1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18 
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/version.h>
43 
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45 
46 #define NVME_Q_DEPTH 1024
47 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
48 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
49 #define NVME_MINORS 64
50 #define NVME_IO_TIMEOUT	(5 * HZ)
51 #define ADMIN_TIMEOUT	(60 * HZ)
52 
53 static int nvme_major;
54 module_param(nvme_major, int, 0);
55 
56 static int use_threaded_interrupts;
57 module_param(use_threaded_interrupts, int, 0);
58 
59 static DEFINE_SPINLOCK(dev_list_lock);
60 static LIST_HEAD(dev_list);
61 static struct task_struct *nvme_thread;
62 
63 /*
64  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
65  */
66 struct nvme_dev {
67 	struct list_head node;
68 	struct nvme_queue **queues;
69 	u32 __iomem *dbs;
70 	struct pci_dev *pci_dev;
71 	struct dma_pool *prp_page_pool;
72 	struct dma_pool *prp_small_pool;
73 	int instance;
74 	int queue_count;
75 	int db_stride;
76 	u32 ctrl_config;
77 	struct msix_entry *entry;
78 	struct nvme_bar __iomem *bar;
79 	struct list_head namespaces;
80 	char serial[20];
81 	char model[40];
82 	char firmware_rev[8];
83 };
84 
85 /*
86  * An NVM Express namespace is equivalent to a SCSI LUN
87  */
88 struct nvme_ns {
89 	struct list_head list;
90 
91 	struct nvme_dev *dev;
92 	struct request_queue *queue;
93 	struct gendisk *disk;
94 
95 	int ns_id;
96 	int lba_shift;
97 };
98 
99 /*
100  * An NVM Express queue.  Each device has at least two (one for admin
101  * commands and one for I/O commands).
102  */
103 struct nvme_queue {
104 	struct device *q_dmadev;
105 	struct nvme_dev *dev;
106 	spinlock_t q_lock;
107 	struct nvme_command *sq_cmds;
108 	volatile struct nvme_completion *cqes;
109 	dma_addr_t sq_dma_addr;
110 	dma_addr_t cq_dma_addr;
111 	wait_queue_head_t sq_full;
112 	wait_queue_t sq_cong_wait;
113 	struct bio_list sq_cong;
114 	u32 __iomem *q_db;
115 	u16 q_depth;
116 	u16 cq_vector;
117 	u16 sq_head;
118 	u16 sq_tail;
119 	u16 cq_head;
120 	u16 cq_phase;
121 	unsigned long cmdid_data[];
122 };
123 
124 /*
125  * Check we didin't inadvertently grow the command struct
126  */
_nvme_check_size(void)127 static inline void _nvme_check_size(void)
128 {
129 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
130 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
131 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
132 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
133 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
134 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138 }
139 
140 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
141 						struct nvme_completion *);
142 
143 struct nvme_cmd_info {
144 	nvme_completion_fn fn;
145 	void *ctx;
146 	unsigned long timeout;
147 };
148 
nvme_cmd_info(struct nvme_queue * nvmeq)149 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150 {
151 	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
152 }
153 
154 /**
155  * alloc_cmdid() - Allocate a Command ID
156  * @nvmeq: The queue that will be used for this command
157  * @ctx: A pointer that will be passed to the handler
158  * @handler: The function to call on completion
159  *
160  * Allocate a Command ID for a queue.  The data passed in will
161  * be passed to the completion handler.  This is implemented by using
162  * the bottom two bits of the ctx pointer to store the handler ID.
163  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
164  * We can change this if it becomes a problem.
165  *
166  * May be called with local interrupts disabled and the q_lock held,
167  * or with interrupts enabled and no locks held.
168  */
alloc_cmdid(struct nvme_queue * nvmeq,void * ctx,nvme_completion_fn handler,unsigned timeout)169 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
170 				nvme_completion_fn handler, unsigned timeout)
171 {
172 	int depth = nvmeq->q_depth - 1;
173 	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
174 	int cmdid;
175 
176 	do {
177 		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
178 		if (cmdid >= depth)
179 			return -EBUSY;
180 	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181 
182 	info[cmdid].fn = handler;
183 	info[cmdid].ctx = ctx;
184 	info[cmdid].timeout = jiffies + timeout;
185 	return cmdid;
186 }
187 
alloc_cmdid_killable(struct nvme_queue * nvmeq,void * ctx,nvme_completion_fn handler,unsigned timeout)188 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
189 				nvme_completion_fn handler, unsigned timeout)
190 {
191 	int cmdid;
192 	wait_event_killable(nvmeq->sq_full,
193 		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
194 	return (cmdid < 0) ? -EINTR : cmdid;
195 }
196 
197 /* Special values must be less than 0x1000 */
198 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
199 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
200 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
201 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
202 #define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
203 
special_completion(struct nvme_dev * dev,void * ctx,struct nvme_completion * cqe)204 static void special_completion(struct nvme_dev *dev, void *ctx,
205 						struct nvme_completion *cqe)
206 {
207 	if (ctx == CMD_CTX_CANCELLED)
208 		return;
209 	if (ctx == CMD_CTX_FLUSH)
210 		return;
211 	if (ctx == CMD_CTX_COMPLETED) {
212 		dev_warn(&dev->pci_dev->dev,
213 				"completed id %d twice on queue %d\n",
214 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
215 		return;
216 	}
217 	if (ctx == CMD_CTX_INVALID) {
218 		dev_warn(&dev->pci_dev->dev,
219 				"invalid id %d completed on queue %d\n",
220 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
221 		return;
222 	}
223 
224 	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
225 }
226 
227 /*
228  * Called with local interrupts disabled and the q_lock held.  May not sleep.
229  */
free_cmdid(struct nvme_queue * nvmeq,int cmdid,nvme_completion_fn * fn)230 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
231 						nvme_completion_fn *fn)
232 {
233 	void *ctx;
234 	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
235 
236 	if (cmdid >= nvmeq->q_depth) {
237 		*fn = special_completion;
238 		return CMD_CTX_INVALID;
239 	}
240 	*fn = info[cmdid].fn;
241 	ctx = info[cmdid].ctx;
242 	info[cmdid].fn = special_completion;
243 	info[cmdid].ctx = CMD_CTX_COMPLETED;
244 	clear_bit(cmdid, nvmeq->cmdid_data);
245 	wake_up(&nvmeq->sq_full);
246 	return ctx;
247 }
248 
cancel_cmdid(struct nvme_queue * nvmeq,int cmdid,nvme_completion_fn * fn)249 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
250 						nvme_completion_fn *fn)
251 {
252 	void *ctx;
253 	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
254 	if (fn)
255 		*fn = info[cmdid].fn;
256 	ctx = info[cmdid].ctx;
257 	info[cmdid].fn = special_completion;
258 	info[cmdid].ctx = CMD_CTX_CANCELLED;
259 	return ctx;
260 }
261 
get_nvmeq(struct nvme_dev * dev)262 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
263 {
264 	return dev->queues[get_cpu() + 1];
265 }
266 
put_nvmeq(struct nvme_queue * nvmeq)267 static void put_nvmeq(struct nvme_queue *nvmeq)
268 {
269 	put_cpu();
270 }
271 
272 /**
273  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
274  * @nvmeq: The queue to use
275  * @cmd: The command to send
276  *
277  * Safe to use from interrupt context
278  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)279 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
280 {
281 	unsigned long flags;
282 	u16 tail;
283 	spin_lock_irqsave(&nvmeq->q_lock, flags);
284 	tail = nvmeq->sq_tail;
285 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
286 	if (++tail == nvmeq->q_depth)
287 		tail = 0;
288 	writel(tail, nvmeq->q_db);
289 	nvmeq->sq_tail = tail;
290 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
291 
292 	return 0;
293 }
294 
295 /*
296  * The nvme_iod describes the data in an I/O, including the list of PRP
297  * entries.  You can't see it in this data structure because C doesn't let
298  * me express that.  Use nvme_alloc_iod to ensure there's enough space
299  * allocated to store the PRP list.
