1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9 /*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48
49 #ifdef CONFIG_ACPI
50 /*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60
cmos_use_acpi_alarm(void)61 static inline int cmos_use_acpi_alarm(void)
62 {
63 return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66
cmos_use_acpi_alarm(void)67 static inline int cmos_use_acpi_alarm(void)
68 {
69 return 0;
70 }
71 #endif
72
73 struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92 };
93
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
96
97 static const char driver_name[] = "rtc_cmos";
98
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
is_intr(u8 rtc_intr)105 static inline int is_intr(u8 rtc_intr)
106 {
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110 }
111
112 /*----------------------------------------------------------------*/
113
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127
is_hpet_enabled(void)128 static inline int is_hpet_enabled(void)
129 {
130 return 0;
131 }
132
hpet_mask_rtc_irq_bit(unsigned long mask)133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 return 0;
136 }
137
hpet_set_rtc_irq_bit(unsigned long mask)138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 return 0;
141 }
142
143 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 return 0;
147 }
148
hpet_set_periodic_freq(unsigned long freq)149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 return 0;
152 }
153
hpet_rtc_dropped_irq(void)154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 return 0;
157 }
158
hpet_rtc_timer_init(void)159 static inline int hpet_rtc_timer_init(void)
160 {
161 return 0;
162 }
163
164 extern irq_handler_t hpet_rtc_interrupt;
165
hpet_register_irq_handler(irq_handler_t handler)166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 return 0;
169 }
170
hpet_unregister_irq_handler(irq_handler_t handler)171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 return 0;
174 }
175
176 #endif
177
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
use_hpet_alarm(void)179 static inline int use_hpet_alarm(void)
180 {
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183
184 /*----------------------------------------------------------------*/
185
186 #ifdef RTC_PORT
187
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192 #define can_bank2 true
193
cmos_read_bank2(unsigned char addr)194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198 }
199
cmos_write_bank2(unsigned char val,unsigned char addr)200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204 }
205
206 #else
207
208 #define can_bank2 false
209
cmos_read_bank2(unsigned char addr)210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 return 0;
213 }
214
cmos_write_bank2(unsigned char val,unsigned char addr)215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218
219 #endif
220
221 /*----------------------------------------------------------------*/
222
cmos_read_time(struct device * dev,struct rtc_time * t)223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 /*
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
228 */
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
235 */
236 mc146818_get_time(t);
237 return 0;
238 }
239
cmos_set_time(struct device * dev,struct rtc_time * t)240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
241 {
242 /* REVISIT: set the "century" register if available
243 *
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
247 */
248 return mc146818_set_time(t);
249 }
250
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252 {
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
263 */
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319 }
320
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322 {
323 unsigned char rtc_intr;
324
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
327 */
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336 }
337
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339 {
340 unsigned char rtc_control;
341
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
344 */
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359 }
360
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362 {
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377 }
378
cmos_validate_alarm(struct device * dev,struct rtc_wkalrm * t)379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380 {
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444 }
445
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447 {
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494 /*
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
497 */
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510 }
511
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513 {
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526 }
527
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
cmos_procfs(struct device * dev,struct seq_file * seq)530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
531 {
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 */
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562 }
563
564 #else
565 #define cmos_procfs NULL
566 #endif
567
568 static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575 };
576
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581 };
582
583 /*----------------------------------------------------------------*/
584
585 /*
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
589 */
590
591 #define NVRAM_OFFSET (RTC_REG_D + 1)
592
cmos_nvram_read(void * priv,unsigned int off,void * val,size_t count)593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595 {
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612 }
613
cmos_nvram_write(void * priv,unsigned int off,void * val,size_t count)614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616 {
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
625 */
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644 }
645
646 /*----------------------------------------------------------------*/
647
648 static struct cmos_rtc cmos_rtc;
649
cmos_interrupt(int irq,void * p)650 static irqreturn_t cmos_interrupt(int irq, void *p)
651 {
652 unsigned long flags;
653 u8 irqstat;
654 u8 rtc_control;
655
656 spin_lock_irqsave(&rtc_lock, flags);
657
658 /* When the HPET interrupt handler calls us, the interrupt
659 * status is passed as arg1 instead of the irq number. But
660 * always clear irq status, even when HPET is in the way.
