1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36
37 #define DC_LOGGER_INIT(logger)
38
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 .min_refresh = 120,
41 .max_refresh = 175,
42 .res = {
43 {.width = 3840, .height = 2160, },
44 {.width = 3440, .height = 1440, },
45 {.width = 2560, .height = 1440, },
46 {.width = 1920, .height = 1080, }},
47 };
48
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50 .min_refresh = 55,
51 .max_refresh = 65,
52 .res = {
53 {.width = 2560, .height = 1440, },
54 {.width = 1920, .height = 1080, }},
55 };
56
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 .gpuvm_enable = 0,
59 .gpuvm_max_page_table_levels = 4,
60 .hostvm_enable = 0,
61 .rob_buffer_size_kbytes = 128,
62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 .config_return_buffer_size_in_kbytes = 1280,
64 .compressed_buffer_segment_size_in_kbytes = 64,
65 .meta_fifo_size_in_kentries = 22,
66 .zero_size_buffer_entries = 512,
67 .compbuf_reserved_space_64b = 256,
68 .compbuf_reserved_space_zs = 64,
69 .dpp_output_buffer_pixels = 2560,
70 .opp_output_buffer_lines = 1,
71 .pixel_chunk_size_kbytes = 8,
72 .alpha_pixel_chunk_size_kbytes = 4,
73 .min_pixel_chunk_size_bytes = 1024,
74 .dcc_meta_buffer_size_bytes = 6272,
75 .meta_chunk_size_kbytes = 2,
76 .min_meta_chunk_size_bytes = 256,
77 .writeback_chunk_size_kbytes = 8,
78 .ptoi_supported = false,
79 .num_dsc = 4,
80 .maximum_dsc_bits_per_component = 12,
81 .maximum_pixels_per_line_per_dsc_unit = 6016,
82 .dsc422_native_support = true,
83 .is_line_buffer_bpp_fixed = true,
84 .line_buffer_fixed_bpp = 57,
85 .line_buffer_size_bits = 1171920,
86 .max_line_buffer_lines = 32,
87 .writeback_interface_buffer_size_kbytes = 90,
88 .max_num_dpp = 4,
89 .max_num_otg = 4,
90 .max_num_hdmi_frl_outputs = 1,
91 .max_num_wb = 1,
92 .max_dchub_pscl_bw_pix_per_clk = 4,
93 .max_pscl_lb_bw_pix_per_clk = 2,
94 .max_lb_vscl_bw_pix_per_clk = 4,
95 .max_vscl_hscl_bw_pix_per_clk = 4,
96 .max_hscl_ratio = 6,
97 .max_vscl_ratio = 6,
98 .max_hscl_taps = 8,
99 .max_vscl_taps = 8,
100 .dpte_buffer_size_in_pte_reqs_luma = 64,
101 .dpte_buffer_size_in_pte_reqs_chroma = 34,
102 .dispclk_ramp_margin_percent = 1,
103 .max_inter_dcn_tile_repeaters = 8,
104 .cursor_buffer_size = 16,
105 .cursor_chunk_size = 2,
106 .writeback_line_buffer_buffer_size = 0,
107 .writeback_min_hscl_ratio = 1,
108 .writeback_min_vscl_ratio = 1,
109 .writeback_max_hscl_ratio = 1,
110 .writeback_max_vscl_ratio = 1,
111 .writeback_max_hscl_taps = 1,
112 .writeback_max_vscl_taps = 1,
113 .dppclk_delay_subtotal = 47,
114 .dppclk_delay_scl = 50,
115 .dppclk_delay_scl_lb_only = 16,
116 .dppclk_delay_cnvc_formatter = 28,
117 .dppclk_delay_cnvc_cursor = 6,
118 .dispclk_delay_subtotal = 125,
119 .dynamic_metadata_vm_enabled = false,
120 .odm_combine_4to1_supported = false,
121 .dcc_supported = true,
122 .max_num_dp2p0_outputs = 2,
123 .max_num_dp2p0_streams = 4,
124 };
125
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 .clock_limits = {
128 {
129 .state = 0,
130 .dcfclk_mhz = 1564.0,
131 .fabricclk_mhz = 2500.0,
132 .dispclk_mhz = 2150.0,
133 .dppclk_mhz = 2150.0,
134 .phyclk_mhz = 810.0,
135 .phyclk_d18_mhz = 667.0,
136 .phyclk_d32_mhz = 625.0,
137 .socclk_mhz = 1200.0,
138 .dscclk_mhz = 716.667,
139 .dram_speed_mts = 18000.0,
140 .dtbclk_mhz = 1564.0,
141 },
142 },
143 .num_states = 1,
144 .sr_exit_time_us = 42.97,
145 .sr_enter_plus_exit_time_us = 49.94,
146 .sr_exit_z8_time_us = 285.0,
147 .sr_enter_plus_exit_z8_time_us = 320,
148 .writeback_latency_us = 12.0,
149 .round_trip_ping_latency_dcfclk_cycles = 263,
150 .urgent_latency_pixel_data_only_us = 4.0,
151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 .urgent_latency_vm_data_only_us = 4.0,
153 .fclk_change_latency_us = 25,
154 .usr_retraining_latency_us = 2,
155 .smn_latency_us = 2,
156 .mall_allocated_for_dcn_mbytes = 64,
157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 .pct_ideal_sdp_bw_after_urgent = 90.0,
161 .pct_ideal_fabric_bw_after_urgent = 67.0,
162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0,
165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 .max_avg_sdp_bw_use_normal_percent = 80.0,
167 .max_avg_fabric_bw_use_normal_percent = 60.0,
168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 .max_avg_dram_bw_use_normal_percent = 15.0,
170 .num_chans = 24,
171 .dram_channel_width_bytes = 2,
172 .fabric_datapath_to_dcn_data_return_bytes = 64,
173 .return_bus_width_bytes = 64,
174 .downspread_percent = 0.38,
175 .dcn_downspread_percent = 0.5,
176 .dram_clock_change_latency_us = 400,
177 .dispclk_dppclk_vco_speed_mhz = 4300.0,
178 .do_urgent_latency_adjustment = true,
179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182
183 static bool dcn32_apply_merge_split_flags_helper(struct dc *dc, struct dc_state *context,
184 bool *repopulate_pipes, int *split, bool *merge);
185
dcn32_build_wm_range_table_fpu(struct clk_mgr_internal * clk_mgr)186 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
187 {
188 /* defaults */
189 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
190 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
191 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
192 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
193 /* For min clocks use as reported by PM FW and report those as min */
194 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
195 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
196 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
197 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
198
199 dc_assert_fp_enabled();
200
201 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
202 if (dcfclk_mhz_for_the_second_state)
203 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
204 else
205 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
206
207 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
208 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
209
210 /* Set A - Normal - default values */
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
218 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
219 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
221
222 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
229 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
230 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
231 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
232
233 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
234 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
235 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
243 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
244 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
245 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
246 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
247 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
248 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
249 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
250 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
251 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
252 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
253 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
254 }
255 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
256 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
264 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
265 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
266 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
267 }
268
269 /*
270 * Finds dummy_latency_index when MCLK switching using firmware based
271 * vblank stretch is enabled. This function will iterate through the
272 * table of dummy pstate latencies until the lowest value that allows
273 * dm_allow_self_refresh_and_mclk_switch to happen is found
274 */
dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)275 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
276 struct dc_state *context,
277 display_e2e_pipe_params_st *pipes,
278 int pipe_cnt,
279 int vlevel)
280 {
281 const int max_latency_table_entries = 4;
282 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
283 int dummy_latency_index = 0;
284 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
285
286 dc_assert_fp_enabled();
287
288 while (dummy_latency_index < max_latency_table_entries) {
289 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
290 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
291 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
292 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
293 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING);
294
295 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
296 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
297 dcn32_subvp_in_use(dc, context))
298 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
299
300 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
301 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
302 break;
303
304 dummy_latency_index++;
305 }
306
307 if (dummy_latency_index == max_latency_table_entries) {
308 ASSERT(dummy_latency_index != max_latency_table_entries);
309 /* If the execution gets here, it means dummy p_states are
310 * not possible. This should never happen and would mean
311 * something is severely wrong.
312 * Here we reset dummy_latency_index to 3, because it is
313 * better to have underflows than system crashes.
314 */
315 dummy_latency_index = max_latency_table_entries - 1;
316 }
317
318 return dummy_latency_index;
319 }
320
321 /**
322 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
323 * and populate pipe_ctx with those params.
324 * @dc: [in] current dc state
325 * @context: [in] new dc state
326 * @pipes: [in] DML pipe params array
327 * @pipe_cnt: [in] DML pipe count
328 *
329 * This function must be called AFTER the phantom pipes are added to context
330 * and run through DML (so that the DLG params for the phantom pipes can be
331 * populated), and BEFORE we program the timing for the phantom pipes.
332 */
dcn32_helper_populate_phantom_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt)333 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
334 struct dc_state *context,
335 display_e2e_pipe_params_st *pipes,
336 int pipe_cnt)
337 {
338 uint32_t i, pipe_idx;
339
340 dc_assert_fp_enabled();
341
342 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
343 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
344
345 if (!pipe->stream)
346 continue;
347
348 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
349 pipes[pipe_idx].pipe.dest.vstartup_start =
350 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
351 pipes[pipe_idx].pipe.dest.vupdate_offset =
352 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
353 pipes[pipe_idx].pipe.dest.vupdate_width =
354 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
355 pipes[pipe_idx].pipe.dest.vready_offset =
356 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
357 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
358 }
359 pipe_idx++;
360 }
361 }
362
calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st * entry)363 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
364 {
365 float memory_bw_kbytes_sec;
366 float fabric_bw_kbytes_sec;
367 float sdp_bw_kbytes_sec;
368 float limiting_bw_kbytes_sec;
369
370 memory_bw_kbytes_sec = entry->dram_speed_mts *
371 dcn3_2_soc.num_chans *
372 dcn3_2_soc.dram_channel_width_bytes *
373 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374
375 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
376 dcn3_2_soc.return_bus_width_bytes *
377 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
378
379 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
380 dcn3_2_soc.return_bus_width_bytes *
381 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
382
383 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
384
385 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
387
388 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
389 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
390
391 return limiting_bw_kbytes_sec;
392 }
393
get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st * entry)394 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
395 {
396 if (entry->dcfclk_mhz > 0) {
397 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
398
399 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
400 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
401 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
402 } else if (entry->fabricclk_mhz > 0) {
403 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
404
405 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
406 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
408 } else if (entry->dram_speed_mts > 0) {
409 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
410 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
411
412 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
413 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
414 }
415 }
416
insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,struct _vcs_dpi_voltage_scaling_st * entry)417 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
418 unsigned int *num_entries,
419 struct _vcs_dpi_voltage_scaling_st *entry)
420 {
421 int i = 0;
422 int index = 0;
423
424 dc_assert_fp_enabled();
425
426 if (*num_entries == 0) {
427 table[0] = *entry;
428 (*num_entries)++;
429 } else {
430 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
431 index++;
432 if (index >= *num_entries)
433 break;
434 }
435
436 for (i = *num_entries; i > index; i--)
437 table[i] = table[i - 1];
438
439 table[index] = *entry;
440 (*num_entries)++;
441 }
442 }
443
444 /**
445 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
446 * @dc: current dc state
447 * @context: new dc state
448 * @ref_pipe: Main pipe for the phantom stream
449 * @phantom_stream: target phantom stream state
450 * @pipes: DML pipe params
451 * @pipe_cnt: number of DML pipes
452 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
453 *
454 * Set timing params of the phantom stream based on calculated output from DML.
455 * This function first gets the DML pipe index using the DC pipe index, then
456 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
457 * lines required for SubVP MCLK switching and assigns to the phantom stream
458 * accordingly.
459 *
460 * - The number of SubVP lines calculated in DML does not take into account
461 * FW processing delays and required pstate allow width, so we must include
462 * that separately.
