
419 return true;
420
421 set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0);
422
423 lrugen = &folio_lruvec(folio)->lrugen;
424 /* whether can do without shuffling under the LRU lock */
425 return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type]));
426 }
427
428 #else /* !CONFIG_LRU_GEN */
429
lru_gen_inc_refs(struct folio * folio)430 static void lru_gen_inc_refs(struct folio *folio)
431 {
432 }
433
lru_gen_clear_refs(struct folio * folio)434 static bool lru_gen_clear_refs(struct folio *folio)
435 {
436 return false;
437 }
438
439 #endif /* CONFIG_LRU_GEN */
440
441 /**
442 * folio_mark_accessed - Mark a folio as having seen activity.
443 * @folio: The folio to mark.
444 *
445 * This function will perform one of the following transitions:
446 *
447 * * inactive,unreferenced -> inactive,referenced
448 * * inactive,referenced -> active,unreferenced
449 * * active,unreferenced -> active,referenced
450 *
451 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
452 * __folio_set_referenced() may be substituted for folio_mark_accessed().
453 */
folio_mark_accessed(struct folio * folio)454 void folio_mark_accessed(struct folio *folio)
455 {
456 if (folio_test_dropbehind(folio))
457 return;
458 if (lru_gen_enabled()) {
459 lru_gen_inc_refs(folio);
460 return;
461 }
462
463 if (!folio_test_referenced(folio)) {
464 folio_set_referenced(folio);
465 } else if (folio_test_unevictable(folio)) {
466 /*
467 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
468 * this list is never rotated or maintained, so marking an
469 * unevictable page accessed has no effect.
470 */
471 } else if (!folio_test_active(folio)) {
472 /*
473 * If the folio is on the LRU, queue it for activation via
474 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
475 * folio_batch, mark it active and it'll be moved to the active
476 * LRU on the next drain.
477 */
478 if (folio_test_lru(folio))
479 folio_activate(folio);
480 else
481 __lru_cache_activate_folio(folio);
482 folio_clear_referenced(folio);
483 workingset_activation(folio);
484 }
485 if (folio_test_idle(folio))
486 folio_clear_idle(folio);
487 }
488 EXPORT_SYMBOL(folio_mark_accessed);
489
490 /**
491 * folio_add_lru - Add a folio to an LRU list.
492 * @folio: The folio to be added to the LRU.
493 *
494 * Queue the folio for addition to the LRU. The decision on whether
495 * to add the page to the [in]active [file|anon] list is deferred until the
496 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
497 * have the folio added to the active list using folio_mark_accessed().
498 */
folio_add_lru(struct folio * folio)499 void folio_add_lru(struct folio *folio)
500 {
501 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
502 folio_test_unevictable(folio), folio);
503 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
504
505 /* see the comment in lru_gen_folio_seq() */
506 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
507 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
508 folio_set_active(folio);
509
510 folio_batch_add_and_move(folio, lru_add, false);
511 }
512 EXPORT_SYMBOL(folio_add_lru);
513
514 /**
515 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
516 * @folio: The folio to be added to the LRU.
517 * @vma: VMA in which the folio is mapped.
518 *
519 * If the VMA is mlocked, @folio is added to the unevictable list.
520 * Otherwise, it is treated the same way as folio_add_lru().
521 */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)522 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
523 {
524 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
525
526 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
527 mlock_new_folio(folio);
528 else
529 folio_add_lru(folio);
530 }
531
532 /*
533 * If the folio cannot be invalidated, it is moved to the
534 * inactive list to speed up its reclaim. It is moved to the
535 * head of the list, rather than the tail, to give the flusher
536 * threads some time to write it out, as this is much more
537 * effective than the single-page writeout from reclaim.
538 *
539 * If the folio isn't mapped and dirty/writeback, the folio
540 * could be reclaimed asap using the reclaim flag.
