1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane.h"
40 #include "dc_plane_priv.h"
41 #include "dc_stream_priv.h"
42
43 #include "gpio_service_interface.h"
44 #include "clk_mgr.h"
45 #include "clock_source.h"
46 #include "dc_bios_types.h"
47
48 #include "bios_parser_interface.h"
49 #include "bios/bios_parser_helper.h"
50 #include "include/irq_service_interface.h"
51 #include "transform.h"
52 #include "dmcu.h"
53 #include "dpp.h"
54 #include "timing_generator.h"
55 #include "abm.h"
56 #include "virtual/virtual_link_encoder.h"
57 #include "hubp.h"
58
59 #include "link_hwss.h"
60 #include "link_encoder.h"
61 #include "link_enc_cfg.h"
62
63 #include "link.h"
64 #include "dm_helpers.h"
65 #include "mem_input.h"
66
67 #include "dc_dmub_srv.h"
68
69 #include "dsc.h"
70
71 #include "vm_helper.h"
72
73 #include "dce/dce_i2c.h"
74
75 #include "dmub/dmub_srv.h"
76
77 #include "dce/dmub_psr.h"
78
79 #include "dce/dmub_hw_lock_mgr.h"
80
81 #include "dc_trace.h"
82
83 #include "hw_sequencer_private.h"
84
85 #if defined(CONFIG_DRM_AMD_DC_FP)
86 #include "dml2/dml2_internal_types.h"
87 #endif
88
89 #include "dce/dmub_outbox.h"
90
91 #define CTX \
92 dc->ctx
93
94 #define DC_LOGGER \
95 dc->ctx->logger
96
97 static const char DC_BUILD_ID[] = "production-build";
98
99 /**
100 * DOC: Overview
101 *
102 * DC is the OS-agnostic component of the amdgpu DC driver.
103 *
104 * DC maintains and validates a set of structs representing the state of the
105 * driver and writes that state to AMD hardware
106 *
107 * Main DC HW structs:
108 *
109 * struct dc - The central struct. One per driver. Created on driver load,
110 * destroyed on driver unload.
111 *
112 * struct dc_context - One per driver.
113 * Used as a backpointer by most other structs in dc.
114 *
115 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
116 * plugpoints). Created on driver load, destroyed on driver unload.
117 *
118 * struct dc_sink - One per display. Created on boot or hotplug.
119 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
120 * (the display directly attached). It may also have one or more remote
121 * sinks (in the Multi-Stream Transport case)
122 *
123 * struct resource_pool - One per driver. Represents the hw blocks not in the
124 * main pipeline. Not directly accessible by dm.
125 *
126 * Main dc state structs:
127 *
128 * These structs can be created and destroyed as needed. There is a full set of
129 * these structs in dc->current_state representing the currently programmed state.
130 *
131 * struct dc_state - The global DC state to track global state information,
132 * such as bandwidth values.
133 *
134 * struct dc_stream_state - Represents the hw configuration for the pipeline from
135 * a framebuffer to a display. Maps one-to-one with dc_sink.
136 *
137 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
138 * and may have more in the Multi-Plane Overlay case.
139 *
140 * struct resource_context - Represents the programmable state of everything in
141 * the resource_pool. Not directly accessible by dm.
142 *
143 * struct pipe_ctx - A member of struct resource_context. Represents the
144 * internal hardware pipeline components. Each dc_plane_state has either
145 * one or two (in the pipe-split case).
146 */
147
148 /* Private functions */
149
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)150 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
151 {
152 if (new > *original)
153 *original = new;
154 }
155
destroy_links(struct dc * dc)156 static void destroy_links(struct dc *dc)
157 {
158 uint32_t i;
159
160 for (i = 0; i < dc->link_count; i++) {
161 if (NULL != dc->links[i])
162 dc->link_srv->destroy_link(&dc->links[i]);
163 }
164 }
165
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)166 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
167 {
168 int i;
169 uint32_t count = 0;
170
171 for (i = 0; i < num_links; i++) {
172 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
173 links[i]->is_internal_display)
174 count++;
175 }
176
177 return count;
178 }
179
get_seamless_boot_stream_count(struct dc_state * ctx)180 static int get_seamless_boot_stream_count(struct dc_state *ctx)
181 {
182 uint8_t i;
183 uint8_t seamless_boot_stream_count = 0;
184
185 for (i = 0; i < ctx->stream_count; i++)
186 if (ctx->streams[i]->apply_seamless_boot_optimization)
187 seamless_boot_stream_count++;
188
189 return seamless_boot_stream_count;
190 }
191
create_links(struct dc * dc,uint32_t num_virtual_links)192 static bool create_links(
193 struct dc *dc,
194 uint32_t num_virtual_links)
195 {
196 int i;
197 int connectors_num;
198 struct dc_bios *bios = dc->ctx->dc_bios;
199
200 dc->link_count = 0;
201
202 connectors_num = bios->funcs->get_connectors_number(bios);
203
204 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
205
206 if (connectors_num > ENUM_ID_COUNT) {
207 dm_error(
208 "DC: Number of connectors %d exceeds maximum of %d!\n",
209 connectors_num,
210 ENUM_ID_COUNT);
211 return false;
212 }
213
214 dm_output_to_console(
215 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
216 __func__,
217 connectors_num,
218 num_virtual_links);
219
220 // condition loop on link_count to allow skipping invalid indices
221 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
222 struct link_init_data link_init_params = {0};
223 struct dc_link *link;
224
225 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
226
227 link_init_params.ctx = dc->ctx;
228 /* next BIOS object table connector */
229 link_init_params.connector_index = i;
230 link_init_params.link_index = dc->link_count;
231 link_init_params.dc = dc;
232 link = dc->link_srv->create_link(&link_init_params);
233
234 if (link) {
235 dc->links[dc->link_count] = link;
236 link->dc = dc;
237 ++dc->link_count;
238 }
239 }
240
241 DC_LOG_DC("BIOS object table - end");
242
243 /* Create a link for each usb4 dpia port */
244 dc->lowest_dpia_link_index = MAX_LINKS;
245 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
246 struct link_init_data link_init_params = {0};
247 struct dc_link *link;
248
249 link_init_params.ctx = dc->ctx;
250 link_init_params.connector_index = i;
251 link_init_params.link_index = dc->link_count;
252 link_init_params.dc = dc;
253 link_init_params.is_dpia_link = true;
254
255 link = dc->link_srv->create_link(&link_init_params);
256 if (link) {
257 if (dc->lowest_dpia_link_index > dc->link_count)
258 dc->lowest_dpia_link_index = dc->link_count;
259
260 dc->links[dc->link_count] = link;
261 link->dc = dc;
262 ++dc->link_count;
263 }
264 }
265
266 for (i = 0; i < num_virtual_links; i++) {
267 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
268 struct encoder_init_data enc_init = {0};
269
270 if (link == NULL) {
271 BREAK_TO_DEBUGGER();
272 goto failed_alloc;
273 }
274
275 link->link_index = dc->link_count;
276 dc->links[dc->link_count] = link;
277 dc->link_count++;
278
279 link->ctx = dc->ctx;
280 link->dc = dc;
281 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
282 link->link_id.type = OBJECT_TYPE_CONNECTOR;
283 link->link_id.id = CONNECTOR_ID_VIRTUAL;
284 link->link_id.enum_id = ENUM_ID_1;
285 link->psr_settings.psr_version = DC_PSR_VERSION_UNSUPPORTED;
286 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
287
288 if (!link->link_enc) {
289 BREAK_TO_DEBUGGER();
290 goto failed_alloc;
291 }
292
293 link->link_status.dpcd_caps = &link->dpcd_caps;
294
295 enc_init.ctx = dc->ctx;
296 enc_init.channel = CHANNEL_ID_UNKNOWN;
297 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
298 enc_init.transmitter = TRANSMITTER_UNKNOWN;
299 enc_init.connector = link->link_id;
300 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
301 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
302 enc_init.encoder.enum_id = ENUM_ID_1;
303 virtual_link_encoder_construct(link->link_enc, &enc_init);
304 }
305
306 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
307
308 return true;
309
310 failed_alloc:
311 return false;
312 }
313
314 /* Create additional DIG link encoder objects if fewer than the platform
315 * supports were created during link construction. This can happen if the
316 * number of physical connectors is less than the number of DIGs.
317 */
create_link_encoders(struct dc * dc)318 static bool create_link_encoders(struct dc *dc)
319 {
320 bool res = true;
321 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
322 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
323 int i;
324
325 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
326 * link encoders and physical display endpoints and does not require
327 * additional link encoder objects.
328 */
329 if (num_usb4_dpia == 0)
330 return res;
331
332 /* Create as many link encoder objects as the platform supports. DPIA
333 * endpoints can be programmably mapped to any DIG.
334 */
335 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
336 for (i = 0; i < num_dig_link_enc; i++) {
337 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
338
339 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
340 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
341 (enum engine_id)(ENGINE_ID_DIGA + i));
342 if (link_enc) {
343 dc->res_pool->link_encoders[i] = link_enc;
344 dc->res_pool->dig_link_enc_count++;
345 } else {
346 res = false;
347 }
348 }
349 }
350 }
351
352 return res;
353 }
354
355 /* Destroy any additional DIG link encoder objects created by
356 * create_link_encoders().
357 * NB: Must only be called after destroy_links().
358 */
destroy_link_encoders(struct dc * dc)359 static void destroy_link_encoders(struct dc *dc)
360 {
361 unsigned int num_usb4_dpia;
362 unsigned int num_dig_link_enc;
363 int i;
364
365 if (!dc->res_pool)
366 return;
367
368 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
369 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
370
371 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
372 * link encoders and physical display endpoints and does not require
373 * additional link encoder objects.
374 */
375 if (num_usb4_dpia == 0)
376 return;
377
378 for (i = 0; i < num_dig_link_enc; i++) {
379 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
380
381 if (link_enc) {
382 link_enc->funcs->destroy(&link_enc);
383 dc->res_pool->link_encoders[i] = NULL;
384 dc->res_pool->dig_link_enc_count--;
385 }
386 }
387 }
388
dc_perf_trace_create(void)389 static struct dc_perf_trace *dc_perf_trace_create(void)
390 {
391 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
392 }
393
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)394 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
395 {
396 kfree(*perf_trace);
397 *perf_trace = NULL;
398 }
399
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)400 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
401 {
402 if (!dc || !stream || !adjust)
403 return false;
404
405 if (!dc->current_state)
406 return false;
407
408 int i;
409
410 for (i = 0; i < MAX_PIPES; i++) {
411 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
412
413 if (pipe->stream == stream && pipe->stream_res.tg) {
414 if (dc->hwss.set_long_vtotal)
415 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
416
417 return true;
418 }
419 }
420
421 return false;
422 }
423
424 /**
425 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
426 * @dc: dc reference
427 * @stream: Initial dc stream state
428 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
429 *
430 * Looks up the pipe context of dc_stream_state and updates the
431 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
432 * Rate, which is a power-saving feature that targets reducing panel
433 * refresh rate while the screen is static
434 *
435 * Return: %true if the pipe context is found and adjusted;
436 * %false if the pipe context is not found.
437 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)438 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
439 struct dc_stream_state *stream,
440 struct dc_crtc_timing_adjust *adjust)
441 {
442 int i;
443
444 /*
445 * Don't adjust DRR while there's bandwidth optimizations pending to
446 * avoid conflicting with firmware updates.
447 */
448 if (dc->ctx->dce_version > DCE_VERSION_MAX) {
449 if (dc->optimized_required || dc->wm_optimized_required) {
450 stream->adjust.timing_adjust_pending = true;
451 return false;
452 }
453 }
454
455 dc_exit_ips_for_hw_access(dc);
456
457 stream->adjust.v_total_max = adjust->v_total_max;
458 stream->adjust.v_total_mid = adjust->v_total_mid;
459 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
460 stream->adjust.v_total_min = adjust->v_total_min;
461 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
462
463 if (dc->caps.max_v_total != 0 &&
464 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
465 stream->adjust.timing_adjust_pending = false;
466 if (adjust->allow_otg_v_count_halt)
467 return set_long_vtotal(dc, stream, adjust);
468 else
469 return false;
470 }
471
472 for (i = 0; i < MAX_PIPES; i++) {
473 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
474
475 if (pipe->stream == stream && pipe->stream_res.tg) {
476 dc->hwss.set_drr(&pipe,
477 1,
478 *adjust);
479 stream->adjust.timing_adjust_pending = false;
480 return true;
481 }
482 }
483 return false;
484 }
485
486 /**
487 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
488 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
489 *
490 * @dc: [in] dc reference
491 * @stream: [in] Initial dc stream state
492 * @refresh_rate: [in] new refresh_rate
493 *
494 * Return: %true if the pipe context is found and there is an associated
495 * timing_generator for the DC;
496 * %false if the pipe context is not found or there is no
497 * timing_generator for the DC.
498 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)499 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
500 struct dc_stream_state *stream,
501 uint32_t *refresh_rate)
502 {
503 bool status = false;
504
505 int i = 0;
506
507 dc_exit_ips_for_hw_access(dc);
508
509 for (i = 0; i < MAX_PIPES; i++) {
510 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
511
512 if (pipe->stream == stream && pipe->stream_res.tg) {
513 /* Only execute if a function pointer has been defined for
514 * the DC version in question
515 */
516 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
517 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
518
519 status = true;
520
521 break;
522 }
523 }
524 }
525
526 return status;
527 }
528
529 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
530 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)531 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
532 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
533 {
534 union dmub_rb_cmd cmd = {0};
535
536 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
537 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
538
539 if (is_stop) {
540 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
541 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
542 } else {
543 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
544 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
545 cmd.secure_display.roi_info.x_start = rect->x;
546 cmd.secure_display.roi_info.y_start = rect->y;
547 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
548 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
549 }
550
551 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
552 }
553
554 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)555 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
556 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
557 {
558 if (is_stop)
559 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
560 else
561 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
562 }
563
564 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,uint8_t phy_id,bool is_stop)565 dc_stream_forward_crc_window(struct dc_stream_state *stream,
566 struct rect *rect, uint8_t phy_id, bool is_stop)
567 {
568 struct dmcu *dmcu;
569 struct dc_dmub_srv *dmub_srv;
570 struct otg_phy_mux mux_mapping;
571 struct pipe_ctx *pipe;
572 int i;
573 struct dc *dc = stream->ctx->dc;
574
575 for (i = 0; i < MAX_PIPES; i++) {
576 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
577 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
578 break;
579 }
580
581 /* Stream not found */
582 if (i == MAX_PIPES)
583 return false;
584
585 mux_mapping.phy_output_num = phy_id;
586 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
587
588 dmcu = dc->res_pool->dmcu;
589 dmub_srv = dc->ctx->dmub_srv;
590
591 /* forward to dmub */
592 if (dmub_srv)
593 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
594 /* forward to dmcu */
595 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
596 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
597 else
598 return false;
599
600 return true;
601 }
602
603 static void
dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv * dmub_srv,struct crc_window * window,struct otg_phy_mux * mux_mapping,bool stop)604 dc_stream_forward_dmub_multiple_crc_window(struct dc_dmub_srv *dmub_srv,
605 struct crc_window *window, struct otg_phy_mux *mux_mapping, bool stop)
606 {
607 int i;
608 union dmub_rb_cmd cmd = {0};
609
610 cmd.secure_display.mul_roi_ctl.phy_id = mux_mapping->phy_output_num;
611 cmd.secure_display.mul_roi_ctl.otg_id = mux_mapping->otg_output_num;
612
613 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
614
615 if (stop) {
616 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_STOP_UPDATE;
617 } else {
618 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_MULTIPLE_CRC_WIN_NOTIFY;
619 for (i = 0; i < MAX_CRC_WINDOW_NUM; i++) {
620 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_start = window[i].rect.x;
621 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_start = window[i].rect.y;
622 cmd.secure_display.mul_roi_ctl.roi_ctl[i].x_end = window[i].rect.x + window[i].rect.width;
623 cmd.secure_display.mul_roi_ctl.roi_ctl[i].y_end = window[i].rect.y + window[i].rect.height;
624 cmd.secure_display.mul_roi_ctl.roi_ctl[i].enable = window[i].enable;
625 }
626 }
627
628 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
629 }
630
631 bool
dc_stream_forward_multiple_crc_window(struct dc_stream_state * stream,struct crc_window * window,uint8_t phy_id,bool stop)632 dc_stream_forward_multiple_crc_window(struct dc_stream_state *stream,
633 struct crc_window *window, uint8_t phy_id, bool stop)
634 {
635 struct dc_dmub_srv *dmub_srv;
636 struct otg_phy_mux mux_mapping;
637 struct pipe_ctx *pipe;
638 int i;
639 struct dc *dc = stream->ctx->dc;
640
641 for (i = 0; i < MAX_PIPES; i++) {
642 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
643 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
644 break;
645 }
646
647 /* Stream not found */
648 if (i == MAX_PIPES)
649 return false;
650
651 mux_mapping.phy_output_num = phy_id;
652 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
653
654 dmub_srv = dc->ctx->dmub_srv;
655
656 /* forward to dmub only. no dmcu support*/
657 if (dmub_srv)
658 dc_stream_forward_dmub_multiple_crc_window(dmub_srv, window, &mux_mapping, stop);
659 else
660 return false;
661
662 return true;
663 }
664 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
665
666 /**
667 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
668 * @dc: DC Object
669 * @stream: The stream to configure CRC on.
670 * @crc_window: CRC window (x/y start/end) information
671 * @enable: Enable CRC if true, disable otherwise.
672 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
673 * once.
674 * @idx: Capture CRC on which CRC engine instance
675 * @reset: Reset CRC engine before the configuration
676 *
677 * By default, the entire frame is used to calculate the CRC.
678 *
679 * Return: %false if the stream is not found or CRC capture is not supported;
680 * %true if the stream has been configured.
681 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous,uint8_t idx,bool reset)682 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
683 struct crc_params *crc_window, bool enable, bool continuous,
684 uint8_t idx, bool reset)
685 {
686 struct pipe_ctx *pipe;
687 struct crc_params param;
688 struct timing_generator *tg;
689
690 pipe = resource_get_otg_master_for_stream(
691 &dc->current_state->res_ctx, stream);
692
693 /* Stream not found */
694 if (pipe == NULL)
695 return false;
696
697 dc_exit_ips_for_hw_access(dc);
698
699 /* By default, capture the full frame */
700 param.windowa_x_start = 0;
701 param.windowa_y_start = 0;
702 param.windowa_x_end = pipe->stream->timing.h_addressable;
703 param.windowa_y_end = pipe->stream->timing.v_addressable;
704 param.windowb_x_start = 0;
705 param.windowb_y_start = 0;
706 param.windowb_x_end = pipe->stream->timing.h_addressable;
707 param.windowb_y_end = pipe->stream->timing.v_addressable;
708
709 if (crc_window) {
710 param.windowa_x_start = crc_window->windowa_x_start;
711 param.windowa_y_start = crc_window->windowa_y_start;
712 param.windowa_x_end = crc_window->windowa_x_end;
713 param.windowa_y_end = crc_window->windowa_y_end;
714 param.windowb_x_start = crc_window->windowb_x_start;
715 param.windowb_y_start = crc_window->windowb_y_start;
716 param.windowb_x_end = crc_window->windowb_x_end;
717 param.windowb_y_end = crc_window->windowb_y_end;
718 }
719
720 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
721 param.odm_mode = pipe->next_odm_pipe ? 1:0;
722
723 /* Default to the union of both windows */
724 param.selection = UNION_WINDOW_A_B;
725 param.continuous_mode = continuous;
726 param.enable = enable;
727
728 param.crc_eng_inst = idx;
729 param.reset = reset;
730
731 tg = pipe->stream_res.tg;
732
733 /* Only call if supported */
734 if (tg->funcs->configure_crc)
735 return tg->funcs->configure_crc(tg, ¶m);
736 DC_LOG_WARNING("CRC capture not supported.");
737 return false;
738 }
739
740 /**
741 * dc_stream_get_crc() - Get CRC values for the given stream.
742 *
743 * @dc: DC object.
744 * @stream: The DC stream state of the stream to get CRCs from.
745 * @idx: index of crc engine to get CRC from
746 * @r_cr: CRC value for the red component.
747 * @g_y: CRC value for the green component.
748 * @b_cb: CRC value for the blue component.
749 *
750 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
751 *
752 * Return:
753 * %false if stream is not found, or if CRCs are not enabled.