463 *
464 * - Set phantom backporch = vstartup of main pipe
465 */
dcn32_set_phantom_stream_timing(struct dc * dc,struct dc_state * context,struct pipe_ctx * ref_pipe,struct dc_stream_state * phantom_stream,display_e2e_pipe_params_st * pipes,unsigned int pipe_cnt,unsigned int dc_pipe_idx)466 void dcn32_set_phantom_stream_timing(struct dc *dc,
467 struct dc_state *context,
468 struct pipe_ctx *ref_pipe,
469 struct dc_stream_state *phantom_stream,
470 display_e2e_pipe_params_st *pipes,
471 unsigned int pipe_cnt,
472 unsigned int dc_pipe_idx)
473 {
474 unsigned int i, pipe_idx;
475 struct pipe_ctx *pipe;
476 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
477 unsigned int num_dpp;
478 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
479 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
480 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
481 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
482 struct dc_stream_state *main_stream = ref_pipe->stream;
483
484 dc_assert_fp_enabled();
485
486 // Find DML pipe index (pipe_idx) using dc_pipe_idx
487 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
488 pipe = &context->res_ctx.pipe_ctx[i];
489
490 if (!pipe->stream)
491 continue;
492
493 if (i == dc_pipe_idx)
494 break;
495
496 pipe_idx++;
497 }
498
499 // Calculate lines required for pstate allow width and FW processing delays
500 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
501 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
502 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
503 (double)ref_pipe->stream->timing.h_total;
504
505 // Update clks_cfg for calling into recalculate
506 pipes[0].clks_cfg.voltage = vlevel;
507 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
508 pipes[0].clks_cfg.socclk_mhz = socclk;
509
510 // DML calculation for MALL region doesn't take into account FW delay
511 // and required pstate allow width for multi-display cases
512 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
513 * to 2 swaths (i.e. 16 lines)
514 */
515 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
516 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
517
518 // W/A for DCC corruption with certain high resolution timings.
519 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
520 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
521 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
522
523 /* dc->debug.subvp_extra_lines 0 by default*/
524 phantom_vactive += dc->debug.subvp_extra_lines;
525
526 // For backporch of phantom pipe, use vstartup of the main pipe
527 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
528
529 phantom_stream->dst.y = 0;
530 phantom_stream->dst.height = phantom_vactive;
531 /* When scaling, DML provides the end to end required number of lines for MALL.
532 * dst.height is always correct for this case, but src.height is not which causes a
533 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
534 * phantom for this case.
535 */
536 phantom_stream->src.y = 0;
537 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
538
539 phantom_stream->timing.v_addressable = phantom_vactive;
540 phantom_stream->timing.v_front_porch = 1;
541 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
542 phantom_stream->timing.v_front_porch +
543 phantom_stream->timing.v_sync_width +
544 phantom_bp;
545 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
546 }
547
548 /**
549 * dcn32_get_num_free_pipes - Calculate number of free pipes
550 * @dc: current dc state
551 * @context: new dc state
552 *
553 * This function assumes that a "used" pipe is a pipe that has
554 * both a stream and a plane assigned to it.
555 *
556 * Return: Number of free pipes available in the context
557 */
dcn32_get_num_free_pipes(struct dc * dc,struct dc_state * context)558 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
559 {
560 unsigned int i;
561 unsigned int free_pipes = 0;
562 unsigned int num_pipes = 0;
563
564 for (i = 0; i < dc->res_pool->pipe_count; i++) {
565 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
566
567 if (pipe->stream && !pipe->top_pipe) {
568 while (pipe) {
569 num_pipes++;
570 pipe = pipe->bottom_pipe;
571 }
572 }
573 }
574
575 free_pipes = dc->res_pool->pipe_count - num_pipes;
576 return free_pipes;
577 }
578
579 /**
580 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
581 * @dc: current dc state
582 * @context: new dc state
583 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
584 *
585 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
586 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
587 * we are forcing SubVP P-State switching on the current config.
588 *
589 * The number of pipes used for the chosen surface must be less than or equal to the
590 * number of free pipes available.
591 *
592 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
593 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
594 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
595 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
596 *
597 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
598 */
dcn32_assign_subvp_pipe(struct dc * dc,struct dc_state * context,unsigned int * index)599 static bool dcn32_assign_subvp_pipe(struct dc *dc,
600 struct dc_state *context,
601 unsigned int *index)
602 {
603 unsigned int i, pipe_idx;
604 unsigned int max_frame_time = 0;
605 bool valid_assignment_found = false;
606 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
607 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
608
609 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
610 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
611 unsigned int num_pipes = 0;
612 unsigned int refresh_rate = 0;
613
614 if (!pipe->stream)
615 continue;
616
617 // Round up
618 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
619 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
620 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
621 /* SubVP pipe candidate requirements:
622 * - Refresh rate < 120hz
623 * - Not able to switch in vactive naturally (switching in active means the
624 * DET provides enough buffer to hide the P-State switch latency -- trying
625 * to combine this with SubVP can cause issues with the scheduling).
626 * - Not TMZ surface
627 */
628 if (pipe->plane_state && !pipe->top_pipe && !pipe->prev_odm_pipe && !dcn32_is_center_timing(pipe) &&
629 !pipe->stream->hw_cursor_req &&
630 !dc_state_get_stream_cursor_subvp_limit(pipe->stream, context) &&
631 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
632 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
633 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
634 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
635 !pipe->plane_state->address.tmz_surface &&
636 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
637 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
638 dcn32_allow_subvp_with_active_margin(pipe)))) {
639 while (pipe) {
640 num_pipes++;
641 pipe = pipe->bottom_pipe;
642 }
643
644 pipe = &context->res_ctx.pipe_ctx[i];
645 if (num_pipes <= free_pipes) {
646 struct dc_stream_state *stream = pipe->stream;
647 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
648 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
649 if (frame_us > max_frame_time) {
650 *index = i;
651 max_frame_time = frame_us;
652 valid_assignment_found = true;
653 }
654 }
655 }
656 pipe_idx++;
657 }
658 return valid_assignment_found;
659 }
660
661 /**
662 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
663 * @dc: current dc state
664 * @context: new dc state
665 *
666 * This function returns true if there are enough free pipes
667 * to create the required phantom pipes for any given stream
668 * (that does not already have phantom pipe assigned).
669 *
670 * e.g. For a 2 stream config where the first stream uses one
671 * pipe and the second stream uses 2 pipes (i.e. pipe split),
672 * this function will return true because there is 1 remaining
673 * pipe which can be used as the phantom pipe for the non pipe
674 * split pipe.
675 *
676 * Return:
677 * True if there are enough free pipes to assign phantom pipes to at least one
678 * stream that does not already have phantom pipes assigned. Otherwise false.
679 */
dcn32_enough_pipes_for_subvp(struct dc * dc,struct dc_state * context)680 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
681 {
682 unsigned int i, split_cnt, free_pipes;
683 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
684 bool subvp_possible = false;
685
686 for (i = 0; i < dc->res_pool->pipe_count; i++) {
687 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
688
689 // Find the minimum pipe split count for non SubVP pipes
690 if (resource_is_pipe_type(pipe, OPP_HEAD) &&
691 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
692 split_cnt = 0;
693 while (pipe) {
694 split_cnt++;
695 pipe = pipe->bottom_pipe;
696 }
697
698 if (split_cnt < min_pipe_split)
699 min_pipe_split = split_cnt;
700 }
701 }
702
703 free_pipes = dcn32_get_num_free_pipes(dc, context);
704
705 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
706 // should not equal to the pipe_count)
707 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
708 subvp_possible = true;
709
710 return subvp_possible;
711 }
712
713 /**
714 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
715 * @dc: current dc state
716 * @context: new dc state
717 *
718 * High level algorithm:
719 * 1. Find longest microschedule length (in us) between the two SubVP pipes
720 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
721 * pipes still allows for the maximum microschedule to fit in the active
722 * region for both pipes.
723 *
724 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
725 */
subvp_subvp_schedulable(struct dc * dc,struct dc_state * context)726 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
727 {
728 struct pipe_ctx *subvp_pipes[2] = {0};
729 struct dc_stream_state *phantom = NULL;
730 uint32_t microschedule_lines = 0;
731 uint32_t index = 0;
732 uint32_t i;
733 uint32_t max_microschedule_us = 0;
734 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
735
736 for (i = 0; i < dc->res_pool->pipe_count; i++) {
737 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
738 uint32_t time_us = 0;
739
740 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
741 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
742 */
743 phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
744 if (phantom && pipe->stream && pipe->plane_state && !pipe->top_pipe &&
745 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
746 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
747 phantom->timing.v_addressable;
748
749 // Round up when calculating microschedule time (+ 1 at the end)
750 time_us = (microschedule_lines * phantom->timing.h_total) /
751 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
752 dc->caps.subvp_prefetch_end_to_mall_start_us +
753 dc->caps.subvp_fw_processing_delay_us + 1;
754 if (time_us > max_microschedule_us)
755 max_microschedule_us = time_us;
756
757 subvp_pipes[index] = pipe;
758 index++;
759
760 // Maximum 2 SubVP pipes
761 if (index == 2)
762 break;
763 }
764 }
765 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
766 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
768 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
769 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
770 subvp_pipes[0]->stream->timing.h_total) /
771 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
772 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
773 subvp_pipes[1]->stream->timing.h_total) /
774 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
775
776 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
777 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
778 return true;
779
780 return false;
781 }
782
783 /**
784 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
785 * @dc: current dc state
786 * @context: new dc state
787 *
788 * High level algorithm:
789 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
790 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
791 * (the margin is equal to the MALL region + DRR margin (500us))
792 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
793 * then report the configuration as supported
794 *
795 * Return: True if the SubVP + DRR config is schedulable, false otherwise
796 */
subvp_drr_schedulable(struct dc * dc,struct dc_state * context)797 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
798 {
799 bool schedulable = false;
800 uint32_t i;
801 struct pipe_ctx *pipe = NULL;
802 struct pipe_ctx *drr_pipe = NULL;
803 struct dc_crtc_timing *main_timing = NULL;
804 struct dc_crtc_timing *phantom_timing = NULL;
805 struct dc_crtc_timing *drr_timing = NULL;
806 int16_t prefetch_us = 0;
807 int16_t mall_region_us = 0;
808 int16_t drr_frame_us = 0; // nominal frame time
809 int16_t subvp_active_us = 0;
810 int16_t stretched_drr_us = 0;
811 int16_t drr_stretched_vblank_us = 0;
812 int16_t max_vblank_mallregion = 0;
813 struct dc_stream_state *phantom_stream;
814 bool subvp_found = false;
815 bool drr_found = false;
816
817 // Find SubVP pipe
818 for (i = 0; i < dc->res_pool->pipe_count; i++) {
819 pipe = &context->res_ctx.pipe_ctx[i];
820
821 // We check for master pipe, but it shouldn't matter since we only need
822 // the pipe for timing info (stream should be same for any pipe splits)
823 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
824 !resource_is_pipe_type(pipe, DPP_PIPE))
825 continue;
826
827 // Find the SubVP pipe
828 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
829 subvp_found = true;
830 break;
831 }
832 }
833
834 // Find the DRR pipe
835 for (i = 0; i < dc->res_pool->pipe_count; i++) {
836 drr_pipe = &context->res_ctx.pipe_ctx[i];
837
838 // We check for master pipe only
839 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
840 !resource_is_pipe_type(drr_pipe, DPP_PIPE))
841 continue;
842
843 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
844 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
845 drr_found = true;
846 break;
847 }
848 }
849
850 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
851 if (phantom_stream && subvp_found && drr_found) {
852 main_timing = &pipe->stream->timing;
853 phantom_timing = &phantom_stream->timing;
854 drr_timing = &drr_pipe->stream->timing;
855 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
856 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
857 dc->caps.subvp_prefetch_end_to_mall_start_us;
858 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
859 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
860 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
861 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
862 // P-State allow width and FW delays already included phantom_timing->v_addressable
863 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
864 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
865 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
866 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
867 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
868 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
869 }
870
871 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
872 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
873 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
874 * and the max of (VBLANK blanking time, MALL region)).