541 *
542 * 1. active, mapped folio -> none
543 * 2. active, dirty/writeback folio -> inactive, head, reclaim
544 * 3. inactive, mapped folio -> none
545 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
546 * 5. inactive, clean -> inactive, tail
547 * 6. Others -> none
548 *
549 * In 4, it moves to the head of the inactive list so the folio is
550 * written out by flusher threads as this is much more efficient
551 * than the single-page writeout from reclaim.
552 */
lru_deactivate_file(struct lruvec * lruvec,struct folio * folio)553 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
554 {
555 bool active = folio_test_active(folio) || lru_gen_enabled();
556 long nr_pages = folio_nr_pages(folio);
557
558 if (folio_test_unevictable(folio))
559 return;
560
561 /* Some processes are using the folio */
562 if (folio_mapped(folio))
563 return;
564
565 lruvec_del_folio(lruvec, folio);
566 folio_clear_active(folio);
567 folio_clear_referenced(folio);
568
569 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
570 /*
571 * Setting the reclaim flag could race with
572 * folio_end_writeback() and confuse readahead. But the
573 * race window is _really_ small and it's not a critical
574 * problem.
575 */
576 lruvec_add_folio(lruvec, folio);
577 folio_set_reclaim(folio);
578 } else {
579 /*
580 * The folio's writeback ended while it was in the batch.
581 * We move that folio to the tail of the inactive list.
582 */
583 lruvec_add_folio_tail(lruvec, folio);
584 __count_vm_events(PGROTATED, nr_pages);
585 }
586
587 if (active) {
588 __count_vm_events(PGDEACTIVATE, nr_pages);
589 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
590 nr_pages);
591 }
592 }
593
lru_deactivate(struct lruvec * lruvec,struct folio * folio)594 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
595 {
596 long nr_pages = folio_nr_pages(folio);
597
598 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
599 return;
600
601 lruvec_del_folio(lruvec, folio);
602 folio_clear_active(folio);
603 folio_clear_referenced(folio);
604 lruvec_add_folio(lruvec, folio);
605
606 __count_vm_events(PGDEACTIVATE, nr_pages);
607 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
608 }
609
lru_lazyfree(struct lruvec * lruvec,struct folio * folio)610 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
611 {
612 long nr_pages = folio_nr_pages(folio);
613
614 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
615 folio_test_swapcache(folio) || folio_test_unevictable(folio))
616 return;
617
618 lruvec_del_folio(lruvec, folio);
619 folio_clear_active(folio);
620 if (lru_gen_enabled())
621 lru_gen_clear_refs(folio);
622 else
623 folio_clear_referenced(folio);
624 /*
625 * Lazyfree folios are clean anonymous folios. They have
626 * the swapbacked flag cleared, to distinguish them from normal
627 * anonymous folios
628 */
629 folio_clear_swapbacked(folio);
630 lruvec_add_folio(lruvec, folio);
631
632 __count_vm_events(PGLAZYFREE, nr_pages);
633 count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
634 }
635
636 /*
637 * Drain pages out of the cpu's folio_batch.
638 * Either "cpu" is the current CPU, and preemption has already been
639 * disabled; or "cpu" is being hot-unplugged, and is already dead.
640 */
lru_add_drain_cpu(int cpu)641 void lru_add_drain_cpu(int cpu)
642 {
643 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
644 struct folio_batch *fbatch = &fbatches->lru_add;
645
646 if (folio_batch_count(fbatch))
647 folio_batch_move_lru(fbatch, lru_add);
648
649 fbatch = &fbatches->lru_move_tail;
650 /* Disabling interrupts below acts as a compiler barrier. */
651 if (data_race(folio_batch_count(fbatch))) {
652 unsigned long flags;
653
654 /* No harm done if a racing interrupt already did this */
655 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
656 folio_batch_move_lru(fbatch, lru_move_tail);
657 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
658 }
659
660 fbatch = &fbatches->lru_deactivate_file;
661 if (folio_batch_count(fbatch))
662 folio_batch_move_lru(fbatch, lru_deactivate_file);
663
664 fbatch = &fbatches->lru_deactivate;
665 if (folio_batch_count(fbatch))
666 folio_batch_move_lru(fbatch, lru_deactivate);
667
668 fbatch = &fbatches->lru_lazyfree;
669 if (folio_batch_count(fbatch))
670 folio_batch_move_lru(fbatch, lru_lazyfree);
671
672 folio_activate_drain(cpu);
673 }
674
675 /**
676 * deactivate_file_folio() - Deactivate a file folio.