661 *
662 * Note that HPET and RTC are almost certainly out of phase,
663 * giving different IRQ status ...
664 */
665 irqstat = CMOS_READ(RTC_INTR_FLAGS);
666 rtc_control = CMOS_READ(RTC_CONTROL);
667 if (use_hpet_alarm())
668 irqstat = (unsigned long)irq & 0xF0;
669
670 /* If we were suspended, RTC_CONTROL may not be accurate since the
671 * bios may have cleared it.
672 */
673 if (!cmos_rtc.suspend_ctrl)
674 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
675 else
676 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
677
678 /* All Linux RTC alarms should be treated as if they were oneshot.
679 * Similar code may be needed in system wakeup paths, in case the
680 * alarm woke the system.
681 */
682 if (irqstat & RTC_AIE) {
683 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
684 rtc_control &= ~RTC_AIE;
685 CMOS_WRITE(rtc_control, RTC_CONTROL);
686 if (use_hpet_alarm())
687 hpet_mask_rtc_irq_bit(RTC_AIE);
688 CMOS_READ(RTC_INTR_FLAGS);
689 }
690 spin_unlock_irqrestore(&rtc_lock, flags);
691
692 if (is_intr(irqstat)) {
693 rtc_update_irq(p, 1, irqstat);
694 return IRQ_HANDLED;
695 } else
696 return IRQ_NONE;
697 }
698
699 #ifdef CONFIG_PNP
700 #define INITSECTION
701
702 #else
703 #define INITSECTION __init
704 #endif
705
706 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)707 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
708 {
709 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
710 int retval = 0;
711 unsigned char rtc_control;
712 unsigned address_space;
713 u32 flags = 0;
714 struct nvmem_config nvmem_cfg = {
715 .name = "cmos_nvram",
716 .word_size = 1,
717 .stride = 1,
718 .reg_read = cmos_nvram_read,
719 .reg_write = cmos_nvram_write,
720 .priv = &cmos_rtc,
721 };
722
723 /* there can be only one ... */
724 if (cmos_rtc.dev)
725 return -EBUSY;
726
727 if (!ports)
728 return -ENODEV;
729
730 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
731 *
732 * REVISIT non-x86 systems may instead use memory space resources
733 * (needing ioremap etc), not i/o space resources like this ...
734 */
735 if (RTC_IOMAPPED)
736 ports = request_region(ports->start, resource_size(ports),
737 driver_name);
738 else
739 ports = request_mem_region(ports->start, resource_size(ports),
740 driver_name);
741 if (!ports) {
742 dev_dbg(dev, "i/o registers already in use\n");
743 return -EBUSY;
744 }
745
746 cmos_rtc.irq = rtc_irq;
747 cmos_rtc.iomem = ports;
748
749 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
750 * driver did, but don't reject unknown configs. Old hardware
751 * won't address 128 bytes. Newer chips have multiple banks,
752 * though they may not be listed in one I/O resource.
753 */
754 #if defined(CONFIG_ATARI)
755 address_space = 64;
756 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 || defined(__sparc__) || defined(__mips__) \
758 || defined(__powerpc__)
759 address_space = 128;
760 #else
761 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
762 address_space = 128;
763 #endif
764 if (can_bank2 && ports->end > (ports->start + 1))
765 address_space = 256;
766
767 /* For ACPI systems extension info comes from the FADT. On others,
768 * board specific setup provides it as appropriate. Systems where
769 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
770 * some almost-clones) can provide hooks to make that behave.
771 *
772 * Note that ACPI doesn't preclude putting these registers into
773 * "extended" areas of the chip, including some that we won't yet
774 * expect CMOS_READ and friends to handle.