754 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint8_t idx,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)755 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint8_t idx,
756 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
757 {
758 int i;
759 struct pipe_ctx *pipe;
760 struct timing_generator *tg;
761
762 dc_exit_ips_for_hw_access(dc);
763
764 for (i = 0; i < MAX_PIPES; i++) {
765 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
766 if (pipe->stream == stream)
767 break;
768 }
769 /* Stream not found */
770 if (i == MAX_PIPES)
771 return false;
772
773 tg = pipe->stream_res.tg;
774
775 if (tg->funcs->get_crc)
776 return tg->funcs->get_crc(tg, idx, r_cr, g_y, b_cb);
777 DC_LOG_WARNING("CRC capture not supported.");
778 return false;
779 }
780
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)781 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
782 enum dc_dynamic_expansion option)
783 {
784 /* OPP FMT dyn expansion updates*/
785 int i;
786 struct pipe_ctx *pipe_ctx;
787
788 dc_exit_ips_for_hw_access(dc);
789
790 for (i = 0; i < MAX_PIPES; i++) {
791 if (dc->current_state->res_ctx.pipe_ctx[i].stream
792 == stream) {
793 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
794 pipe_ctx->stream_res.opp->dyn_expansion = option;
795 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
796 pipe_ctx->stream_res.opp,
797 COLOR_SPACE_YCBCR601,
798 stream->timing.display_color_depth,
799 stream->signal);
800 }
801 }
802 }
803
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)804 void dc_stream_set_dither_option(struct dc_stream_state *stream,
805 enum dc_dither_option option)
806 {
807 struct bit_depth_reduction_params params;
808 struct dc_link *link = stream->link;
809 struct pipe_ctx *pipes = NULL;
810 int i;
811
812 for (i = 0; i < MAX_PIPES; i++) {
813 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
814 stream) {
815 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
816 break;
817 }
818 }
819
820 if (!pipes)
821 return;
822 if (option > DITHER_OPTION_MAX)
823 return;
824
825 dc_exit_ips_for_hw_access(stream->ctx->dc);
826
827 stream->dither_option = option;
828
829 memset(¶ms, 0, sizeof(params));
830 resource_build_bit_depth_reduction_params(stream, ¶ms);
831 stream->bit_depth_params = params;
832
833 if (pipes->plane_res.xfm &&
834 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
835 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
836 pipes->plane_res.xfm,
837 pipes->plane_res.scl_data.lb_params.depth,
838 &stream->bit_depth_params);
839 }
840
841 pipes->stream_res.opp->funcs->
842 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
843 }
844
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)845 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
846 {
847 int i;
848 bool ret = false;
849 struct pipe_ctx *pipes;
850
851 dc_exit_ips_for_hw_access(dc);
852
853 for (i = 0; i < MAX_PIPES; i++) {
854 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
855 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
856 dc->hwss.program_gamut_remap(pipes);
857 ret = true;
858 }
859 }
860
861 return ret;
862 }
863
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)864 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
865 {
866 int i;
867 bool ret = false;
868 struct pipe_ctx *pipes;
869
870 dc_exit_ips_for_hw_access(dc);
871
872 for (i = 0; i < MAX_PIPES; i++) {
873 if (dc->current_state->res_ctx.pipe_ctx[i].stream
874 == stream) {
875
876 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
877 dc->hwss.program_output_csc(dc,
878 pipes,
879 stream->output_color_space,
880 stream->csc_color_matrix.matrix,
881 pipes->stream_res.opp->inst);
882 ret = true;
883 }
884 }
885
886 return ret;
887 }
888
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)889 void dc_stream_set_static_screen_params(struct dc *dc,
890 struct dc_stream_state **streams,
891 int num_streams,
892 const struct dc_static_screen_params *params)
893 {
894 int i, j;
895 struct pipe_ctx *pipes_affected[MAX_PIPES];
896 int num_pipes_affected = 0;
897
898 dc_exit_ips_for_hw_access(dc);
899
900 for (i = 0; i < num_streams; i++) {
901 struct dc_stream_state *stream = streams[i];
902
903 for (j = 0; j < MAX_PIPES; j++) {
904 if (dc->current_state->res_ctx.pipe_ctx[j].stream
905 == stream) {
906 pipes_affected[num_pipes_affected++] =
907 &dc->current_state->res_ctx.pipe_ctx[j];
908 }
909 }
910 }
911
912 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
913 }
914
dc_destruct(struct dc * dc)915 static void dc_destruct(struct dc *dc)
916 {
917 // reset link encoder assignment table on destruct
918 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign &&
919 !dc->config.unify_link_enc_assignment)
920 link_enc_cfg_init(dc, dc->current_state);
921
922 if (dc->current_state) {
923 dc_state_release(dc->current_state);
924 dc->current_state = NULL;
925 }
926
927 destroy_links(dc);
928
929 destroy_link_encoders(dc);
930
931 if (dc->clk_mgr) {
932 dc_destroy_clk_mgr(dc->clk_mgr);
933 dc->clk_mgr = NULL;
934 }
935
936 dc_destroy_resource_pool(dc);
937
938 if (dc->link_srv)
939 link_destroy_link_service(&dc->link_srv);
940
941 if (dc->ctx) {
942 if (dc->ctx->gpio_service)
943 dal_gpio_service_destroy(&dc->ctx->gpio_service);
944
945 if (dc->ctx->created_bios)
946 dal_bios_parser_destroy(&dc->ctx->dc_bios);
947 kfree(dc->ctx->logger);
948 dc_perf_trace_destroy(&dc->ctx->perf_trace);
949
950 kfree(dc->ctx);
951 dc->ctx = NULL;
952 }
953
954 kfree(dc->bw_vbios);
955 dc->bw_vbios = NULL;
956
957 kfree(dc->bw_dceip);
958 dc->bw_dceip = NULL;
959
960 kfree(dc->dcn_soc);
961 dc->dcn_soc = NULL;
962
963 kfree(dc->dcn_ip);
964 dc->dcn_ip = NULL;
965
966 kfree(dc->vm_helper);
967 dc->vm_helper = NULL;
968
969 }
970
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)971 static bool dc_construct_ctx(struct dc *dc,
972 const struct dc_init_data *init_params)
973 {
974 struct dc_context *dc_ctx;
975
976 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
977 if (!dc_ctx)
978 return false;
979
980 dc_stream_init_rmcm_3dlut(dc);
981
982 dc_ctx->cgs_device = init_params->cgs_device;
983 dc_ctx->driver_context = init_params->driver;
984 dc_ctx->dc = dc;
985 dc_ctx->asic_id = init_params->asic_id;
986 dc_ctx->dc_sink_id_count = 0;
987 dc_ctx->dc_stream_id_count = 0;
988 dc_ctx->dce_environment = init_params->dce_environment;
989 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
990 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
991 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
992
993 /* Create logger */
994 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
995
996 if (!dc_ctx->logger) {
997 kfree(dc_ctx);
998 return false;
999 }
1000
1001 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
1002 dc->dml.logger = dc_ctx->logger;
1003
1004 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
1005
1006 dc_ctx->perf_trace = dc_perf_trace_create();
1007 if (!dc_ctx->perf_trace) {
1008 kfree(dc_ctx);
1009 ASSERT_CRITICAL(false);
1010 return false;
1011 }
1012
1013 dc->ctx = dc_ctx;
1014
1015 dc->link_srv = link_create_link_service();
1016 if (!dc->link_srv)
1017 return false;
1018
1019 return true;
1020 }
1021
dc_construct(struct dc * dc,const struct dc_init_data * init_params)1022 static bool dc_construct(struct dc *dc,
1023 const struct dc_init_data *init_params)
1024 {
1025 struct dc_context *dc_ctx;
1026 struct bw_calcs_dceip *dc_dceip;
1027 struct bw_calcs_vbios *dc_vbios;
1028 struct dcn_soc_bounding_box *dcn_soc;
1029 struct dcn_ip_params *dcn_ip;
1030
1031 dc->config = init_params->flags;
1032
1033 // Allocate memory for the vm_helper
1034 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
1035 if (!dc->vm_helper) {
1036 dm_error("%s: failed to create dc->vm_helper\n", __func__);
1037 goto fail;
1038 }
1039
1040 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
1041
1042 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
1043 if (!dc_dceip) {
1044 dm_error("%s: failed to create dceip\n", __func__);
1045 goto fail;
1046 }
1047
1048 dc->bw_dceip = dc_dceip;
1049
1050 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
1051 if (!dc_vbios) {
1052 dm_error("%s: failed to create vbios\n", __func__);
1053 goto fail;
1054 }
1055
1056 dc->bw_vbios = dc_vbios;
1057 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1058 if (!dcn_soc) {
1059 dm_error("%s: failed to create dcn_soc\n", __func__);
1060 goto fail;
1061 }
1062
1063 dc->dcn_soc = dcn_soc;
1064
1065 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1066 if (!dcn_ip) {
1067 dm_error("%s: failed to create dcn_ip\n", __func__);
1068 goto fail;
1069 }
1070
1071 dc->dcn_ip = dcn_ip;
1072
1073 if (init_params->bb_from_dmub)
1074 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1075 else
1076 dc->dml2_options.bb_from_dmub = NULL;
1077
1078 if (!dc_construct_ctx(dc, init_params)) {
1079 dm_error("%s: failed to create ctx\n", __func__);
1080 goto fail;
1081 }
1082
1083 dc_ctx = dc->ctx;
1084
1085 /* Resource should construct all asic specific resources.
1086 * This should be the only place where we need to parse the asic id
1087 */
1088 if (init_params->vbios_override)
1089 dc_ctx->dc_bios = init_params->vbios_override;
1090 else {
1091 /* Create BIOS parser */
1092 struct bp_init_data bp_init_data;
1093
1094 bp_init_data.ctx = dc_ctx;
1095 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1096
1097 dc_ctx->dc_bios = dal_bios_parser_create(
1098 &bp_init_data, dc_ctx->dce_version);
1099
1100 if (!dc_ctx->dc_bios) {
1101 ASSERT_CRITICAL(false);
1102 goto fail;
1103 }
1104
1105 dc_ctx->created_bios = true;
1106 }
1107
1108 dc->vendor_signature = init_params->vendor_signature;
1109
1110 /* Create GPIO service */
1111 dc_ctx->gpio_service = dal_gpio_service_create(
1112 dc_ctx->dce_version,
1113 dc_ctx->dce_environment,
1114 dc_ctx);
1115
1116 if (!dc_ctx->gpio_service) {
1117 ASSERT_CRITICAL(false);
1118 goto fail;
1119 }
1120
1121 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1122 if (!dc->res_pool)
1123 goto fail;
1124
1125 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1126 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1127 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1128 if (dc->caps.max_optimizable_video_width == 0)
1129 dc->caps.max_optimizable_video_width = 5120;
1130 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1131 if (!dc->clk_mgr)
1132 goto fail;
1133 #ifdef CONFIG_DRM_AMD_DC_FP
1134 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1135
1136 if (dc->res_pool->funcs->update_bw_bounding_box) {
1137 DC_FP_START();
1138 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1139 DC_FP_END();
1140 }
1141 #endif
1142
1143 if (!create_links(dc, init_params->num_virtual_links))
1144 goto fail;
1145
1146 /* Create additional DIG link encoder objects if fewer than the platform
1147 * supports were created during link construction.
1148 */
1149 if (!create_link_encoders(dc))
1150 goto fail;
1151
1152 /* Creation of current_state must occur after dc->dml
1153 * is initialized in dc_create_resource_pool because
1154 * on creation it copies the contents of dc->dml
1155 */
1156 dc->current_state = dc_state_create(dc, NULL);
1157
1158 if (!dc->current_state) {
1159 dm_error("%s: failed to create validate ctx\n", __func__);
1160 goto fail;
1161 }
1162
1163 return true;
1164
1165 fail:
1166 return false;
1167 }
1168
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1169 static void disable_all_writeback_pipes_for_stream(
1170 const struct dc *dc,
1171 struct dc_stream_state *stream,
1172 struct dc_state *context)
1173 {
1174 int i;
1175
1176 for (i = 0; i < stream->num_wb_info; i++)
1177 stream->writeback_info[i].wb_enabled = false;
1178 }
1179
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1180 static void apply_ctx_interdependent_lock(struct dc *dc,
1181 struct dc_state *context,
1182 struct dc_stream_state *stream,
1183 bool lock)
1184 {
1185 int i;
1186
1187 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1188 if (dc->hwss.interdependent_update_lock)
1189 dc->hwss.interdependent_update_lock(dc, context, lock);
1190 else {
1191 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1192 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1193 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1194
1195 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1196 if (stream == pipe_ctx->stream) {
1197 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1198 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1199 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1200 }
1201 }
1202 }
1203 }
1204
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1205 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1206 {
1207 if (dc->debug.visual_confirm & VISUAL_CONFIRM_EXPLICIT) {
1208 memcpy(&pipe_ctx->visual_confirm_color, &pipe_ctx->plane_state->visual_confirm_color,
1209 sizeof(pipe_ctx->visual_confirm_color));
1210 return;
1211 }
1212
1213 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1214 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1215
1216 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1217 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1218 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1219 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1220 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1221 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1222 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR)
1223 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1224 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_DCC)
1225 get_dcc_visual_confirm_color(dc, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1226 else {
1227 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1228 color_space_to_black_color(
1229 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1230 }
1231 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1232 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1233 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1234 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1235 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1236 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1237 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1238 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1239 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1240 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_VABC)
1241 get_vabc_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1242 }
1243 }
1244 }
1245
dc_get_visual_confirm_for_stream(struct dc * dc,struct dc_stream_state * stream_state,struct tg_color * color)1246 void dc_get_visual_confirm_for_stream(
1247 struct dc *dc,
1248 struct dc_stream_state *stream_state,
1249 struct tg_color *color)
1250 {
1251 struct dc_stream_status *stream_status = dc_stream_get_status(stream_state);
1252 struct pipe_ctx *pipe_ctx;
1253 int i;
1254 struct dc_plane_state *plane_state = NULL;
1255
1256 if (!stream_status)
1257 return;
1258
1259 switch (dc->debug.visual_confirm) {
1260 case VISUAL_CONFIRM_DISABLE:
1261 return;
1262 case VISUAL_CONFIRM_PSR:
1263 case VISUAL_CONFIRM_FAMS:
1264 pipe_ctx = dc_stream_get_pipe_ctx(stream_state);
1265 if (!pipe_ctx)
1266 return;
1267 dc_dmub_srv_get_visual_confirm_color_cmd(dc, pipe_ctx);
1268 memcpy(color, &dc->ctx->dmub_srv->dmub->visual_confirm_color, sizeof(struct tg_color));
1269 return;
1270
1271 default:
1272 /* find plane with highest layer_index */
1273 for (i = 0; i < stream_status->plane_count; i++) {
1274 if (stream_status->plane_states[i]->visible)
1275 plane_state = stream_status->plane_states[i];
1276 }
1277 if (!plane_state)
1278 return;
1279 /* find pipe that contains plane with highest layer index */
1280 for (i = 0; i < MAX_PIPES; i++) {
1281 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1282
1283 if (pipe->plane_state == plane_state) {
1284 memcpy(color, &pipe->visual_confirm_color, sizeof(struct tg_color));
1285 return;
1286 }
1287 }
1288 }
1289 }
1290
disable_dangling_plane(struct dc * dc,struct dc_state * context)1291 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1292 {
1293 int i, j;
1294 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1295 struct dc_state *current_ctx;
1296 struct pipe_ctx *pipe;
1297 struct timing_generator *tg;
1298
1299 if (dangling_context == NULL)
1300 return;
1301
1302 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1303 struct dc_stream_state *old_stream =
1304 dc->current_state->res_ctx.pipe_ctx[i].stream;
1305 bool should_disable = true;
1306 bool pipe_split_change = false;
1307
1308 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1309 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1310 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1311 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1312 else
1313 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1314 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1315
1316 for (j = 0; j < context->stream_count; j++) {
1317 if (old_stream == context->streams[j]) {
1318 should_disable = false;
1319 break;
1320 }
1321 }
1322 if (!should_disable && pipe_split_change &&
1323 dc->current_state->stream_count != context->stream_count)
1324 should_disable = true;
1325
1326 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1327 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1328 struct pipe_ctx *old_pipe, *new_pipe;
1329
1330 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1331 new_pipe = &context->res_ctx.pipe_ctx[i];
1332
1333 if (old_pipe->plane_state && !new_pipe->plane_state)
1334 should_disable = true;
1335 }
1336
1337 if (should_disable && old_stream) {
1338 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1339 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1340 tg = pipe->stream_res.tg;
1341 /* When disabling plane for a phantom pipe, we must turn on the
1342 * phantom OTG so the disable programming gets the double buffer
1343 * update. Otherwise the pipe will be left in a partially disabled
1344 * state that can result in underflow or hang when enabling it
1345 * again for different use.
1346 */
1347 if (is_phantom) {
1348 if (tg->funcs->enable_crtc) {
1349 if (dc->hwseq->funcs.blank_pixel_data)
1350 dc->hwseq->funcs.blank_pixel_data(dc, pipe, true);
1351 tg->funcs->enable_crtc(tg);
1352 }
1353 }
1354
1355 if (is_phantom)
1356 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1357 else
1358 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1359 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1360
1361 if (pipe->stream && pipe->plane_state) {
1362 if (!dc->debug.using_dml2)
1363 set_p_state_switch_method(dc, context, pipe);
1364 dc_update_visual_confirm_color(dc, context, pipe);
1365 }
1366
1367 if (dc->hwss.apply_ctx_for_surface) {
1368 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1369 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1370 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1371 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1372 }
1373
1374 if (dc->res_pool->funcs->prepare_mcache_programming)
1375 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1376 if (dc->hwss.program_front_end_for_ctx) {
1377 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1378 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1379 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1380 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1381 }
1382 /* We need to put the phantom OTG back into it's default (disabled) state or we
1383 * can get corruption when transition from one SubVP config to a different one.
1384 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1385 * will still get it's double buffer update.
1386 */
1387 if (is_phantom) {
1388 if (tg->funcs->disable_phantom_crtc)
1389 tg->funcs->disable_phantom_crtc(tg);
1390 }
1391 }
1392 }
1393
1394 current_ctx = dc->current_state;
1395 dc->current_state = dangling_context;
1396 dc_state_release(current_ctx);
1397 }
1398
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1399 static void disable_vbios_mode_if_required(
1400 struct dc *dc,
1401 struct dc_state *context)
1402 {
1403 unsigned int i, j;
1404
1405 /* check if timing_changed, disable stream*/
1406 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1407 struct dc_stream_state *stream = NULL;
1408 struct dc_link *link = NULL;
1409 struct pipe_ctx *pipe = NULL;
1410
1411 pipe = &context->res_ctx.pipe_ctx[i];
1412 stream = pipe->stream;
1413 if (stream == NULL)
1414 continue;
1415
1416 if (stream->apply_seamless_boot_optimization)
1417 continue;
1418
1419 // only looking for first odm pipe
1420 if (pipe->prev_odm_pipe)
1421 continue;
1422
1423 if (stream->link->local_sink &&
1424 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1425 link = stream->link;
1426 }
1427
1428 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1429 unsigned int enc_inst, tg_inst = 0;
1430 unsigned int pix_clk_100hz = 0;
1431
1432 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1433 if (enc_inst != ENGINE_ID_UNKNOWN) {
1434 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1435 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1436 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1437 dc->res_pool->stream_enc[j]);
1438 break;
1439 }
1440 }
1441
1442 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1443 dc->res_pool->dp_clock_source,
1444 tg_inst, &pix_clk_100hz);
1445
1446 if (link->link_status.link_active) {
1447 uint32_t requested_pix_clk_100hz =
1448 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1449
1450 if (pix_clk_100hz != requested_pix_clk_100hz) {
1451 dc->link_srv->set_dpms_off(pipe);
1452 pipe->stream->dpms_off = false;
1453 }
1454 }
1455 }
1456 }
1457 }
1458 }
1459
1460 /* Public functions */
1461
dc_create(const struct dc_init_data * init_params)1462 struct dc *dc_create(const struct dc_init_data *init_params)
1463 {
1464 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1465 unsigned int full_pipe_count;
1466
1467 if (!dc)
1468 return NULL;
1469
1470 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1471 dc->caps.linear_pitch_alignment = 64;
1472 if (!dc_construct_ctx(dc, init_params))
1473 goto destruct_dc;
1474 } else {
1475 if (!dc_construct(dc, init_params))
1476 goto destruct_dc;
1477
1478 full_pipe_count = dc->res_pool->pipe_count;
1479 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1480 full_pipe_count--;
1481 dc->caps.max_streams = min(
1482 full_pipe_count,
1483 dc->res_pool->stream_enc_count);
1484
1485 dc->caps.max_links = dc->link_count;
1486 dc->caps.max_audios = dc->res_pool->audio_count;
1487 dc->caps.linear_pitch_alignment = 64;
1488
1489 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1490
1491 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1492
1493 if (dc->res_pool->dmcu != NULL)
1494 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1495 }
1496
1497 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1498 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1499 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1500
1501 /* Populate versioning information */
1502 dc->versions.dc_ver = DC_VER;
1503
1504 dc->build_id = DC_BUILD_ID;
1505
1506 DC_LOG_DC("Display Core initialized\n");
1507
1508 return dc;
1509
1510 destruct_dc:
1511 dc_destruct(dc);
1512 kfree(dc);
1513 return NULL;
1514 }
1515
detect_edp_presence(struct dc * dc)1516 static void detect_edp_presence(struct dc *dc)
1517 {
1518 struct dc_link *edp_links[MAX_NUM_EDP];
1519 struct dc_link *edp_link = NULL;
1520 enum dc_connection_type type;
1521 int i;
1522 int edp_num;
1523
1524 dc_get_edp_links(dc, edp_links, &edp_num);
1525 if (!edp_num)
1526 return;
1527
1528 for (i = 0; i < edp_num; i++) {
1529 edp_link = edp_links[i];
1530 if (dc->config.edp_not_connected) {
1531 edp_link->edp_sink_present = false;
1532 } else {
1533 dc_link_detect_connection_type(edp_link, &type);
1534 edp_link->edp_sink_present = (type != dc_connection_none);
1535 }
1536 }
1537 }
1538
dc_hardware_init(struct dc * dc)1539 void dc_hardware_init(struct dc *dc)
1540 {
1541
1542 detect_edp_presence(dc);
1543 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1544 dc->hwss.init_hw(dc);
1545 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D0);
1546 }
1547
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1548 void dc_init_callbacks(struct dc *dc,
1549 const struct dc_callback_init *init_params)
1550 {
1551 dc->ctx->cp_psp = init_params->cp_psp;
1552 }
1553
dc_deinit_callbacks(struct dc * dc)1554 void dc_deinit_callbacks(struct dc *dc)
1555 {
1556 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1557 }
1558
dc_destroy(struct dc ** dc)1559 void dc_destroy(struct dc **dc)
1560 {
1561 dc_destruct(*dc);
1562 kfree(*dc);
1563 *dc = NULL;
1564 }
1565
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1566 static void enable_timing_multisync(
1567 struct dc *dc,
1568 struct dc_state *ctx)
1569 {
1570 int i, multisync_count = 0;
1571 int pipe_count = dc->res_pool->pipe_count;
1572 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1573
1574 for (i = 0; i < pipe_count; i++) {
1575 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1576 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1577 continue;
1578 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1579 continue;
1580 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1581 multisync_count++;
1582 }
1583
1584 if (multisync_count > 0) {
1585 dc->hwss.enable_per_frame_crtc_position_reset(
1586 dc, multisync_count, multisync_pipes);
1587 }
1588 }
1589
program_timing_sync(struct dc * dc,struct dc_state * ctx)1590 static void program_timing_sync(
1591 struct dc *dc,
1592 struct dc_state *ctx)
1593 {
1594 int i, j, k;
1595 int group_index = 0;
1596 int num_group = 0;
1597 int pipe_count = dc->res_pool->pipe_count;
1598 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1599
1600 for (i = 0; i < pipe_count; i++) {
1601 if (!ctx->res_ctx.pipe_ctx[i].stream
1602 || ctx->res_ctx.pipe_ctx[i].top_pipe
1603 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1604 continue;
1605
1606 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1607 }
1608
1609 for (i = 0; i < pipe_count; i++) {
1610 int group_size = 1;
1611 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1612 struct pipe_ctx *pipe_set[MAX_PIPES];
1613
1614 if (!unsynced_pipes[i])
1615 continue;
1616
1617 pipe_set[0] = unsynced_pipes[i];
1618 unsynced_pipes[i] = NULL;
1619
1620 /* Add tg to the set, search rest of the tg's for ones with
1621 * same timing, add all tgs with same timing to the group
1622 */
1623 for (j = i + 1; j < pipe_count; j++) {
1624 if (!unsynced_pipes[j])
1625 continue;
1626 if (sync_type != TIMING_SYNCHRONIZABLE &&
1627 dc->hwss.enable_vblanks_synchronization &&
1628 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1629 resource_are_vblanks_synchronizable(
1630 unsynced_pipes[j]->stream,
1631 pipe_set[0]->stream)) {
1632 sync_type = VBLANK_SYNCHRONIZABLE;
1633 pipe_set[group_size] = unsynced_pipes[j];
1634 unsynced_pipes[j] = NULL;
1635 group_size++;
1636 } else
1637 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1638 resource_are_streams_timing_synchronizable(
1639 unsynced_pipes[j]->stream,
1640 pipe_set[0]->stream)) {
1641 sync_type = TIMING_SYNCHRONIZABLE;
1642 pipe_set[group_size] = unsynced_pipes[j];
1643 unsynced_pipes[j] = NULL;
1644 group_size++;
1645 }
1646 }
1647
1648 /* set first unblanked pipe as master */
1649 for (j = 0; j < group_size; j++) {
1650 bool is_blanked;
1651
1652 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1653 is_blanked =
1654 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1655 else
1656 is_blanked =
1657 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1658 if (!is_blanked) {
1659 if (j == 0)
1660 break;
1661
1662 swap(pipe_set[0], pipe_set[j]);
1663 break;
1664 }
1665 }
1666
1667 for (k = 0; k < group_size; k++) {
1668 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1669
1670 if (!status)
1671 continue;
1672
1673 status->timing_sync_info.group_id = num_group;
1674 status->timing_sync_info.group_size = group_size;
1675 if (k == 0)
1676 status->timing_sync_info.master = true;
1677 else
1678 status->timing_sync_info.master = false;
1679
1680 }
1681
1682 /* remove any other unblanked pipes as they have already been synced */
1683 if (dc->config.use_pipe_ctx_sync_logic) {
1684 /* check pipe's syncd to decide which pipe to be removed */
1685 for (j = 1; j < group_size; j++) {
1686 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1687 group_size--;
1688 pipe_set[j] = pipe_set[group_size];
1689 j--;
1690 } else
1691 /* link slave pipe's syncd with master pipe */
1692 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1693 }
1694 } else {
1695 /* remove any other pipes by checking valid plane */
1696 for (j = j + 1; j < group_size; j++) {
1697 bool is_blanked;
1698
1699 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1700 is_blanked =
1701 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1702 else
1703 is_blanked =
1704 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1705 if (!is_blanked) {
1706 group_size--;
1707 pipe_set[j] = pipe_set[group_size];
1708 j--;
1709 }
1710 }
1711 }
1712
1713 if (group_size > 1) {
1714 if (sync_type == TIMING_SYNCHRONIZABLE) {
1715 dc->hwss.enable_timing_synchronization(
1716 dc, ctx, group_index, group_size, pipe_set);
1717 } else
1718 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1719 dc->hwss.enable_vblanks_synchronization(
1720 dc, group_index, group_size, pipe_set);
1721 }
1722 group_index++;
1723 }
1724 num_group++;
1725 }
1726 }
1727
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1728 static bool streams_changed(struct dc *dc,
1729 struct dc_stream_state *streams[],
1730 uint8_t stream_count)
1731 {
1732 uint8_t i;
1733
1734 if (stream_count != dc->current_state->stream_count)
1735 return true;
1736
1737 for (i = 0; i < dc->current_state->stream_count; i++) {
1738 if (dc->current_state->streams[i] != streams[i])
1739 return true;
1740 if (!streams[i]->link->link_state_valid)
1741 return true;
1742 }
1743
1744 return false;
1745 }
1746
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1747 bool dc_validate_boot_timing(const struct dc *dc,
1748 const struct dc_sink *sink,
1749 struct dc_crtc_timing *crtc_timing)
1750 {
1751 struct timing_generator *tg;
1752 struct stream_encoder *se = NULL;
1753
1754 struct dc_crtc_timing hw_crtc_timing = {0};
1755
1756 struct dc_link *link = sink->link;
1757 unsigned int i, enc_inst, tg_inst = 0;
1758
1759 /* Support seamless boot on EDP displays only */
1760 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1761 return false;
1762 }
1763
1764 if (dc->debug.force_odm_combine) {
1765 DC_LOG_DEBUG("boot timing validation failed due to force_odm_combine\n");
1766 return false;
1767 }
1768
1769 /* Check for enabled DIG to identify enabled display */
1770 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1771 DC_LOG_DEBUG("boot timing validation failed due to disabled DIG\n");
1772 return false;
1773 }
1774
1775 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1776
1777 if (enc_inst == ENGINE_ID_UNKNOWN) {
1778 DC_LOG_DEBUG("boot timing validation failed due to unknown DIG engine ID\n");
1779 return false;
1780 }
1781
1782 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1783 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1784
1785 se = dc->res_pool->stream_enc[i];
1786
1787 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1788 dc->res_pool->stream_enc[i]);
1789 break;
1790 }
1791 }
1792
1793 // tg_inst not found
1794 if (i == dc->res_pool->stream_enc_count) {
1795 DC_LOG_DEBUG("boot timing validation failed due to timing generator instance not found\n");
1796 return false;
1797 }
1798
1799 if (tg_inst >= dc->res_pool->timing_generator_count) {
1800 DC_LOG_DEBUG("boot timing validation failed due to invalid timing generator count\n");
1801 return false;
1802 }
1803
1804 if (tg_inst != link->link_enc->preferred_engine) {
1805 DC_LOG_DEBUG("boot timing validation failed due to non-preferred timing generator\n");
1806 return false;
1807 }
1808
1809 tg = dc->res_pool->timing_generators[tg_inst];
1810
1811 if (!tg->funcs->get_hw_timing) {
1812 DC_LOG_DEBUG("boot timing validation failed due to missing get_hw_timing callback\n");
1813 return false;
1814 }
1815
1816 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) {
1817 DC_LOG_DEBUG("boot timing validation failed due to failed get_hw_timing return\n");
1818 return false;
1819 }
1820
1821 if (crtc_timing->h_total != hw_crtc_timing.h_total) {
1822 DC_LOG_DEBUG("boot timing validation failed due to h_total mismatch\n");
1823 return false;
1824 }
1825
1826 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) {
1827 DC_LOG_DEBUG("boot timing validation failed due to h_border_left mismatch\n");
1828 return false;
1829 }
1830
1831 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) {
1832 DC_LOG_DEBUG("boot timing validation failed due to h_addressable mismatch\n");
1833 return false;
1834 }
1835
1836 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) {
1837 DC_LOG_DEBUG("boot timing validation failed due to h_border_right mismatch\n");
1838 return false;
1839 }
1840
1841 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) {
1842 DC_LOG_DEBUG("boot timing validation failed due to h_front_porch mismatch\n");
1843 return false;
1844 }
1845
1846 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) {
1847 DC_LOG_DEBUG("boot timing validation failed due to h_sync_width mismatch\n");
1848 return false;
1849 }
1850
1851 if (crtc_timing->v_total != hw_crtc_timing.v_total) {
1852 DC_LOG_DEBUG("boot timing validation failed due to v_total mismatch\n");
1853 return false;
1854 }
1855
1856 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) {
1857 DC_LOG_DEBUG("boot timing validation failed due to v_border_top mismatch\n");
1858 return false;
1859 }
1860
1861 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) {
1862 DC_LOG_DEBUG("boot timing validation failed due to v_addressable mismatch\n");
1863 return false;
1864 }
1865
1866 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) {
1867 DC_LOG_DEBUG("boot timing validation failed due to v_border_bottom mismatch\n");
1868 return false;
1869 }
1870
1871 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) {
1872 DC_LOG_DEBUG("boot timing validation failed due to v_front_porch mismatch\n");
1873 return false;
1874 }
1875
1876 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) {
1877 DC_LOG_DEBUG("boot timing validation failed due to v_sync_width mismatch\n");
1878 return false;
1879 }
1880
1881 /* block DSC for now, as VBIOS does not currently support DSC timings */
1882 if (crtc_timing->flags.DSC) {
1883 DC_LOG_DEBUG("boot timing validation failed due to DSC\n");
1884 return false;
1885 }
1886
1887 if (dc_is_dp_signal(link->connector_signal)) {
1888 unsigned int pix_clk_100hz = 0;
1889 uint32_t numOdmPipes = 1;
1890 uint32_t id_src[4] = {0};
1891
1892 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1893 dc->res_pool->dp_clock_source,
1894 tg_inst, &pix_clk_100hz);
1895
1896 if (tg->funcs->get_optc_source)
1897 tg->funcs->get_optc_source(tg,
1898 &numOdmPipes, &id_src[0], &id_src[1]);
1899
1900 if (numOdmPipes == 2) {
1901 pix_clk_100hz *= 2;
1902 } else if (numOdmPipes == 4) {
1903 pix_clk_100hz *= 4;
1904 } else if (se && se->funcs->get_pixels_per_cycle) {
1905 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1906
1907 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1908 DC_LOG_DEBUG("boot timing validation failed due to pixels_per_cycle\n");
1909 return false;
1910 }
1911
1912 pix_clk_100hz *= pixels_per_cycle;
1913 }
1914
1915 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1916 // slightly due to rounding issues in 10 kHz units.