677 * @folio: Folio to deactivate.
678 *
679 * This function hints to the VM that @folio is a good reclaim candidate,
680 * for example if its invalidation fails due to the folio being dirty
681 * or under writeback.
682 *
683 * Context: Caller holds a reference on the folio.
684 */
deactivate_file_folio(struct folio * folio)685 void deactivate_file_folio(struct folio *folio)
686 {
687 /* Deactivating an unevictable folio will not accelerate reclaim */
688 if (folio_test_unevictable(folio))
689 return;
690
691 if (lru_gen_enabled() && lru_gen_clear_refs(folio))
692 return;
693
694 folio_batch_add_and_move(folio, lru_deactivate_file, true);
695 }
696
697 /*
698 * folio_deactivate - deactivate a folio
699 * @folio: folio to deactivate
700 *
701 * folio_deactivate() moves @folio to the inactive list if @folio was on the
702 * active list and was not unevictable. This is done to accelerate the
703 * reclaim of @folio.
704 */
folio_deactivate(struct folio * folio)705 void folio_deactivate(struct folio *folio)
706 {
707 if (folio_test_unevictable(folio))
708 return;
709
710 if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio))
711 return;
712
713 folio_batch_add_and_move(folio, lru_deactivate, true);
714 }
715
716 /**
717 * folio_mark_lazyfree - make an anon folio lazyfree
718 * @folio: folio to deactivate
719 *
720 * folio_mark_lazyfree() moves @folio to the inactive file list.
721 * This is done to accelerate the reclaim of @folio.
722 */
folio_mark_lazyfree(struct folio * folio)723 void folio_mark_lazyfree(struct folio *folio)
724 {
725 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
726 folio_test_swapcache(folio) || folio_test_unevictable(folio))
727 return;
728
729 folio_batch_add_and_move(folio, lru_lazyfree, true);
730 }
731
lru_add_drain(void)732 void lru_add_drain(void)
733 {
734 local_lock(&cpu_fbatches.lock);
735 lru_add_drain_cpu(smp_processor_id());
736 local_unlock(&cpu_fbatches.lock);
737 mlock_drain_local();
738 }
739
740 /*
741 * It's called from per-cpu workqueue context in SMP case so
742 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
743 * the same cpu. It shouldn't be a problem in !SMP case since
744 * the core is only one and the locks will disable preemption.
745 */
lru_add_and_bh_lrus_drain(void)746 static void lru_add_and_bh_lrus_drain(void)
747 {
748 local_lock(&cpu_fbatches.lock);
749 lru_add_drain_cpu(smp_processor_id());
750 local_unlock(&cpu_fbatches.lock);
751 invalidate_bh_lrus_cpu();
752 mlock_drain_local();
753 }
754
lru_add_drain_cpu_zone(struct zone * zone)755 void lru_add_drain_cpu_zone(struct zone *zone)
756 {
757 local_lock(&cpu_fbatches.lock);
758 lru_add_drain_cpu(smp_processor_id());
759 drain_local_pages(zone);
760 local_unlock(&cpu_fbatches.lock);
761 mlock_drain_local();
762 }
763
764 #ifdef CONFIG_SMP
765
766 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
767
lru_add_drain_per_cpu(struct work_struct * dummy)768 static void lru_add_drain_per_cpu(struct work_struct *dummy)
769 {
770 lru_add_and_bh_lrus_drain();
771 }
772
cpu_needs_drain(unsigned int cpu)773 static bool cpu_needs_drain(unsigned int cpu)
774 {
775 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
776
777 /* Check these in order of likelihood that they're not zero */
778 return folio_batch_count(&fbatches->lru_add) ||
779 folio_batch_count(&fbatches->lru_move_tail) ||
780 folio_batch_count(&fbatches->lru_deactivate_file) ||
781 folio_batch_count(&fbatches->lru_deactivate) ||
782 folio_batch_count(&fbatches->lru_lazyfree) ||
783 folio_batch_count(&fbatches->lru_activate) ||
784 need_mlock_drain(cpu) ||
785 has_bh_in_lru(cpu, NULL);
786 }
787
788 /*
789 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
790 * kworkers being shut down before our page_alloc_cpu_dead callback is
791 * executed on the offlined cpu.
