1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "dc.h"
28 #include "dc_bios_types.h"
29 #include "core_types.h"
30 #include "core_status.h"
31 #include "resource.h"
32 #include "dm_helpers.h"
33 #include "dce110_hwseq.h"
34 #include "dce110/dce110_timing_generator.h"
35 #include "dce/dce_hwseq.h"
36 #include "gpio_service_interface.h"
37
38 #include "dce110/dce110_compressor.h"
39
40 #include "bios/bios_parser_helper.h"
41 #include "timing_generator.h"
42 #include "mem_input.h"
43 #include "opp.h"
44 #include "ipp.h"
45 #include "transform.h"
46 #include "stream_encoder.h"
47 #include "link_encoder.h"
48 #include "link_enc_cfg.h"
49 #include "link_hwss.h"
50 #include "link.h"
51 #include "dccg.h"
52 #include "clock_source.h"
53 #include "clk_mgr.h"
54 #include "abm.h"
55 #include "audio.h"
56 #include "reg_helper.h"
57 #include "panel_cntl.h"
58 #include "dc_state_priv.h"
59 #include "dpcd_defs.h"
60 /* include DCE11 register header files */
61 #include "dce/dce_11_0_d.h"
62 #include "dce/dce_11_0_sh_mask.h"
63 #include "custom_float.h"
64
65 #include "atomfirmware.h"
66
67 #include "dcn10/dcn10_hwseq.h"
68
69 #define GAMMA_HW_POINTS_NUM 256
70
71 /*
72 * All values are in milliseconds;
73 * For eDP, after power-up/power/down,
74 * 300/500 msec max. delay from LCDVCC to black video generation
75 */
76 #define PANEL_POWER_UP_TIMEOUT 300
77 #define PANEL_POWER_DOWN_TIMEOUT 500
78 #define HPD_CHECK_INTERVAL 10
79 #define OLED_POST_T7_DELAY 100
80 #define OLED_PRE_T11_DELAY 150
81
82 #define CTX \
83 hws->ctx
84
85 #define DC_LOGGER \
86 ctx->logger
87 #define DC_LOGGER_INIT() \
88 struct dc_context *ctx = dc->ctx
89
90 #define REG(reg)\
91 hws->regs->reg
92
93 #undef FN
94 #define FN(reg_name, field_name) \
95 hws->shifts->field_name, hws->masks->field_name
96
97 struct dce110_hw_seq_reg_offsets {
98 uint32_t crtc;
99 };
100
101 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
102 {
103 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 },
111 {
112 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
113 }
114 };
115
116 #define HW_REG_BLND(reg, id)\
117 (reg + reg_offsets[id].blnd)
118
119 #define HW_REG_CRTC(reg, id)\
120 (reg + reg_offsets[id].crtc)
121
122 #define MAX_WATERMARK 0xFFFF
123 #define SAFE_NBP_MARK 0x7FFF
124
125 /*******************************************************************************
126 * Private definitions
127 ******************************************************************************/
128 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)129 static void dce110_init_pte(struct dc_context *ctx)
130 {
131 uint32_t addr;
132 uint32_t value = 0;
133 uint32_t chunk_int = 0;
134 uint32_t chunk_mul = 0;
135
136 addr = mmUNP_DVMM_PTE_CONTROL;
137 value = dm_read_reg(ctx, addr);
138
139 set_reg_field_value(
140 value,
141 0,
142 DVMM_PTE_CONTROL,
143 DVMM_USE_SINGLE_PTE);
144
145 set_reg_field_value(
146 value,
147 1,
148 DVMM_PTE_CONTROL,
149 DVMM_PTE_BUFFER_MODE0);
150
151 set_reg_field_value(
152 value,
153 1,
154 DVMM_PTE_CONTROL,
155 DVMM_PTE_BUFFER_MODE1);
156
157 dm_write_reg(ctx, addr, value);
158
159 addr = mmDVMM_PTE_REQ;
160 value = dm_read_reg(ctx, addr);
161
162 chunk_int = get_reg_field_value(
163 value,
164 DVMM_PTE_REQ,
165 HFLIP_PTEREQ_PER_CHUNK_INT);
166
167 chunk_mul = get_reg_field_value(
168 value,
169 DVMM_PTE_REQ,
170 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
171
172 if (chunk_int != 0x4 || chunk_mul != 0x4) {
173
174 set_reg_field_value(
175 value,
176 255,
177 DVMM_PTE_REQ,
178 MAX_PTEREQ_TO_ISSUE);
179
180 set_reg_field_value(
181 value,
182 4,
183 DVMM_PTE_REQ,
184 HFLIP_PTEREQ_PER_CHUNK_INT);
185
186 set_reg_field_value(
187 value,
188 4,
189 DVMM_PTE_REQ,
190 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
191
192 dm_write_reg(ctx, addr, value);
193 }
194 }
195 /**************************************************************************/
196
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)197 static void enable_display_pipe_clock_gating(
198 struct dc_context *ctx,
199 bool clock_gating)
200 {
201 /*TODO*/
202 }
203
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)204 static bool dce110_enable_display_power_gating(
205 struct dc *dc,
206 uint8_t controller_id,
207 struct dc_bios *dcb,
208 enum pipe_gating_control power_gating)
209 {
210 enum bp_result bp_result = BP_RESULT_OK;
211 enum bp_pipe_control_action cntl;
212 struct dc_context *ctx = dc->ctx;
213 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
214
215 if (power_gating == PIPE_GATING_CONTROL_INIT)
216 cntl = ASIC_PIPE_INIT;
217 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
218 cntl = ASIC_PIPE_ENABLE;
219 else
220 cntl = ASIC_PIPE_DISABLE;
221
222 if (controller_id == underlay_idx)
223 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
224
225 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0) {
226
227 bp_result = dcb->funcs->enable_disp_power_gating(
228 dcb, controller_id + 1, cntl);
229
230 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
231 * by default when command table is called
232 *
233 * Bios parser accepts controller_id = 6 as indicative of
234 * underlay pipe in dce110. But we do not support more
235 * than 3.
236 */
237 if (controller_id < CONTROLLER_ID_MAX - 1)
238 dm_write_reg(ctx,
239 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
240 0);
241 }
242
243 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
244 dce110_init_pte(ctx);
245
246 if (bp_result == BP_RESULT_OK)
247 return true;
248 else
249 return false;
250 }
251
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)252 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
253 const struct dc_plane_state *plane_state)
254 {
255 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
256
257 switch (plane_state->format) {
258 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
259 prescale_params->scale = 0x2082;
260 break;
261 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
262 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
263 prescale_params->scale = 0x2020;
264 break;
265 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
266 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
267 prescale_params->scale = 0x2008;
268 break;
269 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
270 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
271 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
272 prescale_params->scale = 0x2000;
273 break;
274 default:
275 ASSERT(false);
276 break;
277 }
278 }
279
280 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)281 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
282 const struct dc_plane_state *plane_state)
283 {
284 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
285 const struct dc_transfer_func *tf = NULL;
286 struct ipp_prescale_params prescale_params = { 0 };
287 bool result = true;
288
289 if (ipp == NULL)
290 return false;
291
292 if (plane_state->in_transfer_func)
293 tf = plane_state->in_transfer_func;
294
295 build_prescale_params(&prescale_params, plane_state);
296 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
297
298 if (plane_state->gamma_correction &&
299 !plane_state->gamma_correction->is_identity &&
300 dce_use_lut(plane_state->format))
301 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
302
303 if (tf == NULL) {
304 /* Default case if no input transfer function specified */
305 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
306 } else if (tf->type == TF_TYPE_PREDEFINED) {
307 switch (tf->tf) {
308 case TRANSFER_FUNCTION_SRGB:
309 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
310 break;
311 case TRANSFER_FUNCTION_BT709:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
313 break;
314 case TRANSFER_FUNCTION_LINEAR:
315 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
316 break;
317 case TRANSFER_FUNCTION_PQ:
318 default:
319 result = false;
320 break;
321 }
322 } else if (tf->type == TF_TYPE_BYPASS) {
323 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
324 } else {
325 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
326 result = false;
327 }
328
329 return result;
330 }
331
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)332 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
333 struct curve_points *arr_points,
334 uint32_t hw_points_num)
335 {
336 struct custom_float_format fmt;
337
338 struct pwl_result_data *rgb = rgb_resulted;
339
340 uint32_t i = 0;
341
342 fmt.exponenta_bits = 6;
343 fmt.mantissa_bits = 12;
344 fmt.sign = true;
345
346 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
347 &arr_points[0].custom_float_x)) {
348 BREAK_TO_DEBUGGER();
349 return false;
350 }
351
352 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
353 &arr_points[0].custom_float_offset)) {
354 BREAK_TO_DEBUGGER();
355 return false;
356 }
357
358 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
359 &arr_points[0].custom_float_slope)) {
360 BREAK_TO_DEBUGGER();
361 return false;
362 }
363
364 fmt.mantissa_bits = 10;
365 fmt.sign = false;
366
367 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
368 &arr_points[1].custom_float_x)) {
369 BREAK_TO_DEBUGGER();
370 return false;
371 }
372
373 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
374 &arr_points[1].custom_float_y)) {
375 BREAK_TO_DEBUGGER();
376 return false;
377 }
378
379 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
380 &arr_points[1].custom_float_slope)) {
381 BREAK_TO_DEBUGGER();
382 return false;
383 }
384
385 fmt.mantissa_bits = 12;
386 fmt.sign = true;
387
388 while (i != hw_points_num) {
389 if (!convert_to_custom_float_format(rgb->red, &fmt,
390 &rgb->red_reg)) {
391 BREAK_TO_DEBUGGER();
392 return false;
393 }
394
395 if (!convert_to_custom_float_format(rgb->green, &fmt,
396 &rgb->green_reg)) {
397 BREAK_TO_DEBUGGER();
398 return false;
399 }
400
401 if (!convert_to_custom_float_format(rgb->blue, &fmt,
402 &rgb->blue_reg)) {
403 BREAK_TO_DEBUGGER();
404 return false;
405 }
406
407 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
408 &rgb->delta_red_reg)) {
409 BREAK_TO_DEBUGGER();
410 return false;
411 }
412
413 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
414 &rgb->delta_green_reg)) {
415 BREAK_TO_DEBUGGER();
416 return false;
417 }
418
419 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
420 &rgb->delta_blue_reg)) {
421 BREAK_TO_DEBUGGER();
422 return false;
423 }
424
425 ++rgb;
426 ++i;
427 }
428
429 return true;
430 }
431
432 #define MAX_LOW_POINT 25
433 #define NUMBER_REGIONS 16
434 #define NUMBER_SW_SEGMENTS 16
435
436 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)437 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
438 struct pwl_params *regamma_params)
439 {
440 struct curve_points *arr_points;
441 struct pwl_result_data *rgb_resulted;
442 struct pwl_result_data *rgb;
443 struct pwl_result_data *rgb_plus_1;
444 struct fixed31_32 y_r;
445 struct fixed31_32 y_g;
446 struct fixed31_32 y_b;
447 struct fixed31_32 y1_min;
448 struct fixed31_32 y3_max;
449
450 int32_t region_start, region_end;
451 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
452
453 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
454 return false;
455
456 arr_points = regamma_params->arr_points;
457 rgb_resulted = regamma_params->rgb_resulted;
458 hw_points = 0;
459
460 memset(regamma_params, 0, sizeof(struct pwl_params));
461
462 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
463 /* 16 segments
464 * segments are from 2^-11 to 2^5
465 */
466 region_start = -11;
467 region_end = region_start + NUMBER_REGIONS;
468
469 for (i = 0; i < NUMBER_REGIONS; i++)
470 seg_distr[i] = 4;
471
472 } else {
473 /* 10 segments
474 * segment is from 2^-10 to 2^1
475 * We include an extra segment for range [2^0, 2^1). This is to
476 * ensure that colors with normalized values of 1 don't miss the
477 * LUT.