300  */
301 struct nvme_iod {
302 	void *private;		/* For the use of the submitter of the I/O */
303 	int npages;		/* In the PRP list. 0 means small pool in use */
304 	int offset;		/* Of PRP list */
305 	int nents;		/* Used in scatterlist */
306 	int length;		/* Of data, in bytes */
307 	dma_addr_t first_dma;
308 	struct scatterlist sg[0];
309 };
310 
iod_list(struct nvme_iod * iod)311 static __le64 **iod_list(struct nvme_iod *iod)
312 {
313 	return ((void *)iod) + iod->offset;
314 }
315 
316 /*
317  * Will slightly overestimate the number of pages needed.  This is OK
318  * as it only leads to a small amount of wasted memory for the lifetime of
319  * the I/O.
320  */
nvme_npages(unsigned size)321 static int nvme_npages(unsigned size)
322 {
323 	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
324 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
325 }
326 
327 static struct nvme_iod *
nvme_alloc_iod(unsigned nseg,unsigned nbytes,gfp_t gfp)328 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
329 {
330 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
331 				sizeof(__le64 *) * nvme_npages(nbytes) +
332 				sizeof(struct scatterlist) * nseg, gfp);
333 
334 	if (iod) {
335 		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
336 		iod->npages = -1;
337 		iod->length = nbytes;
338 	}
339 
340 	return iod;
341 }
342 
nvme_free_iod(struct nvme_dev * dev,struct nvme_iod * iod)343 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
344 {
345 	const int last_prp = PAGE_SIZE / 8 - 1;
346 	int i;
347 	__le64 **list = iod_list(iod);
348 	dma_addr_t prp_dma = iod->first_dma;
349 
350 	if (iod->npages == 0)
351 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
352 	for (i = 0; i < iod->npages; i++) {
353 		__le64 *prp_list = list[i];
354 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
355 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
356 		prp_dma = next_prp_dma;
357 	}
358 	kfree(iod);
359 }
360 
requeue_bio(struct nvme_dev * dev,struct bio * bio)361 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
362 {
363 	struct nvme_queue *nvmeq = get_nvmeq(dev);
364 	if (bio_list_empty(&nvmeq->sq_cong))
365 		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
366 	bio_list_add(&nvmeq->sq_cong, bio);
367 	put_nvmeq(nvmeq);
368 	wake_up_process(nvme_thread);
369 }
370 
bio_completion(struct nvme_dev * dev,void * ctx,struct nvme_completion * cqe)371 static void bio_completion(struct nvme_dev *dev, void *ctx,
372 						struct nvme_completion *cqe)
373 {
374 	struct nvme_iod *iod = ctx;
375 	struct bio *bio = iod->private;
376 	u16 status = le16_to_cpup(&cqe->status) >> 1;
377 
378 	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
379 			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
380 	nvme_free_iod(dev, iod);
381 	if (status) {
382 		bio_endio(bio, -EIO);
383 	} else if (bio->bi_vcnt > bio->bi_idx) {
384 		requeue_bio(dev, bio);
385 	} else {
386 		bio_endio(bio, 0);
387 	}
388 }
389 
390 /* length is in bytes.  gfp flags indicates whether we may sleep. */
nvme_setup_prps(struct nvme_dev * dev,struct nvme_common_command * cmd,struct nvme_iod * iod,int total_len,gfp_t gfp)391 static int nvme_setup_prps(struct nvme_dev *dev,
392 			struct nvme_common_command *cmd, struct nvme_iod *iod,
393 			int total_len, gfp_t gfp)
394 {
395 	struct dma_pool *pool;
396 	int length = total_len;
397 	struct scatterlist *sg = iod->sg;
398 	int dma_len = sg_dma_len(sg);
399 	u64 dma_addr = sg_dma_address(sg);
400 	int offset = offset_in_page(dma_addr);
401 	__le64 *prp_list;
402 	__le64 **list = iod_list(iod);
403 	dma_addr_t prp_dma;
404 	int nprps, i;
405 
406 	cmd->prp1 = cpu_to_le64(dma_addr);
407 	length -= (PAGE_SIZE - offset);
408 	if (length <= 0)
409 		return total_len;
410 
411 	dma_len -= (PAGE_SIZE - offset);
412 	if (dma_len) {
413 		dma_addr += (PAGE_SIZE - offset);
414 	} else {
415 		sg = sg_next(sg);
416 		dma_addr = sg_dma_address(sg);
417 		dma_len = sg_dma_len(sg);
418 	}
419 
420 	if (length <= PAGE_SIZE) {
421 		cmd->prp2 = cpu_to_le64(dma_addr);
422 		return total_len;
423 	}
424 
425 	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
426 	if (nprps <= (256 / 8)) {
427 		pool = dev->prp_small_pool;
428 		iod->npages = 0;
429 	} else {
430 		pool = dev->prp_page_pool;
431 		iod->npages = 1;
432 	}
433 
434 	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
435 	if (!prp_list) {
436 		cmd->prp2 = cpu_to_le64(dma_addr);
437 		iod->npages = -1;
438 		return (total_len - length) + PAGE_SIZE;
439 	}
440 	list[0] = prp_list;
441 	iod->first_dma = prp_dma;
442 	cmd->prp2 = cpu_to_le64(prp_dma);
443 	i = 0;
444 	for (;;) {
445 		if (i == PAGE_SIZE / 8) {
446 			__le64 *old_prp_list = prp_list;
447 			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
448 			if (!prp_list)
449 				return total_len - length;
450 			list[iod->npages++] = prp_list;
451 			prp_list[0] = old_prp_list[i - 1];
452 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
453 			i = 1;
454 		}
455 		prp_list[i++] = cpu_to_le64(dma_addr);
456 		dma_len -= PAGE_SIZE;
457 		dma_addr += PAGE_SIZE;
458 		length -= PAGE_SIZE;
459 		if (length <= 0)
460 			break;
461 		if (dma_len > 0)
462 			continue;
463 		BUG_ON(dma_len < 0);
464 		sg = sg_next(sg);
465 		dma_addr = sg_dma_address(sg);
466 		dma_len = sg_dma_len(sg);
467 	}
468 
469 	return total_len;
470 }
471 
472 /* NVMe scatterlists require no holes in the virtual address */
473 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
474 			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
475 
nvme_map_bio(struct device * dev,struct nvme_iod * iod,struct bio * bio,enum dma_data_direction dma_dir,int psegs)476 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
477 		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