792 * Calling this function with cpu hotplug locks held can actually lead
793 * to obscure indirect dependencies via WQ context.
794 */
__lru_add_drain_all(bool force_all_cpus)795 static inline void __lru_add_drain_all(bool force_all_cpus)
796 {
797 /*
798 * lru_drain_gen - Global pages generation number
799 *
800 * (A) Definition: global lru_drain_gen = x implies that all generations
801 * 0 < n <= x are already *scheduled* for draining.
802 *
803 * This is an optimization for the highly-contended use case where a
804 * user space workload keeps constantly generating a flow of pages for
805 * each CPU.
806 */
807 static unsigned int lru_drain_gen;
808 static struct cpumask has_work;
809 static DEFINE_MUTEX(lock);
810 unsigned cpu, this_gen;
811
812 /*
813 * Make sure nobody triggers this path before mm_percpu_wq is fully
814 * initialized.
815 */
816 if (WARN_ON(!mm_percpu_wq))
817 return;
818
819 /*
820 * Guarantee folio_batch counter stores visible by this CPU
821 * are visible to other CPUs before loading the current drain
822 * generation.
823 */
824 smp_mb();
825
826 /*
827 * (B) Locally cache global LRU draining generation number
828 *
829 * The read barrier ensures that the counter is loaded before the mutex
830 * is taken. It pairs with smp_mb() inside the mutex critical section
831 * at (D).
832 */
833 this_gen = smp_load_acquire(&lru_drain_gen);
834
835 mutex_lock(&lock);
836
837 /*
838 * (C) Exit the draining operation if a newer generation, from another
839 * lru_add_drain_all(), was already scheduled for draining. Check (A).
840 */
841 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
842 goto done;
843
844 /*
845 * (D) Increment global generation number
846 *
847 * Pairs with smp_load_acquire() at (B), outside of the critical
848 * section. Use a full memory barrier to guarantee that the
849 * new global drain generation number is stored before loading
850 * folio_batch counters.
851 *
852 * This pairing must be done here, before the for_each_online_cpu loop
853 * below which drains the page vectors.
854 *
855 * Let x, y, and z represent some system CPU numbers, where x < y < z.
856 * Assume CPU #z is in the middle of the for_each_online_cpu loop
857 * below and has already reached CPU #y's per-cpu data. CPU #x comes
858 * along, adds some pages to its per-cpu vectors, then calls
859 * lru_add_drain_all().
860 *
861 * If the paired barrier is done at any later step, e.g. after the
862 * loop, CPU #x will just exit at (C) and miss flushing out all of its
863 * added pages.