1917 if (crtc_timing->pix_clk_100hz != pix_clk_100hz) {
1918 DC_LOG_DEBUG("boot timing validation failed due to pix_clk_100hz mismatch\n");
1919 return false;
1920 }
1921
1922 if (!se || !se->funcs->dp_get_pixel_format) {
1923 DC_LOG_DEBUG("boot timing validation failed due to missing dp_get_pixel_format\n");
1924 return false;
1925 }
1926
1927 if (!se->funcs->dp_get_pixel_format(
1928 se,
1929 &hw_crtc_timing.pixel_encoding,
1930 &hw_crtc_timing.display_color_depth)) {
1931 DC_LOG_DEBUG("boot timing validation failed due to dp_get_pixel_format failure\n");
1932 return false;
1933 }
1934
1935 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) {
1936 DC_LOG_DEBUG("boot timing validation failed due to display_color_depth mismatch\n");
1937 return false;
1938 }
1939
1940 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) {
1941 DC_LOG_DEBUG("boot timing validation failed due to pixel_encoding mismatch\n");
1942 return false;
1943 }
1944 }
1945
1946
1947 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1948 DC_LOG_DEBUG("boot timing validation failed due to VSC SDP colorimetry\n");
1949 return false;
1950 }
1951
1952 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED) {
1953 DC_LOG_DEBUG("boot timing validation failed due to DP 128b/132b\n");
1954 return false;
1955 }
1956
1957 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1958 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1959 return false;
1960 }
1961
1962 return true;
1963 }
1964
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1965 static inline bool should_update_pipe_for_stream(
1966 struct dc_state *context,
1967 struct pipe_ctx *pipe_ctx,
1968 struct dc_stream_state *stream)
1969 {
1970 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1971 }
1972
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1973 static inline bool should_update_pipe_for_plane(
1974 struct dc_state *context,
1975 struct pipe_ctx *pipe_ctx,
1976 struct dc_plane_state *plane_state)
1977 {
1978 return (pipe_ctx->plane_state == plane_state);
1979 }
1980
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1981 void dc_enable_stereo(
1982 struct dc *dc,
1983 struct dc_state *context,
1984 struct dc_stream_state *streams[],
1985 uint8_t stream_count)
1986 {
1987 int i, j;
1988 struct pipe_ctx *pipe;
1989
1990 dc_exit_ips_for_hw_access(dc);
1991
1992 for (i = 0; i < MAX_PIPES; i++) {
1993 if (context != NULL) {
1994 pipe = &context->res_ctx.pipe_ctx[i];
1995 } else {
1996 context = dc->current_state;
1997 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1998 }
1999
2000 for (j = 0; pipe && j < stream_count; j++) {
2001 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
2002 dc->hwss.setup_stereo)
2003 dc->hwss.setup_stereo(pipe, dc);
2004 }
2005 }
2006 }
2007
dc_trigger_sync(struct dc * dc,struct dc_state * context)2008 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
2009 {
2010 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
2011 dc_exit_ips_for_hw_access(dc);
2012
2013 enable_timing_multisync(dc, context);
2014 program_timing_sync(dc, context);
2015 }
2016 }
2017
get_stream_mask(struct dc * dc,struct dc_state * context)2018 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
2019 {
2020 int i;
2021 unsigned int stream_mask = 0;
2022
2023 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2024 if (context->res_ctx.pipe_ctx[i].stream)
2025 stream_mask |= 1 << i;
2026 }
2027
2028 return stream_mask;
2029 }
2030
dc_z10_restore(const struct dc * dc)2031 void dc_z10_restore(const struct dc *dc)
2032 {
2033 if (dc->hwss.z10_restore)
2034 dc->hwss.z10_restore(dc);
2035 }
2036
dc_z10_save_init(struct dc * dc)2037 void dc_z10_save_init(struct dc *dc)
2038 {
2039 if (dc->hwss.z10_save_init)
2040 dc->hwss.z10_save_init(dc);
2041 }
2042
2043 /* Set a pipe unlock order based on the change in DET allocation and stores it in dc scratch memory
2044 * Prevents over allocation of DET during unlock process
2045 * e.g. 2 pipe config with different streams with a max of 20 DET segments
2046 * Before: After:
2047 * - Pipe0: 10 DET segments - Pipe0: 12 DET segments
2048 * - Pipe1: 10 DET segments - Pipe1: 8 DET segments
2049 * If Pipe0 gets updated first, 22 DET segments will be allocated
2050 */
determine_pipe_unlock_order(struct dc * dc,struct dc_state * context)2051 static void determine_pipe_unlock_order(struct dc *dc, struct dc_state *context)
2052 {
2053 unsigned int i = 0;
2054 struct pipe_ctx *pipe = NULL;
2055 struct timing_generator *tg = NULL;
2056
2057 if (!dc->config.set_pipe_unlock_order)
2058 return;
2059
2060 memset(dc->scratch.pipes_to_unlock_first, 0, sizeof(dc->scratch.pipes_to_unlock_first));
2061 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2062 pipe = &context->res_ctx.pipe_ctx[i];
2063 tg = pipe->stream_res.tg;
2064
2065 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
2066 !tg->funcs->is_tg_enabled(tg) ||
2067 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
2068 continue;
2069 }
2070
2071 if (resource_calculate_det_for_stream(context, pipe) <
2072 resource_calculate_det_for_stream(dc->current_state, &dc->current_state->res_ctx.pipe_ctx[i])) {
2073 dc->scratch.pipes_to_unlock_first[i] = true;
2074 }
2075 }
2076 }
2077
2078 /**
2079 * dc_commit_state_no_check - Apply context to the hardware
2080 *
2081 * @dc: DC object with the current status to be updated
2082 * @context: New state that will become the current status at the end of this function
2083 *
2084 * Applies given context to the hardware and copy it into current context.
2085 * It's up to the user to release the src context afterwards.
2086 *
2087 * Return: an enum dc_status result code for the operation
2088 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)2089 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
2090 {
2091 struct dc_bios *dcb = dc->ctx->dc_bios;
2092 enum dc_status result = DC_ERROR_UNEXPECTED;
2093 struct pipe_ctx *pipe;
2094 int i, k, l;
2095 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
2096 struct dc_state *old_state;
2097 bool subvp_prev_use = false;
2098
2099 dc_z10_restore(dc);
2100 dc_allow_idle_optimizations(dc, false);
2101
2102 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2103 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2104
2105 /* Check old context for SubVP */
2106 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
2107 if (subvp_prev_use)
2108 break;
2109 }
2110
2111 for (i = 0; i < context->stream_count; i++)
2112 dc_streams[i] = context->streams[i];
2113
2114 if (!dcb->funcs->is_accelerated_mode(dcb)) {
2115 disable_vbios_mode_if_required(dc, context);
2116 dc->hwss.enable_accelerated_mode(dc, context);
2117 }
2118
2119 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed) {
2120 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2121 pipe = &context->res_ctx.pipe_ctx[i];
2122 //Only delay otg master for a given config
2123 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
2124 //dc_commit_state_no_check is always a full update
2125 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, pipe, false);
2126 break;
2127 }
2128 }
2129 }
2130
2131 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2132 context->stream_count == 0)
2133 dc->hwss.prepare_bandwidth(dc, context);
2134
2135 /* When SubVP is active, all HW programming must be done while
2136 * SubVP lock is acquired
2137 */
2138 if (dc->hwss.subvp_pipe_control_lock)
2139 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
2140 if (dc->hwss.fams2_global_control_lock)
2141 dc->hwss.fams2_global_control_lock(dc, context, true);
2142
2143 if (dc->hwss.update_dsc_pg)
2144 dc->hwss.update_dsc_pg(dc, context, false);
2145
2146 disable_dangling_plane(dc, context);
2147 /* re-program planes for existing stream, in case we need to
2148 * free up plane resource for later use
2149 */
2150 if (dc->hwss.apply_ctx_for_surface) {
2151 for (i = 0; i < context->stream_count; i++) {
2152 if (context->streams[i]->mode_changed)
2153 continue;
2154 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2155 dc->hwss.apply_ctx_for_surface(
2156 dc, context->streams[i],
2157 context->stream_status[i].plane_count,
2158 context); /* use new pipe config in new context */
2159 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2160 dc->hwss.post_unlock_program_front_end(dc, context);
2161 }
2162 }
2163
2164 /* Program hardware */
2165 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2166 pipe = &context->res_ctx.pipe_ctx[i];
2167 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
2168 }
2169
2170 result = dc->hwss.apply_ctx_to_hw(dc, context);
2171
2172 if (result != DC_OK) {
2173 /* Application of dc_state to hardware stopped. */
2174 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2175 return result;
2176 }
2177
2178 dc_trigger_sync(dc, context);
2179
2180 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
2181 for (i = 0; i < context->stream_count; i++) {
2182 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
2183
2184 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
2185 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
2186 }
2187
2188 determine_pipe_unlock_order(dc, context);
2189 /* Program all planes within new context*/
2190 if (dc->res_pool->funcs->prepare_mcache_programming)
2191 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
2192 if (dc->hwss.program_front_end_for_ctx) {
2193 dc->hwss.interdependent_update_lock(dc, context, true);
2194 dc->hwss.program_front_end_for_ctx(dc, context);
2195
2196 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe) {
2197 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2198 pipe = &context->res_ctx.pipe_ctx[i];
2199 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe);
2200 }
2201 }
2202
2203 dc->hwss.interdependent_update_lock(dc, context, false);
2204 dc->hwss.post_unlock_program_front_end(dc, context);
2205 }
2206
2207 if (dc->hwss.commit_subvp_config)
2208 dc->hwss.commit_subvp_config(dc, context);
2209 if (dc->hwss.subvp_pipe_control_lock)
2210 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
2211 if (dc->hwss.fams2_global_control_lock)
2212 dc->hwss.fams2_global_control_lock(dc, context, false);
2213
2214 for (i = 0; i < context->stream_count; i++) {
2215 const struct dc_link *link = context->streams[i]->link;
2216
2217 if (!context->streams[i]->mode_changed)
2218 continue;
2219
2220 if (dc->hwss.apply_ctx_for_surface) {
2221 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2222 dc->hwss.apply_ctx_for_surface(
2223 dc, context->streams[i],
2224 context->stream_status[i].plane_count,
2225 context);
2226 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2227 dc->hwss.post_unlock_program_front_end(dc, context);
2228 }
2229
2230 /*
2231 * enable stereo
2232 * TODO rework dc_enable_stereo call to work with validation sets?
2233 */
2234 for (k = 0; k < MAX_PIPES; k++) {
2235 pipe = &context->res_ctx.pipe_ctx[k];
2236
2237 for (l = 0 ; pipe && l < context->stream_count; l++) {
2238 if (context->streams[l] &&
2239 context->streams[l] == pipe->stream &&
2240 dc->hwss.setup_stereo)
2241 dc->hwss.setup_stereo(pipe, dc);
2242 }
2243 }
2244
2245 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2246 context->streams[i]->timing.h_addressable,
2247 context->streams[i]->timing.v_addressable,
2248 context->streams[i]->timing.h_total,
2249 context->streams[i]->timing.v_total,
2250 context->streams[i]->timing.pix_clk_100hz / 10);
2251 }
2252
2253 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2254
2255 if (get_seamless_boot_stream_count(context) == 0 ||
2256 context->stream_count == 0) {
2257 /* Must wait for no flips to be pending before doing optimize bw */
2258 hwss_wait_for_no_pipes_pending(dc, context);
2259 /*
2260 * optimized dispclk depends on ODM setup. Need to wait for ODM
2261 * update pending complete before optimizing bandwidth.
2262 */
2263 hwss_wait_for_odm_update_pending_complete(dc, context);
2264 /* pplib is notified if disp_num changed */
2265 dc->hwss.optimize_bandwidth(dc, context);
2266 /* Need to do otg sync again as otg could be out of sync due to otg
2267 * workaround applied during clock update
2268 */
2269 dc_trigger_sync(dc, context);
2270 }
2271
2272 if (dc->hwss.update_dsc_pg)
2273 dc->hwss.update_dsc_pg(dc, context, true);
2274
2275 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2276 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2277 else
2278 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2279
2280 context->stream_mask = get_stream_mask(dc, context);
2281
2282 if (context->stream_mask != dc->current_state->stream_mask)
2283 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2284
2285 for (i = 0; i < context->stream_count; i++)
2286 context->streams[i]->mode_changed = false;
2287
2288 /* Clear update flags that were set earlier to avoid redundant programming */
2289 for (i = 0; i < context->stream_count; i++) {
2290 context->streams[i]->update_flags.raw = 0x0;
2291 }
2292
2293 old_state = dc->current_state;
2294 dc->current_state = context;
2295
2296 dc_state_release(old_state);
2297
2298 dc_state_retain(dc->current_state);
2299
2300 return result;
2301 }
2302
2303 static bool commit_minimal_transition_state(struct dc *dc,
2304 struct dc_state *transition_base_context);
2305
2306 /**
2307 * dc_commit_streams - Commit current stream state
2308 *
2309 * @dc: DC object with the commit state to be configured in the hardware
2310 * @params: Parameters for the commit, including the streams to be committed
2311 *
2312 * Function responsible for commit streams change to the hardware.
2313 *
2314 * Return:
2315 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2316 * code.
2317 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2318 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2319 {
2320 int i, j;
2321 struct dc_state *context;
2322 enum dc_status res = DC_OK;
2323 struct dc_validation_set set[MAX_STREAMS] = {0};
2324 struct pipe_ctx *pipe;
2325 bool handle_exit_odm2to1 = false;
2326
2327 if (!params)
2328 return DC_ERROR_UNEXPECTED;
2329
2330 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2331 return res;
2332
2333 if (!streams_changed(dc, params->streams, params->stream_count) &&
2334 dc->current_state->power_source == params->power_source)
2335 return res;
2336
2337 dc_exit_ips_for_hw_access(dc);
2338
2339 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2340
2341 for (i = 0; i < params->stream_count; i++) {
2342 struct dc_stream_state *stream = params->streams[i];
2343 struct dc_stream_status *status = dc_stream_get_status(stream);
2344 struct dc_sink *sink = stream->sink;
2345
2346 /* revalidate streams */
2347 if (!dc_is_virtual_signal(sink->sink_signal)) {
2348 res = dc_validate_stream(dc, stream);
2349 if (res != DC_OK)
2350 return res;
2351 }
2352
2353
2354 dc_stream_log(dc, stream);
2355
2356 set[i].stream = stream;
2357
2358 if (status) {
2359 set[i].plane_count = status->plane_count;
2360 for (j = 0; j < status->plane_count; j++)
2361 set[i].plane_states[j] = status->plane_states[j];
2362 }
2363 }
2364
2365 /* ODM Combine 2:1 power optimization is only applied for single stream
2366 * scenario, it uses extra pipes than needed to reduce power consumption
2367 * We need to switch off this feature to make room for new streams.
2368 */
2369 if (params->stream_count > dc->current_state->stream_count &&
2370 dc->current_state->stream_count == 1) {
2371 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2372 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2373 if (pipe->next_odm_pipe)
2374 handle_exit_odm2to1 = true;
2375 }
2376 }
2377
2378 if (handle_exit_odm2to1)
2379 res = commit_minimal_transition_state(dc, dc->current_state);
2380
2381 context = dc_state_create_current_copy(dc);
2382 if (!context)
2383 goto context_alloc_fail;
2384
2385 context->power_source = params->power_source;
2386
2387 res = dc_validate_with_context(dc, set, params->stream_count, context, DC_VALIDATE_MODE_AND_PROGRAMMING);
2388
2389 /*
2390 * Only update link encoder to stream assignment after bandwidth validation passed.
2391 */
2392 if (res == DC_OK && dc->res_pool->funcs->link_encs_assign && !dc->config.unify_link_enc_assignment)
2393 dc->res_pool->funcs->link_encs_assign(
2394 dc, context, context->streams, context->stream_count);
2395
2396 if (res != DC_OK) {
2397 BREAK_TO_DEBUGGER();
2398 goto fail;
2399 }
2400
2401 res = dc_commit_state_no_check(dc, context);
2402
2403 for (i = 0; i < params->stream_count; i++) {
2404 for (j = 0; j < context->stream_count; j++) {
2405 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2406 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2407
2408 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2409 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2410
2411 if (!status)
2412 continue;
2413
2414 if (dc->hwss.is_abm_supported)
2415 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2416 else
2417 status->is_abm_supported = true;
2418 }
2419 }
2420 }
2421
2422 fail:
2423 dc_state_release(context);
2424
2425 context_alloc_fail:
2426
2427 DC_LOG_DC("%s Finished.\n", __func__);
2428
2429 return res;
2430 }
2431
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2432 bool dc_acquire_release_mpc_3dlut(
2433 struct dc *dc, bool acquire,
2434 struct dc_stream_state *stream,
2435 struct dc_3dlut **lut,
2436 struct dc_transfer_func **shaper)
2437 {
2438 int pipe_idx;
2439 bool ret = false;
2440 bool found_pipe_idx = false;
2441 const struct resource_pool *pool = dc->res_pool;
2442 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2443 int mpcc_id = 0;
2444
2445 if (pool && res_ctx) {
2446 if (acquire) {
2447 /*find pipe idx for the given stream*/
2448 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2449 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2450 found_pipe_idx = true;
2451 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2452 break;
2453 }
2454 }
2455 } else
2456 found_pipe_idx = true;/*for release pipe_idx is not required*/
2457
2458 if (found_pipe_idx) {
2459 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2460 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2461 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2462 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2463 }
2464 }
2465 return ret;
2466 }
2467
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2468 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2469 {
2470 int i;
2471 struct pipe_ctx *pipe;
2472
2473 for (i = 0; i < MAX_PIPES; i++) {
2474 pipe = &context->res_ctx.pipe_ctx[i];
2475
2476 // Don't check flip pending on phantom pipes
2477 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2478 continue;
2479
2480 /* Must set to false to start with, due to OR in update function */
2481 pipe->plane_state->status.is_flip_pending = false;
2482 dc->hwss.update_pending_status(pipe);
2483 if (pipe->plane_state->status.is_flip_pending)
2484 return true;
2485 }
2486 return false;
2487 }
2488
2489 /* Perform updates here which need to be deferred until next vupdate
2490 *
2491 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2492 * but forcing lut memory to shutdown state is immediate. This causes
2493 * single frame corruption as lut gets disabled mid-frame unless shutdown
2494 * is deferred until after entering bypass.
