1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 
64 #include <linux/atomic.h>
65 
66 /*
67  * cgroup_mutex is the master lock.  Any modification to cgroup or its
68  * hierarchy must be performed while holding it.
69  *
70  * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71  * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72  * release_agent_path and so on.  Modifying requires both cgroup_mutex and
73  * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
74  * break the following locking order cycle.
75  *
76  *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77  *  B. namespace_sem -> cgroup_mutex
78  *
79  * B happens only through cgroup_show_options() and using cgroup_root_mutex
80  * breaks it.
81  */
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
84 
85 /*
86  * Generate an array of cgroup subsystem pointers. At boot time, this is
87  * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88  * registered after that. The mutable section of this array is protected by
89  * cgroup_mutex.
90  */
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
94 };
95 
96 #define MAX_CGROUP_ROOT_NAMELEN 64
97 
98 /*
99  * A cgroupfs_root represents the root of a cgroup hierarchy,
100  * and may be associated with a superblock to form an active
101  * hierarchy
102  */
103 struct cgroupfs_root {
104 	struct super_block *sb;
105 
106 	/*
107 	 * The bitmask of subsystems intended to be attached to this
108 	 * hierarchy
109 	 */
110 	unsigned long subsys_bits;
111 
112 	/* Unique id for this hierarchy. */
113 	int hierarchy_id;
114 
115 	/* The bitmask of subsystems currently attached to this hierarchy */
116 	unsigned long actual_subsys_bits;
117 
118 	/* A list running through the attached subsystems */
119 	struct list_head subsys_list;
120 
121 	/* The root cgroup for this hierarchy */
122 	struct cgroup top_cgroup;
123 
124 	/* Tracks how many cgroups are currently defined in hierarchy.*/
125 	int number_of_cgroups;
126 
127 	/* A list running through the active hierarchies */
128 	struct list_head root_list;
129 
130 	/* Hierarchy-specific flags */
131 	unsigned long flags;
132 
133 	/* The path to use for release notifications. */
134 	char release_agent_path[PATH_MAX];
135 
136 	/* The name for this hierarchy - may be empty */
137 	char name[MAX_CGROUP_ROOT_NAMELEN];
138 };
139 
140 /*
141  * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142  * subsystems that are otherwise unattached - it never has more than a
143  * single cgroup, and all tasks are part of that cgroup.
144  */
145 static struct cgroupfs_root rootnode;
146 
147 /*
148  * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149  * cgroup_subsys->use_id != 0.
150  */
151 #define CSS_ID_MAX	(65535)
152 struct css_id {
153 	/*
154 	 * The css to which this ID points. This pointer is set to valid value
155 	 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 	 * This pointer is expected to be RCU-safe because destroy()
157 	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 	 * css_tryget() should be used for avoiding race.
159 	 */
160 	struct cgroup_subsys_state __rcu *css;
161 	/*
162 	 * ID of this css.
163 	 */
164 	unsigned short id;
165 	/*
166 	 * Depth in hierarchy which this ID belongs to.
167 	 */
168 	unsigned short depth;
169 	/*
170 	 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 	 */
172 	struct rcu_head rcu_head;
173 	/*
174 	 * Hierarchy of CSS ID belongs to.
175 	 */
176 	unsigned short stack[0]; /* Array of Length (depth+1) */
177 };
178 
179 /*
180  * cgroup_event represents events which userspace want to receive.
181  */
182 struct cgroup_event {
183 	/*
184 	 * Cgroup which the event belongs to.
185 	 */
186 	struct cgroup *cgrp;
187 	/*
188 	 * Control file which the event associated.
189 	 */
190 	struct cftype *cft;
191 	/*
192 	 * eventfd to signal userspace about the event.
193 	 */
194 	struct eventfd_ctx *eventfd;
195 	/*
196 	 * Each of these stored in a list by the cgroup.
197 	 */
198 	struct list_head list;
199 	/*
200 	 * All fields below needed to unregister event when
201 	 * userspace closes eventfd.
202 	 */
203 	poll_table pt;
204 	wait_queue_head_t *wqh;
205 	wait_queue_t wait;
206 	struct work_struct remove;
207 };
208 
209 /* The list of hierarchy roots */
210 
211 static LIST_HEAD(roots);
212 static int root_count;
213 
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
217 
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
220 
221 /* This flag indicates whether tasks in the fork and exit paths should
222  * check for fork/exit handlers to call. This avoids us having to do
223  * extra work in the fork/exit path if none of the subsystems need to
224  * be called.
