1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29
30 #include "qaic.h"
31
32 #define SEM_VAL_MASK GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0)
34 #define BULK_XFER BIT(3)
35 #define GEN_COMPLETION BIT(4)
36 #define INBOUND_XFER 1
37 #define OUTBOUND_XFER 2
38 #define REQHP_OFF 0x0 /* we read this */
39 #define REQTP_OFF 0x4 /* we write this */
40 #define RSPHP_OFF 0x8 /* we write this */
41 #define RSPTP_OFF 0xc /* we read this */
42
43 #define ENCODE_SEM(val, index, sync, cmd, flags) \
44 ({ \
45 FIELD_PREP(GENMASK(11, 0), (val)) | \
46 FIELD_PREP(GENMASK(20, 16), (index)) | \
47 FIELD_PREP(BIT(22), (sync)) | \
48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \
49 FIELD_PREP(GENMASK(30, 29), (flags)) | \
50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
51 })
52 #define NUM_EVENTS 128
53 #define NUM_DELAYS 10
54 #define fifo_at(base, offset) ((base) + (offset) * get_dbc_req_elem_size())
55
56 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
57 module_param(wait_exec_default_timeout_ms, uint, 0600);
58 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
59
60 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
61 module_param(datapath_poll_interval_us, uint, 0600);
62 MODULE_PARM_DESC(datapath_poll_interval_us,
63 "Amount of time to sleep between activity when datapath polling is enabled");
64
65 struct dbc_req {
66 /*
67 * A request ID is assigned to each memory handle going in DMA queue.
68 * As a single memory handle can enqueue multiple elements in DMA queue
69 * all of them will have the same request ID.
70 */
71 __le16 req_id;
72 /* Future use */
73 __u8 seq_id;
74 /*
75 * Special encoded variable
76 * 7 0 - Do not force to generate MSI after DMA is completed
77 * 1 - Force to generate MSI after DMA is completed
78 * 6:5 Reserved
79 * 4 1 - Generate completion element in the response queue
80 * 0 - No Completion Code
81 * 3 0 - DMA request is a Link list transfer
82 * 1 - DMA request is a Bulk transfer
83 * 2 Reserved
84 * 1:0 00 - No DMA transfer involved
85 * 01 - DMA transfer is part of inbound transfer
86 * 10 - DMA transfer has outbound transfer
87 * 11 - NA
88 */
89 __u8 cmd;
90 __le32 resv;
91 /* Source address for the transfer */
92 __le64 src_addr;
93 /* Destination address for the transfer */
94 __le64 dest_addr;
95 /* Length of transfer request */
96 __le32 len;
97 __le32 resv2;
98 /* Doorbell address */
99 __le64 db_addr;
100 /*
101 * Special encoded variable
102 * 7 1 - Doorbell(db) write
103 * 0 - No doorbell write
104 * 6:2 Reserved
105 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
106 * 01 - 16 bit access, db address must be aligned to 16bit-boundary
107 * 10 - 8 bit access, db address must be aligned to 8bit-boundary
108 * 11 - Reserved
109 */
110 __u8 db_len;
111 __u8 resv3;
112 __le16 resv4;
113 /* 32 bit data written to doorbell address */
114 __le32 db_data;
115 /*
116 * Special encoded variable
117 * All the fields of sem_cmdX are passed from user and all are ORed
118 * together to form sem_cmd.
119 * 0:11 Semaphore value
120 * 15:12 Reserved
121 * 20:16 Semaphore index
122 * 21 Reserved
123 * 22 Semaphore Sync
124 * 23 Reserved
125 * 26:24 Semaphore command
126 * 28:27 Reserved
127 * 29 Semaphore DMA out bound sync fence
128 * 30 Semaphore DMA in bound sync fence
129 * 31 Enable semaphore command
130 */
131 __le32 sem_cmd0;
132 __le32 sem_cmd1;
133 __le32 sem_cmd2;
134 __le32 sem_cmd3;
135 } __packed;
136
137 struct dbc_rsp {
138 /* Request ID of the memory handle whose DMA transaction is completed */
139 __le16 req_id;
140 /* Status of the DMA transaction. 0 : Success otherwise failure */
141 __le16 status;
142 } __packed;
143
get_dbc_req_elem_size(void)144 inline int get_dbc_req_elem_size(void)
145 {
146 return sizeof(struct dbc_req);
147 }
148
get_dbc_rsp_elem_size(void)149 inline int get_dbc_rsp_elem_size(void)
150 {
151 return sizeof(struct dbc_rsp);
152 }
153
free_slice(struct kref * kref)154 static void free_slice(struct kref *kref)
155 {
156 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
157
158 slice->bo->total_slice_nents -= slice->nents;
159 list_del(&slice->slice);
160 drm_gem_object_put(&slice->bo->base);
161 sg_free_table(slice->sgt);
162 kfree(slice->sgt);
163 kfree(slice->reqs);
164 kfree(slice);
165 }
166
clone_range_of_sgt_for_slice(struct qaic_device * qdev,struct sg_table ** sgt_out,struct sg_table * sgt_in,u64 size,u64 offset)167 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
168 struct sg_table *sgt_in, u64 size, u64 offset)
169 {
170 int total_len, len, nents, offf = 0, offl = 0;
171 struct scatterlist *sg, *sgn, *sgf, *sgl;
172 struct sg_table *sgt;
173 int ret, j;
174
175 /* find out number of relevant nents needed for this mem */
176 total_len = 0;
177 sgf = NULL;
178 sgl = NULL;
179 nents = 0;
180
181 size = size ? size : PAGE_SIZE;
182 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
183 len = sg_dma_len(sg);
184
185 if (!len)
186 continue;
187 if (offset >= total_len && offset < total_len + len) {
188 sgf = sg;
189 offf = offset - total_len;
190 }
191 if (sgf)
192 nents++;
193 if (offset + size >= total_len &&
194 offset + size <= total_len + len) {
195 sgl = sg;
196 offl = offset + size - total_len;
197 break;
198 }
199 total_len += len;
200 }
201
202 if (!sgf || !sgl) {
203 ret = -EINVAL;
204 goto out;
205 }
206
207 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
208 if (!sgt) {
209 ret = -ENOMEM;
210 goto out;
211 }
212
213 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
214 if (ret)
215 goto free_sgt;
216
217 /* copy relevant sg node and fix page and length */
218 sgn = sgf;
219 for_each_sgtable_sg(sgt, sg, j) {
220 memcpy(sg, sgn, sizeof(*sg));
221 if (sgn == sgf) {
222 sg_dma_address(sg) += offf;
223 sg_dma_len(sg) -= offf;
224 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
225 } else {
226 offf = 0;
227 }
228 if (sgn == sgl) {
229 sg_dma_len(sg) = offl - offf;
230 sg_set_page(sg, sg_page(sgn), offl - offf, offf);
231 sg_mark_end(sg);
232 break;
233 }
234 sgn = sg_next(sgn);
235 }
236
237 *sgt_out = sgt;
238 return ret;
239
240 free_sgt:
241 kfree(sgt);
242 out:
243 *sgt_out = NULL;
244 return ret;
245 }
246
encode_reqs(struct qaic_device * qdev,struct bo_slice * slice,struct qaic_attach_slice_entry * req)247 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
248 struct qaic_attach_slice_entry *req)
249 {
250 __le64 db_addr = cpu_to_le64(req->db_addr);
251 __le32 db_data = cpu_to_le32(req->db_data);
252 struct scatterlist *sg;
253 __u8 cmd = BULK_XFER;
254 int presync_sem;
255 u64 dev_addr;
256 __u8 db_len;
257 int i;
258
259 if (!slice->no_xfer)
260 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
261
262 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
263 return -EINVAL;
264
265 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
266 if (presync_sem > 1)
267 return -EINVAL;
268
269 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
270 req->sem2.presync << 2 | req->sem3.presync << 3;
271
272 switch (req->db_len) {
273 case 32:
274 db_len = BIT(7);
275 break;
276 case 16:
277 db_len = BIT(7) | 1;
278 break;
279 case 8:
280 db_len = BIT(7) | 2;
281 break;
282 case 0:
283 db_len = 0; /* doorbell is not active for this command */
284 break;
285 default:
286 return -EINVAL; /* should never hit this */
287 }
288
289 /*
290 * When we end up splitting up a single request (ie a buf slice) into
291 * multiple DMA requests, we have to manage the sync data carefully.