2495 */
process_deferred_updates(struct dc * dc)2496 static void process_deferred_updates(struct dc *dc)
2497 {
2498 int i = 0;
2499
2500 if (dc->debug.enable_mem_low_power.bits.cm) {
2501 ASSERT(dc->dcn_ip->max_num_dpp);
2502 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2503 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2504 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2505 }
2506 }
2507
dc_post_update_surfaces_to_stream(struct dc * dc)2508 void dc_post_update_surfaces_to_stream(struct dc *dc)
2509 {
2510 int i;
2511 struct dc_state *context = dc->current_state;
2512
2513 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2514 return;
2515
2516 post_surface_trace(dc);
2517
2518 /*
2519 * Only relevant for DCN behavior where we can guarantee the optimization
2520 * is safe to apply - retain the legacy behavior for DCE.
2521 */
2522
2523 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2524 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2525 else {
2526 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2527
2528 if (is_flip_pending_in_pipes(dc, context))
2529 return;
2530
2531 for (i = 0; i < dc->res_pool->pipe_count; i++)
2532 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2533 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2534 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2535 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2536 }
2537
2538 process_deferred_updates(dc);
2539
2540 dc->hwss.optimize_bandwidth(dc, context);
2541
2542 if (dc->hwss.update_dsc_pg)
2543 dc->hwss.update_dsc_pg(dc, context, true);
2544 }
2545
2546 dc->optimized_required = false;
2547 dc->wm_optimized_required = false;
2548 }
2549
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2550 bool dc_set_generic_gpio_for_stereo(bool enable,
2551 struct gpio_service *gpio_service)
2552 {
2553 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2554 struct gpio_pin_info pin_info;
2555 struct gpio *generic;
2556 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2557 GFP_KERNEL);
2558
2559 if (!config)
2560 return false;
2561 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2562
2563 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2564 kfree(config);
2565 return false;
2566 } else {
2567 generic = dal_gpio_service_create_generic_mux(
2568 gpio_service,
2569 pin_info.offset,
2570 pin_info.mask);
2571 }
2572
2573 if (!generic) {
2574 kfree(config);
2575 return false;
2576 }
2577
2578 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2579
2580 config->enable_output_from_mux = enable;
2581 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2582
2583 if (gpio_result == GPIO_RESULT_OK)
2584 gpio_result = dal_mux_setup_config(generic, config);
2585
2586 if (gpio_result == GPIO_RESULT_OK) {
2587 dal_gpio_close(generic);
2588 dal_gpio_destroy_generic_mux(&generic);
2589 kfree(config);
2590 return true;
2591 } else {
2592 dal_gpio_close(generic);
2593 dal_gpio_destroy_generic_mux(&generic);
2594 kfree(config);
2595 return false;
2596 }
2597 }
2598
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2599 static bool is_surface_in_context(
2600 const struct dc_state *context,
2601 const struct dc_plane_state *plane_state)
2602 {
2603 int j;
2604
2605 for (j = 0; j < MAX_PIPES; j++) {
2606 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2607
2608 if (plane_state == pipe_ctx->plane_state) {
2609 return true;
2610 }
2611 }
2612
2613 return false;
2614 }
2615
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2616 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2617 {
2618 union surface_update_flags *update_flags = &u->surface->update_flags;
2619 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2620
2621 if (!u->plane_info)
2622 return UPDATE_TYPE_FAST;
2623
2624 if (u->plane_info->color_space != u->surface->color_space) {
2625 update_flags->bits.color_space_change = 1;
2626 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2627 }
2628
2629 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2630 update_flags->bits.horizontal_mirror_change = 1;
2631 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2632 }
2633
2634 if (u->plane_info->rotation != u->surface->rotation) {
2635 update_flags->bits.rotation_change = 1;
2636 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2637 }
2638
2639 if (u->plane_info->format != u->surface->format) {
2640 update_flags->bits.pixel_format_change = 1;
2641 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2642 }
2643
2644 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2645 update_flags->bits.stereo_format_change = 1;
2646 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2647 }
2648
2649 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2650 update_flags->bits.per_pixel_alpha_change = 1;
2651 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2652 }
2653
2654 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2655 update_flags->bits.global_alpha_change = 1;
2656 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2657 }
2658
2659 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2660 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2661 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2662 /* During DCC on/off, stutter period is calculated before
2663 * DCC has fully transitioned. This results in incorrect
2664 * stutter period calculation. Triggering a full update will
2665 * recalculate stutter period.
2666 */
2667 update_flags->bits.dcc_change = 1;
2668 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2669 }
2670
2671 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2672 resource_pixel_format_to_bpp(u->surface->format)) {
2673 /* different bytes per element will require full bandwidth
2674 * and DML calculation
2675 */
2676 update_flags->bits.bpp_change = 1;
2677 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2678 }
2679
2680 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2681 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2682 update_flags->bits.plane_size_change = 1;
2683 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2684 }
2685
2686
2687 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2688 sizeof(struct dc_tiling_info)) != 0) {
2689 update_flags->bits.swizzle_change = 1;
2690 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2691
2692 /* todo: below are HW dependent, we should add a hook to
2693 * DCE/N resource and validated there.
2694 */
2695 if (!dc->debug.skip_full_updated_if_possible) {
2696 /* swizzled mode requires RQ to be setup properly,
2697 * thus need to run DML to calculate RQ settings
2698 */
2699 update_flags->bits.bandwidth_change = 1;
2700 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2701 }
2702 }
2703
2704 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2705 return update_type;
2706 }
2707
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2708 static enum surface_update_type get_scaling_info_update_type(
2709 const struct dc *dc,
2710 const struct dc_surface_update *u)
2711 {
2712 union surface_update_flags *update_flags = &u->surface->update_flags;
2713
2714 if (!u->scaling_info)
2715 return UPDATE_TYPE_FAST;
2716
2717 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2718 || u->scaling_info->src_rect.height != u->surface->src_rect.height
2719 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2720 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2721 || u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2722 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2723 || u->scaling_info->scaling_quality.integer_scaling !=
2724 u->surface->scaling_quality.integer_scaling) {
2725 update_flags->bits.scaling_change = 1;
2726
2727 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2728 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2729 /* Making src rect bigger requires a bandwidth change */
2730 update_flags->bits.clock_change = 1;
2731
2732 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2733 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2734 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2735 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2736 /* Making dst rect smaller requires a bandwidth change */
2737 update_flags->bits.bandwidth_change = 1;
2738
2739 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2740 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2741 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2742 /* Changing clip size of a large surface may result in MPC slice count change */
2743 update_flags->bits.bandwidth_change = 1;
2744 }
2745
2746 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2747 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2748 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2749 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2750 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2751 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2752 update_flags->bits.position_change = 1;
2753
2754 /* process every update flag before returning */
2755 if (update_flags->bits.clock_change
2756 || update_flags->bits.bandwidth_change
2757 || update_flags->bits.scaling_change)
2758 return UPDATE_TYPE_FULL;
2759
2760 if (update_flags->bits.position_change)
2761 return UPDATE_TYPE_MED;
2762
2763 return UPDATE_TYPE_FAST;
2764 }
2765
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2766 static enum surface_update_type det_surface_update(const struct dc *dc,
2767 const struct dc_surface_update *u)
2768 {
2769 const struct dc_state *context = dc->current_state;
2770 enum surface_update_type type;
2771 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2772 union surface_update_flags *update_flags = &u->surface->update_flags;
2773
2774 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2775 update_flags->raw = 0xFFFFFFFF;
2776 return UPDATE_TYPE_FULL;
2777 }
2778
2779 update_flags->raw = 0; // Reset all flags
2780
2781 type = get_plane_info_update_type(dc, u);
2782 elevate_update_type(&overall_type, type);
2783
2784 type = get_scaling_info_update_type(dc, u);
2785 elevate_update_type(&overall_type, type);
2786
2787 if (u->flip_addr) {
2788 update_flags->bits.addr_update = 1;
2789 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2790 update_flags->bits.tmz_changed = 1;
2791 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2792 }
2793 }
2794 if (u->in_transfer_func)
2795 update_flags->bits.in_transfer_func_change = 1;
2796
2797 if (u->input_csc_color_matrix)
2798 update_flags->bits.input_csc_change = 1;
2799
2800 if (u->coeff_reduction_factor)
2801 update_flags->bits.coeff_reduction_change = 1;
2802
2803 if (u->gamut_remap_matrix)
2804 update_flags->bits.gamut_remap_change = 1;
2805
2806 if (u->blend_tf)
2807 update_flags->bits.gamma_change = 1;
2808
2809 if (u->gamma) {
2810 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2811
2812 if (u->plane_info)
2813 format = u->plane_info->format;
2814 else
2815 format = u->surface->format;
2816
2817 if (dce_use_lut(format))
2818 update_flags->bits.gamma_change = 1;
2819 }
2820
2821 if (u->lut3d_func || u->func_shaper)
2822 update_flags->bits.lut_3d = 1;
2823
2824 if (u->hdr_mult.value)
2825 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2826 update_flags->bits.hdr_mult = 1;
2827 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2828 }
2829
2830 if (u->sdr_white_level_nits)
2831 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2832 update_flags->bits.sdr_white_level_nits = 1;
2833 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2834 }
2835
2836 if (u->cm2_params) {
2837 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2838 != u->surface->mcm_shaper_3dlut_setting)
2839 || (u->cm2_params->component_settings.lut1d_enable
2840 != u->surface->mcm_lut1d_enable))
2841 update_flags->bits.mcm_transfer_function_enable_change = 1;
2842 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2843 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2844 update_flags->bits.mcm_transfer_function_enable_change = 1;
2845 }
2846 if (update_flags->bits.in_transfer_func_change) {
2847 type = UPDATE_TYPE_MED;
2848 elevate_update_type(&overall_type, type);
2849 }
2850
2851 if (update_flags->bits.lut_3d &&
2852 u->surface->mcm_luts.lut3d_data.lut3d_src != DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM) {
2853 type = UPDATE_TYPE_FULL;
2854 elevate_update_type(&overall_type, type);
2855 }
2856 if (update_flags->bits.mcm_transfer_function_enable_change) {
2857 type = UPDATE_TYPE_FULL;
2858 elevate_update_type(&overall_type, type);
2859 }
2860
2861 if (dc->debug.enable_legacy_fast_update &&
2862 (update_flags->bits.gamma_change ||
2863 update_flags->bits.gamut_remap_change ||
2864 update_flags->bits.input_csc_change ||
2865 update_flags->bits.coeff_reduction_change)) {
2866 type = UPDATE_TYPE_FULL;
2867 elevate_update_type(&overall_type, type);
2868 }
2869 return overall_type;
2870 }
2871
2872 /* May need to flip the desktop plane in cases where MPO plane receives a flip but desktop plane doesn't
2873 * while both planes are flip_immediate
2874 */
force_immediate_gsl_plane_flip(struct dc * dc,struct dc_surface_update * updates,int surface_count)2875 static void force_immediate_gsl_plane_flip(struct dc *dc, struct dc_surface_update *updates, int surface_count)
2876 {
2877 bool has_flip_immediate_plane = false;
2878 int i;
2879
2880 for (i = 0; i < surface_count; i++) {
2881 if (updates[i].surface->flip_immediate) {
2882 has_flip_immediate_plane = true;
2883 break;
2884 }
2885 }
2886
2887 if (has_flip_immediate_plane && surface_count > 1) {
2888 for (i = 0; i < surface_count; i++) {
2889 if (updates[i].surface->flip_immediate)
2890 updates[i].surface->update_flags.bits.addr_update = 1;
2891 }
2892 }
2893 }
2894
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2895 static enum surface_update_type check_update_surfaces_for_stream(
2896 struct dc *dc,
2897 struct dc_surface_update *updates,
2898 int surface_count,
2899 struct dc_stream_update *stream_update,
2900 const struct dc_stream_status *stream_status)
2901 {
2902 int i;
2903 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2904
2905 if (dc->idle_optimizations_allowed || dc_can_clear_cursor_limit(dc))
2906 overall_type = UPDATE_TYPE_FULL;
2907
2908 if (stream_status == NULL || stream_status->plane_count != surface_count)
2909 overall_type = UPDATE_TYPE_FULL;
2910
2911 if (stream_update && stream_update->pending_test_pattern) {
2912 overall_type = UPDATE_TYPE_FULL;
2913 }
2914
2915 if (stream_update && stream_update->hw_cursor_req) {
2916 overall_type = UPDATE_TYPE_FULL;
2917 }
2918
2919 /* some stream updates require passive update */
2920 if (stream_update) {
2921 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2922
2923 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2924 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2925 stream_update->integer_scaling_update)
2926 su_flags->bits.scaling = 1;
2927
2928 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2929 su_flags->bits.out_tf = 1;
2930
2931 if (stream_update->abm_level)
2932 su_flags->bits.abm_level = 1;
2933
2934 if (stream_update->dpms_off)
2935 su_flags->bits.dpms_off = 1;
2936
2937 if (stream_update->gamut_remap)
2938 su_flags->bits.gamut_remap = 1;
2939
2940 if (stream_update->wb_update)
2941 su_flags->bits.wb_update = 1;
2942
2943 if (stream_update->dsc_config)
2944 su_flags->bits.dsc_changed = 1;
2945
2946 if (stream_update->mst_bw_update)
2947 su_flags->bits.mst_bw = 1;
2948
2949 if (stream_update->stream->freesync_on_desktop &&
2950 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2951 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2952 su_flags->bits.fams_changed = 1;
2953
2954 if (stream_update->scaler_sharpener_update)
2955 su_flags->bits.scaler_sharpener = 1;
2956
2957 if (stream_update->sharpening_required)
2958 su_flags->bits.sharpening_required = 1;
2959
2960 if (stream_update->output_color_space)
2961 su_flags->bits.out_csc = 1;
2962
2963 if (su_flags->raw != 0)
2964 overall_type = UPDATE_TYPE_FULL;
2965
2966 if (stream_update->output_csc_transform)
2967 su_flags->bits.out_csc = 1;
2968
2969 /* Output transfer function changes do not require bandwidth recalculation,
2970 * so don't trigger a full update
2971 */
2972 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2973 su_flags->bits.out_tf = 1;
2974 }
2975
2976 for (i = 0 ; i < surface_count; i++) {
2977 enum surface_update_type type =
2978 det_surface_update(dc, &updates[i]);
2979
2980 elevate_update_type(&overall_type, type);
2981 }
2982
2983 return overall_type;
2984 }
2985
2986 /*
2987 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2988 *
2989 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2990 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2991 enum surface_update_type dc_check_update_surfaces_for_stream(
2992 struct dc *dc,
2993 struct dc_surface_update *updates,
2994 int surface_count,
2995 struct dc_stream_update *stream_update,
2996 const struct dc_stream_status *stream_status)
2997 {
2998 int i;
2999 enum surface_update_type type;
3000
3001 if (stream_update)
3002 stream_update->stream->update_flags.raw = 0;
3003 for (i = 0; i < surface_count; i++)
3004 updates[i].surface->update_flags.raw = 0;
3005
3006 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
3007 if (type == UPDATE_TYPE_FULL) {
3008 if (stream_update) {
3009 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
3010 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
3011 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
3012 }
3013 for (i = 0; i < surface_count; i++)
3014 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
3015 }
3016
3017 if (type == UPDATE_TYPE_FAST) {
3018 // If there's an available clock comparator, we use that.
3019 if (dc->clk_mgr->funcs->are_clock_states_equal) {
3020 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
3021 dc->optimized_required = true;
3022 // Else we fallback to mem compare.
3023 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
3024 dc->optimized_required = true;
3025 }
3026
3027 dc->optimized_required |= dc->wm_optimized_required;
3028 }
3029
3030 return type;
3031 }
3032
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)3033 static struct dc_stream_status *stream_get_status(
3034 struct dc_state *ctx,
3035 struct dc_stream_state *stream)
3036 {
3037 uint8_t i;
3038
3039 for (i = 0; i < ctx->stream_count; i++) {
3040 if (stream == ctx->streams[i]) {
3041 return &ctx->stream_status[i];
3042 }
3043 }
3044
3045 return NULL;
3046 }
3047
3048 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
3049
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)3050 static void copy_surface_update_to_plane(
3051 struct dc_plane_state *surface,
3052 struct dc_surface_update *srf_update)
3053 {
3054 if (srf_update->flip_addr) {
3055 surface->address = srf_update->flip_addr->address;
3056 surface->flip_immediate =
3057 srf_update->flip_addr->flip_immediate;
3058 surface->time.time_elapsed_in_us[surface->time.index] =
3059 srf_update->flip_addr->flip_timestamp_in_us -
3060 surface->time.prev_update_time_in_us;
3061 surface->time.prev_update_time_in_us =
3062 srf_update->flip_addr->flip_timestamp_in_us;
3063 surface->time.index++;
3064 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
3065 surface->time.index = 0;
3066
3067 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
3068 }
3069
3070 if (srf_update->scaling_info) {
3071 surface->scaling_quality =
3072 srf_update->scaling_info->scaling_quality;
3073 surface->dst_rect =
3074 srf_update->scaling_info->dst_rect;
3075 surface->src_rect =
3076 srf_update->scaling_info->src_rect;
3077 surface->clip_rect =
3078 srf_update->scaling_info->clip_rect;
3079 }
3080
3081 if (srf_update->plane_info) {
3082 surface->color_space =
3083 srf_update->plane_info->color_space;
3084 surface->format =
3085 srf_update->plane_info->format;
3086 surface->plane_size =
3087 srf_update->plane_info->plane_size;
3088 surface->rotation =
3089 srf_update->plane_info->rotation;
3090 surface->horizontal_mirror =
3091 srf_update->plane_info->horizontal_mirror;
3092 surface->stereo_format =
3093 srf_update->plane_info->stereo_format;
3094 surface->tiling_info =
3095 srf_update->plane_info->tiling_info;
3096 surface->visible =
3097 srf_update->plane_info->visible;
3098 surface->per_pixel_alpha =
3099 srf_update->plane_info->per_pixel_alpha;
3100 surface->global_alpha =
3101 srf_update->plane_info->global_alpha;
3102 surface->global_alpha_value =
3103 srf_update->plane_info->global_alpha_value;
3104 surface->dcc =
3105 srf_update->plane_info->dcc;
3106 surface->layer_index =
3107 srf_update->plane_info->layer_index;
3108 }
3109
3110 if (srf_update->gamma) {
3111 memcpy(&surface->gamma_correction.entries,
3112 &srf_update->gamma->entries,
3113 sizeof(struct dc_gamma_entries));
3114 surface->gamma_correction.is_identity =
3115 srf_update->gamma->is_identity;
3116 surface->gamma_correction.num_entries =
3117 srf_update->gamma->num_entries;
3118 surface->gamma_correction.type =
3119 srf_update->gamma->type;
3120 }
3121
3122 if (srf_update->in_transfer_func) {
3123 surface->in_transfer_func.sdr_ref_white_level =
3124 srf_update->in_transfer_func->sdr_ref_white_level;
3125 surface->in_transfer_func.tf =
3126 srf_update->in_transfer_func->tf;
3127 surface->in_transfer_func.type =
3128 srf_update->in_transfer_func->type;
3129 memcpy(&surface->in_transfer_func.tf_pts,
3130 &srf_update->in_transfer_func->tf_pts,
3131 sizeof(struct dc_transfer_func_distributed_points));
3132 }
3133
3134 if (srf_update->cm2_params) {
3135 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
3136 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
3137 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
3138 }
3139
3140 if (srf_update->func_shaper) {
3141 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
3142 sizeof(surface->in_shaper_func));
3143
3144 if (surface->mcm_shaper_3dlut_setting >= DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER)
3145 surface->mcm_luts.shaper = &surface->in_shaper_func;
3146 }
3147
3148 if (srf_update->lut3d_func)
3149 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
3150 sizeof(surface->lut3d_func));
3151
3152 if (srf_update->hdr_mult.value)
3153 surface->hdr_mult =
3154 srf_update->hdr_mult;
3155
3156 if (srf_update->sdr_white_level_nits)
3157 surface->sdr_white_level_nits =
3158 srf_update->sdr_white_level_nits;
3159
3160 if (srf_update->blend_tf) {
3161 memcpy(&surface->blend_tf, srf_update->blend_tf,
3162 sizeof(surface->blend_tf));
3163
3164 if (surface->mcm_lut1d_enable)
3165 surface->mcm_luts.lut1d_func = &surface->blend_tf;
3166 }
3167
3168 if (srf_update->cm2_params || srf_update->blend_tf)
3169 surface->lut_bank_a = !surface->lut_bank_a;
3170
3171 if (srf_update->input_csc_color_matrix)
3172 surface->input_csc_color_matrix =
3173 *srf_update->input_csc_color_matrix;
3174
3175 if (srf_update->coeff_reduction_factor)
3176 surface->coeff_reduction_factor =
3177 *srf_update->coeff_reduction_factor;
3178
3179 if (srf_update->gamut_remap_matrix)
3180 surface->gamut_remap_matrix =
3181 *srf_update->gamut_remap_matrix;
3182
3183 if (srf_update->cursor_csc_color_matrix)
3184 surface->cursor_csc_color_matrix =
3185 *srf_update->cursor_csc_color_matrix;
3186
3187 if (srf_update->bias_and_scale.bias_and_scale_valid)
3188 surface->bias_and_scale =
3189 srf_update->bias_and_scale;
3190 }
3191
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)3192 static void copy_stream_update_to_stream(struct dc *dc,
3193 struct dc_state *context,
3194 struct dc_stream_state *stream,
3195 struct dc_stream_update *update)
3196 {
3197 struct dc_context *dc_ctx = dc->ctx;
3198
3199 if (update == NULL || stream == NULL)
3200 return;
3201
3202 if (update->src.height && update->src.width)
3203 stream->src = update->src;
3204
3205 if (update->dst.height && update->dst.width)
3206 stream->dst = update->dst;
3207
3208 if (update->out_transfer_func) {
3209 stream->out_transfer_func.sdr_ref_white_level =
3210 update->out_transfer_func->sdr_ref_white_level;
3211 stream->out_transfer_func.tf = update->out_transfer_func->tf;
3212 stream->out_transfer_func.type =
3213 update->out_transfer_func->type;
3214 memcpy(&stream->out_transfer_func.tf_pts,
3215 &update->out_transfer_func->tf_pts,
3216 sizeof(struct dc_transfer_func_distributed_points));
3217 }
3218
3219 if (update->hdr_static_metadata)
3220 stream->hdr_static_metadata = *update->hdr_static_metadata;
3221
3222 if (update->abm_level)
3223 stream->abm_level = *update->abm_level;
3224
3225 if (update->periodic_interrupt)
3226 stream->periodic_interrupt = *update->periodic_interrupt;
3227
3228 if (update->gamut_remap)
3229 stream->gamut_remap_matrix = *update->gamut_remap;
3230
3231 /* Note: this being updated after mode set is currently not a use case
3232 * however if it arises OCSC would need to be reprogrammed at the
3233 * minimum
3234 */
3235 if (update->output_color_space)
3236 stream->output_color_space = *update->output_color_space;
3237
3238 if (update->output_csc_transform)
3239 stream->csc_color_matrix = *update->output_csc_transform;
3240
3241 if (update->vrr_infopacket)
3242 stream->vrr_infopacket = *update->vrr_infopacket;
3243
3244 if (update->hw_cursor_req)
3245 stream->hw_cursor_req = *update->hw_cursor_req;
3246
3247 if (update->allow_freesync)
3248 stream->allow_freesync = *update->allow_freesync;
3249
3250 if (update->vrr_active_variable)
3251 stream->vrr_active_variable = *update->vrr_active_variable;
3252
3253 if (update->vrr_active_fixed)
3254 stream->vrr_active_fixed = *update->vrr_active_fixed;
3255
3256 if (update->crtc_timing_adjust) {
3257 if (stream->adjust.v_total_min != update->crtc_timing_adjust->v_total_min ||
3258 stream->adjust.v_total_max != update->crtc_timing_adjust->v_total_max ||
3259 stream->adjust.timing_adjust_pending)
3260 update->crtc_timing_adjust->timing_adjust_pending = true;
3261 stream->adjust = *update->crtc_timing_adjust;
3262 update->crtc_timing_adjust->timing_adjust_pending = false;
3263 }
3264
3265 if (update->dpms_off)
3266 stream->dpms_off = *update->dpms_off;
3267
3268 if (update->hfvsif_infopacket)
3269 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3270
3271 if (update->vtem_infopacket)
3272 stream->vtem_infopacket = *update->vtem_infopacket;
3273
3274 if (update->vsc_infopacket)
3275 stream->vsc_infopacket = *update->vsc_infopacket;
3276
3277 if (update->vsp_infopacket)
3278 stream->vsp_infopacket = *update->vsp_infopacket;
3279
3280 if (update->adaptive_sync_infopacket)
3281 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
3282
3283 if (update->dither_option)
3284 stream->dither_option = *update->dither_option;
3285
3286 if (update->pending_test_pattern)
3287 stream->test_pattern = *update->pending_test_pattern;
3288 /* update current stream with writeback info */
3289 if (update->wb_update) {
3290 int i;
3291
3292 stream->num_wb_info = update->wb_update->num_wb_info;
3293 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3294 for (i = 0; i < stream->num_wb_info; i++)
3295 stream->writeback_info[i] =
3296 update->wb_update->writeback_info[i];
3297 }
3298 if (update->dsc_config) {
3299 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3300 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3301 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3302 update->dsc_config->num_slices_v != 0);
3303
3304 /* Use temporarry context for validating new DSC config */
3305 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3306
3307 if (dsc_validate_context) {
3308 stream->timing.dsc_cfg = *update->dsc_config;
3309 stream->timing.flags.DSC = enable_dsc;
3310 if (dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context,
3311 DC_VALIDATE_MODE_ONLY) != DC_OK) {
3312 stream->timing.dsc_cfg = old_dsc_cfg;
3313 stream->timing.flags.DSC = old_dsc_enabled;
3314 update->dsc_config = NULL;
3315 }
3316
3317 dc_state_release(dsc_validate_context);
3318 } else {
3319 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3320 update->dsc_config = NULL;
3321 }
3322 }
3323 if (update->scaler_sharpener_update)
3324 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3325 if (update->sharpening_required)
3326 stream->sharpening_required = *update->sharpening_required;
3327 }
3328
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3329 static void backup_planes_and_stream_state(
3330 struct dc_scratch_space *scratch,
3331 struct dc_stream_state *stream)
3332 {
3333 int i;
3334 struct dc_stream_status *status = dc_stream_get_status(stream);
3335
3336 if (!status)
3337 return;
3338
3339 for (i = 0; i < status->plane_count; i++) {
3340 dc_plane_copy_config(&scratch->plane_states[i], status->plane_states[i]);
3341 }
3342 scratch->stream_state = *stream;
3343 }
3344
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3345 static void restore_planes_and_stream_state(
3346 struct dc_scratch_space *scratch,
3347 struct dc_stream_state *stream)
3348 {
3349 int i;
3350 struct dc_stream_status *status = dc_stream_get_status(stream);
3351
3352 if (!status)
3353 return;
3354
3355 for (i = 0; i < status->plane_count; i++) {
3356 dc_plane_copy_config(status->plane_states[i], &scratch->plane_states[i]);
3357 }
3358 *stream = scratch->stream_state;
3359 }
3360
3361 /**
3362 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3363 *
3364 * @dc: Current DC state
3365 * @context: New DC state to be programmed
3366 * @surface_count: Number of surfaces that have an updated
3367 * @stream: Corresponding stream to be updated in the current flip
3368 *
3369 * Updating seamless boot flags do not need to be part of the commit sequence. This
3370 * helper function will update the seamless boot flags on each flip (if required)
3371 * outside of the HW commit sequence (fast or slow).