478 {
479 	struct bio_vec *bvec, *bvprv = NULL;
480 	struct scatterlist *sg = NULL;
481 	int i, old_idx, length = 0, nsegs = 0;
482 
483 	sg_init_table(iod->sg, psegs);
484 	old_idx = bio->bi_idx;
485 	bio_for_each_segment(bvec, bio, i) {
486 		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
487 			sg->length += bvec->bv_len;
488 		} else {
489 			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
490 				break;
491 			sg = sg ? sg + 1 : iod->sg;
492 			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
493 							bvec->bv_offset);
494 			nsegs++;
495 		}
496 		length += bvec->bv_len;
497 		bvprv = bvec;
498 	}
499 	bio->bi_idx = i;
500 	iod->nents = nsegs;
501 	sg_mark_end(sg);
502 	if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
503 		bio->bi_idx = old_idx;
504 		return -ENOMEM;
505 	}
506 	return length;
507 }
508 
nvme_submit_flush(struct nvme_queue * nvmeq,struct nvme_ns * ns,int cmdid)509 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
510 								int cmdid)
511 {
512 	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
513 
514 	memset(cmnd, 0, sizeof(*cmnd));
515 	cmnd->common.opcode = nvme_cmd_flush;
516 	cmnd->common.command_id = cmdid;
517 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
518 
519 	if (++nvmeq->sq_tail == nvmeq->q_depth)
520 		nvmeq->sq_tail = 0;
521 	writel(nvmeq->sq_tail, nvmeq->q_db);
522 
523 	return 0;
524 }
525 
nvme_submit_flush_data(struct nvme_queue * nvmeq,struct nvme_ns * ns)526 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
527 {
528 	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
529 					special_completion, NVME_IO_TIMEOUT);
530 	if (unlikely(cmdid < 0))
531 		return cmdid;
532 
533 	return nvme_submit_flush(nvmeq, ns, cmdid);
534 }
535 
536 /*
537  * Called with local interrupts disabled and the q_lock held.  May not sleep.
538  */
nvme_submit_bio_queue(struct nvme_queue * nvmeq,struct nvme_ns * ns,struct bio * bio)539 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
540 								struct bio *bio)
541 {
542 	struct nvme_command *cmnd;
543 	struct nvme_iod *iod;
544 	enum dma_data_direction dma_dir;
545 	int cmdid, length, result = -ENOMEM;
546 	u16 control;
547 	u32 dsmgmt;
548 	int psegs = bio_phys_segments(ns->queue, bio);
549 
550 	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
551 		result = nvme_submit_flush_data(nvmeq, ns);
552 		if (result)
553 			return result;
554 	}
555 
556 	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
557 	if (!iod)
558 		goto nomem;
559 	iod->private = bio;
560 
561 	result = -EBUSY;
562 	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
563 	if (unlikely(cmdid < 0))
564 		goto free_iod;
565 
566 	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
567 		return nvme_submit_flush(nvmeq, ns, cmdid);
568 
569 	control = 0;
570 	if (bio->bi_rw & REQ_FUA)
571 		control |= NVME_RW_FUA;
572 	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
573 		control |= NVME_RW_LR;
574 
575 	dsmgmt = 0;
576 	if (bio->bi_rw & REQ_RAHEAD)
577 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
578 
579 	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
580 
581 	memset(cmnd, 0, sizeof(*cmnd));
582 	if (bio_data_dir(bio)) {
583 		cmnd->rw.opcode = nvme_cmd_write;
584 		dma_dir = DMA_TO_DEVICE;
585 	} else {
586 		cmnd->rw.opcode = nvme_cmd_read;
587 		dma_dir = DMA_FROM_DEVICE;
588 	}
589 
590 	result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
591 	if (result < 0)
592 		goto free_iod;
593 	length = result;
594 
595 	cmnd->rw.command_id = cmdid;
596 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
597 	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
598 								GFP_ATOMIC);
599 	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
600 	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
601 	cmnd->rw.control = cpu_to_le16(control);
602 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
603 
604 	bio->bi_sector += length >> 9;
605 
606 	if (++nvmeq->sq_tail == nvmeq->q_depth)
607 		nvmeq->sq_tail = 0;
608 	writel(nvmeq->sq_tail, nvmeq->q_db);
609 
610 	return 0;
611 
612  free_iod:
613 	nvme_free_iod(nvmeq->dev, iod);
614  nomem:
615 	return result;
616 }
617 
nvme_make_request(struct request_queue * q,struct bio * bio)618 static void nvme_make_request(struct request_queue *q, struct bio *bio)
619 {
620 	struct nvme_ns *ns = q->queuedata;
621 	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
622 	int result = -EBUSY;
623 
624 	spin_lock_irq(&nvmeq->q_lock);
625 	if (bio_list_empty(&nvmeq->sq_cong))
626 		result = nvme_submit_bio_queue(nvmeq, ns, bio);
627 	if (unlikely(result)) {
628 		if (bio_list_empty(&nvmeq->sq_cong))
629 			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
630 		bio_list_add(&nvmeq->sq_cong, bio);
631 	}
632 
633 	spin_unlock_irq(&nvmeq->q_lock);
634 	put_nvmeq(nvmeq);
635 }
636 
nvme_process_cq(struct nvme_queue * nvmeq)637 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
638 {
639 	u16 head, phase;
640 
641 	head = nvmeq->cq_head;
642 	phase = nvmeq->cq_phase;
643 
644 	for (;;) {
645 		void *ctx;
646 		nvme_completion_fn fn;
647 		struct nvme_completion cqe = nvmeq->cqes[head];
648 		if ((le16_to_cpu(cqe.status) & 1) != phase)
649 			break;
650 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
651 		if (++head == nvmeq->q_depth) {
652 			head = 0;
653 			phase = !phase;
654 		}
655 
656 		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
657 		fn(nvmeq->dev, ctx, &cqe);
658 	}
659 
660 	/* If the controller ignores the cq head doorbell and continuously
661 	 * writes to the queue, it is theoretically possible to wrap around
662 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
663 	 * requires that 0.1% of your interrupts are handled, so this isn't
664 	 * a big problem.