875 */
876 if (drr_timing &&
877 stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
878 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
879 schedulable = true;
880
881 return schedulable;
882 }
883
884
885 /**
886 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
887 * @dc: current dc state
888 * @context: new dc state
889 *
890 * High level algorithm:
891 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
892 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
893 * then report the configuration as supported
894 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
895 *
896 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
897 */
subvp_vblank_schedulable(struct dc * dc,struct dc_state * context)898 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
899 {
900 struct pipe_ctx *pipe = NULL;
901 struct pipe_ctx *subvp_pipe = NULL;
902 bool found = false;
903 bool schedulable = false;
904 uint32_t i = 0;
905 uint8_t vblank_index = 0;
906 uint16_t prefetch_us = 0;
907 uint16_t mall_region_us = 0;
908 uint16_t vblank_frame_us = 0;
909 uint16_t subvp_active_us = 0;
910 uint16_t vblank_blank_us = 0;
911 uint16_t max_vblank_mallregion = 0;
912 struct dc_crtc_timing *main_timing = NULL;
913 struct dc_crtc_timing *phantom_timing = NULL;
914 struct dc_crtc_timing *vblank_timing = NULL;
915 struct dc_stream_state *phantom_stream;
916 enum mall_stream_type pipe_mall_type;
917
918 /* For SubVP + VBLANK/DRR cases, we assume there can only be
919 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
920 * is supported, it is either a single VBLANK case or two VBLANK
921 * displays which are synchronized (in which case they have identical
922 * timings).
923 */
924 for (i = 0; i < dc->res_pool->pipe_count; i++) {
925 pipe = &context->res_ctx.pipe_ctx[i];
926 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
927
928 // We check for master pipe, but it shouldn't matter since we only need
929 // the pipe for timing info (stream should be same for any pipe splits)
930 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
931 !resource_is_pipe_type(pipe, DPP_PIPE))
932 continue;
933
934 if (!found && pipe_mall_type == SUBVP_NONE) {
935 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
936 vblank_index = i;
937 found = true;
938 }
939
940 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
941 subvp_pipe = pipe;
942 }
943 if (found && subvp_pipe) {
944 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
945 main_timing = &subvp_pipe->stream->timing;
946 phantom_timing = &phantom_stream->timing;
947 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
948 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
949 // Also include the prefetch end to mallstart delay time
950 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
951 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
952 dc->caps.subvp_prefetch_end_to_mall_start_us;
953 // P-State allow width and FW delays already included phantom_timing->v_addressable
954 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
955 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
956 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
957 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
958 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
959 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
960 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
961 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
962 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
963
964 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
965 // and the max of (VBLANK blanking time, MALL region)
966 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
967 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
968 schedulable = true;
969 }
970 return schedulable;
971 }
972
973 /**
974 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
975 *
976 * @dc: Current DC state
977 * @context: New DC state to be programmed
978 *
979 * SubVP + SubVP is admissible under the following conditions:
980 * - All SubVP pipes are < 120Hz OR
981 * - All SubVP pipes are >= 120hz
982 *
983 * Return: True if admissible, false otherwise
984 */
subvp_subvp_admissable(struct dc * dc,struct dc_state * context)985 static bool subvp_subvp_admissable(struct dc *dc,
986 struct dc_state *context)
987 {
988 bool result = false;
989 uint32_t i;
990 uint8_t subvp_count = 0;
991 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
992 uint64_t refresh_rate = 0;
993
994 for (i = 0; i < dc->res_pool->pipe_count; i++) {
995 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
996
997 if (!pipe->stream)
998 continue;
999
1000 if (pipe->plane_state && !pipe->top_pipe &&
1001 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
1002 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1003 pipe->stream->timing.v_total * (uint64_t)pipe->stream->timing.h_total - (uint64_t)1);
1004 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1005 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1006
1007 if ((uint32_t)refresh_rate < min_refresh)
1008 min_refresh = (uint32_t)refresh_rate;
1009 if ((uint32_t)refresh_rate > max_refresh)
1010 max_refresh = (uint32_t)refresh_rate;
1011 subvp_count++;
1012 }
1013 }
1014
1015 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1016 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1017 max_refresh <= subvp_high_refresh_list.max_refresh)))
1018 result = true;
1019
1020 return result;
1021 }
1022
1023 /**
1024 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1025 * and handle static analysis based on the case.
1026 * @dc: current dc state
1027 * @context: new dc state
1028 * @vlevel: Voltage level calculated by DML
1029 *
1030 * Three cases:
1031 * 1. SubVP + SubVP
1032 * 2. SubVP + VBLANK (DRR checked internally)
1033 * 3. SubVP + VACTIVE (currently unsupported)
1034 *
1035 * Return: True if statically schedulable, false otherwise
1036 */
subvp_validate_static_schedulability(struct dc * dc,struct dc_state * context,int vlevel)1037 static bool subvp_validate_static_schedulability(struct dc *dc,
1038 struct dc_state *context,
1039 int vlevel)
1040 {
1041 bool schedulable = false;
1042 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1043 uint32_t i, pipe_idx;
1044 uint8_t subvp_count = 0;
1045 uint8_t vactive_count = 0;
1046 uint8_t non_subvp_pipes = 0;
1047
1048 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1049 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1050 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1051
1052 if (!pipe->stream)
1053 continue;
1054
1055 if (pipe->plane_state && !pipe->top_pipe) {
1056 if (pipe_mall_type == SUBVP_MAIN)
1057 subvp_count++;
1058 if (pipe_mall_type == SUBVP_NONE)
1059 non_subvp_pipes++;
1060 }
1061
1062 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1063 // switching (SubVP + VACTIVE unsupported). In situations where we force
1064 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1065 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1066 pipe_mall_type == SUBVP_NONE) {
1067 vactive_count++;
1068 }
1069 pipe_idx++;
1070 }
1071
1072 if (subvp_count == 2) {
1073 // Static schedulability check for SubVP + SubVP case
1074 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1075 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1076 // Single SubVP configs will be supported by default as long as it's suppported by DML
1077 schedulable = true;
1078 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1079 if (dcn32_subvp_drr_admissable(dc, context))
1080 schedulable = subvp_drr_schedulable(dc, context);
1081 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1082 schedulable = subvp_vblank_schedulable(dc, context);
1083 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1084 vactive_count > 0) {
1085 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1086 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1087 // SubVP + VACTIVE currently unsupported
1088 schedulable = false;
1089 }
1090 return schedulable;
1091 }
1092
assign_subvp_index(struct dc * dc,struct dc_state * context)1093 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1094 {
1095 int i;
1096 int index = 0;
1097
1098 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1099 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1100
1101 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1102 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1103 pipe_ctx->subvp_index = index++;
1104 } else {
1105 pipe_ctx->subvp_index = 0;
1106 }
1107 }
1108 }
1109
1110 struct pipe_slice_table {
1111 struct {
1112 struct dc_stream_state *stream;
1113 int slice_count;
1114 } odm_combines[MAX_STREAMS];
1115 int odm_combine_count;
1116
1117 struct {
1118 struct pipe_ctx *pri_pipe;
1119 struct dc_plane_state *plane;
1120 int slice_count;
1121 } mpc_combines[MAX_PLANES];
1122 int mpc_combine_count;
1123 };
1124
1125
update_slice_table_for_stream(struct pipe_slice_table * table,struct dc_stream_state * stream,int diff)1126 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1127 struct dc_stream_state *stream, int diff)
1128 {
1129 int i;
1130
1131 for (i = 0; i < table->odm_combine_count; i++) {
1132 if (table->odm_combines[i].stream == stream) {
1133 table->odm_combines[i].slice_count += diff;
1134 break;
1135 }
1136 }
1137
1138 if (i == table->odm_combine_count) {
1139 table->odm_combine_count++;
1140 table->odm_combines[i].stream = stream;
1141 table->odm_combines[i].slice_count = diff;
1142 }
1143 }
1144
update_slice_table_for_plane(struct pipe_slice_table * table,struct pipe_ctx * dpp_pipe,struct dc_plane_state * plane,int diff)1145 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1146 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1147 {
1148 int i;
1149 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1150
1151 for (i = 0; i < table->mpc_combine_count; i++) {
1152 if (table->mpc_combines[i].plane == plane &&
1153 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1154 table->mpc_combines[i].slice_count += diff;
1155 break;
1156 }
1157 }
1158
1159 if (i == table->mpc_combine_count) {
1160 table->mpc_combine_count++;
1161 table->mpc_combines[i].plane = plane;
1162 table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1163 table->mpc_combines[i].slice_count = diff;
1164 }
1165 }
1166
init_pipe_slice_table_from_context(struct pipe_slice_table * table,struct dc_state * context)1167 static void init_pipe_slice_table_from_context(
1168 struct pipe_slice_table *table,
1169 struct dc_state *context)
1170 {
1171 int i, j;
1172 struct pipe_ctx *otg_master;
1173 struct pipe_ctx *dpp_pipes[MAX_PIPES];
1174 struct dc_stream_state *stream;
1175 int count;
1176
1177 memset(table, 0, sizeof(*table));
1178
1179 for (i = 0; i < context->stream_count; i++) {
1180 stream = context->streams[i];
1181 otg_master = resource_get_otg_master_for_stream(
1182 &context->res_ctx, stream);
1183 if (!otg_master)
1184 continue;
1185
1186 count = resource_get_odm_slice_count(otg_master);
1187 update_slice_table_for_stream(table, stream, count);
1188
1189 count = resource_get_dpp_pipes_for_opp_head(otg_master,
1190 &context->res_ctx, dpp_pipes);
1191 for (j = 0; j < count; j++)
1192 if (dpp_pipes[j]->plane_state)
1193 update_slice_table_for_plane(table, dpp_pipes[j],
1194 dpp_pipes[j]->plane_state, 1);
1195 }
1196 }
1197
update_pipe_slice_table_with_split_flags(struct pipe_slice_table * table,struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1198 static bool update_pipe_slice_table_with_split_flags(
1199 struct pipe_slice_table *table,
1200 struct dc *dc,
1201 struct dc_state *context,
1202 struct vba_vars_st *vba,
1203 int split[MAX_PIPES],
1204 bool merge[MAX_PIPES])
1205 {
1206 /* NOTE: we are deprecating the support for the concept of pipe splitting
1207 * or pipe merging. Instead we append slices to the end and remove
1208 * slices from the end. The following code converts a pipe split or
1209 * merge to an append or remove operation.
1210 *
1211 * For example:
1212 * When split flags describe the following pipe connection transition
1213 *
1214 * from:
1215 * pipe 0 (split=2) -> pipe 1 (split=2)
1216 * to: (old behavior)
1217 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1218 *
1219 * the code below actually does:
1220 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1221 *
1222 * This is the new intended behavior and for future DCNs we will retire
1223 * the old concept completely.
1224 */
1225 struct pipe_ctx *pipe;
1226 bool odm;
1227 int dc_pipe_idx, dml_pipe_idx = 0;
1228 bool updated = false;
1229
1230 for (dc_pipe_idx = 0;
1231 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1232 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1233 if (resource_is_pipe_type(pipe, FREE_PIPE))
1234 continue;
1235
1236 if (merge[dc_pipe_idx]) {
1237 if (resource_is_pipe_type(pipe, OPP_HEAD))
1238 /* merging OPP head means reducing ODM slice
1239 * count by 1
1240 */
1241 update_slice_table_for_stream(table, pipe->stream, -1);
1242 else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1243 resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1244 /* merging DPP pipe of the first ODM slice means
1245 * reducing MPC slice count by 1
1246 */
1247 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1248 updated = true;
1249 }
1250
1251 if (split[dc_pipe_idx]) {
1252 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1253 dm_odm_combine_mode_disabled;
1254 if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1255 update_slice_table_for_stream(
1256 table, pipe->stream, split[dc_pipe_idx] - 1);
1257 else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1258 update_slice_table_for_plane(table, pipe,
1259 pipe->plane_state, split[dc_pipe_idx] - 1);
1260 updated = true;
1261 }
1262 dml_pipe_idx++;
1263 }
1264 return updated;
1265 }
1266
update_pipes_with_slice_table(struct dc * dc,struct dc_state * context,struct pipe_slice_table * table)1267 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1268 struct pipe_slice_table *table)
1269 {
1270 int i;
1271
1272 for (i = 0; i < table->odm_combine_count; i++)
1273 resource_update_pipes_for_stream_with_slice_count(context,
1274 dc->current_state, dc->res_pool,
1275 table->odm_combines[i].stream,
1276 table->odm_combines[i].slice_count);
1277
1278 for (i = 0; i < table->mpc_combine_count; i++)
1279 resource_update_pipes_for_plane_with_slice_count(context,
1280 dc->current_state, dc->res_pool,
1281 table->mpc_combines[i].plane,
1282 table->mpc_combines[i].slice_count);
1283 }
1284
update_pipes_with_split_flags(struct dc * dc,struct dc_state * context,struct vba_vars_st * vba,int split[MAX_PIPES],bool merge[MAX_PIPES])1285 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1286 struct vba_vars_st *vba, int split[MAX_PIPES],
1287 bool merge[MAX_PIPES])
1288 {
1289 struct pipe_slice_table slice_table;
1290 bool updated;
1291
1292 init_pipe_slice_table_from_context(&slice_table, context);
1293 updated = update_pipe_slice_table_with_split_flags(
1294 &slice_table, dc, context, vba,
1295 split, merge);
1296 update_pipes_with_slice_table(dc, context, &slice_table);
1297 return updated;
1298 }
1299
should_apply_odm_power_optimization(struct dc * dc,struct dc_state * context,struct vba_vars_st * v,int * split,bool * merge)1300 static bool should_apply_odm_power_optimization(struct dc *dc,
1301 struct dc_state *context, struct vba_vars_st *v, int *split,
1302 bool *merge)
1303 {
1304 struct dc_stream_state *stream = context->streams[0];
1305 struct pipe_slice_table slice_table;
1306 int i;
1307
1308 /*
1309 * this debug flag allows us to disable ODM power optimization feature
1310 * unconditionally. we force the feature off if this is set to false.
