1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/pfn_t.h>
11 #include <linux/cdev.h>
12 #include <linux/slab.h>
13 #include <linux/uio.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include "dax-private.h"
17
18 /**
19 * struct dax_device - anchor object for dax services
20 * @inode: core vfs
21 * @cdev: optional character interface for "device dax"
22 * @private: dax driver private data
23 * @flags: state and boolean properties
24 * @ops: operations for this device
25 * @holder_data: holder of a dax_device: could be filesystem or mapped device
26 * @holder_ops: operations for the inner holder
27 */
28 struct dax_device {
29 struct inode inode;
30 struct cdev cdev;
31 void *private;
32 unsigned long flags;
33 const struct dax_operations *ops;
34 void *holder_data;
35 const struct dax_holder_operations *holder_ops;
36 };
37
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44
dax_read_lock(void)45 int dax_read_lock(void)
46 {
47 return srcu_read_lock(&dax_srcu);
48 }
49 EXPORT_SYMBOL_GPL(dax_read_lock);
50
dax_read_unlock(int id)51 void dax_read_unlock(int id)
52 {
53 srcu_read_unlock(&dax_srcu, id);
54 }
55 EXPORT_SYMBOL_GPL(dax_read_unlock);
56
57 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX)
58 #include <linux/blkdev.h>
59
60 static DEFINE_XARRAY(dax_hosts);
61
dax_add_host(struct dax_device * dax_dev,struct gendisk * disk)62 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk)
63 {
64 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL);
65 }
66 EXPORT_SYMBOL_GPL(dax_add_host);
67
dax_remove_host(struct gendisk * disk)68 void dax_remove_host(struct gendisk *disk)
69 {
70 xa_erase(&dax_hosts, (unsigned long)disk);
71 }
72 EXPORT_SYMBOL_GPL(dax_remove_host);
73
74 /**
75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax
76 * @bdev: block device to find a dax_device for
77 * @start_off: returns the byte offset into the dax_device that @bdev starts
78 * @holder: filesystem or mapped device inside the dax_device
79 * @ops: operations for the inner holder
80 */
fs_dax_get_by_bdev(struct block_device * bdev,u64 * start_off,void * holder,const struct dax_holder_operations * ops)81 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off,
82 void *holder, const struct dax_holder_operations *ops)
83 {
84 struct dax_device *dax_dev;
85 u64 part_size;
86 int id;
87
88 if (!blk_queue_dax(bdev->bd_disk->queue))
89 return NULL;
90
91 *start_off = get_start_sect(bdev) * SECTOR_SIZE;
92 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE;
93 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) {
94 pr_info("%pg: error: unaligned partition for dax\n", bdev);
95 return NULL;
96 }
97
98 id = dax_read_lock();
99 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk);
100 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode))
101 dax_dev = NULL;
102 else if (holder) {
103 if (!cmpxchg(&dax_dev->holder_data, NULL, holder))
104 dax_dev->holder_ops = ops;
105 else
106 dax_dev = NULL;
107 }
108 dax_read_unlock(id);
109
110 return dax_dev;
111 }
112 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
113
fs_put_dax(struct dax_device * dax_dev,void * holder)114 void fs_put_dax(struct dax_device *dax_dev, void *holder)
115 {
116 if (dax_dev && holder &&
117 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder)
118 dax_dev->holder_ops = NULL;
119 put_dax(dax_dev);
120 }
121 EXPORT_SYMBOL_GPL(fs_put_dax);
122 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */
123
124 enum dax_device_flags {
125 /* !alive + rcu grace period == no new operations / mappings */
126 DAXDEV_ALIVE,
127 /* gate whether dax_flush() calls the low level flush routine */
128 DAXDEV_WRITE_CACHE,
129 /* flag to check if device supports synchronous flush */
130 DAXDEV_SYNC,
131 /* do not leave the caches dirty after writes */
132 DAXDEV_NOCACHE,
133 /* handle CPU fetch exceptions during reads */
134 DAXDEV_NOMC,
135 };
136
137 /**
138 * dax_direct_access() - translate a device pgoff to an absolute pfn
139 * @dax_dev: a dax_device instance representing the logical memory range
140 * @pgoff: offset in pages from the start of the device to translate
141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
142 * @mode: indicator on normal access or recovery write
143 * @kaddr: output parameter that returns a virtual address mapping of pfn
144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
145 *
146 * Return: negative errno if an error occurs, otherwise the number of
147 * pages accessible at the device relative @pgoff.