665 	 */
666 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
667 		return IRQ_NONE;
668 
669 	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
670 	nvmeq->cq_head = head;
671 	nvmeq->cq_phase = phase;
672 
673 	return IRQ_HANDLED;
674 }
675 
nvme_irq(int irq,void * data)676 static irqreturn_t nvme_irq(int irq, void *data)
677 {
678 	irqreturn_t result;
679 	struct nvme_queue *nvmeq = data;
680 	spin_lock(&nvmeq->q_lock);
681 	result = nvme_process_cq(nvmeq);
682 	spin_unlock(&nvmeq->q_lock);
683 	return result;
684 }
685 
nvme_irq_check(int irq,void * data)686 static irqreturn_t nvme_irq_check(int irq, void *data)
687 {
688 	struct nvme_queue *nvmeq = data;
689 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
690 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
691 		return IRQ_NONE;
692 	return IRQ_WAKE_THREAD;
693 }
694 
nvme_abort_command(struct nvme_queue * nvmeq,int cmdid)695 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
696 {
697 	spin_lock_irq(&nvmeq->q_lock);
698 	cancel_cmdid(nvmeq, cmdid, NULL);
699 	spin_unlock_irq(&nvmeq->q_lock);
700 }
701 
702 struct sync_cmd_info {
703 	struct task_struct *task;
704 	u32 result;
705 	int status;
706 };
707 
sync_completion(struct nvme_dev * dev,void * ctx,struct nvme_completion * cqe)708 static void sync_completion(struct nvme_dev *dev, void *ctx,
709 						struct nvme_completion *cqe)
710 {
711 	struct sync_cmd_info *cmdinfo = ctx;
712 	cmdinfo->result = le32_to_cpup(&cqe->result);
713 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
714 	wake_up_process(cmdinfo->task);
715 }
716 
717 /*
718  * Returns 0 on success.  If the result is negative, it's a Linux error code;
719  * if the result is positive, it's an NVM Express status code
720  */
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)721 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
722 			struct nvme_command *cmd, u32 *result, unsigned timeout)
723 {
724 	int cmdid;
725 	struct sync_cmd_info cmdinfo;
726 
727 	cmdinfo.task = current;
728 	cmdinfo.status = -EINTR;
729 
730 	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
731 								timeout);
732 	if (cmdid < 0)
733 		return cmdid;
734 	cmd->common.command_id = cmdid;
735 
736 	set_current_state(TASK_KILLABLE);
737 	nvme_submit_cmd(nvmeq, cmd);
738 	schedule();
739 
740 	if (cmdinfo.status == -EINTR) {
741 		nvme_abort_command(nvmeq, cmdid);
742 		return -EINTR;
743 	}
744 
745 	if (result)
746 		*result = cmdinfo.result;
747 
748 	return cmdinfo.status;
749 }
750 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)751 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
752 								u32 *result)
753 {
754 	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
755 }
756 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)757 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
758 {
759 	int status;
760 	struct nvme_command c;
761 
762 	memset(&c, 0, sizeof(c));
763 	c.delete_queue.opcode = opcode;
764 	c.delete_queue.qid = cpu_to_le16(id);
765 
766 	status = nvme_submit_admin_cmd(dev, &c, NULL);
767 	if (status)
768 		return -EIO;
769 	return 0;
770 }
771 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)772 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
773 						struct nvme_queue *nvmeq)
774 {
775 	int status;
776 	struct nvme_command c;
777 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
778 
779 	memset(&c, 0, sizeof(c));
780 	c.create_cq.opcode = nvme_admin_create_cq;
781 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
782 	c.create_cq.cqid = cpu_to_le16(qid);
783 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
784 	c.create_cq.cq_flags = cpu_to_le16(flags);
785 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
786 
787 	status = nvme_submit_admin_cmd(dev, &c, NULL);
788 	if (status)
789 		return -EIO;
790 	return 0;
791 }
792 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)793 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
794 						struct nvme_queue *nvmeq)
795 {
796 	int status;
797 	struct nvme_command c;
798 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
799 
800 	memset(&c, 0, sizeof(c));
801 	c.create_sq.opcode = nvme_admin_create_sq;
802 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
803 	c.create_sq.sqid = cpu_to_le16(qid);
804 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
805 	c.create_sq.sq_flags = cpu_to_le16(flags);
806 	c.create_sq.cqid = cpu_to_le16(qid);
807 
808 	status = nvme_submit_admin_cmd(dev, &c, NULL);
809 	if (status)
810 		return -EIO;
811 	return 0;
812 }
813 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)814 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
815 {
816 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
817 }
818 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)819 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
820 {
821 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
822 }
823 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)824 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
825 							dma_addr_t dma_addr)
826 {
827 	struct nvme_command c;
828 
829 	memset(&c, 0, sizeof(c));
830 	c.identify.opcode = nvme_admin_identify;
831 	c.identify.nsid = cpu_to_le32(nsid);
832 	c.identify.prp1 = cpu_to_le64(dma_addr);
833 	c.identify.cns = cpu_to_le32(cns);
834 
835 	return nvme_submit_admin_cmd(dev, &c, NULL);
836 }
837 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr)838 static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
839 				unsigned dword11, dma_addr_t dma_addr)
840 {
841 	struct nvme_command c;
842 
843 	memset(&c, 0, sizeof(c));
844 	c.features.opcode = nvme_admin_get_features;
845 	c.features.prp1 = cpu_to_le64(dma_addr);
846 	c.features.fid = cpu_to_le32(fid);
847 	c.features.dword11 = cpu_to_le32(dword11);
848 
849 	return nvme_submit_admin_cmd(dev, &c, NULL);
850 }
851 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)852 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
853 			unsigned dword11, dma_addr_t dma_addr, u32 *result)
854 {
855 	struct nvme_command c;
856 
857 	memset(&c, 0, sizeof(c));
858 	c.features.opcode = nvme_admin_set_features;
859 	c.features.prp1 = cpu_to_le64(dma_addr);
860 	c.features.fid = cpu_to_le32(fid);
861 	c.features.dword11 = cpu_to_le32(dword11);
862 
863 	return nvme_submit_admin_cmd(dev, &c, result);
864 }
865 
nvme_free_queue(struct nvme_dev * dev,int qid)866 static void nvme_free_queue(struct nvme_dev *dev, int qid)
867 {
868 	struct nvme_queue *nvmeq = dev->queues[qid];
869 	int vector = dev->entry[nvmeq->cq_vector].vector;
870 
871 	irq_set_affinity_hint(vector, NULL);
872 	free_irq(vector, nvmeq);
873 
874 	/* Don't tell the adapter to delete the admin queue */
875 	if (qid) {
876 		adapter_delete_sq(dev, qid);
877 		adapter_delete_cq(dev, qid);
878 	}
879 
880 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
881 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
882 	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
883 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
884 	kfree(nvmeq);
885 }
886 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth,int vector)887 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
888 							int depth, int vector)
889 {
890 	struct device *dmadev = &dev->pci_dev->dev;
891 	unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
892 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
893 	if (!nvmeq)
894 		return NULL;
895 
896 	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