1311 */
1312 if (!dc->debug.enable_single_display_2to1_odm_policy)
1313 return false;
1314
1315 /* current design and test coverage is only limited to allow ODM power
1316 * optimization for single stream. Supporting it for multiple streams
1317 * use case would require additional algorithm to decide how to
1318 * optimize power consumption when there are not enough free pipes to
1319 * allocate for all the streams. This level of optimization would
1320 * require multiple attempts of revalidation to make an optimized
1321 * decision. Unfortunately We do not support revalidation flow in
1322 * current version of DML.
1323 */
1324 if (context->stream_count != 1)
1325 return false;
1326
1327 /*
1328 * Our hardware doesn't support ODM for HDMI TMDS
1329 */
1330 if (dc_is_hdmi_signal(stream->signal))
1331 return false;
1332
1333 /*
1334 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1335 * ODM segment has the same size.
1336 */
1337 if (!is_h_timing_divisible_by_2(stream))
1338 return false;
1339
1340 /*
1341 * No power benefits if the timing's pixel clock is not high enough to
1342 * raise display clock from minimum power state.
1343 */
1344 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1345 return false;
1346
1347 if (dc->config.enable_windowed_mpo_odm) {
1348 /*
1349 * ODM power optimization should only be allowed if the feature
1350 * can be seamlessly toggled off within an update. This would
1351 * require that the feature is applied on top of a minimal
1352 * state. A minimal state is defined as a state validated
1353 * without the need of pipe split. Therefore, when transition to
1354 * toggle the feature off, the same stream and plane
1355 * configuration can be supported by the pipe resource in the
1356 * first ODM slice alone without the need to acquire extra
1357 * resources.
1358 */
1359 init_pipe_slice_table_from_context(&slice_table, context);
1360 update_pipe_slice_table_with_split_flags(
1361 &slice_table, dc, context, v,
1362 split, merge);
1363 for (i = 0; i < slice_table.mpc_combine_count; i++)
1364 if (slice_table.mpc_combines[i].slice_count > 1)
1365 return false;
1366
1367 for (i = 0; i < slice_table.odm_combine_count; i++)
1368 if (slice_table.odm_combines[i].slice_count > 1)
1369 return false;
1370 } else {
1371 /*
1372 * the new ODM power optimization feature reduces software
1373 * design limitation and allows ODM power optimization to be
1374 * supported even with presence of overlay planes. The new
1375 * feature is enabled based on enable_windowed_mpo_odm flag. If
1376 * the flag is not set, we limit our feature scope due to
1377 * previous software design limitation
1378 */
1379 if (context->stream_status[0].plane_count != 1)
1380 return false;
1381
1382 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1383 &stream->src, sizeof(struct rect)) != 0)
1384 return false;
1385
1386 if (stream->src.width >= 5120 &&
1387 stream->src.width > stream->dst.width)
1388 return false;
1389 }
1390 return true;
1391 }
1392
try_odm_power_optimization_and_revalidate(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * split,bool * merge,unsigned int * vlevel,int pipe_cnt)1393 static void try_odm_power_optimization_and_revalidate(
1394 struct dc *dc,
1395 struct dc_state *context,
1396 display_e2e_pipe_params_st *pipes,
1397 int *split,
1398 bool *merge,
1399 unsigned int *vlevel,
1400 int pipe_cnt)
1401 {
1402 int i;
1403 unsigned int new_vlevel;
1404 unsigned int cur_policy[MAX_PIPES];
1405
1406 for (i = 0; i < pipe_cnt; i++) {
1407 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1408 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1409 }
1410
1411 new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1412
1413 if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1414 memset(split, 0, MAX_PIPES * sizeof(int));
1415 memset(merge, 0, MAX_PIPES * sizeof(bool));
1416 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1417 context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1418 } else {
1419 for (i = 0; i < pipe_cnt; i++)
1420 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1421 }
1422 }
1423
is_test_pattern_enabled(struct dc_state * context)1424 static bool is_test_pattern_enabled(
1425 struct dc_state *context)
1426 {
1427 int i;
1428
1429 for (i = 0; i < context->stream_count; i++) {
1430 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1431 return true;
1432 }
1433
1434 return false;
1435 }
1436
dcn32_full_validate_bw_helper(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * vlevel,int * split,bool * merge,int * pipe_cnt,bool * repopulate_pipes)1437 static bool dcn32_full_validate_bw_helper(struct dc *dc,
1438 struct dc_state *context,
1439 display_e2e_pipe_params_st *pipes,
1440 int *vlevel,
1441 int *split,
1442 bool *merge,
1443 int *pipe_cnt,
1444 bool *repopulate_pipes)
1445 {
1446 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1447 unsigned int dc_pipe_idx = 0;
1448 int i = 0;
1449 bool found_supported_config = false;
1450 int vlevel_temp = 0;
1451
1452 dc_assert_fp_enabled();
1453
1454 /*
1455 * DML favors voltage over p-state, but we're more interested in
1456 * supporting p-state over voltage. We can't support p-state in
1457 * prefetch mode > 0 so try capping the prefetch mode to start.
1458 * Override present for testing.
1459 */
1460 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1461 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1462 dm_prefetch_support_uclk_fclk_and_stutter;
1463 else
1464 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1465 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1466
1467 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1468 /* This may adjust vlevel and maxMpcComb */
1469 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1470 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1471 vba->VoltageLevel = *vlevel;
1472 }
1473
1474 /* Apply split and merge flags before checking for subvp */
1475 if (!dcn32_apply_merge_split_flags_helper(dc, context, repopulate_pipes, split, merge))
1476 return false;
1477 memset(split, 0, MAX_PIPES * sizeof(int));
1478 memset(merge, 0, MAX_PIPES * sizeof(bool));
1479
1480 /* Conditions for setting up phantom pipes for SubVP:
1481 * 1. Not force disable SubVP
1482 * 2. Full update (i.e. DC_VALIDATE_MODE_AND_PROGRAMMING)
1483 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1484 * 4. Display configuration passes validation
1485 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1486 */
1487 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1488 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1489 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1490 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1491 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1492 dc->debug.force_subvp_mclk_switch)) {
1493
1494 vlevel_temp = *vlevel;
1495
1496 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1497 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1498 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1499 * Adding phantom pipes won't change the validation result, so change the DML input param
1500 * for P-State support before adding phantom pipes and recalculating the DML result.
1501 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1502 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1503 * enough to support MCLK switching.
1504 */
1505 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1506 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1507 dm_prefetch_support_uclk_fclk_and_stutter) {
1508 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1509 dm_prefetch_support_fclk_and_stutter;
1510 /* There are params (such as FabricClock) that need to be recalculated
1511 * after validation fails (otherwise it will be 0). Calculation for
1512 * phantom vactive requires call into DML, so we must ensure all the
1513 * vba params are valid otherwise we'll get incorrect phantom vactive.
1514 */
1515 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1516 }
1517
1518 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1519
1520 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes,
1521 DC_VALIDATE_MODE_AND_PROGRAMMING);
1522 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1523 // so the phantom pipe DLG params can be assigned correctly.
1524 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1525 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1526
1527 /* Check that vlevel requested supports pstate or not
1528 * if not, select the lowest vlevel that supports it
1529 */
1530 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1531 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1532 *vlevel = i;
1533 break;
1534 }
1535 }
1536
1537 if (*vlevel < context->bw_ctx.dml.soc.num_states
1538 && subvp_validate_static_schedulability(dc, context, *vlevel))
1539 found_supported_config = true;
1540 if (found_supported_config) {
1541 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1542 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1543 /* find lowest vlevel that supports the config */
1544 for (i = *vlevel; i >= 0; i--) {
1545 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1546 *vlevel = i;
1547 } else {
1548 break;
1549 }
1550 }
1551 }
1552 }
1553 }
1554
1555 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1556 found_supported_config = false;
1557
1558 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1559 // remove phantom pipes and repopulate dml pipes
1560 if (!found_supported_config) {
1561 dc_state_remove_phantom_streams_and_planes(dc, context);
1562 dc_state_release_phantom_streams_and_planes(dc, context);
1563 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1564 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes,
1565 DC_VALIDATE_MODE_AND_PROGRAMMING);
1566
1567 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1568 /* This may adjust vlevel and maxMpcComb */
1569 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1570 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1571 vba->VoltageLevel = *vlevel;
1572 }
1573 } else {
1574 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1575 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1576
1577 /* Call validate_apply_pipe_split flags after calling DML getters for
1578 * phantom dlg params, or some of the VBA params indicating pipe split
1579 * can be overwritten by the getters.
1580 *
1581 * When setting up SubVP config, all pipes are merged before attempting to
1582 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1583 * and phantom pipes will be split in the regular pipe splitting sequence.
1584 */
1585 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1586 vba->VoltageLevel = *vlevel;
1587 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1588 // until driver has acquired the DMCUB lock to do it safely.
1589 assign_subvp_index(dc, context);
1590 }
1591 }
1592
1593 if (should_apply_odm_power_optimization(dc, context, vba, split, merge))
1594 try_odm_power_optimization_and_revalidate(
1595 dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1596
1597 return true;
1598 }
1599
is_dtbclk_required(struct dc * dc,struct dc_state * context)1600 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1601 {
1602 int i;
1603
1604 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1605 if (!context->res_ctx.pipe_ctx[i].stream)
1606 continue;
1607 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1608 return true;
1609 }
1610 return false;
1611 }
1612
dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing * dc_crtc_timing,int * vstartup_start)1613 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1614 {
1615 struct dc_crtc_timing patched_crtc_timing;
1616 uint32_t asic_blank_end = 0;
1617 uint32_t asic_blank_start = 0;
1618 uint32_t newVstartup = 0;
1619
1620 patched_crtc_timing = *dc_crtc_timing;
1621
1622 if (patched_crtc_timing.flags.INTERLACE == 1) {
1623 if (patched_crtc_timing.v_front_porch < 2)
1624 patched_crtc_timing.v_front_porch = 2;
1625 } else {
1626 if (patched_crtc_timing.v_front_porch < 1)
1627 patched_crtc_timing.v_front_porch = 1;
1628 }
1629
1630 /* blank_start = frame end - front porch */
1631 asic_blank_start = patched_crtc_timing.v_total -
1632 patched_crtc_timing.v_front_porch;
1633
1634 /* blank_end = blank_start - active */
1635 asic_blank_end = asic_blank_start -
1636 patched_crtc_timing.v_border_bottom -
1637 patched_crtc_timing.v_addressable -
1638 patched_crtc_timing.v_border_top;
1639
1640 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1641
1642 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1643 }
1644
dcn32_calculate_dlg_params(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)1645 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1646 display_e2e_pipe_params_st *pipes,
1647 int pipe_cnt, int vlevel)
1648 {
1649 int i, pipe_idx, active_hubp_count = 0;
1650 bool usr_retraining_support = false;
1651 bool unbounded_req_enabled = false;
1652 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1653
1654 dc_assert_fp_enabled();
1655
1656 /* Writeback MCIF_WB arbitration parameters */
1657 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1658
1659 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1660 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1661 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1662 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1663 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1664 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1665 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1666 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1667 != dm_dram_clock_change_unsupported;
1668
1669 /* Pstate change might not be supported by hardware, but it might be
1670 * possible with firmware driven vertical blank stretching.