148 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)149 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
150 enum dax_access_mode mode, void **kaddr, pfn_t *pfn)
151 {
152 long avail;
153
154 if (!dax_dev)
155 return -EOPNOTSUPP;
156
157 if (!dax_alive(dax_dev))
158 return -ENXIO;
159
160 if (nr_pages < 0)
161 return -EINVAL;
162
163 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
164 mode, kaddr, pfn);
165 if (!avail)
166 return -ERANGE;
167 return min(avail, nr_pages);
168 }
169 EXPORT_SYMBOL_GPL(dax_direct_access);
170
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)171 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
172 size_t bytes, struct iov_iter *i)
173 {
174 if (!dax_alive(dax_dev))
175 return 0;
176
177 /*
178 * The userspace address for the memory copy has already been validated
179 * via access_ok() in vfs_write, so use the 'no check' version to bypass
180 * the HARDENED_USERCOPY overhead.
181 */
182 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags))
183 return _copy_from_iter_flushcache(addr, bytes, i);
184 return _copy_from_iter(addr, bytes, i);
185 }
186
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)187 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
188 size_t bytes, struct iov_iter *i)
189 {
190 if (!dax_alive(dax_dev))
191 return 0;
192
193 /*
194 * The userspace address for the memory copy has already been validated
195 * via access_ok() in vfs_red, so use the 'no check' version to bypass
196 * the HARDENED_USERCOPY overhead.
197 */
198 if (test_bit(DAXDEV_NOMC, &dax_dev->flags))
199 return _copy_mc_to_iter(addr, bytes, i);
200 return _copy_to_iter(addr, bytes, i);
201 }
202
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)203 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
204 size_t nr_pages)
205 {
206 int ret;
207
208 if (!dax_alive(dax_dev))
209 return -ENXIO;
210 /*
211 * There are no callers that want to zero more than one page as of now.
212 * Once users are there, this check can be removed after the
213 * device mapper code has been updated to split ranges across targets.
214 */
215 if (nr_pages != 1)
216 return -EIO;
217
218 ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
219 return dax_mem2blk_err(ret);
220 }
221 EXPORT_SYMBOL_GPL(dax_zero_page_range);
222
dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * iter)223 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
224 void *addr, size_t bytes, struct iov_iter *iter)
225 {
226 if (!dax_dev->ops->recovery_write)
227 return 0;
228 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter);
229 }
230 EXPORT_SYMBOL_GPL(dax_recovery_write);
231
dax_holder_notify_failure(struct dax_device * dax_dev,u64 off,u64 len,int mf_flags)232 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off,
233 u64 len, int mf_flags)
234 {
235 int rc, id;
236
237 id = dax_read_lock();
238 if (!dax_alive(dax_dev)) {
239 rc = -ENXIO;
240 goto out;
241 }
242
243 if (!dax_dev->holder_ops) {
244 rc = -EOPNOTSUPP;
245 goto out;
246 }
247
248 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags);
249 out:
250 dax_read_unlock(id);
251 return rc;
252 }
253 EXPORT_SYMBOL_GPL(dax_holder_notify_failure);
254
255 #ifdef CONFIG_ARCH_HAS_PMEM_API
256 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)257 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
258 {
259 if (unlikely(!dax_write_cache_enabled(dax_dev)))
260 return;
261
262 arch_wb_cache_pmem(addr, size);
263 }
264 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)265 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
266 {
267 }
268 #endif
269 EXPORT_SYMBOL_GPL(dax_flush);
270
dax_write_cache(struct dax_device * dax_dev,bool wc)271 void dax_write_cache(struct dax_device *dax_dev, bool wc)
272 {
273 if (wc)
274 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
275 else
276 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
277 }
278 EXPORT_SYMBOL_GPL(dax_write_cache);
279
dax_write_cache_enabled(struct dax_device * dax_dev)280 bool dax_write_cache_enabled(struct dax_device *dax_dev)
281 {
282 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
283 }
284 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
285
dax_synchronous(struct dax_device * dax_dev)286 bool dax_synchronous(struct dax_device *dax_dev)
287 {
288 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
289 }
290 EXPORT_SYMBOL_GPL(dax_synchronous);
291
set_dax_synchronous(struct dax_device * dax_dev)292 void set_dax_synchronous(struct dax_device *dax_dev)
293 {
294 set_bit(DAXDEV_SYNC, &dax_dev->flags);
295 }
296 EXPORT_SYMBOL_GPL(set_dax_synchronous);
297
set_dax_nocache(struct dax_device * dax_dev)298 void set_dax_nocache(struct dax_device *dax_dev)
299 {
300 set_bit(DAXDEV_NOCACHE, &dax_dev->flags);
301 }
302 EXPORT_SYMBOL_GPL(set_dax_nocache);
303
set_dax_nomc(struct dax_device * dax_dev)304 void set_dax_nomc(struct dax_device *dax_dev)
305 {
306 set_bit(DAXDEV_NOMC, &dax_dev->flags);
307 }
308 EXPORT_SYMBOL_GPL(set_dax_nomc);
309
dax_alive(struct dax_device * dax_dev)310 bool dax_alive(struct dax_device *dax_dev)
311 {
312 lockdep_assert_held(&dax_srcu);
313 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
314 }
315 EXPORT_SYMBOL_GPL(dax_alive);
316
317 /*
318 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
319 * that any fault handlers or operations that might have seen
320 * dax_alive(), have completed. Any operations that start after
321 * synchronize_srcu() has run will abort upon seeing !dax_alive().
