1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sj@kernel.org>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/psi.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/string_choices.h>
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/damon.h>
21
22 #ifdef CONFIG_DAMON_KUNIT_TEST
23 #undef DAMON_MIN_REGION
24 #define DAMON_MIN_REGION 1
25 #endif
26
27 static DEFINE_MUTEX(damon_lock);
28 static int nr_running_ctxs;
29 static bool running_exclusive_ctxs;
30
31 static DEFINE_MUTEX(damon_ops_lock);
32 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
33
34 static struct kmem_cache *damon_region_cache __ro_after_init;
35
36 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)37 static bool __damon_is_registered_ops(enum damon_ops_id id)
38 {
39 struct damon_operations empty_ops = {};
40
41 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
42 return false;
43 return true;
44 }
45
46 /**
47 * damon_is_registered_ops() - Check if a given damon_operations is registered.
48 * @id: Id of the damon_operations to check if registered.
49 *
50 * Return: true if the ops is set, false otherwise.
51 */
damon_is_registered_ops(enum damon_ops_id id)52 bool damon_is_registered_ops(enum damon_ops_id id)
53 {
54 bool registered;
55
56 if (id >= NR_DAMON_OPS)
57 return false;
58 mutex_lock(&damon_ops_lock);
59 registered = __damon_is_registered_ops(id);
60 mutex_unlock(&damon_ops_lock);
61 return registered;
62 }
63
64 /**
65 * damon_register_ops() - Register a monitoring operations set to DAMON.
66 * @ops: monitoring operations set to register.
67 *
68 * This function registers a monitoring operations set of valid &struct
69 * damon_operations->id so that others can find and use them later.
70 *
71 * Return: 0 on success, negative error code otherwise.
72 */
damon_register_ops(struct damon_operations * ops)73 int damon_register_ops(struct damon_operations *ops)
74 {
75 int err = 0;
76
77 if (ops->id >= NR_DAMON_OPS)
78 return -EINVAL;
79
80 mutex_lock(&damon_ops_lock);
81 /* Fail for already registered ops */
82 if (__damon_is_registered_ops(ops->id))
83 err = -EINVAL;
84 else
85 damon_registered_ops[ops->id] = *ops;
86 mutex_unlock(&damon_ops_lock);
87 return err;
88 }
89
90 /**
91 * damon_select_ops() - Select a monitoring operations to use with the context.
92 * @ctx: monitoring context to use the operations.
93 * @id: id of the registered monitoring operations to select.
94 *
95 * This function finds registered monitoring operations set of @id and make
96 * @ctx to use it.
97 *
98 * Return: 0 on success, negative error code otherwise.
99 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)100 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
101 {
102 int err = 0;
103
104 if (id >= NR_DAMON_OPS)
105 return -EINVAL;
106
107 mutex_lock(&damon_ops_lock);
108 if (!__damon_is_registered_ops(id))
109 err = -EINVAL;
110 else
111 ctx->ops = damon_registered_ops[id];
112 mutex_unlock(&damon_ops_lock);
113 return err;
114 }
115
116 /*
117 * Construct a damon_region struct
118 *
119 * Returns the pointer to the new struct if success, or NULL otherwise
120 */
damon_new_region(unsigned long start,unsigned long end)121 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
122 {
123 struct damon_region *region;
124
125 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
126 if (!region)
127 return NULL;
128
129 region->ar.start = start;
130 region->ar.end = end;
131 region->nr_accesses = 0;
132 region->nr_accesses_bp = 0;
133 INIT_LIST_HEAD(®ion->list);
134
135 region->age = 0;
136 region->last_nr_accesses = 0;
137
138 return region;
139 }
140
damon_add_region(struct damon_region * r,struct damon_target * t)141 void damon_add_region(struct damon_region *r, struct damon_target *t)
142 {
143 list_add_tail(&r->list, &t->regions_list);
144 t->nr_regions++;
145 }
146
damon_del_region(struct damon_region * r,struct damon_target * t)147 static void damon_del_region(struct damon_region *r, struct damon_target *t)
148 {
149 list_del(&r->list);
150 t->nr_regions--;
151 }
152
damon_free_region(struct damon_region * r)153 static void damon_free_region(struct damon_region *r)
154 {
155 kmem_cache_free(damon_region_cache, r);
156 }
157
damon_destroy_region(struct damon_region * r,struct damon_target * t)158 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
159 {
160 damon_del_region(r, t);
161 damon_free_region(r);
162 }
163
164 /*
165 * Check whether a region is intersecting an address range
166 *
167 * Returns true if it is.
168 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)169 static bool damon_intersect(struct damon_region *r,
170 struct damon_addr_range *re)
171 {
172 return !(r->ar.end <= re->start || re->end <= r->ar.start);
173 }
174
175 /*
176 * Fill holes in regions with new regions.
177 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)178 static int damon_fill_regions_holes(struct damon_region *first,
179 struct damon_region *last, struct damon_target *t)
180 {
181 struct damon_region *r = first;
182
183 damon_for_each_region_from(r, t) {
184 struct damon_region *next, *newr;
185
186 if (r == last)
187 break;
188 next = damon_next_region(r);
189 if (r->ar.end != next->ar.start) {
190 newr = damon_new_region(r->ar.end, next->ar.start);
191 if (!newr)
192 return -ENOMEM;
193 damon_insert_region(newr, r, next, t);
194 }
195 }
196 return 0;
197 }
198
199 /*
200 * damon_set_regions() - Set regions of a target for given address ranges.
201 * @t: the given target.
202 * @ranges: array of new monitoring target ranges.
203 * @nr_ranges: length of @ranges.
204 *
205 * This function adds new regions to, or modify existing regions of a
206 * monitoring target to fit in specific ranges.
207 *
208 * Return: 0 if success, or negative error code otherwise.
209 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)210 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
211 unsigned int nr_ranges)
212 {
213 struct damon_region *r, *next;
214 unsigned int i;
215 int err;
216
217 /* Remove regions which are not in the new ranges */
218 damon_for_each_region_safe(r, next, t) {
219 for (i = 0; i < nr_ranges; i++) {
220 if (damon_intersect(r, &ranges[i]))
221 break;
222 }
223 if (i == nr_ranges)
224 damon_destroy_region(r, t);
225 }
226
227 r = damon_first_region(t);
228 /* Add new regions or resize existing regions to fit in the ranges */
229 for (i = 0; i < nr_ranges; i++) {
230 struct damon_region *first = NULL, *last, *newr;
231 struct damon_addr_range *range;
232
233 range = &ranges[i];
234 /* Get the first/last regions intersecting with the range */
235 damon_for_each_region_from(r, t) {
236 if (damon_intersect(r, range)) {
237 if (!first)
238 first = r;
239 last = r;
240 }
241 if (r->ar.start >= range->end)
242 break;
243 }
244 if (!first) {
245 /* no region intersects with this range */
246 newr = damon_new_region(
247 ALIGN_DOWN(range->start,
248 DAMON_MIN_REGION),
249 ALIGN(range->end, DAMON_MIN_REGION));
250 if (!newr)
251 return -ENOMEM;
252 damon_insert_region(newr, damon_prev_region(r), r, t);
253 } else {
254 /* resize intersecting regions to fit in this range */
255 first->ar.start = ALIGN_DOWN(range->start,
256 DAMON_MIN_REGION);
257 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
258
259 /* fill possible holes in the range */
260 err = damon_fill_regions_holes(first, last, t);
261 if (err)
262 return err;
263 }
264 }
265 return 0;
266 }
267
damos_new_filter(enum damos_filter_type type,bool matching,bool allow)268 struct damos_filter *damos_new_filter(enum damos_filter_type type,
269 bool matching, bool allow)
270 {
271 struct damos_filter *filter;
272
273 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
274 if (!filter)
275 return NULL;
276 filter->type = type;
277 filter->matching = matching;
278 filter->allow = allow;
279 INIT_LIST_HEAD(&filter->list);
280 return filter;
281 }
282
283 /**
284 * damos_filter_for_ops() - Return if the filter is ops-hndled one.
285 * @type: type of the filter.
286 *
287 * Return: true if the filter of @type needs to be handled by ops layer, false
288 * otherwise.
289 */
damos_filter_for_ops(enum damos_filter_type type)290 bool damos_filter_for_ops(enum damos_filter_type type)
291 {
292 switch (type) {
293 case DAMOS_FILTER_TYPE_ADDR:
294 case DAMOS_FILTER_TYPE_TARGET:
295 return false;
296 default:
297 break;
298 }
299 return true;
300 }
301
damos_add_filter(struct damos * s,struct damos_filter * f)302 void damos_add_filter(struct damos *s, struct damos_filter *f)
303 {
304 if (damos_filter_for_ops(f->type))
305 list_add_tail(&f->list, &s->ops_filters);
306 else
307 list_add_tail(&f->list, &s->filters);
308 }
309
damos_del_filter(struct damos_filter * f)310 static void damos_del_filter(struct damos_filter *f)
311 {
312 list_del(&f->list);
313 }
314
damos_free_filter(struct damos_filter * f)315 static void damos_free_filter(struct damos_filter *f)
316 {
317 kfree(f);
318 }
319
damos_destroy_filter(struct damos_filter * f)320 void damos_destroy_filter(struct damos_filter *f)
321 {
322 damos_del_filter(f);
323 damos_free_filter(f);
324 }
325
damos_new_quota_goal(enum damos_quota_goal_metric metric,unsigned long target_value)326 struct damos_quota_goal *damos_new_quota_goal(
327 enum damos_quota_goal_metric metric,
328 unsigned long target_value)
329 {
330 struct damos_quota_goal *goal;
331
332 goal = kmalloc(sizeof(*goal), GFP_KERNEL);
333 if (!goal)
334 return NULL;
335 goal->metric = metric;
336 goal->target_value = target_value;
337 INIT_LIST_HEAD(&goal->list);
338 return goal;
339 }
340
damos_add_quota_goal(struct damos_quota * q,struct damos_quota_goal * g)341 void damos_add_quota_goal(struct damos_quota *q, struct damos_quota_goal *g)
342 {
343 list_add_tail(&g->list, &q->goals);
344 }
345
damos_del_quota_goal(struct damos_quota_goal * g)346 static void damos_del_quota_goal(struct damos_quota_goal *g)
347 {
348 list_del(&g->list);
349 }
350
damos_free_quota_goal(struct damos_quota_goal * g)351 static void damos_free_quota_goal(struct damos_quota_goal *g)
352 {
353 kfree(g);
354 }
355
damos_destroy_quota_goal(struct damos_quota_goal * g)356 void damos_destroy_quota_goal(struct damos_quota_goal *g)
357 {
358 damos_del_quota_goal(g);
359 damos_free_quota_goal(g);
360 }
361
362 /* initialize fields of @quota that normally API users wouldn't set */
damos_quota_init(struct damos_quota * quota)363 static struct damos_quota *damos_quota_init(struct damos_quota *quota)
364 {
365 quota->esz = 0;
366 quota->total_charged_sz = 0;
367 quota->total_charged_ns = 0;
368 quota->charged_sz = 0;
369 quota->charged_from = 0;
370 quota->charge_target_from = NULL;
371 quota->charge_addr_from = 0;
372 quota->esz_bp = 0;
373 return quota;
374 }
375
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks,int target_nid)376 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
377 enum damos_action action,
378 unsigned long apply_interval_us,
379 struct damos_quota *quota,
380 struct damos_watermarks *wmarks,
381 int target_nid)
382 {
383 struct damos *scheme;
384
385 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
386 if (!scheme)
387 return NULL;
388 scheme->pattern = *pattern;
389 scheme->action = action;
390 scheme->apply_interval_us = apply_interval_us;
391 /*
392 * next_apply_sis will be set when kdamond starts. While kdamond is
393 * running, it will also updated when it is added to the DAMON context,
394 * or damon_attrs are updated.
395 */
396 scheme->next_apply_sis = 0;
397 scheme->walk_completed = false;
398 INIT_LIST_HEAD(&scheme->filters);
399 INIT_LIST_HEAD(&scheme->ops_filters);
400 scheme->stat = (struct damos_stat){};
401 INIT_LIST_HEAD(&scheme->list);
402
403 scheme->quota = *(damos_quota_init(quota));
404 /* quota.goals should be separately set by caller */
405 INIT_LIST_HEAD(&scheme->quota.goals);
406
407 scheme->wmarks = *wmarks;
408 scheme->wmarks.activated = true;
409
410 scheme->migrate_dests = (struct damos_migrate_dests){};
411 scheme->target_nid = target_nid;
412
413 return scheme;
414 }
415
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)416 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
417 {
418 unsigned long sample_interval = ctx->attrs.sample_interval ?