897 					&nvmeq->cq_dma_addr, GFP_KERNEL);
898 	if (!nvmeq->cqes)
899 		goto free_nvmeq;
900 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
901 
902 	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
903 					&nvmeq->sq_dma_addr, GFP_KERNEL);
904 	if (!nvmeq->sq_cmds)
905 		goto free_cqdma;
906 
907 	nvmeq->q_dmadev = dmadev;
908 	nvmeq->dev = dev;
909 	spin_lock_init(&nvmeq->q_lock);
910 	nvmeq->cq_head = 0;
911 	nvmeq->cq_phase = 1;
912 	init_waitqueue_head(&nvmeq->sq_full);
913 	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
914 	bio_list_init(&nvmeq->sq_cong);
915 	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
916 	nvmeq->q_depth = depth;
917 	nvmeq->cq_vector = vector;
918 
919 	return nvmeq;
920 
921  free_cqdma:
922 	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
923 							nvmeq->cq_dma_addr);
924  free_nvmeq:
925 	kfree(nvmeq);
926 	return NULL;
927 }
928 
queue_request_irq(struct nvme_dev * dev,struct nvme_queue * nvmeq,const char * name)929 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
930 							const char *name)
931 {
932 	if (use_threaded_interrupts)
933 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
934 					nvme_irq_check, nvme_irq,
935 					IRQF_DISABLED | IRQF_SHARED,
936 					name, nvmeq);
937 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
938 				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
939 }
940 
nvme_create_queue(struct nvme_dev * dev,int qid,int cq_size,int vector)941 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
942 					int qid, int cq_size, int vector)
943 {
944 	int result;
945 	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
946 
947 	if (!nvmeq)
948 		return ERR_PTR(-ENOMEM);
949 
950 	result = adapter_alloc_cq(dev, qid, nvmeq);
951 	if (result < 0)
952 		goto free_nvmeq;
953 
954 	result = adapter_alloc_sq(dev, qid, nvmeq);
955 	if (result < 0)
956 		goto release_cq;
957 
958 	result = queue_request_irq(dev, nvmeq, "nvme");
959 	if (result < 0)
960 		goto release_sq;
961 
962 	return nvmeq;
963 
964  release_sq:
965 	adapter_delete_sq(dev, qid);
966  release_cq:
967 	adapter_delete_cq(dev, qid);
968  free_nvmeq:
969 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
970 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
971 	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
972 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
973 	kfree(nvmeq);
974 	return ERR_PTR(result);
975 }
976 
nvme_configure_admin_queue(struct nvme_dev * dev)977 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
978 {
979 	int result;
980 	u32 aqa;
981 	u64 cap;
982 	unsigned long timeout;
983 	struct nvme_queue *nvmeq;
984 
985 	dev->dbs = ((void __iomem *)dev->bar) + 4096;
986 
987 	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
988 	if (!nvmeq)
989 		return -ENOMEM;
990 
991 	aqa = nvmeq->q_depth - 1;
992 	aqa |= aqa << 16;
993 
994 	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
995 	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
996 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
997 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
998 
999 	writel(0, &dev->bar->cc);
1000 	writel(aqa, &dev->bar->aqa);
1001 	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1002 	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1003 	writel(dev->ctrl_config, &dev->bar->cc);
1004 
1005 	cap = readq(&dev->bar->cap);
1006 	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1007 	dev->db_stride = NVME_CAP_STRIDE(cap);
1008 
1009 	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1010 		msleep(100);
1011 		if (fatal_signal_pending(current))
1012 			return -EINTR;
1013 		if (time_after(jiffies, timeout)) {
1014 			dev_err(&dev->pci_dev->dev,
1015 				"Device not ready; aborting initialisation\n");
1016 			return -ENODEV;
1017 		}
1018 	}
1019 
1020 	result = queue_request_irq(dev, nvmeq, "nvme admin");
1021 	dev->queues[0] = nvmeq;
1022 	return result;
1023 }
1024 
nvme_map_user_pages(struct nvme_dev * dev,int write,unsigned long addr,unsigned length)1025 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1026 				unsigned long addr, unsigned length)
1027 {
1028 	int i, err, count, nents, offset;
1029 	struct scatterlist *sg;
1030 	struct page **pages;
1031 	struct nvme_iod *iod;
1032 
1033 	if (addr & 3)
1034 		return ERR_PTR(-EINVAL);
1035 	if (!length)
1036 		return ERR_PTR(-EINVAL);
1037 
1038 	offset = offset_in_page(addr);
1039 	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1040 	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1041 
1042 	err = get_user_pages_fast(addr, count, 1, pages);
1043 	if (err < count) {
1044 		count = err;
1045 		err = -EFAULT;
1046 		goto put_pages;
1047 	}
1048 
1049 	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1050 	sg = iod->sg;
1051 	sg_init_table(sg, count);
1052 	for (i = 0; i < count; i++) {
1053 		sg_set_page(&sg[i], pages[i],
1054 				min_t(int, length, PAGE_SIZE - offset), offset);
1055 		length -= (PAGE_SIZE - offset);
1056 		offset = 0;
1057 	}
1058 	sg_mark_end(&sg[i - 1]);
1059 	iod->nents = count;
1060 
1061 	err = -ENOMEM;
1062 	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1063 				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1064 	if (!nents)
1065 		goto free_iod;
1066 
1067 	kfree(pages);
1068 	return iod;
1069 
1070  free_iod:
1071 	kfree(iod);
1072  put_pages:
1073 	for (i = 0; i < count; i++)
1074 		put_page(pages[i]);
1075 	kfree(pages);
1076 	return ERR_PTR(err);
1077 }
1078 
nvme_unmap_user_pages(struct nvme_dev * dev,int write,struct nvme_iod * iod)1079 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1080 			struct nvme_iod *iod)
1081 {
1082 	int i;
1083 
1084 	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1085 				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1086 
1087 	for (i = 0; i < iod->nents; i++)
1088 		put_page(sg_page(&iod->sg[i]));
1089 }
1090 
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1091 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1092 {
1093 	struct nvme_dev *dev = ns->dev;
1094 	struct nvme_queue *nvmeq;
1095 	struct nvme_user_io io;
1096 	struct nvme_command c;
1097 	unsigned length;
1098 	int status;
1099 	struct nvme_iod *iod;
1100 
1101 	if (copy_from_user(&io, uio, sizeof(io)))
1102 		return -EFAULT;
1103 	length = (io.nblocks + 1) << ns->lba_shift;
1104 
1105 	switch (io.opcode) {
1106 	case nvme_cmd_write:
1107 	case nvme_cmd_read:
1108 	case nvme_cmd_compare:
1109 		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1110 		break;
1111 	default:
1112 		return -EINVAL;
1113 	}
1114 
1115 	if (IS_ERR(iod))
1116 		return PTR_ERR(iod);
1117 
1118 	memset(&c, 0, sizeof(c));
1119 	c.rw.opcode = io.opcode;
1120 	c.rw.flags = io.flags;
1121 	c.rw.nsid = cpu_to_le32(ns->ns_id);
1122 	c.rw.slba = cpu_to_le64(io.slba);
1123 	c.rw.length = cpu_to_le16(io.nblocks);
1124 	c.rw.control = cpu_to_le16(io.control);
1125 	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1126 	c.rw.reftag = io.reftag;
1127 	c.rw.apptag = io.apptag;
1128 	c.rw.appmask = io.appmask;
1129 	/* XXX: metadata */
1130 	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1131 
1132 	nvmeq = get_nvmeq(dev);
1133 	/*
1134 	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1135 	 * disabled.  We may be preempted at any point, and be rescheduled
1136 	 * to a different CPU.  That will cause cacheline bouncing, but no
1137 	 * additional races since q_lock already protects against other CPUs.