322 */
kill_dax(struct dax_device * dax_dev)323 void kill_dax(struct dax_device *dax_dev)
324 {
325 if (!dax_dev)
326 return;
327
328 if (dax_dev->holder_data != NULL)
329 dax_holder_notify_failure(dax_dev, 0, U64_MAX,
330 MF_MEM_PRE_REMOVE);
331
332 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
333 synchronize_srcu(&dax_srcu);
334
335 /* clear holder data */
336 dax_dev->holder_ops = NULL;
337 dax_dev->holder_data = NULL;
338 }
339 EXPORT_SYMBOL_GPL(kill_dax);
340
run_dax(struct dax_device * dax_dev)341 void run_dax(struct dax_device *dax_dev)
342 {
343 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
344 }
345 EXPORT_SYMBOL_GPL(run_dax);
346
dax_alloc_inode(struct super_block * sb)347 static struct inode *dax_alloc_inode(struct super_block *sb)
348 {
349 struct dax_device *dax_dev;
350 struct inode *inode;
351
352 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL);
353 if (!dax_dev)
354 return NULL;
355
356 inode = &dax_dev->inode;
357 inode->i_rdev = 0;
358 return inode;
359 }
360
to_dax_dev(struct inode * inode)361 static struct dax_device *to_dax_dev(struct inode *inode)
362 {
363 return container_of(inode, struct dax_device, inode);
364 }
365
dax_free_inode(struct inode * inode)366 static void dax_free_inode(struct inode *inode)
367 {
368 struct dax_device *dax_dev = to_dax_dev(inode);
369 if (inode->i_rdev)
370 ida_free(&dax_minor_ida, iminor(inode));
371 kmem_cache_free(dax_cache, dax_dev);
372 }
373
dax_destroy_inode(struct inode * inode)374 static void dax_destroy_inode(struct inode *inode)
375 {
376 struct dax_device *dax_dev = to_dax_dev(inode);
377 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
378 "kill_dax() must be called before final iput()\n");
379 }
380
381 static const struct super_operations dax_sops = {
382 .statfs = simple_statfs,
383 .alloc_inode = dax_alloc_inode,
384 .destroy_inode = dax_destroy_inode,
385 .free_inode = dax_free_inode,
386 .drop_inode = generic_delete_inode,
387 };
388
dax_init_fs_context(struct fs_context * fc)389 static int dax_init_fs_context(struct fs_context *fc)
390 {
391 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
392 if (!ctx)
393 return -ENOMEM;
394 ctx->ops = &dax_sops;
395 return 0;
396 }
397
398 static struct file_system_type dax_fs_type = {
399 .name = "dax",
400 .init_fs_context = dax_init_fs_context,
401 .kill_sb = kill_anon_super,
402 };
403
dax_test(struct inode * inode,void * data)404 static int dax_test(struct inode *inode, void *data)
405 {
406 dev_t devt = *(dev_t *) data;
407
408 return inode->i_rdev == devt;
409 }
410
dax_set(struct inode * inode,void * data)411 static int dax_set(struct inode *inode, void *data)
412 {
413 dev_t devt = *(dev_t *) data;
414
415 inode->i_rdev = devt;
416 return 0;
417 }
418
dax_dev_get(dev_t devt)419 static struct dax_device *dax_dev_get(dev_t devt)
420 {
421 struct dax_device *dax_dev;
422 struct inode *inode;
423
424 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
425 dax_test, dax_set, &devt);
426
427 if (!inode)
428 return NULL;
429
430 dax_dev = to_dax_dev(inode);
431 if (inode->i_state & I_NEW) {
432 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
433 inode->i_cdev = &dax_dev->cdev;
434 inode->i_mode = S_IFCHR;
435 inode->i_flags = S_DAX;
436 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
437 unlock_new_inode(inode);
438 }
439
440 return dax_dev;
441 }
442
alloc_dax(void * private,const struct dax_operations * ops)443 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops)
444 {
445 struct dax_device *dax_dev;
446 dev_t devt;
447 int minor;
448
449 if (WARN_ON_ONCE(ops && !ops->zero_page_range))
450 return ERR_PTR(-EINVAL);
451
452 minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL);
453 if (minor < 0)
454 return ERR_PTR(-ENOMEM);
455
456 devt = MKDEV(MAJOR(dax_devt), minor);
457 dax_dev = dax_dev_get(devt);
458 if (!dax_dev)
459 goto err_dev;
460
461 dax_dev->ops = ops;
462 dax_dev->private = private;
463 return dax_dev;
464
465 err_dev:
466 ida_free(&dax_minor_ida, minor);
467 return ERR_PTR(-ENOMEM);
468 }
469 EXPORT_SYMBOL_GPL(alloc_dax);
470
put_dax(struct dax_device * dax_dev)471 void put_dax(struct dax_device *dax_dev)
472 {
473 if (!dax_dev)
474 return;
475 iput(&dax_dev->inode);
476 }
477 EXPORT_SYMBOL_GPL(put_dax);
478
479 /**
480 * dax_holder() - obtain the holder of a dax device
481 * @dax_dev: a dax_device instance
482 *
483 * Return: the holder's data which represents the holder if registered,
484 * otherwize NULL.