419 ctx->attrs.sample_interval : 1;
420 unsigned long apply_interval = s->apply_interval_us ?
421 s->apply_interval_us : ctx->attrs.aggr_interval;
422
423 s->next_apply_sis = ctx->passed_sample_intervals +
424 apply_interval / sample_interval;
425 }
426
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)427 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
428 {
429 list_add_tail(&s->list, &ctx->schemes);
430 damos_set_next_apply_sis(s, ctx);
431 }
432
damon_del_scheme(struct damos * s)433 static void damon_del_scheme(struct damos *s)
434 {
435 list_del(&s->list);
436 }
437
damon_free_scheme(struct damos * s)438 static void damon_free_scheme(struct damos *s)
439 {
440 kfree(s);
441 }
442
damon_destroy_scheme(struct damos * s)443 void damon_destroy_scheme(struct damos *s)
444 {
445 struct damos_quota_goal *g, *g_next;
446 struct damos_filter *f, *next;
447
448 damos_for_each_quota_goal_safe(g, g_next, &s->quota)
449 damos_destroy_quota_goal(g);
450
451 damos_for_each_filter_safe(f, next, s)
452 damos_destroy_filter(f);
453
454 kfree(s->migrate_dests.node_id_arr);
455 kfree(s->migrate_dests.weight_arr);
456 damon_del_scheme(s);
457 damon_free_scheme(s);
458 }
459
460 /*
461 * Construct a damon_target struct
462 *
463 * Returns the pointer to the new struct if success, or NULL otherwise
464 */
damon_new_target(void)465 struct damon_target *damon_new_target(void)
466 {
467 struct damon_target *t;
468
469 t = kmalloc(sizeof(*t), GFP_KERNEL);
470 if (!t)
471 return NULL;
472
473 t->pid = NULL;
474 t->nr_regions = 0;
475 INIT_LIST_HEAD(&t->regions_list);
476 INIT_LIST_HEAD(&t->list);
477
478 return t;
479 }
480
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)481 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
482 {
483 list_add_tail(&t->list, &ctx->adaptive_targets);
484 }
485
damon_targets_empty(struct damon_ctx * ctx)486 bool damon_targets_empty(struct damon_ctx *ctx)
487 {
488 return list_empty(&ctx->adaptive_targets);
489 }
490
damon_del_target(struct damon_target * t)491 static void damon_del_target(struct damon_target *t)
492 {
493 list_del(&t->list);
494 }
495
damon_free_target(struct damon_target * t)496 void damon_free_target(struct damon_target *t)
497 {
498 struct damon_region *r, *next;
499
500 damon_for_each_region_safe(r, next, t)
501 damon_free_region(r);
502 kfree(t);
503 }
504
damon_destroy_target(struct damon_target * t,struct damon_ctx * ctx)505 void damon_destroy_target(struct damon_target *t, struct damon_ctx *ctx)
506 {
507
508 if (ctx && ctx->ops.cleanup_target)
509 ctx->ops.cleanup_target(t);
510
511 damon_del_target(t);
512 damon_free_target(t);
513 }
514
damon_nr_regions(struct damon_target * t)515 unsigned int damon_nr_regions(struct damon_target *t)
516 {
517 return t->nr_regions;
518 }
519
damon_new_ctx(void)520 struct damon_ctx *damon_new_ctx(void)
521 {
522 struct damon_ctx *ctx;
523
524 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
525 if (!ctx)
526 return NULL;
527
528 init_completion(&ctx->kdamond_started);
529
530 ctx->attrs.sample_interval = 5 * 1000;
531 ctx->attrs.aggr_interval = 100 * 1000;
532 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
533
534 ctx->passed_sample_intervals = 0;
535 /* These will be set from kdamond_init_ctx() */
536 ctx->next_aggregation_sis = 0;
537 ctx->next_ops_update_sis = 0;
538
539 mutex_init(&ctx->kdamond_lock);
540 INIT_LIST_HEAD(&ctx->call_controls);
541 mutex_init(&ctx->call_controls_lock);
542 mutex_init(&ctx->walk_control_lock);
543
544 ctx->attrs.min_nr_regions = 10;
545 ctx->attrs.max_nr_regions = 1000;
546
547 INIT_LIST_HEAD(&ctx->adaptive_targets);
548 INIT_LIST_HEAD(&ctx->schemes);
549
550 return ctx;
551 }
552
damon_destroy_targets(struct damon_ctx * ctx)553 static void damon_destroy_targets(struct damon_ctx *ctx)
554 {
555 struct damon_target *t, *next_t;
556
557 damon_for_each_target_safe(t, next_t, ctx)
558 damon_destroy_target(t, ctx);
559 }
560
damon_destroy_ctx(struct damon_ctx * ctx)561 void damon_destroy_ctx(struct damon_ctx *ctx)
562 {
563 struct damos *s, *next_s;
564
565 damon_destroy_targets(ctx);
566
567 damon_for_each_scheme_safe(s, next_s, ctx)
568 damon_destroy_scheme(s);
569
570 kfree(ctx);
571 }
572
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)573 static unsigned int damon_age_for_new_attrs(unsigned int age,
574 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
575 {
576 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
577 }
578
579 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)580 static unsigned int damon_accesses_bp_to_nr_accesses(
581 unsigned int accesses_bp, struct damon_attrs *attrs)
582 {
583 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
584 }
585
586 /*
587 * Convert nr_accesses to access ratio in bp (per 10,000).
588 *
589 * Callers should ensure attrs.aggr_interval is not zero, like
590 * damon_update_monitoring_results() does . Otherwise, divide-by-zero would
591 * happen.
592 */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)593 static unsigned int damon_nr_accesses_to_accesses_bp(
594 unsigned int nr_accesses, struct damon_attrs *attrs)
595 {
596 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
597 }
598
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)599 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
600 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
601 {
602 return damon_accesses_bp_to_nr_accesses(
603 damon_nr_accesses_to_accesses_bp(
604 nr_accesses, old_attrs),
605 new_attrs);
606 }
607
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs,bool aggregating)608 static void damon_update_monitoring_result(struct damon_region *r,
609 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs,
610 bool aggregating)
611 {
612 if (!aggregating) {
613 r->nr_accesses = damon_nr_accesses_for_new_attrs(
614 r->nr_accesses, old_attrs, new_attrs);
615 r->nr_accesses_bp = r->nr_accesses * 10000;
616 } else {
617 /*
618 * if this is called in the middle of the aggregation, reset
619 * the aggregations we made so far for this aggregation
620 * interval. In other words, make the status like
621 * kdamond_reset_aggregated() is called.
622 */
623 r->last_nr_accesses = damon_nr_accesses_for_new_attrs(
624 r->last_nr_accesses, old_attrs, new_attrs);
625 r->nr_accesses_bp = r->last_nr_accesses * 10000;
626 r->nr_accesses = 0;
627 }
628 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
629 }
630
631 /*
632 * region->nr_accesses is the number of sampling intervals in the last
633 * aggregation interval that access to the region has found, and region->age is
634 * the number of aggregation intervals that its access pattern has maintained.
635 * For the reason, the real meaning of the two fields depend on current
636 * sampling interval and aggregation interval. This function updates
637 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
638 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs,bool aggregating)639 static void damon_update_monitoring_results(struct damon_ctx *ctx,
640 struct damon_attrs *new_attrs, bool aggregating)
641 {
642 struct damon_attrs *old_attrs = &ctx->attrs;
643 struct damon_target *t;
644 struct damon_region *r;
645
646 /* if any interval is zero, simply forgive conversion */
647 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
648 !new_attrs->sample_interval ||
649 !new_attrs->aggr_interval)
650 return;
651
652 damon_for_each_target(t, ctx)
653 damon_for_each_region(r, t)
654 damon_update_monitoring_result(
655 r, old_attrs, new_attrs, aggregating);
656 }
657
658 /*
659 * damon_valid_intervals_goal() - return if the intervals goal of @attrs is
660 * valid.
661 */
damon_valid_intervals_goal(struct damon_attrs * attrs)662 static bool damon_valid_intervals_goal(struct damon_attrs *attrs)
663 {
664 struct damon_intervals_goal *goal = &attrs->intervals_goal;
665
666 /* tuning is disabled */
667 if (!goal->aggrs)
668 return true;
669 if (goal->min_sample_us > goal->max_sample_us)
670 return false;
671 if (attrs->sample_interval < goal->min_sample_us ||
672 goal->max_sample_us < attrs->sample_interval)
673 return false;
674 return true;
675 }
676
677 /**
678 * damon_set_attrs() - Set attributes for the monitoring.
679 * @ctx: monitoring context
680 * @attrs: monitoring attributes
681 *
682 * This function should be called while the kdamond is not running, an access
683 * check results aggregation is not ongoing (e.g., from damon_call().
684 *
685 * Every time interval is in micro-seconds.
686 *
687 * Return: 0 on success, negative error code otherwise.
688 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)689 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
690 {
691 unsigned long sample_interval = attrs->sample_interval ?
692 attrs->sample_interval : 1;
693 struct damos *s;
694 bool aggregating = ctx->passed_sample_intervals <
695 ctx->next_aggregation_sis;
696
697 if (!damon_valid_intervals_goal(attrs))
698 return -EINVAL;
699
700 if (attrs->min_nr_regions < 3)
701 return -EINVAL;
702 if (attrs->min_nr_regions > attrs->max_nr_regions)
703 return -EINVAL;
704 if (attrs->sample_interval > attrs->aggr_interval)
705 return -EINVAL;
706
707 /* calls from core-external doesn't set this. */
708 if (!attrs->aggr_samples)
709 attrs->aggr_samples = attrs->aggr_interval / sample_interval;
710
711 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
712 attrs->aggr_interval / sample_interval;
713 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
714 attrs->ops_update_interval / sample_interval;
715
716 damon_update_monitoring_results(ctx, attrs, aggregating);
717 ctx->attrs = *attrs;
718
719 damon_for_each_scheme(s, ctx)
720 damos_set_next_apply_sis(s, ctx);
721
722 return 0;
723 }
724
725 /**
726 * damon_set_schemes() - Set data access monitoring based operation schemes.
727 * @ctx: monitoring context
728 * @schemes: array of the schemes
729 * @nr_schemes: number of entries in @schemes
730 *
731 * This function should not be called while the kdamond of the context is
732 * running.
733 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)734 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
735 ssize_t nr_schemes)
736 {
737 struct damos *s, *next;
738 ssize_t i;
739
740 damon_for_each_scheme_safe(s, next, ctx)
741 damon_destroy_scheme(s);
742 for (i = 0; i < nr_schemes; i++)
743 damon_add_scheme(ctx, schemes[i]);
744 }
745
damos_nth_quota_goal(int n,struct damos_quota * q)746 static struct damos_quota_goal *damos_nth_quota_goal(
747 int n, struct damos_quota *q)
748 {
749 struct damos_quota_goal *goal;
750 int i = 0;
751
752 damos_for_each_quota_goal(goal, q) {
753 if (i++ == n)
754 return goal;
755 }
756 return NULL;
757 }
758
damos_commit_quota_goal_union(struct damos_quota_goal * dst,struct damos_quota_goal * src)759 static void damos_commit_quota_goal_union(
760 struct damos_quota_goal *dst, struct damos_quota_goal *src)
761 {
762 switch (dst->metric) {
763 case DAMOS_QUOTA_NODE_MEM_USED_BP:
764 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
765 dst->nid = src->nid;
766 break;
767 default:
768 break;
769 }
770 }
771
damos_commit_quota_goal(struct damos_quota_goal * dst,struct damos_quota_goal * src)772 static void damos_commit_quota_goal(
773 struct damos_quota_goal *dst, struct damos_quota_goal *src)
774 {
775 dst->metric = src->metric;
776 dst->target_value = src->target_value;
777 if (dst->metric == DAMOS_QUOTA_USER_INPUT)
778 dst->current_value = src->current_value;
779 /* keep last_psi_total as is, since it will be updated in next cycle */
780 damos_commit_quota_goal_union(dst, src);
781 }
782
783 /**
784 * damos_commit_quota_goals() - Commit DAMOS quota goals to another quota.
785 * @dst: The commit destination DAMOS quota.