1671 */
1672 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1673
1674 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1675 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1676 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1677 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1678 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1679 else
1680 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1681
1682 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1683 ASSERT(usr_retraining_support);
1684
1685 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1686 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1687
1688 unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1689
1690 if (unbounded_req_enabled && pipe_cnt > 1) {
1691 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1692 ASSERT(false);
1693 unbounded_req_enabled = false;
1694 }
1695
1696 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1697 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1698 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1699
1700 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1701 if (!context->res_ctx.pipe_ctx[i].stream)
1702 continue;
1703 if (context->res_ctx.pipe_ctx[i].plane_state)
1704 active_hubp_count++;
1705 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1706 pipe_idx);
1707 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1708 pipe_idx);
1709 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1710 pipe_idx);
1711 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1712 pipe_idx);
1713
1714 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1715 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1716 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1717 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1718 } else {
1719 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1720 pipe_idx);
1721 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1722 }
1723
1724 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1725 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1726 if (context->res_ctx.pipe_ctx[i].plane_state)
1727 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1728 else
1729 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1730 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1731
1732 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1733
1734 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1735 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1736 else
1737 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1738
1739 /* MALL Allocation Sizes */
1740 /* count from active, top pipes per plane only */
1741 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1742 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1743 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1744 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1745 /* SS: all active surfaces stored in MALL */
1746 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1747 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1748
1749 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1750 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1751 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1752 }
1753 } else {
1754 /* SUBVP: phantom surfaces only stored in MALL */
1755 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1756 }
1757 }
1758
1759 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1760 dcn20_adjust_freesync_v_startup(
1761 &context->res_ctx.pipe_ctx[i].stream->timing,
1762 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1763
1764 pipe_idx++;
1765 }
1766 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1767 if (!active_hubp_count) {
1768 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1769 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1770 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1771 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1772 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1773 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1774 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1775 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1776 }
1777 /*save a original dppclock copy*/
1778 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1779 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1780 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1781 * 1000;
1782 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1783 * 1000;
1784
1785 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1786
1787 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1788
1789 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1790 if (context->res_ctx.pipe_ctx[i].stream)
1791 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1792 }
1793
1794 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1795
1796 if (!context->res_ctx.pipe_ctx[i].stream)
1797 continue;
1798
1799 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1800 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1801 pipe_cnt, pipe_idx);
1802
1803 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1804 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1805 pipe_idx++;
1806 }
1807 }
1808
dcn32_find_split_pipe(struct dc * dc,struct dc_state * context,int old_index)1809 static struct pipe_ctx *dcn32_find_split_pipe(
1810 struct dc *dc,
1811 struct dc_state *context,
1812 int old_index)
1813 {
1814 struct pipe_ctx *pipe = NULL;
1815 int i;
1816
1817 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1818 pipe = &context->res_ctx.pipe_ctx[old_index];
1819 pipe->pipe_idx = old_index;
1820 }
1821
1822 if (!pipe)
1823 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1824 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1825 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1826 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1827 pipe = &context->res_ctx.pipe_ctx[i];
1828 pipe->pipe_idx = i;
1829 break;
1830 }
1831 }
1832 }
1833
1834 /*
1835 * May need to fix pipes getting tossed from 1 opp to another on flip
1836 * Add for debugging transient underflow during topology updates:
1837 * ASSERT(pipe);
1838 */
1839 if (!pipe)
1840 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1841 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1842 pipe = &context->res_ctx.pipe_ctx[i];
1843 pipe->pipe_idx = i;
1844 break;
1845 }
1846 }
1847
1848 return pipe;
1849 }
1850
dcn32_split_stream_for_mpc_or_odm(const struct dc * dc,struct resource_context * res_ctx,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)1851 static bool dcn32_split_stream_for_mpc_or_odm(
1852 const struct dc *dc,
1853 struct resource_context *res_ctx,
1854 struct pipe_ctx *pri_pipe,
1855 struct pipe_ctx *sec_pipe,
1856 bool odm)
1857 {
1858 int pipe_idx = sec_pipe->pipe_idx;
1859 const struct resource_pool *pool = dc->res_pool;
1860
1861 DC_LOGGER_INIT(dc->ctx->logger);
1862
1863 if (odm && pri_pipe->plane_state) {
1864 /* ODM + window MPO, where MPO window is on left half only */
1865 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1866 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1867
1868 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1869 __func__,
1870 pri_pipe->pipe_idx);
1871 return true;
1872 }
1873
1874 /* ODM + window MPO, where MPO window is on right half only */
1875 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1876
1877 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1878 __func__,
1879 pri_pipe->pipe_idx);
1880 return true;
1881 }
1882 }
1883
1884 *sec_pipe = *pri_pipe;
1885
1886 sec_pipe->pipe_idx = pipe_idx;
1887 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1888 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1889 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1890 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1891 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1892 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1893 sec_pipe->stream_res.dsc = NULL;
1894 if (odm) {
1895 if (pri_pipe->next_odm_pipe) {
1896 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1897 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1898 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1899 }
1900 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1901 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1902 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1903 }
1904 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1905 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1906 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1907 }
1908 pri_pipe->next_odm_pipe = sec_pipe;
1909 sec_pipe->prev_odm_pipe = pri_pipe;
1910 ASSERT(sec_pipe->top_pipe == NULL);
1911
1912 if (!sec_pipe->top_pipe)
1913 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1914 else
1915 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1916 if (sec_pipe->stream->timing.flags.DSC == 1) {
1917 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1918 ASSERT(sec_pipe->stream_res.dsc);
1919 if (sec_pipe->stream_res.dsc == NULL)
1920 return false;
1921 }
1922 } else {
1923 if (pri_pipe->bottom_pipe) {
1924 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1925 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1926 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1927 }
1928 pri_pipe->bottom_pipe = sec_pipe;
1929 sec_pipe->top_pipe = pri_pipe;
1930
1931 ASSERT(pri_pipe->plane_state);
1932 }
1933
1934 return true;
1935 }
1936
dcn32_apply_merge_split_flags_helper(struct dc * dc,struct dc_state * context,bool * repopulate_pipes,int * split,bool * merge)1937 static bool dcn32_apply_merge_split_flags_helper(
1938 struct dc *dc,
1939 struct dc_state *context,
1940 bool *repopulate_pipes,
1941 int *split,
1942 bool *merge)
1943 {
1944 int i, pipe_idx;
1945 bool newly_split[MAX_PIPES] = { false };
1946 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1947
1948 if (dc->config.enable_windowed_mpo_odm) {
1949 if (update_pipes_with_split_flags(
1950 dc, context, vba, split, merge))
1951 *repopulate_pipes = true;
1952 } else {
1953
1954 /* the code below will be removed once windowed mpo odm is fully
1955 * enabled.
1956 */
1957 /* merge pipes if necessary */
1958 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1959 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1960
1961 /*skip pipes that don't need merging*/
1962 if (!merge[i])
1963 continue;
1964
1965 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1966 if (pipe->prev_odm_pipe) {
1967 /*split off odm pipe*/
1968 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1969 if (pipe->next_odm_pipe)
1970 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1971
1972 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1973 if (pipe->bottom_pipe) {
1974 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1975 /*MPC split rules will handle this case*/
1976 pipe->bottom_pipe->top_pipe = NULL;
1977 } else {
1978 /* when merging an ODM pipes, the bottom MPC pipe must now point to
1979 * the previous ODM pipe and its associated stream assets
1980 */
1981 if (pipe->prev_odm_pipe->bottom_pipe) {
1982 /* 3 plane MPO*/
1983 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1984 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1985 } else {
1986 /* 2 plane MPO*/
1987 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1988 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1989 }
1990
1991 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1992 }
1993 }
1994
1995 if (pipe->top_pipe) {
1996 pipe->top_pipe->bottom_pipe = NULL;
1997 }
1998
1999 pipe->bottom_pipe = NULL;
2000 pipe->next_odm_pipe = NULL;
2001 pipe->plane_state = NULL;
2002 pipe->stream = NULL;
2003 pipe->top_pipe = NULL;
2004 pipe->prev_odm_pipe = NULL;
2005 if (pipe->stream_res.dsc)
2006 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2007 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2008 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2009 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2010 *repopulate_pipes = true;
2011 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2012 struct pipe_ctx *top_pipe = pipe->top_pipe;
2013 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2014
2015 top_pipe->bottom_pipe = bottom_pipe;
2016 if (bottom_pipe)
2017 bottom_pipe->top_pipe = top_pipe;
2018
2019 pipe->top_pipe = NULL;
2020 pipe->bottom_pipe = NULL;
2021 pipe->plane_state = NULL;
2022 pipe->stream = NULL;
2023 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2024 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2025 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2026 *repopulate_pipes = true;
2027 } else
2028 ASSERT(0); /* Should never try to merge master pipe */
2029
2030 }
2031
2032 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2033 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2034 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2035 struct pipe_ctx *hsplit_pipe = NULL;
2036 bool odm;
2037 int old_index = -1;
2038
2039 if (!pipe->stream || newly_split[i])
2040 continue;
2041
2042 pipe_idx++;
2043 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2044
2045 if (!pipe->plane_state && !odm)
2046 continue;
2047
2048 if (split[i]) {
2049 if (odm) {
2050 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2051 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2052 else if (old_pipe->next_odm_pipe)
2053 old_index = old_pipe->next_odm_pipe->pipe_idx;
2054 } else {
2055 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2056 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2057 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2058 else if (old_pipe->bottom_pipe &&
2059 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2060 old_index = old_pipe->bottom_pipe->pipe_idx;
2061 }
2062 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2063 ASSERT(hsplit_pipe);
2064 if (!hsplit_pipe)
2065 return false;
2066
2067 if (!dcn32_split_stream_for_mpc_or_odm(
2068 dc, &context->res_ctx,
2069 pipe, hsplit_pipe, odm))
2070 return false;
2071
2072 newly_split[hsplit_pipe->pipe_idx] = true;
2073 *repopulate_pipes = true;
2074 }
2075 if (split[i] == 4) {
2076 struct pipe_ctx *pipe_4to1;
2077
2078 if (odm && old_pipe->next_odm_pipe)
2079 old_index = old_pipe->next_odm_pipe->pipe_idx;
2080 else if (!odm && old_pipe->bottom_pipe &&
2081 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2082 old_index = old_pipe->bottom_pipe->pipe_idx;
2083 else
2084 old_index = -1;
2085 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2086 ASSERT(pipe_4to1);
2087 if (!pipe_4to1)
2088 return false;
2089 if (!dcn32_split_stream_for_mpc_or_odm(
2090 dc, &context->res_ctx,
2091 pipe, pipe_4to1, odm))
2092 return false;
2093 newly_split[pipe_4to1->pipe_idx] = true;
2094
2095 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2096 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2097 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2098 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2099 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2100 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2101 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2102 else
2103 old_index = -1;
2104 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2105 ASSERT(pipe_4to1);
2106 if (!pipe_4to1)
2107 return false;
2108 if (!dcn32_split_stream_for_mpc_or_odm(
2109 dc, &context->res_ctx,
2110 hsplit_pipe, pipe_4to1, odm))
2111 return false;
2112 newly_split[pipe_4to1->pipe_idx] = true;
2113 }
2114 if (odm)
2115 dcn20_build_mapped_resource(dc, context, pipe->stream);
2116 }
2117
2118 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2119 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2120
2121 if (pipe->plane_state) {
2122 if (!resource_build_scaling_params(pipe))
2123 return false;
2124 }
2125 }
2126
2127 for (i = 0; i < context->stream_count; i++) {
2128 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(&context->res_ctx,
2129 context->streams[i]);
2130
2131 if (otg_master)
2132 resource_build_test_pattern_params(&context->res_ctx, otg_master);
2133 }
2134 }
2135 return true;
2136 }
2137
dcn32_internal_validate_bw(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int * pipe_cnt_out,int * vlevel_out,enum dc_validate_mode validate_mode)2138 bool dcn32_internal_validate_bw(struct dc *dc,
2139 struct dc_state *context,
2140 display_e2e_pipe_params_st *pipes,
2141 int *pipe_cnt_out,
2142 int *vlevel_out,
2143 enum dc_validate_mode validate_mode)
2144 {
2145 bool out = false;
2146 bool repopulate_pipes = false;
2147 int split[MAX_PIPES] = { 0 };
2148 bool merge[MAX_PIPES] = { false };
2149 int pipe_cnt, i, pipe_idx;
2150 int vlevel = context->bw_ctx.dml.soc.num_states;
2151 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2152
2153 dc_assert_fp_enabled();
2154
2155 ASSERT(pipes);
2156 if (!pipes)
2157 return false;
2158
2159 /* For each full update, remove all existing phantom pipes first */
2160 dc_state_remove_phantom_streams_and_planes(dc, context);
2161 dc_state_release_phantom_streams_and_planes(dc, context);
2162
2163 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2164
2165 for (i = 0; i < context->stream_count; i++)
2166 resource_update_pipes_for_stream_with_slice_count(context, dc->current_state, dc->res_pool, context->streams[i], 1);
2167 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode);
2168
2169 if (!pipe_cnt) {
2170 out = true;
2171 goto validate_out;
2172 }
2173
2174 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2175 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
2176
2177 if (validate_mode == DC_VALIDATE_MODE_AND_PROGRAMMING) {
2178 if (!dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge,
2179 &pipe_cnt, &repopulate_pipes))
2180 goto validate_fail;
2181 }
2182
2183 if (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING ||
2184 (dc->debug.dml_disallow_alternate_prefetch_modes &&
2185 (vlevel == context->bw_ctx.dml.soc.num_states ||
2186 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
2187 /*
2188 * If dml_disallow_alternate_prefetch_modes is false, then we have already
2189 * tried alternate prefetch modes during full validation.