292 * There can only be one presync sem. That needs to be on every xfer
293 * so that the DMA engine doesn't transfer data before the receiver is
294 * ready. We only do the doorbell and postsync sems after the xfer.
295 * To guarantee previous xfers for the request are complete, we use a
296 * fence.
297 */
298 dev_addr = req->dev_addr;
299 for_each_sgtable_sg(slice->sgt, sg, i) {
300 slice->reqs[i].cmd = cmd;
301 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302 sg_dma_address(sg) : dev_addr);
303 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
304 dev_addr : sg_dma_address(sg));
305 /*
306 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
307 * segment size is set to UINT_MAX by qaic and hence return
308 * values of sg_dma_len(sg) can never exceed u32 range. So,
309 * by down sizing we are not corrupting the value.
310 */
311 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
312 switch (presync_sem) {
313 case BIT(0):
314 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
315 req->sem0.index,
316 req->sem0.presync,
317 req->sem0.cmd,
318 req->sem0.flags));
319 break;
320 case BIT(1):
321 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
322 req->sem1.index,
323 req->sem1.presync,
324 req->sem1.cmd,
325 req->sem1.flags));
326 break;
327 case BIT(2):
328 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
329 req->sem2.index,
330 req->sem2.presync,
331 req->sem2.cmd,
332 req->sem2.flags));
333 break;
334 case BIT(3):
335 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
336 req->sem3.index,
337 req->sem3.presync,
338 req->sem3.cmd,
339 req->sem3.flags));
340 break;
341 }
342 dev_addr += sg_dma_len(sg);
343 }
344 /* add post transfer stuff to last segment */
345 i--;
346 slice->reqs[i].cmd |= GEN_COMPLETION;
347 slice->reqs[i].db_addr = db_addr;
348 slice->reqs[i].db_len = db_len;
349 slice->reqs[i].db_data = db_data;
350 /*
351 * Add a fence if we have more than one request going to the hardware
352 * representing the entirety of the user request, and the user request
353 * has no presync condition.
354 * Fences are expensive, so we try to avoid them. We rely on the
355 * hardware behavior to avoid needing one when there is a presync
356 * condition. When a presync exists, all requests for that same
357 * presync will be queued into a fifo. Thus, since we queue the
358 * post xfer activity only on the last request we queue, the hardware
359 * will ensure that the last queued request is processed last, thus
360 * making sure the post xfer activity happens at the right time without
361 * a fence.
362 */
363 if (i && !presync_sem)
364 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
365 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
366 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
367 req->sem0.presync, req->sem0.cmd,
368 req->sem0.flags));
369 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
370 req->sem1.presync, req->sem1.cmd,
371 req->sem1.flags));
372 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
373 req->sem2.presync, req->sem2.cmd,
374 req->sem2.flags));
375 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
376 req->sem3.presync, req->sem3.cmd,
377 req->sem3.flags));
378
379 return 0;
380 }
381
qaic_map_one_slice(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_entry * slice_ent)382 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
383 struct qaic_attach_slice_entry *slice_ent)
384 {
385 struct sg_table *sgt = NULL;
386 struct bo_slice *slice;
387 int ret;
388
389 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
390 if (ret)
391 goto out;
392
393 slice = kmalloc(sizeof(*slice), GFP_KERNEL);
394 if (!slice) {
395 ret = -ENOMEM;
396 goto free_sgt;
397 }
398
399 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
400 if (!slice->reqs) {
401 ret = -ENOMEM;
402 goto free_slice;
403 }
404
405 slice->no_xfer = !slice_ent->size;
406 slice->sgt = sgt;
407 slice->nents = sgt->nents;
408 slice->dir = bo->dir;
409 slice->bo = bo;
410 slice->size = slice_ent->size;
411 slice->offset = slice_ent->offset;
412
413 ret = encode_reqs(qdev, slice, slice_ent);
414 if (ret)
415 goto free_req;
416
417 bo->total_slice_nents += sgt->nents;
418 kref_init(&slice->ref_count);
419 drm_gem_object_get(&bo->base);
420 list_add_tail(&slice->slice, &bo->slices);
421
422 return 0;
423
424 free_req:
425 kfree(slice->reqs);
426 free_slice:
427 kfree(slice);
428 free_sgt:
429 sg_free_table(sgt);
430 kfree(sgt);
431 out:
432 return ret;
433 }
434
create_sgt(struct qaic_device * qdev,struct sg_table ** sgt_out,u64 size)435 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
436 {
437 struct scatterlist *sg;
438 struct sg_table *sgt;
439 struct page **pages;
440 int *pages_order;
441 int buf_extra;
442 int max_order;
443 int nr_pages;
444 int ret = 0;
445 int i, j, k;
446 int order;
447
448 if (size) {
449 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
450 /*
451 * calculate how much extra we are going to allocate, to remove
452 * later
453 */
454 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
455 max_order = min(MAX_PAGE_ORDER, get_order(size));
456 } else {
457 /* allocate a single page for book keeping */
458 nr_pages = 1;
459 buf_extra = 0;
460 max_order = 0;
461 }
462
463 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
464 if (!pages) {
465 ret = -ENOMEM;
466 goto out;
467 }
468 pages_order = (void *)pages + sizeof(*pages) * nr_pages;
469
470 /*
471 * Allocate requested memory using alloc_pages. It is possible to allocate
472 * the requested memory in multiple chunks by calling alloc_pages
473 * multiple times. Use SG table to handle multiple allocated pages.