786 * @src: The commit source DAMOS quota.
787 *
788 * Copies user-specified parameters for quota goals from @src to @dst. Users
789 * should use this function for quota goals-level parameters update of running
790 * DAMON contexts, instead of manual in-place updates.
791 *
792 * This function should be called from parameters-update safe context, like
793 * damon_call().
794 */
damos_commit_quota_goals(struct damos_quota * dst,struct damos_quota * src)795 int damos_commit_quota_goals(struct damos_quota *dst, struct damos_quota *src)
796 {
797 struct damos_quota_goal *dst_goal, *next, *src_goal, *new_goal;
798 int i = 0, j = 0;
799
800 damos_for_each_quota_goal_safe(dst_goal, next, dst) {
801 src_goal = damos_nth_quota_goal(i++, src);
802 if (src_goal)
803 damos_commit_quota_goal(dst_goal, src_goal);
804 else
805 damos_destroy_quota_goal(dst_goal);
806 }
807 damos_for_each_quota_goal_safe(src_goal, next, src) {
808 if (j++ < i)
809 continue;
810 new_goal = damos_new_quota_goal(
811 src_goal->metric, src_goal->target_value);
812 if (!new_goal)
813 return -ENOMEM;
814 damos_commit_quota_goal_union(new_goal, src_goal);
815 damos_add_quota_goal(dst, new_goal);
816 }
817 return 0;
818 }
819
damos_commit_quota(struct damos_quota * dst,struct damos_quota * src)820 static int damos_commit_quota(struct damos_quota *dst, struct damos_quota *src)
821 {
822 int err;
823
824 dst->reset_interval = src->reset_interval;
825 dst->ms = src->ms;
826 dst->sz = src->sz;
827 err = damos_commit_quota_goals(dst, src);
828 if (err)
829 return err;
830 dst->weight_sz = src->weight_sz;
831 dst->weight_nr_accesses = src->weight_nr_accesses;
832 dst->weight_age = src->weight_age;
833 return 0;
834 }
835
damos_nth_filter(int n,struct damos * s)836 static struct damos_filter *damos_nth_filter(int n, struct damos *s)
837 {
838 struct damos_filter *filter;
839 int i = 0;
840
841 damos_for_each_filter(filter, s) {
842 if (i++ == n)
843 return filter;
844 }
845 return NULL;
846 }
847
damos_commit_filter_arg(struct damos_filter * dst,struct damos_filter * src)848 static void damos_commit_filter_arg(
849 struct damos_filter *dst, struct damos_filter *src)
850 {
851 switch (dst->type) {
852 case DAMOS_FILTER_TYPE_MEMCG:
853 dst->memcg_id = src->memcg_id;
854 break;
855 case DAMOS_FILTER_TYPE_ADDR:
856 dst->addr_range = src->addr_range;
857 break;
858 case DAMOS_FILTER_TYPE_TARGET:
859 dst->target_idx = src->target_idx;
860 break;
861 case DAMOS_FILTER_TYPE_HUGEPAGE_SIZE:
862 dst->sz_range = src->sz_range;
863 break;
864 default:
865 break;
866 }
867 }
868
damos_commit_filter(struct damos_filter * dst,struct damos_filter * src)869 static void damos_commit_filter(
870 struct damos_filter *dst, struct damos_filter *src)
871 {
872 dst->type = src->type;
873 dst->matching = src->matching;
874 damos_commit_filter_arg(dst, src);
875 }
876
damos_commit_core_filters(struct damos * dst,struct damos * src)877 static int damos_commit_core_filters(struct damos *dst, struct damos *src)
878 {
879 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
880 int i = 0, j = 0;
881
882 damos_for_each_filter_safe(dst_filter, next, dst) {
883 src_filter = damos_nth_filter(i++, src);
884 if (src_filter)
885 damos_commit_filter(dst_filter, src_filter);
886 else
887 damos_destroy_filter(dst_filter);
888 }
889
890 damos_for_each_filter_safe(src_filter, next, src) {
891 if (j++ < i)
892 continue;
893
894 new_filter = damos_new_filter(
895 src_filter->type, src_filter->matching,
896 src_filter->allow);
897 if (!new_filter)
898 return -ENOMEM;
899 damos_commit_filter_arg(new_filter, src_filter);
900 damos_add_filter(dst, new_filter);
901 }
902 return 0;
903 }
904
damos_commit_ops_filters(struct damos * dst,struct damos * src)905 static int damos_commit_ops_filters(struct damos *dst, struct damos *src)
906 {
907 struct damos_filter *dst_filter, *next, *src_filter, *new_filter;
908 int i = 0, j = 0;
909
910 damos_for_each_ops_filter_safe(dst_filter, next, dst) {
911 src_filter = damos_nth_filter(i++, src);
912 if (src_filter)
913 damos_commit_filter(dst_filter, src_filter);
914 else
915 damos_destroy_filter(dst_filter);
916 }
917
918 damos_for_each_ops_filter_safe(src_filter, next, src) {
919 if (j++ < i)
920 continue;
921
922 new_filter = damos_new_filter(
923 src_filter->type, src_filter->matching,
924 src_filter->allow);
925 if (!new_filter)
926 return -ENOMEM;
927 damos_commit_filter_arg(new_filter, src_filter);
928 damos_add_filter(dst, new_filter);
929 }
930 return 0;
931 }
932
933 /**
934 * damos_filters_default_reject() - decide whether to reject memory that didn't
935 * match with any given filter.
936 * @filters: Given DAMOS filters of a group.
937 */
damos_filters_default_reject(struct list_head * filters)938 static bool damos_filters_default_reject(struct list_head *filters)
939 {
940 struct damos_filter *last_filter;
941
942 if (list_empty(filters))
943 return false;
944 last_filter = list_last_entry(filters, struct damos_filter, list);
945 return last_filter->allow;
946 }
947
damos_set_filters_default_reject(struct damos * s)948 static void damos_set_filters_default_reject(struct damos *s)
949 {
950 if (!list_empty(&s->ops_filters))
951 s->core_filters_default_reject = false;
952 else
953 s->core_filters_default_reject =
954 damos_filters_default_reject(&s->filters);
955 s->ops_filters_default_reject =
956 damos_filters_default_reject(&s->ops_filters);
957 }
958
damos_commit_dests(struct damos * dst,struct damos * src)959 static int damos_commit_dests(struct damos *dst, struct damos *src)
960 {
961 struct damos_migrate_dests *dst_dests, *src_dests;
962
963 dst_dests = &dst->migrate_dests;
964 src_dests = &src->migrate_dests;
965
966 if (dst_dests->nr_dests != src_dests->nr_dests) {
967 kfree(dst_dests->node_id_arr);
968 kfree(dst_dests->weight_arr);
969
970 dst_dests->node_id_arr = kmalloc_array(src_dests->nr_dests,
971 sizeof(*dst_dests->node_id_arr), GFP_KERNEL);
972 if (!dst_dests->node_id_arr) {
973 dst_dests->weight_arr = NULL;
974 return -ENOMEM;
975 }
976
977 dst_dests->weight_arr = kmalloc_array(src_dests->nr_dests,
978 sizeof(*dst_dests->weight_arr), GFP_KERNEL);
979 if (!dst_dests->weight_arr) {
980 /* ->node_id_arr will be freed by scheme destruction */
981 return -ENOMEM;
982 }
983 }
984
985 dst_dests->nr_dests = src_dests->nr_dests;
986 for (int i = 0; i < src_dests->nr_dests; i++) {
987 dst_dests->node_id_arr[i] = src_dests->node_id_arr[i];
988 dst_dests->weight_arr[i] = src_dests->weight_arr[i];
989 }
990
991 return 0;
992 }
993
damos_commit_filters(struct damos * dst,struct damos * src)994 static int damos_commit_filters(struct damos *dst, struct damos *src)
995 {
996 int err;
997
998 err = damos_commit_core_filters(dst, src);
999 if (err)
1000 return err;
1001 err = damos_commit_ops_filters(dst, src);
1002 if (err)
1003 return err;
1004 damos_set_filters_default_reject(dst);
1005 return 0;
1006 }
1007
damon_nth_scheme(int n,struct damon_ctx * ctx)1008 static struct damos *damon_nth_scheme(int n, struct damon_ctx *ctx)
1009 {
1010 struct damos *s;
1011 int i = 0;
1012
1013 damon_for_each_scheme(s, ctx) {
1014 if (i++ == n)
1015 return s;
1016 }
1017 return NULL;
1018 }
1019
damos_commit(struct damos * dst,struct damos * src)1020 static int damos_commit(struct damos *dst, struct damos *src)
1021 {
1022 int err;
1023
1024 dst->pattern = src->pattern;
1025 dst->action = src->action;
1026 dst->apply_interval_us = src->apply_interval_us;
1027
1028 err = damos_commit_quota(&dst->quota, &src->quota);
1029 if (err)
1030 return err;
1031
1032 dst->wmarks = src->wmarks;
1033 dst->target_nid = src->target_nid;
1034
1035 err = damos_commit_dests(dst, src);
1036 if (err)
1037 return err;
1038
1039 err = damos_commit_filters(dst, src);
1040 return err;
1041 }
1042
damon_commit_schemes(struct damon_ctx * dst,struct damon_ctx * src)1043 static int damon_commit_schemes(struct damon_ctx *dst, struct damon_ctx *src)
1044 {
1045 struct damos *dst_scheme, *next, *src_scheme, *new_scheme;
1046 int i = 0, j = 0, err;
1047
1048 damon_for_each_scheme_safe(dst_scheme, next, dst) {
1049 src_scheme = damon_nth_scheme(i++, src);
1050 if (src_scheme) {
1051 err = damos_commit(dst_scheme, src_scheme);
1052 if (err)
1053 return err;
1054 } else {
1055 damon_destroy_scheme(dst_scheme);
1056 }
1057 }
1058
1059 damon_for_each_scheme_safe(src_scheme, next, src) {
1060 if (j++ < i)
1061 continue;
1062 new_scheme = damon_new_scheme(&src_scheme->pattern,
1063 src_scheme->action,
1064 src_scheme->apply_interval_us,
1065 &src_scheme->quota, &src_scheme->wmarks,
1066 NUMA_NO_NODE);
1067 if (!new_scheme)
1068 return -ENOMEM;
1069 err = damos_commit(new_scheme, src_scheme);
1070 if (err) {
1071 damon_destroy_scheme(new_scheme);
1072 return err;
1073 }
1074 damon_add_scheme(dst, new_scheme);
1075 }
1076 return 0;
1077 }
1078
damon_nth_target(int n,struct damon_ctx * ctx)1079 static struct damon_target *damon_nth_target(int n, struct damon_ctx *ctx)
1080 {
1081 struct damon_target *t;
1082 int i = 0;
1083
1084 damon_for_each_target(t, ctx) {
1085 if (i++ == n)
1086 return t;
1087 }
1088 return NULL;
1089 }
1090
1091 /*
1092 * The caller should ensure the regions of @src are
1093 * 1. valid (end >= src) and
1094 * 2. sorted by starting address.
1095 *
1096 * If @src has no region, @dst keeps current regions.