3372 *
3373 * Return: void
3374 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3375 static void update_seamless_boot_flags(struct dc *dc,
3376 struct dc_state *context,
3377 int surface_count,
3378 struct dc_stream_state *stream)
3379 {
3380 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3381 /* Optimize seamless boot flag keeps clocks and watermarks high until
3382 * first flip. After first flip, optimization is required to lower
3383 * bandwidth. Important to note that it is expected UEFI will
3384 * only light up a single display on POST, therefore we only expect
3385 * one stream with seamless boot flag set.
3386 */
3387 if (stream->apply_seamless_boot_optimization) {
3388 stream->apply_seamless_boot_optimization = false;
3389
3390 if (get_seamless_boot_stream_count(context) == 0)
3391 dc->optimized_required = true;
3392 }
3393 }
3394 }
3395
3396 /**
3397 * update_planes_and_stream_state() - The function takes planes and stream
3398 * updates as inputs and determines the appropriate update type. If update type
3399 * is FULL, the function allocates a new context, populates and validates it.
3400 * Otherwise, it updates current dc context. The function will return both
3401 * new_context and new_update_type back to the caller. The function also backs
3402 * up both current and new contexts into corresponding dc state scratch memory.
3403 * TODO: The function does too many things, and even conditionally allocates dc
3404 * context memory implicitly. We should consider to break it down.
3405 *
3406 * @dc: Current DC state
3407 * @srf_updates: an array of surface updates
3408 * @surface_count: surface update count
3409 * @stream: Corresponding stream to be updated
3410 * @stream_update: stream update
3411 * @new_update_type: [out] determined update type by the function
3412 * @new_context: [out] new context allocated and validated if update type is
3413 * FULL, reference to current context if update type is less than FULL.
3414 *
3415 * Return: true if a valid update is populated into new_context, false
3416 * otherwise.
3417 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3418 static bool update_planes_and_stream_state(struct dc *dc,
3419 struct dc_surface_update *srf_updates, int surface_count,
3420 struct dc_stream_state *stream,
3421 struct dc_stream_update *stream_update,
3422 enum surface_update_type *new_update_type,
3423 struct dc_state **new_context)
3424 {
3425 struct dc_state *context;
3426 int i, j;
3427 enum surface_update_type update_type;
3428 const struct dc_stream_status *stream_status;
3429 struct dc_context *dc_ctx = dc->ctx;
3430
3431 stream_status = dc_stream_get_status(stream);
3432
3433 if (!stream_status) {
3434 if (surface_count) /* Only an error condition if surf_count non-zero*/
3435 ASSERT(false);
3436
3437 return false; /* Cannot commit surface to stream that is not committed */
3438 }
3439
3440 context = dc->current_state;
3441 update_type = dc_check_update_surfaces_for_stream(
3442 dc, srf_updates, surface_count, stream_update, stream_status);
3443 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
3444 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
3445 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
3446 */
3447 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
3448 if (update_type == UPDATE_TYPE_FULL)
3449 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3450
3451 /* update current stream with the new updates */
3452 copy_stream_update_to_stream(dc, context, stream, stream_update);
3453
3454 /* do not perform surface update if surface has invalid dimensions
3455 * (all zero) and no scaling_info is provided
3456 */
3457 if (surface_count > 0) {
3458 for (i = 0; i < surface_count; i++) {
3459 if ((srf_updates[i].surface->src_rect.width == 0 ||
3460 srf_updates[i].surface->src_rect.height == 0 ||
3461 srf_updates[i].surface->dst_rect.width == 0 ||
3462 srf_updates[i].surface->dst_rect.height == 0) &&
3463 (!srf_updates[i].scaling_info ||
3464 srf_updates[i].scaling_info->src_rect.width == 0 ||
3465 srf_updates[i].scaling_info->src_rect.height == 0 ||
3466 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3467 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3468 DC_ERROR("Invalid src/dst rects in surface update!\n");
3469 return false;
3470 }
3471 }
3472 }
3473
3474 if (update_type >= update_surface_trace_level)
3475 update_surface_trace(dc, srf_updates, surface_count);
3476
3477 for (i = 0; i < surface_count; i++)
3478 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3479
3480 if (update_type >= UPDATE_TYPE_FULL) {
3481 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3482
3483 for (i = 0; i < surface_count; i++)
3484 new_planes[i] = srf_updates[i].surface;
3485
3486 /* initialize scratch memory for building context */
3487 context = dc_state_create_copy(dc->current_state);
3488 if (context == NULL) {
3489 DC_ERROR("Failed to allocate new validate context!\n");
3490 return false;
3491 }
3492
3493 /* For each full update, remove all existing phantom pipes first.
3494 * Ensures that we have enough pipes for newly added MPO planes
3495 */
3496 dc_state_remove_phantom_streams_and_planes(dc, context);
3497 dc_state_release_phantom_streams_and_planes(dc, context);
3498
3499 /*remove old surfaces from context */
3500 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3501
3502 BREAK_TO_DEBUGGER();
3503 goto fail;
3504 }
3505
3506 /* add surface to context */
3507 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3508
3509 BREAK_TO_DEBUGGER();
3510 goto fail;
3511 }
3512 }
3513
3514 /* save update parameters into surface */
3515 for (i = 0; i < surface_count; i++) {
3516 struct dc_plane_state *surface = srf_updates[i].surface;
3517
3518 if (update_type != UPDATE_TYPE_MED)
3519 continue;
3520 if (surface->update_flags.bits.position_change) {
3521 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3522 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3523
3524 if (pipe_ctx->plane_state != surface)
3525 continue;
3526
3527 resource_build_scaling_params(pipe_ctx);
3528 }
3529 }
3530 }
3531
3532 if (update_type == UPDATE_TYPE_FULL) {
3533 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
3534 BREAK_TO_DEBUGGER();
3535 goto fail;
3536 }
3537 }
3538 update_seamless_boot_flags(dc, context, surface_count, stream);
3539
3540 *new_context = context;
3541 *new_update_type = update_type;
3542 if (update_type == UPDATE_TYPE_FULL)
3543 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3544
3545 return true;
3546
3547 fail:
3548 dc_state_release(context);
3549
3550 return false;
3551
3552 }
3553
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3554 static void commit_planes_do_stream_update(struct dc *dc,
3555 struct dc_stream_state *stream,
3556 struct dc_stream_update *stream_update,
3557 enum surface_update_type update_type,
3558 struct dc_state *context)
3559 {
3560 int j;
3561
3562 // Stream updates
3563 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3564 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3565
3566 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3567
3568 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3569 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3570
3571 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3572 stream_update->vrr_infopacket ||
3573 stream_update->vsc_infopacket ||
3574 stream_update->vsp_infopacket ||
3575 stream_update->hfvsif_infopacket ||
3576 stream_update->adaptive_sync_infopacket ||
3577 stream_update->vtem_infopacket) {
3578 resource_build_info_frame(pipe_ctx);
3579 dc->hwss.update_info_frame(pipe_ctx);
3580
3581 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3582 dc->link_srv->dp_trace_source_sequence(
3583 pipe_ctx->stream->link,
3584 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3585 }
3586
3587 if (stream_update->hdr_static_metadata &&
3588 stream->use_dynamic_meta &&
3589 dc->hwss.set_dmdata_attributes &&
3590 pipe_ctx->stream->dmdata_address.quad_part != 0)
3591 dc->hwss.set_dmdata_attributes(pipe_ctx);
3592
3593 if (stream_update->gamut_remap)
3594 dc_stream_set_gamut_remap(dc, stream);
3595
3596 if (stream_update->output_csc_transform)
3597 dc_stream_program_csc_matrix(dc, stream);
3598
3599 if (stream_update->dither_option) {
3600 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3601 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3602 &pipe_ctx->stream->bit_depth_params);
3603 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3604 &stream->bit_depth_params,
3605 &stream->clamping);
3606 while (odm_pipe) {
3607 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3608 &stream->bit_depth_params,
3609 &stream->clamping);
3610 odm_pipe = odm_pipe->next_odm_pipe;
3611 }
3612 }
3613
3614 if (stream_update->cursor_attributes)
3615 program_cursor_attributes(dc, stream);
3616
3617 if (stream_update->cursor_position)
3618 program_cursor_position(dc, stream);
3619
3620 /* Full fe update*/
3621 if (update_type == UPDATE_TYPE_FAST)
3622 continue;
3623
3624 if (stream_update->dsc_config)
3625 dc->link_srv->update_dsc_config(pipe_ctx);
3626
3627 if (stream_update->mst_bw_update) {
3628 if (stream_update->mst_bw_update->is_increase)
3629 dc->link_srv->increase_mst_payload(pipe_ctx,
3630 stream_update->mst_bw_update->mst_stream_bw);
3631 else
3632 dc->link_srv->reduce_mst_payload(pipe_ctx,
3633 stream_update->mst_bw_update->mst_stream_bw);
3634 }
3635
3636 if (stream_update->pending_test_pattern) {
3637 /*
3638 * test pattern params depends on ODM topology
3639 * changes that we could be applying to front
3640 * end. Since at the current stage front end
3641 * changes are not yet applied. We can only
3642 * apply test pattern in hw based on current
3643 * state and populate the final test pattern
3644 * params in new state. If current and new test
3645 * pattern params are different as result of
3646 * different ODM topology being used, it will be
3647 * detected and handle during front end
3648 * programming update.
3649 */
3650 dc->link_srv->dp_set_test_pattern(stream->link,
3651 stream->test_pattern.type,
3652 stream->test_pattern.color_space,
3653 stream->test_pattern.p_link_settings,
3654 stream->test_pattern.p_custom_pattern,
3655 stream->test_pattern.cust_pattern_size);
3656 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3657 }
3658
3659 if (stream_update->dpms_off) {
3660 if (*stream_update->dpms_off) {
3661 dc->link_srv->set_dpms_off(pipe_ctx);
3662 /* for dpms, keep acquired resources*/
3663 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3664 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3665
3666 dc->optimized_required = true;
3667
3668 } else {
3669 if (get_seamless_boot_stream_count(context) == 0)
3670 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3671 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3672 }
3673 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3674 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3675 /*
3676 * Workaround for firmware issue in some receivers where they don't pick up
3677 * correct output color space unless DP link is disabled/re-enabled
3678 */
3679 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3680 }
3681
3682 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3683 bool should_program_abm = true;
3684
3685 // if otg funcs defined check if blanked before programming
3686 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3687 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3688 should_program_abm = false;
3689
3690 if (should_program_abm) {
3691 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3692 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3693 } else {
3694 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3695 pipe_ctx->stream_res.abm, stream->abm_level);
3696 }
3697 }
3698 }
3699 }
3700 }
3701 }
3702
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3703 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3704 {
3705 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3706 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3707 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3708 return true;
3709
3710 if (stream->link->replay_settings.config.replay_supported)
3711 return true;
3712
3713 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3714 return true;
3715
3716 return false;
3717 }
3718
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3719 void dc_dmub_update_dirty_rect(struct dc *dc,
3720 int surface_count,
3721 struct dc_stream_state *stream,
3722 struct dc_surface_update *srf_updates,
3723 struct dc_state *context)
3724 {
3725 union dmub_rb_cmd cmd;
3726 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3727 unsigned int i, j;
3728 unsigned int panel_inst = 0;
3729
3730 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3731 return;
3732
3733 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3734 return;
3735
3736 memset(&cmd, 0x0, sizeof(cmd));
3737 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3738 cmd.update_dirty_rect.header.sub_type = 0;
3739 cmd.update_dirty_rect.header.payload_bytes =
3740 sizeof(cmd.update_dirty_rect) -
3741 sizeof(cmd.update_dirty_rect.header);
3742 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3743 for (i = 0; i < surface_count; i++) {
3744 struct dc_plane_state *plane_state = srf_updates[i].surface;
3745 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3746
3747 if (!srf_updates[i].surface || !flip_addr)
3748 continue;
3749 /* Do not send in immediate flip mode */
3750 if (srf_updates[i].surface->flip_immediate)
3751 continue;
3752
3753 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3754 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3755 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3756 sizeof(flip_addr->dirty_rects));
3757 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3758 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3759
3760 if (pipe_ctx->stream != stream)
3761 continue;
3762 if (pipe_ctx->plane_state != plane_state)
3763 continue;
3764
3765 update_dirty_rect->panel_inst = panel_inst;
3766 update_dirty_rect->pipe_idx = j;
3767 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3768 }
3769 }
3770 }
3771
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3772 static void build_dmub_update_dirty_rect(
3773 struct dc *dc,
3774 int surface_count,
3775 struct dc_stream_state *stream,
3776 struct dc_surface_update *srf_updates,
3777 struct dc_state *context,
3778 struct dc_dmub_cmd dc_dmub_cmd[],
3779 unsigned int *dmub_cmd_count)
3780 {
3781 union dmub_rb_cmd cmd;
3782 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3783 unsigned int i, j;
3784 unsigned int panel_inst = 0;
3785
3786 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3787 return;
3788
3789 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3790 return;
3791
3792 memset(&cmd, 0x0, sizeof(cmd));
3793 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3794 cmd.update_dirty_rect.header.sub_type = 0;
3795 cmd.update_dirty_rect.header.payload_bytes =
3796 sizeof(cmd.update_dirty_rect) -
3797 sizeof(cmd.update_dirty_rect.header);
3798 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3799 for (i = 0; i < surface_count; i++) {
3800 struct dc_plane_state *plane_state = srf_updates[i].surface;
3801 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3802
3803 if (!srf_updates[i].surface || !flip_addr)
3804 continue;
3805 /* Do not send in immediate flip mode */
3806 if (srf_updates[i].surface->flip_immediate)
3807 continue;
3808 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3809 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3810 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3811 sizeof(flip_addr->dirty_rects));
3812 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3813 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3814
3815 if (pipe_ctx->stream != stream)
3816 continue;
3817 if (pipe_ctx->plane_state != plane_state)
3818 continue;
3819 update_dirty_rect->panel_inst = panel_inst;
3820 update_dirty_rect->pipe_idx = j;
3821 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3822 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3823 (*dmub_cmd_count)++;
3824 }
3825 }
3826 }
3827
check_address_only_update(union surface_update_flags update_flags)3828 static bool check_address_only_update(union surface_update_flags update_flags)
3829 {
3830 union surface_update_flags addr_only_update_flags;
3831 addr_only_update_flags.raw = 0;
3832 addr_only_update_flags.bits.addr_update = 1;
3833
3834 return update_flags.bits.addr_update &&
3835 !(update_flags.raw & ~addr_only_update_flags.raw);
3836 }
3837
3838 /**
3839 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3840 *
3841 * @dc: Current DC state
3842 * @srf_updates: Array of surface updates
3843 * @surface_count: Number of surfaces that have an updated
3844 * @stream: Corresponding stream to be updated in the current flip
3845 * @context: New DC state to be programmed
3846 *
3847 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3848 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3849 *
3850 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3851 * to build an array of commands and have them sent while the OTG lock is acquired.
3852 *
3853 * Return: void
3854 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3855 static void build_dmub_cmd_list(struct dc *dc,
3856 struct dc_surface_update *srf_updates,
3857 int surface_count,
3858 struct dc_stream_state *stream,
3859 struct dc_state *context,
3860 struct dc_dmub_cmd dc_dmub_cmd[],
3861 unsigned int *dmub_cmd_count)
3862 {
3863 // Initialize cmd count to 0
3864 *dmub_cmd_count = 0;
3865 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3866 }
3867
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3868 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3869 struct dc_surface_update *srf_updates,
3870 int surface_count,
3871 struct dc_stream_state *stream,
3872 struct dc_state *context)
3873 {
3874 int i, j;
3875
3876 /* update dirty rect for PSR */
3877 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3878 srf_updates, context);
3879
3880 /* Perform requested Updates */
3881 for (i = 0; i < surface_count; i++) {
3882 struct dc_plane_state *plane_state = srf_updates[i].surface;
3883
3884 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3885 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3886
3887 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3888 continue;
3889
3890 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3891 continue;
3892
3893 /* update pipe context for plane */
3894 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3895 dc->hwss.update_plane_addr(dc, pipe_ctx);
3896 }
3897 }
3898
3899 /* Send commands to DMCUB */
3900 dc_dmub_srv_fams2_passthrough_flip(dc,
3901 context,
3902 stream,
3903 srf_updates,
3904 surface_count);
3905 }
3906
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3907 static void commit_planes_for_stream_fast(struct dc *dc,
3908 struct dc_surface_update *srf_updates,
3909 int surface_count,
3910 struct dc_stream_state *stream,
3911 struct dc_stream_update *stream_update,
3912 enum surface_update_type update_type,
3913 struct dc_state *context)
3914 {
3915 int i, j;
3916 struct pipe_ctx *top_pipe_to_program = NULL;
3917 struct dc_stream_status *stream_status = NULL;
3918 bool should_offload_fams2_flip = false;
3919 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3920
3921 if (should_lock_all_pipes)
3922 determine_pipe_unlock_order(dc, context);
3923
3924 if (dc->debug.fams2_config.bits.enable &&
3925 dc->debug.fams2_config.bits.enable_offload_flip &&
3926 dc_state_is_fams2_in_use(dc, context)) {
3927 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3928 should_offload_fams2_flip = true;
3929 for (i = 0; i < surface_count; i++) {
3930 if (srf_updates[i].surface &&
3931 srf_updates[i].surface->update_flags.raw &&
3932 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3933 /* more than address update, need to acquire FAMS2 lock */
3934 should_offload_fams2_flip = false;
3935 break;
3936 }
3937 }
3938 if (stream_update) {
3939 /* more than address update, need to acquire FAMS2 lock */
3940 should_offload_fams2_flip = false;
3941 }
3942 }
3943
3944 dc_exit_ips_for_hw_access(dc);
3945
3946 dc_z10_restore(dc);
3947
3948 top_pipe_to_program = resource_get_otg_master_for_stream(
3949 &context->res_ctx,
3950 stream);
3951
3952 if (!top_pipe_to_program)
3953 return;
3954
3955 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3956 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3957
3958 if (pipe->stream && pipe->plane_state) {
3959 if (!dc->debug.using_dml2)
3960 set_p_state_switch_method(dc, context, pipe);
3961
3962 if (dc->debug.visual_confirm)
3963 dc_update_visual_confirm_color(dc, context, pipe);
3964 }
3965 }
3966
3967 for (i = 0; i < surface_count; i++) {
3968 struct dc_plane_state *plane_state = srf_updates[i].surface;
3969 /*set logical flag for lock/unlock use*/
3970 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3971 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3972
3973 if (!pipe_ctx->plane_state)
3974 continue;
3975 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3976 continue;
3977
3978 pipe_ctx->plane_state->triplebuffer_flips = false;
3979 if (update_type == UPDATE_TYPE_FAST &&
3980 dc->hwss.program_triplebuffer != NULL &&
3981 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3982 /*triple buffer for VUpdate only*/
3983 pipe_ctx->plane_state->triplebuffer_flips = true;
3984 }
3985 }
3986 }
3987
3988 stream_status = dc_state_get_stream_status(context, stream);
3989
3990 if (should_offload_fams2_flip) {
3991 commit_plane_for_stream_offload_fams2_flip(dc,
3992 srf_updates,
3993 surface_count,
3994 stream,
3995 context);
3996 } else if (stream_status) {
3997 build_dmub_cmd_list(dc,
3998 srf_updates,
3999 surface_count,
4000 stream,
4001 context,
4002 context->dc_dmub_cmd,
4003 &(context->dmub_cmd_count));
4004 hwss_build_fast_sequence(dc,
4005 context->dc_dmub_cmd,
4006 context->dmub_cmd_count,
4007 context->block_sequence,
4008 &(context->block_sequence_steps),
4009 top_pipe_to_program,
4010 stream_status,
4011 context);
4012 hwss_execute_sequence(dc,
4013 context->block_sequence,
4014 context->block_sequence_steps);
4015 }
4016
4017 /* Clear update flags so next flip doesn't have redundant programming
4018 * (if there's no stream update, the update flags are not cleared).
4019 * Surface updates are cleared unconditionally at the beginning of each flip,
4020 * so no need to clear here.