864 */
865 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
866 smp_mb();
867
868 cpumask_clear(&has_work);
869 for_each_online_cpu(cpu) {
870 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
871
872 if (cpu_needs_drain(cpu)) {
873 INIT_WORK(work, lru_add_drain_per_cpu);
874 queue_work_on(cpu, mm_percpu_wq, work);
875 __cpumask_set_cpu(cpu, &has_work);
876 }
877 }
878
879 for_each_cpu(cpu, &has_work)
880 flush_work(&per_cpu(lru_add_drain_work, cpu));
881
882 done:
883 mutex_unlock(&lock);
884 }
885
lru_add_drain_all(void)886 void lru_add_drain_all(void)
887 {
888 __lru_add_drain_all(false);
889 }
890 #else
lru_add_drain_all(void)891 void lru_add_drain_all(void)
892 {
893 lru_add_drain();
894 }
895 #endif /* CONFIG_SMP */
896
897 atomic_t lru_disable_count = ATOMIC_INIT(0);
898
899 /*
900 * lru_cache_disable() needs to be called before we start compiling
901 * a list of folios to be migrated using folio_isolate_lru().
902 * It drains folios on LRU cache and then disable on all cpus until
903 * lru_cache_enable is called.
904 *
905 * Must be paired with a call to lru_cache_enable().
906 */
lru_cache_disable(void)907 void lru_cache_disable(void)
908 {
909 atomic_inc(&lru_disable_count);
910 /*
911 * Readers of lru_disable_count are protected by either disabling
912 * preemption or rcu_read_lock:
913 *
914 * preempt_disable, local_irq_disable [bh_lru_lock()]
915 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
916 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
917 *
918 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
919 * preempt_disable() regions of code. So any CPU which sees
920 * lru_disable_count = 0 will have exited the critical
921 * section when synchronize_rcu() returns.
922 */
923 synchronize_rcu_expedited();
924 #ifdef CONFIG_SMP
925 __lru_add_drain_all(true);
926 #else
927 lru_add_and_bh_lrus_drain();
928 #endif
929 }
930
931 /**
932 * folios_put_refs - Reduce the reference count on a batch of folios.
933 * @folios: The folios.
934 * @refs: The number of refs to subtract from each folio.
935 *
936 * Like folio_put(), but for a batch of folios. This is more efficient
937 * than writing the loop yourself as it will optimise the locks which need
938 * to be taken if the folios are freed. The folios batch is returned
939 * empty and ready to be reused for another batch; there is no need
940 * to reinitialise it. If @refs is NULL, we subtract one from each
941 * folio refcount.
942 *
943 * Context: May be called in process or interrupt context, but not in NMI
944 * context. May be called while holding a spinlock.
945 */
folios_put_refs(struct folio_batch * folios,unsigned int * refs)946 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
947 {
948 int i, j;
949 struct lruvec *lruvec = NULL;
950 unsigned long flags = 0;
951
952 for (i = 0, j = 0; i < folios->nr; i++) {
953 struct folio *folio = folios->folios[i];
954 unsigned int nr_refs = refs ? refs[i] : 1;
955
956 if (is_huge_zero_folio(folio))
957 continue;
958
959 if (folio_is_zone_device(folio)) {
960 if (lruvec) {
961 unlock_page_lruvec_irqrestore(lruvec, flags);
962 lruvec = NULL;
963 }
964 if (folio_ref_sub_and_test(folio, nr_refs))
965 free_zone_device_folio(folio);
966 continue;
967 }
968
969 if (!folio_ref_sub_and_test(folio, nr_refs))
970 continue;
971
972 /* hugetlb has its own memcg */
973 if (folio_test_hugetlb(folio)) {
974 if (lruvec) {
975 unlock_page_lruvec_irqrestore(lruvec, flags);
976 lruvec = NULL;
977 }
978 free_huge_folio(folio);
979 continue;
980 }
981 folio_unqueue_deferred_split(folio);
982 __page_cache_release(folio, &lruvec, &flags);
983
984 if (j != i)
985 folios->folios[j] = folio;
986 j++;
987 }
988 if (lruvec)
989 unlock_page_lruvec_irqrestore(lruvec, flags);
990 if (!j) {
991 folio_batch_reinit(folios);
992 return;
993 }
994
995 folios->nr = j;
996 mem_cgroup_uncharge_folios(folios);
997 free_unref_folios(folios);
998 }
999 EXPORT_SYMBOL(folios_put_refs);
1000
1001 /**
1002 * release_pages - batched put_page()
1003 * @arg: array of pages to release
1004 * @nr: number of pages
1005 *
1006 * Decrement the reference count on all the pages in @arg. If it
1007 * fell to zero, remove the page from the LRU and free it.