1097 */
damon_commit_target_regions(struct damon_target * dst,struct damon_target * src)1098 static int damon_commit_target_regions(
1099 struct damon_target *dst, struct damon_target *src)
1100 {
1101 struct damon_region *src_region;
1102 struct damon_addr_range *ranges;
1103 int i = 0, err;
1104
1105 damon_for_each_region(src_region, src)
1106 i++;
1107 if (!i)
1108 return 0;
1109
1110 ranges = kmalloc_array(i, sizeof(*ranges), GFP_KERNEL | __GFP_NOWARN);
1111 if (!ranges)
1112 return -ENOMEM;
1113 i = 0;
1114 damon_for_each_region(src_region, src)
1115 ranges[i++] = src_region->ar;
1116 err = damon_set_regions(dst, ranges, i);
1117 kfree(ranges);
1118 return err;
1119 }
1120
damon_commit_target(struct damon_target * dst,bool dst_has_pid,struct damon_target * src,bool src_has_pid)1121 static int damon_commit_target(
1122 struct damon_target *dst, bool dst_has_pid,
1123 struct damon_target *src, bool src_has_pid)
1124 {
1125 int err;
1126
1127 err = damon_commit_target_regions(dst, src);
1128 if (err)
1129 return err;
1130 if (dst_has_pid)
1131 put_pid(dst->pid);
1132 if (src_has_pid)
1133 get_pid(src->pid);
1134 dst->pid = src->pid;
1135 return 0;
1136 }
1137
damon_commit_targets(struct damon_ctx * dst,struct damon_ctx * src)1138 static int damon_commit_targets(
1139 struct damon_ctx *dst, struct damon_ctx *src)
1140 {
1141 struct damon_target *dst_target, *next, *src_target, *new_target;
1142 int i = 0, j = 0, err;
1143
1144 damon_for_each_target_safe(dst_target, next, dst) {
1145 src_target = damon_nth_target(i++, src);
1146 if (src_target) {
1147 err = damon_commit_target(
1148 dst_target, damon_target_has_pid(dst),
1149 src_target, damon_target_has_pid(src));
1150 if (err)
1151 return err;
1152 } else {
1153 struct damos *s;
1154
1155 damon_destroy_target(dst_target, dst);
1156 damon_for_each_scheme(s, dst) {
1157 if (s->quota.charge_target_from == dst_target) {
1158 s->quota.charge_target_from = NULL;
1159 s->quota.charge_addr_from = 0;
1160 }
1161 }
1162 }
1163 }
1164
1165 damon_for_each_target_safe(src_target, next, src) {
1166 if (j++ < i)
1167 continue;
1168 new_target = damon_new_target();
1169 if (!new_target)
1170 return -ENOMEM;
1171 err = damon_commit_target(new_target, false,
1172 src_target, damon_target_has_pid(src));
1173 if (err) {
1174 damon_destroy_target(new_target, NULL);
1175 return err;
1176 }
1177 damon_add_target(dst, new_target);
1178 }
1179 return 0;
1180 }
1181
1182 /**
1183 * damon_commit_ctx() - Commit parameters of a DAMON context to another.
1184 * @dst: The commit destination DAMON context.
1185 * @src: The commit source DAMON context.
1186 *
1187 * This function copies user-specified parameters from @src to @dst and update
1188 * the internal status and results accordingly. Users should use this function
1189 * for context-level parameters update of running context, instead of manual
1190 * in-place updates.
1191 *
1192 * This function should be called from parameters-update safe context, like
1193 * damon_call().
1194 */
damon_commit_ctx(struct damon_ctx * dst,struct damon_ctx * src)1195 int damon_commit_ctx(struct damon_ctx *dst, struct damon_ctx *src)
1196 {
1197 int err;
1198
1199 err = damon_commit_schemes(dst, src);
1200 if (err)
1201 return err;
1202 err = damon_commit_targets(dst, src);
1203 if (err)
1204 return err;
1205 /*
1206 * schemes and targets should be updated first, since
1207 * 1. damon_set_attrs() updates monitoring results of targets and
1208 * next_apply_sis of schemes, and
1209 * 2. ops update should be done after pid handling is done (target
1210 * committing require putting pids).
1211 */
1212 err = damon_set_attrs(dst, &src->attrs);
1213 if (err)
1214 return err;
1215 dst->ops = src->ops;
1216
1217 return 0;
1218 }
1219
1220 /**
1221 * damon_nr_running_ctxs() - Return number of currently running contexts.
1222 */
damon_nr_running_ctxs(void)1223 int damon_nr_running_ctxs(void)
1224 {
1225 int nr_ctxs;
1226
1227 mutex_lock(&damon_lock);
1228 nr_ctxs = nr_running_ctxs;
1229 mutex_unlock(&damon_lock);
1230
1231 return nr_ctxs;
1232 }
1233
1234 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)1235 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
1236 {
1237 struct damon_target *t;
1238 struct damon_region *r;
1239 unsigned long sz = 0;
1240
1241 damon_for_each_target(t, ctx) {
1242 damon_for_each_region(r, t)
1243 sz += damon_sz_region(r);
1244 }
1245
1246 if (ctx->attrs.min_nr_regions)
1247 sz /= ctx->attrs.min_nr_regions;
1248 if (sz < DAMON_MIN_REGION)
1249 sz = DAMON_MIN_REGION;
1250
1251 return sz;
1252 }
1253
1254 static int kdamond_fn(void *data);
1255
1256 /*
1257 * __damon_start() - Starts monitoring with given context.
1258 * @ctx: monitoring context
1259 *
1260 * This function should be called while damon_lock is hold.
1261 *
1262 * Return: 0 on success, negative error code otherwise.
1263 */
__damon_start(struct damon_ctx * ctx)1264 static int __damon_start(struct damon_ctx *ctx)
1265 {
1266 int err = -EBUSY;
1267
1268 mutex_lock(&ctx->kdamond_lock);
1269 if (!ctx->kdamond) {
1270 err = 0;
1271 reinit_completion(&ctx->kdamond_started);
1272 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
1273 nr_running_ctxs);
1274 if (IS_ERR(ctx->kdamond)) {
1275 err = PTR_ERR(ctx->kdamond);
1276 ctx->kdamond = NULL;
1277 } else {
1278 wait_for_completion(&ctx->kdamond_started);
1279 }
1280 }
1281 mutex_unlock(&ctx->kdamond_lock);
1282
1283 return err;
1284 }
1285
1286 /**
1287 * damon_start() - Starts the monitorings for a given group of contexts.
1288 * @ctxs: an array of the pointers for contexts to start monitoring
1289 * @nr_ctxs: size of @ctxs
1290 * @exclusive: exclusiveness of this contexts group
1291 *
1292 * This function starts a group of monitoring threads for a group of monitoring
1293 * contexts. One thread per each context is created and run in parallel. The
1294 * caller should handle synchronization between the threads by itself. If
1295 * @exclusive is true and a group of threads that created by other
1296 * 'damon_start()' call is currently running, this function does nothing but
1297 * returns -EBUSY.
1298 *
1299 * Return: 0 on success, negative error code otherwise.
1300 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)1301 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
1302 {
1303 int i;
1304 int err = 0;
1305
1306 mutex_lock(&damon_lock);
1307 if ((exclusive && nr_running_ctxs) ||
1308 (!exclusive && running_exclusive_ctxs)) {
1309 mutex_unlock(&damon_lock);
1310 return -EBUSY;
1311 }
1312
1313 for (i = 0; i < nr_ctxs; i++) {
1314 err = __damon_start(ctxs[i]);
1315 if (err)
1316 break;
1317 nr_running_ctxs++;
1318 }
1319 if (exclusive && nr_running_ctxs)
1320 running_exclusive_ctxs = true;
1321 mutex_unlock(&damon_lock);
1322
1323 return err;
1324 }
1325
1326 /*
1327 * __damon_stop() - Stops monitoring of a given context.
1328 * @ctx: monitoring context
1329 *
1330 * Return: 0 on success, negative error code otherwise.
1331 */
__damon_stop(struct damon_ctx * ctx)1332 static int __damon_stop(struct damon_ctx *ctx)
1333 {
1334 struct task_struct *tsk;
1335
1336 mutex_lock(&ctx->kdamond_lock);
1337 tsk = ctx->kdamond;
1338 if (tsk) {
1339 get_task_struct(tsk);
1340 mutex_unlock(&ctx->kdamond_lock);
1341 kthread_stop_put(tsk);
1342 return 0;
1343 }
1344 mutex_unlock(&ctx->kdamond_lock);
1345
1346 return -EPERM;
1347 }
1348
1349 /**
1350 * damon_stop() - Stops the monitorings for a given group of contexts.
1351 * @ctxs: an array of the pointers for contexts to stop monitoring
1352 * @nr_ctxs: size of @ctxs
1353 *
1354 * Return: 0 on success, negative error code otherwise.
1355 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)1356 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
1357 {
1358 int i, err = 0;
1359
1360 for (i = 0; i < nr_ctxs; i++) {
1361 /* nr_running_ctxs is decremented in kdamond_fn */
1362 err = __damon_stop(ctxs[i]);
1363 if (err)
1364 break;
1365 }
1366 return err;
1367 }
1368
1369 /**
1370 * damon_is_running() - Returns if a given DAMON context is running.
1371 * @ctx: The DAMON context to see if running.
1372 *
1373 * Return: true if @ctx is running, false otherwise.
1374 */
damon_is_running(struct damon_ctx * ctx)1375 bool damon_is_running(struct damon_ctx *ctx)
1376 {
1377 bool running;
1378
1379 mutex_lock(&ctx->kdamond_lock);
1380 running = ctx->kdamond != NULL;
1381 mutex_unlock(&ctx->kdamond_lock);
1382 return running;
1383 }
1384
1385 /**
1386 * damon_call() - Invoke a given function on DAMON worker thread (kdamond).
1387 * @ctx: DAMON context to call the function for.
1388 * @control: Control variable of the call request.
1389 *
1390 * Ask DAMON worker thread (kdamond) of @ctx to call a function with an
1391 * argument data that respectively passed via &damon_call_control->fn and
1392 * &damon_call_control->data of @control. If &damon_call_control->repeat of
1393 * @control is set, further wait until the kdamond finishes handling of the
1394 * request. Otherwise, return as soon as the request is made.
1395 *
1396 * The kdamond executes the function with the argument in the main loop, just
1397 * after a sampling of the iteration is finished. The function can hence
1398 * safely access the internal data of the &struct damon_ctx without additional
1399 * synchronization. The return value of the function will be saved in
1400 * &damon_call_control->return_code.
1401 *
1402 * Return: 0 on success, negative error code otherwise.
1403 */
damon_call(struct damon_ctx * ctx,struct damon_call_control * control)1404 int damon_call(struct damon_ctx *ctx, struct damon_call_control *control)
1405 {
1406 if (!control->repeat)
1407 init_completion(&control->completion);
1408 control->canceled = false;
1409 INIT_LIST_HEAD(&control->list);
1410
1411 mutex_lock(&ctx->call_controls_lock);
1412 list_add_tail(&ctx->call_controls, &control->list);
1413 mutex_unlock(&ctx->call_controls_lock);
1414 if (!damon_is_running(ctx))
1415 return -EINVAL;
1416 if (control->repeat)
1417 return 0;
1418 wait_for_completion(&control->completion);
1419 if (control->canceled)
1420 return -ECANCELED;
1421 return 0;
1422 }
1423
1424 /**
1425 * damos_walk() - Invoke a given functions while DAMOS walk regions.
1426 * @ctx: DAMON context to call the functions for.
1427 * @control: Control variable of the walk request.
1428 *
1429 * Ask DAMON worker thread (kdamond) of @ctx to call a function for each region
1430 * that the kdamond will apply DAMOS action to, and wait until the kdamond
1431 * finishes handling of the request.
1432 *
1433 * The kdamond executes the given function in the main loop, for each region
1434 * just after it applied any DAMOS actions of @ctx to it. The invocation is
1435 * made only within one &damos->apply_interval_us since damos_walk()
1436 * invocation, for each scheme. The given callback function can hence safely
1437 * access the internal data of &struct damon_ctx and &struct damon_region that
1438 * each of the scheme will apply the action for next interval, without
1439 * additional synchronizations against the kdamond. If every scheme of @ctx
1440 * passed at least one &damos->apply_interval_us, kdamond marks the request as
1441 * completed so that damos_walk() can wakeup and return.
1442 *
1443 * Return: 0 on success, negative error code otherwise.
1444 */
damos_walk(struct damon_ctx * ctx,struct damos_walk_control * control)1445 int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control)
1446 {
1447 init_completion(&control->completion);
1448 control->canceled = false;
1449 mutex_lock(&ctx->walk_control_lock);
1450 if (ctx->walk_control) {
1451 mutex_unlock(&ctx->walk_control_lock);
1452 return -EBUSY;
1453 }
1454 ctx->walk_control = control;
1455 mutex_unlock(&ctx->walk_control_lock);
1456 if (!damon_is_running(ctx))
1457 return -EINVAL;
1458 wait_for_completion(&control->completion);
1459 if (control->canceled)
1460 return -ECANCELED;
1461 return 0;
1462 }
1463
1464 /*
1465 * Warn and fix corrupted ->nr_accesses[_bp] for investigations and preventing
1466 * the problem being propagated.
1467 */
damon_warn_fix_nr_accesses_corruption(struct damon_region * r)1468 static void damon_warn_fix_nr_accesses_corruption(struct damon_region *r)
1469 {
1470 if (r->nr_accesses_bp == r->nr_accesses * 10000)
1471 return;
1472 WARN_ONCE(true, "invalid nr_accesses_bp at reset: %u %u\n",
1473 r->nr_accesses_bp, r->nr_accesses);
1474 r->nr_accesses_bp = r->nr_accesses * 10000;
1475 }
1476
1477 /*
1478 * Reset the aggregated monitoring results ('nr_accesses' of each region).