775 */
776 if (info) {
777 if (info->flags)
778 flags = info->flags;
779 if (info->address_space)
780 address_space = info->address_space;
781
782 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
783 cmos_rtc.day_alrm = info->rtc_day_alarm;
784 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
785 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
786 if (info->rtc_century && info->rtc_century < 128)
787 cmos_rtc.century = info->rtc_century;
788
789 if (info->wake_on && info->wake_off) {
790 cmos_rtc.wake_on = info->wake_on;
791 cmos_rtc.wake_off = info->wake_off;
792 }
793 }
794
795 cmos_rtc.dev = dev;
796 dev_set_drvdata(dev, &cmos_rtc);
797
798 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
799 if (IS_ERR(cmos_rtc.rtc)) {
800 retval = PTR_ERR(cmos_rtc.rtc);
801 goto cleanup0;
802 }
803
804 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
805
806 spin_lock_irq(&rtc_lock);
807
808 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
809 /* force periodic irq to CMOS reset default of 1024Hz;
810 *
811 * REVISIT it's been reported that at least one x86_64 ALI
812 * mobo doesn't use 32KHz here ... for portability we might
813 * need to do something about other clock frequencies.
814 */
815 cmos_rtc.rtc->irq_freq = 1024;
816 if (use_hpet_alarm())
817 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
818 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
819 }
820
821 /* disable irqs */
822 if (is_valid_irq(rtc_irq))
823 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
824
825 rtc_control = CMOS_READ(RTC_CONTROL);
826
827 spin_unlock_irq(&rtc_lock);
828
829 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
830 dev_warn(dev, "only 24-hr supported\n");
831 retval = -ENXIO;
832 goto cleanup1;
833 }
834
835 if (use_hpet_alarm())
836 hpet_rtc_timer_init();
837
838 if (is_valid_irq(rtc_irq)) {
839 irq_handler_t rtc_cmos_int_handler;
840
841 if (use_hpet_alarm()) {
842 rtc_cmos_int_handler = hpet_rtc_interrupt;
843 retval = hpet_register_irq_handler(cmos_interrupt);
844 if (retval) {
845 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
846 dev_warn(dev, "hpet_register_irq_handler "
847 " failed in rtc_init().");
848 goto cleanup1;
849 }
850 } else
851 rtc_cmos_int_handler = cmos_interrupt;
852
853 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
854 0, dev_name(&cmos_rtc.rtc->dev),
855 cmos_rtc.rtc);
856 if (retval < 0) {
857 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
858 goto cleanup1;
859 }
860
861 cmos_rtc.rtc->ops = &cmos_rtc_ops;
862 } else {
863 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
864 }
865
866 cmos_rtc.rtc->nvram_old_abi = true;
867 retval = rtc_register_device(cmos_rtc.rtc);
868 if (retval)
869 goto cleanup2;
870
871 /* export at least the first block of NVRAM */
872 nvmem_cfg.size = address_space - NVRAM_OFFSET;
873 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
874 dev_err(dev, "nvmem registration failed\n");
875
876 dev_info(dev, "%s%s, %d bytes nvram%s\n",
877 !is_valid_irq(rtc_irq) ? "no alarms" :
878 cmos_rtc.mon_alrm ? "alarms up to one year" :
879 cmos_rtc.day_alrm ? "alarms up to one month" :
880 "alarms up to one day",
881 cmos_rtc.century ? ", y3k" : "",
882 nvmem_cfg.size,
883 use_hpet_alarm() ? ", hpet irqs" : "");
884
885 return 0;
886
887 cleanup2:
888 if (is_valid_irq(rtc_irq))
889 free_irq(rtc_irq, cmos_rtc.rtc);
890 cleanup1:
891 cmos_rtc.dev = NULL;
892 cleanup0:
893 if (RTC_IOMAPPED)
894 release_region(ports->start, resource_size(ports));
895 else
896 release_mem_region(ports->start, resource_size(ports));
897 return retval;
898 }
899