2190 *
2191 * If mode is unsupported or there is no p-state support, then
2192 * fall back to favouring voltage.
2193 *
2194 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
2195 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
2196 */
2197 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2198 dm_prefetch_support_none;
2199
2200 context->bw_ctx.dml.validate_max_state = (validate_mode != DC_VALIDATE_MODE_AND_PROGRAMMING);
2201 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2202
2203 context->bw_ctx.dml.validate_max_state = false;
2204
2205 if (vlevel < context->bw_ctx.dml.soc.num_states) {
2206 memset(split, 0, sizeof(split));
2207 memset(merge, 0, sizeof(merge));
2208 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2209 /* dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML */
2210 vba->VoltageLevel = vlevel;
2211 }
2212 }
2213
2214 dml_log_mode_support_params(&context->bw_ctx.dml);
2215
2216 if (vlevel == context->bw_ctx.dml.soc.num_states)
2217 goto validate_fail;
2218
2219 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2220 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2221 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2222
2223 if (!pipe->stream)
2224 continue;
2225
2226 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2227 && !dc->config.enable_windowed_mpo_odm
2228 && pipe->plane_state && mpo_pipe
2229 && memcmp(&mpo_pipe->plane_state->clip_rect,
2230 &pipe->stream->src,
2231 sizeof(struct rect)) != 0) {
2232 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2233 goto validate_fail;
2234 }
2235 pipe_idx++;
2236 }
2237
2238 if (!dcn32_apply_merge_split_flags_helper(dc, context, &repopulate_pipes, split, merge))
2239 goto validate_fail;
2240
2241 /* Actual dsc count per stream dsc validation*/
2242 if (!dcn20_validate_dsc(dc, context)) {
2243 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2244 goto validate_fail;
2245 }
2246
2247 if (repopulate_pipes) {
2248 int flag_max_mpc_comb = vba->maxMpcComb;
2249 int flag_vlevel = vlevel;
2250 int i;
2251
2252 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, validate_mode);
2253 if (!dc->config.enable_windowed_mpo_odm)
2254 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2255
2256 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2257 * we have to re-calculate the DET allocation and run through DML once more to
2258 * ensure all the params are calculated correctly. We do not need to run the
2259 * pipe split check again after this call (pipes are already split / merged).
2260 * */
2261 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2262 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2263
2264 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2265
2266 if (vlevel == context->bw_ctx.dml.soc.num_states) {
2267 /* failed after DET size changes */
2268 goto validate_fail;
2269 } else if (flag_max_mpc_comb == 0 &&
2270 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2271 /* check the context constructed with pipe split flags is still valid*/
2272 bool flags_valid = false;
2273 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2274 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2275 vba->maxMpcComb = flag_max_mpc_comb;
2276 vba->VoltageLevel = i;
2277 vlevel = i;
2278 flags_valid = true;
2279 break;
2280 }
2281 }
2282
2283 /* this should never happen */
2284 if (!flags_valid)
2285 goto validate_fail;
2286 }
2287 }
2288 *vlevel_out = vlevel;
2289 *pipe_cnt_out = pipe_cnt;
2290
2291 out = true;
2292 goto validate_out;
2293
2294 validate_fail:
2295 out = false;
2296
2297 validate_out:
2298 return out;
2299 }
2300
2301
dcn32_calculate_wm_and_dlg_fpu(struct dc * dc,struct dc_state * context,display_e2e_pipe_params_st * pipes,int pipe_cnt,int vlevel)2302 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2303 display_e2e_pipe_params_st *pipes,
2304 int pipe_cnt,
2305 int vlevel)
2306 {
2307 int i, pipe_idx, vlevel_temp = 0;
2308 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2309 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2310 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2311 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2312 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2313 dm_dram_clock_change_unsupported;
2314 unsigned int dummy_latency_index = 0;
2315 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2316 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2317 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2318 unsigned int min_dram_speed_mts_margin;
2319 bool need_fclk_lat_as_dummy = false;
2320 bool is_subvp_p_drr = false;
2321 struct dc_stream_state *fpo_candidate_stream = NULL;
2322 struct dc_stream_status *stream_status = NULL;
2323
2324 dc_assert_fp_enabled();
2325
2326 /* need to find dummy latency index for subvp */
2327 if (subvp_in_use) {
2328 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2329 if (!pstate_en) {
2330 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2331 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2332 pstate_en = true;
2333 is_subvp_p_drr = true;
2334 }
2335 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2336 context, pipes, pipe_cnt, vlevel);
2337
2338 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2339 * scheduled correctly to account for dummy pstate.
2340 */
2341 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2342 need_fclk_lat_as_dummy = true;
2343 context->bw_ctx.dml.soc.fclk_change_latency_us =
2344 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2345 }
2346 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2347 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2348 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, DC_VALIDATE_MODE_AND_PROGRAMMING);
2349 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2350 if (is_subvp_p_drr) {
2351 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2352 }
2353 }
2354
2355 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2356 for (i = 0; i < context->stream_count; i++) {
2357 stream_status = NULL;
2358 if (context->streams[i])
2359 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2360 if (stream_status)
2361 stream_status->fpo_in_use = false;
2362 }
2363
2364 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2365 pstate_en && vlevel != 0)) {
2366 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2367 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2368 if (fpo_candidate_stream) {
2369 stream_status = dc_state_get_stream_status(context, fpo_candidate_stream);
2370 if (stream_status)
2371 stream_status->fpo_in_use = true;
2372 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2373 }
2374
2375 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2376 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2377 context, pipes, pipe_cnt, vlevel);
2378
2379 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2380 * we reinstate the original dram_clock_change_latency_us on the context
2381 * and all variables that may have changed up to this point, except the
2382 * newly found dummy_latency_index
2383 */
2384 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2385 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2386 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2387 * prefetch is scheduled correctly to account for dummy pstate.
2388 */
2389 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2390 need_fclk_lat_as_dummy = true;
2391 context->bw_ctx.dml.soc.fclk_change_latency_us =
2392 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2393 }
2394 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp,
2395 DC_VALIDATE_MODE_AND_PROGRAMMING);
2396 if (vlevel_temp < vlevel) {
2397 vlevel = vlevel_temp;
2398 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2399 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2400 pstate_en = true;
2401 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2402 } else {
2403 /* Restore FCLK latency and re-run validation to go back to original validation
2404 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2405 * voltage level)
2406 */
2407 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2408 for (i = 0; i < context->stream_count; i++) {
2409 stream_status = NULL;
2410 if (context->streams[i])
2411 stream_status = dc_state_get_stream_status(context, context->streams[i]);
2412 if (stream_status)
2413 stream_status->fpo_in_use = false;
2414 }
2415 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2416 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel,
2417 DC_VALIDATE_MODE_AND_PROGRAMMING);
2418 }
2419 }
2420 }
2421
2422 /* Set B:
2423 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2424 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2425 * calculations to cover bootup clocks.
2426 * DCFCLK: soc.clock_limits[2] when available
2427 * UCLK: soc.clock_limits[2] when available
2428 */
2429 if (dcn3_2_soc.num_states > 2) {
2430 vlevel_temp = 2;
2431 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2432 } else
2433 dcfclk = 615; //DCFCLK Vmin_lv
2434
2435 pipes[0].clks_cfg.voltage = vlevel_temp;
2436 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2437 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2438
2439 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2440 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2441 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2442 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2443 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2444 }
2445 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2446 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2447 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2448 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2449 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2450 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2451 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2452 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2453 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2454 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2455
2456 /* Set D:
2457 * All clocks min.
2458 * DCFCLK: Min, as reported by PM FW when available
2459 * UCLK : Min, as reported by PM FW when available
2460 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2461 */
2462
2463 /*
2464 if (dcn3_2_soc.num_states > 2) {
2465 vlevel_temp = 0;
2466 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2467 } else
2468 dcfclk = 615; //DCFCLK Vmin_lv
2469
2470 pipes[0].clks_cfg.voltage = vlevel_temp;
2471 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2472 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2473
2474 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2475 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2476 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2477 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2478 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2479 }
2480 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2481 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2482 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2483 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2484 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2485 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2486 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2487 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2488 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2489 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2490 */
2491
2492 /* Set C, for Dummy P-State:
2493 * All clocks min.
2494 * DCFCLK: Min, as reported by PM FW, when available
2495 * UCLK : Min, as reported by PM FW, when available
2496 * pstate latency as per UCLK state dummy pstate latency
2497 */
2498
2499 // For Set A and Set C use values from validation
2500 pipes[0].clks_cfg.voltage = vlevel;
2501 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2502 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2503
2504 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2505 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2506 }
2507
2508 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2509 min_dram_speed_mts = dram_speed_from_validation;
2510 min_dram_speed_mts_margin = 160;
2511
2512 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2513 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2514
2515 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2516 dm_dram_clock_change_unsupported) {
2517 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2518
2519 min_dram_speed_mts =
2520 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2521 }
2522
2523 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2524 /* find largest table entry that is lower than dram speed,
2525 * but lower than DPM0 still uses DPM0
2526 */
2527 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2528 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2529 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2530 break;
2531 }
2532
2533 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2534 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2535
2536 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2537 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2538 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2539 }
2540
2541 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2542 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2543 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2544 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2545 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2546 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2547 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2548 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2549 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2550 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2551 * value.
2552 */
2553 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2554 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2555
2556 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2557 /* The only difference between A and C is p-state latency, if p-state is not supported
2558 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2559 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2560 */
2561 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2562 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2563 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2564 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2565 */
2566 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2567 } else {
2568 /* Set A:
2569 * All clocks min.