1479 */
kdamond_reset_aggregated(struct damon_ctx * c)1480 static void kdamond_reset_aggregated(struct damon_ctx *c)
1481 {
1482 struct damon_target *t;
1483 unsigned int ti = 0; /* target's index */
1484
1485 damon_for_each_target(t, c) {
1486 struct damon_region *r;
1487
1488 damon_for_each_region(r, t) {
1489 trace_damon_aggregated(ti, r, damon_nr_regions(t));
1490 damon_warn_fix_nr_accesses_corruption(r);
1491 r->last_nr_accesses = r->nr_accesses;
1492 r->nr_accesses = 0;
1493 }
1494 ti++;
1495 }
1496 }
1497
damon_get_intervals_score(struct damon_ctx * c)1498 static unsigned long damon_get_intervals_score(struct damon_ctx *c)
1499 {
1500 struct damon_target *t;
1501 struct damon_region *r;
1502 unsigned long sz_region, max_access_events = 0, access_events = 0;
1503 unsigned long target_access_events;
1504 unsigned long goal_bp = c->attrs.intervals_goal.access_bp;
1505
1506 damon_for_each_target(t, c) {
1507 damon_for_each_region(r, t) {
1508 sz_region = damon_sz_region(r);
1509 max_access_events += sz_region * c->attrs.aggr_samples;
1510 access_events += sz_region * r->nr_accesses;
1511 }
1512 }
1513 target_access_events = max_access_events * goal_bp / 10000;
1514 target_access_events = target_access_events ? : 1;
1515 return access_events * 10000 / target_access_events;
1516 }
1517
1518 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1519 unsigned long score);
1520
damon_get_intervals_adaptation_bp(struct damon_ctx * c)1521 static unsigned long damon_get_intervals_adaptation_bp(struct damon_ctx *c)
1522 {
1523 unsigned long score_bp, adaptation_bp;
1524
1525 score_bp = damon_get_intervals_score(c);
1526 adaptation_bp = damon_feed_loop_next_input(100000000, score_bp) /
1527 10000;
1528 /*
1529 * adaptaion_bp ranges from 1 to 20,000. Avoid too rapid reduction of
1530 * the intervals by rescaling [1,10,000] to [5000, 10,000].
1531 */
1532 if (adaptation_bp <= 10000)
1533 adaptation_bp = 5000 + adaptation_bp / 2;
1534 return adaptation_bp;
1535 }
1536
kdamond_tune_intervals(struct damon_ctx * c)1537 static void kdamond_tune_intervals(struct damon_ctx *c)
1538 {
1539 unsigned long adaptation_bp;
1540 struct damon_attrs new_attrs;
1541 struct damon_intervals_goal *goal;
1542
1543 adaptation_bp = damon_get_intervals_adaptation_bp(c);
1544 if (adaptation_bp == 10000)
1545 return;
1546
1547 new_attrs = c->attrs;
1548 goal = &c->attrs.intervals_goal;
1549 new_attrs.sample_interval = min(goal->max_sample_us,
1550 c->attrs.sample_interval * adaptation_bp / 10000);
1551 new_attrs.sample_interval = max(goal->min_sample_us,
1552 new_attrs.sample_interval);
1553 new_attrs.aggr_interval = new_attrs.sample_interval *
1554 c->attrs.aggr_samples;
1555 trace_damon_monitor_intervals_tune(new_attrs.sample_interval);
1556 damon_set_attrs(c, &new_attrs);
1557 }
1558
1559 static void damon_split_region_at(struct damon_target *t,
1560 struct damon_region *r, unsigned long sz_r);
1561
__damos_valid_target(struct damon_region * r,struct damos * s)1562 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
1563 {
1564 unsigned long sz;
1565 unsigned int nr_accesses = r->nr_accesses_bp / 10000;
1566
1567 sz = damon_sz_region(r);
1568 return s->pattern.min_sz_region <= sz &&
1569 sz <= s->pattern.max_sz_region &&
1570 s->pattern.min_nr_accesses <= nr_accesses &&
1571 nr_accesses <= s->pattern.max_nr_accesses &&
1572 s->pattern.min_age_region <= r->age &&
1573 r->age <= s->pattern.max_age_region;
1574 }
1575
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1576 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
1577 struct damon_region *r, struct damos *s)
1578 {
1579 bool ret = __damos_valid_target(r, s);
1580
1581 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
1582 return ret;
1583
1584 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
1585 }
1586
1587 /*
1588 * damos_skip_charged_region() - Check if the given region or starting part of
1589 * it is already charged for the DAMOS quota.
1590 * @t: The target of the region.
1591 * @rp: The pointer to the region.
1592 * @s: The scheme to be applied.
1593 *
1594 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
1595 * action would applied to only a part of the target access pattern fulfilling
1596 * regions. To avoid applying the scheme action to only already applied
1597 * regions, DAMON skips applying the scheme action to the regions that charged
1598 * in the previous charge window.
1599 *
1600 * This function checks if a given region should be skipped or not for the
1601 * reason. If only the starting part of the region has previously charged,
1602 * this function splits the region into two so that the second one covers the
1603 * area that not charged in the previous charge widnow and saves the second
1604 * region in *rp and returns false, so that the caller can apply DAMON action
1605 * to the second one.
1606 *
1607 * Return: true if the region should be entirely skipped, false otherwise.
1608 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)1609 static bool damos_skip_charged_region(struct damon_target *t,
1610 struct damon_region **rp, struct damos *s)
1611 {
1612 struct damon_region *r = *rp;
1613 struct damos_quota *quota = &s->quota;
1614 unsigned long sz_to_skip;
1615
1616 /* Skip previously charged regions */
1617 if (quota->charge_target_from) {
1618 if (t != quota->charge_target_from)
1619 return true;
1620 if (r == damon_last_region(t)) {
1621 quota->charge_target_from = NULL;
1622 quota->charge_addr_from = 0;
1623 return true;
1624 }
1625 if (quota->charge_addr_from &&
1626 r->ar.end <= quota->charge_addr_from)
1627 return true;
1628
1629 if (quota->charge_addr_from && r->ar.start <
1630 quota->charge_addr_from) {
1631 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
1632 r->ar.start, DAMON_MIN_REGION);
1633 if (!sz_to_skip) {
1634 if (damon_sz_region(r) <= DAMON_MIN_REGION)
1635 return true;
1636 sz_to_skip = DAMON_MIN_REGION;
1637 }
1638 damon_split_region_at(t, r, sz_to_skip);
1639 r = damon_next_region(r);
1640 *rp = r;
1641 }
1642 quota->charge_target_from = NULL;
1643 quota->charge_addr_from = 0;
1644 }
1645 return false;
1646 }
1647
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied,unsigned long sz_ops_filter_passed)1648 static void damos_update_stat(struct damos *s,
1649 unsigned long sz_tried, unsigned long sz_applied,
1650 unsigned long sz_ops_filter_passed)
1651 {
1652 s->stat.nr_tried++;
1653 s->stat.sz_tried += sz_tried;
1654 if (sz_applied)
1655 s->stat.nr_applied++;
1656 s->stat.sz_applied += sz_applied;
1657 s->stat.sz_ops_filter_passed += sz_ops_filter_passed;
1658 }
1659
damos_filter_match(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)1660 static bool damos_filter_match(struct damon_ctx *ctx, struct damon_target *t,
1661 struct damon_region *r, struct damos_filter *filter)
1662 {
1663 bool matched = false;
1664 struct damon_target *ti;
1665 int target_idx = 0;
1666 unsigned long start, end;
1667
1668 switch (filter->type) {
1669 case DAMOS_FILTER_TYPE_TARGET:
1670 damon_for_each_target(ti, ctx) {
1671 if (ti == t)
1672 break;
1673 target_idx++;
1674 }
1675 matched = target_idx == filter->target_idx;
1676 break;
1677 case DAMOS_FILTER_TYPE_ADDR:
1678 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
1679 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
1680
1681 /* inside the range */
1682 if (start <= r->ar.start && r->ar.end <= end) {
1683 matched = true;
1684 break;
1685 }
1686 /* outside of the range */
1687 if (r->ar.end <= start || end <= r->ar.start) {
1688 matched = false;
1689 break;
1690 }
1691 /* start before the range and overlap */
1692 if (r->ar.start < start) {
1693 damon_split_region_at(t, r, start - r->ar.start);
1694 matched = false;
1695 break;
1696 }
1697 /* start inside the range */
1698 damon_split_region_at(t, r, end - r->ar.start);
1699 matched = true;
1700 break;
1701 default:
1702 return false;
1703 }
1704
1705 return matched == filter->matching;
1706 }
1707
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)1708 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
1709 struct damon_region *r, struct damos *s)
1710 {
1711 struct damos_filter *filter;
1712
1713 s->core_filters_allowed = false;
1714 damos_for_each_filter(filter, s) {
1715 if (damos_filter_match(ctx, t, r, filter)) {
1716 if (filter->allow)
1717 s->core_filters_allowed = true;
1718 return !filter->allow;
1719 }
1720 }
1721 return s->core_filters_default_reject;
1722 }
1723
1724 /*
1725 * damos_walk_call_walk() - Call &damos_walk_control->walk_fn.
1726 * @ctx: The context of &damon_ctx->walk_control.
1727 * @t: The monitoring target of @r that @s will be applied.
1728 * @r: The region of @t that @s will be applied.
1729 * @s: The scheme of @ctx that will be applied to @r.
1730 *
1731 * This function is called from kdamond whenever it asked the operation set to
1732 * apply a DAMOS scheme action to a region. If a DAMOS walk request is
1733 * installed by damos_walk() and not yet uninstalled, invoke it.
1734 */
damos_walk_call_walk(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s,unsigned long sz_filter_passed)1735 static void damos_walk_call_walk(struct damon_ctx *ctx, struct damon_target *t,
1736 struct damon_region *r, struct damos *s,
1737 unsigned long sz_filter_passed)
1738 {
1739 struct damos_walk_control *control;
1740
1741 if (s->walk_completed)
1742 return;
1743
1744 control = ctx->walk_control;
1745 if (!control)
1746 return;
1747
1748 control->walk_fn(control->data, ctx, t, r, s, sz_filter_passed);
1749 }
1750
1751 /*
1752 * damos_walk_complete() - Complete DAMOS walk request if all walks are done.
1753 * @ctx: The context of &damon_ctx->walk_control.
1754 * @s: A scheme of @ctx that all walks are now done.
1755 *
1756 * This function is called when kdamond finished applying the action of a DAMOS
1757 * scheme to all regions that eligible for the given &damos->apply_interval_us.
1758 * If every scheme of @ctx including @s now finished walking for at least one
1759 * &damos->apply_interval_us, this function makrs the handling of the given
1760 * DAMOS walk request is done, so that damos_walk() can wake up and return.
1761 */
damos_walk_complete(struct damon_ctx * ctx,struct damos * s)1762 static void damos_walk_complete(struct damon_ctx *ctx, struct damos *s)
1763 {
1764 struct damos *siter;
1765 struct damos_walk_control *control;
1766
1767 control = ctx->walk_control;
1768 if (!control)
1769 return;
1770
1771 s->walk_completed = true;
1772 /* if all schemes completed, signal completion to walker */
1773 damon_for_each_scheme(siter, ctx) {
1774 if (!siter->walk_completed)
1775 return;
1776 }
1777 damon_for_each_scheme(siter, ctx)
1778 siter->walk_completed = false;
1779
1780 complete(&control->completion);
1781 ctx->walk_control = NULL;
1782 }
1783
1784 /*
1785 * damos_walk_cancel() - Cancel the current DAMOS walk request.
1786 * @ctx: The context of &damon_ctx->walk_control.
1787 *
1788 * This function is called when @ctx is deactivated by DAMOS watermarks, DAMOS
1789 * walk is requested but there is no DAMOS scheme to walk for, or the kdamond
1790 * is already out of the main loop and therefore gonna be terminated, and hence
1791 * cannot continue the walks. This function therefore marks the walk request
1792 * as canceled, so that damos_walk() can wake up and return.