cmos_do_shutdown(int rtc_irq)900 static void cmos_do_shutdown(int rtc_irq)
901 {
902 spin_lock_irq(&rtc_lock);
903 if (is_valid_irq(rtc_irq))
904 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
905 spin_unlock_irq(&rtc_lock);
906 }
907
cmos_do_remove(struct device * dev)908 static void cmos_do_remove(struct device *dev)
909 {
910 struct cmos_rtc *cmos = dev_get_drvdata(dev);
911 struct resource *ports;
912
913 cmos_do_shutdown(cmos->irq);
914
915 if (is_valid_irq(cmos->irq)) {
916 free_irq(cmos->irq, cmos->rtc);
917 if (use_hpet_alarm())
918 hpet_unregister_irq_handler(cmos_interrupt);
919 }
920
921 cmos->rtc = NULL;
922
923 ports = cmos->iomem;
924 if (RTC_IOMAPPED)
925 release_region(ports->start, resource_size(ports));
926 else
927 release_mem_region(ports->start, resource_size(ports));
928 cmos->iomem = NULL;
929
930 cmos->dev = NULL;
931 }
932
cmos_aie_poweroff(struct device * dev)933 static int cmos_aie_poweroff(struct device *dev)
934 {
935 struct cmos_rtc *cmos = dev_get_drvdata(dev);
936 struct rtc_time now;
937 time64_t t_now;
938 int retval = 0;
939 unsigned char rtc_control;
940
941 if (!cmos->alarm_expires)
942 return -EINVAL;
943
944 spin_lock_irq(&rtc_lock);
945 rtc_control = CMOS_READ(RTC_CONTROL);
946 spin_unlock_irq(&rtc_lock);
947
948 /* We only care about the situation where AIE is disabled. */
949 if (rtc_control & RTC_AIE)
950 return -EBUSY;
951
952 cmos_read_time(dev, &now);
953 t_now = rtc_tm_to_time64(&now);
954
955 /*
956 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
957 * automatically right after shutdown on some buggy boxes.
958 * This automatic rebooting issue won't happen when the alarm
959 * time is larger than now+1 seconds.
960 *
961 * If the alarm time is equal to now+1 seconds, the issue can be
962 * prevented by cancelling the alarm.
963 */
964 if (cmos->alarm_expires == t_now + 1) {
965 struct rtc_wkalrm alarm;
966
967 /* Cancel the AIE timer by configuring the past time. */
968 rtc_time64_to_tm(t_now - 1, &alarm.time);
969 alarm.enabled = 0;
970 retval = cmos_set_alarm(dev, &alarm);
971 } else if (cmos->alarm_expires > t_now + 1) {
972 retval = -EBUSY;
973 }
974
975 return retval;
976 }
977
cmos_suspend(struct device * dev)978 static int cmos_suspend(struct device *dev)
979 {
980 struct cmos_rtc *cmos = dev_get_drvdata(dev);
981 unsigned char tmp;
982
983 /* only the alarm might be a wakeup event source */
984 spin_lock_irq(&rtc_lock);
985 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
986 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
987 unsigned char mask;
988
989 if (device_may_wakeup(dev))
990 mask = RTC_IRQMASK & ~RTC_AIE;
991 else
992 mask = RTC_IRQMASK;
993 tmp &= ~mask;
994 CMOS_WRITE(tmp, RTC_CONTROL);
995 if (use_hpet_alarm())
996 hpet_mask_rtc_irq_bit(mask);
997 cmos_checkintr(cmos, tmp);
998 }
999 spin_unlock_irq(&rtc_lock);
1000
1001 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1002 cmos->enabled_wake = 1;
1003 if (cmos->wake_on)
1004 cmos->wake_on(dev);
1005 else
1006 enable_irq_wake(cmos->irq);
1007 }
1008
1009 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1010 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1011
1012 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1013 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1014 tmp);
1015
1016 return 0;
1017 }
1018
1019 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1020 * after a detour through G3 "mechanical off", although the ACPI spec
1021 * says wakeup should only work from G1/S4 "hibernate". To most users,
1022 * distinctions between S4 and S5 are pointless. So when the hardware
1023 * allows, don't draw that distinction.