225  */
226 static int need_forkexit_callback __read_mostly;
227 
228 #ifdef CONFIG_PROVE_LOCKING
cgroup_lock_is_held(void)229 int cgroup_lock_is_held(void)
230 {
231 	return lockdep_is_held(&cgroup_mutex);
232 }
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
cgroup_lock_is_held(void)234 int cgroup_lock_is_held(void)
235 {
236 	return mutex_is_locked(&cgroup_mutex);
237 }
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239 
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241 
242 /* convenient tests for these bits */
cgroup_is_removed(const struct cgroup * cgrp)243 inline int cgroup_is_removed(const struct cgroup *cgrp)
244 {
245 	return test_bit(CGRP_REMOVED, &cgrp->flags);
246 }
247 
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251 };
252 
cgroup_is_releasable(const struct cgroup * cgrp)253 static int cgroup_is_releasable(const struct cgroup *cgrp)
254 {
255 	const int bits =
256 		(1 << CGRP_RELEASABLE) |
257 		(1 << CGRP_NOTIFY_ON_RELEASE);
258 	return (cgrp->flags & bits) == bits;
259 }
260 
notify_on_release(const struct cgroup * cgrp)261 static int notify_on_release(const struct cgroup *cgrp)
262 {
263 	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
264 }
265 
clone_children(const struct cgroup * cgrp)266 static int clone_children(const struct cgroup *cgrp)
267 {
268 	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269 }
270 
271 /*
272  * for_each_subsys() allows you to iterate on each subsystem attached to
273  * an active hierarchy
274  */
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
277 
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
281 
282 /* the list of cgroups eligible for automatic release. Protected by
283  * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
289 
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
292 	/*
293 	 * List running through cg_cgroup_links associated with a
294 	 * cgroup, anchored on cgroup->css_sets
295 	 */
296 	struct list_head cgrp_link_list;
297 	struct cgroup *cgrp;
298 	/*
299 	 * List running through cg_cgroup_links pointing at a
300 	 * single css_set object, anchored on css_set->cg_links
301 	 */
302 	struct list_head cg_link_list;
303 	struct css_set *cg;
304 };
305 
306 /* The default css_set - used by init and its children prior to any
307  * hierarchies being mounted. It contains a pointer to the root state
308  * for each subsystem. Also used to anchor the list of css_sets. Not
309  * reference-counted, to improve performance when child cgroups
310  * haven't been created.
311  */
312 
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
315 
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 			   struct cgroup_subsys_state *css);
318 
319 /* css_set_lock protects the list of css_set objects, and the
320  * chain of tasks off each css_set.  Nests outside task->alloc_lock
321  * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
324 
325 /*
326  * hash table for cgroup groups. This improves the performance to find
327  * an existing css_set. This hash doesn't (currently) take into
328  * account cgroups in empty hierarchies.
329  */
330 #define CSS_SET_HASH_BITS	7
331 #define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333 
css_set_hash(struct cgroup_subsys_state * css[])334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335 {
336 	int i;
337 	int index;
338 	unsigned long tmp = 0UL;
339 
340 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 		tmp += (unsigned long)css[i];
342 	tmp = (tmp >> 16) ^ tmp;
343 
344 	index = hash_long(tmp, CSS_SET_HASH_BITS);
345 
346 	return &css_set_table[index];
347 }
348 
349 /* We don't maintain the lists running through each css_set to its
350  * task until after the first call to cgroup_iter_start(). This
351  * reduces the fork()/exit() overhead for people who have cgroups
352  * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
354 
__put_css_set(struct css_set * cg,int taskexit)355 static void __put_css_set(struct css_set *cg, int taskexit)
356 {
357 	struct cg_cgroup_link *link;
358 	struct cg_cgroup_link *saved_link;
359 	/*
360 	 * Ensure that the refcount doesn't hit zero while any readers
361 	 * can see it. Similar to atomic_dec_and_lock(), but for an
362 	 * rwlock
363 	 */
364 	if (atomic_add_unless(&cg->refcount, -1, 1))
365 		return;
366 	write_lock(&css_set_lock);
367 	if (!atomic_dec_and_test(&cg->refcount)) {
368 		write_unlock(&css_set_lock);
369 		return;
370 	}
371 
372 	/* This css_set is dead. unlink it and release cgroup refcounts */
373 	hlist_del(&cg->hlist);
374 	css_set_count--;
375 
376 	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 				 cg_link_list) {
378 		struct cgroup *cgrp = link->cgrp;
379 		list_del(&link->cg_link_list);
380 		list_del(&link->cgrp_link_list);
381 		if (atomic_dec_and_test(&cgrp->count) &&
382 		    notify_on_release(cgrp)) {
383 			if (taskexit)
384 				set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 			check_for_release(cgrp);
386 		}
387 
388 		kfree(link);
389 	}
390 
391 	write_unlock(&css_set_lock);
392 	kfree_rcu(cg, rcu_head);
393 }
394 
395 /*
396  * refcounted get/put for css_set objects
397  */
get_css_set(struct css_set * cg)398 static inline void get_css_set(struct css_set *cg)
399 {
400 	atomic_inc(&cg->refcount);
401 }
402 
put_css_set(struct css_set * cg)403 static inline void put_css_set(struct css_set *cg)
404 {
405 	__put_css_set(cg, 0);
406 }
407 
put_css_set_taskexit(struct css_set * cg)408 static inline void put_css_set_taskexit(struct css_set *cg)
409 {
410 	__put_css_set(cg, 1);
411 }
412 
413 /*
414  * compare_css_sets - helper function for find_existing_css_set().