1793 */
damos_walk_cancel(struct damon_ctx * ctx)1794 static void damos_walk_cancel(struct damon_ctx *ctx)
1795 {
1796 struct damos_walk_control *control;
1797
1798 mutex_lock(&ctx->walk_control_lock);
1799 control = ctx->walk_control;
1800 mutex_unlock(&ctx->walk_control_lock);
1801
1802 if (!control)
1803 return;
1804 control->canceled = true;
1805 complete(&control->completion);
1806 mutex_lock(&ctx->walk_control_lock);
1807 ctx->walk_control = NULL;
1808 mutex_unlock(&ctx->walk_control_lock);
1809 }
1810
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)1811 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
1812 struct damon_region *r, struct damos *s)
1813 {
1814 struct damos_quota *quota = &s->quota;
1815 unsigned long sz = damon_sz_region(r);
1816 struct timespec64 begin, end;
1817 unsigned long sz_applied = 0;
1818 unsigned long sz_ops_filter_passed = 0;
1819 /*
1820 * We plan to support multiple context per kdamond, as DAMON sysfs
1821 * implies with 'nr_contexts' file. Nevertheless, only single context
1822 * per kdamond is supported for now. So, we can simply use '0' context
1823 * index here.
1824 */
1825 unsigned int cidx = 0;
1826 struct damos *siter; /* schemes iterator */
1827 unsigned int sidx = 0;
1828 struct damon_target *titer; /* targets iterator */
1829 unsigned int tidx = 0;
1830 bool do_trace = false;
1831
1832 /* get indices for trace_damos_before_apply() */
1833 if (trace_damos_before_apply_enabled()) {
1834 damon_for_each_scheme(siter, c) {
1835 if (siter == s)
1836 break;
1837 sidx++;
1838 }
1839 damon_for_each_target(titer, c) {
1840 if (titer == t)
1841 break;
1842 tidx++;
1843 }
1844 do_trace = true;
1845 }
1846
1847 if (c->ops.apply_scheme) {
1848 if (quota->esz && quota->charged_sz + sz > quota->esz) {
1849 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
1850 DAMON_MIN_REGION);
1851 if (!sz)
1852 goto update_stat;
1853 damon_split_region_at(t, r, sz);
1854 }
1855 if (damos_filter_out(c, t, r, s))
1856 return;
1857 ktime_get_coarse_ts64(&begin);
1858 trace_damos_before_apply(cidx, sidx, tidx, r,
1859 damon_nr_regions(t), do_trace);
1860 sz_applied = c->ops.apply_scheme(c, t, r, s,
1861 &sz_ops_filter_passed);
1862 damos_walk_call_walk(c, t, r, s, sz_ops_filter_passed);
1863 ktime_get_coarse_ts64(&end);
1864 quota->total_charged_ns += timespec64_to_ns(&end) -
1865 timespec64_to_ns(&begin);
1866 quota->charged_sz += sz;
1867 if (quota->esz && quota->charged_sz >= quota->esz) {
1868 quota->charge_target_from = t;
1869 quota->charge_addr_from = r->ar.end + 1;
1870 }
1871 }
1872 if (s->action != DAMOS_STAT)
1873 r->age = 0;
1874
1875 update_stat:
1876 damos_update_stat(s, sz, sz_applied, sz_ops_filter_passed);
1877 }
1878
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)1879 static void damon_do_apply_schemes(struct damon_ctx *c,
1880 struct damon_target *t,
1881 struct damon_region *r)
1882 {
1883 struct damos *s;
1884
1885 damon_for_each_scheme(s, c) {
1886 struct damos_quota *quota = &s->quota;
1887
1888 if (c->passed_sample_intervals < s->next_apply_sis)
1889 continue;
1890
1891 if (!s->wmarks.activated)
1892 continue;
1893
1894 /* Check the quota */
1895 if (quota->esz && quota->charged_sz >= quota->esz)
1896 continue;
1897
1898 if (damos_skip_charged_region(t, &r, s))
1899 continue;
1900
1901 if (!damos_valid_target(c, t, r, s))
1902 continue;
1903
1904 damos_apply_scheme(c, t, r, s);
1905 }
1906 }
1907
1908 /*
1909 * damon_feed_loop_next_input() - get next input to achieve a target score.
1910 * @last_input The last input.
1911 * @score Current score that made with @last_input.
1912 *
1913 * Calculate next input to achieve the target score, based on the last input
1914 * and current score. Assuming the input and the score are positively
1915 * proportional, calculate how much compensation should be added to or
1916 * subtracted from the last input as a proportion of the last input. Avoid
1917 * next input always being zero by setting it non-zero always. In short form
1918 * (assuming support of float and signed calculations), the algorithm is as
1919 * below.
1920 *
1921 * next_input = max(last_input * ((goal - current) / goal + 1), 1)
1922 *
1923 * For simple implementation, we assume the target score is always 10,000. The
1924 * caller should adjust @score for this.
1925 *
1926 * Returns next input that assumed to achieve the target score.
1927 */
damon_feed_loop_next_input(unsigned long last_input,unsigned long score)1928 static unsigned long damon_feed_loop_next_input(unsigned long last_input,
1929 unsigned long score)
1930 {
1931 const unsigned long goal = 10000;
1932 /* Set minimum input as 10000 to avoid compensation be zero */
1933 const unsigned long min_input = 10000;
1934 unsigned long score_goal_diff, compensation;
1935 bool over_achieving = score > goal;
1936
1937 if (score == goal)
1938 return last_input;
1939 if (score >= goal * 2)
1940 return min_input;
1941
1942 if (over_achieving)
1943 score_goal_diff = score - goal;
1944 else
1945 score_goal_diff = goal - score;
1946
1947 if (last_input < ULONG_MAX / score_goal_diff)
1948 compensation = last_input * score_goal_diff / goal;
1949 else
1950 compensation = last_input / goal * score_goal_diff;
1951
1952 if (over_achieving)
1953 return max(last_input - compensation, min_input);
1954 if (last_input < ULONG_MAX - compensation)
1955 return last_input + compensation;
1956 return ULONG_MAX;
1957 }
1958
1959 #ifdef CONFIG_PSI
1960
damos_get_some_mem_psi_total(void)1961 static u64 damos_get_some_mem_psi_total(void)
1962 {
1963 if (static_branch_likely(&psi_disabled))
1964 return 0;
1965 return div_u64(psi_system.total[PSI_AVGS][PSI_MEM * 2],
1966 NSEC_PER_USEC);
1967 }
1968
1969 #else /* CONFIG_PSI */
1970
damos_get_some_mem_psi_total(void)1971 static inline u64 damos_get_some_mem_psi_total(void)
1972 {
1973 return 0;
1974 };
1975
1976 #endif /* CONFIG_PSI */
1977
1978 #ifdef CONFIG_NUMA
damos_get_node_mem_bp(struct damos_quota_goal * goal)1979 static __kernel_ulong_t damos_get_node_mem_bp(
1980 struct damos_quota_goal *goal)
1981 {
1982 struct sysinfo i;
1983 __kernel_ulong_t numerator;
1984
1985 si_meminfo_node(&i, goal->nid);
1986 if (goal->metric == DAMOS_QUOTA_NODE_MEM_USED_BP)
1987 numerator = i.totalram - i.freeram;
1988 else /* DAMOS_QUOTA_NODE_MEM_FREE_BP */
1989 numerator = i.freeram;
1990 return numerator * 10000 / i.totalram;
1991 }
1992 #else
damos_get_node_mem_bp(struct damos_quota_goal * goal)1993 static __kernel_ulong_t damos_get_node_mem_bp(
1994 struct damos_quota_goal *goal)
1995 {
1996 return 0;
1997 }
1998 #endif
1999
2000
damos_set_quota_goal_current_value(struct damos_quota_goal * goal)2001 static void damos_set_quota_goal_current_value(struct damos_quota_goal *goal)
2002 {
2003 u64 now_psi_total;
2004
2005 switch (goal->metric) {
2006 case DAMOS_QUOTA_USER_INPUT:
2007 /* User should already set goal->current_value */
2008 break;
2009 case DAMOS_QUOTA_SOME_MEM_PSI_US:
2010 now_psi_total = damos_get_some_mem_psi_total();
2011 goal->current_value = now_psi_total - goal->last_psi_total;
2012 goal->last_psi_total = now_psi_total;
2013 break;
2014 case DAMOS_QUOTA_NODE_MEM_USED_BP:
2015 case DAMOS_QUOTA_NODE_MEM_FREE_BP:
2016 goal->current_value = damos_get_node_mem_bp(goal);
2017 break;
2018 default:
2019 break;
2020 }
2021 }
2022
2023 /* Return the highest score since it makes schemes least aggressive */
damos_quota_score(struct damos_quota * quota)2024 static unsigned long damos_quota_score(struct damos_quota *quota)
2025 {
2026 struct damos_quota_goal *goal;
2027 unsigned long highest_score = 0;
2028
2029 damos_for_each_quota_goal(goal, quota) {
2030 damos_set_quota_goal_current_value(goal);
2031 highest_score = max(highest_score,
2032 goal->current_value * 10000 /
2033 goal->target_value);
2034 }
2035
2036 return highest_score;
2037 }
2038
2039 /*
2040 * Called only if quota->ms, or quota->sz are set, or quota->goals is not empty
2041 */
damos_set_effective_quota(struct damos_quota * quota)2042 static void damos_set_effective_quota(struct damos_quota *quota)
2043 {
2044 unsigned long throughput;
2045 unsigned long esz = ULONG_MAX;
2046
2047 if (!quota->ms && list_empty("a->goals)) {
2048 quota->esz = quota->sz;
2049 return;
2050 }
2051
2052 if (!list_empty("a->goals)) {
2053 unsigned long score = damos_quota_score(quota);
2054
2055 quota->esz_bp = damon_feed_loop_next_input(
2056 max(quota->esz_bp, 10000UL),
2057 score);
2058 esz = quota->esz_bp / 10000;
2059 }
2060
2061 if (quota->ms) {
2062 if (quota->total_charged_ns)
2063 throughput = quota->total_charged_sz * 1000000 /
2064 quota->total_charged_ns;
2065 else
2066 throughput = PAGE_SIZE * 1024;
2067 esz = min(throughput * quota->ms, esz);
2068 }
2069
2070 if (quota->sz && quota->sz < esz)
2071 esz = quota->sz;
2072
2073 quota->esz = esz;
2074 }
2075
damos_trace_esz(struct damon_ctx * c,struct damos * s,struct damos_quota * quota)2076 static void damos_trace_esz(struct damon_ctx *c, struct damos *s,
2077 struct damos_quota *quota)
2078 {
2079 unsigned int cidx = 0, sidx = 0;
2080 struct damos *siter;
2081
2082 damon_for_each_scheme(siter, c) {
2083 if (siter == s)
2084 break;
2085 sidx++;
2086 }
2087 trace_damos_esz(cidx, sidx, quota->esz);
2088 }
2089
damos_adjust_quota(struct damon_ctx * c,struct damos * s)2090 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
2091 {
2092 struct damos_quota *quota = &s->quota;
2093 struct damon_target *t;
2094 struct damon_region *r;
2095 unsigned long cumulated_sz, cached_esz;
2096 unsigned int score, max_score = 0;
2097
2098 if (!quota->ms && !quota->sz && list_empty("a->goals))
2099 return;
2100
2101 /* New charge window starts */
2102 if (time_after_eq(jiffies, quota->charged_from +
2103 msecs_to_jiffies(quota->reset_interval))) {
2104 if (quota->esz && quota->charged_sz >= quota->esz)
2105 s->stat.qt_exceeds++;
2106 quota->total_charged_sz += quota->charged_sz;
2107 quota->charged_from = jiffies;
2108 quota->charged_sz = 0;
2109 if (trace_damos_esz_enabled())
2110 cached_esz = quota->esz;
2111 damos_set_effective_quota(quota);
2112 if (trace_damos_esz_enabled() && quota->esz != cached_esz)
2113 damos_trace_esz(c, s, quota);
2114 }
2115
2116 if (!c->ops.get_scheme_score)
2117 return;
2118
2119 /* Fill up the score histogram */
2120 memset(c->regions_score_histogram, 0,
2121 sizeof(*c->regions_score_histogram) *
2122 (DAMOS_MAX_SCORE + 1));
2123 damon_for_each_target(t, c) {
2124 damon_for_each_region(r, t) {
2125 if (!__damos_valid_target(r, s))
2126 continue;
2127 score = c->ops.get_scheme_score(c, t, r, s);
2128 c->regions_score_histogram[score] +=
2129 damon_sz_region(r);
2130 if (score > max_score)
2131 max_score = score;
2132 }
2133 }
2134
2135 /* Set the min score limit */
2136 for (cumulated_sz = 0, score = max_score; ; score--) {
2137 cumulated_sz += c->regions_score_histogram[score];
2138 if (cumulated_sz >= quota->esz || !score)
2139 break;
2140 }
2141 quota->min_score = score;
2142 }
2143
kdamond_apply_schemes(struct damon_ctx * c)2144 static void kdamond_apply_schemes(struct damon_ctx *c)
2145 {
2146 struct damon_target *t;
2147 struct damon_region *r, *next_r;
2148 struct damos *s;
2149 unsigned long sample_interval = c->attrs.sample_interval ?