1024 */
cmos_poweroff(struct device * dev)1025 static inline int cmos_poweroff(struct device *dev)
1026 {
1027 if (!IS_ENABLED(CONFIG_PM))
1028 return -ENOSYS;
1029
1030 return cmos_suspend(dev);
1031 }
1032
cmos_check_wkalrm(struct device * dev)1033 static void cmos_check_wkalrm(struct device *dev)
1034 {
1035 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1036 struct rtc_wkalrm current_alarm;
1037 time64_t t_now;
1038 time64_t t_current_expires;
1039 time64_t t_saved_expires;
1040 struct rtc_time now;
1041
1042 /* Check if we have RTC Alarm armed */
1043 if (!(cmos->suspend_ctrl & RTC_AIE))
1044 return;
1045
1046 cmos_read_time(dev, &now);
1047 t_now = rtc_tm_to_time64(&now);
1048
1049 /*
1050 * ACPI RTC wake event is cleared after resume from STR,
1051 * ACK the rtc irq here
1052 */
1053 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1054 cmos_interrupt(0, (void *)cmos->rtc);
1055 return;
1056 }
1057
1058 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1059 cmos_read_alarm(dev, ¤t_alarm);
1060 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1061 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1062 if (t_current_expires != t_saved_expires ||
1063 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1064 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1065 }
1066 }
1067
1068 static void cmos_check_acpi_rtc_status(struct device *dev,
1069 unsigned char *rtc_control);
1070
cmos_resume(struct device * dev)1071 static int __maybe_unused cmos_resume(struct device *dev)
1072 {
1073 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1074 unsigned char tmp;
1075
1076 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1077 if (cmos->wake_off)
1078 cmos->wake_off(dev);
1079 else
1080 disable_irq_wake(cmos->irq);
1081 cmos->enabled_wake = 0;
1082 }
1083
1084 /* The BIOS might have changed the alarm, restore it */
1085 cmos_check_wkalrm(dev);
1086
1087 spin_lock_irq(&rtc_lock);
1088 tmp = cmos->suspend_ctrl;
1089 cmos->suspend_ctrl = 0;
1090 /* re-enable any irqs previously active */
1091 if (tmp & RTC_IRQMASK) {
1092 unsigned char mask;
1093
1094 if (device_may_wakeup(dev) && use_hpet_alarm())
1095 hpet_rtc_timer_init();
1096
1097 do {
1098 CMOS_WRITE(tmp, RTC_CONTROL);
1099 if (use_hpet_alarm())
1100 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1101
1102 mask = CMOS_READ(RTC_INTR_FLAGS);
1103 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1104 if (!use_hpet_alarm() || !is_intr(mask))
1105 break;
1106
1107 /* force one-shot behavior if HPET blocked
1108 * the wake alarm's irq
1109 */
1110 rtc_update_irq(cmos->rtc, 1, mask);
1111 tmp &= ~RTC_AIE;
1112 hpet_mask_rtc_irq_bit(RTC_AIE);
1113 } while (mask & RTC_AIE);
1114
1115 if (tmp & RTC_AIE)
1116 cmos_check_acpi_rtc_status(dev, &tmp);
1117 }
1118 spin_unlock_irq(&rtc_lock);
1119
1120 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1121
1122 return 0;
1123 }
1124
1125 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1126
1127 /*----------------------------------------------------------------*/
1128
1129 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1130 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1131 * probably list them in similar PNPBIOS tables; so PNP is more common.
1132 *
1133 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1134 * predate even PNPBIOS should set up platform_bus devices.