474 */
475 i = 0;
476 while (nr_pages > 0) {
477 order = min(get_order(nr_pages * PAGE_SIZE), max_order);
478 while (1) {
479 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
480 __GFP_NOWARN | __GFP_ZERO |
481 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
482 order);
483 if (pages[i])
484 break;
485 if (!order--) {
486 ret = -ENOMEM;
487 goto free_partial_alloc;
488 }
489 }
490
491 max_order = order;
492 pages_order[i] = order;
493
494 nr_pages -= 1 << order;
495 if (nr_pages <= 0)
496 /* account for over allocation */
497 buf_extra += abs(nr_pages) * PAGE_SIZE;
498 i++;
499 }
500
501 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
502 if (!sgt) {
503 ret = -ENOMEM;
504 goto free_partial_alloc;
505 }
506
507 if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
508 ret = -ENOMEM;
509 goto free_sgt;
510 }
511
512 /* Populate the SG table with the allocated memory pages */
513 sg = sgt->sgl;
514 for (k = 0; k < i; k++, sg = sg_next(sg)) {
515 /* Last entry requires special handling */
516 if (k < i - 1) {
517 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
518 } else {
519 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
520 sg_mark_end(sg);
521 }
522 }
523
524 kvfree(pages);
525 *sgt_out = sgt;
526 return ret;
527
528 free_sgt:
529 kfree(sgt);
530 free_partial_alloc:
531 for (j = 0; j < i; j++)
532 __free_pages(pages[j], pages_order[j]);
533 kvfree(pages);
534 out:
535 *sgt_out = NULL;
536 return ret;
537 }
538
invalid_sem(struct qaic_sem * sem)539 static bool invalid_sem(struct qaic_sem *sem)
540 {
541 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
542 !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
543 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
544 sem->cmd > QAIC_SEM_WAIT_GT_0)
545 return true;
546 return false;
547 }
548
qaic_validate_req(struct qaic_device * qdev,struct qaic_attach_slice_entry * slice_ent,u32 count,u64 total_size)549 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
550 u32 count, u64 total_size)
551 {
552 int i;
553
554 for (i = 0; i < count; i++) {
555 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
556 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
557 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
558 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
559 return -EINVAL;
560
561 if (slice_ent[i].offset + slice_ent[i].size > total_size)
562 return -EINVAL;
563 }
564
565 return 0;
566 }
567
qaic_free_sgt(struct sg_table * sgt)568 static void qaic_free_sgt(struct sg_table *sgt)
569 {
570 struct scatterlist *sg;
571
572 for (sg = sgt->sgl; sg; sg = sg_next(sg))
573 if (sg_page(sg))
574 __free_pages(sg_page(sg), get_order(sg->length));
575 sg_free_table(sgt);
576 kfree(sgt);
577 }
578
qaic_gem_print_info(struct drm_printer * p,unsigned int indent,const struct drm_gem_object * obj)579 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
580 const struct drm_gem_object *obj)
581 {
582 struct qaic_bo *bo = to_qaic_bo(obj);
583
584 drm_printf_indent(p, indent, "BO DMA direction %d\n", bo->dir);
585 }
586
587 static const struct vm_operations_struct drm_vm_ops = {
588 .open = drm_gem_vm_open,
589 .close = drm_gem_vm_close,
590 };
591
qaic_gem_object_mmap(struct drm_gem_object * obj,struct vm_area_struct * vma)592 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
593 {
594 struct qaic_bo *bo = to_qaic_bo(obj);
595 unsigned long offset = 0;
596 struct scatterlist *sg;
597 int ret = 0;
598
599 if (obj->import_attach)
600 return -EINVAL;
601
602 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
603 if (sg_page(sg)) {
604 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
605 sg->length, vma->vm_page_prot);
606 if (ret)
607 goto out;
608 offset += sg->length;
609 }
610 }
611
612 out:
613 return ret;
614 }
615
qaic_free_object(struct drm_gem_object * obj)616 static void qaic_free_object(struct drm_gem_object *obj)
617 {
618 struct qaic_bo *bo = to_qaic_bo(obj);
619
620 if (obj->import_attach) {
621 /* DMABUF/PRIME Path */
622 drm_prime_gem_destroy(obj, NULL);
623 } else {
624 /* Private buffer allocation path */
625 qaic_free_sgt(bo->sgt);
626 }
627
628 mutex_destroy(&bo->lock);
629 drm_gem_object_release(obj);
630 kfree(bo);
631 }
632
633 static const struct drm_gem_object_funcs qaic_gem_funcs = {
634 .free = qaic_free_object,
635 .print_info = qaic_gem_print_info,
636 .mmap = qaic_gem_object_mmap,
637 .vm_ops = &drm_vm_ops,
638 };
639
qaic_init_bo(struct qaic_bo * bo,bool reinit)640 static void qaic_init_bo(struct qaic_bo *bo, bool reinit)
641 {
642 if (reinit) {
643 bo->sliced = false;
644 reinit_completion(&bo->xfer_done);
645 } else {
646 mutex_init(&bo->lock);
647 init_completion(&bo->xfer_done);
648 }
649 complete_all(&bo->xfer_done);
650 INIT_LIST_HEAD(&bo->slices);
651 }
652
qaic_alloc_init_bo(void)653 static struct qaic_bo *qaic_alloc_init_bo(void)
654 {
655 struct qaic_bo *bo;
656
657 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
658 if (!bo)
659 return ERR_PTR(-ENOMEM);
660
661 qaic_init_bo(bo, false);
662
663 return bo;
664 }
665
qaic_create_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)666 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
667 {
668 struct qaic_create_bo *args = data;
669 int usr_rcu_id, qdev_rcu_id;
670 struct drm_gem_object *obj;
671 struct qaic_device *qdev;
672 struct qaic_user *usr;
673 struct qaic_bo *bo;
674 size_t size;
675 int ret;
676
677 if (args->pad)
678 return -EINVAL;
679
680 size = PAGE_ALIGN(args->size);
681 if (size == 0)
682 return -EINVAL;
683
684 usr = file_priv->driver_priv;
685 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
686 if (!usr->qddev) {
687 ret = -ENODEV;
688 goto unlock_usr_srcu;
689 }
690
691 qdev = usr->qddev->qdev;
692 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
693 if (qdev->dev_state != QAIC_ONLINE) {
694 ret = -ENODEV;
695 goto unlock_dev_srcu;
696 }
697
698 bo = qaic_alloc_init_bo();
699 if (IS_ERR(bo)) {
700 ret = PTR_ERR(bo);
701 goto unlock_dev_srcu;
702 }
703 obj = &bo->base;
704
705 drm_gem_private_object_init(dev, obj, size);
706
707 obj->funcs = &qaic_gem_funcs;
708 ret = create_sgt(qdev, &bo->sgt, size);
709 if (ret)
710 goto free_bo;
711
712 ret = drm_gem_handle_create(file_priv, obj, &args->handle);
713 if (ret)
714 goto free_sgt;
715
716 bo->handle = args->handle;
717 drm_gem_object_put(obj);
718 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
719 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
720
721 return 0;
722
723 free_sgt:
724 qaic_free_sgt(bo->sgt);
725 free_bo:
726 kfree(bo);
727 unlock_dev_srcu:
728 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
729 unlock_usr_srcu:
730 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
731 return ret;
732 }
733
qaic_mmap_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)734 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
735 {
736 struct qaic_mmap_bo *args = data;
737 int usr_rcu_id, qdev_rcu_id;
738 struct drm_gem_object *obj;
739 struct qaic_device *qdev;
740 struct qaic_user *usr;
741 int ret;
742
743 usr = file_priv->driver_priv;
744 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
745 if (!usr->qddev) {
746 ret = -ENODEV;
747 goto unlock_usr_srcu;
748 }
749
750 qdev = usr->qddev->qdev;
751 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
752 if (qdev->dev_state != QAIC_ONLINE) {
753 ret = -ENODEV;
754 goto unlock_dev_srcu;
755 }
756
757 obj = drm_gem_object_lookup(file_priv, args->handle);
758 if (!obj) {
759 ret = -ENOENT;
760 goto unlock_dev_srcu;
761 }
762
763 ret = drm_gem_create_mmap_offset(obj);
764 if (ret == 0)
765 args->offset = drm_vma_node_offset_addr(&obj->vma_node);
766
767 drm_gem_object_put(obj);
768
769 unlock_dev_srcu:
770 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
771 unlock_usr_srcu:
772 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
773 return ret;
774 }
775
qaic_gem_prime_import(struct drm_device * dev,struct dma_buf * dma_buf)776 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
777 {
778 struct dma_buf_attachment *attach;
779 struct drm_gem_object *obj;
780 struct qaic_bo *bo;
781 int ret;
782
783 bo = qaic_alloc_init_bo();
784 if (IS_ERR(bo)) {
785 ret = PTR_ERR(bo);
786 goto out;
787 }
788
789 obj = &bo->base;
790 get_dma_buf(dma_buf);
791
792 attach = dma_buf_attach(dma_buf, dev->dev);
793 if (IS_ERR(attach)) {
794 ret = PTR_ERR(attach);
795 goto attach_fail;
796 }
797
798 if (!attach->dmabuf->size) {
799 ret = -EINVAL;
800 goto size_align_fail;
801 }
802
803 drm_gem_private_object_init(dev, obj, attach->dmabuf->size);
804 /*
805 * skipping dma_buf_map_attachment() as we do not know the direction
806 * just yet. Once the direction is known in the subsequent IOCTL to
807 * attach slicing, we can do it then.