1138 	 */
1139 	put_nvmeq(nvmeq);
1140 	if (length != (io.nblocks + 1) << ns->lba_shift)
1141 		status = -ENOMEM;
1142 	else
1143 		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1144 
1145 	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1146 	nvme_free_iod(dev, iod);
1147 	return status;
1148 }
1149 
nvme_user_admin_cmd(struct nvme_ns * ns,struct nvme_admin_cmd __user * ucmd)1150 static int nvme_user_admin_cmd(struct nvme_ns *ns,
1151 					struct nvme_admin_cmd __user *ucmd)
1152 {
1153 	struct nvme_dev *dev = ns->dev;
1154 	struct nvme_admin_cmd cmd;
1155 	struct nvme_command c;
1156 	int status, length;
1157 	struct nvme_iod *iod;
1158 
1159 	if (!capable(CAP_SYS_ADMIN))
1160 		return -EACCES;
1161 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1162 		return -EFAULT;
1163 
1164 	memset(&c, 0, sizeof(c));
1165 	c.common.opcode = cmd.opcode;
1166 	c.common.flags = cmd.flags;
1167 	c.common.nsid = cpu_to_le32(cmd.nsid);
1168 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1169 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1170 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1171 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1172 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1173 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1174 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1175 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1176 
1177 	length = cmd.data_len;
1178 	if (cmd.data_len) {
1179 		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1180 								length);
1181 		if (IS_ERR(iod))
1182 			return PTR_ERR(iod);
1183 		length = nvme_setup_prps(dev, &c.common, iod, length,
1184 								GFP_KERNEL);
1185 	}
1186 
1187 	if (length != cmd.data_len)
1188 		status = -ENOMEM;
1189 	else
1190 		status = nvme_submit_admin_cmd(dev, &c, NULL);
1191 
1192 	if (cmd.data_len) {
1193 		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1194 		nvme_free_iod(dev, iod);
1195 	}
1196 	return status;
1197 }
1198 
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1199 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1200 							unsigned long arg)
1201 {
1202 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1203 
1204 	switch (cmd) {
1205 	case NVME_IOCTL_ID:
1206 		return ns->ns_id;
1207 	case NVME_IOCTL_ADMIN_CMD:
1208 		return nvme_user_admin_cmd(ns, (void __user *)arg);
1209 	case NVME_IOCTL_SUBMIT_IO:
1210 		return nvme_submit_io(ns, (void __user *)arg);
1211 	default:
1212 		return -ENOTTY;
1213 	}
1214 }
1215 
1216 static const struct block_device_operations nvme_fops = {
1217 	.owner		= THIS_MODULE,
1218 	.ioctl		= nvme_ioctl,
1219 	.compat_ioctl	= nvme_ioctl,
1220 };
1221 
nvme_timeout_ios(struct nvme_queue * nvmeq)1222 static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1223 {
1224 	int depth = nvmeq->q_depth - 1;
1225 	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1226 	unsigned long now = jiffies;
1227 	int cmdid;
1228 
1229 	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1230 		void *ctx;
1231 		nvme_completion_fn fn;
1232 		static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1233 
1234 		if (!time_after(now, info[cmdid].timeout))
1235 			continue;
1236 		dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1237 		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1238 		fn(nvmeq->dev, ctx, &cqe);
1239 	}
1240 }
1241 
nvme_resubmit_bios(struct nvme_queue * nvmeq)1242 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1243 {
1244 	while (bio_list_peek(&nvmeq->sq_cong)) {
1245 		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1246 		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1247 		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1248 			bio_list_add_head(&nvmeq->sq_cong, bio);
1249 			break;
1250 		}
1251 		if (bio_list_empty(&nvmeq->sq_cong))
1252 			remove_wait_queue(&nvmeq->sq_full,
1253 							&nvmeq->sq_cong_wait);
1254 	}
1255 }
1256 
nvme_kthread(void * data)1257 static int nvme_kthread(void *data)
1258 {
1259 	struct nvme_dev *dev;
1260 
1261 	while (!kthread_should_stop()) {
1262 		__set_current_state(TASK_RUNNING);
1263 		spin_lock(&dev_list_lock);
1264 		list_for_each_entry(dev, &dev_list, node) {
1265 			int i;
1266 			for (i = 0; i < dev->queue_count; i++) {
1267 				struct nvme_queue *nvmeq = dev->queues[i];
1268 				if (!nvmeq)
1269 					continue;
1270 				spin_lock_irq(&nvmeq->q_lock);
1271 				if (nvme_process_cq(nvmeq))
1272 					printk("process_cq did something\n");
1273 				nvme_timeout_ios(nvmeq);
1274 				nvme_resubmit_bios(nvmeq);
1275 				spin_unlock_irq(&nvmeq->q_lock);
1276 			}
1277 		}
1278 		spin_unlock(&dev_list_lock);
1279 		set_current_state(TASK_INTERRUPTIBLE);
1280 		schedule_timeout(HZ);
1281 	}
1282 	return 0;
1283 }
1284 
1285 static DEFINE_IDA(nvme_index_ida);
1286 
nvme_get_ns_idx(void)1287 static int nvme_get_ns_idx(void)
1288 {
1289 	int index, error;
1290 
1291 	do {
1292 		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1293 			return -1;
1294 
1295 		spin_lock(&dev_list_lock);
1296 		error = ida_get_new(&nvme_index_ida, &index);
1297 		spin_unlock(&dev_list_lock);
1298 	} while (error == -EAGAIN);
1299 
1300 	if (error)
1301 		index = -1;
1302 	return index;
1303 }
1304 
nvme_put_ns_idx(int index)1305 static void nvme_put_ns_idx(int index)
1306 {
1307 	spin_lock(&dev_list_lock);
1308 	ida_remove(&nvme_index_ida, index);
1309 	spin_unlock(&dev_list_lock);
1310 }
1311 
nvme_alloc_ns(struct nvme_dev * dev,int nsid,struct nvme_id_ns * id,struct nvme_lba_range_type * rt)1312 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1313 			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1314 {
1315 	struct nvme_ns *ns;
1316 	struct gendisk *disk;
1317 	int lbaf;
1318 
1319 	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1320 		return NULL;
1321 
1322 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1323 	if (!ns)
1324 		return NULL;
1325 	ns->queue = blk_alloc_queue(GFP_KERNEL);
1326 	if (!ns->queue)
1327 		goto out_free_ns;