1135 */
1136
1137 #ifdef CONFIG_ACPI
1138
1139 #include <linux/acpi.h>
1140
rtc_handler(void * context)1141 static u32 rtc_handler(void *context)
1142 {
1143 struct device *dev = context;
1144 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1145 unsigned char rtc_control = 0;
1146 unsigned char rtc_intr;
1147 unsigned long flags;
1148
1149
1150 /*
1151 * Always update rtc irq when ACPI is used as RTC Alarm.
1152 * Or else, ACPI SCI is enabled during suspend/resume only,
1153 * update rtc irq in that case.
1154 */
1155 if (cmos_use_acpi_alarm())
1156 cmos_interrupt(0, (void *)cmos->rtc);
1157 else {
1158 /* Fix me: can we use cmos_interrupt() here as well? */
1159 spin_lock_irqsave(&rtc_lock, flags);
1160 if (cmos_rtc.suspend_ctrl)
1161 rtc_control = CMOS_READ(RTC_CONTROL);
1162 if (rtc_control & RTC_AIE) {
1163 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1164 CMOS_WRITE(rtc_control, RTC_CONTROL);
1165 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1166 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1167 }
1168 spin_unlock_irqrestore(&rtc_lock, flags);
1169 }
1170
1171 pm_wakeup_hard_event(dev);
1172 acpi_clear_event(ACPI_EVENT_RTC);
1173 acpi_disable_event(ACPI_EVENT_RTC, 0);
1174 return ACPI_INTERRUPT_HANDLED;
1175 }
1176
rtc_wake_setup(struct device * dev)1177 static inline void rtc_wake_setup(struct device *dev)
1178 {
1179 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1180 /*
1181 * After the RTC handler is installed, the Fixed_RTC event should
1182 * be disabled. Only when the RTC alarm is set will it be enabled.
1183 */
1184 acpi_clear_event(ACPI_EVENT_RTC);
1185 acpi_disable_event(ACPI_EVENT_RTC, 0);
1186 }
1187
rtc_wake_on(struct device * dev)1188 static void rtc_wake_on(struct device *dev)
1189 {
1190 acpi_clear_event(ACPI_EVENT_RTC);
1191 acpi_enable_event(ACPI_EVENT_RTC, 0);
1192 }
1193
rtc_wake_off(struct device * dev)1194 static void rtc_wake_off(struct device *dev)
1195 {
1196 acpi_disable_event(ACPI_EVENT_RTC, 0);
1197 }
1198
1199 #ifdef CONFIG_X86
1200 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
use_acpi_alarm_quirks(void)1201 static void use_acpi_alarm_quirks(void)
1202 {
1203 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1204 return;
1205
1206 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1207 return;
1208
1209 if (!is_hpet_enabled())
1210 return;
1211
1212 if (dmi_get_bios_year() < 2015)
1213 return;
1214
1215 use_acpi_alarm = true;
1216 }
1217 #else
use_acpi_alarm_quirks(void)1218 static inline void use_acpi_alarm_quirks(void) { }
1219 #endif
1220
1221 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1222 * its device node and pass extra config data. This helps its driver use
1223 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1224 * that this board's RTC is wakeup-capable (per ACPI spec).