2570 * DCFCLK: Min, as reported by PM FW, when available
2571 * UCLK: Min, as reported by PM FW, when available
2572 */
2573
2574 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2575 */
2576 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2577 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2578 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2579
2580 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2581 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2582 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2583 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2584 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2585 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2586 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2587 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2588 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2589 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2590 }
2591
2592 /* Make set D = set A since we do not optimized watermarks for MALL */
2593 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2594
2595 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2596 if (!context->res_ctx.pipe_ctx[i].stream)
2597 continue;
2598
2599 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2600 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2601
2602 if (dc->config.forced_clocks) {
2603 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2604 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2605 }
2606 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2607 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2608 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2609 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2610
2611 pipe_idx++;
2612 }
2613
2614 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2615
2616 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2617 if (need_fclk_lat_as_dummy)
2618 context->bw_ctx.dml.soc.fclk_change_latency_us =
2619 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2620
2621 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2622
2623 if (!pstate_en)
2624 /* Restore full p-state latency */
2625 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2626 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2627
2628 /* revert fclk lat changes if required */
2629 if (need_fclk_lat_as_dummy)
2630 context->bw_ctx.dml.soc.fclk_change_latency_us =
2631 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2632 }
2633
dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,unsigned int * optimal_dcfclk,unsigned int * optimal_fclk)2634 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2635 unsigned int *optimal_dcfclk,
2636 unsigned int *optimal_fclk)
2637 {
2638 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2639
2640 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2641 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2642 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2643 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2644
2645 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2646
2647 if (optimal_fclk)
2648 *optimal_fclk = bw_from_dram /
2649 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2650
2651 if (optimal_dcfclk)
2652 *optimal_dcfclk = bw_from_dram /
2653 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2654 }
2655
remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries,unsigned int index)2656 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2657 unsigned int index)
2658 {
2659 int i;
2660
2661 if (*num_entries == 0)
2662 return;
2663
2664 for (i = index; i < *num_entries - 1; i++) {
2665 table[i] = table[i + 1];
2666 }
2667 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2668 }
2669
dcn32_patch_dpm_table(struct clk_bw_params * bw_params)2670 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2671 {
2672 int i;
2673 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2674 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2675
2676 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2677 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2678 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2679 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2680 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2681 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2682 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2683 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2684 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2685 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2686 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2687 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2688 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2689 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2690 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2691 }
2692
2693 /* Scan through clock values we currently have and if they are 0,
2694 * then populate it with dcn3_2_soc.clock_limits[] value.
2695 *
2696 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2697 * 0, will cause it to skip building the clock table.
2698 */
2699 if (max_dcfclk_mhz == 0)
2700 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2701 if (max_dispclk_mhz == 0)
2702 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2703 if (max_dtbclk_mhz == 0)
2704 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2705 if (max_uclk_mhz == 0)
2706 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2707 }
2708
swap_table_entries(struct _vcs_dpi_voltage_scaling_st * first_entry,struct _vcs_dpi_voltage_scaling_st * second_entry)2709 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2710 struct _vcs_dpi_voltage_scaling_st *second_entry)
2711 {
2712 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2713 *first_entry = *second_entry;
2714 *second_entry = temp_entry;
2715 }
2716
2717 /*
2718 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2719 */
sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2720 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2721 {
2722 unsigned int start_index = 0;
2723 unsigned int end_index = 0;
2724 unsigned int current_bw = 0;
2725
2726 for (int i = 0; i < (*num_entries - 1); i++) {
2727 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2728 current_bw = table[i].net_bw_in_kbytes_sec;
2729 start_index = i;
2730 end_index = ++i;
2731
2732 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2733 end_index = ++i;
2734 }
2735
2736 if (start_index != end_index) {
2737 for (int j = start_index; j < end_index; j++) {
2738 for (int k = start_index; k < end_index; k++) {
2739 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2740 swap_table_entries(&table[k], &table[k+1]);
2741 }
2742 }
2743 }
2744
2745 start_index = 0;
2746 end_index = 0;
2747
2748 }
2749 }
2750
2751 /*
2752 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2753 * and remove entries that do not
2754 */
remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2755 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2756 {
2757 for (int i = 0; i < (*num_entries - 1); i++) {
2758 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2759 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2760 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2761 remove_entry_from_table_at_index(table, num_entries, i);
2762 }
2763 }
2764 }
2765
2766 /*
2767 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2768 * Input:
2769 * max_clk_limit - struct containing the desired clock timings
2770 * Output:
2771 * curr_clk_limit - struct containing the timings that need to be overwritten
2772 * Return: 0 upon success, non-zero for failure
2773 */
override_max_clk_values(struct clk_limit_table_entry * max_clk_limit,struct clk_limit_table_entry * curr_clk_limit)2774 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2775 struct clk_limit_table_entry *curr_clk_limit)
2776 {
2777 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2778 return -1; //invalid parameters
2779
2780 //only overwrite if desired max clock frequency is initialized
2781 if (max_clk_limit->dcfclk_mhz != 0)
2782 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2783
2784 if (max_clk_limit->fclk_mhz != 0)
2785 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2786
2787 if (max_clk_limit->memclk_mhz != 0)
2788 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2789
2790 if (max_clk_limit->socclk_mhz != 0)
2791 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2792
2793 if (max_clk_limit->dtbclk_mhz != 0)
2794 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2795
2796 if (max_clk_limit->dispclk_mhz != 0)
2797 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2798
2799 return 0;
2800 }
2801
build_synthetic_soc_states(bool disable_dc_mode_overwrite,struct clk_bw_params * bw_params,struct _vcs_dpi_voltage_scaling_st * table,unsigned int * num_entries)2802 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2803 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2804 {
2805 int i, j;
2806 struct _vcs_dpi_voltage_scaling_st entry = {0};
2807 struct clk_limit_table_entry max_clk_data = {0};
2808
2809 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2810
2811 static const unsigned int num_dcfclk_stas = 5;
2812 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2813
2814 unsigned int num_uclk_dpms = 0;
2815 unsigned int num_fclk_dpms = 0;
2816 unsigned int num_dcfclk_dpms = 0;
2817
2818 unsigned int num_dc_uclk_dpms = 0;
2819 unsigned int num_dc_fclk_dpms = 0;
2820 unsigned int num_dc_dcfclk_dpms = 0;
2821
2822 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2823 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2824 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2825 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2826 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2827 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2828 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2829 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2830 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2831 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2832 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2833 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2834 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2835 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2836 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2837
2838 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2839 num_uclk_dpms++;
2840 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2841 num_dc_uclk_dpms++;
2842 }
2843 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2844 num_fclk_dpms++;
2845 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2846 num_dc_fclk_dpms++;
2847 }
2848 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2849 num_dcfclk_dpms++;
2850 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2851 num_dc_dcfclk_dpms++;
2852 }
2853 }
2854
2855 if (!disable_dc_mode_overwrite) {
2856 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2857 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2858 num_uclk_dpms = num_dc_uclk_dpms;
2859 num_fclk_dpms = num_dc_fclk_dpms;
2860 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2861 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2862 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2863 }
2864
2865 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2866 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2867
2868 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2869 return -1;
2870
2871 if (max_clk_data.dppclk_mhz == 0)
2872 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2873
2874 if (max_clk_data.fclk_mhz == 0)
2875 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2876 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2877 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2878
2879 if (max_clk_data.phyclk_mhz == 0)
2880 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2881
2882 *num_entries = 0;
2883 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2884 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2885 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2886 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2887 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2888 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2889 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2890
2891 // Insert all the DCFCLK STAs
2892 for (i = 0; i < num_dcfclk_stas; i++) {
2893 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2894 entry.fabricclk_mhz = 0;
2895 entry.dram_speed_mts = 0;
2896
2897 get_optimal_ntuple(&entry);
2898 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2899 insert_entry_into_table_sorted(table, num_entries, &entry);
2900 }
2901
2902 // Insert the max DCFCLK
2903 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2904 entry.fabricclk_mhz = 0;
2905 entry.dram_speed_mts = 0;
2906
2907 get_optimal_ntuple(&entry);
2908 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2909 insert_entry_into_table_sorted(table, num_entries, &entry);
2910
2911 // Insert the UCLK DPMS
2912 for (i = 0; i < num_uclk_dpms; i++) {
2913 entry.dcfclk_mhz = 0;
2914 entry.fabricclk_mhz = 0;
2915 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2916
2917 get_optimal_ntuple(&entry);
2918 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2919 insert_entry_into_table_sorted(table, num_entries, &entry);
2920 }
2921
2922 // If FCLK is coarse grained, insert individual DPMs.
2923 if (num_fclk_dpms > 2) {
2924 for (i = 0; i < num_fclk_dpms; i++) {
2925 entry.dcfclk_mhz = 0;
2926 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2927 entry.dram_speed_mts = 0;
2928
2929 get_optimal_ntuple(&entry);
2930 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2931 insert_entry_into_table_sorted(table, num_entries, &entry);
2932 }
2933 }
2934 // If FCLK fine grained, only insert max
2935 else {
2936 entry.dcfclk_mhz = 0;
2937 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2938 entry.dram_speed_mts = 0;
2939
2940 get_optimal_ntuple(&entry);
2941 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2942 insert_entry_into_table_sorted(table, num_entries, &entry);
2943 }
2944
2945 // At this point, the table contains all "points of interest" based on
2946 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2947 // ratios (by derate, are exact).
2948
2949 // Remove states that require higher clocks than are supported
2950 for (i = *num_entries - 1; i >= 0 ; i--) {
2951 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2952 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2953 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2954 remove_entry_from_table_at_index(table, num_entries, i);
2955 }
2956
2957 // Insert entry with all max dc limits without bandwidth matching
2958 if (!disable_dc_mode_overwrite) {
2959 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2960
2961 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2962 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2963 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2964
2965 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2966 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2967
2968 sort_entries_with_same_bw(table, num_entries);
2969 remove_inconsistent_entries(table, num_entries);
2970 }
2971
2972 // At this point, the table only contains supported points of interest
2973 // it could be used as is, but some states may be redundant due to
2974 // coarse grained nature of some clocks, so we want to round up to
2975 // coarse grained DPMs and remove duplicates.
2976
2977 // Round up UCLKs
2978 for (i = *num_entries - 1; i >= 0 ; i--) {
2979 for (j = 0; j < num_uclk_dpms; j++) {
2980 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2981 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2982 break;
2983 }
2984 }
2985 }
2986
2987 // If FCLK is coarse grained, round up to next DPMs
2988 if (num_fclk_dpms > 2) {
2989 for (i = *num_entries - 1; i >= 0 ; i--) {
2990 for (j = 0; j < num_fclk_dpms; j++) {
2991 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2992 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2993 break;
2994 }
2995 }
2996 }
2997 }
2998 // Otherwise, round up to minimum.