808 */
809
810 obj->funcs = &qaic_gem_funcs;
811 obj->import_attach = attach;
812 obj->resv = dma_buf->resv;
813
814 return obj;
815
816 size_align_fail:
817 dma_buf_detach(dma_buf, attach);
818 attach_fail:
819 dma_buf_put(dma_buf);
820 kfree(bo);
821 out:
822 return ERR_PTR(ret);
823 }
824
qaic_prepare_import_bo(struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)825 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
826 {
827 struct drm_gem_object *obj = &bo->base;
828 struct sg_table *sgt;
829 int ret;
830
831 if (obj->import_attach->dmabuf->size < hdr->size)
832 return -EINVAL;
833
834 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
835 if (IS_ERR(sgt)) {
836 ret = PTR_ERR(sgt);
837 return ret;
838 }
839
840 bo->sgt = sgt;
841
842 return 0;
843 }
844
qaic_prepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)845 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
846 struct qaic_attach_slice_hdr *hdr)
847 {
848 int ret;
849
850 if (bo->base.size < hdr->size)
851 return -EINVAL;
852
853 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
854 if (ret)
855 return -EFAULT;
856
857 return 0;
858 }
859
qaic_prepare_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)860 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
861 struct qaic_attach_slice_hdr *hdr)
862 {
863 int ret;
864
865 if (bo->base.import_attach)
866 ret = qaic_prepare_import_bo(bo, hdr);
867 else
868 ret = qaic_prepare_export_bo(qdev, bo, hdr);
869 bo->dir = hdr->dir;
870 bo->dbc = &qdev->dbc[hdr->dbc_id];
871 bo->nr_slice = hdr->count;
872
873 return ret;
874 }
875
qaic_unprepare_import_bo(struct qaic_bo * bo)876 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
877 {
878 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
879 bo->sgt = NULL;
880 }
881
qaic_unprepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo)882 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
883 {
884 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
885 }
886
qaic_unprepare_bo(struct qaic_device * qdev,struct qaic_bo * bo)887 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
888 {
889 if (bo->base.import_attach)
890 qaic_unprepare_import_bo(bo);
891 else
892 qaic_unprepare_export_bo(qdev, bo);
893
894 bo->dir = 0;
895 bo->dbc = NULL;
896 bo->nr_slice = 0;
897 }
898
qaic_free_slices_bo(struct qaic_bo * bo)899 static void qaic_free_slices_bo(struct qaic_bo *bo)
900 {
901 struct bo_slice *slice, *temp;
902
903 list_for_each_entry_safe(slice, temp, &bo->slices, slice)
904 kref_put(&slice->ref_count, free_slice);
905 if (WARN_ON_ONCE(bo->total_slice_nents != 0))
906 bo->total_slice_nents = 0;
907 bo->nr_slice = 0;
908 }
909
qaic_attach_slicing_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr,struct qaic_attach_slice_entry * slice_ent)910 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
911 struct qaic_attach_slice_hdr *hdr,
912 struct qaic_attach_slice_entry *slice_ent)
913 {
914 int ret, i;
915
916 for (i = 0; i < hdr->count; i++) {
917 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
918 if (ret) {
919 qaic_free_slices_bo(bo);
920 return ret;
921 }
922 }
923
924 if (bo->total_slice_nents > bo->dbc->nelem) {
925 qaic_free_slices_bo(bo);
926 return -ENOSPC;
927 }
928
929 return 0;
930 }
931
qaic_attach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)932 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
933 {
934 struct qaic_attach_slice_entry *slice_ent;
935 struct qaic_attach_slice *args = data;
936 int rcu_id, usr_rcu_id, qdev_rcu_id;
937 struct dma_bridge_chan *dbc;
938 struct drm_gem_object *obj;
939 struct qaic_device *qdev;
940 unsigned long arg_size;
941 struct qaic_user *usr;
942 u8 __user *user_data;
943 struct qaic_bo *bo;
944 int ret;
945
946 if (args->hdr.count == 0)
947 return -EINVAL;
948
949 arg_size = args->hdr.count * sizeof(*slice_ent);
950 if (arg_size / args->hdr.count != sizeof(*slice_ent))
951 return -EINVAL;
952
953 if (args->hdr.size == 0)
954 return -EINVAL;
955
956 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
957 return -EINVAL;
958
959 if (args->data == 0)
960 return -EINVAL;
961
962 usr = file_priv->driver_priv;
963 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
964 if (!usr->qddev) {
965 ret = -ENODEV;
966 goto unlock_usr_srcu;
967 }
968
969 qdev = usr->qddev->qdev;
970 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
971 if (qdev->dev_state != QAIC_ONLINE) {
972 ret = -ENODEV;
973 goto unlock_dev_srcu;
974 }
975
976 if (args->hdr.dbc_id >= qdev->num_dbc) {
977 ret = -EINVAL;
978 goto unlock_dev_srcu;
979 }
980
981 user_data = u64_to_user_ptr(args->data);
982
983 slice_ent = kzalloc(arg_size, GFP_KERNEL);
984 if (!slice_ent) {
985 ret = -EINVAL;
986 goto unlock_dev_srcu;
987 }
988
989 ret = copy_from_user(slice_ent, user_data, arg_size);
990 if (ret) {
991 ret = -EFAULT;
992 goto free_slice_ent;
993 }
994
995 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
996 if (ret)
997 goto free_slice_ent;
998
999 obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
1000 if (!obj) {
1001 ret = -ENOENT;
1002 goto free_slice_ent;
1003 }
1004
1005 bo = to_qaic_bo(obj);
1006 ret = mutex_lock_interruptible(&bo->lock);
1007 if (ret)
1008 goto put_bo;
1009
1010 if (bo->sliced) {
1011 ret = -EINVAL;
1012 goto unlock_bo;
1013 }
1014
1015 dbc = &qdev->dbc[args->hdr.dbc_id];
1016 rcu_id = srcu_read_lock(&dbc->ch_lock);
1017 if (dbc->usr != usr) {
1018 ret = -EINVAL;
1019 goto unlock_ch_srcu;
1020 }
1021
1022 ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1023 if (ret)
1024 goto unlock_ch_srcu;
1025
1026 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1027 if (ret)
1028 goto unprepare_bo;
1029
1030 if (args->hdr.dir == DMA_TO_DEVICE)
1031 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1032
1033 bo->sliced = true;
1034 list_add_tail(&bo->bo_list, &bo->dbc->bo_lists);
1035 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1036 mutex_unlock(&bo->lock);
1037 kfree(slice_ent);
1038 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1039 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1040
1041 return 0;
1042
1043 unprepare_bo:
1044 qaic_unprepare_bo(qdev, bo);
1045 unlock_ch_srcu:
1046 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1047 unlock_bo:
1048 mutex_unlock(&bo->lock);
1049 put_bo:
1050 drm_gem_object_put(obj);
1051 free_slice_ent:
1052 kfree(slice_ent);
1053 unlock_dev_srcu:
1054 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1055 unlock_usr_srcu:
1056 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1057 return ret;
1058 }
1059
fifo_space_avail(u32 head,u32 tail,u32 q_size)1060 static inline u32 fifo_space_avail(u32 head, u32 tail, u32 q_size)
1061 {
1062 u32 avail = head - tail - 1;
1063
1064 if (head <= tail)
1065 avail += q_size;
1066
1067 return avail;
1068 }
1069
copy_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u32 dbc_id,u32 head,u32 * ptail)1070 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1071 u32 head, u32 *ptail)