478 */
479 region_start = -10;
480 region_end = 1;
481
482 seg_distr[0] = 4;
483 seg_distr[1] = 4;
484 seg_distr[2] = 4;
485 seg_distr[3] = 4;
486 seg_distr[4] = 4;
487 seg_distr[5] = 4;
488 seg_distr[6] = 4;
489 seg_distr[7] = 4;
490 seg_distr[8] = 4;
491 seg_distr[9] = 4;
492 seg_distr[10] = 0;
493 seg_distr[11] = -1;
494 seg_distr[12] = -1;
495 seg_distr[13] = -1;
496 seg_distr[14] = -1;
497 seg_distr[15] = -1;
498 }
499
500 for (k = 0; k < 16; k++) {
501 if (seg_distr[k] != -1)
502 hw_points += (1 << seg_distr[k]);
503 }
504
505 j = 0;
506 for (k = 0; k < (region_end - region_start); k++) {
507 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
508 start_index = (region_start + k + MAX_LOW_POINT) *
509 NUMBER_SW_SEGMENTS;
510 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
511 i += increment) {
512 if (j == hw_points - 1)
513 break;
514 rgb_resulted[j].red = output_tf->tf_pts.red[i];
515 rgb_resulted[j].green = output_tf->tf_pts.green[i];
516 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
517 j++;
518 }
519 }
520
521 /* last point */
522 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
523 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
524 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
525 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
526
527 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
528 dc_fixpt_from_int(region_start));
529 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
530 dc_fixpt_from_int(region_end));
531
532 y_r = rgb_resulted[0].red;
533 y_g = rgb_resulted[0].green;
534 y_b = rgb_resulted[0].blue;
535
536 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
537
538 arr_points[0].y = y1_min;
539 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
540 arr_points[0].x);
541
542 y_r = rgb_resulted[hw_points - 1].red;
543 y_g = rgb_resulted[hw_points - 1].green;
544 y_b = rgb_resulted[hw_points - 1].blue;
545
546 /* see comment above, m_arrPoints[1].y should be the Y value for the
547 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
548 */
549 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
550
551 arr_points[1].y = y3_max;
552
553 arr_points[1].slope = dc_fixpt_zero;
554
555 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
556 /* for PQ, we want to have a straight line from last HW X point,
557 * and the slope to be such that we hit 1.0 at 10000 nits.
558 */
559 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
560
561 arr_points[1].slope = dc_fixpt_div(
562 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
563 dc_fixpt_sub(end_value, arr_points[1].x));
564 }
565
566 regamma_params->hw_points_num = hw_points;
567
568 k = 0;
569 for (i = 1; i < 16; i++) {
570 if (seg_distr[k] != -1) {
571 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
572 regamma_params->arr_curve_points[i].offset =
573 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
574 }
575 k++;
576 }
577
578 if (seg_distr[k] != -1)
579 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
580
581 rgb = rgb_resulted;
582 rgb_plus_1 = rgb_resulted + 1;
583
584 i = 1;
585
586 while (i != hw_points + 1) {
587 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
588 rgb_plus_1->red = rgb->red;
589 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
590 rgb_plus_1->green = rgb->green;
591 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
592 rgb_plus_1->blue = rgb->blue;
593
594 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
595 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
596 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
597
598 ++rgb_plus_1;
599 ++rgb;
600 ++i;
601 }
602
603 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
604
605 return true;
606 }
607
608 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)609 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
610 const struct dc_stream_state *stream)
611 {
612 struct transform *xfm = pipe_ctx->plane_res.xfm;
613
614 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
615 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
616
617 if (stream->out_transfer_func &&
618 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
619 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
620 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
621 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
622 &xfm->regamma_params)) {
623 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
624 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
625 } else {
626 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
627 }
628
629 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
630
631 return true;
632 }
633
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)634 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
635 {
636 bool is_hdmi_tmds;
637 bool is_dp;
638
639 ASSERT(pipe_ctx->stream);
640
641 if (pipe_ctx->stream_res.stream_enc == NULL)
642 return; /* this is not root pipe */
643
644 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
645 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
646
647 if (!is_hdmi_tmds && !is_dp)
648 return;
649
650 if (is_hdmi_tmds)
651 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
652 pipe_ctx->stream_res.stream_enc,
653 &pipe_ctx->stream_res.encoder_info_frame);
654 else {
655 if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num)
656 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num(
657 pipe_ctx->stream_res.stream_enc,
658 &pipe_ctx->stream_res.encoder_info_frame);
659
660 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
661 pipe_ctx->stream_res.stream_enc,
662 &pipe_ctx->stream_res.encoder_info_frame);
663 }
664 }
665
dce110_enable_stream(struct pipe_ctx * pipe_ctx)666 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
667 {
668 enum dc_lane_count lane_count =
669 pipe_ctx->stream->link->cur_link_settings.lane_count;
670 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
671 struct dc_link *link = pipe_ctx->stream->link;
672 const struct dc *dc = link->dc;
673 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
674 uint32_t active_total_with_borders;
675 uint32_t early_control = 0;
676 struct timing_generator *tg = pipe_ctx->stream_res.tg;
677
678 link_hwss->setup_stream_encoder(pipe_ctx);
679
680 dc->hwss.update_info_frame(pipe_ctx);
681
682 /* enable early control to avoid corruption on DP monitor*/
683 active_total_with_borders =
684 timing->h_addressable
685 + timing->h_border_left
686 + timing->h_border_right;
687
688 if (lane_count != 0)
689 early_control = active_total_with_borders % lane_count;
690
691 if (early_control == 0)
692 early_control = lane_count;
693
694 tg->funcs->set_early_control(tg, early_control);
695 }
696
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)697 static enum bp_result link_transmitter_control(
698 struct dc_bios *bios,
699 struct bp_transmitter_control *cntl)
700 {
701 enum bp_result result;
702
703 result = bios->funcs->transmitter_control(bios, cntl);
704
705 return result;
706 }
707
708 /*
709 * @brief
710 * eDP only.
711 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)712 void dce110_edp_wait_for_hpd_ready(
713 struct dc_link *link,
714 bool power_up)
715 {
716 struct dc_context *ctx = link->ctx;
717 struct graphics_object_id connector = link->link_enc->connector;
718 struct gpio *hpd;
719 bool edp_hpd_high = false;
720 uint32_t time_elapsed = 0;
721 uint32_t timeout = power_up ?
722 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
723
724 if (dal_graphics_object_id_get_connector_id(connector)
725 != CONNECTOR_ID_EDP) {
726 BREAK_TO_DEBUGGER();
727 return;
728 }
729
730 if (!power_up)
731 /*
732 * From KV, we will not HPD low after turning off VCC -
733 * instead, we will check the SW timer in power_up().
734 */
735 return;
736
737 /*
738 * When we power on/off the eDP panel,
739 * we need to wait until SENSE bit is high/low.
740 */
741
742 /* obtain HPD */
743 /* TODO what to do with this? */
744 hpd = ctx->dc->link_srv->get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
745
746 if (!hpd) {
747 BREAK_TO_DEBUGGER();
748 return;
749 }
750
751 if (link != NULL) {
752 if (link->panel_config.pps.extra_t3_ms > 0) {
753 int extra_t3_in_ms = link->panel_config.pps.extra_t3_ms;
754
755 msleep(extra_t3_in_ms);
756 }
757 }
758
759 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
760
761 /* wait until timeout or panel detected */
762
763 do {
764 uint32_t detected = 0;
765
766 dal_gpio_get_value(hpd, &detected);
767
768 if (!(detected ^ power_up)) {
769 edp_hpd_high = true;
770 break;
771 }
772
773 msleep(HPD_CHECK_INTERVAL);
774
775 time_elapsed += HPD_CHECK_INTERVAL;
776 } while (time_elapsed < timeout);
777
778 dal_gpio_close(hpd);
779
780 dal_gpio_destroy_irq(&hpd);
781
782 /* ensure that the panel is detected */
783 if (!edp_hpd_high)
784 DC_LOG_DC("%s: wait timed out!\n", __func__);
785 }
786
dce110_edp_power_control(struct dc_link * link,bool power_up)787 void dce110_edp_power_control(
788 struct dc_link *link,
789 bool power_up)
790 {
791 struct dc_context *ctx = link->ctx;
792 struct bp_transmitter_control cntl = { 0 };
793 enum bp_result bp_result;
794 uint8_t pwrseq_instance;
795
796
797 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
798 != CONNECTOR_ID_EDP) {
799 BREAK_TO_DEBUGGER();
800 return;
801 }
802
803 if (!link->panel_cntl)
804 return;
805 if (power_up !=
806 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
807
808 unsigned long long current_ts = dm_get_timestamp(ctx);
809 unsigned long long time_since_edp_poweroff_ms =
810 div64_u64(dm_get_elapse_time_in_ns(
811 ctx,
812 current_ts,
813 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
814 unsigned long long time_since_edp_poweron_ms =
815 div64_u64(dm_get_elapse_time_in_ns(
816 ctx,
817 current_ts,
818 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link)), 1000000);
819 DC_LOG_HW_RESUME_S3(
820 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
821 __func__,
822 power_up,
823 current_ts,
824 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
825 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link),
826 time_since_edp_poweroff_ms,
827 time_since_edp_poweron_ms);
828
829 /* Send VBIOS command to prompt eDP panel power */
830 if (power_up) {
831 /* edp requires a min of 500ms from LCDVDD off to on */
832 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
833
834 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
835 if (link->local_sink != NULL)
836 remaining_min_edp_poweroff_time_ms +=
837 link->panel_config.pps.extra_t12_ms;
838
839 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
840 if (ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
841 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
842 remaining_min_edp_poweroff_time_ms =
843 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
844 else
845 remaining_min_edp_poweroff_time_ms = 0;
846 }
847
848 if (remaining_min_edp_poweroff_time_ms) {
849 DC_LOG_HW_RESUME_S3(
850 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
851 __func__, remaining_min_edp_poweroff_time_ms);
852 msleep(remaining_min_edp_poweroff_time_ms);
853 DC_LOG_HW_RESUME_S3(
854 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
855 __func__, remaining_min_edp_poweroff_time_ms);
856 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
857 __func__, remaining_min_edp_poweroff_time_ms);
858 } else {
859 DC_LOG_HW_RESUME_S3(
860 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
861 __func__, remaining_min_edp_poweroff_time_ms);
862 }
863 }
864
865 DC_LOG_HW_RESUME_S3(
866 "%s: BEGIN: Panel Power action: %s\n",
867 __func__, (power_up ? "On":"Off"));
868
869 cntl.action = power_up ?
870 TRANSMITTER_CONTROL_POWER_ON :
871 TRANSMITTER_CONTROL_POWER_OFF;
872 cntl.transmitter = link->link_enc->transmitter;
873 cntl.connector_obj_id = link->link_enc->connector;
874 cntl.coherent = false;
875 cntl.lanes_number = LANE_COUNT_FOUR;
876 cntl.hpd_sel = link->link_enc->hpd_source;
877 pwrseq_instance = link->panel_cntl->pwrseq_inst;
878
879 if (ctx->dc->ctx->dmub_srv &&
880 ctx->dc->debug.dmub_command_table) {
881
882 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON) {
883 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
884 LVTMA_CONTROL_POWER_ON,
885 pwrseq_instance, link->link_powered_externally);
886 } else {
887 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
888 LVTMA_CONTROL_POWER_OFF,
889 pwrseq_instance, link->link_powered_externally);
890 }
891 }
892
893 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
894
895 DC_LOG_HW_RESUME_S3(
896 "%s: END: Panel Power action: %s bp_result=%u\n",
897 __func__, (power_up ? "On":"Off"),
898 bp_result);
899
900 ctx->dc->link_srv->dp_trace_set_edp_power_timestamp(link, power_up);
901
902 DC_LOG_HW_RESUME_S3(
903 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
904 __func__,
905 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link),
906 ctx->dc->link_srv->dp_trace_get_edp_poweron_timestamp(link));
907
908 if (bp_result != BP_RESULT_OK)
909 DC_LOG_ERROR(
910 "%s: Panel Power bp_result: %d\n",
911 __func__, bp_result);
912 } else {
913 DC_LOG_HW_RESUME_S3(
914 "%s: Skipping Panel Power action: %s\n",
915 __func__, (power_up ? "On":"Off"));
916 }
917 }
918
dce110_edp_wait_for_T12(struct dc_link * link)919 void dce110_edp_wait_for_T12(
920 struct dc_link *link)
921 {
922 struct dc_context *ctx = link->ctx;
923
924 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
925 != CONNECTOR_ID_EDP) {
926 BREAK_TO_DEBUGGER();
927 return;
928 }
929
930 if (!link->panel_cntl)
931 return;
932
933 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
934 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link) != 0) {
935 unsigned int t12_duration = 500; // Default T12 as per spec
936 unsigned long long current_ts = dm_get_timestamp(ctx);
937 unsigned long long time_since_edp_poweroff_ms =
938 div64_u64(dm_get_elapse_time_in_ns(
939 ctx,
940 current_ts,
941 ctx->dc->link_srv->dp_trace_get_edp_poweroff_timestamp(link)), 1000000);
942
943 t12_duration += link->panel_config.pps.extra_t12_ms; // Add extra T12
944
945 if (time_since_edp_poweroff_ms < t12_duration)
946 msleep(t12_duration - time_since_edp_poweroff_ms);
947 }
948 }
949 /*todo: cloned in stream enc, fix*/
950 /*
951 * @brief
952 * eDP only. Control the backlight of the eDP panel
953 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)954 void dce110_edp_backlight_control(
955 struct dc_link *link,
956 bool enable)
957 {
958 struct dc_context *ctx = link->ctx;
959 struct bp_transmitter_control cntl = { 0 };
960 uint8_t pwrseq_instance;
961 unsigned int pre_T11_delay = OLED_PRE_T11_DELAY;
962 unsigned int post_T7_delay = OLED_POST_T7_DELAY;
963
964 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
965 != CONNECTOR_ID_EDP) {
966 BREAK_TO_DEBUGGER();
967 return;
968 }
969
970 if (link->panel_cntl && !(link->dpcd_sink_ext_caps.bits.oled ||
971 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
972 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)) {
973 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
974
975 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
976 DC_LOG_HW_RESUME_S3(
977 "%s: panel already powered up/off. Do nothing.\n",
978 __func__);
979 return;
980 }
981 }
982
983 /* Send VBIOS command to control eDP panel backlight */
984
985 DC_LOG_HW_RESUME_S3(
986 "%s: backlight action: %s\n",
987 __func__, (enable ? "On":"Off"));
988
989 cntl.action = enable ?