2999 else {
3000 for (i = *num_entries - 1; i >= 0 ; i--) {
3001 if (table[i].fabricclk_mhz < min_fclk_mhz) {
3002 table[i].fabricclk_mhz = min_fclk_mhz;
3003 }
3004 }
3005 }
3006
3007 // Round DCFCLKs up to minimum
3008 for (i = *num_entries - 1; i >= 0 ; i--) {
3009 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3010 table[i].dcfclk_mhz = min_dcfclk_mhz;
3011 }
3012 }
3013
3014 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3015 i = 0;
3016 while (i < *num_entries - 1) {
3017 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3018 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3019 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3020 remove_entry_from_table_at_index(table, num_entries, i + 1);
3021 else
3022 i++;
3023 }
3024
3025 // Fix up the state indicies
3026 for (i = *num_entries - 1; i >= 0 ; i--) {
3027 table[i].state = i;
3028 }
3029
3030 return 0;
3031 }
3032
3033 /*
3034 * dcn32_update_bw_bounding_box
3035 *
3036 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
3037 * spreadsheet with actual values as per dGPU SKU:
3038 * - with passed few options from dc->config
3039 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
3040 * need to get it from PM FW)
3041 * - with passed latency values (passed in ns units) in dc-> bb override for
3042 * debugging purposes
3043 * - with passed latencies from VBIOS (in 100_ns units) if available for
3044 * certain dGPU SKU
3045 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3046 * of the same ASIC)
3047 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3048 * FW for different clocks (which might differ for certain dGPU SKU of the
3049 * same ASIC)
3050 */
dcn32_update_bw_bounding_box_fpu(struct dc * dc,struct clk_bw_params * bw_params)3051 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3052 {
3053 dc_assert_fp_enabled();
3054
3055 /* Overrides from dc->config options */
3056 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3057
3058 /* Override from passed dc->bb_overrides if available*/
3059 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3060 && dc->bb_overrides.sr_exit_time_ns) {
3061 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3062 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3063 }
3064
3065 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3066 != dc->bb_overrides.sr_enter_plus_exit_time_ns
3067 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3068 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3069 dcn3_2_soc.sr_enter_plus_exit_time_us =
3070 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3071 }
3072
3073 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3074 && dc->bb_overrides.urgent_latency_ns) {
3075 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3076 dc->dml2_options.bbox_overrides.urgent_latency_us =
3077 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3078 }
3079
3080 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3081 != dc->bb_overrides.dram_clock_change_latency_ns
3082 && dc->bb_overrides.dram_clock_change_latency_ns) {
3083 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3084 dcn3_2_soc.dram_clock_change_latency_us =
3085 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3086 }
3087
3088 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3089 != dc->bb_overrides.fclk_clock_change_latency_ns
3090 && dc->bb_overrides.fclk_clock_change_latency_ns) {
3091 dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3092 dcn3_2_soc.fclk_change_latency_us =
3093 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3094 }
3095
3096 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3097 != dc->bb_overrides.dummy_clock_change_latency_ns
3098 && dc->bb_overrides.dummy_clock_change_latency_ns) {
3099 dcn3_2_soc.dummy_pstate_latency_us =
3100 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3101 }
3102
3103 /* Override from VBIOS if VBIOS bb_info available */
3104 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3105 struct bp_soc_bb_info bb_info = {0};
3106
3107 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3108 if (bb_info.dram_clock_change_latency_100ns > 0)
3109 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3110 dcn3_2_soc.dram_clock_change_latency_us =
3111 bb_info.dram_clock_change_latency_100ns * 10;
3112
3113 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3114 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3115 dcn3_2_soc.sr_enter_plus_exit_time_us =
3116 bb_info.dram_sr_enter_exit_latency_100ns * 10;
3117
3118 if (bb_info.dram_sr_exit_latency_100ns > 0)
3119 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3120 dcn3_2_soc.sr_exit_time_us =
3121 bb_info.dram_sr_exit_latency_100ns * 10;
3122 }
3123 }
3124
3125 /* Override from VBIOS for num_chan */
3126 if (dc->ctx->dc_bios->vram_info.num_chans) {
3127 dc->dml2_options.bbox_overrides.dram_num_chan =
3128 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3129 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3130 dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3131 }
3132
3133 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3134 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3135 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3136
3137 /* DML DSC delay factor workaround */
3138 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3139
3140 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3141
3142 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3143 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3144 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3145 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3146 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3147 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3148 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3149
3150 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3151 if (bw_params->clk_table.entries[0].memclk_mhz) {
3152 if (dc->debug.use_legacy_soc_bb_mechanism) {
3153 unsigned int i = 0, j = 0, num_states = 0;
3154
3155 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3156 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3157 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3158 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3159 unsigned int min_dcfclk = UINT_MAX;
3160 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3161 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3162 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3163 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3164 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3165
3166 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3167 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3168 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3169 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3170 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3171 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3172 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3173 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3174 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3175 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3176 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3177 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3178 }
3179 if (min_dcfclk > dcfclk_sta_targets[0])
3180 dcfclk_sta_targets[0] = min_dcfclk;
3181 if (!max_dcfclk_mhz)
3182 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3183 if (!max_dispclk_mhz)
3184 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3185 if (!max_dppclk_mhz)
3186 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3187 if (!max_phyclk_mhz)
3188 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3189
3190 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3191 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3192 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3193 num_dcfclk_sta_targets++;
3194 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3195 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3196 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3197 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3198 dcfclk_sta_targets[i] = max_dcfclk_mhz;
3199 break;
3200 }
3201 }
3202 // Update size of array since we "removed" duplicates
3203 num_dcfclk_sta_targets = i + 1;
3204 }
3205
3206 num_uclk_states = bw_params->clk_table.num_entries;
3207
3208 // Calculate optimal dcfclk for each uclk
3209 for (i = 0; i < num_uclk_states; i++) {
3210 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3211 &optimal_dcfclk_for_uclk[i], NULL);
3212 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3213 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3214 }
3215 }
3216
3217 // Calculate optimal uclk for each dcfclk sta target
3218 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3219 for (j = 0; j < num_uclk_states; j++) {
3220 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3221 optimal_uclk_for_dcfclk_sta_targets[i] =
3222 bw_params->clk_table.entries[j].memclk_mhz * 16;
3223 break;
3224 }
3225 }
3226 }
3227
3228 i = 0;
3229 j = 0;
3230 // create the final dcfclk and uclk table
3231 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3232 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3233 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3234 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3235 } else {
3236 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3237 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3238 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3239 } else {
3240 j = num_uclk_states;
3241 }
3242 }
3243 }
3244
3245 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3246 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3247 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3248 }
3249
3250 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3251 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3252 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3253 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3254 }
3255
3256 /* bw_params->clk_table.entries[MAX_NUM_DPM_LVL].
3257 * MAX_NUM_DPM_LVL is 8.
3258 * dcn3_02_soc.clock_limits[DC__VOLTAGE_STATES].
3259 * DC__VOLTAGE_STATES is 40.
3260 */
3261 if (num_states > MAX_NUM_DPM_LVL) {
3262 ASSERT(0);
3263 return;
3264 }
3265
3266 dcn3_2_soc.num_states = num_states;
3267 for (i = 0; i < dcn3_2_soc.num_states; i++) {
3268 dcn3_2_soc.clock_limits[i].state = i;
3269 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3270 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3271
3272 /* Fill all states with max values of all these clocks */
3273 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3274 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
3275 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
3276 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
3277
3278 /* Populate from bw_params for DTBCLK, SOCCLK */
3279 if (i > 0) {
3280 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3281 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3282 } else {
3283 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3284 }
3285 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3286 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3287 }
3288
3289 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3290 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3291 else
3292 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3293
3294 if (!dram_speed_mts[i] && i > 0)
3295 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3296 else
3297 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3298
3299 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3300 /* PHYCLK_D18, PHYCLK_D32 */
3301 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3302 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3303 }
3304 } else {
3305 build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3306 dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3307 }
3308
3309 /* Re-init DML with updated bb */
3310 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3311 if (dc->current_state)
3312 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3313 }
3314
3315 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3316 unsigned int i = 0;
3317
3318 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3319
3320 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3321 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3322
3323 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3324 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3325
3326 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3327 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3328
3329 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3330 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3331
3332 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3333 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3334
3335 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3336 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3337
3338 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3339 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3340
3341 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3342 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3343 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3344 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3345 }
3346
3347 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3348 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3349 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3350 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3351 }
3352
3353 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3354 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3355 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3356 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3357 }
3358
3359 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3360 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3361 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3362 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3363 }
3364
3365 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3366 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3367 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3368 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3369 }
3370
3371 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3372 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3373 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3374 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3375 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3376 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3377 }
3378 }
3379 }
3380 }
3381
dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st * pipes,int pipe_cnt)3382 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3383 int pipe_cnt)
3384 {
3385 dc_assert_fp_enabled();
3386
3387 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3388 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3389 }
3390
dcn32_allow_subvp_with_active_margin(struct pipe_ctx * pipe)3391 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3392 {
3393 bool allow = false;
3394 uint32_t refresh_rate = 0;
3395 uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3396 uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3397 uint32_t i;
3398
3399 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3400 uint32_t width = subvp_active_margin_list.res[i].width;
3401 uint32_t height = subvp_active_margin_list.res[i].height;
3402
3403 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3404 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3405 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3406 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3407
3408 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3409 dcn32_check_native_scaling_for_res(pipe, width, height)) {
3410 allow = true;
3411 break;
3412 }
3413 }
3414 return allow;
3415 }
3416
3417 /**
3418 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3419 *
3420 * @dc: Current DC state
3421 * @context: New DC state to be programmed
3422 * @pipe: Pipe to be considered for use in subvp
3423 *
3424 * On high refresh rate display configs, we will allow subvp under the following conditions:
3425 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3426 * 2. Refresh rate is between 120hz - 165hz
3427 * 3. No scaling
3428 * 4. Freesync is inactive
3429 * 5. For single display cases, freesync must be disabled
3430 *
3431 * Return: True if pipe can be used for subvp, false otherwise
3432 */
dcn32_allow_subvp_high_refresh_rate(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe)3433 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3434 {
3435 bool allow = false;
3436 uint32_t refresh_rate = 0;
3437 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3438 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3439 uint32_t min_refresh = subvp_max_refresh;
3440 uint32_t i;
3441
3442 /* Only allow SubVP on high refresh displays if all connected displays
3443 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3444 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3445 */
3446 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3447 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3448
3449 if (!pipe_ctx->stream)
3450 continue;
3451 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3452 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3453 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3454
3455 if (refresh_rate < min_refresh)
3456 min_refresh = refresh_rate;
3457 }
3458
3459 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3460 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3461 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3462 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3463 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3464 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3465 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3466 uint32_t width = subvp_high_refresh_list.res[i].width;
3467 uint32_t height = subvp_high_refresh_list.res[i].height;
3468
3469 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3470 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3471 allow = true;
3472 break;
3473 }
3474 }
3475 }
3476 }
3477 }
3478 return allow;
3479 }
3480
3481 /**
3482 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3483 *
3484 * @dc: Current DC state
3485 * @context: New DC state to be programmed
3486 *
3487 * Return: Max vratio for prefetch
3488 */
dcn32_determine_max_vratio_prefetch(struct dc * dc,struct dc_state * context)3489 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3490 {
3491 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3492 int i;
3493
3494 /* For single display MPO configs, allow the max vratio to be 8
3495 * if any plane is YUV420 format
3496 */
3497 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3498 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3499 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3500 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3501 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3502 }
3503 }
3504 }
3505 return max_vratio_pre;
3506 }
3507
3508 /**
3509 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3510 *
3511 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3512 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3513 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3514 * ActiveMargin <= 0 to be the FPO stream candidate if found.
3515 *
3516 *
3517 * @dc: current dc state
3518 * @context: new dc state
3519 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3520 *
3521 * Return: void
3522 */
dcn32_assign_fpo_vactive_candidate(struct dc * dc,const struct dc_state * context,struct dc_stream_state ** fpo_candidate_stream)3523 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3524 {
3525 unsigned int i, pipe_idx;
3526 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3527
3528 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3529 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3530
3531 /* In DCN32/321, FPO uses per-pipe P-State force.
3532 * If there's no planes, HUBP is power gated and
3533 * therefore programming UCLK_PSTATE_FORCE does
3534 * nothing (P-State will always be asserted naturally
3535 * on a pipe that has HUBP power gated. Therefore we
3536 * only want to enable FPO if the FPO pipe has both
3537 * a stream and a plane.
3538 */
3539 if (!pipe->stream || !pipe->plane_state)
3540 continue;
3541
3542 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3543 *fpo_candidate_stream = pipe->stream;
3544 break;
3545 }
3546 pipe_idx++;
3547 }
3548 }
3549
3550 /**
3551 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3552 *
3553 * @dc: current dc state
3554 * @context: new dc state
3555 * @fpo_candidate_stream: candidate stream to be chosen for FPO
3556 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3557 *
3558 * Return: True if VACTIVE display is found, false otherwise
3559 */
dcn32_find_vactive_pipe(struct dc * dc,const struct dc_state * context,struct dc_stream_state * fpo_candidate_stream,uint32_t vactive_margin_req_us)3560 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, struct dc_stream_state *fpo_candidate_stream, uint32_t vactive_margin_req_us)
3561 {
3562 unsigned int i, pipe_idx;
3563 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3564 bool vactive_found = true;
3565 unsigned int blank_us = 0;
3566
3567 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3568 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3569
3570 if (!pipe->stream)
3571 continue;
3572
3573 /* Don't need to check for vactive margin on the FPO candidate stream */
3574 if (fpo_candidate_stream && pipe->stream == fpo_candidate_stream) {
3575 pipe_idx++;
3576 continue;
3577 }
3578
3579 /* Every plane (apart from the ones driven by the FPO pipes) needs to have active margin
3580 * in order for us to have found a valid "vactive" config for FPO + Vactive
3581 */
3582 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3583 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3584 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] < vactive_margin_req_us ||
3585 pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed || blank_us >= dc->debug.fpo_vactive_max_blank_us) {
3586 vactive_found = false;
3587 break;
3588 }
3589 pipe_idx++;
3590 }
3591 return vactive_found;
3592 }
3593
dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st * soc_bb)3594 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3595 {
3596 dc_assert_fp_enabled();
3597 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3598 }
3599
dcn32_override_min_req_memclk(struct dc * dc,struct dc_state * context)3600 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3601 {
3602 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3603 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3604 dc->dml.soc.num_chans <= 8) {
3605 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3606
3607 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3608 num_mclk_levels > 1) {
3609 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3610 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3611 }
3612 }
3613 }
3614