1328 	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1329 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1330 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1331 /*	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
1332 	blk_queue_make_request(ns->queue, nvme_make_request);
1333 	ns->dev = dev;
1334 	ns->queue->queuedata = ns;
1335 
1336 	disk = alloc_disk(NVME_MINORS);
1337 	if (!disk)
1338 		goto out_free_queue;
1339 	ns->ns_id = nsid;
1340 	ns->disk = disk;
1341 	lbaf = id->flbas & 0xf;
1342 	ns->lba_shift = id->lbaf[lbaf].ds;
1343 
1344 	disk->major = nvme_major;
1345 	disk->minors = NVME_MINORS;
1346 	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1347 	disk->fops = &nvme_fops;
1348 	disk->private_data = ns;
1349 	disk->queue = ns->queue;
1350 	disk->driverfs_dev = &dev->pci_dev->dev;
1351 	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1352 	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1353 
1354 	return ns;
1355 
1356  out_free_queue:
1357 	blk_cleanup_queue(ns->queue);
1358  out_free_ns:
1359 	kfree(ns);
1360 	return NULL;
1361 }
1362 
nvme_ns_free(struct nvme_ns * ns)1363 static void nvme_ns_free(struct nvme_ns *ns)
1364 {
1365 	int index = ns->disk->first_minor / NVME_MINORS;
1366 	put_disk(ns->disk);
1367 	nvme_put_ns_idx(index);
1368 	blk_cleanup_queue(ns->queue);
1369 	kfree(ns);
1370 }
1371 
set_queue_count(struct nvme_dev * dev,int count)1372 static int set_queue_count(struct nvme_dev *dev, int count)
1373 {
1374 	int status;
1375 	u32 result;
1376 	u32 q_count = (count - 1) | ((count - 1) << 16);
1377 
1378 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1379 								&result);
1380 	if (status)
1381 		return -EIO;
1382 	return min(result & 0xffff, result >> 16) + 1;
1383 }
1384 
nvme_setup_io_queues(struct nvme_dev * dev)1385 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1386 {
1387 	int result, cpu, i, nr_io_queues, db_bar_size;
1388 
1389 	nr_io_queues = num_online_cpus();
1390 	result = set_queue_count(dev, nr_io_queues);
1391 	if (result < 0)
1392 		return result;
1393 	if (result < nr_io_queues)
1394 		nr_io_queues = result;
1395 
1396 	/* Deregister the admin queue's interrupt */
1397 	free_irq(dev->entry[0].vector, dev->queues[0]);
1398 
1399 	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1400 	if (db_bar_size > 8192) {
1401 		iounmap(dev->bar);
1402 		dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1403 								db_bar_size);
1404 		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1405 		dev->queues[0]->q_db = dev->dbs;
1406 	}
1407 
1408 	for (i = 0; i < nr_io_queues; i++)
1409 		dev->entry[i].entry = i;
1410 	for (;;) {
1411 		result = pci_enable_msix(dev->pci_dev, dev->entry,
1412 								nr_io_queues);
1413 		if (result == 0) {
1414 			break;
1415 		} else if (result > 0) {
1416 			nr_io_queues = result;
1417 			continue;
1418 		} else {
1419 			nr_io_queues = 1;
1420 			break;
1421 		}
1422 	}
1423 
1424 	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1425 	/* XXX: handle failure here */
1426 
1427 	cpu = cpumask_first(cpu_online_mask);
1428 	for (i = 0; i < nr_io_queues; i++) {
1429 		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1430 		cpu = cpumask_next(cpu, cpu_online_mask);
1431 	}
1432 
1433 	for (i = 0; i < nr_io_queues; i++) {
1434 		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1435 							NVME_Q_DEPTH, i);
1436 		if (IS_ERR(dev->queues[i + 1]))
1437 			return PTR_ERR(dev->queues[i + 1]);
1438 		dev->queue_count++;
1439 	}
1440 
1441 	for (; i < num_possible_cpus(); i++) {
1442 		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1443 		dev->queues[i + 1] = dev->queues[target + 1];
1444 	}
1445 
1446 	return 0;
1447 }
1448 
nvme_free_queues(struct nvme_dev * dev)1449 static void nvme_free_queues(struct nvme_dev *dev)
1450 {
1451 	int i;
1452 
1453 	for (i = dev->queue_count - 1; i >= 0; i--)
1454 		nvme_free_queue(dev, i);
1455 }
1456 
nvme_dev_add(struct nvme_dev * dev)1457 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1458 {
1459 	int res, nn, i;
1460 	struct nvme_ns *ns, *next;
1461 	struct nvme_id_ctrl *ctrl;
1462 	struct nvme_id_ns *id_ns;
1463 	void *mem;
1464 	dma_addr_t dma_addr;
1465 
1466 	res = nvme_setup_io_queues(dev);
1467 	if (res)
1468 		return res;
1469 
1470 	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1471 								GFP_KERNEL);
1472 
1473 	res = nvme_identify(dev, 0, 1, dma_addr);
1474 	if (res) {
1475 		res = -EIO;
1476 		goto out_free;
1477 	}
1478 
1479 	ctrl = mem;
1480 	nn = le32_to_cpup(&ctrl->nn);
1481 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1482 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1483 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1484 
1485 	id_ns = mem;
1486 	for (i = 1; i <= nn; i++) {
1487 		res = nvme_identify(dev, i, 0, dma_addr);
1488 		if (res)
1489 			continue;
1490 
1491 		if (id_ns->ncap == 0)
1492 			continue;
1493 
1494 		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1495 							dma_addr + 4096);
1496 		if (res)
1497 			continue;
1498 
1499 		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1500 		if (ns)
1501 			list_add_tail(&ns->list, &dev->namespaces);
1502 	}
1503 	list_for_each_entry(ns, &dev->namespaces, list)
1504 		add_disk(ns->disk);
1505 
1506 	goto out;
1507 
1508  out_free:
1509 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1510 		list_del(&ns->list);
1511 		nvme_ns_free(ns);
1512 	}
1513 
1514  out:
1515 	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1516 	return res;
1517 }
1518 
nvme_dev_remove(struct nvme_dev * dev)1519 static int nvme_dev_remove(struct nvme_dev *dev)
1520 {
1521 	struct nvme_ns *ns, *next;
1522 
1523 	spin_lock(&dev_list_lock);
1524 	list_del(&dev->node);
1525 	spin_unlock(&dev_list_lock);
1526 
1527 	/* TODO: wait all I/O finished or cancel them */
1528 
1529 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1530 		list_del(&ns->list);
1531 		del_gendisk(ns->disk);
1532 		nvme_ns_free(ns);
1533 	}
1534 
1535 	nvme_free_queues(dev);