1072 {
1073 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1074 struct dbc_req *reqs = slice->reqs;
1075 u32 tail = *ptail;
1076 u32 avail;
1077
1078 avail = fifo_space_avail(head, tail, dbc->nelem);
1079 if (avail < slice->nents)
1080 return -EAGAIN;
1081
1082 if (tail + slice->nents > dbc->nelem) {
1083 avail = dbc->nelem - tail;
1084 avail = min_t(u32, avail, slice->nents);
1085 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1086 reqs += avail;
1087 avail = slice->nents - avail;
1088 if (avail)
1089 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1090 } else {
1091 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * slice->nents);
1092 }
1093
1094 *ptail = (tail + slice->nents) % dbc->nelem;
1095
1096 return 0;
1097 }
1098
copy_partial_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u64 resize,struct dma_bridge_chan * dbc,u32 head,u32 * ptail)1099 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1100 u64 resize, struct dma_bridge_chan *dbc, u32 head,
1101 u32 *ptail)
1102 {
1103 struct dbc_req *reqs = slice->reqs;
1104 struct dbc_req *last_req;
1105 u32 tail = *ptail;
1106 u64 last_bytes;
1107 u32 first_n;
1108 u32 avail;
1109
1110 avail = fifo_space_avail(head, tail, dbc->nelem);
1111
1112 /*
1113 * After this for loop is complete, first_n represents the index
1114 * of the last DMA request of this slice that needs to be
1115 * transferred after resizing and last_bytes represents DMA size
1116 * of that request.
1117 */
1118 last_bytes = resize;
1119 for (first_n = 0; first_n < slice->nents; first_n++)
1120 if (last_bytes > le32_to_cpu(reqs[first_n].len))
1121 last_bytes -= le32_to_cpu(reqs[first_n].len);
1122 else
1123 break;
1124
1125 if (avail < (first_n + 1))
1126 return -EAGAIN;
1127
1128 if (first_n) {
1129 if (tail + first_n > dbc->nelem) {
1130 avail = dbc->nelem - tail;
1131 avail = min_t(u32, avail, first_n);
1132 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * avail);
1133 last_req = reqs + avail;
1134 avail = first_n - avail;
1135 if (avail)
1136 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1137 } else {
1138 memcpy(fifo_at(dbc->req_q_base, tail), reqs, sizeof(*reqs) * first_n);
1139 }
1140 }
1141
1142 /*
1143 * Copy over the last entry. Here we need to adjust len to the left over
1144 * size, and set src and dst to the entry it is copied to.
1145 */
1146 last_req = fifo_at(dbc->req_q_base, (tail + first_n) % dbc->nelem);
1147 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1148
1149 /*
1150 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1151 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1152 * range. So, by down sizing we are not corrupting the value.
1153 */
1154 last_req->len = cpu_to_le32((u32)last_bytes);
1155 last_req->src_addr = reqs[first_n].src_addr;
1156 last_req->dest_addr = reqs[first_n].dest_addr;
1157 if (!last_bytes)
1158 /* Disable DMA transfer */
1159 last_req->cmd = GENMASK(7, 2) & reqs[first_n].cmd;
1160
1161 *ptail = (tail + first_n + 1) % dbc->nelem;
1162
1163 return 0;
1164 }
1165
send_bo_list_to_device(struct qaic_device * qdev,struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,struct dma_bridge_chan * dbc,u32 head,u32 * tail)1166 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1167 struct qaic_execute_entry *exec, unsigned int count,
1168 bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1169 u32 *tail)
1170 {
1171 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1172 struct drm_gem_object *obj;
1173 struct bo_slice *slice;
1174 unsigned long flags;
1175 struct qaic_bo *bo;
1176 bool queued;
1177 int i, j;
1178 int ret;
1179
1180 for (i = 0; i < count; i++) {
1181 /*
1182 * ref count will be decremented when the transfer of this
1183 * buffer is complete. It is inside dbc_irq_threaded_fn().
1184 */
1185 obj = drm_gem_object_lookup(file_priv,
1186 is_partial ? pexec[i].handle : exec[i].handle);
1187 if (!obj) {
1188 ret = -ENOENT;
1189 goto failed_to_send_bo;
1190 }
1191
1192 bo = to_qaic_bo(obj);
1193 ret = mutex_lock_interruptible(&bo->lock);
1194 if (ret)
1195 goto failed_to_send_bo;
1196
1197 if (!bo->sliced) {
1198 ret = -EINVAL;
1199 goto unlock_bo;
1200 }
1201
1202 if (is_partial && pexec[i].resize > bo->base.size) {
1203 ret = -EINVAL;
1204 goto unlock_bo;
1205 }
1206
1207 spin_lock_irqsave(&dbc->xfer_lock, flags);
1208 queued = bo->queued;
1209 bo->queued = true;
1210 if (queued) {
1211 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1212 ret = -EINVAL;
1213 goto unlock_bo;
1214 }
1215
1216 bo->req_id = dbc->next_req_id++;
1217
1218 list_for_each_entry(slice, &bo->slices, slice) {
1219 for (j = 0; j < slice->nents; j++)
1220 slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1221
1222 if (is_partial && (!pexec[i].resize || pexec[i].resize <= slice->offset))
1223 /* Configure the slice for no DMA transfer */
1224 ret = copy_partial_exec_reqs(qdev, slice, 0, dbc, head, tail);
1225 else if (is_partial && pexec[i].resize < slice->offset + slice->size)
1226 /* Configure the slice to be partially DMA transferred */
1227 ret = copy_partial_exec_reqs(qdev, slice,
1228 pexec[i].resize - slice->offset, dbc,
1229 head, tail);
1230 else
1231 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1232 if (ret) {
1233 bo->queued = false;
1234 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1235 goto unlock_bo;
1236 }
1237 }
1238 reinit_completion(&bo->xfer_done);
1239 list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1240 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1241 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1242 mutex_unlock(&bo->lock);
1243 }
1244
1245 return 0;
1246
1247 unlock_bo:
1248 mutex_unlock(&bo->lock);
1249 failed_to_send_bo:
1250 if (likely(obj))
1251 drm_gem_object_put(obj);
1252 for (j = 0; j < i; j++) {
1253 spin_lock_irqsave(&dbc->xfer_lock, flags);
1254 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1255 obj = &bo->base;
1256 bo->queued = false;
1257 list_del(&bo->xfer_list);
1258 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1259 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1260 drm_gem_object_put(obj);
1261 }
1262 return ret;
1263 }
1264
update_profiling_data(struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,u64 received_ts,u64 submit_ts,u32 queue_level)1265 static void update_profiling_data(struct drm_file *file_priv,
1266 struct qaic_execute_entry *exec, unsigned int count,
1267 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1268 {
1269 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1270 struct drm_gem_object *obj;
1271 struct qaic_bo *bo;
1272 int i;
1273
1274 for (i = 0; i < count; i++) {
1275 /*
1276 * Since we already committed the BO to hardware, the only way
1277 * this should fail is a pending signal. We can't cancel the
1278 * submit to hardware, so we have to just skip the profiling
1279 * data. In case the signal is not fatal to the process, we
1280 * return success so that the user doesn't try to resubmit.