990 TRANSMITTER_CONTROL_BACKLIGHT_ON :
991 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
992
993 /*cntl.engine_id = ctx->engine;*/
994 cntl.transmitter = link->link_enc->transmitter;
995 cntl.connector_obj_id = link->link_enc->connector;
996 /*todo: unhardcode*/
997 cntl.lanes_number = LANE_COUNT_FOUR;
998 cntl.hpd_sel = link->link_enc->hpd_source;
999 cntl.signal = SIGNAL_TYPE_EDP;
1000
1001 /* For eDP, the following delays might need to be considered
1002 * after link training completed:
1003 * idle period - min. accounts for required BS-Idle pattern,
1004 * max. allows for source frame synchronization);
1005 * 50 msec max. delay from valid video data from source
1006 * to video on dislpay or backlight enable.
1007 *
1008 * Disable the delay for now.
1009 * Enable it in the future if necessary.
1010 */
1011 /* dc_service_sleep_in_milliseconds(50); */
1012 /*edp 1.2*/
1013 pwrseq_instance = link->panel_cntl->pwrseq_inst;
1014
1015 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1016 if (!link->dc->config.edp_no_power_sequencing)
1017 /*
1018 * Sometimes, DP receiver chip power-controlled externally by an
1019 * Embedded Controller could be treated and used as eDP,
1020 * if it drives mobile display. In this case,
1021 * we shouldn't be doing power-sequencing, hence we can skip
1022 * waiting for T7-ready.
1023 */
1024 ctx->dc->link_srv->edp_receiver_ready_T7(link);
1025 else
1026 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1027 }
1028
1029 /* Setting link_powered_externally will bypass delays in the backlight
1030 * as they are not required if the link is being powered by a different
1031 * source.
1032 */
1033 if (ctx->dc->ctx->dmub_srv &&
1034 ctx->dc->debug.dmub_command_table) {
1035 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1036 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1037 LVTMA_CONTROL_LCD_BLON,
1038 pwrseq_instance, link->link_powered_externally);
1039 else
1040 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1041 LVTMA_CONTROL_LCD_BLOFF,
1042 pwrseq_instance, link->link_powered_externally);
1043 }
1044
1045 link_transmitter_control(ctx->dc_bios, &cntl);
1046
1047 if (enable && link->dpcd_sink_ext_caps.bits.oled &&
1048 !link->dc->config.edp_no_power_sequencing) {
1049 post_T7_delay += link->panel_config.pps.extra_post_t7_ms;
1050 msleep(post_T7_delay);
1051 }
1052
1053 if (link->dpcd_sink_ext_caps.bits.oled ||
1054 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1055 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1056 ctx->dc->link_srv->edp_backlight_enable_aux(link, enable);
1057
1058 /*edp 1.2*/
1059 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1060 if (!link->dc->config.edp_no_power_sequencing)
1061 /*
1062 * Sometimes, DP receiver chip power-controlled externally by an
1063 * Embedded Controller could be treated and used as eDP,
1064 * if it drives mobile display. In this case,
1065 * we shouldn't be doing power-sequencing, hence we can skip
1066 * waiting for T9-ready.
1067 */
1068 ctx->dc->link_srv->edp_add_delay_for_T9(link);
1069 else
1070 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1071 }
1072
1073 if (!enable && link->dpcd_sink_ext_caps.bits.oled) {
1074 pre_T11_delay += link->panel_config.pps.extra_pre_t11_ms;
1075 msleep(pre_T11_delay);
1076 }
1077 }
1078
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1079 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1080 {
1081 /* notify audio driver for audio modes of monitor */
1082 struct dc *dc;
1083 struct clk_mgr *clk_mgr;
1084 unsigned int i, num_audio = 1;
1085 const struct link_hwss *link_hwss;
1086
1087 if (!pipe_ctx->stream)
1088 return;
1089
1090 dc = pipe_ctx->stream->ctx->dc;
1091 clk_mgr = dc->clk_mgr;
1092 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1093
1094 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1095 return;
1096
1097 if (pipe_ctx->stream_res.audio) {
1098 for (i = 0; i < MAX_PIPES; i++) {
1099 /*current_state not updated yet*/
1100 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1101 num_audio++;
1102 }
1103
1104 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1105
1106 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1107 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1108 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1109
1110 link_hwss->enable_audio_packet(pipe_ctx);
1111
1112 if (pipe_ctx->stream_res.audio)
1113 pipe_ctx->stream_res.audio->enabled = true;
1114 }
1115 }
1116
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1117 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1118 {
1119 struct dc *dc;
1120 struct clk_mgr *clk_mgr;
1121 const struct link_hwss *link_hwss;
1122
1123 if (!pipe_ctx || !pipe_ctx->stream)
1124 return;
1125
1126 dc = pipe_ctx->stream->ctx->dc;
1127 clk_mgr = dc->clk_mgr;
1128 link_hwss = get_link_hwss(pipe_ctx->stream->link, &pipe_ctx->link_res);
1129
1130 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1131 return;
1132
1133 link_hwss->disable_audio_packet(pipe_ctx);
1134
1135 if (pipe_ctx->stream_res.audio) {
1136 pipe_ctx->stream_res.audio->enabled = false;
1137
1138 if (clk_mgr->funcs->enable_pme_wa)
1139 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1140 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1141
1142 /* TODO: notify audio driver for if audio modes list changed
1143 * add audio mode list change flag */
1144 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1145 * stream->stream_engine_id);
1146 */
1147 }
1148 }
1149
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1150 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1151 {
1152 struct dc_stream_state *stream = pipe_ctx->stream;
1153 struct dc_link *link = stream->link;
1154 struct dc *dc = pipe_ctx->stream->ctx->dc;
1155 const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res);
1156 struct dccg *dccg = dc->res_pool->dccg;
1157 struct timing_generator *tg = pipe_ctx->stream_res.tg;
1158 struct dtbclk_dto_params dto_params = {0};
1159 int dp_hpo_inst;
1160 struct link_encoder *link_enc = link_enc_cfg_get_link_enc(pipe_ctx->stream->link);
1161 struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc;
1162
1163 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1164 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1165 pipe_ctx->stream_res.stream_enc);
1166 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1167 pipe_ctx->stream_res.stream_enc);
1168 }
1169
1170 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1171 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1172 pipe_ctx->stream_res.hpo_dp_stream_enc);
1173 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1174 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1175 pipe_ctx->stream_res.stream_enc);
1176
1177 dc->hwss.disable_audio_stream(pipe_ctx);
1178
1179 link_hwss->reset_stream_encoder(pipe_ctx);
1180
1181 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx) && dccg) {
1182 dto_params.otg_inst = tg->inst;
1183 dto_params.timing = &pipe_ctx->stream->timing;
1184 dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst;
1185 if (dccg) {
1186 dccg->funcs->disable_symclk32_se(dccg, dp_hpo_inst);
1187 dccg->funcs->set_dpstreamclk(dccg, REFCLK, tg->inst, dp_hpo_inst);
1188 dccg->funcs->set_dtbclk_dto(dccg, &dto_params);
1189 }
1190 } else if (dccg && dccg->funcs->disable_symclk_se) {
1191 dccg->funcs->disable_symclk_se(dccg, stream_enc->stream_enc_inst,
1192 link_enc->transmitter - TRANSMITTER_UNIPHY_A);
1193 }
1194
1195 if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1196 /* TODO: This looks like a bug to me as we are disabling HPO IO when
1197 * we are just disabling a single HPO stream. Shouldn't we disable HPO
1198 * HW control only when HPOs for all streams are disabled?
1199 */
1200 if (pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control)
1201 pipe_ctx->stream->ctx->dc->hwseq->funcs.setup_hpo_hw_control(
1202 pipe_ctx->stream->ctx->dc->hwseq, false);
1203 }
1204 }
1205
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1206 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1207 struct dc_link_settings *link_settings)
1208 {
1209 struct encoder_unblank_param params = { { 0 } };
1210 struct dc_stream_state *stream = pipe_ctx->stream;
1211 struct dc_link *link = stream->link;
1212 struct dce_hwseq *hws = link->dc->hwseq;
1213
1214 /* only 3 items below are used by unblank */
1215 params.timing = pipe_ctx->stream->timing;
1216 params.link_settings.link_rate = link_settings->link_rate;
1217
1218 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1219 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1220
1221 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1222 hws->funcs.edp_backlight_control(link, true);
1223 }
1224 }
1225
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1226 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1227 {
1228 struct dc_stream_state *stream = pipe_ctx->stream;
1229 struct dc_link *link = stream->link;
1230 struct dce_hwseq *hws = link->dc->hwseq;
1231
1232 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1233 if (!link->skip_implict_edp_power_control)
1234 hws->funcs.edp_backlight_control(link, false);
1235 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1236 }
1237
1238 if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1239 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1240 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1241 pipe_ctx->stream_res.hpo_dp_stream_enc);
1242 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1243 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1244
1245 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1246 /*
1247 * After output is idle pattern some sinks need time to recognize the stream
1248 * has changed or they enter protection state and hang.
1249 */
1250 msleep(60);
1251 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP) {
1252 if (!link->dc->config.edp_no_power_sequencing) {
1253 /*
1254 * Sometimes, DP receiver chip power-controlled externally by an
1255 * Embedded Controller could be treated and used as eDP,
1256 * if it drives mobile display. In this case,
1257 * we shouldn't be doing power-sequencing, hence we can skip
1258 * waiting for T9-ready.