4021 */
4022 if (top_pipe_to_program->stream)
4023 top_pipe_to_program->stream->update_flags.raw = 0;
4024 }
4025
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)4026 static void commit_planes_for_stream(struct dc *dc,
4027 struct dc_surface_update *srf_updates,
4028 int surface_count,
4029 struct dc_stream_state *stream,
4030 struct dc_stream_update *stream_update,
4031 enum surface_update_type update_type,
4032 struct dc_state *context)
4033 {
4034 int i, j;
4035 struct pipe_ctx *top_pipe_to_program = NULL;
4036 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
4037 bool subvp_prev_use = false;
4038 bool subvp_curr_use = false;
4039 uint8_t current_stream_mask = 0;
4040
4041 if (should_lock_all_pipes)
4042 determine_pipe_unlock_order(dc, context);
4043 // Once we apply the new subvp context to hardware it won't be in the
4044 // dc->current_state anymore, so we have to cache it before we apply
4045 // the new SubVP context
4046 subvp_prev_use = false;
4047 dc_exit_ips_for_hw_access(dc);
4048
4049 dc_z10_restore(dc);
4050 if (update_type == UPDATE_TYPE_FULL && dc->optimized_required)
4051 hwss_process_outstanding_hw_updates(dc, dc->current_state);
4052
4053 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
4054 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
4055
4056 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4057 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4058
4059 if (pipe->stream && pipe->plane_state) {
4060 if (!dc->debug.using_dml2)
4061 set_p_state_switch_method(dc, context, pipe);
4062
4063 if (dc->debug.visual_confirm)
4064 dc_update_visual_confirm_color(dc, context, pipe);
4065 }
4066 }
4067
4068 if (update_type == UPDATE_TYPE_FULL) {
4069 dc_allow_idle_optimizations(dc, false);
4070
4071 if (get_seamless_boot_stream_count(context) == 0)
4072 dc->hwss.prepare_bandwidth(dc, context);
4073
4074 if (dc->hwss.update_dsc_pg)
4075 dc->hwss.update_dsc_pg(dc, context, false);
4076
4077 context_clock_trace(dc, context);
4078 }
4079
4080 if (update_type == UPDATE_TYPE_FULL)
4081 hwss_wait_for_outstanding_hw_updates(dc, dc->current_state);
4082
4083 top_pipe_to_program = resource_get_otg_master_for_stream(
4084 &context->res_ctx,
4085 stream);
4086 ASSERT(top_pipe_to_program != NULL);
4087
4088 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4089 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4090
4091 // Check old context for SubVP
4092 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
4093 if (subvp_prev_use)
4094 break;
4095 }
4096
4097 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4098 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
4099
4100 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
4101 subvp_curr_use = true;
4102 break;
4103 }
4104 }
4105
4106 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
4107 struct pipe_ctx *mpcc_pipe;
4108 struct pipe_ctx *odm_pipe;
4109
4110 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
4111 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
4112 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
4113 }
4114
4115 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4116 if (top_pipe_to_program &&
4117 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4118 if (should_use_dmub_lock(stream->link)) {
4119 union dmub_hw_lock_flags hw_locks = { 0 };
4120 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4121
4122 hw_locks.bits.lock_dig = 1;
4123 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4124
4125 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4126 true,
4127 &hw_locks,
4128 &inst_flags);
4129 } else
4130 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
4131 top_pipe_to_program->stream_res.tg);
4132 }
4133
4134 if (dc->hwss.wait_for_dcc_meta_propagation) {
4135 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
4136 }
4137
4138 if (dc->hwseq->funcs.wait_for_pipe_update_if_needed)
4139 dc->hwseq->funcs.wait_for_pipe_update_if_needed(dc, top_pipe_to_program, update_type == UPDATE_TYPE_FAST);
4140
4141 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4142 if (dc->hwss.subvp_pipe_control_lock)
4143 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
4144
4145 if (dc->hwss.fams2_global_control_lock)
4146 dc->hwss.fams2_global_control_lock(dc, context, true);
4147
4148 dc->hwss.interdependent_update_lock(dc, context, true);
4149 } else {
4150 if (dc->hwss.subvp_pipe_control_lock)
4151 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4152
4153 if (dc->hwss.fams2_global_control_lock)
4154 dc->hwss.fams2_global_control_lock(dc, context, true);
4155
4156 /* Lock the top pipe while updating plane addrs, since freesync requires
4157 * plane addr update event triggers to be synchronized.
4158 * top_pipe_to_program is expected to never be NULL
4159 */
4160 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
4161 }
4162
4163 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
4164
4165 // Stream updates
4166 if (stream_update)
4167 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
4168
4169 if (surface_count == 0) {
4170 /*
4171 * In case of turning off screen, no need to program front end a second time.
4172 * just return after program blank.
4173 */
4174 if (dc->hwss.apply_ctx_for_surface)
4175 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
4176 if (dc->hwss.program_front_end_for_ctx)
4177 dc->hwss.program_front_end_for_ctx(dc, context);
4178
4179 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4180 dc->hwss.interdependent_update_lock(dc, context, false);
4181 } else {
4182 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4183 }
4184 dc->hwss.post_unlock_program_front_end(dc, context);
4185
4186 if (update_type != UPDATE_TYPE_FAST)
4187 if (dc->hwss.commit_subvp_config)
4188 dc->hwss.commit_subvp_config(dc, context);
4189
4190 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4191 * move the SubVP lock to after the phantom pipes have been setup
4192 */
4193 if (dc->hwss.subvp_pipe_control_lock)
4194 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
4195 NULL, subvp_prev_use);
4196
4197 if (dc->hwss.fams2_global_control_lock)
4198 dc->hwss.fams2_global_control_lock(dc, context, false);
4199
4200 return;
4201 }
4202
4203 if (update_type != UPDATE_TYPE_FAST) {
4204 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4205 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4206
4207 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
4208 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
4209 pipe_ctx->stream && pipe_ctx->plane_state) {
4210 /* Only update visual confirm for SUBVP and Mclk switching here.
4211 * The bar appears on all pipes, so we need to update the bar on all displays,
4212 * so the information doesn't get stale.
4213 */
4214 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
4215 pipe_ctx->plane_res.hubp->inst);
4216 }
4217 }
4218 }
4219
4220 for (i = 0; i < surface_count; i++) {
4221 struct dc_plane_state *plane_state = srf_updates[i].surface;
4222
4223 /*set logical flag for lock/unlock use*/
4224 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4225 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4226 if (!pipe_ctx->plane_state)
4227 continue;
4228 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4229 continue;
4230 pipe_ctx->plane_state->triplebuffer_flips = false;
4231 if (update_type == UPDATE_TYPE_FAST &&
4232 dc->hwss.program_triplebuffer != NULL &&
4233 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
4234 /*triple buffer for VUpdate only*/
4235 pipe_ctx->plane_state->triplebuffer_flips = true;
4236 }
4237 }
4238 if (update_type == UPDATE_TYPE_FULL) {
4239 /* force vsync flip when reconfiguring pipes to prevent underflow */
4240 plane_state->flip_immediate = false;
4241 plane_state->triplebuffer_flips = false;
4242 }
4243 }
4244
4245 // Update Type FULL, Surface updates
4246 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4247 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4248
4249 if (!pipe_ctx->top_pipe &&
4250 !pipe_ctx->prev_odm_pipe &&
4251 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
4252 struct dc_stream_status *stream_status = NULL;
4253
4254 if (!pipe_ctx->plane_state)
4255 continue;
4256
4257 /* Full fe update*/
4258 if (update_type == UPDATE_TYPE_FAST)
4259 continue;
4260
4261 stream_status =
4262 stream_get_status(context, pipe_ctx->stream);
4263
4264 if (dc->hwss.apply_ctx_for_surface && stream_status)
4265 dc->hwss.apply_ctx_for_surface(
4266 dc, pipe_ctx->stream, stream_status->plane_count, context);
4267 }
4268 }
4269
4270 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4271 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4272
4273 if (!pipe_ctx->plane_state)
4274 continue;
4275
4276 /* Full fe update*/
4277 if (update_type == UPDATE_TYPE_FAST)
4278 continue;
4279
4280 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
4281 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4282 /*turn off triple buffer for full update*/
4283 dc->hwss.program_triplebuffer(
4284 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4285 }
4286 }
4287
4288 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
4289 dc->hwss.program_front_end_for_ctx(dc, context);
4290
4291 //Pipe busy until some frame and line #
4292 if (dc->hwseq->funcs.set_wait_for_update_needed_for_pipe && update_type == UPDATE_TYPE_FULL) {
4293 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4294 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4295
4296 dc->hwseq->funcs.set_wait_for_update_needed_for_pipe(dc, pipe_ctx);
4297 }
4298 }
4299
4300 if (dc->debug.validate_dml_output) {
4301 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4302 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
4303 if (cur_pipe->stream == NULL)
4304 continue;
4305
4306 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
4307 cur_pipe->plane_res.hubp, dc->ctx,
4308 &context->res_ctx.pipe_ctx[i].rq_regs,
4309 &context->res_ctx.pipe_ctx[i].dlg_regs,
4310 &context->res_ctx.pipe_ctx[i].ttu_regs);
4311 }
4312 }
4313 }
4314
4315 // Update Type FAST, Surface updates
4316 if (update_type == UPDATE_TYPE_FAST) {
4317 if (dc->hwss.set_flip_control_gsl)
4318 for (i = 0; i < surface_count; i++) {
4319 struct dc_plane_state *plane_state = srf_updates[i].surface;
4320
4321 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4322 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4323
4324 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4325 continue;
4326
4327 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4328 continue;
4329
4330 // GSL has to be used for flip immediate
4331 dc->hwss.set_flip_control_gsl(pipe_ctx,
4332 pipe_ctx->plane_state->flip_immediate);
4333 }
4334 }
4335
4336 /* Perform requested Updates */
4337 for (i = 0; i < surface_count; i++) {
4338 struct dc_plane_state *plane_state = srf_updates[i].surface;
4339
4340 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4341 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4342
4343 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4344 continue;
4345
4346 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4347 continue;
4348
4349 if (srf_updates[i].cm2_params &&
4350 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4351 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4352 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4353 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4354 dc->hwss.trigger_3dlut_dma_load)
4355 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4356
4357 /*program triple buffer after lock based on flip type*/
4358 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4359 /*only enable triplebuffer for fast_update*/
4360 dc->hwss.program_triplebuffer(
4361 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4362 }
4363 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4364 dc->hwss.update_plane_addr(dc, pipe_ctx);
4365 }
4366 }
4367 }
4368
4369 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4370 dc->hwss.interdependent_update_lock(dc, context, false);
4371 } else {
4372 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4373 }
4374
4375 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4376 if (top_pipe_to_program &&
4377 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4378 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4379 top_pipe_to_program->stream_res.tg,
4380 CRTC_STATE_VACTIVE);
4381 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4382 top_pipe_to_program->stream_res.tg,
4383 CRTC_STATE_VBLANK);
4384 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4385 top_pipe_to_program->stream_res.tg,
4386 CRTC_STATE_VACTIVE);
4387
4388 if (should_use_dmub_lock(stream->link)) {
4389 union dmub_hw_lock_flags hw_locks = { 0 };
4390 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4391
4392 hw_locks.bits.lock_dig = 1;
4393 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4394
4395 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4396 false,
4397 &hw_locks,
4398 &inst_flags);
4399 } else
4400 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4401 top_pipe_to_program->stream_res.tg);
4402 }
4403
4404 if (subvp_curr_use) {
4405 /* If enabling subvp or transitioning from subvp->subvp, enable the
4406 * phantom streams before we program front end for the phantom pipes.
4407 */
4408 if (update_type != UPDATE_TYPE_FAST) {
4409 if (dc->hwss.enable_phantom_streams)
4410 dc->hwss.enable_phantom_streams(dc, context);
4411 }
4412 }
4413
4414 if (update_type != UPDATE_TYPE_FAST)
4415 dc->hwss.post_unlock_program_front_end(dc, context);
4416
4417 if (subvp_prev_use && !subvp_curr_use) {
4418 /* If disabling subvp, disable phantom streams after front end
4419 * programming has completed (we turn on phantom OTG in order
4420 * to complete the plane disable for phantom pipes).
4421 */
4422
4423 if (dc->hwss.disable_phantom_streams)
4424 dc->hwss.disable_phantom_streams(dc, context);
4425 }
4426
4427 if (update_type != UPDATE_TYPE_FAST)
4428 if (dc->hwss.commit_subvp_config)
4429 dc->hwss.commit_subvp_config(dc, context);
4430 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4431 * move the SubVP lock to after the phantom pipes have been setup
4432 */
4433 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4434 if (dc->hwss.subvp_pipe_control_lock)
4435 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4436 if (dc->hwss.fams2_global_control_lock)
4437 dc->hwss.fams2_global_control_lock(dc, context, false);
4438 } else {
4439 if (dc->hwss.subvp_pipe_control_lock)
4440 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4441 if (dc->hwss.fams2_global_control_lock)
4442 dc->hwss.fams2_global_control_lock(dc, context, false);
4443 }
4444
4445 // Fire manual trigger only when bottom plane is flipped
4446 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4447 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4448
4449 if (!pipe_ctx->plane_state)
4450 continue;
4451
4452 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4453 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4454 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4455 pipe_ctx->plane_state->skip_manual_trigger)
4456 continue;
4457
4458 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4459 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4460 }
4461
4462 current_stream_mask = get_stream_mask(dc, context);
4463 if (current_stream_mask != context->stream_mask) {
4464 context->stream_mask = current_stream_mask;
4465 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4466 }
4467 }
4468
4469 /**
4470 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4471 *
4472 * @dc: Used to get the current state status
4473 * @stream: Target stream, which we want to remove the attached planes
4474 * @srf_updates: Array of surface updates
4475 * @surface_count: Number of surface update
4476 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4477 *
4478 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4479 * the MPO if used simultaneously in some specific configurations (e.g.,
4480 * 4k@144). This function checks if the incoming context requires applying a
4481 * transition state with unnecessary pipe splitting and ODM disabled to
4482 * circumvent our hardware limitations to prevent this edge case. If the OPP
4483 * associated with an MPCC might change due to plane additions, this function
4484 * returns true.
4485 *
4486 * Return:
4487 * Return true if OPP and MPCC might change, otherwise, return false.
4488 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4489 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4490 struct dc_stream_state *stream,
4491 struct dc_surface_update *srf_updates,
4492 int surface_count,
4493 bool *is_plane_addition)
4494 {
4495
4496 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4497 bool force_minimal_pipe_splitting = false;
4498 bool subvp_active = false;
4499 uint32_t i;
4500
4501 *is_plane_addition = false;
4502
4503 if (cur_stream_status &&
4504 dc->current_state->stream_count > 0 &&
4505 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4506 /* determine if minimal transition is required due to MPC*/
4507 if (surface_count > 0) {
4508 if (cur_stream_status->plane_count > surface_count) {
4509 force_minimal_pipe_splitting = true;
4510 } else if (cur_stream_status->plane_count < surface_count) {
4511 force_minimal_pipe_splitting = true;
4512 *is_plane_addition = true;
4513 }
4514 }
4515 }
4516
4517 if (cur_stream_status &&
4518 dc->current_state->stream_count == 1 &&
4519 dc->debug.enable_single_display_2to1_odm_policy) {
4520 /* determine if minimal transition is required due to dynamic ODM*/
4521 if (surface_count > 0) {
4522 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4523 force_minimal_pipe_splitting = true;
4524 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4525 force_minimal_pipe_splitting = true;
4526 *is_plane_addition = true;
4527 }
4528 }
4529 }
4530
4531 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4532 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4533
4534 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4535 subvp_active = true;
4536 break;
4537 }
4538 }
4539
4540 /* For SubVP when adding or removing planes we need to add a minimal transition
4541 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4542 * must use the minimal transition path to disable the pipe correctly.
4543 *
4544 * We want to use the minimal transition whenever subvp is active, not only if
4545 * a plane is being added / removed from a subvp stream (MPO plane can be added
4546 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4547 * a min transition to disable subvp.
4548 */
4549 if (cur_stream_status && subvp_active) {
4550 /* determine if minimal transition is required due to SubVP*/
4551 if (cur_stream_status->plane_count > surface_count) {
4552 force_minimal_pipe_splitting = true;
4553 } else if (cur_stream_status->plane_count < surface_count) {
4554 force_minimal_pipe_splitting = true;
4555 *is_plane_addition = true;
4556 }
4557 }
4558
4559 return force_minimal_pipe_splitting;
4560 }
4561
4562 struct pipe_split_policy_backup {
4563 bool dynamic_odm_policy;
4564 bool subvp_policy;
4565 enum pipe_split_policy mpc_policy;
4566 char force_odm[MAX_PIPES];
4567 };
4568
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4569 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4570 struct dc_state *context,
4571 struct pipe_split_policy_backup *policy)
4572 {
4573 int i;
4574
4575 if (!dc->config.is_vmin_only_asic) {
4576 policy->mpc_policy = dc->debug.pipe_split_policy;
4577 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4578 }
4579 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4580 dc->debug.enable_single_display_2to1_odm_policy = false;
4581 policy->subvp_policy = dc->debug.force_disable_subvp;
4582 dc->debug.force_disable_subvp = true;
4583 for (i = 0; i < context->stream_count; i++) {
4584 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4585 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4586 context->streams[i]->debug.force_odm_combine_segments = 0;
4587 }
4588 }
4589
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4590 static void restore_minimal_pipe_split_policy(struct dc *dc,
4591 struct dc_state *context,
4592 struct pipe_split_policy_backup *policy)
4593 {
4594 uint8_t i;
4595
4596 if (!dc->config.is_vmin_only_asic)
4597 dc->debug.pipe_split_policy = policy->mpc_policy;
4598 dc->debug.enable_single_display_2to1_odm_policy =
4599 policy->dynamic_odm_policy;
4600 dc->debug.force_disable_subvp = policy->subvp_policy;
4601 for (i = 0; i < context->stream_count; i++)
4602 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4603 }
4604
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4605 static void release_minimal_transition_state(struct dc *dc,
4606 struct dc_state *minimal_transition_context,
4607 struct dc_state *base_context,
4608 struct pipe_split_policy_backup *policy)
4609 {
4610 restore_minimal_pipe_split_policy(dc, base_context, policy);
4611 dc_state_release(minimal_transition_context);
4612 }
4613
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4614 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4615 {
4616 uint8_t i;
4617 int j;
4618 struct dc_stream_status *stream_status;
4619
4620 for (i = 0; i < context->stream_count; i++) {
4621 stream_status = &context->stream_status[i];
4622
4623 for (j = 0; j < stream_status->plane_count; j++)
4624 stream_status->plane_states[j]->flip_immediate = false;
4625 }
4626 }
4627
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4628 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4629 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4630 {
4631 struct dc_state *minimal_transition_context = NULL;
4632
4633 minimal_transition_context = dc_state_create_copy(base_context);
4634 if (!minimal_transition_context)
4635 return NULL;
4636
4637 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4638 /* commit minimal state */
4639 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context,
4640 DC_VALIDATE_MODE_AND_PROGRAMMING) == DC_OK) {
4641 /* prevent underflow and corruption when reconfiguring pipes */
4642 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4643 } else {
4644 /*
4645 * This should never happen, minimal transition state should
4646 * always be validated first before adding pipe split features.
4647 */
4648 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4649 BREAK_TO_DEBUGGER();
4650 minimal_transition_context = NULL;
4651 }
4652 return minimal_transition_context;
4653 }
4654
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4655 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4656 struct dc *dc,
4657 struct dc_state *initial_state,
4658 struct dc_state *intermediate_state,
4659 struct dc_state *final_state)
4660 {
4661 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4662 intermediate_state) &&
4663 dc->hwss.is_pipe_topology_transition_seamless(dc,
4664 intermediate_state, final_state);
4665 }
4666
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4667 static void swap_and_release_current_context(struct dc *dc,
4668 struct dc_state *new_context, struct dc_stream_state *stream)
4669 {
4670
4671 int i;
4672 struct dc_state *old = dc->current_state;
4673 struct pipe_ctx *pipe_ctx;
4674
4675 /* Since memory free requires elevated IRQ, an interrupt
4676 * request is generated by mem free. If this happens
4677 * between freeing and reassigning the context, our vsync
4678 * interrupt will call into dc and cause a memory
4679 * corruption. Hence, we first reassign the context,
4680 * then free the old context.
4681 */
4682 dc->current_state = new_context;
4683 dc_state_release(old);
4684
4685 // clear any forced full updates
4686 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4687 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4688
4689 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4690 pipe_ctx->plane_state->force_full_update = false;
4691 }
4692 }
4693
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4694 static int initialize_empty_surface_updates(
4695 struct dc_stream_state *stream,
4696 struct dc_surface_update *srf_updates)
4697 {
4698 struct dc_stream_status *status = dc_stream_get_status(stream);
4699 int i;
4700
4701 if (!status)
4702 return 0;
4703
4704 for (i = 0; i < status->plane_count; i++)
4705 srf_updates[i].surface = status->plane_states[i];
4706
4707 return status->plane_count;
4708 }
4709
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4710 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4711 struct dc_state *new_context,
4712 struct dc_stream_state *stream,
4713 struct dc_surface_update *srf_updates,
4714 int surface_count)
4715 {
4716 bool success = false;
4717 struct pipe_split_policy_backup policy;
4718 struct dc_state *intermediate_context =
4719 create_minimal_transition_state(dc, new_context,
4720 &policy);
4721
4722 if (intermediate_context) {
4723 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4724 dc,
4725 dc->current_state,
4726 intermediate_context,
4727 new_context)) {
4728 DC_LOG_DC("commit minimal transition state: base = new state\n");
4729 commit_planes_for_stream(dc, srf_updates,
4730 surface_count, stream, NULL,
4731 UPDATE_TYPE_FULL, intermediate_context);
4732 swap_and_release_current_context(
4733 dc, intermediate_context, stream);
4734 dc_state_retain(dc->current_state);
4735 success = true;
4736 }
4737 release_minimal_transition_state(
4738 dc, intermediate_context, new_context, &policy);
4739 }
4740 return success;
4741 }
4742
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4743 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4744 struct dc_state *new_context, struct dc_stream_state *stream)
4745 {
4746 bool success = false;
4747 struct pipe_split_policy_backup policy;
4748 struct dc_state *intermediate_context;
4749 struct dc_state *old_current_state = dc->current_state;
4750 struct dc_surface_update srf_updates[MAX_SURFACES] = {0};
4751 int surface_count;
4752
4753 /*
4754 * Both current and new contexts share the same stream and plane state
4755 * pointers. When new context is validated, stream and planes get
4756 * populated with new updates such as new plane addresses. This makes
4757 * the current context no longer valid because stream and planes are
4758 * modified from the original. We backup current stream and plane states
4759 * into scratch space whenever we are populating new context. So we can
4760 * restore the original values back by calling the restore function now.
4761 * This restores back the original stream and plane states associated
4762 * with the current state.
4763 */
4764 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4765 dc_state_retain(old_current_state);
4766 intermediate_context = create_minimal_transition_state(dc,
4767 old_current_state, &policy);
4768
4769 if (intermediate_context) {
4770 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4771 dc,
4772 dc->current_state,
4773 intermediate_context,
4774 new_context)) {
4775 DC_LOG_DC("commit minimal transition state: base = current state\n");
4776 surface_count = initialize_empty_surface_updates(
4777 stream, srf_updates);
4778 commit_planes_for_stream(dc, srf_updates,
4779 surface_count, stream, NULL,
4780 UPDATE_TYPE_FULL, intermediate_context);
4781 swap_and_release_current_context(
4782 dc, intermediate_context, stream);
4783 dc_state_retain(dc->current_state);
4784 success = true;
4785 }
4786 release_minimal_transition_state(dc, intermediate_context,
4787 old_current_state, &policy);
4788 }
4789 dc_state_release(old_current_state);
4790 /*
4791 * Restore stream and plane states back to the values associated with
4792 * new context.
4793 */
4794 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4795 return success;
4796 }
4797
4798 /**
4799 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4800 * on current or new context
4801 *
4802 * @dc: DC structure, used to get the current state
4803 * @new_context: New context
4804 * @stream: Stream getting the update for the flip
4805 * @srf_updates: Surface updates
4806 * @surface_count: Number of surfaces
4807 *
4808 * The function takes in current state and new state and determine a minimal
4809 * transition state as the intermediate step which could make the transition
4810 * between current and new states seamless. If found, it will commit the minimal
4811 * transition state and update current state to this minimal transition state
4812 * and return true, if not, it will return false.