1225 */
1226 static struct cmos_rtc_board_info acpi_rtc_info;
1227
cmos_wake_setup(struct device * dev)1228 static void cmos_wake_setup(struct device *dev)
1229 {
1230 if (acpi_disabled)
1231 return;
1232
1233 use_acpi_alarm_quirks();
1234
1235 rtc_wake_setup(dev);
1236 acpi_rtc_info.wake_on = rtc_wake_on;
1237 acpi_rtc_info.wake_off = rtc_wake_off;
1238
1239 /* workaround bug in some ACPI tables */
1240 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1241 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1242 acpi_gbl_FADT.month_alarm);
1243 acpi_gbl_FADT.month_alarm = 0;
1244 }
1245
1246 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1247 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1248 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1249
1250 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1251 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1252 dev_info(dev, "RTC can wake from S4\n");
1253
1254 dev->platform_data = &acpi_rtc_info;
1255
1256 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1257 device_init_wakeup(dev, 1);
1258 }
1259
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1260 static void cmos_check_acpi_rtc_status(struct device *dev,
1261 unsigned char *rtc_control)
1262 {
1263 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1264 acpi_event_status rtc_status;
1265 acpi_status status;
1266
1267 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1268 return;
1269
1270 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1271 if (ACPI_FAILURE(status)) {
1272 dev_err(dev, "Could not get RTC status\n");
1273 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1274 unsigned char mask;
1275 *rtc_control &= ~RTC_AIE;
1276 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1277 mask = CMOS_READ(RTC_INTR_FLAGS);
1278 rtc_update_irq(cmos->rtc, 1, mask);
1279 }
1280 }
1281
1282 #else
1283
cmos_wake_setup(struct device * dev)1284 static void cmos_wake_setup(struct device *dev)
1285 {
1286 }
1287
cmos_check_acpi_rtc_status(struct device * dev,unsigned char * rtc_control)1288 static void cmos_check_acpi_rtc_status(struct device *dev,
1289 unsigned char *rtc_control)
1290 {
1291 }
1292
1293 #endif
1294
1295 #ifdef CONFIG_PNP
1296
1297 #include <linux/pnp.h>
1298
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)1299 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1300 {
1301 cmos_wake_setup(&pnp->dev);
1302
1303 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1304 unsigned int irq = 0;
1305 #ifdef CONFIG_X86
1306 /* Some machines contain a PNP entry for the RTC, but
1307 * don't define the IRQ. It should always be safe to
1308 * hardcode it on systems with a legacy PIC.
1309 */
1310 if (nr_legacy_irqs())
1311 irq = RTC_IRQ;
1312 #endif
1313 return cmos_do_probe(&pnp->dev,
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1315 } else {
1316 return cmos_do_probe(&pnp->dev,
1317 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1318 pnp_irq(pnp, 0));
1319 }
1320 }
1321
cmos_pnp_remove(struct pnp_dev * pnp)1322 static void cmos_pnp_remove(struct pnp_dev *pnp)
1323 {
1324 cmos_do_remove(&pnp->dev);
1325 }
1326
cmos_pnp_shutdown(struct pnp_dev * pnp)1327 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1328 {
1329 struct device *dev = &pnp->dev;
1330 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1331
1332 if (system_state == SYSTEM_POWER_OFF) {
1333 int retval = cmos_poweroff(dev);
1334
1335 if (cmos_aie_poweroff(dev) < 0 && !retval)
1336 return;
1337 }
1338
1339 cmos_do_shutdown(cmos->irq);
1340 }
1341
1342 static const struct pnp_device_id rtc_ids[] = {
1343 { .id = "PNP0b00", },
1344 { .id = "PNP0b01", },
1345 { .id = "PNP0b02", },
1346 { },
1347 };
1348 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1349
1350 static struct pnp_driver cmos_pnp_driver = {
1351 .name = driver_name,
1352 .id_table = rtc_ids,
1353 .probe = cmos_pnp_probe,
1354 .remove = cmos_pnp_remove,
1355 .shutdown = cmos_pnp_shutdown,
1356
1357 /* flag ensures resume() gets called, and stops syslog spam */
1358 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1359 .driver = {
1360 .pm = &cmos_pm_ops,
1361 },
1362 };
1363
1364 #endif /* CONFIG_PNP */
1365
1366 #ifdef CONFIG_OF
1367 static const struct of_device_id of_cmos_match[] = {
1368 {
1369 .compatible = "motorola,mc146818",
1370 },
1371 { },
1372 };
1373 MODULE_DEVICE_TABLE(of, of_cmos_match);
1374
cmos_of_init(struct platform_device * pdev)1375 static __init void cmos_of_init(struct platform_device *pdev)
1376 {
1377 struct device_node *node = pdev->dev.of_node;
1378 const __be32 *val;
1379
1380 if (!node)
1381 return;
1382
1383 val = of_get_property(node, "ctrl-reg", NULL);
1384 if (val)
1385 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1386
1387 val = of_get_property(node, "freq-reg", NULL);
1388 if (val)
1389 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1390 }
1391 #else
cmos_of_init(struct platform_device * pdev)1392 static inline void cmos_of_init(struct platform_device *pdev) {}
1393 #endif
1394 /*----------------------------------------------------------------*/
1395
1396 /* Platform setup should have set up an RTC device, when PNP is
1397 * unavailable ... this could happen even on (older) PCs.