1259 */
1260 link->dc->link_srv->edp_receiver_ready_T9(link);
1261 }
1262 }
1263 }
1264
1265 }
1266
1267
dce110_set_avmute(struct pipe_ctx * pipe_ctx,bool enable)1268 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1269 {
1270 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1271 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1272 }
1273
translate_to_dto_source(enum controller_id crtc_id)1274 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1275 {
1276 switch (crtc_id) {
1277 case CONTROLLER_ID_D0:
1278 return DTO_SOURCE_ID0;
1279 case CONTROLLER_ID_D1:
1280 return DTO_SOURCE_ID1;
1281 case CONTROLLER_ID_D2:
1282 return DTO_SOURCE_ID2;
1283 case CONTROLLER_ID_D3:
1284 return DTO_SOURCE_ID3;
1285 case CONTROLLER_ID_D4:
1286 return DTO_SOURCE_ID4;
1287 case CONTROLLER_ID_D5:
1288 return DTO_SOURCE_ID5;
1289 default:
1290 return DTO_SOURCE_UNKNOWN;
1291 }
1292 }
1293
build_audio_output(struct dc_state * state,const struct pipe_ctx * pipe_ctx,struct audio_output * audio_output)1294 static void build_audio_output(
1295 struct dc_state *state,
1296 const struct pipe_ctx *pipe_ctx,
1297 struct audio_output *audio_output)
1298 {
1299 const struct dc_stream_state *stream = pipe_ctx->stream;
1300 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1301
1302 audio_output->signal = pipe_ctx->stream->signal;
1303
1304 /* audio_crtc_info */
1305
1306 audio_output->crtc_info.h_total =
1307 stream->timing.h_total;
1308
1309 /*
1310 * Audio packets are sent during actual CRTC blank physical signal, we
1311 * need to specify actual active signal portion
1312 */
1313 audio_output->crtc_info.h_active =
1314 stream->timing.h_addressable
1315 + stream->timing.h_border_left
1316 + stream->timing.h_border_right;
1317
1318 audio_output->crtc_info.v_active =
1319 stream->timing.v_addressable
1320 + stream->timing.v_border_top
1321 + stream->timing.v_border_bottom;
1322
1323 audio_output->crtc_info.pixel_repetition = 1;
1324
1325 audio_output->crtc_info.interlaced =
1326 stream->timing.flags.INTERLACE;
1327
1328 audio_output->crtc_info.refresh_rate =
1329 (stream->timing.pix_clk_100hz*100)/
1330 (stream->timing.h_total*stream->timing.v_total);
1331
1332 audio_output->crtc_info.color_depth =
1333 stream->timing.display_color_depth;
1334
1335 audio_output->crtc_info.requested_pixel_clock_100Hz =
1336 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1337
1338 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1339 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1340
1341 /*for HDMI, audio ACR is with deep color ratio factor*/
1342 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1343 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1344 (stream->timing.pix_clk_100hz)) {
1345 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1346 audio_output->crtc_info.requested_pixel_clock_100Hz =
1347 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1348 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1349 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1350
1351 }
1352 }
1353
1354 if (state->clk_mgr &&
1355 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1356 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1357 audio_output->pll_info.audio_dto_source_clock_in_khz =
1358 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1359 state->clk_mgr);
1360 }
1361
1362 audio_output->pll_info.feed_back_divider =
1363 pipe_ctx->pll_settings.feedback_divider;
1364
1365 audio_output->pll_info.dto_source =
1366 translate_to_dto_source(
1367 pipe_ctx->stream_res.tg->inst + 1);
1368
1369 /* TODO hard code to enable for now. Need get from stream */
1370 audio_output->pll_info.ss_enabled = true;
1371
1372 audio_output->pll_info.ss_percentage =
1373 pipe_ctx->pll_settings.ss_percentage;
1374 }
1375
program_scaler(const struct dc * dc,const struct pipe_ctx * pipe_ctx)1376 static void program_scaler(const struct dc *dc,
1377 const struct pipe_ctx *pipe_ctx)
1378 {
1379 struct tg_color color = {0};
1380
1381 /* TOFPGA */
1382 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1383 return;
1384
1385 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1386 get_surface_visual_confirm_color(pipe_ctx, &color);
1387 else
1388 color_space_to_black_color(dc,
1389 pipe_ctx->stream->output_color_space,
1390 &color);
1391
1392 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1393 pipe_ctx->plane_res.xfm,
1394 pipe_ctx->plane_res.scl_data.lb_params.depth,
1395 &pipe_ctx->stream->bit_depth_params);
1396
1397 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1398 /*
1399 * The way 420 is packed, 2 channels carry Y component, 1 channel
1400 * alternate between Cb and Cr, so both channels need the pixel
1401 * value for Y
1402 */
1403 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1404 color.color_r_cr = color.color_g_y;
1405
1406 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1407 pipe_ctx->stream_res.tg,
1408 &color);
1409 }
1410
1411 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1412 &pipe_ctx->plane_res.scl_data);
1413 }
1414
dce110_enable_stream_timing(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1415 static enum dc_status dce110_enable_stream_timing(
1416 struct pipe_ctx *pipe_ctx,
1417 struct dc_state *context,
1418 struct dc *dc)
1419 {
1420 struct dc_stream_state *stream = pipe_ctx->stream;
1421 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1422 pipe_ctx[pipe_ctx->pipe_idx];
1423 struct tg_color black_color = {0};
1424
1425 if (!pipe_ctx_old->stream) {
1426
1427 /* program blank color */
1428 color_space_to_black_color(dc,
1429 stream->output_color_space, &black_color);
1430 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1431 pipe_ctx->stream_res.tg,
1432 &black_color);
1433
1434 /*
1435 * Must blank CRTC after disabling power gating and before any
1436 * programming, otherwise CRTC will be hung in bad state
1437 */
1438 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1439
1440 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1441 pipe_ctx->clock_source,
1442 &pipe_ctx->stream_res.pix_clk_params,
1443 dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings),
1444 &pipe_ctx->pll_settings)) {
1445 BREAK_TO_DEBUGGER();
1446 return DC_ERROR_UNEXPECTED;
1447 }
1448
1449 if (dc_is_hdmi_tmds_signal(stream->signal)) {
1450 stream->link->phy_state.symclk_ref_cnts.otg = 1;
1451 if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF)
1452 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF;
1453 else
1454 stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
1455 }
1456
1457 pipe_ctx->stream_res.tg->funcs->program_timing(
1458 pipe_ctx->stream_res.tg,
1459 &stream->timing,
1460 0,
1461 0,
1462 0,
1463 0,
1464 pipe_ctx->stream->signal,
1465 true);
1466 }
1467
1468 if (!pipe_ctx_old->stream) {
1469 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1470 pipe_ctx->stream_res.tg)) {
1471 BREAK_TO_DEBUGGER();
1472 return DC_ERROR_UNEXPECTED;
1473 }
1474 }
1475
1476 return DC_OK;
1477 }
1478
dce110_apply_single_controller_ctx_to_hw(struct pipe_ctx * pipe_ctx,struct dc_state * context,struct dc * dc)1479 enum dc_status dce110_apply_single_controller_ctx_to_hw(
1480 struct pipe_ctx *pipe_ctx,
1481 struct dc_state *context,
1482 struct dc *dc)
1483 {
1484 struct dc_stream_state *stream = pipe_ctx->stream;
1485 struct dc_link *link = stream->link;
1486 struct drr_params params = {0};
1487 unsigned int event_triggers = 0;
1488 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1489 struct dce_hwseq *hws = dc->hwseq;
1490 const struct link_hwss *link_hwss = get_link_hwss(
1491 link, &pipe_ctx->link_res);
1492
1493
1494 if (hws->funcs.disable_stream_gating) {
1495 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1496 }
1497
1498 if (pipe_ctx->stream_res.audio != NULL) {
1499 struct audio_output audio_output;
1500
1501 build_audio_output(context, pipe_ctx, &audio_output);
1502
1503 link_hwss->setup_audio_output(pipe_ctx, &audio_output,
1504 pipe_ctx->stream_res.audio->inst);
1505
1506 pipe_ctx->stream_res.audio->funcs->az_configure(
1507 pipe_ctx->stream_res.audio,
1508 pipe_ctx->stream->signal,
1509 &audio_output.crtc_info,
1510 &pipe_ctx->stream->audio_info);
1511 }
1512
1513 /* make sure no pipes syncd to the pipe being enabled */
1514 if (!pipe_ctx->stream->apply_seamless_boot_optimization && dc->config.use_pipe_ctx_sync_logic)
1515 check_syncd_pipes_for_disabled_master_pipe(dc, context, pipe_ctx->pipe_idx);
1516
1517 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1518 pipe_ctx->stream_res.opp,
1519 &stream->bit_depth_params,
1520 &stream->clamping);
1521
1522 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1523 pipe_ctx->stream_res.opp,
1524 COLOR_SPACE_YCBCR601,
1525 stream->timing.display_color_depth,
1526 stream->signal);
1527
1528 while (odm_pipe) {
1529 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1530 odm_pipe->stream_res.opp,
1531 COLOR_SPACE_YCBCR601,
1532 stream->timing.display_color_depth,
1533 stream->signal);
1534
1535 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1536 odm_pipe->stream_res.opp,
1537 &stream->bit_depth_params,
1538 &stream->clamping);
1539 odm_pipe = odm_pipe->next_odm_pipe;
1540 }
1541
1542 /* DCN3.1 FPGA Workaround
1543 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1544 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1545 * function core_link_enable_stream
1546 */
1547 if (!(hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)))
1548 /* */
1549 /* Do not touch stream timing on seamless boot optimization. */
1550 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1551 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1552
1553 if (hws->funcs.setup_vupdate_interrupt)
1554 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1555
1556 params.vertical_total_min = stream->adjust.v_total_min;
1557 params.vertical_total_max = stream->adjust.v_total_max;
1558 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1559 pipe_ctx->stream_res.tg->funcs->set_drr(
1560 pipe_ctx->stream_res.tg, ¶ms);
1561
1562 // DRR should set trigger event to monitor surface update event
1563 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1564 event_triggers = 0x80;
1565 /* Event triggers and num frames initialized for DRR, but can be
1566 * later updated for PSR use. Note DRR trigger events are generated
1567 * regardless of whether num frames met.
1568 */
1569 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1570 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1571 pipe_ctx->stream_res.tg, event_triggers, 2);
1572
1573 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1574 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1575 pipe_ctx->stream_res.stream_enc,
1576 pipe_ctx->stream_res.tg->inst);
1577
1578 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1579 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1580
1581 if (!stream->dpms_off)
1582 dc->link_srv->set_dpms_on(context, pipe_ctx);
1583
1584 /* DCN3.1 FPGA Workaround
1585 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1586 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1587 * function core_link_enable_stream
1588 */
1589 if (hws->wa.dp_hpo_and_otg_sequence && dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) {
1590 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1591 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1592 }
1593
1594 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
1595
1596 /* Phantom and main stream share the same link (because the stream
1597 * is constructed with the same sink). Make sure not to override
1598 * and link programming on the main.