1008 *
1009 * Note that the argument can be an array of pages, encoded pages,
1010 * or folio pointers. We ignore any encoded bits, and turn any of
1011 * them into just a folio that gets free'd.
1012 */
release_pages(release_pages_arg arg,int nr)1013 void release_pages(release_pages_arg arg, int nr)
1014 {
1015 struct folio_batch fbatch;
1016 int refs[PAGEVEC_SIZE];
1017 struct encoded_page **encoded = arg.encoded_pages;
1018 int i;
1019
1020 folio_batch_init(&fbatch);
1021 for (i = 0; i < nr; i++) {
1022 /* Turn any of the argument types into a folio */
1023 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1024
1025 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1026 refs[fbatch.nr] = 1;
1027 if (unlikely(encoded_page_flags(encoded[i]) &
1028 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1029 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1030
1031 if (folio_batch_add(&fbatch, folio) > 0)
1032 continue;
1033 folios_put_refs(&fbatch, refs);
1034 }
1035
1036 if (fbatch.nr)
1037 folios_put_refs(&fbatch, refs);
1038 }
1039 EXPORT_SYMBOL(release_pages);
1040
1041 /*
1042 * The folios which we're about to release may be in the deferred lru-addition
1043 * queues. That would prevent them from really being freed right now. That's
1044 * OK from a correctness point of view but is inefficient - those folios may be
1045 * cache-warm and we want to give them back to the page allocator ASAP.
1046 *
1047 * So __folio_batch_release() will drain those queues here.
1048 * folio_batch_move_lru() calls folios_put() directly to avoid
1049 * mutual recursion.
1050 */
__folio_batch_release(struct folio_batch * fbatch)1051 void __folio_batch_release(struct folio_batch *fbatch)
1052 {
1053 if (!fbatch->percpu_pvec_drained) {
1054 lru_add_drain();
1055 fbatch->percpu_pvec_drained = true;
1056 }
1057 folios_put(fbatch);
1058 }
1059 EXPORT_SYMBOL(__folio_batch_release);
1060
1061 /**
1062 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1063 * @fbatch: The batch to prune
1064 *
1065 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1066 * entries. This function prunes all the non-folio entries from @fbatch
1067 * without leaving holes, so that it can be passed on to folio-only batch
1068 * operations.
1069 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1070 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1071 {
1072 unsigned int i, j;
1073
1074 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1075 struct folio *folio = fbatch->folios[i];
1076 if (!xa_is_value(folio))
1077 fbatch->folios[j++] = folio;
1078 }
1079 fbatch->nr = j;
1080 }
1081
1082 static const struct ctl_table swap_sysctl_table[] = {
1083 {
1084 .procname = "page-cluster",
1085 .data = &page_cluster,
1086 .maxlen = sizeof(int),
1087 .mode = 0644,
1088 .proc_handler = proc_dointvec_minmax,
1089 .extra1 = SYSCTL_ZERO,
1090 .extra2 = (void *)&page_cluster_max,
1091 }
1092 };
1093
1094 /*
1095 * Perform any setup for the swap system
1096 */
swap_setup(void)1097 void __init swap_setup(void)
1098 {
1099 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1100
1101 /* Use a smaller cluster for small-memory machines */
1102 if (megs < 16)
1103 page_cluster = 2;
1104 else
1105 page_cluster = 3;
1106 /*
1107 * Right now other parts of the system means that we
1108 * _really_ don't want to cluster much more
1109 */
1110
1111 register_sysctl_init("vm", swap_sysctl_table);
1112 }
1113