4813 *
4814 * Return:
4815 * Return True if the minimal transition succeeded, false otherwise
4816 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4817 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4818 struct dc_state *new_context,
4819 struct dc_stream_state *stream,
4820 struct dc_surface_update *srf_updates,
4821 int surface_count)
4822 {
4823 bool success = commit_minimal_transition_based_on_new_context(
4824 dc, new_context, stream, srf_updates,
4825 surface_count);
4826 if (!success)
4827 success = commit_minimal_transition_based_on_current_context(dc,
4828 new_context, stream);
4829 if (!success)
4830 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4831 return success;
4832 }
4833
4834 /**
4835 * commit_minimal_transition_state - Create a transition pipe split state
4836 *
4837 * @dc: Used to get the current state status
4838 * @transition_base_context: New transition state
4839 *
4840 * In some specific configurations, such as pipe split on multi-display with
4841 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4842 * programming when moving to new planes. To mitigate those types of problems,
4843 * this function adds a transition state that minimizes pipe usage before
4844 * programming the new configuration. When adding a new plane, the current
4845 * state requires the least pipes, so it is applied without splitting. When
4846 * removing a plane, the new state requires the least pipes, so it is applied
4847 * without splitting.
4848 *
4849 * Return:
4850 * Return false if something is wrong in the transition state.
4851 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4852 static bool commit_minimal_transition_state(struct dc *dc,
4853 struct dc_state *transition_base_context)
4854 {
4855 struct dc_state *transition_context;
4856 struct pipe_split_policy_backup policy;
4857 enum dc_status ret = DC_ERROR_UNEXPECTED;
4858 unsigned int i, j;
4859 unsigned int pipe_in_use = 0;
4860 bool subvp_in_use = false;
4861 bool odm_in_use = false;
4862
4863 /* check current pipes in use*/
4864 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4865 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4866
4867 if (pipe->plane_state)
4868 pipe_in_use++;
4869 }
4870
4871 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4872 * pipe, we must use the minimal transition.
4873 */
4874 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4875 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4876
4877 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4878 subvp_in_use = true;
4879 break;
4880 }
4881 }
4882
4883 /* If ODM is enabled and we are adding or removing planes from any ODM
4884 * pipe, we must use the minimal transition.
4885 */
4886 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4887 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4888
4889 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4890 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4891 break;
4892 }
4893 }
4894
4895 /* When the OS add a new surface if we have been used all of pipes with odm combine
4896 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4897 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4898 * call it again. Otherwise return true to skip.
4899 *
4900 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4901 * enter/exit MPO when DCN still have enough resources.
4902 */
4903 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4904 return true;
4905
4906 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4907 dc->current_state == transition_base_context ? "current" : "new",
4908 subvp_in_use ? "Subvp In Use" :
4909 odm_in_use ? "ODM in Use" :
4910 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4911 "Unknown");
4912
4913 dc_state_retain(transition_base_context);
4914 transition_context = create_minimal_transition_state(dc,
4915 transition_base_context, &policy);
4916 if (transition_context) {
4917 ret = dc_commit_state_no_check(dc, transition_context);
4918 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4919 }
4920 dc_state_release(transition_base_context);
4921
4922 if (ret != DC_OK) {
4923 /* this should never happen */
4924 BREAK_TO_DEBUGGER();
4925 return false;
4926 }
4927
4928 /* force full surface update */
4929 for (i = 0; i < dc->current_state->stream_count; i++) {
4930 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4931 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4932 }
4933 }
4934
4935 return true;
4936 }
4937
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4938 void populate_fast_updates(struct dc_fast_update *fast_update,
4939 struct dc_surface_update *srf_updates,
4940 int surface_count,
4941 struct dc_stream_update *stream_update)
4942 {
4943 int i = 0;
4944
4945 if (stream_update) {
4946 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4947 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4948 } else {
4949 fast_update[0].out_transfer_func = NULL;
4950 fast_update[0].output_csc_transform = NULL;
4951 }
4952
4953 for (i = 0; i < surface_count; i++) {
4954 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4955 fast_update[i].gamma = srf_updates[i].gamma;
4956 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4957 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4958 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4959 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4960 }
4961 }
4962
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4963 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4964 {
4965 int i;
4966
4967 if (fast_update[0].out_transfer_func ||
4968 fast_update[0].output_csc_transform)
4969 return true;
4970
4971 for (i = 0; i < surface_count; i++) {
4972 if (fast_update[i].flip_addr ||
4973 fast_update[i].gamma ||
4974 fast_update[i].gamut_remap_matrix ||
4975 fast_update[i].input_csc_color_matrix ||
4976 fast_update[i].cursor_csc_color_matrix ||
4977 fast_update[i].coeff_reduction_factor)
4978 return true;
4979 }
4980
4981 return false;
4982 }
4983
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4984 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4985 {
4986 int i;
4987
4988 if (fast_update[0].out_transfer_func ||
4989 fast_update[0].output_csc_transform)
4990 return true;
4991
4992 for (i = 0; i < surface_count; i++) {
4993 if (fast_update[i].input_csc_color_matrix ||
4994 fast_update[i].gamma ||
4995 fast_update[i].gamut_remap_matrix ||
4996 fast_update[i].coeff_reduction_factor ||
4997 fast_update[i].cursor_csc_color_matrix)
4998 return true;
4999 }
5000
5001 return false;
5002 }
5003
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5004 static bool full_update_required(struct dc *dc,
5005 struct dc_surface_update *srf_updates,
5006 int surface_count,
5007 struct dc_stream_update *stream_update,
5008 struct dc_stream_state *stream)
5009 {
5010
5011 int i;
5012 struct dc_stream_status *stream_status;
5013 const struct dc_state *context = dc->current_state;
5014
5015 for (i = 0; i < surface_count; i++) {
5016 if (srf_updates &&
5017 (srf_updates[i].plane_info ||
5018 srf_updates[i].scaling_info ||
5019 (srf_updates[i].hdr_mult.value &&
5020 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
5021 (srf_updates[i].sdr_white_level_nits &&
5022 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
5023 srf_updates[i].in_transfer_func ||
5024 srf_updates[i].func_shaper ||
5025 srf_updates[i].lut3d_func ||
5026 srf_updates[i].surface->force_full_update ||
5027 (srf_updates[i].flip_addr &&
5028 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
5029 (srf_updates[i].cm2_params &&
5030 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
5031 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
5032 !is_surface_in_context(context, srf_updates[i].surface)))
5033 return true;
5034 }
5035
5036 if (stream_update &&
5037 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
5038 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
5039 stream_update->integer_scaling_update) ||
5040 stream_update->hdr_static_metadata ||
5041 stream_update->abm_level ||
5042 stream_update->periodic_interrupt ||
5043 stream_update->vrr_infopacket ||
5044 stream_update->vsc_infopacket ||
5045 stream_update->vsp_infopacket ||
5046 stream_update->hfvsif_infopacket ||
5047 stream_update->vtem_infopacket ||
5048 stream_update->adaptive_sync_infopacket ||
5049 stream_update->dpms_off ||
5050 stream_update->allow_freesync ||
5051 stream_update->vrr_active_variable ||
5052 stream_update->vrr_active_fixed ||
5053 stream_update->gamut_remap ||
5054 stream_update->output_color_space ||
5055 stream_update->dither_option ||
5056 stream_update->wb_update ||
5057 stream_update->dsc_config ||
5058 stream_update->mst_bw_update ||
5059 stream_update->func_shaper ||
5060 stream_update->lut3d_func ||
5061 stream_update->pending_test_pattern ||
5062 stream_update->crtc_timing_adjust ||
5063 stream_update->scaler_sharpener_update ||
5064 stream_update->hw_cursor_req))
5065 return true;
5066
5067 if (stream) {
5068 stream_status = dc_stream_get_status(stream);
5069 if (stream_status == NULL || stream_status->plane_count != surface_count)
5070 return true;
5071 }
5072 if (dc->idle_optimizations_allowed)
5073 return true;
5074
5075 if (dc_can_clear_cursor_limit(dc))
5076 return true;
5077
5078 return false;
5079 }
5080
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)5081 static bool fast_update_only(struct dc *dc,
5082 struct dc_fast_update *fast_update,
5083 struct dc_surface_update *srf_updates,
5084 int surface_count,
5085 struct dc_stream_update *stream_update,
5086 struct dc_stream_state *stream)
5087 {
5088 return fast_updates_exist(fast_update, surface_count)
5089 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
5090 }
5091
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5092 static bool update_planes_and_stream_v1(struct dc *dc,
5093 struct dc_surface_update *srf_updates, int surface_count,
5094 struct dc_stream_state *stream,
5095 struct dc_stream_update *stream_update,
5096 struct dc_state *state)
5097 {
5098 const struct dc_stream_status *stream_status;
5099 enum surface_update_type update_type;
5100 struct dc_state *context;
5101 struct dc_context *dc_ctx = dc->ctx;
5102 int i, j;
5103 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5104
5105 dc_exit_ips_for_hw_access(dc);
5106
5107 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5108 stream_status = dc_stream_get_status(stream);
5109 context = dc->current_state;
5110
5111 update_type = dc_check_update_surfaces_for_stream(
5112 dc, srf_updates, surface_count, stream_update, stream_status);
5113 /* It is possible to receive a flip for one plane while there are multiple flip_immediate planes in the same stream.
5114 * E.g. Desktop and MPO plane are flip_immediate but only the MPO plane received a flip
5115 * Force the other flip_immediate planes to flip so GSL doesn't wait for a flip that won't come.
5116 */
5117 force_immediate_gsl_plane_flip(dc, srf_updates, surface_count);
5118
5119 if (update_type >= UPDATE_TYPE_FULL) {
5120
5121 /* initialize scratch memory for building context */
5122 context = dc_state_create_copy(state);
5123 if (context == NULL) {
5124 DC_ERROR("Failed to allocate new validate context!\n");
5125 return false;
5126 }
5127
5128 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5129 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
5130 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5131
5132 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
5133 new_pipe->plane_state->force_full_update = true;
5134 }
5135 } else if (update_type == UPDATE_TYPE_FAST) {
5136 /*
5137 * Previous frame finished and HW is ready for optimization.
5138 */
5139 dc_post_update_surfaces_to_stream(dc);
5140 }
5141
5142 for (i = 0; i < surface_count; i++) {
5143 struct dc_plane_state *surface = srf_updates[i].surface;
5144
5145 copy_surface_update_to_plane(surface, &srf_updates[i]);
5146
5147 if (update_type >= UPDATE_TYPE_MED) {
5148 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5149 struct pipe_ctx *pipe_ctx =
5150 &context->res_ctx.pipe_ctx[j];
5151
5152 if (pipe_ctx->plane_state != surface)
5153 continue;
5154
5155 resource_build_scaling_params(pipe_ctx);
5156 }
5157 }
5158 }
5159
5160 copy_stream_update_to_stream(dc, context, stream, stream_update);
5161
5162 if (update_type >= UPDATE_TYPE_FULL) {
5163 if (dc->res_pool->funcs->validate_bandwidth(dc, context, DC_VALIDATE_MODE_AND_PROGRAMMING) != DC_OK) {
5164 DC_ERROR("Mode validation failed for stream update!\n");
5165 dc_state_release(context);
5166 return false;
5167 }
5168 }
5169
5170 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
5171
5172 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
5173 !dc->debug.enable_legacy_fast_update) {
5174 commit_planes_for_stream_fast(dc,
5175 srf_updates,
5176 surface_count,
5177 stream,
5178 stream_update,
5179 update_type,
5180 context);
5181 } else {
5182 commit_planes_for_stream(
5183 dc,
5184 srf_updates,
5185 surface_count,
5186 stream,
5187 stream_update,
5188 update_type,
5189 context);
5190 }
5191 /*update current_State*/
5192 if (dc->current_state != context) {
5193
5194 struct dc_state *old = dc->current_state;
5195
5196 dc->current_state = context;
5197 dc_state_release(old);
5198
5199 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5200 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
5201
5202 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
5203 pipe_ctx->plane_state->force_full_update = false;
5204 }
5205 }
5206
5207 /* Legacy optimization path for DCE. */
5208 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
5209 dc_post_update_surfaces_to_stream(dc);
5210 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
5211 }
5212 return true;
5213 }
5214
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5215 static bool update_planes_and_stream_v2(struct dc *dc,
5216 struct dc_surface_update *srf_updates, int surface_count,
5217 struct dc_stream_state *stream,
5218 struct dc_stream_update *stream_update)
5219 {
5220 struct dc_state *context;
5221 enum surface_update_type update_type;
5222 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5223
5224 /* In cases where MPO and split or ODM are used transitions can
5225 * cause underflow. Apply stream configuration with minimal pipe
5226 * split first to avoid unsupported transitions for active pipes.
5227 */
5228 bool force_minimal_pipe_splitting = 0;
5229 bool is_plane_addition = 0;
5230 bool is_fast_update_only;
5231
5232 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
5233 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
5234 surface_count, stream_update, stream);
5235 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
5236 dc,
5237 stream,
5238 srf_updates,
5239 surface_count,
5240 &is_plane_addition);
5241
5242 /* on plane addition, minimal state is the current one */
5243 if (force_minimal_pipe_splitting && is_plane_addition &&
5244 !commit_minimal_transition_state(dc, dc->current_state))
5245 return false;
5246
5247 if (!update_planes_and_stream_state(
5248 dc,
5249 srf_updates,
5250 surface_count,
5251 stream,
5252 stream_update,
5253 &update_type,
5254 &context))
5255 return false;
5256
5257 /* on plane removal, minimal state is the new one */
5258 if (force_minimal_pipe_splitting && !is_plane_addition) {
5259 if (!commit_minimal_transition_state(dc, context)) {
5260 dc_state_release(context);
5261 return false;
5262 }
5263 update_type = UPDATE_TYPE_FULL;
5264 }
5265
5266 if (dc->hwss.is_pipe_topology_transition_seamless &&
5267 !dc->hwss.is_pipe_topology_transition_seamless(
5268 dc, dc->current_state, context))
5269 commit_minimal_transition_state_in_dc_update(dc, context, stream,
5270 srf_updates, surface_count);
5271
5272 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
5273 commit_planes_for_stream_fast(dc,
5274 srf_updates,
5275 surface_count,
5276 stream,
5277 stream_update,
5278 update_type,
5279 context);
5280 } else {
5281 if (!stream_update &&
5282 dc->hwss.is_pipe_topology_transition_seamless &&
5283 !dc->hwss.is_pipe_topology_transition_seamless(
5284 dc, dc->current_state, context)) {
5285 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
5286 BREAK_TO_DEBUGGER();
5287 }
5288 commit_planes_for_stream(
5289 dc,
5290 srf_updates,
5291 surface_count,
5292 stream,
5293 stream_update,
5294 update_type,
5295 context);
5296 }
5297 if (dc->current_state != context)
5298 swap_and_release_current_context(dc, context, stream);
5299 return true;
5300 }
5301
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)5302 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
5303 struct dc_surface_update *srf_updates, int surface_count,
5304 struct dc_stream_state *stream,
5305 struct dc_stream_update *stream_update,
5306 enum surface_update_type update_type)
5307 {
5308 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
5309
5310 ASSERT(update_type < UPDATE_TYPE_FULL);
5311 populate_fast_updates(fast_update, srf_updates, surface_count,
5312 stream_update);
5313 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
5314 stream_update, stream) &&
5315 !dc->debug.enable_legacy_fast_update)
5316 commit_planes_for_stream_fast(dc,
5317 srf_updates,
5318 surface_count,
5319 stream,
5320 stream_update,
5321 update_type,
5322 dc->current_state);
5323 else
5324 commit_planes_for_stream(
5325 dc,
5326 srf_updates,
5327 surface_count,
5328 stream,
5329 stream_update,
5330 update_type,
5331 dc->current_state);
5332 }
5333
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)5334 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
5335 struct dc_surface_update *srf_updates, int surface_count,
5336 struct dc_stream_state *stream,
5337 struct dc_stream_update *stream_update,
5338 enum surface_update_type update_type,
5339 struct dc_state *new_context)
5340 {
5341 ASSERT(update_type >= UPDATE_TYPE_FULL);
5342 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5343 dc->current_state, new_context))
5344 /*
5345 * It is required by the feature design that all pipe topologies
5346 * using extra free pipes for power saving purposes such as
5347 * dynamic ODM or SubVp shall only be enabled when it can be
5348 * transitioned seamlessly to AND from its minimal transition
5349 * state. A minimal transition state is defined as the same dc
5350 * state but with all power saving features disabled. So it uses
5351 * the minimum pipe topology. When we can't seamlessly
5352 * transition from state A to state B, we will insert the
5353 * minimal transition state A' or B' in between so seamless
5354 * transition between A and B can be made possible.
5355 */
5356 commit_minimal_transition_state_in_dc_update(dc, new_context,
5357 stream, srf_updates, surface_count);
5358
5359 commit_planes_for_stream(
5360 dc,
5361 srf_updates,
5362 surface_count,
5363 stream,
5364 stream_update,
5365 update_type,
5366 new_context);
5367 }
5368
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5369 static bool update_planes_and_stream_v3(struct dc *dc,
5370 struct dc_surface_update *srf_updates, int surface_count,
5371 struct dc_stream_state *stream,
5372 struct dc_stream_update *stream_update)
5373 {
5374 struct dc_state *new_context;
5375 enum surface_update_type update_type;
5376
5377 /*
5378 * When this function returns true and new_context is not equal to
5379 * current state, the function allocates and validates a new dc state
5380 * and assigns it to new_context. The function expects that the caller
5381 * is responsible to free this memory when new_context is no longer
5382 * used. We swap current with new context and free current instead. So
5383 * new_context's memory will live until the next full update after it is
5384 * replaced by a newer context. Refer to the use of
5385 * swap_and_free_current_context below.
5386 */
5387 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5388 stream, stream_update, &update_type,
5389 &new_context))
5390 return false;
5391
5392 if (new_context == dc->current_state) {
5393 commit_planes_and_stream_update_on_current_context(dc,
5394 srf_updates, surface_count, stream,
5395 stream_update, update_type);
5396 } else {
5397 commit_planes_and_stream_update_with_new_context(dc,
5398 srf_updates, surface_count, stream,
5399 stream_update, update_type, new_context);
5400 swap_and_release_current_context(dc, new_context, stream);
5401 }
5402
5403 return true;
5404 }
5405
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5406 static void clear_update_flags(struct dc_surface_update *srf_updates,
5407 int surface_count, struct dc_stream_state *stream)
5408 {
5409 int i;
5410
5411 if (stream)
5412 stream->update_flags.raw = 0;
5413
5414 for (i = 0; i < surface_count; i++)
5415 if (srf_updates[i].surface)
5416 srf_updates[i].surface->update_flags.raw = 0;
5417 }
5418
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5419 bool dc_update_planes_and_stream(struct dc *dc,
5420 struct dc_surface_update *srf_updates, int surface_count,
5421 struct dc_stream_state *stream,
5422 struct dc_stream_update *stream_update)
5423 {
5424 bool ret = false;
5425
5426 dc_exit_ips_for_hw_access(dc);
5427 /*
5428 * update planes and stream version 3 separates FULL and FAST updates
5429 * to their own sequences. It aims to clean up frequent checks for
5430 * update type resulting unnecessary branching in logic flow. It also
5431 * adds a new commit minimal transition sequence, which detects the need
5432 * for minimal transition based on the actual comparison of current and
5433 * new states instead of "predicting" it based on per feature software
5434 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5435 * minimal transition sequence is made universal to any power saving
5436 * features that would use extra free pipes such as Dynamic ODM/MPC
5437 * Combine, MPO or SubVp. Therefore there is no longer a need to
5438 * specially handle compatibility problems with transitions among those
5439 * features as they are now transparent to the new sequence.
5440 */
5441 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5442 ret = update_planes_and_stream_v3(dc, srf_updates,
5443 surface_count, stream, stream_update);
5444 else
5445 ret = update_planes_and_stream_v2(dc, srf_updates,
5446 surface_count, stream, stream_update);
5447 if (ret && (dc->ctx->dce_version >= DCN_VERSION_3_2 ||
5448 dc->ctx->dce_version == DCN_VERSION_3_01))
5449 clear_update_flags(srf_updates, surface_count, stream);
5450
5451 return ret;
5452 }
5453
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5454 void dc_commit_updates_for_stream(struct dc *dc,
5455 struct dc_surface_update *srf_updates,
5456 int surface_count,
5457 struct dc_stream_state *stream,
5458 struct dc_stream_update *stream_update,
5459 struct dc_state *state)
5460 {
5461 bool ret = false;
5462
5463 dc_exit_ips_for_hw_access(dc);
5464 /* TODO: Since change commit sequence can have a huge impact,
5465 * we decided to only enable it for DCN3x. However, as soon as
5466 * we get more confident about this change we'll need to enable
5467 * the new sequence for all ASICs.