1281 */
1282 obj = drm_gem_object_lookup(file_priv,
1283 is_partial ? pexec[i].handle : exec[i].handle);
1284 if (!obj)
1285 break;
1286 bo = to_qaic_bo(obj);
1287 bo->perf_stats.req_received_ts = received_ts;
1288 bo->perf_stats.req_submit_ts = submit_ts;
1289 bo->perf_stats.queue_level_before = queue_level;
1290 queue_level += bo->total_slice_nents;
1291 drm_gem_object_put(obj);
1292 }
1293 }
1294
__qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv,bool is_partial)1295 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1296 bool is_partial)
1297 {
1298 struct qaic_execute *args = data;
1299 struct qaic_execute_entry *exec;
1300 struct dma_bridge_chan *dbc;
1301 int usr_rcu_id, qdev_rcu_id;
1302 struct qaic_device *qdev;
1303 struct qaic_user *usr;
1304 u8 __user *user_data;
1305 unsigned long n;
1306 u64 received_ts;
1307 u32 queue_level;
1308 u64 submit_ts;
1309 int rcu_id;
1310 u32 head;
1311 u32 tail;
1312 u64 size;
1313 int ret;
1314
1315 received_ts = ktime_get_ns();
1316
1317 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1318 n = (unsigned long)size * args->hdr.count;
1319 if (args->hdr.count == 0 || n / args->hdr.count != size)
1320 return -EINVAL;
1321
1322 user_data = u64_to_user_ptr(args->data);
1323
1324 exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1325 if (!exec)
1326 return -ENOMEM;
1327
1328 if (copy_from_user(exec, user_data, n)) {
1329 ret = -EFAULT;
1330 goto free_exec;
1331 }
1332
1333 usr = file_priv->driver_priv;
1334 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1335 if (!usr->qddev) {
1336 ret = -ENODEV;
1337 goto unlock_usr_srcu;
1338 }
1339
1340 qdev = usr->qddev->qdev;
1341 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1342 if (qdev->dev_state != QAIC_ONLINE) {
1343 ret = -ENODEV;
1344 goto unlock_dev_srcu;
1345 }
1346
1347 if (args->hdr.dbc_id >= qdev->num_dbc) {
1348 ret = -EINVAL;
1349 goto unlock_dev_srcu;
1350 }
1351
1352 dbc = &qdev->dbc[args->hdr.dbc_id];
1353
1354 rcu_id = srcu_read_lock(&dbc->ch_lock);
1355 if (!dbc->usr || dbc->usr->handle != usr->handle) {
1356 ret = -EPERM;
1357 goto release_ch_rcu;
1358 }
1359
1360 head = readl(dbc->dbc_base + REQHP_OFF);
1361 tail = readl(dbc->dbc_base + REQTP_OFF);
1362
1363 if (head == U32_MAX || tail == U32_MAX) {
1364 /* PCI link error */
1365 ret = -ENODEV;
1366 goto release_ch_rcu;
1367 }
1368
1369 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1370
1371 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1372 head, &tail);
1373 if (ret)
1374 goto release_ch_rcu;
1375
1376 /* Finalize commit to hardware */
1377 submit_ts = ktime_get_ns();
1378 writel(tail, dbc->dbc_base + REQTP_OFF);
1379
1380 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1381 submit_ts, queue_level);
1382
1383 if (datapath_polling)
1384 schedule_work(&dbc->poll_work);
1385
1386 release_ch_rcu:
1387 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1388 unlock_dev_srcu:
1389 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1390 unlock_usr_srcu:
1391 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1392 free_exec:
1393 kfree(exec);
1394 return ret;
1395 }
1396
qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1397 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1398 {
1399 return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1400 }
1401
qaic_partial_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1402 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1403 {
1404 return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1405 }
1406
1407 /*
1408 * Our interrupt handling is a bit more complicated than a simple ideal, but
1409 * sadly necessary.
1410 *
1411 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1412 * requests which the device has processed. The hardware already has a built
1413 * in irq mitigation. When the device puts an entry into the queue, it will
1414 * only trigger an interrupt if the queue was empty. Therefore, when adding
1415 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1416 * interrupt. This means the host doesn't get additional interrupts signaling
1417 * the same thing - the queue has something to process.
1418 * This behavior can be overridden in the DMA request.
1419 * This means that when the host receives an interrupt, it is required to
1420 * drain the queue.
1421 *
1422 * This behavior is what NAPI attempts to accomplish, although we can't use
1423 * NAPI as we don't have a netdev. We use threaded irqs instead.
1424 *
1425 * However, there is a situation where the host drains the queue fast enough
1426 * that every event causes an interrupt. Typically this is not a problem as
1427 * the rate of events would be low. However, that is not the case with
1428 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1429 * lprnet, the host receives roughly 80k interrupts per second from the device
1430 * (per /proc/interrupts). While NAPI documentation indicates the host should
1431 * just chug along, sadly that behavior causes instability in some hosts.
1432 *
1433 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1434 * key difference is that we will delay after draining the queue for a small
1435 * time to allow additional events to come in via polling. Using the above
1436 * lprnet workload, this reduces the number of interrupts processed from
1437 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1438 * instability.
1439 */
dbc_irq_handler(int irq,void * data)1440 irqreturn_t dbc_irq_handler(int irq, void *data)
1441 {
1442 struct dma_bridge_chan *dbc = data;
1443 int rcu_id;
1444 u32 head;
1445 u32 tail;
1446
1447 rcu_id = srcu_read_lock(&dbc->ch_lock);
1448
1449 if (datapath_polling) {
1450 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1451 /*
1452 * Normally datapath_polling will not have irqs enabled, but
1453 * when running with only one MSI the interrupt is shared with
1454 * MHI so it cannot be disabled. Return ASAP instead.