1599 */
1600 if (dc_state_get_pipe_subvp_type(context, pipe_ctx) != SUBVP_PHANTOM) {
1601 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1602 pipe_ctx->stream->link->replay_settings.replay_feature_enabled = false;
1603 }
1604 return DC_OK;
1605 }
1606
1607 /******************************************************************************/
1608
power_down_encoders(struct dc * dc)1609 static void power_down_encoders(struct dc *dc)
1610 {
1611 int i;
1612
1613 for (i = 0; i < dc->link_count; i++) {
1614 enum signal_type signal = dc->links[i]->connector_signal;
1615
1616 dc->link_srv->blank_dp_stream(dc->links[i], false);
1617
1618 if (signal != SIGNAL_TYPE_EDP)
1619 signal = SIGNAL_TYPE_NONE;
1620
1621 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1622 dc->links[i]->link_enc->funcs->disable_output(
1623 dc->links[i]->link_enc, signal);
1624
1625 dc->links[i]->link_status.link_active = false;
1626 memset(&dc->links[i]->cur_link_settings, 0,
1627 sizeof(dc->links[i]->cur_link_settings));
1628 }
1629 }
1630
power_down_controllers(struct dc * dc)1631 static void power_down_controllers(struct dc *dc)
1632 {
1633 int i;
1634
1635 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1636 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1637 dc->res_pool->timing_generators[i]);
1638 }
1639 }
1640
power_down_clock_sources(struct dc * dc)1641 static void power_down_clock_sources(struct dc *dc)
1642 {
1643 int i;
1644
1645 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1646 dc->res_pool->dp_clock_source) == false)
1647 dm_error("Failed to power down pll! (dp clk src)\n");
1648
1649 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1650 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1651 dc->res_pool->clock_sources[i]) == false)
1652 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1653 }
1654 }
1655
power_down_all_hw_blocks(struct dc * dc)1656 static void power_down_all_hw_blocks(struct dc *dc)
1657 {
1658 power_down_encoders(dc);
1659
1660 power_down_controllers(dc);
1661
1662 power_down_clock_sources(dc);
1663
1664 if (dc->fbc_compressor)
1665 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1666 }
1667
disable_vga_and_power_gate_all_controllers(struct dc * dc)1668 static void disable_vga_and_power_gate_all_controllers(
1669 struct dc *dc)
1670 {
1671 int i;
1672 struct timing_generator *tg;
1673 struct dc_context *ctx = dc->ctx;
1674
1675 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1676 tg = dc->res_pool->timing_generators[i];
1677
1678 if (tg->funcs->disable_vga)
1679 tg->funcs->disable_vga(tg);
1680 }
1681 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1682 /* Enable CLOCK gating for each pipe BEFORE controller
1683 * powergating. */
1684 enable_display_pipe_clock_gating(ctx,
1685 true);
1686
1687 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1688 dc->hwss.disable_plane(dc, dc->current_state,
1689 &dc->current_state->res_ctx.pipe_ctx[i]);
1690 }
1691 }
1692
1693
get_edp_streams(struct dc_state * context,struct dc_stream_state ** edp_streams,int * edp_stream_num)1694 static void get_edp_streams(struct dc_state *context,
1695 struct dc_stream_state **edp_streams,
1696 int *edp_stream_num)
1697 {
1698 int i;
1699
1700 *edp_stream_num = 0;
1701 for (i = 0; i < context->stream_count; i++) {
1702 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1703 edp_streams[*edp_stream_num] = context->streams[i];
1704 if (++(*edp_stream_num) == MAX_NUM_EDP)
1705 return;
1706 }
1707 }
1708 }
1709
get_edp_links_with_sink(struct dc * dc,struct dc_link ** edp_links_with_sink,int * edp_with_sink_num)1710 static void get_edp_links_with_sink(
1711 struct dc *dc,
1712 struct dc_link **edp_links_with_sink,
1713 int *edp_with_sink_num)
1714 {
1715 int i;
1716
1717 /* check if there is an eDP panel not in use */
1718 *edp_with_sink_num = 0;
1719 for (i = 0; i < dc->link_count; i++) {
1720 if (dc->links[i]->local_sink &&
1721 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1722 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1723 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1724 return;
1725 }
1726 }
1727 }
1728
1729 /*
1730 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1731 * 1. Power down all DC HW blocks
1732 * 2. Disable VGA engine on all controllers
1733 * 3. Enable power gating for controller
1734 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1735 */
dce110_enable_accelerated_mode(struct dc * dc,struct dc_state * context)1736 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1737 {
1738 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1739 struct dc_link *edp_links[MAX_NUM_EDP];
1740 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1741 struct dc_link *edp_link_with_sink = NULL;
1742 struct dc_link *edp_link = NULL;
1743 struct dce_hwseq *hws = dc->hwseq;
1744 int edp_with_sink_num;
1745 int edp_num;
1746 int edp_stream_num;
1747 int i;
1748 bool can_apply_edp_fast_boot = false;
1749 bool can_apply_seamless_boot = false;
1750 bool keep_edp_vdd_on = false;
1751 DC_LOGGER_INIT();
1752
1753
1754 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1755 dc_get_edp_links(dc, edp_links, &edp_num);
1756
1757 if (hws->funcs.init_pipes)
1758 hws->funcs.init_pipes(dc, context);
1759
1760 get_edp_streams(context, edp_streams, &edp_stream_num);
1761
1762 // Check fastboot support, disable on DCE8 because of blank screens
1763 if (edp_num && edp_stream_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1764 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1765 dc->ctx->dce_version != DCE_VERSION_8_3) {
1766 for (i = 0; i < edp_num; i++) {
1767 edp_link = edp_links[i];
1768 if (edp_link != edp_streams[0]->link)
1769 continue;
1770 // enable fastboot if backend is enabled on eDP
1771 if (edp_link->link_enc->funcs->is_dig_enabled &&
1772 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
1773 edp_link->link_status.link_active) {
1774 struct dc_stream_state *edp_stream = edp_streams[0];
1775
1776 can_apply_edp_fast_boot = dc_validate_boot_timing(dc,
1777 edp_stream->sink, &edp_stream->timing);
1778 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1779 if (can_apply_edp_fast_boot)
1780 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1781
1782 break;
1783 }
1784 }
1785 // We are trying to enable eDP, don't power down VDD
1786 if (can_apply_edp_fast_boot)
1787 keep_edp_vdd_on = true;
1788 }
1789
1790 // Check seamless boot support
1791 for (i = 0; i < context->stream_count; i++) {
1792 if (context->streams[i]->apply_seamless_boot_optimization) {
1793 can_apply_seamless_boot = true;
1794 break;
1795 }
1796 }
1797
1798 /* eDP should not have stream in resume from S4 and so even with VBios post
1799 * it should get turned off
1800 */
1801 if (edp_with_sink_num)
1802 edp_link_with_sink = edp_links_with_sink[0];
1803
1804 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1805 if (edp_link_with_sink && !keep_edp_vdd_on) {
1806 /*turn off backlight before DP_blank and encoder powered down*/
1807 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1808 }
1809 /*resume from S3, no vbios posting, no need to power down again*/
1810 clk_mgr_exit_optimized_pwr_state(dc, dc->clk_mgr);
1811
1812 power_down_all_hw_blocks(dc);
1813 disable_vga_and_power_gate_all_controllers(dc);
1814 if (edp_link_with_sink && !keep_edp_vdd_on)
1815 dc->hwss.edp_power_control(edp_link_with_sink, false);
1816 clk_mgr_optimize_pwr_state(dc, dc->clk_mgr);
1817 }
1818 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1819 }
1820
compute_pstate_blackout_duration(struct bw_fixed blackout_duration,const struct dc_stream_state * stream)1821 static uint32_t compute_pstate_blackout_duration(
1822 struct bw_fixed blackout_duration,
1823 const struct dc_stream_state *stream)
1824 {
1825 uint32_t total_dest_line_time_ns;
1826 uint32_t pstate_blackout_duration_ns;
1827
1828 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1829
1830 total_dest_line_time_ns = 1000000UL *
1831 (stream->timing.h_total * 10) /
1832 stream->timing.pix_clk_100hz +
1833 pstate_blackout_duration_ns;
1834
1835 return total_dest_line_time_ns;
1836 }
1837
dce110_set_displaymarks(const struct dc * dc,struct dc_state * context)1838 static void dce110_set_displaymarks(
1839 const struct dc *dc,
1840 struct dc_state *context)
1841 {
1842 uint8_t i, num_pipes;
1843 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1844
1845 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1846 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1847 uint32_t total_dest_line_time_ns;
1848
1849 if (pipe_ctx->stream == NULL)
1850 continue;
1851
1852 total_dest_line_time_ns = compute_pstate_blackout_duration(
1853 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1854 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1855 pipe_ctx->plane_res.mi,
1856 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1857 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1858 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1859 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1860 total_dest_line_time_ns);
1861 if (i == underlay_idx) {
1862 num_pipes++;
1863 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1864 pipe_ctx->plane_res.mi,
1865 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1866 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1867 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1868 total_dest_line_time_ns);
1869 }
1870 num_pipes++;
1871 }
1872 }
1873
dce110_set_safe_displaymarks(struct resource_context * res_ctx,const struct resource_pool * pool)1874 void dce110_set_safe_displaymarks(
1875 struct resource_context *res_ctx,
1876 const struct resource_pool *pool)
1877 {
1878 int i;
1879 int underlay_idx = pool->underlay_pipe_index;
1880 struct dce_watermarks max_marks = {
1881 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1882 struct dce_watermarks nbp_marks = {
1883 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1884 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1885
1886 for (i = 0; i < MAX_PIPES; i++) {
1887 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1888 continue;
1889
1890 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1891 res_ctx->pipe_ctx[i].plane_res.mi,
1892 nbp_marks,
1893 max_marks,
1894 min_marks,
1895 max_marks,
1896 MAX_WATERMARK);
1897
1898 if (i == underlay_idx)
1899 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1900 res_ctx->pipe_ctx[i].plane_res.mi,
1901 nbp_marks,
1902 max_marks,
1903 max_marks,
1904 MAX_WATERMARK);
1905
1906 }
1907 }
1908
1909 /*******************************************************************************
1910 * Public functions
1911 ******************************************************************************/
1912
set_drr(struct pipe_ctx ** pipe_ctx,int num_pipes,struct dc_crtc_timing_adjust adjust)1913 static void set_drr(struct pipe_ctx **pipe_ctx,
1914 int num_pipes, struct dc_crtc_timing_adjust adjust)
1915 {
1916 int i = 0;
1917 struct drr_params params = {0};
1918 // DRR should set trigger event to monitor surface update event
1919 unsigned int event_triggers = 0x80;
1920 // Note DRR trigger events are generated regardless of whether num frames met.
1921 unsigned int num_frames = 2;
1922
1923 params.vertical_total_max = adjust.v_total_max;
1924 params.vertical_total_min = adjust.v_total_min;
1925
1926 /* TODO: If multiple pipes are to be supported, you need
1927 * some GSL stuff. Static screen triggers may be programmed differently
1928 * as well.
1929 */
1930 for (i = 0; i < num_pipes; i++) {
1931 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1932 pipe_ctx[i]->stream_res.tg, ¶ms);
1933
1934 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1935 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1936 pipe_ctx[i]->stream_res.tg,
1937 event_triggers, num_frames);
1938 }
1939 }
1940
get_position(struct pipe_ctx ** pipe_ctx,int num_pipes,struct crtc_position * position)1941 static void get_position(struct pipe_ctx **pipe_ctx,
1942 int num_pipes,
1943 struct crtc_position *position)
1944 {
1945 int i = 0;
1946
1947 /* TODO: handle pipes > 1
1948 */
1949 for (i = 0; i < num_pipes; i++)
1950 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1951 }
1952
set_static_screen_control(struct pipe_ctx ** pipe_ctx,int num_pipes,const struct dc_static_screen_params * params)1953 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1954 int num_pipes, const struct dc_static_screen_params *params)
1955 {
1956 unsigned int i;
1957 unsigned int triggers = 0;
1958
1959 if (params->triggers.overlay_update)
1960 triggers |= 0x100;
1961 if (params->triggers.surface_update)
1962 triggers |= 0x80;
1963 if (params->triggers.cursor_update)
1964 triggers |= 0x2;
1965 if (params->triggers.force_trigger)
1966 triggers |= 0x1;
1967
1968 if (num_pipes) {
1969 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1970
1971 if (dc->fbc_compressor)
1972 triggers |= 0x84;
1973 }
1974
1975 for (i = 0; i < num_pipes; i++)
1976 pipe_ctx[i]->stream_res.tg->funcs->
1977 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
1978 triggers, params->num_frames);
1979 }
1980
1981 /*
1982 * Check if FBC can be enabled
1983 */
should_enable_fbc(struct dc * dc,struct dc_state * context,uint32_t * pipe_idx)1984 static bool should_enable_fbc(struct dc *dc,
1985 struct dc_state *context,
1986 uint32_t *pipe_idx)
1987 {
1988 uint32_t i;
1989 struct pipe_ctx *pipe_ctx = NULL;
1990 struct resource_context *res_ctx = &context->res_ctx;
1991 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1992
1993
1994 ASSERT(dc->fbc_compressor);
1995
1996 /* FBC memory should be allocated */
1997 if (!dc->ctx->fbc_gpu_addr)
1998 return false;
1999
2000 /* Only supports single display */
2001 if (context->stream_count != 1)
2002 return false;
2003
2004 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2005 if (res_ctx->pipe_ctx[i].stream) {
2006
2007 pipe_ctx = &res_ctx->pipe_ctx[i];
2008
2009 /* fbc not applicable on underlay pipe */
2010 if (pipe_ctx->pipe_idx != underlay_idx) {
2011 *pipe_idx = i;
2012 break;
2013 }
2014 }
2015 }
2016
2017 if (i == dc->res_pool->pipe_count)
2018 return false;
2019
2020 if (!pipe_ctx->stream->link)
2021 return false;
2022
2023 /* Only supports eDP */
2024 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2025 return false;
2026
2027 /* PSR should not be enabled */
2028 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2029 return false;
2030
2031 /* Replay should not be enabled */
2032 if (pipe_ctx->stream->link->replay_settings.replay_feature_enabled)
2033 return false;
2034
2035 /* Nothing to compress */
2036 if (!pipe_ctx->plane_state)
2037 return false;
2038
2039 /* Only for non-linear tiling */
2040 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2041 return false;
2042
2043 return true;
2044 }
2045
2046 /*
2047 * Enable FBC
2048 */
enable_fbc(struct dc * dc,struct dc_state * context)2049 static void enable_fbc(
2050 struct dc *dc,
2051 struct dc_state *context)
2052 {
2053 uint32_t pipe_idx = 0;
2054
2055 if (should_enable_fbc(dc, context, &pipe_idx)) {
2056 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2057 struct compr_addr_and_pitch_params params = {0, 0, 0};
2058 struct compressor *compr = dc->fbc_compressor;
2059 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2060
2061 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2062 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2063 params.inst = pipe_ctx->stream_res.tg->inst;
2064 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2065
2066 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2067 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2068
2069 compr->funcs->enable_fbc(compr, ¶ms);
2070 }
2071 }
2072
dce110_reset_hw_ctx_wrap(struct dc * dc,struct dc_state * context)2073 static void dce110_reset_hw_ctx_wrap(
2074 struct dc *dc,
2075 struct dc_state *context)
2076 {
2077 int i;
2078
2079 /* Reset old context */
2080 /* look up the targets that have been removed since last commit */
2081 for (i = 0; i < MAX_PIPES; i++) {
2082 struct pipe_ctx *pipe_ctx_old =
2083 &dc->current_state->res_ctx.pipe_ctx[i];
2084 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2085
2086 /* Note: We need to disable output if clock sources change,
2087 * since bios does optimization and doesn't apply if changing
2088 * PHY when not already disabled.
2089 */
2090
2091 /* Skip underlay pipe since it will be handled in commit surface*/
2092 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2093 continue;
2094
2095 if (!pipe_ctx->stream ||
2096 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2097 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2098
2099 /* Disable if new stream is null. O/w, if stream is
2100 * disabled already, no need to disable again.