1536 
1537 	return 0;
1538 }
1539 
nvme_setup_prp_pools(struct nvme_dev * dev)1540 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1541 {
1542 	struct device *dmadev = &dev->pci_dev->dev;
1543 	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1544 						PAGE_SIZE, PAGE_SIZE, 0);
1545 	if (!dev->prp_page_pool)
1546 		return -ENOMEM;
1547 
1548 	/* Optimisation for I/Os between 4k and 128k */
1549 	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1550 						256, 256, 0);
1551 	if (!dev->prp_small_pool) {
1552 		dma_pool_destroy(dev->prp_page_pool);
1553 		return -ENOMEM;
1554 	}
1555 	return 0;
1556 }
1557 
nvme_release_prp_pools(struct nvme_dev * dev)1558 static void nvme_release_prp_pools(struct nvme_dev *dev)
1559 {
1560 	dma_pool_destroy(dev->prp_page_pool);
1561 	dma_pool_destroy(dev->prp_small_pool);
1562 }
1563 
1564 /* XXX: Use an ida or something to let remove / add work correctly */
nvme_set_instance(struct nvme_dev * dev)1565 static void nvme_set_instance(struct nvme_dev *dev)
1566 {
1567 	static int instance;
1568 	dev->instance = instance++;
1569 }
1570 
nvme_release_instance(struct nvme_dev * dev)1571 static void nvme_release_instance(struct nvme_dev *dev)
1572 {
1573 }
1574 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)1575 static int __devinit nvme_probe(struct pci_dev *pdev,
1576 						const struct pci_device_id *id)
1577 {
1578 	int bars, result = -ENOMEM;
1579 	struct nvme_dev *dev;
1580 
1581 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1582 	if (!dev)
1583 		return -ENOMEM;
1584 	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1585 								GFP_KERNEL);
1586 	if (!dev->entry)
1587 		goto free;
1588 	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1589 								GFP_KERNEL);
1590 	if (!dev->queues)
1591 		goto free;
1592 
1593 	if (pci_enable_device_mem(pdev))
1594 		goto free;
1595 	pci_set_master(pdev);
1596 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1597 	if (pci_request_selected_regions(pdev, bars, "nvme"))
1598 		goto disable;
1599 
1600 	INIT_LIST_HEAD(&dev->namespaces);
1601 	dev->pci_dev = pdev;
1602 	pci_set_drvdata(pdev, dev);
1603 	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1604 	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1605 	nvme_set_instance(dev);
1606 	dev->entry[0].vector = pdev->irq;
1607 
1608 	result = nvme_setup_prp_pools(dev);
1609 	if (result)
1610 		goto disable_msix;
1611 
1612 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1613 	if (!dev->bar) {
1614 		result = -ENOMEM;
1615 		goto disable_msix;
1616 	}
1617 
1618 	result = nvme_configure_admin_queue(dev);
1619 	if (result)
1620 		goto unmap;
1621 	dev->queue_count++;
1622 
1623 	spin_lock(&dev_list_lock);
1624 	list_add(&dev->node, &dev_list);
1625 	spin_unlock(&dev_list_lock);
1626 
1627 	result = nvme_dev_add(dev);
1628 	if (result)
1629 		goto delete;
1630 
1631 	return 0;
1632 
1633  delete:
1634 	spin_lock(&dev_list_lock);
1635 	list_del(&dev->node);
1636 	spin_unlock(&dev_list_lock);
1637 
1638 	nvme_free_queues(dev);
1639  unmap:
1640 	iounmap(dev->bar);
1641  disable_msix:
1642 	pci_disable_msix(pdev);
1643 	nvme_release_instance(dev);
1644 	nvme_release_prp_pools(dev);
1645  disable:
1646 	pci_disable_device(pdev);
1647 	pci_release_regions(pdev);
1648  free:
1649 	kfree(dev->queues);
1650 	kfree(dev->entry);
1651 	kfree(dev);
1652 	return result;
1653 }
1654 
nvme_remove(struct pci_dev * pdev)1655 static void __devexit nvme_remove(struct pci_dev *pdev)
1656 {
1657 	struct nvme_dev *dev = pci_get_drvdata(pdev);
1658 	nvme_dev_remove(dev);
1659 	pci_disable_msix(pdev);
1660 	iounmap(dev->bar);
1661 	nvme_release_instance(dev);
1662 	nvme_release_prp_pools(dev);
1663 	pci_disable_device(pdev);
1664 	pci_release_regions(pdev);
1665 	kfree(dev->queues);
1666 	kfree(dev->entry);
1667 	kfree(dev);
1668 }
1669 
1670 /* These functions are yet to be implemented */
1671 #define nvme_error_detected NULL
1672 #define nvme_dump_registers NULL
1673 #define nvme_link_reset NULL
1674 #define nvme_slot_reset NULL
1675 #define nvme_error_resume NULL
1676 #define nvme_suspend NULL
1677 #define nvme_resume NULL
1678 
1679 static struct pci_error_handlers nvme_err_handler = {
1680 	.error_detected	= nvme_error_detected,
1681 	.mmio_enabled	= nvme_dump_registers,
1682 	.link_reset	= nvme_link_reset,
1683 	.slot_reset	= nvme_slot_reset,
1684 	.resume		= nvme_error_resume,
1685 };
1686 
1687 /* Move to pci_ids.h later */
1688 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
1689 
1690 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1691 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1692 	{ 0, }
1693 };
1694 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1695 
1696 static struct pci_driver nvme_driver = {
1697 	.name		= "nvme",
1698 	.id_table	= nvme_id_table,
1699 	.probe		= nvme_probe,
1700 	.remove		= __devexit_p(nvme_remove),
1701 	.suspend	= nvme_suspend,
1702 	.resume		= nvme_resume,
1703 	.err_handler	= &nvme_err_handler,
1704 };
1705 
nvme_init(void)1706 static int __init nvme_init(void)
1707 {
1708 	int result = -EBUSY;
1709 
1710 	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1711 	if (IS_ERR(nvme_thread))
1712 		return PTR_ERR(nvme_thread);
1713 
1714 	nvme_major = register_blkdev(nvme_major, "nvme");
1715 	if (nvme_major <= 0)
1716 		goto kill_kthread;
1717 
1718 	result = pci_register_driver(&nvme_driver);
1719 	if (result)
1720 		goto unregister_blkdev;
1721 	return 0;
1722 
1723  unregister_blkdev:
1724 	unregister_blkdev(nvme_major, "nvme");
1725  kill_kthread:
1726 	kthread_stop(nvme_thread);
1727 	return result;
1728 }
1729 
nvme_exit(void)1730 static void __exit nvme_exit(void)
1731 {
1732 	pci_unregister_driver(&nvme_driver);
1733 	unregister_blkdev(nvme_major, "nvme");
1734 	kthread_stop(nvme_thread);
1735 }
1736 
1737 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1738 MODULE_LICENSE("GPL");
1739 MODULE_VERSION("0.8");
1740 module_init(nvme_init);
1741 module_exit(nvme_exit);
1742