1455 */
1456 return IRQ_HANDLED;
1457 }
1458
1459 if (!dbc->usr) {
1460 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1461 return IRQ_HANDLED;
1462 }
1463
1464 head = readl(dbc->dbc_base + RSPHP_OFF);
1465 if (head == U32_MAX) { /* PCI link error */
1466 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1467 return IRQ_NONE;
1468 }
1469
1470 tail = readl(dbc->dbc_base + RSPTP_OFF);
1471 if (tail == U32_MAX) { /* PCI link error */
1472 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1473 return IRQ_NONE;
1474 }
1475
1476 if (head == tail) { /* queue empty */
1477 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1478 return IRQ_NONE;
1479 }
1480
1481 if (!dbc->qdev->single_msi)
1482 disable_irq_nosync(irq);
1483 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1484 return IRQ_WAKE_THREAD;
1485 }
1486
irq_polling_work(struct work_struct * work)1487 void irq_polling_work(struct work_struct *work)
1488 {
1489 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1490 unsigned long flags;
1491 int rcu_id;
1492 u32 head;
1493 u32 tail;
1494
1495 rcu_id = srcu_read_lock(&dbc->ch_lock);
1496
1497 while (1) {
1498 if (dbc->qdev->dev_state != QAIC_ONLINE) {
1499 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1500 return;
1501 }
1502 if (!dbc->usr) {
1503 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1504 return;
1505 }
1506 spin_lock_irqsave(&dbc->xfer_lock, flags);
1507 if (list_empty(&dbc->xfer_list)) {
1508 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1509 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1510 return;
1511 }
1512 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1513
1514 head = readl(dbc->dbc_base + RSPHP_OFF);
1515 if (head == U32_MAX) { /* PCI link error */
1516 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1517 return;
1518 }
1519
1520 tail = readl(dbc->dbc_base + RSPTP_OFF);
1521 if (tail == U32_MAX) { /* PCI link error */
1522 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1523 return;
1524 }
1525
1526 if (head != tail) {
1527 irq_wake_thread(dbc->irq, dbc);
1528 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1529 return;
1530 }
1531
1532 cond_resched();
1533 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1534 }
1535 }
1536
dbc_irq_threaded_fn(int irq,void * data)1537 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1538 {
1539 struct dma_bridge_chan *dbc = data;
1540 int event_count = NUM_EVENTS;
1541 int delay_count = NUM_DELAYS;
1542 struct qaic_device *qdev;
1543 struct qaic_bo *bo, *i;
1544 struct dbc_rsp *rsp;
1545 unsigned long flags;
1546 int rcu_id;
1547 u16 status;
1548 u16 req_id;
1549 u32 head;
1550 u32 tail;
1551
1552 rcu_id = srcu_read_lock(&dbc->ch_lock);
1553 qdev = dbc->qdev;
1554
1555 head = readl(dbc->dbc_base + RSPHP_OFF);
1556 if (head == U32_MAX) /* PCI link error */
1557 goto error_out;
1558
1559 read_fifo:
1560
1561 if (!event_count) {
1562 event_count = NUM_EVENTS;
1563 cond_resched();
1564 }
1565
1566 /*
1567 * if this channel isn't assigned or gets unassigned during processing
1568 * we have nothing further to do
1569 */
1570 if (!dbc->usr)
1571 goto error_out;
1572
1573 tail = readl(dbc->dbc_base + RSPTP_OFF);
1574 if (tail == U32_MAX) /* PCI link error */
1575 goto error_out;
1576
1577 if (head == tail) { /* queue empty */
1578 if (delay_count) {
1579 --delay_count;
1580 usleep_range(100, 200);
1581 goto read_fifo; /* check for a new event */
1582 }
1583 goto normal_out;
1584 }
1585
1586 delay_count = NUM_DELAYS;
1587 while (head != tail) {
1588 if (!event_count)
1589 break;
1590 --event_count;
1591 rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1592 req_id = le16_to_cpu(rsp->req_id);
1593 status = le16_to_cpu(rsp->status);
1594 if (status)
1595 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1596 spin_lock_irqsave(&dbc->xfer_lock, flags);
1597 /*
1598 * A BO can receive multiple interrupts, since a BO can be
1599 * divided into multiple slices and a buffer receives as many
1600 * interrupts as slices. So until it receives interrupts for
1601 * all the slices we cannot mark that buffer complete.
1602 */
1603 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1604 if (bo->req_id == req_id)
1605 bo->nr_slice_xfer_done++;
1606 else
1607 continue;
1608
1609 if (bo->nr_slice_xfer_done < bo->nr_slice)
1610 break;
1611
1612 /*
1613 * At this point we have received all the interrupts for
1614 * BO, which means BO execution is complete.
1615 */
1616 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1617 bo->nr_slice_xfer_done = 0;
1618 bo->queued = false;
1619 list_del(&bo->xfer_list);
1620 bo->perf_stats.req_processed_ts = ktime_get_ns();
1621 complete_all(&bo->xfer_done);
1622 drm_gem_object_put(&bo->base);
1623 break;
1624 }
1625 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1626 head = (head + 1) % dbc->nelem;
1627 }
1628
1629 /*
1630 * Update the head pointer of response queue and let the device know
1631 * that we have consumed elements from the queue.
1632 */
1633 writel(head, dbc->dbc_base + RSPHP_OFF);
1634
1635 /* elements might have been put in the queue while we were processing */
1636 goto read_fifo;
1637
1638 normal_out:
1639 if (!qdev->single_msi && likely(!datapath_polling))
1640 enable_irq(irq);
1641 else if (unlikely(datapath_polling))
1642 schedule_work(&dbc->poll_work);
1643 /* checking the fifo and enabling irqs is a race, missed event check */
1644 tail = readl(dbc->dbc_base + RSPTP_OFF);
1645 if (tail != U32_MAX && head != tail) {
1646 if (!qdev->single_msi && likely(!datapath_polling))
1647 disable_irq_nosync(irq);
1648 goto read_fifo;
1649 }
1650 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1651 return IRQ_HANDLED;
1652
1653 error_out:
1654 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1655 if (!qdev->single_msi && likely(!datapath_polling))
1656 enable_irq(irq);
1657 else if (unlikely(datapath_polling))
1658 schedule_work(&dbc->poll_work);
1659
1660 return IRQ_HANDLED;
1661 }
1662
qaic_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1663 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1664 {
1665 struct qaic_wait *args = data;
1666 int usr_rcu_id, qdev_rcu_id;
1667 struct dma_bridge_chan *dbc;
1668 struct drm_gem_object *obj;
1669 struct qaic_device *qdev;
1670 unsigned long timeout;
1671 struct qaic_user *usr;
1672 struct qaic_bo *bo;
1673 int rcu_id;
1674 int ret;
1675
1676 if (args->pad != 0)
1677 return -EINVAL;
1678
1679 usr = file_priv->driver_priv;
1680 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1681 if (!usr->qddev) {
1682 ret = -ENODEV;
1683 goto unlock_usr_srcu;
1684 }
1685
1686 qdev = usr->qddev->qdev;
1687 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1688 if (qdev->dev_state != QAIC_ONLINE) {
1689 ret = -ENODEV;
1690 goto unlock_dev_srcu;
1691 }
1692
1693 if (args->dbc_id >= qdev->num_dbc) {
1694 ret = -EINVAL;
1695 goto unlock_dev_srcu;
1696 }
1697
1698 dbc = &qdev->dbc[args->dbc_id];
1699
1700 rcu_id = srcu_read_lock(&dbc->ch_lock);
1701 if (dbc->usr != usr) {
1702 ret = -EPERM;
1703 goto unlock_ch_srcu;
1704 }
1705
1706 obj = drm_gem_object_lookup(file_priv, args->handle);
1707 if (!obj) {
1708 ret = -ENOENT;
1709 goto unlock_ch_srcu;
1710 }
1711
1712 bo = to_qaic_bo(obj);
1713 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1714 timeout = msecs_to_jiffies(timeout);
1715 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1716 if (!ret) {
1717 ret = -ETIMEDOUT;
1718 goto put_obj;
1719 }
1720 if (ret > 0)
1721 ret = 0;
1722
1723 if (!dbc->usr)
1724 ret = -EPERM;
1725
1726 put_obj:
1727 drm_gem_object_put(obj);
1728 unlock_ch_srcu:
1729 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1730 unlock_dev_srcu:
1731 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1732 unlock_usr_srcu:
1733 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1734 return ret;
1735 }
1736
qaic_perf_stats_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1737 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1738 {
1739 struct qaic_perf_stats_entry *ent = NULL;
1740 struct qaic_perf_stats *args = data;
1741 int usr_rcu_id, qdev_rcu_id;
1742 struct drm_gem_object *obj;
1743 struct qaic_device *qdev;
1744 struct qaic_user *usr;
1745 struct qaic_bo *bo;
1746 int ret, i;
1747
1748 usr = file_priv->driver_priv;
1749 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1750 if (!usr->qddev) {
1751 ret = -ENODEV;
1752 goto unlock_usr_srcu;
1753 }
1754
1755 qdev = usr->qddev->qdev;
1756 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1757 if (qdev->dev_state != QAIC_ONLINE) {
1758 ret = -ENODEV;
1759 goto unlock_dev_srcu;
1760 }
1761
1762 if (args->hdr.dbc_id >= qdev->num_dbc) {
1763 ret = -EINVAL;
1764 goto unlock_dev_srcu;
1765 }
1766
1767 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1768 if (!ent) {
1769 ret = -EINVAL;
1770 goto unlock_dev_srcu;
1771 }
1772
1773 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1774 if (ret) {
1775 ret = -EFAULT;
1776 goto free_ent;
1777 }
1778
1779 for (i = 0; i < args->hdr.count; i++) {
1780 obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1781 if (!obj) {
1782 ret = -ENOENT;
1783 goto free_ent;
1784 }
1785 bo = to_qaic_bo(obj);
1786 /*
1787 * perf stats ioctl is called before wait ioctl is complete then
1788 * the latency information is invalid.