2101 */
2102 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2103 dc->link_srv->set_dpms_off(pipe_ctx_old);
2104
2105 /* free acquired resources*/
2106 if (pipe_ctx_old->stream_res.audio) {
2107 /*disable az_endpoint*/
2108 pipe_ctx_old->stream_res.audio->funcs->
2109 az_disable(pipe_ctx_old->stream_res.audio);
2110
2111 /*free audio*/
2112 if (dc->caps.dynamic_audio == true) {
2113 /*we have to dynamic arbitrate the audio endpoints*/
2114 /*we free the resource, need reset is_audio_acquired*/
2115 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2116 pipe_ctx_old->stream_res.audio, false);
2117 pipe_ctx_old->stream_res.audio = NULL;
2118 }
2119 }
2120 }
2121
2122 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2123 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2124 dm_error("DC: failed to blank crtc!\n");
2125 BREAK_TO_DEBUGGER();
2126 }
2127 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2128 if (dc_is_hdmi_tmds_signal(pipe_ctx_old->stream->signal))
2129 pipe_ctx_old->stream->link->phy_state.symclk_ref_cnts.otg = 0;
2130 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2131 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2132
2133 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2134 dc->res_pool,
2135 old_clk))
2136 old_clk->funcs->cs_power_down(old_clk);
2137
2138 dc->hwss.disable_plane(dc, dc->current_state, pipe_ctx_old);
2139
2140 pipe_ctx_old->stream = NULL;
2141 }
2142 }
2143 }
2144
dce110_setup_audio_dto(struct dc * dc,struct dc_state * context)2145 static void dce110_setup_audio_dto(
2146 struct dc *dc,
2147 struct dc_state *context)
2148 {
2149 int i;
2150
2151 /* program audio wall clock. use HDMI as clock source if HDMI
2152 * audio active. Otherwise, use DP as clock source
2153 * first, loop to find any HDMI audio, if not, loop find DP audio
2154 */
2155 /* Setup audio rate clock source */
2156 /* Issue:
2157 * Audio lag happened on DP monitor when unplug a HDMI monitor
2158 *
2159 * Cause:
2160 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2161 * is set to either dto0 or dto1, audio should work fine.
2162 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2163 * set to dto0 will cause audio lag.
2164 *
2165 * Solution:
2166 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2167 * find first available pipe with audio, setup audio wall DTO per topology
2168 * instead of per pipe.
2169 */
2170 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2171 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2172
2173 if (pipe_ctx->stream == NULL)
2174 continue;
2175
2176 if (pipe_ctx->top_pipe)
2177 continue;
2178 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2179 continue;
2180 if (pipe_ctx->stream_res.audio != NULL) {
2181 struct audio_output audio_output;
2182
2183 build_audio_output(context, pipe_ctx, &audio_output);
2184
2185 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2186 struct dtbclk_dto_params dto_params = {0};
2187
2188 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2189 dc->res_pool->dccg, &dto_params);
2190
2191 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2192 pipe_ctx->stream_res.audio,
2193 pipe_ctx->stream->signal,
2194 &audio_output.crtc_info,
2195 &audio_output.pll_info);
2196 } else
2197 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2198 pipe_ctx->stream_res.audio,
2199 pipe_ctx->stream->signal,
2200 &audio_output.crtc_info,
2201 &audio_output.pll_info);
2202 break;
2203 }
2204 }
2205
2206 /* no HDMI audio is found, try DP audio */
2207 if (i == dc->res_pool->pipe_count) {
2208 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2209 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2210
2211 if (pipe_ctx->stream == NULL)
2212 continue;
2213
2214 if (pipe_ctx->top_pipe)
2215 continue;
2216
2217 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2218 continue;
2219
2220 if (pipe_ctx->stream_res.audio != NULL) {
2221 struct audio_output audio_output;
2222
2223 build_audio_output(context, pipe_ctx, &audio_output);
2224
2225 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2226 pipe_ctx->stream_res.audio,
2227 pipe_ctx->stream->signal,
2228 &audio_output.crtc_info,
2229 &audio_output.pll_info);
2230 break;
2231 }
2232 }
2233 }
2234 }
2235
dce110_apply_ctx_to_hw(struct dc * dc,struct dc_state * context)2236 enum dc_status dce110_apply_ctx_to_hw(
2237 struct dc *dc,
2238 struct dc_state *context)
2239 {
2240 struct dce_hwseq *hws = dc->hwseq;
2241 struct dc_bios *dcb = dc->ctx->dc_bios;
2242 enum dc_status status;
2243 int i;
2244
2245 /* reset syncd pipes from disabled pipes */
2246 if (dc->config.use_pipe_ctx_sync_logic)
2247 reset_syncd_pipes_from_disabled_pipes(dc, context);
2248
2249 /* Reset old context */
2250 /* look up the targets that have been removed since last commit */
2251 hws->funcs.reset_hw_ctx_wrap(dc, context);
2252
2253 /* Skip applying if no targets */
2254 if (context->stream_count <= 0)
2255 return DC_OK;
2256
2257 /* Apply new context */
2258 dcb->funcs->set_scratch_critical_state(dcb, true);
2259
2260 /* below is for real asic only */
2261 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2262 struct pipe_ctx *pipe_ctx_old =
2263 &dc->current_state->res_ctx.pipe_ctx[i];
2264 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2265
2266 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2267 continue;
2268
2269 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2270 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2271 dce_crtc_switch_to_clk_src(dc->hwseq,
2272 pipe_ctx->clock_source, i);
2273 continue;
2274 }
2275
2276 hws->funcs.enable_display_power_gating(
2277 dc, i, dc->ctx->dc_bios,
2278 PIPE_GATING_CONTROL_DISABLE);
2279 }
2280
2281 if (dc->fbc_compressor)
2282 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2283
2284 dce110_setup_audio_dto(dc, context);
2285
2286 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2287 struct pipe_ctx *pipe_ctx_old =
2288 &dc->current_state->res_ctx.pipe_ctx[i];
2289 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2290
2291 if (pipe_ctx->stream == NULL)
2292 continue;
2293
2294 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2295 pipe_ctx->stream->link->link_state_valid) {
2296 continue;
2297 }
2298
2299 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2300 continue;
2301
2302 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2303 continue;
2304
2305 status = dce110_apply_single_controller_ctx_to_hw(
2306 pipe_ctx,
2307 context,
2308 dc);
2309
2310 if (DC_OK != status)
2311 return status;
2312
2313 #ifdef CONFIG_DRM_AMD_DC_FP
2314 if (hws->funcs.resync_fifo_dccg_dio)
2315 hws->funcs.resync_fifo_dccg_dio(hws, dc, context);
2316 #endif
2317 }
2318
2319 if (dc->fbc_compressor)
2320 enable_fbc(dc, dc->current_state);
2321
2322 dcb->funcs->set_scratch_critical_state(dcb, false);
2323
2324 return DC_OK;
2325 }
2326
2327 /*******************************************************************************
2328 * Front End programming
2329 ******************************************************************************/
set_default_colors(struct pipe_ctx * pipe_ctx)2330 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2331 {
2332 struct default_adjustment default_adjust = { 0 };
2333
2334 default_adjust.force_hw_default = false;
2335 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2336 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2337 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2338 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2339
2340 /* display color depth */
2341 default_adjust.color_depth =
2342 pipe_ctx->stream->timing.display_color_depth;
2343
2344 /* Lb color depth */
2345 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2346
2347 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2348 pipe_ctx->plane_res.xfm, &default_adjust);
2349 }
2350
2351
2352 /*******************************************************************************
2353 * In order to turn on/off specific surface we will program
2354 * Blender + CRTC
2355 *
2356 * In case that we have two surfaces and they have a different visibility
2357 * we can't turn off the CRTC since it will turn off the entire display
2358 *
2359 * |----------------------------------------------- |
2360 * |bottom pipe|curr pipe | | |
2361 * |Surface |Surface | Blender | CRCT |
2362 * |visibility |visibility | Configuration| |
2363 * |------------------------------------------------|
2364 * | off | off | CURRENT_PIPE | blank |
2365 * | off | on | CURRENT_PIPE | unblank |
2366 * | on | off | OTHER_PIPE | unblank |
2367 * | on | on | BLENDING | unblank |
2368 * -------------------------------------------------|
2369 *
2370 ******************************************************************************/
program_surface_visibility(const struct dc * dc,struct pipe_ctx * pipe_ctx)2371 static void program_surface_visibility(const struct dc *dc,
2372 struct pipe_ctx *pipe_ctx)
2373 {
2374 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2375 bool blank_target = false;
2376
2377 if (pipe_ctx->bottom_pipe) {
2378
2379 /* For now we are supporting only two pipes */
2380 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2381
2382 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2383 if (pipe_ctx->plane_state->visible)
2384 blender_mode = BLND_MODE_BLENDING;
2385 else
2386 blender_mode = BLND_MODE_OTHER_PIPE;
2387
2388 } else if (!pipe_ctx->plane_state->visible)
2389 blank_target = true;
2390
2391 } else if (!pipe_ctx->plane_state->visible)
2392 blank_target = true;
2393
2394 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2395 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2396
2397 }
2398
program_gamut_remap(struct pipe_ctx * pipe_ctx)2399 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2400 {
2401 int i = 0;
2402 struct xfm_grph_csc_adjustment adjust;
2403 memset(&adjust, 0, sizeof(adjust));
2404 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2405
2406
2407 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2408 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2409
2410 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2411 adjust.temperature_matrix[i] =
2412 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2413 }
2414
2415 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2416 }
update_plane_addr(const struct dc * dc,struct pipe_ctx * pipe_ctx)2417 static void update_plane_addr(const struct dc *dc,
2418 struct pipe_ctx *pipe_ctx)
2419 {
2420 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2421
2422 if (plane_state == NULL)
2423 return;
2424
2425 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2426 pipe_ctx->plane_res.mi,
2427 &plane_state->address,
2428 plane_state->flip_immediate);
2429
2430 plane_state->status.requested_address = plane_state->address;
2431 }
2432
dce110_update_pending_status(struct pipe_ctx * pipe_ctx)2433 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2434 {
2435 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2436
2437 if (plane_state == NULL)
2438 return;
2439
2440 plane_state->status.is_flip_pending =
2441 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2442 pipe_ctx->plane_res.mi);
2443
2444 if (plane_state->status.is_flip_pending && !plane_state->visible)
2445 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2446
2447 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2448 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2449 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2450 plane_state->status.is_right_eye =\
2451 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2452 }
2453 }
2454
dce110_power_down(struct dc * dc)2455 void dce110_power_down(struct dc *dc)
2456 {
2457 power_down_all_hw_blocks(dc);
2458 disable_vga_and_power_gate_all_controllers(dc);
2459 }
2460
wait_for_reset_trigger_to_occur(struct dc_context * dc_ctx,struct timing_generator * tg)2461 static bool wait_for_reset_trigger_to_occur(
2462 struct dc_context *dc_ctx,
2463 struct timing_generator *tg)
2464 {
2465 struct dc_context *ctx = dc_ctx;
2466 bool rc = false;
2467
2468 /* To avoid endless loop we wait at most
2469 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2470 const uint32_t frames_to_wait_on_triggered_reset = 10;
2471 uint32_t i;
2472
2473 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2474
2475 if (!tg->funcs->is_counter_moving(tg)) {
2476 DC_ERROR("TG counter is not moving!\n");
2477 break;
2478 }
2479
2480 if (tg->funcs->did_triggered_reset_occur(tg)) {
2481 rc = true;
2482 /* usually occurs at i=1 */
2483 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2484 i);
2485 break;
2486 }
2487
2488 /* Wait for one frame. */
2489 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2490 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2491 }
2492
2493 if (false == rc)
2494 DC_ERROR("GSL: Timeout on reset trigger!\n");
2495
2496 return rc;
2497 }
2498
2499 /* Enable timing synchronization for a group of Timing Generators. */
dce110_enable_timing_synchronization(struct dc * dc,struct dc_state * state,int group_index,int group_size,struct pipe_ctx * grouped_pipes[])2500 static void dce110_enable_timing_synchronization(
2501 struct dc *dc,
2502 struct dc_state *state,
2503 int group_index,
2504 int group_size,
2505 struct pipe_ctx *grouped_pipes[])
2506 {
2507 struct dc_context *dc_ctx = dc->ctx;
2508 struct dcp_gsl_params gsl_params = { 0 };
2509 int i;
2510 DC_LOGGER_INIT();
2511
2512 DC_SYNC_INFO("GSL: Setting-up...\n");
2513
2514 /* Designate a single TG in the group as a master.