2150 c->attrs.sample_interval : 1;
2151 bool has_schemes_to_apply = false;
2152
2153 damon_for_each_scheme(s, c) {
2154 if (c->passed_sample_intervals < s->next_apply_sis)
2155 continue;
2156
2157 if (!s->wmarks.activated)
2158 continue;
2159
2160 has_schemes_to_apply = true;
2161
2162 damos_adjust_quota(c, s);
2163 }
2164
2165 if (!has_schemes_to_apply)
2166 return;
2167
2168 mutex_lock(&c->walk_control_lock);
2169 damon_for_each_target(t, c) {
2170 damon_for_each_region_safe(r, next_r, t)
2171 damon_do_apply_schemes(c, t, r);
2172 }
2173
2174 damon_for_each_scheme(s, c) {
2175 if (c->passed_sample_intervals < s->next_apply_sis)
2176 continue;
2177 damos_walk_complete(c, s);
2178 s->next_apply_sis = c->passed_sample_intervals +
2179 (s->apply_interval_us ? s->apply_interval_us :
2180 c->attrs.aggr_interval) / sample_interval;
2181 s->last_applied = NULL;
2182 }
2183 mutex_unlock(&c->walk_control_lock);
2184 }
2185
2186 /*
2187 * Merge two adjacent regions into one region
2188 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)2189 static void damon_merge_two_regions(struct damon_target *t,
2190 struct damon_region *l, struct damon_region *r)
2191 {
2192 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
2193
2194 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
2195 (sz_l + sz_r);
2196 l->nr_accesses_bp = l->nr_accesses * 10000;
2197 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
2198 l->ar.end = r->ar.end;
2199 damon_destroy_region(r, t);
2200 }
2201
2202 /*
2203 * Merge adjacent regions having similar access frequencies
2204 *
2205 * t target affected by this merge operation
2206 * thres '->nr_accesses' diff threshold for the merge
2207 * sz_limit size upper limit of each region
2208 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)2209 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
2210 unsigned long sz_limit)
2211 {
2212 struct damon_region *r, *prev = NULL, *next;
2213
2214 damon_for_each_region_safe(r, next, t) {
2215 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
2216 r->age = 0;
2217 else
2218 r->age++;
2219
2220 if (prev && prev->ar.end == r->ar.start &&
2221 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
2222 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
2223 damon_merge_two_regions(t, prev, r);
2224 else
2225 prev = r;
2226 }
2227 }
2228
2229 /*
2230 * Merge adjacent regions having similar access frequencies
2231 *
2232 * threshold '->nr_accesses' diff threshold for the merge
2233 * sz_limit size upper limit of each region
2234 *
2235 * This function merges monitoring target regions which are adjacent and their
2236 * access frequencies are similar. This is for minimizing the monitoring
2237 * overhead under the dynamically changeable access pattern. If a merge was
2238 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
2239 *
2240 * The total number of regions could be higher than the user-defined limit,
2241 * max_nr_regions for some cases. For example, the user can update
2242 * max_nr_regions to a number that lower than the current number of regions
2243 * while DAMON is running. For such a case, repeat merging until the limit is
2244 * met while increasing @threshold up to possible maximum level.
2245 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)2246 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
2247 unsigned long sz_limit)
2248 {
2249 struct damon_target *t;
2250 unsigned int nr_regions;
2251 unsigned int max_thres;
2252
2253 max_thres = c->attrs.aggr_interval /
2254 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
2255 do {
2256 nr_regions = 0;
2257 damon_for_each_target(t, c) {
2258 damon_merge_regions_of(t, threshold, sz_limit);
2259 nr_regions += damon_nr_regions(t);
2260 }
2261 threshold = max(1, threshold * 2);
2262 } while (nr_regions > c->attrs.max_nr_regions &&
2263 threshold / 2 < max_thres);
2264 }
2265
2266 /*
2267 * Split a region in two
2268 *
2269 * r the region to be split
2270 * sz_r size of the first sub-region that will be made
2271 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)2272 static void damon_split_region_at(struct damon_target *t,
2273 struct damon_region *r, unsigned long sz_r)
2274 {
2275 struct damon_region *new;
2276
2277 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
2278 if (!new)
2279 return;
2280
2281 r->ar.end = new->ar.start;
2282
2283 new->age = r->age;
2284 new->last_nr_accesses = r->last_nr_accesses;
2285 new->nr_accesses_bp = r->nr_accesses_bp;
2286 new->nr_accesses = r->nr_accesses;
2287
2288 damon_insert_region(new, r, damon_next_region(r), t);
2289 }
2290
2291 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)2292 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
2293 {
2294 struct damon_region *r, *next;
2295 unsigned long sz_region, sz_sub = 0;
2296 int i;
2297
2298 damon_for_each_region_safe(r, next, t) {
2299 sz_region = damon_sz_region(r);
2300
2301 for (i = 0; i < nr_subs - 1 &&
2302 sz_region > 2 * DAMON_MIN_REGION; i++) {
2303 /*
2304 * Randomly select size of left sub-region to be at
2305 * least 10 percent and at most 90% of original region
2306 */
2307 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
2308 sz_region / 10, DAMON_MIN_REGION);
2309 /* Do not allow blank region */
2310 if (sz_sub == 0 || sz_sub >= sz_region)
2311 continue;
2312
2313 damon_split_region_at(t, r, sz_sub);
2314 sz_region = sz_sub;
2315 }
2316 }
2317 }
2318
2319 /*
2320 * Split every target region into randomly-sized small regions
2321 *
2322 * This function splits every target region into random-sized small regions if
2323 * current total number of the regions is equal or smaller than half of the
2324 * user-specified maximum number of regions. This is for maximizing the
2325 * monitoring accuracy under the dynamically changeable access patterns. If a
2326 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
2327 * it.
2328 */
kdamond_split_regions(struct damon_ctx * ctx)2329 static void kdamond_split_regions(struct damon_ctx *ctx)
2330 {
2331 struct damon_target *t;
2332 unsigned int nr_regions = 0;
2333 static unsigned int last_nr_regions;
2334 int nr_subregions = 2;
2335
2336 damon_for_each_target(t, ctx)
2337 nr_regions += damon_nr_regions(t);
2338
2339 if (nr_regions > ctx->attrs.max_nr_regions / 2)
2340 return;
2341
2342 /* Maybe the middle of the region has different access frequency */
2343 if (last_nr_regions == nr_regions &&
2344 nr_regions < ctx->attrs.max_nr_regions / 3)
2345 nr_subregions = 3;
2346
2347 damon_for_each_target(t, ctx)
2348 damon_split_regions_of(t, nr_subregions);
2349
2350 last_nr_regions = nr_regions;
2351 }
2352
2353 /*
2354 * Check whether current monitoring should be stopped
2355 *
2356 * The monitoring is stopped when either the user requested to stop, or all
2357 * monitoring targets are invalid.
2358 *
2359 * Returns true if need to stop current monitoring.
2360 */
kdamond_need_stop(struct damon_ctx * ctx)2361 static bool kdamond_need_stop(struct damon_ctx *ctx)
2362 {
2363 struct damon_target *t;
2364
2365 if (kthread_should_stop())
2366 return true;
2367
2368 if (!ctx->ops.target_valid)
2369 return false;
2370
2371 damon_for_each_target(t, ctx) {
2372 if (ctx->ops.target_valid(t))
2373 return false;
2374 }
2375
2376 return true;
2377 }
2378
damos_get_wmark_metric_value(enum damos_wmark_metric metric,unsigned long * metric_value)2379 static int damos_get_wmark_metric_value(enum damos_wmark_metric metric,
2380 unsigned long *metric_value)
2381 {
2382 switch (metric) {
2383 case DAMOS_WMARK_FREE_MEM_RATE:
2384 *metric_value = global_zone_page_state(NR_FREE_PAGES) * 1000 /
2385 totalram_pages();
2386 return 0;
2387 default:
2388 break;
2389 }
2390 return -EINVAL;
2391 }
2392
2393 /*
2394 * Returns zero if the scheme is active. Else, returns time to wait for next
2395 * watermark check in micro-seconds.
2396 */
damos_wmark_wait_us(struct damos * scheme)2397 static unsigned long damos_wmark_wait_us(struct damos *scheme)
2398 {
2399 unsigned long metric;
2400
2401 if (damos_get_wmark_metric_value(scheme->wmarks.metric, &metric))
2402 return 0;
2403
2404 /* higher than high watermark or lower than low watermark */
2405 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
2406 if (scheme->wmarks.activated)
2407 pr_debug("deactivate a scheme (%d) for %s wmark\n",
2408 scheme->action,
2409 str_high_low(metric > scheme->wmarks.high));
2410 scheme->wmarks.activated = false;
2411 return scheme->wmarks.interval;
2412 }
2413
2414 /* inactive and higher than middle watermark */
2415 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
2416 !scheme->wmarks.activated)
2417 return scheme->wmarks.interval;
2418
2419 if (!scheme->wmarks.activated)
2420 pr_debug("activate a scheme (%d)\n", scheme->action);
2421 scheme->wmarks.activated = true;
2422 return 0;
2423 }
2424
kdamond_usleep(unsigned long usecs)2425 static void kdamond_usleep(unsigned long usecs)
2426 {
2427 if (usecs >= USLEEP_RANGE_UPPER_BOUND)
2428 schedule_timeout_idle(usecs_to_jiffies(usecs));
2429 else
2430 usleep_range_idle(usecs, usecs + 1);
2431 }
2432
2433 /*
2434 * kdamond_call() - handle damon_call_control objects.
2435 * @ctx: The &struct damon_ctx of the kdamond.
2436 * @cancel: Whether to cancel the invocation of the function.
2437 *
2438 * If there are &struct damon_call_control requests that registered via
2439 * &damon_call() on @ctx, do or cancel the invocation of the function depending
2440 * on @cancel. @cancel is set when the kdamond is already out of the main loop
2441 * and therefore will be terminated.
2442 */
kdamond_call(struct damon_ctx * ctx,bool cancel)2443 static void kdamond_call(struct damon_ctx *ctx, bool cancel)
2444 {
2445 struct damon_call_control *control;
2446 LIST_HEAD(repeat_controls);
2447 int ret = 0;
2448
2449 while (true) {
2450 mutex_lock(&ctx->call_controls_lock);
2451 control = list_first_entry_or_null(&ctx->call_controls,
2452 struct damon_call_control, list);
2453 mutex_unlock(&ctx->call_controls_lock);
2454 if (!control)
2455 break;
2456 if (cancel) {
2457 control->canceled = true;
2458 } else {
2459 ret = control->fn(control->data);
2460 control->return_code = ret;
2461 }
2462 mutex_lock(&ctx->call_controls_lock);
2463 list_del(&control->list);
2464 mutex_unlock(&ctx->call_controls_lock);
2465 if (!control->repeat)
2466 complete(&control->completion);
2467 else
2468 list_add(&control->list, &repeat_controls);
2469 }
2470 control = list_first_entry_or_null(&repeat_controls,
2471 struct damon_call_control, list);
2472 if (!control || cancel)
2473 return;
2474 mutex_lock(&ctx->call_controls_lock);
2475 list_add_tail(&control->list, &ctx->call_controls);
2476 mutex_unlock(&ctx->call_controls_lock);
2477 }
2478
2479 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)2480 static int kdamond_wait_activation(struct damon_ctx *ctx)
2481 {
2482 struct damos *s;
2483 unsigned long wait_time;
2484 unsigned long min_wait_time = 0;
2485 bool init_wait_time = false;
2486
2487 while (!kdamond_need_stop(ctx)) {
2488 damon_for_each_scheme(s, ctx) {
2489 wait_time = damos_wmark_wait_us(s);
2490 if (!init_wait_time || wait_time < min_wait_time) {
2491 init_wait_time = true;
2492 min_wait_time = wait_time;
2493 }
2494 }
2495 if (!min_wait_time)
2496 return 0;
2497
2498 kdamond_usleep(min_wait_time);
2499
2500 kdamond_call(ctx, false);
2501 damos_walk_cancel(ctx);
2502 }
2503 return -EBUSY;
2504 }
2505
kdamond_init_ctx(struct damon_ctx * ctx)2506 static void kdamond_init_ctx(struct damon_ctx *ctx)
2507 {
2508 unsigned long sample_interval = ctx->attrs.sample_interval ?