1789 */
1790 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1791 ent[i].device_latency_us = 0;
1792 } else {
1793 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1794 bo->perf_stats.req_submit_ts), 1000);
1795 }
1796 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1797 bo->perf_stats.req_received_ts), 1000);
1798 ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1799 ent[i].num_queue_element = bo->total_slice_nents;
1800 drm_gem_object_put(obj);
1801 }
1802
1803 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1804 ret = -EFAULT;
1805
1806 free_ent:
1807 kfree(ent);
1808 unlock_dev_srcu:
1809 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1810 unlock_usr_srcu:
1811 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1812 return ret;
1813 }
1814
detach_slice_bo(struct qaic_device * qdev,struct qaic_bo * bo)1815 static void detach_slice_bo(struct qaic_device *qdev, struct qaic_bo *bo)
1816 {
1817 qaic_free_slices_bo(bo);
1818 qaic_unprepare_bo(qdev, bo);
1819 qaic_init_bo(bo, true);
1820 list_del(&bo->bo_list);
1821 drm_gem_object_put(&bo->base);
1822 }
1823
qaic_detach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1824 int qaic_detach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1825 {
1826 struct qaic_detach_slice *args = data;
1827 int rcu_id, usr_rcu_id, qdev_rcu_id;
1828 struct dma_bridge_chan *dbc;
1829 struct drm_gem_object *obj;
1830 struct qaic_device *qdev;
1831 struct qaic_user *usr;
1832 unsigned long flags;
1833 struct qaic_bo *bo;
1834 int ret;
1835
1836 if (args->pad != 0)
1837 return -EINVAL;
1838
1839 usr = file_priv->driver_priv;
1840 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1841 if (!usr->qddev) {
1842 ret = -ENODEV;
1843 goto unlock_usr_srcu;
1844 }
1845
1846 qdev = usr->qddev->qdev;
1847 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1848 if (qdev->dev_state != QAIC_ONLINE) {
1849 ret = -ENODEV;
1850 goto unlock_dev_srcu;
1851 }
1852
1853 obj = drm_gem_object_lookup(file_priv, args->handle);
1854 if (!obj) {
1855 ret = -ENOENT;
1856 goto unlock_dev_srcu;
1857 }
1858
1859 bo = to_qaic_bo(obj);
1860 ret = mutex_lock_interruptible(&bo->lock);
1861 if (ret)
1862 goto put_bo;
1863
1864 if (!bo->sliced) {
1865 ret = -EINVAL;
1866 goto unlock_bo;
1867 }
1868
1869 dbc = bo->dbc;
1870 rcu_id = srcu_read_lock(&dbc->ch_lock);
1871 if (dbc->usr != usr) {
1872 ret = -EINVAL;
1873 goto unlock_ch_srcu;
1874 }
1875
1876 /* Check if BO is committed to H/W for DMA */
1877 spin_lock_irqsave(&dbc->xfer_lock, flags);
1878 if (bo->queued) {
1879 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1880 ret = -EBUSY;
1881 goto unlock_ch_srcu;
1882 }
1883 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1884
1885 detach_slice_bo(qdev, bo);
1886
1887 unlock_ch_srcu:
1888 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1889 unlock_bo:
1890 mutex_unlock(&bo->lock);
1891 put_bo:
1892 drm_gem_object_put(obj);
1893 unlock_dev_srcu:
1894 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1895 unlock_usr_srcu:
1896 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1897 return ret;
1898 }
1899
empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1900 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1901 {
1902 unsigned long flags;
1903 struct qaic_bo *bo;
1904
1905 spin_lock_irqsave(&dbc->xfer_lock, flags);
1906 while (!list_empty(&dbc->xfer_list)) {
1907 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1908 bo->queued = false;
1909 list_del(&bo->xfer_list);
1910 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1911 bo->nr_slice_xfer_done = 0;
1912 bo->req_id = 0;
1913 bo->perf_stats.req_received_ts = 0;
1914 bo->perf_stats.req_submit_ts = 0;
1915 bo->perf_stats.req_processed_ts = 0;
1916 bo->perf_stats.queue_level_before = 0;
1917 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1918 complete_all(&bo->xfer_done);
1919 drm_gem_object_put(&bo->base);
1920 spin_lock_irqsave(&dbc->xfer_lock, flags);
1921 }
1922 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1923 }
1924
disable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1925 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1926 {
1927 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1928 return -EPERM;
1929
1930 qdev->dbc[dbc_id].usr = NULL;
1931 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1932 return 0;
1933 }
1934
1935 /**
1936 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1937 * user. Add user context back to DBC to enable it. This function trusts the
1938 * DBC ID passed and expects the DBC to be disabled.
1939 * @qdev: Qranium device handle
1940 * @dbc_id: ID of the DBC
1941 * @usr: User context
1942 */
enable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1943 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1944 {
1945 qdev->dbc[dbc_id].usr = usr;
1946 }
1947
wakeup_dbc(struct qaic_device * qdev,u32 dbc_id)1948 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1949 {
1950 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1951
1952 dbc->usr = NULL;
1953 empty_xfer_list(qdev, dbc);
1954 synchronize_srcu(&dbc->ch_lock);
1955 /*
1956 * Threads holding channel lock, may add more elements in the xfer_list.
1957 * Flush out these elements from xfer_list.
1958 */
1959 empty_xfer_list(qdev, dbc);
1960 }
1961
release_dbc(struct qaic_device * qdev,u32 dbc_id)1962 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1963 {
1964 struct qaic_bo *bo, *bo_temp;
1965 struct dma_bridge_chan *dbc;
1966
1967 dbc = &qdev->dbc[dbc_id];
1968 if (!dbc->in_use)
1969 return;
1970
1971 wakeup_dbc(qdev, dbc_id);
1972
1973 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1974 dbc->total_size = 0;
1975 dbc->req_q_base = NULL;
1976 dbc->dma_addr = 0;
1977 dbc->nelem = 0;
1978 dbc->usr = NULL;
1979
1980 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1981 drm_gem_object_get(&bo->base);
1982 mutex_lock(&bo->lock);
1983 detach_slice_bo(qdev, bo);
1984 mutex_unlock(&bo->lock);
1985 drm_gem_object_put(&bo->base);
1986 }
1987
1988 dbc->in_use = false;
1989 wake_up(&dbc->dbc_release);
1990 }
1991