2515 * Since HW doesn't care which one, we always assign
2516 * the 1st one in the group. */
2517 gsl_params.gsl_group = 0;
2518 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2519
2520 for (i = 0; i < group_size; i++)
2521 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2522 grouped_pipes[i]->stream_res.tg, &gsl_params);
2523
2524 /* Reset slave controllers on master VSync */
2525 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2526
2527 for (i = 1 /* skip the master */; i < group_size; i++)
2528 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2529 grouped_pipes[i]->stream_res.tg,
2530 gsl_params.gsl_group);
2531
2532 for (i = 1 /* skip the master */; i < group_size; i++) {
2533 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2534 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2535 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2536 grouped_pipes[i]->stream_res.tg);
2537 }
2538
2539 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2540 * is that the sync'ed displays will not drift out of sync over time*/
2541 DC_SYNC_INFO("GSL: Restoring register states.\n");
2542 for (i = 0; i < group_size; i++)
2543 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2544
2545 DC_SYNC_INFO("GSL: Set-up complete.\n");
2546 }
2547
dce110_enable_per_frame_crtc_position_reset(struct dc * dc,int group_size,struct pipe_ctx * grouped_pipes[])2548 static void dce110_enable_per_frame_crtc_position_reset(
2549 struct dc *dc,
2550 int group_size,
2551 struct pipe_ctx *grouped_pipes[])
2552 {
2553 struct dc_context *dc_ctx = dc->ctx;
2554 struct dcp_gsl_params gsl_params = { 0 };
2555 int i;
2556 DC_LOGGER_INIT();
2557
2558 gsl_params.gsl_group = 0;
2559 gsl_params.gsl_master = 0;
2560
2561 for (i = 0; i < group_size; i++)
2562 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2563 grouped_pipes[i]->stream_res.tg, &gsl_params);
2564
2565 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2566
2567 for (i = 1; i < group_size; i++)
2568 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2569 grouped_pipes[i]->stream_res.tg,
2570 gsl_params.gsl_master,
2571 &grouped_pipes[i]->stream->triggered_crtc_reset);
2572
2573 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2574 for (i = 1; i < group_size; i++)
2575 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2576
2577 for (i = 0; i < group_size; i++)
2578 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2579
2580 }
2581
init_pipes(struct dc * dc,struct dc_state * context)2582 static void init_pipes(struct dc *dc, struct dc_state *context)
2583 {
2584 // Do nothing
2585 }
2586
init_hw(struct dc * dc)2587 static void init_hw(struct dc *dc)
2588 {
2589 int i;
2590 struct dc_bios *bp;
2591 struct transform *xfm;
2592 struct abm *abm;
2593 struct dmcu *dmcu;
2594 struct dce_hwseq *hws = dc->hwseq;
2595 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2596 uint32_t user_level = MAX_BACKLIGHT_LEVEL;
2597
2598 bp = dc->ctx->dc_bios;
2599 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2600 xfm = dc->res_pool->transforms[i];
2601 xfm->funcs->transform_reset(xfm);
2602
2603 hws->funcs.enable_display_power_gating(
2604 dc, i, bp,
2605 PIPE_GATING_CONTROL_INIT);
2606 hws->funcs.enable_display_power_gating(
2607 dc, i, bp,
2608 PIPE_GATING_CONTROL_DISABLE);
2609 hws->funcs.enable_display_pipe_clock_gating(
2610 dc->ctx,
2611 true);
2612 }
2613
2614 dce_clock_gating_power_up(dc->hwseq, false);
2615 /***************************************/
2616
2617 for (i = 0; i < dc->link_count; i++) {
2618 /****************************************/
2619 /* Power up AND update implementation according to the
2620 * required signal (which may be different from the
2621 * default signal on connector). */
2622 struct dc_link *link = dc->links[i];
2623
2624 link->link_enc->funcs->hw_init(link->link_enc);
2625 }
2626
2627 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2628 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2629
2630 tg->funcs->disable_vga(tg);
2631
2632 /* Blank controller using driver code instead of
2633 * command table. */
2634 tg->funcs->set_blank(tg, true);
2635 hwss_wait_for_blank_complete(tg);
2636 }
2637
2638 for (i = 0; i < dc->res_pool->audio_count; i++) {
2639 struct audio *audio = dc->res_pool->audios[i];
2640 audio->funcs->hw_init(audio);
2641 }
2642
2643 for (i = 0; i < dc->link_count; i++) {
2644 struct dc_link *link = dc->links[i];
2645
2646 if (link->panel_cntl) {
2647 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2648 user_level = link->panel_cntl->stored_backlight_registers.USER_LEVEL;
2649 }
2650 }
2651
2652 abm = dc->res_pool->abm;
2653 if (abm != NULL)
2654 abm->funcs->abm_init(abm, backlight, user_level);
2655
2656 dmcu = dc->res_pool->dmcu;
2657 if (dmcu != NULL && abm != NULL)
2658 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2659
2660 if (dc->fbc_compressor)
2661 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2662
2663 }
2664
2665
dce110_prepare_bandwidth(struct dc * dc,struct dc_state * context)2666 void dce110_prepare_bandwidth(
2667 struct dc *dc,
2668 struct dc_state *context)
2669 {
2670 struct clk_mgr *dccg = dc->clk_mgr;
2671
2672 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2673 if (dccg)
2674 dccg->funcs->update_clocks(
2675 dccg,
2676 context,
2677 false);
2678 }
2679
dce110_optimize_bandwidth(struct dc * dc,struct dc_state * context)2680 void dce110_optimize_bandwidth(
2681 struct dc *dc,
2682 struct dc_state *context)
2683 {
2684 struct clk_mgr *dccg = dc->clk_mgr;
2685
2686 dce110_set_displaymarks(dc, context);
2687
2688 if (dccg)
2689 dccg->funcs->update_clocks(
2690 dccg,
2691 context,
2692 true);
2693 }
2694
dce110_program_front_end_for_pipe(struct dc * dc,struct pipe_ctx * pipe_ctx)2695 static void dce110_program_front_end_for_pipe(
2696 struct dc *dc, struct pipe_ctx *pipe_ctx)
2697 {
2698 struct mem_input *mi = pipe_ctx->plane_res.mi;
2699 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2700 struct xfm_grph_csc_adjustment adjust;
2701 struct out_csc_color_matrix tbl_entry;
2702 unsigned int i;
2703 struct dce_hwseq *hws = dc->hwseq;
2704
2705 memset(&tbl_entry, 0, sizeof(tbl_entry));
2706
2707 memset(&adjust, 0, sizeof(adjust));
2708 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2709
2710 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2711
2712 set_default_colors(pipe_ctx);
2713 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2714 == true) {
2715 tbl_entry.color_space =
2716 pipe_ctx->stream->output_color_space;
2717
2718 for (i = 0; i < 12; i++)
2719 tbl_entry.regval[i] =
2720 pipe_ctx->stream->csc_color_matrix.matrix[i];
2721
2722 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2723 (pipe_ctx->plane_res.xfm, &tbl_entry);
2724 }
2725
2726 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2727 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2728
2729 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2730 adjust.temperature_matrix[i] =
2731 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2732 }
2733
2734 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2735
2736 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != NULL;
2737
2738 program_scaler(dc, pipe_ctx);
2739
2740 mi->funcs->mem_input_program_surface_config(
2741 mi,
2742 plane_state->format,
2743 &plane_state->tiling_info,
2744 &plane_state->plane_size,
2745 plane_state->rotation,
2746 NULL,
2747 false);
2748 if (mi->funcs->set_blank)
2749 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2750
2751 if (dc->config.gpu_vm_support)
2752 mi->funcs->mem_input_program_pte_vm(
2753 pipe_ctx->plane_res.mi,
2754 plane_state->format,
2755 &plane_state->tiling_info,
2756 plane_state->rotation);
2757
2758 /* Moved programming gamma from dc to hwss */
2759 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2760 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2761 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2762 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2763
2764 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2765 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2766
2767 DC_LOG_SURFACE(
2768 "Pipe:%d %p: addr hi:0x%x, "
2769 "addr low:0x%x, "
2770 "src: %d, %d, %d,"
2771 " %d; dst: %d, %d, %d, %d;"
2772 "clip: %d, %d, %d, %d\n",
2773 pipe_ctx->pipe_idx,
2774 (void *) pipe_ctx->plane_state,
2775 pipe_ctx->plane_state->address.grph.addr.high_part,
2776 pipe_ctx->plane_state->address.grph.addr.low_part,
2777 pipe_ctx->plane_state->src_rect.x,
2778 pipe_ctx->plane_state->src_rect.y,
2779 pipe_ctx->plane_state->src_rect.width,
2780 pipe_ctx->plane_state->src_rect.height,
2781 pipe_ctx->plane_state->dst_rect.x,
2782 pipe_ctx->plane_state->dst_rect.y,
2783 pipe_ctx->plane_state->dst_rect.width,
2784 pipe_ctx->plane_state->dst_rect.height,
2785 pipe_ctx->plane_state->clip_rect.x,
2786 pipe_ctx->plane_state->clip_rect.y,
2787 pipe_ctx->plane_state->clip_rect.width,
2788 pipe_ctx->plane_state->clip_rect.height);
2789
2790 DC_LOG_SURFACE(
2791 "Pipe %d: width, height, x, y\n"
2792 "viewport:%d, %d, %d, %d\n"
2793 "recout: %d, %d, %d, %d\n",
2794 pipe_ctx->pipe_idx,
2795 pipe_ctx->plane_res.scl_data.viewport.width,
2796 pipe_ctx->plane_res.scl_data.viewport.height,
2797 pipe_ctx->plane_res.scl_data.viewport.x,
2798 pipe_ctx->plane_res.scl_data.viewport.y,
2799 pipe_ctx->plane_res.scl_data.recout.width,
2800 pipe_ctx->plane_res.scl_data.recout.height,
2801 pipe_ctx->plane_res.scl_data.recout.x,
2802 pipe_ctx->plane_res.scl_data.recout.y);
2803 }
2804
dce110_apply_ctx_for_surface(struct dc * dc,const struct dc_stream_state * stream,int num_planes,struct dc_state * context)2805 static void dce110_apply_ctx_for_surface(
2806 struct dc *dc,
2807 const struct dc_stream_state *stream,
2808 int num_planes,
2809 struct dc_state *context)
2810 {
2811 int i;
2812
2813 if (num_planes == 0)
2814 return;
2815
2816 if (dc->fbc_compressor)
2817 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2818
2819 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2820 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2821
2822 if (pipe_ctx->stream != stream)
2823 continue;
2824
2825 /* Need to allocate mem before program front end for Fiji */
2826 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2827 pipe_ctx->plane_res.mi,
2828 pipe_ctx->stream->timing.h_total,
2829 pipe_ctx->stream->timing.v_total,
2830 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2831 context->stream_count);
2832
2833 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2834
2835 dc->hwss.update_plane_addr(dc, pipe_ctx);
2836
2837 program_surface_visibility(dc, pipe_ctx);
2838
2839 }
2840
2841 if (dc->fbc_compressor)
2842 enable_fbc(dc, context);
2843 }
2844
dce110_post_unlock_program_front_end(struct dc * dc,struct dc_state * context)2845 static void dce110_post_unlock_program_front_end(
2846 struct dc *dc,
2847 struct dc_state *context)
2848 {
2849 }
2850
dce110_power_down_fe(struct dc * dc,struct dc_state * state,struct pipe_ctx * pipe_ctx)2851 static void dce110_power_down_fe(struct dc *dc, struct dc_state *state, struct pipe_ctx *pipe_ctx)
2852 {
2853 struct dce_hwseq *hws = dc->hwseq;
2854 int fe_idx = pipe_ctx->plane_res.mi ?