2509 ctx->attrs.sample_interval : 1;
2510 unsigned long apply_interval;
2511 struct damos *scheme;
2512
2513 ctx->passed_sample_intervals = 0;
2514 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
2515 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
2516 sample_interval;
2517 ctx->next_intervals_tune_sis = ctx->next_aggregation_sis *
2518 ctx->attrs.intervals_goal.aggrs;
2519
2520 damon_for_each_scheme(scheme, ctx) {
2521 apply_interval = scheme->apply_interval_us ?
2522 scheme->apply_interval_us : ctx->attrs.aggr_interval;
2523 scheme->next_apply_sis = apply_interval / sample_interval;
2524 damos_set_filters_default_reject(scheme);
2525 }
2526 }
2527
2528 /*
2529 * The monitoring daemon that runs as a kernel thread
2530 */
kdamond_fn(void * data)2531 static int kdamond_fn(void *data)
2532 {
2533 struct damon_ctx *ctx = data;
2534 struct damon_target *t;
2535 struct damon_region *r, *next;
2536 unsigned int max_nr_accesses = 0;
2537 unsigned long sz_limit = 0;
2538
2539 pr_debug("kdamond (%d) starts\n", current->pid);
2540
2541 complete(&ctx->kdamond_started);
2542 kdamond_init_ctx(ctx);
2543
2544 if (ctx->ops.init)
2545 ctx->ops.init(ctx);
2546 ctx->regions_score_histogram = kmalloc_array(DAMOS_MAX_SCORE + 1,
2547 sizeof(*ctx->regions_score_histogram), GFP_KERNEL);
2548 if (!ctx->regions_score_histogram)
2549 goto done;
2550
2551 sz_limit = damon_region_sz_limit(ctx);
2552
2553 while (!kdamond_need_stop(ctx)) {
2554 /*
2555 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
2556 * be changed from kdamond_call(). Read the values here, and
2557 * use those for this iteration. That is, damon_set_attrs()
2558 * updated new values are respected from next iteration.
2559 */
2560 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
2561 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
2562 unsigned long sample_interval = ctx->attrs.sample_interval;
2563
2564 if (kdamond_wait_activation(ctx))
2565 break;
2566
2567 if (ctx->ops.prepare_access_checks)
2568 ctx->ops.prepare_access_checks(ctx);
2569
2570 kdamond_usleep(sample_interval);
2571 ctx->passed_sample_intervals++;
2572
2573 if (ctx->ops.check_accesses)
2574 max_nr_accesses = ctx->ops.check_accesses(ctx);
2575
2576 if (ctx->passed_sample_intervals >= next_aggregation_sis)
2577 kdamond_merge_regions(ctx,
2578 max_nr_accesses / 10,
2579 sz_limit);
2580
2581 /*
2582 * do kdamond_call() and kdamond_apply_schemes() after
2583 * kdamond_merge_regions() if possible, to reduce overhead
2584 */
2585 kdamond_call(ctx, false);
2586 if (!list_empty(&ctx->schemes))
2587 kdamond_apply_schemes(ctx);
2588 else
2589 damos_walk_cancel(ctx);
2590
2591 sample_interval = ctx->attrs.sample_interval ?
2592 ctx->attrs.sample_interval : 1;
2593 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
2594 if (ctx->attrs.intervals_goal.aggrs &&
2595 ctx->passed_sample_intervals >=
2596 ctx->next_intervals_tune_sis) {
2597 /*
2598 * ctx->next_aggregation_sis might be updated
2599 * from kdamond_call(). In the case,
2600 * damon_set_attrs() which will be called from
2601 * kdamond_tune_interval() may wrongly think
2602 * this is in the middle of the current
2603 * aggregation, and make aggregation
2604 * information reset for all regions. Then,
2605 * following kdamond_reset_aggregated() call
2606 * will make the region information invalid,
2607 * particularly for ->nr_accesses_bp.
2608 *
2609 * Reset ->next_aggregation_sis to avoid that.
2610 * It will anyway correctly updated after this
2611 * if caluse.
2612 */
2613 ctx->next_aggregation_sis =
2614 next_aggregation_sis;
2615 ctx->next_intervals_tune_sis +=
2616 ctx->attrs.aggr_samples *
2617 ctx->attrs.intervals_goal.aggrs;
2618 kdamond_tune_intervals(ctx);
2619 sample_interval = ctx->attrs.sample_interval ?
2620 ctx->attrs.sample_interval : 1;
2621
2622 }
2623 ctx->next_aggregation_sis = next_aggregation_sis +
2624 ctx->attrs.aggr_interval / sample_interval;
2625
2626 kdamond_reset_aggregated(ctx);
2627 kdamond_split_regions(ctx);
2628 }
2629
2630 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
2631 ctx->next_ops_update_sis = next_ops_update_sis +
2632 ctx->attrs.ops_update_interval /
2633 sample_interval;
2634 if (ctx->ops.update)
2635 ctx->ops.update(ctx);
2636 sz_limit = damon_region_sz_limit(ctx);
2637 }
2638 }
2639 done:
2640 damon_for_each_target(t, ctx) {
2641 damon_for_each_region_safe(r, next, t)
2642 damon_destroy_region(r, t);
2643 }
2644
2645 if (ctx->ops.cleanup)
2646 ctx->ops.cleanup(ctx);
2647 kfree(ctx->regions_score_histogram);
2648
2649 pr_debug("kdamond (%d) finishes\n", current->pid);
2650 mutex_lock(&ctx->kdamond_lock);
2651 ctx->kdamond = NULL;
2652 mutex_unlock(&ctx->kdamond_lock);
2653
2654 kdamond_call(ctx, true);
2655 damos_walk_cancel(ctx);
2656
2657 mutex_lock(&damon_lock);
2658 nr_running_ctxs--;
2659 if (!nr_running_ctxs && running_exclusive_ctxs)
2660 running_exclusive_ctxs = false;
2661 mutex_unlock(&damon_lock);
2662
2663 damon_destroy_targets(ctx);
2664 return 0;
2665 }
2666
2667 /*
2668 * struct damon_system_ram_region - System RAM resource address region of
2669 * [@start, @end).
2670 * @start: Start address of the region (inclusive).
2671 * @end: End address of the region (exclusive).
2672 */
2673 struct damon_system_ram_region {
2674 unsigned long start;
2675 unsigned long end;
2676 };
2677
walk_system_ram(struct resource * res,void * arg)2678 static int walk_system_ram(struct resource *res, void *arg)
2679 {
2680 struct damon_system_ram_region *a = arg;
2681
2682 if (a->end - a->start < resource_size(res)) {
2683 a->start = res->start;
2684 a->end = res->end;
2685 }
2686 return 0;
2687 }
2688
2689 /*
2690 * Find biggest 'System RAM' resource and store its start and end address in
2691 * @start and @end, respectively. If no System RAM is found, returns false.
2692 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)2693 static bool damon_find_biggest_system_ram(unsigned long *start,
2694 unsigned long *end)
2695
2696 {
2697 struct damon_system_ram_region arg = {};
2698
2699 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
2700 if (arg.end <= arg.start)
2701 return false;
2702
2703 *start = arg.start;
2704 *end = arg.end;
2705 return true;
2706 }
2707
2708 /**
2709 * damon_set_region_biggest_system_ram_default() - Set the region of the given
2710 * monitoring target as requested, or biggest 'System RAM'.
2711 * @t: The monitoring target to set the region.
2712 * @start: The pointer to the start address of the region.
2713 * @end: The pointer to the end address of the region.
2714 *
2715 * This function sets the region of @t as requested by @start and @end. If the
2716 * values of @start and @end are zero, however, this function finds the biggest
2717 * 'System RAM' resource and sets the region to cover the resource. In the
2718 * latter case, this function saves the start and end addresses of the resource
2719 * in @start and @end, respectively.
2720 *
2721 * Return: 0 on success, negative error code otherwise.
2722 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)2723 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
2724 unsigned long *start, unsigned long *end)
2725 {
2726 struct damon_addr_range addr_range;
2727
2728 if (*start > *end)
2729 return -EINVAL;
2730
2731 if (!*start && !*end &&
2732 !damon_find_biggest_system_ram(start, end))
2733 return -EINVAL;
2734
2735 addr_range.start = *start;
2736 addr_range.end = *end;
2737 return damon_set_regions(t, &addr_range, 1);
2738 }
2739
2740 /*
2741 * damon_moving_sum() - Calculate an inferred moving sum value.
2742 * @mvsum: Inferred sum of the last @len_window values.
2743 * @nomvsum: Non-moving sum of the last discrete @len_window window values.
2744 * @len_window: The number of last values to take care of.
2745 * @new_value: New value that will be added to the pseudo moving sum.
2746 *
2747 * Moving sum (moving average * window size) is good for handling noise, but
2748 * the cost of keeping past values can be high for arbitrary window size. This
2749 * function implements a lightweight pseudo moving sum function that doesn't
2750 * keep the past window values.
2751 *
2752 * It simply assumes there was no noise in the past, and get the no-noise
2753 * assumed past value to drop from @nomvsum and @len_window. @nomvsum is a
2754 * non-moving sum of the last window. For example, if @len_window is 10 and we
2755 * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25
2756 * values. Hence, this function simply drops @nomvsum / @len_window from
2757 * given @mvsum and add @new_value.
2758 *
2759 * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for
2760 * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20. For
2761 * calculating next moving sum with a new value, we should drop 0 from 50 and
2762 * add the new value. However, this function assumes it got value 5 for each
2763 * of the last ten times. Based on the assumption, when the next value is
2764 * measured, it drops the assumed past value, 5 from the current sum, and add
2765 * the new value to get the updated pseduo-moving average.
2766 *
2767 * This means the value could have errors, but the errors will be disappeared
2768 * for every @len_window aligned calls. For example, if @len_window is 10, the
2769 * pseudo moving sum with 11th value to 19th value would have an error. But
2770 * the sum with 20th value will not have the error.
2771 *
2772 * Return: Pseudo-moving average after getting the @new_value.
2773 */
damon_moving_sum(unsigned int mvsum,unsigned int nomvsum,unsigned int len_window,unsigned int new_value)2774 static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum,
2775 unsigned int len_window, unsigned int new_value)
2776 {
2777 return mvsum - nomvsum / len_window + new_value;
2778 }
2779
2780 /**
2781 * damon_update_region_access_rate() - Update the access rate of a region.
2782 * @r: The DAMON region to update for its access check result.
2783 * @accessed: Whether the region has accessed during last sampling interval.
2784 * @attrs: The damon_attrs of the DAMON context.
2785 *
2786 * Update the access rate of a region with the region's last sampling interval
2787 * access check result.
2788 *
2789 * Usually this will be called by &damon_operations->check_accesses callback.
2790 */
damon_update_region_access_rate(struct damon_region * r,bool accessed,struct damon_attrs * attrs)2791 void damon_update_region_access_rate(struct damon_region *r, bool accessed,
2792 struct damon_attrs *attrs)
2793 {
2794 unsigned int len_window = 1;
2795
2796 /*
2797 * sample_interval can be zero, but cannot be larger than
2798 * aggr_interval, owing to validation of damon_set_attrs().
2799 */
2800 if (attrs->sample_interval)
2801 len_window = damon_max_nr_accesses(attrs);
2802 r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp,
2803 r->last_nr_accesses * 10000, len_window,
2804 accessed ? 10000 : 0);
2805
2806 if (accessed)
2807 r->nr_accesses++;
2808 }
2809
damon_init(void)2810 static int __init damon_init(void)
2811 {
2812 damon_region_cache = KMEM_CACHE(damon_region, 0);
2813 if (unlikely(!damon_region_cache)) {
2814 pr_err("creating damon_region_cache fails\n");
2815 return -ENOMEM;
2816 }
2817
2818 return 0;
2819 }
2820
2821 subsys_initcall(damon_init);
2822
2823 #include "tests/core-kunit.h"
2824