1398 */
1399
cmos_platform_probe(struct platform_device * pdev)1400 static int __init cmos_platform_probe(struct platform_device *pdev)
1401 {
1402 struct resource *resource;
1403 int irq;
1404
1405 cmos_of_init(pdev);
1406 cmos_wake_setup(&pdev->dev);
1407
1408 if (RTC_IOMAPPED)
1409 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1410 else
1411 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1412 irq = platform_get_irq(pdev, 0);
1413 if (irq < 0)
1414 irq = -1;
1415
1416 return cmos_do_probe(&pdev->dev, resource, irq);
1417 }
1418
cmos_platform_remove(struct platform_device * pdev)1419 static int cmos_platform_remove(struct platform_device *pdev)
1420 {
1421 cmos_do_remove(&pdev->dev);
1422 return 0;
1423 }
1424
cmos_platform_shutdown(struct platform_device * pdev)1425 static void cmos_platform_shutdown(struct platform_device *pdev)
1426 {
1427 struct device *dev = &pdev->dev;
1428 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1429
1430 if (system_state == SYSTEM_POWER_OFF) {
1431 int retval = cmos_poweroff(dev);
1432
1433 if (cmos_aie_poweroff(dev) < 0 && !retval)
1434 return;
1435 }
1436
1437 cmos_do_shutdown(cmos->irq);
1438 }
1439
1440 /* work with hotplug and coldplug */
1441 MODULE_ALIAS("platform:rtc_cmos");
1442
1443 static struct platform_driver cmos_platform_driver = {
1444 .remove = cmos_platform_remove,
1445 .shutdown = cmos_platform_shutdown,
1446 .driver = {
1447 .name = driver_name,
1448 .pm = &cmos_pm_ops,
1449 .of_match_table = of_match_ptr(of_cmos_match),
1450 }
1451 };
1452
1453 #ifdef CONFIG_PNP
1454 static bool pnp_driver_registered;
1455 #endif
1456 static bool platform_driver_registered;
1457
cmos_init(void)1458 static int __init cmos_init(void)
1459 {
1460 int retval = 0;
1461
1462 #ifdef CONFIG_PNP
1463 retval = pnp_register_driver(&cmos_pnp_driver);
1464 if (retval == 0)
1465 pnp_driver_registered = true;
1466 #endif
1467
1468 if (!cmos_rtc.dev) {
1469 retval = platform_driver_probe(&cmos_platform_driver,
1470 cmos_platform_probe);
1471 if (retval == 0)
1472 platform_driver_registered = true;
1473 }
1474
1475 if (retval == 0)
1476 return 0;
1477
1478 #ifdef CONFIG_PNP
1479 if (pnp_driver_registered)
1480 pnp_unregister_driver(&cmos_pnp_driver);
1481 #endif
1482 return retval;
1483 }
1484 module_init(cmos_init);
1485
cmos_exit(void)1486 static void __exit cmos_exit(void)
1487 {
1488 #ifdef CONFIG_PNP
1489 if (pnp_driver_registered)
1490 pnp_unregister_driver(&cmos_pnp_driver);
1491 #endif
1492 if (platform_driver_registered)
1493 platform_driver_unregister(&cmos_platform_driver);
1494 }
1495 module_exit(cmos_exit);
1496
1497
1498 MODULE_AUTHOR("David Brownell");
1499 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1500 MODULE_LICENSE("GPL");
1501