5468 */
5469 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5470 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5471 stream, stream_update);
5472 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5473 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5474 stream, stream_update);
5475 } else
5476 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5477 stream_update, state);
5478
5479 if (ret && dc->ctx->dce_version >= DCN_VERSION_3_2)
5480 clear_update_flags(srf_updates, surface_count, stream);
5481 }
5482
dc_get_current_stream_count(struct dc * dc)5483 uint8_t dc_get_current_stream_count(struct dc *dc)
5484 {
5485 return dc->current_state->stream_count;
5486 }
5487
dc_get_stream_at_index(struct dc * dc,uint8_t i)5488 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5489 {
5490 if (i < dc->current_state->stream_count)
5491 return dc->current_state->streams[i];
5492 return NULL;
5493 }
5494
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5495 enum dc_irq_source dc_interrupt_to_irq_source(
5496 struct dc *dc,
5497 uint32_t src_id,
5498 uint32_t ext_id)
5499 {
5500 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5501 }
5502
5503 /*
5504 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5505 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5506 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5507 {
5508
5509 if (dc == NULL)
5510 return false;
5511
5512 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5513 }
5514
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5515 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5516 {
5517 dal_irq_service_ack(dc->res_pool->irqs, src);
5518 }
5519
dc_power_down_on_boot(struct dc * dc)5520 void dc_power_down_on_boot(struct dc *dc)
5521 {
5522 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5523 dc->hwss.power_down_on_boot) {
5524 if (dc->caps.ips_support)
5525 dc_exit_ips_for_hw_access(dc);
5526 dc->hwss.power_down_on_boot(dc);
5527 }
5528 }
5529
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5530 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5531 {
5532 if (!dc->current_state)
5533 return;
5534
5535 switch (power_state) {
5536 case DC_ACPI_CM_POWER_STATE_D0:
5537 dc_state_construct(dc, dc->current_state);
5538
5539 dc_exit_ips_for_hw_access(dc);
5540
5541 dc_z10_restore(dc);
5542
5543 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5544
5545 dc->hwss.init_hw(dc);
5546
5547 if (dc->hwss.init_sys_ctx != NULL &&
5548 dc->vm_pa_config.valid) {
5549 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5550 }
5551 break;
5552 case DC_ACPI_CM_POWER_STATE_D3:
5553 if (dc->caps.ips_support)
5554 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, DC_ACPI_CM_POWER_STATE_D3);
5555
5556 if (dc->caps.ips_v2_support) {
5557 if (dc->clk_mgr->funcs->set_low_power_state)
5558 dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr);
5559 }
5560 break;
5561 default:
5562 ASSERT(dc->current_state->stream_count == 0);
5563 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5564
5565 dc_state_destruct(dc->current_state);
5566
5567 break;
5568 }
5569 }
5570
dc_resume(struct dc * dc)5571 void dc_resume(struct dc *dc)
5572 {
5573 uint32_t i;
5574
5575 for (i = 0; i < dc->link_count; i++)
5576 dc->link_srv->resume(dc->links[i]);
5577 }
5578
dc_is_dmcu_initialized(struct dc * dc)5579 bool dc_is_dmcu_initialized(struct dc *dc)
5580 {
5581 struct dmcu *dmcu = dc->res_pool->dmcu;
5582
5583 if (dmcu)
5584 return dmcu->funcs->is_dmcu_initialized(dmcu);
5585 return false;
5586 }
5587
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5588 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5589 {
5590 if (dc->hwss.set_clock)
5591 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5592 return DC_ERROR_UNEXPECTED;
5593 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5594 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5595 {
5596 if (dc->hwss.get_clock)
5597 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5598 }
5599
5600 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5601 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5602 {
5603 int i;
5604 bool allow_active;
5605
5606 for (i = 0; i < dc->current_state->stream_count ; i++) {
5607 struct dc_link *link;
5608 struct dc_stream_state *stream = dc->current_state->streams[i];
5609
5610 link = stream->link;
5611 if (!link)
5612 continue;
5613
5614 if (link->psr_settings.psr_feature_enabled) {
5615 if (enable && !link->psr_settings.psr_allow_active) {
5616 allow_active = true;
5617 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5618 return false;
5619 } else if (!enable && link->psr_settings.psr_allow_active) {
5620 allow_active = false;
5621 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5622 return false;
5623 }
5624 }
5625 }
5626
5627 return true;
5628 }
5629
5630 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5631 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5632 {
5633 int i;
5634 bool allow_active;
5635
5636 for (i = 0; i < dc->current_state->stream_count; i++) {
5637 struct dc_link *link;
5638 struct dc_stream_state *stream = dc->current_state->streams[i];
5639
5640 link = stream->link;
5641 if (!link)
5642 continue;
5643
5644 if (link->replay_settings.replay_feature_enabled) {
5645 if (active && !link->replay_settings.replay_allow_active) {
5646 allow_active = true;
5647 if (!dc_link_set_replay_allow_active(link, &allow_active,
5648 false, false, NULL))
5649 return false;
5650 } else if (!active && link->replay_settings.replay_allow_active) {
5651 allow_active = false;
5652 if (!dc_link_set_replay_allow_active(link, &allow_active,
5653 true, false, NULL))
5654 return false;
5655 }
5656 }
5657 }
5658
5659 return true;
5660 }
5661
5662 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5663 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5664 {
5665 dc_exit_ips_for_hw_access(dc);
5666
5667 dc->config.disable_ips = disable_ips;
5668
5669 return true;
5670 }
5671
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5672 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5673 {
5674 int idle_fclk_khz = 0, idle_dramclk_khz = 0, i = 0;
5675 enum mall_stream_type subvp_pipe_type[MAX_PIPES] = {0};
5676 struct pipe_ctx *pipe = NULL;
5677 struct dc_state *context = dc->current_state;
5678
5679 if (dc->debug.disable_idle_power_optimizations) {
5680 DC_LOG_DEBUG("%s: disabled\n", __func__);
5681 return;
5682 }
5683
5684 if (allow != dc->idle_optimizations_allowed)
5685 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5686 dc->idle_optimizations_allowed, allow, caller_name);
5687
5688 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5689 return;
5690
5691 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5692 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5693 return;
5694
5695 if (allow == dc->idle_optimizations_allowed)
5696 return;
5697
5698 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5699 dc->hwss.apply_idle_power_optimizations(dc, allow)) {
5700 dc->idle_optimizations_allowed = allow;
5701 DC_LOG_DEBUG("%s: %s\n", __func__, allow ? "enabled" : "disabled");
5702 }
5703
5704 // log idle clocks and sub vp pipe types at idle optimization time
5705 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_fclk)
5706 idle_fclk_khz = dc->clk_mgr->funcs->get_hard_min_fclk(dc->clk_mgr);
5707
5708 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->get_hard_min_memclk)
5709 idle_dramclk_khz = dc->clk_mgr->funcs->get_hard_min_memclk(dc->clk_mgr);
5710
5711 if (dc->res_pool && context) {
5712 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5713 pipe = &context->res_ctx.pipe_ctx[i];
5714 subvp_pipe_type[i] = dc_state_get_pipe_subvp_type(context, pipe);
5715 }
5716 }
5717
5718 DC_LOG_DC("%s: allow_idle=%d\n HardMinUClk_Khz=%d HardMinDramclk_Khz=%d\n Pipe_0=%d Pipe_1=%d Pipe_2=%d Pipe_3=%d Pipe_4=%d Pipe_5=%d (caller=%s)\n",
5719 __func__, allow, idle_fclk_khz, idle_dramclk_khz, subvp_pipe_type[0], subvp_pipe_type[1], subvp_pipe_type[2],
5720 subvp_pipe_type[3], subvp_pipe_type[4], subvp_pipe_type[5], caller_name);
5721
5722 }
5723
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5724 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5725 {
5726 if (dc->caps.ips_support)
5727 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5728 }
5729
dc_dmub_is_ips_idle_state(struct dc * dc)5730 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5731 {
5732 if (dc->debug.disable_idle_power_optimizations)
5733 return false;
5734
5735 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5736 return false;
5737
5738 if (!dc->ctx->dmub_srv)
5739 return false;
5740
5741 return dc->ctx->dmub_srv->idle_allowed;
5742 }
5743
5744 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5745 void dc_unlock_memory_clock_frequency(struct dc *dc)
5746 {
5747 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5748 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5749
5750 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5751 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5752 }
5753
5754 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5755 void dc_lock_memory_clock_frequency(struct dc *dc)
5756 {
5757 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5758 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5759
5760 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5761 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5762
5763 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5764 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5765 }
5766
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5767 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5768 {
5769 struct dc_state *context = dc->current_state;
5770 struct hubp *hubp;
5771 struct pipe_ctx *pipe;
5772 int i;
5773
5774 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5775 pipe = &context->res_ctx.pipe_ctx[i];
5776
5777 if (pipe->stream != NULL) {
5778 dc->hwss.disable_pixel_data(dc, pipe, true);
5779
5780 // wait for double buffer
5781 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5782 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5783 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5784
5785 hubp = pipe->plane_res.hubp;
5786 hubp->funcs->set_blank_regs(hubp, true);
5787 }
5788 }
5789 if (dc->clk_mgr->funcs->set_max_memclk)
5790 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5791 if (dc->clk_mgr->funcs->set_min_memclk)
5792 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5793
5794 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5795 pipe = &context->res_ctx.pipe_ctx[i];
5796
5797 if (pipe->stream != NULL) {
5798 dc->hwss.disable_pixel_data(dc, pipe, false);
5799
5800 hubp = pipe->plane_res.hubp;
5801 hubp->funcs->set_blank_regs(hubp, false);
5802 }
5803 }
5804 }
5805
5806
5807 /**
5808 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5809 * @dc: pointer to dc of the dm calling this
5810 * @enable: True = transition to DC mode, false = transition back to AC mode
5811 *
5812 * Some SoCs define additional clock limits when in DC mode, DM should
5813 * invoke this function when the platform undergoes a power source transition
5814 * so DC can apply/unapply the limit. This interface may be disruptive to
5815 * the onscreen content.
5816 *
5817 * Context: Triggered by OS through DM interface, or manually by escape calls.
5818 * Need to hold a dclock when doing so.
5819 *
5820 * Return: none (void function)
5821 *
5822 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5823 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5824 {
5825 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5826 bool p_state_change_support;
5827
5828 if (!dc->config.dc_mode_clk_limit_support)
5829 return;
5830
5831 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5832 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5833 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5834 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5835 }
5836 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5837 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5838
5839 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5840 if (p_state_change_support) {
5841 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5842 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5843 // else: No-Op
5844 } else {
5845 if (funcMin <= softMax)
5846 blank_and_force_memclk(dc, true, softMax);
5847 // else: No-Op
5848 }
5849 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5850 if (p_state_change_support) {
5851 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5852 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5853 // else: No-Op
5854 } else {
5855 if (funcMin <= softMax)
5856 blank_and_force_memclk(dc, true, maxDPM);
5857 // else: No-Op
5858 }
5859 }
5860 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5861 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5862 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5863 unsigned int pitch,
5864 unsigned int height,
5865 enum surface_pixel_format format,
5866 struct dc_cursor_attributes *cursor_attr)
5867 {
5868 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5869 return true;
5870 return false;
5871 }
5872
5873 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5874 void dc_hardware_release(struct dc *dc)
5875 {
5876 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5877
5878 if (dc->hwss.hardware_release)
5879 dc->hwss.hardware_release(dc);
5880 }
5881
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5882 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5883 {
5884 if (dc->current_state)
5885 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5886 }
5887
5888 /**
5889 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5890 *
5891 * @dc: [in] dc structure
5892 *
5893 * Checks whether DMUB FW supports outbox notifications, if supported DM
5894 * should register outbox interrupt prior to actually enabling interrupts
5895 * via dc_enable_dmub_outbox
5896 *
5897 * Return:
5898 * True if DMUB FW supports outbox notifications, False otherwise
5899 */
dc_is_dmub_outbox_supported(struct dc * dc)5900 bool dc_is_dmub_outbox_supported(struct dc *dc)
5901 {
5902 if (!dc->caps.dmcub_support)
5903 return false;
5904
5905 switch (dc->ctx->asic_id.chip_family) {
5906
5907 case FAMILY_YELLOW_CARP:
5908 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5909 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5910 !dc->debug.dpia_debug.bits.disable_dpia)
5911 return true;
5912 break;
5913
5914 case AMDGPU_FAMILY_GC_11_0_1:
5915 case AMDGPU_FAMILY_GC_11_5_0:
5916 if (!dc->debug.dpia_debug.bits.disable_dpia)
5917 return true;
5918 break;
5919
5920 default:
5921 break;
5922 }
5923
5924 /* dmub aux needs dmub notifications to be enabled */
5925 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5926
5927 }
5928
5929 /**
5930 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5931 *
5932 * @dc: [in] dc structure
5933 *
5934 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5935 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5936 * API shall be removed after switching.
5937 *
5938 * Return:
5939 * True if DMUB FW supports outbox notifications, False otherwise
5940 */
dc_enable_dmub_notifications(struct dc * dc)5941 bool dc_enable_dmub_notifications(struct dc *dc)
5942 {
5943 return dc_is_dmub_outbox_supported(dc);
5944 }
5945
5946 /**
5947 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5948 *
5949 * @dc: [in] dc structure
5950 *
5951 * Enables DMUB unsolicited notifications to x86 via outbox.
5952 */
dc_enable_dmub_outbox(struct dc * dc)5953 void dc_enable_dmub_outbox(struct dc *dc)
5954 {
5955 struct dc_context *dc_ctx = dc->ctx;
5956
5957 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5958 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5959 }
5960
5961 /**
5962 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5963 * Sets port index appropriately for legacy DDC
5964 * @dc: dc structure
5965 * @link_index: link index
5966 * @payload: aux payload
5967 *
5968 * Returns: True if successful, False if failure
5969 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5970 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5971 uint32_t link_index,
5972 struct aux_payload *payload)
5973 {
5974 uint8_t action;
5975 union dmub_rb_cmd cmd = {0};
5976
5977 ASSERT(payload->length <= 16);
5978
5979 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5980 cmd.dp_aux_access.header.payload_bytes = 0;
5981 /* For dpia, ddc_pin is set to NULL */
5982 if (!dc->links[link_index]->ddc->ddc_pin)
5983 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5984 else
5985 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5986
5987 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5988 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5989 cmd.dp_aux_access.aux_control.timeout = 0;
5990 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5991 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5992 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5993
5994 /* set aux action */
5995 if (payload->i2c_over_aux) {
5996 if (payload->write) {
5997 if (payload->mot)
5998 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5999 else
6000 action = DP_AUX_REQ_ACTION_I2C_WRITE;
6001 } else {
6002 if (payload->mot)
6003 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
6004 else
6005 action = DP_AUX_REQ_ACTION_I2C_READ;
6006 }
6007 } else {
6008 if (payload->write)
6009 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
6010 else
6011 action = DP_AUX_REQ_ACTION_DPCD_READ;
6012 }
6013
6014 cmd.dp_aux_access.aux_control.dpaux.action = action;
6015
6016 if (payload->length && payload->write) {
6017 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
6018 payload->data,
6019 payload->length
6020 );
6021 }
6022
6023 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6024
6025 return true;
6026 }
6027
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)6028 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
6029 uint8_t dpia_port_index)
6030 {
6031 uint8_t index, link_index = 0xFF;
6032
6033 for (index = 0; index < dc->link_count; index++) {
6034 /* ddc_hw_inst has dpia port index for dpia links
6035 * and ddc instance for legacy links
6036 */
6037 if (!dc->links[index]->ddc->ddc_pin) {
6038 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
6039 link_index = index;
6040 break;
6041 }
6042 }
6043 }
6044 ASSERT(link_index != 0xFF);
6045 return link_index;
6046 }
6047
6048 /**
6049 * dc_process_dmub_set_config_async - Submits set_config command
6050 *
6051 * @dc: [in] dc structure
6052 * @link_index: [in] link_index: link index
6053 * @payload: [in] aux payload
6054 * @notify: [out] set_config immediate reply
6055 *
6056 * Submits set_config command to dmub via inbox message.
6057 *
6058 * Return:
6059 * True if successful, False if failure
6060 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)6061 bool dc_process_dmub_set_config_async(struct dc *dc,
6062 uint32_t link_index,
6063 struct set_config_cmd_payload *payload,
6064 struct dmub_notification *notify)
6065 {
6066 union dmub_rb_cmd cmd = {0};
6067 bool is_cmd_complete = true;
6068
6069 /* prepare SET_CONFIG command */
6070 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
6071 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
6072
6073 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
6074 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
6075 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
6076
6077 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
6078 /* command is not processed by dmub */
6079 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
6080 return is_cmd_complete;
6081 }
6082
6083 /* command processed by dmub, if ret_status is 1, it is completed instantly */
6084 if (cmd.set_config_access.header.ret_status == 1)
6085 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
6086 else
6087 /* cmd pending, will receive notification via outbox */
6088 is_cmd_complete = false;
6089
6090 return is_cmd_complete;
6091 }
6092
6093 /**
6094 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
6095 *
6096 * @dc: [in] dc structure
6097 * @link_index: [in] link index
6098 * @mst_alloc_slots: [in] mst slots to be allotted
6099 * @mst_slots_in_use: [out] mst slots in use returned in failure case
6100 *
6101 * Submits mst slot allocation command to dmub via inbox message
6102 *
6103 * Return:
6104 * DC_OK if successful, DC_ERROR if failure
6105 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)6106 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
6107 uint32_t link_index,
6108 uint8_t mst_alloc_slots,
6109 uint8_t *mst_slots_in_use)
6110 {
6111 union dmub_rb_cmd cmd = {0};
6112
6113 /* prepare MST_ALLOC_SLOTS command */
6114 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
6115 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
6116
6117 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
6118 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
6119
6120 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
6121 /* command is not processed by dmub */
6122 return DC_ERROR_UNEXPECTED;
6123
6124 /* command processed by dmub, if ret_status is 1 */
6125 if (cmd.set_config_access.header.ret_status != 1)
6126 /* command processing error */
6127 return DC_ERROR_UNEXPECTED;
6128
6129 /* command processed and we have a status of 2, mst not enabled in dpia */
6130 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
6131 return DC_FAIL_UNSUPPORTED_1;
6132
6133 /* previously configured mst alloc and used slots did not match */
6134 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
6135 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
6136 return DC_NOT_SUPPORTED;
6137 }
6138
6139 return DC_OK;
6140 }
6141
6142 /**
6143 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
6144 *
6145 * @dc: [in] dc structure
6146 * @link_index: [in] link index
6147 * @tps: [in] request tps
6148 *
6149 * Submits set_tps_notification command to dmub via inbox message
6150 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)6151 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
6152 {
6153 union dmub_rb_cmd cmd = {0};
6154
6155 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
6156 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
6157 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
6158 cmd.set_tps_notification.tps_notification.tps = tps;
6159
6160 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6161 }
6162
6163 /**
6164 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
6165 *
6166 * @dc: [in] dc structure
6167 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
6168 *
6169 * Submits dpia hpd int enable command to dmub via inbox message
6170 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)6171 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
6172 uint32_t hpd_int_enable)
6173 {
6174 union dmub_rb_cmd cmd = {0};
6175
6176 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
6177 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
6178
6179 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
6180
6181 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
6182 }
6183
6184 /**
6185 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
6186 *
6187 * @dc: [in] dc structure
6188 *
6189 *
6190 */
dc_print_dmub_diagnostic_data(const struct dc * dc)6191 void dc_print_dmub_diagnostic_data(const struct dc *dc)
6192 {
6193 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
6194 }
6195
6196 /**
6197 * dc_disable_accelerated_mode - disable accelerated mode
6198 * @dc: dc structure
6199 */
dc_disable_accelerated_mode(struct dc * dc)6200 void dc_disable_accelerated_mode(struct dc *dc)
6201 {
6202 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
6203 }
6204
6205
6206 /**
6207 * dc_notify_vsync_int_state - notifies vsync enable/disable state
6208 * @dc: dc structure
6209 * @stream: stream where vsync int state changed
6210 * @enable: whether vsync is enabled or disabled
6211 *
6212 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
6213 * interrupts after steady state is reached.
6214 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)6215 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
6216 {
6217 int i;
6218 int edp_num;
6219 struct pipe_ctx *pipe = NULL;
6220 struct dc_link *link = stream->sink->link;
6221 struct dc_link *edp_links[MAX_NUM_EDP];
6222
6223
6224 if (link->psr_settings.psr_feature_enabled)
6225 return;
6226
6227 if (link->replay_settings.replay_feature_enabled)
6228 return;
6229
6230 /*find primary pipe associated with stream*/
6231 for (i = 0; i < MAX_PIPES; i++) {
6232 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6233
6234 if (pipe->stream == stream && pipe->stream_res.tg)
6235 break;
6236 }
6237
6238 if (i == MAX_PIPES) {
6239 ASSERT(0);
6240 return;
6241 }
6242
6243 dc_get_edp_links(dc, edp_links, &edp_num);
6244
6245 /* Determine panel inst */
6246 for (i = 0; i < edp_num; i++) {
6247 if (edp_links[i] == link)
6248 break;
6249 }
6250
6251 if (i == edp_num) {
6252 return;
6253 }
6254
6255 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
6256 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
6257 }
6258
6259 /*****************************************************************************
6260 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
6261 * ABM
6262 * @dc: dc structure
6263 * @stream: stream where vsync int state changed
6264 * @pData: abm hw states
6265 *
6266 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)6267 bool dc_abm_save_restore(
6268 struct dc *dc,
6269 struct dc_stream_state *stream,
6270 struct abm_save_restore *pData)
6271 {
6272 int i;
6273 int edp_num;
6274 struct pipe_ctx *pipe = NULL;
6275 struct dc_link *link = stream->sink->link;
6276 struct dc_link *edp_links[MAX_NUM_EDP];
6277
6278 if (link->replay_settings.replay_feature_enabled)
6279 return false;
6280
6281 /*find primary pipe associated with stream*/
6282 for (i = 0; i < MAX_PIPES; i++) {
6283 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
6284
6285 if (pipe->stream == stream && pipe->stream_res.tg)
6286 break;
6287 }
6288
6289 if (i == MAX_PIPES) {
6290 ASSERT(0);
6291 return false;
6292 }
6293
6294 dc_get_edp_links(dc, edp_links, &edp_num);
6295
6296 /* Determine panel inst */
6297 for (i = 0; i < edp_num; i++)
6298 if (edp_links[i] == link)
6299 break;
6300
6301 if (i == edp_num)
6302 return false;
6303
6304 if (pipe->stream_res.abm &&
6305 pipe->stream_res.abm->funcs->save_restore)
6306 return pipe->stream_res.abm->funcs->save_restore(
6307 pipe->stream_res.abm,
6308 i,
6309 pData);
6310 return false;
6311 }
6312
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)6313 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
6314 {
6315 unsigned int i;
6316 unsigned int max_cursor_size = dc->caps.max_cursor_size;
6317 unsigned int stream_cursor_size;
6318
6319 if (dc->debug.allow_sw_cursor_fallback && dc->res_pool->funcs->get_max_hw_cursor_size) {
6320 for (i = 0; i < dc->current_state->stream_count; i++) {
6321 stream_cursor_size = dc->res_pool->funcs->get_max_hw_cursor_size(dc,
6322 dc->current_state,
6323 dc->current_state->streams[i]);
6324
6325 if (stream_cursor_size < max_cursor_size) {
6326 max_cursor_size = stream_cursor_size;
6327 }
6328 }
6329 }
6330
6331 properties->cursor_size_limit = max_cursor_size;
6332 }
6333
6334 /**
6335 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
6336 *
6337 * Called when DM wants to power on/off eDP.
6338 * Only work on links with flag skip_implict_edp_power_control is set.
6339 *
6340 * @dc: Current DC state
6341 * @edp_link: a link with eDP connector signal type
6342 * @powerOn: power on/off eDP
6343 *
6344 * Return: void
6345 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)6346 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
6347 bool powerOn)
6348 {
6349 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
6350 return;
6351
6352 if (edp_link->skip_implict_edp_power_control == false)
6353 return;
6354
6355 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
6356 }
6357
6358 /**
6359 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
6360 *
6361 * Called when DM wants to make power policy decisions based on dc_state
6362 *
6363 * @context: Pointer to the dc_state from which the power profile is extracted.
6364 *
6365 * Return: The power profile structure containing the power level information.
6366 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)6367 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
6368 {
6369 struct dc_power_profile profile = { 0 };
6370
6371 profile.power_level = !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6372 if (!context->clk_mgr || !context->clk_mgr->ctx || !context->clk_mgr->ctx->dc)
6373 return profile;
6374 struct dc *dc = context->clk_mgr->ctx->dc;
6375
6376 if (dc->res_pool->funcs->get_power_profile)
6377 profile.power_level = dc->res_pool->funcs->get_power_profile(context);
6378 return profile;
6379 }
6380
6381 /**
6382 * dc_get_det_buffer_size_from_state() - extracts detile buffer size from dc state
6383 *
6384 * This function is called to log the detile buffer size from the dc_state.
6385 *
6386 * @context: a pointer to the dc_state from which the detile buffer size is extracted.
6387 *
6388 * Return: the size of the detile buffer, or 0 if not available.
6389 */
dc_get_det_buffer_size_from_state(const struct dc_state * context)6390 unsigned int dc_get_det_buffer_size_from_state(const struct dc_state *context)
6391 {
6392 struct dc *dc = context->clk_mgr->ctx->dc;
6393
6394 if (dc->res_pool->funcs->get_det_buffer_size)
6395 return dc->res_pool->funcs->get_det_buffer_size(context);
6396 else
6397 return 0;
6398 }
6399
6400 /**
6401 * dc_get_host_router_index: Get index of host router from a dpia link
6402 *
6403 * This function return a host router index of the target link. If the target link is dpia link.
6404 *
6405 * @link: Pointer to the target link (input)
6406 * @host_router_index: Pointer to store the host router index of the target link (output).
6407 *
6408 * Return: true if the host router index is found and valid.
6409 *
6410 */
dc_get_host_router_index(const struct dc_link * link,unsigned int * host_router_index)6411 bool dc_get_host_router_index(const struct dc_link *link, unsigned int *host_router_index)
6412 {
6413 struct dc *dc;
6414
6415 if (!link || !host_router_index || link->ep_type != DISPLAY_ENDPOINT_USB4_DPIA)
6416 return false;
6417
6418 dc = link->ctx->dc;
6419
6420 if (link->link_index < dc->lowest_dpia_link_index)
6421 return false;
6422
6423 *host_router_index = (link->link_index - dc->lowest_dpia_link_index) / dc->caps.num_of_dpias_per_host_router;
6424 if (*host_router_index < dc->caps.num_of_host_routers)
6425 return true;
6426 else
6427 return false;
6428 }
6429
dc_is_cursor_limit_pending(struct dc * dc)6430 bool dc_is_cursor_limit_pending(struct dc *dc)
6431 {
6432 uint32_t i;
6433
6434 for (i = 0; i < dc->current_state->stream_count; i++) {
6435 if (dc_stream_is_cursor_limit_pending(dc, dc->current_state->streams[i]))
6436 return true;
6437 }
6438
6439 return false;
6440 }
6441
dc_can_clear_cursor_limit(struct dc * dc)6442 bool dc_can_clear_cursor_limit(struct dc *dc)
6443 {
6444 uint32_t i;
6445
6446 for (i = 0; i < dc->current_state->stream_count; i++) {
6447 if (dc_state_can_clear_stream_cursor_subvp_limit(dc->current_state->streams[i], dc->current_state))
6448 return true;
6449 }
6450
6451 return false;
6452 }
6453