2855 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2856
2857 /* Do not power down fe when stream is active on dce*/
2858 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2859 return;
2860
2861 hws->funcs.enable_display_power_gating(
2862 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2863
2864 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2865 dc->res_pool->transforms[fe_idx]);
2866 }
2867
dce110_wait_for_mpcc_disconnect(struct dc * dc,struct resource_pool * res_pool,struct pipe_ctx * pipe_ctx)2868 static void dce110_wait_for_mpcc_disconnect(
2869 struct dc *dc,
2870 struct resource_pool *res_pool,
2871 struct pipe_ctx *pipe_ctx)
2872 {
2873 /* do nothing*/
2874 }
2875
program_output_csc(struct dc * dc,struct pipe_ctx * pipe_ctx,enum dc_color_space colorspace,uint16_t * matrix,int opp_id)2876 static void program_output_csc(struct dc *dc,
2877 struct pipe_ctx *pipe_ctx,
2878 enum dc_color_space colorspace,
2879 uint16_t *matrix,
2880 int opp_id)
2881 {
2882 int i;
2883 struct out_csc_color_matrix tbl_entry;
2884
2885 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2886 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2887
2888 for (i = 0; i < 12; i++)
2889 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2890
2891 tbl_entry.color_space = color_space;
2892
2893 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2894 pipe_ctx->plane_res.xfm, &tbl_entry);
2895 }
2896 }
2897
dce110_set_cursor_position(struct pipe_ctx * pipe_ctx)2898 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2899 {
2900 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2901 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2902 struct mem_input *mi = pipe_ctx->plane_res.mi;
2903 struct dc_cursor_mi_param param = {
2904 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2905 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2906 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2907 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2908 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2909 .rotation = pipe_ctx->plane_state->rotation,
2910 .mirror = pipe_ctx->plane_state->horizontal_mirror
2911 };
2912
2913 /**
2914 * If the cursor's source viewport is clipped then we need to
2915 * translate the cursor to appear in the correct position on
2916 * the screen.
2917 *
2918 * This translation isn't affected by scaling so it needs to be
2919 * done *after* we adjust the position for the scale factor.
2920 *
2921 * This is only done by opt-in for now since there are still
2922 * some usecases like tiled display that might enable the
2923 * cursor on both streams while expecting dc to clip it.
2924 */
2925 if (pos_cpy.translate_by_source) {
2926 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2927 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2928 }
2929
2930 if (pipe_ctx->plane_state->address.type
2931 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2932 pos_cpy.enable = false;
2933
2934 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2935 pos_cpy.enable = false;
2936
2937 if (ipp->funcs->ipp_cursor_set_position)
2938 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
2939 if (mi->funcs->set_cursor_position)
2940 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
2941 }
2942
dce110_set_cursor_attribute(struct pipe_ctx * pipe_ctx)2943 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2944 {
2945 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2946
2947 if (pipe_ctx->plane_res.ipp &&
2948 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2949 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2950 pipe_ctx->plane_res.ipp, attributes);
2951
2952 if (pipe_ctx->plane_res.mi &&
2953 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2954 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2955 pipe_ctx->plane_res.mi, attributes);
2956
2957 if (pipe_ctx->plane_res.xfm &&
2958 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2959 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2960 pipe_ctx->plane_res.xfm, attributes);
2961 }
2962
dce110_set_backlight_level(struct pipe_ctx * pipe_ctx,uint32_t backlight_pwm_u16_16,uint32_t frame_ramp)2963 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
2964 uint32_t backlight_pwm_u16_16,
2965 uint32_t frame_ramp)
2966 {
2967 struct dc_link *link = pipe_ctx->stream->link;
2968 struct dc *dc = link->ctx->dc;
2969 struct abm *abm = pipe_ctx->stream_res.abm;
2970 struct panel_cntl *panel_cntl = link->panel_cntl;
2971 struct dmcu *dmcu = dc->res_pool->dmcu;
2972 bool fw_set_brightness = true;
2973 /* DMCU -1 for all controller id values,
2974 * therefore +1 here
2975 */
2976 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
2977
2978 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
2979 return false;
2980
2981 if (dmcu)
2982 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
2983
2984 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
2985 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
2986 else
2987 abm->funcs->set_backlight_level_pwm(
2988 abm,
2989 backlight_pwm_u16_16,
2990 frame_ramp,
2991 controller_id,
2992 link->panel_cntl->inst);
2993
2994 return true;
2995 }
2996
dce110_set_abm_immediate_disable(struct pipe_ctx * pipe_ctx)2997 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
2998 {
2999 struct abm *abm = pipe_ctx->stream_res.abm;
3000 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3001
3002 if (abm)
3003 abm->funcs->set_abm_immediate_disable(abm,
3004 pipe_ctx->stream->link->panel_cntl->inst);
3005
3006 if (panel_cntl)
3007 panel_cntl->funcs->store_backlight_level(panel_cntl);
3008 }
3009
dce110_set_pipe(struct pipe_ctx * pipe_ctx)3010 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3011 {
3012 struct abm *abm = pipe_ctx->stream_res.abm;
3013 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3014 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3015
3016 if (abm && panel_cntl)
3017 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3018 }
3019
dce110_enable_lvds_link_output(struct dc_link * link,const struct link_resource * link_res,enum clock_source_id clock_source,uint32_t pixel_clock)3020 void dce110_enable_lvds_link_output(struct dc_link *link,
3021 const struct link_resource *link_res,
3022 enum clock_source_id clock_source,
3023 uint32_t pixel_clock)
3024 {
3025 link->link_enc->funcs->enable_lvds_output(
3026 link->link_enc,
3027 clock_source,
3028 pixel_clock);
3029 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3030 }
3031
dce110_enable_tmds_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,enum dc_color_depth color_depth,uint32_t pixel_clock)3032 void dce110_enable_tmds_link_output(struct dc_link *link,
3033 const struct link_resource *link_res,
3034 enum signal_type signal,
3035 enum clock_source_id clock_source,
3036 enum dc_color_depth color_depth,
3037 uint32_t pixel_clock)
3038 {
3039 link->link_enc->funcs->enable_tmds_output(
3040 link->link_enc,
3041 clock_source,
3042 color_depth,
3043 signal,
3044 pixel_clock);
3045 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3046 }
3047
dce110_enable_dp_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal,enum clock_source_id clock_source,const struct dc_link_settings * link_settings)3048 void dce110_enable_dp_link_output(
3049 struct dc_link *link,
3050 const struct link_resource *link_res,
3051 enum signal_type signal,
3052 enum clock_source_id clock_source,
3053 const struct dc_link_settings *link_settings)
3054 {
3055 struct dc *dc = link->ctx->dc;
3056 struct dmcu *dmcu = dc->res_pool->dmcu;
3057 struct pipe_ctx *pipes =
3058 link->dc->current_state->res_ctx.pipe_ctx;
3059 struct clock_source *dp_cs =
3060 link->dc->res_pool->dp_clock_source;
3061 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3062 unsigned int i;
3063
3064 /*
3065 * Add the logic to extract BOTH power up and power down sequences
3066 * from enable/disable link output and only call edp panel control
3067 * in enable_link_dp and disable_link_dp once.
3068 */
3069 if (link->connector_signal == SIGNAL_TYPE_EDP) {
3070 link->dc->hwss.edp_wait_for_hpd_ready(link, true);
3071 }
3072
3073 /* If the current pixel clock source is not DTO(happens after
3074 * switching from HDMI passive dongle to DP on the same connector),
3075 * switch the pixel clock source to DTO.
3076 */
3077
3078 for (i = 0; i < MAX_PIPES; i++) {
3079 if (pipes[i].stream != NULL &&
3080 pipes[i].stream->link == link) {
3081 if (pipes[i].clock_source != NULL &&
3082 pipes[i].clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
3083 pipes[i].clock_source = dp_cs;
3084 pipes[i].stream_res.pix_clk_params.requested_pix_clk_100hz =
3085 pipes[i].stream->timing.pix_clk_100hz;
3086 pipes[i].clock_source->funcs->program_pix_clk(
3087 pipes[i].clock_source,
3088 &pipes[i].stream_res.pix_clk_params,
3089 dc->link_srv->dp_get_encoding_format(link_settings),
3090 &pipes[i].pll_settings);
3091 }
3092 }
3093 }
3094
3095 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_8b_10b_ENCODING) {
3096 if (dc->clk_mgr->funcs->notify_link_rate_change)
3097 dc->clk_mgr->funcs->notify_link_rate_change(dc->clk_mgr, link);
3098 }
3099
3100 if (dmcu != NULL && dmcu->funcs->lock_phy)
3101 dmcu->funcs->lock_phy(dmcu);
3102
3103 if (link_hwss->ext.enable_dp_link_output)
3104 link_hwss->ext.enable_dp_link_output(link, link_res, signal,
3105 clock_source, link_settings);
3106
3107 link->phy_state.symclk_state = SYMCLK_ON_TX_ON;
3108
3109 if (dmcu != NULL && dmcu->funcs->unlock_phy)
3110 dmcu->funcs->unlock_phy(dmcu);
3111
3112 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_ENABLE_LINK_PHY);
3113 }
3114
dce110_disable_link_output(struct dc_link * link,const struct link_resource * link_res,enum signal_type signal)3115 void dce110_disable_link_output(struct dc_link *link,
3116 const struct link_resource *link_res,
3117 enum signal_type signal)
3118 {
3119 struct dc *dc = link->ctx->dc;
3120 const struct link_hwss *link_hwss = get_link_hwss(link, link_res);
3121 struct dmcu *dmcu = dc->res_pool->dmcu;
3122
3123 if (signal == SIGNAL_TYPE_EDP &&
3124 link->dc->hwss.edp_backlight_control &&
3125 !link->skip_implict_edp_power_control)
3126 link->dc->hwss.edp_backlight_control(link, false);
3127 else if (dmcu != NULL && dmcu->funcs->lock_phy)
3128 dmcu->funcs->lock_phy(dmcu);
3129
3130 link_hwss->disable_link_output(link, link_res, signal);
3131 link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF;
3132 /*
3133 * Add the logic to extract BOTH power up and power down sequences
3134 * from enable/disable link output and only call edp panel control
3135 * in enable_link_dp and disable_link_dp once.
3136 */
3137 if (dmcu != NULL && dmcu->funcs->lock_phy)
3138 dmcu->funcs->unlock_phy(dmcu);
3139 dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_DISABLE_LINK_PHY);
3140 }
3141
3142 static const struct hw_sequencer_funcs dce110_funcs = {
3143 .program_gamut_remap = program_gamut_remap,
3144 .program_output_csc = program_output_csc,
3145 .init_hw = init_hw,
3146 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3147 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3148 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3149 .update_plane_addr = update_plane_addr,
3150 .update_pending_status = dce110_update_pending_status,
3151 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3152 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3153 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3154 .update_info_frame = dce110_update_info_frame,
3155 .enable_stream = dce110_enable_stream,
3156 .disable_stream = dce110_disable_stream,
3157 .unblank_stream = dce110_unblank_stream,
3158 .blank_stream = dce110_blank_stream,
3159 .enable_audio_stream = dce110_enable_audio_stream,
3160 .disable_audio_stream = dce110_disable_audio_stream,
3161 .disable_plane = dce110_power_down_fe,
3162 .pipe_control_lock = dce_pipe_control_lock,
3163 .interdependent_update_lock = NULL,
3164 .cursor_lock = dce_pipe_control_lock,
3165 .prepare_bandwidth = dce110_prepare_bandwidth,
3166 .optimize_bandwidth = dce110_optimize_bandwidth,
3167 .set_drr = set_drr,
3168 .get_position = get_position,
3169 .set_static_screen_control = set_static_screen_control,
3170 .setup_stereo = NULL,
3171 .set_avmute = dce110_set_avmute,
3172 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3173 .edp_backlight_control = dce110_edp_backlight_control,
3174 .edp_power_control = dce110_edp_power_control,
3175 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3176 .set_cursor_position = dce110_set_cursor_position,
3177 .set_cursor_attribute = dce110_set_cursor_attribute,
3178 .set_backlight_level = dce110_set_backlight_level,
3179 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3180 .set_pipe = dce110_set_pipe,
3181 .enable_lvds_link_output = dce110_enable_lvds_link_output,
3182 .enable_tmds_link_output = dce110_enable_tmds_link_output,
3183 .enable_dp_link_output = dce110_enable_dp_link_output,
3184 .disable_link_output = dce110_disable_link_output,
3185 };
3186
3187 static const struct hwseq_private_funcs dce110_private_funcs = {
3188 .init_pipes = init_pipes,
3189 .update_plane_addr = update_plane_addr,
3190 .set_input_transfer_func = dce110_set_input_transfer_func,
3191 .set_output_transfer_func = dce110_set_output_transfer_func,
3192 .power_down = dce110_power_down,
3193 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3194 .enable_display_power_gating = dce110_enable_display_power_gating,
3195 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3196 .enable_stream_timing = dce110_enable_stream_timing,
3197 .disable_stream_gating = NULL,
3198 .enable_stream_gating = NULL,
3199 .edp_backlight_control = dce110_edp_backlight_control,
3200 };
3201
dce110_hw_sequencer_construct(struct dc * dc)3202 void dce110_hw_sequencer_construct(struct dc *dc)
3203 {
3204 dc->hwss = dce110_funcs;
3205 dc->hwseq->funcs = dce110_private_funcs;
3206 }
3207
3208