485 */
dax_holder(struct dax_device * dax_dev)486 void *dax_holder(struct dax_device *dax_dev)
487 {
488 return dax_dev->holder_data;
489 }
490 EXPORT_SYMBOL_GPL(dax_holder);
491
492 /**
493 * inode_dax: convert a public inode into its dax_dev
494 * @inode: An inode with i_cdev pointing to a dax_dev
495 *
496 * Note this is not equivalent to to_dax_dev() which is for private
497 * internal use where we know the inode filesystem type == dax_fs_type.
498 */
inode_dax(struct inode * inode)499 struct dax_device *inode_dax(struct inode *inode)
500 {
501 struct cdev *cdev = inode->i_cdev;
502
503 return container_of(cdev, struct dax_device, cdev);
504 }
505 EXPORT_SYMBOL_GPL(inode_dax);
506
dax_inode(struct dax_device * dax_dev)507 struct inode *dax_inode(struct dax_device *dax_dev)
508 {
509 return &dax_dev->inode;
510 }
511 EXPORT_SYMBOL_GPL(dax_inode);
512
dax_get_private(struct dax_device * dax_dev)513 void *dax_get_private(struct dax_device *dax_dev)
514 {
515 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
516 return NULL;
517 return dax_dev->private;
518 }
519 EXPORT_SYMBOL_GPL(dax_get_private);
520
init_once(void * _dax_dev)521 static void init_once(void *_dax_dev)
522 {
523 struct dax_device *dax_dev = _dax_dev;
524 struct inode *inode = &dax_dev->inode;
525
526 memset(dax_dev, 0, sizeof(*dax_dev));
527 inode_init_once(inode);
528 }
529
dax_fs_init(void)530 static int dax_fs_init(void)
531 {
532 int rc;
533
534 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
535 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
536 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
537 init_once);
538 if (!dax_cache)
539 return -ENOMEM;
540
541 dax_mnt = kern_mount(&dax_fs_type);
542 if (IS_ERR(dax_mnt)) {
543 rc = PTR_ERR(dax_mnt);
544 goto err_mount;
545 }
546 dax_superblock = dax_mnt->mnt_sb;
547
548 return 0;
549
550 err_mount:
551 kmem_cache_destroy(dax_cache);
552
553 return rc;
554 }
555
dax_fs_exit(void)556 static void dax_fs_exit(void)
557 {
558 kern_unmount(dax_mnt);
559 rcu_barrier();
560 kmem_cache_destroy(dax_cache);
561 }
562
dax_core_init(void)563 static int __init dax_core_init(void)
564 {
565 int rc;
566
567 rc = dax_fs_init();
568 if (rc)
569 return rc;
570
571 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
572 if (rc)
573 goto err_chrdev;
574
575 rc = dax_bus_init();
576 if (rc)
577 goto err_bus;
578 return 0;
579
580 err_bus:
581 unregister_chrdev_region(dax_devt, MINORMASK+1);
582 err_chrdev:
583 dax_fs_exit();
584 return 0;
585 }
586
dax_core_exit(void)587 static void __exit dax_core_exit(void)
588 {
589 dax_bus_exit();
590 unregister_chrdev_region(dax_devt, MINORMASK+1);
591 ida_destroy(&dax_minor_ida);
592 dax_fs_exit();
593 }
594
595 MODULE_AUTHOR("Intel Corporation");
596 MODULE_LICENSE("GPL v2");
597 subsys_initcall(dax_core_init);
598 module_exit(dax_core_exit);
599