415  * @cg: candidate css_set being tested
416  * @old_cg: existing css_set for a task
417  * @new_cgrp: cgroup that's being entered by the task
418  * @template: desired set of css pointers in css_set (pre-calculated)
419  *
420  * Returns true if "cg" matches "old_cg" except for the hierarchy
421  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422  */
compare_css_sets(struct css_set * cg,struct css_set * old_cg,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])423 static bool compare_css_sets(struct css_set *cg,
424 			     struct css_set *old_cg,
425 			     struct cgroup *new_cgrp,
426 			     struct cgroup_subsys_state *template[])
427 {
428 	struct list_head *l1, *l2;
429 
430 	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 		/* Not all subsystems matched */
432 		return false;
433 	}
434 
435 	/*
436 	 * Compare cgroup pointers in order to distinguish between
437 	 * different cgroups in heirarchies with no subsystems. We
438 	 * could get by with just this check alone (and skip the
439 	 * memcmp above) but on most setups the memcmp check will
440 	 * avoid the need for this more expensive check on almost all
441 	 * candidates.
442 	 */
443 
444 	l1 = &cg->cg_links;
445 	l2 = &old_cg->cg_links;
446 	while (1) {
447 		struct cg_cgroup_link *cgl1, *cgl2;
448 		struct cgroup *cg1, *cg2;
449 
450 		l1 = l1->next;
451 		l2 = l2->next;
452 		/* See if we reached the end - both lists are equal length. */
453 		if (l1 == &cg->cg_links) {
454 			BUG_ON(l2 != &old_cg->cg_links);
455 			break;
456 		} else {
457 			BUG_ON(l2 == &old_cg->cg_links);
458 		}
459 		/* Locate the cgroups associated with these links. */
460 		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 		cg1 = cgl1->cgrp;
463 		cg2 = cgl2->cgrp;
464 		/* Hierarchies should be linked in the same order. */
465 		BUG_ON(cg1->root != cg2->root);
466 
467 		/*
468 		 * If this hierarchy is the hierarchy of the cgroup
469 		 * that's changing, then we need to check that this
470 		 * css_set points to the new cgroup; if it's any other
471 		 * hierarchy, then this css_set should point to the
472 		 * same cgroup as the old css_set.
473 		 */
474 		if (cg1->root == new_cgrp->root) {
475 			if (cg1 != new_cgrp)
476 				return false;
477 		} else {
478 			if (cg1 != cg2)
479 				return false;
480 		}
481 	}
482 	return true;
483 }
484 
485 /*
486  * find_existing_css_set() is a helper for
487  * find_css_set(), and checks to see whether an existing
488  * css_set is suitable.
489  *
490  * oldcg: the cgroup group that we're using before the cgroup
491  * transition
492  *
493  * cgrp: the cgroup that we're moving into
494  *
495  * template: location in which to build the desired set of subsystem
496  * state objects for the new cgroup group
497  */
find_existing_css_set(struct css_set * oldcg,struct cgroup * cgrp,struct cgroup_subsys_state * template[])498 static struct css_set *find_existing_css_set(
499 	struct css_set *oldcg,
500 	struct cgroup *cgrp,
501 	struct cgroup_subsys_state *template[])
502 {
503 	int i;
504 	struct cgroupfs_root *root = cgrp->root;
505 	struct hlist_head *hhead;
506 	struct hlist_node *node;
507 	struct css_set *cg;
508 
509 	/*
510 	 * Build the set of subsystem state objects that we want to see in the
511 	 * new css_set. while subsystems can change globally, the entries here
512 	 * won't change, so no need for locking.
513 	 */
514 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 		if (root->subsys_bits & (1UL << i)) {
516 			/* Subsystem is in this hierarchy. So we want
517 			 * the subsystem state from the new
518 			 * cgroup */
519 			template[i] = cgrp->subsys[i];
520 		} else {
521 			/* Subsystem is not in this hierarchy, so we
522 			 * don't want to change the subsystem state */
523 			template[i] = oldcg->subsys[i];
524 		}
525 	}
526 
527 	hhead = css_set_hash(template);
528 	hlist_for_each_entry(cg, node, hhead, hlist) {
529 		if (!compare_css_sets(cg, oldcg, cgrp, template))
530 			continue;
531 
532 		/* This css_set matches what we need */
533 		return cg;
534 	}
535 
536 	/* No existing cgroup group matched */
537 	return NULL;
538 }
539 
free_cg_links(struct list_head * tmp)540 static void free_cg_links(struct list_head *tmp)
541 {
542 	struct cg_cgroup_link *link;
543 	struct cg_cgroup_link *saved_link;
544 
545 	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 		list_del(&link->cgrp_link_list);
547 		kfree(link);
548 	}
549 }
550 
551 /*
552  * allocate_cg_links() allocates "count" cg_cgroup_link structures
553  * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554  * success or a negative error
555  */
allocate_cg_links(int count,struct list_head * tmp)556 static int allocate_cg_links(int count, struct list_head *tmp)
557 {
558 	struct cg_cgroup_link *link;
559 	int i;
560 	INIT_LIST_HEAD(tmp);
561 	for (i = 0; i < count; i++) {
562 		link = kmalloc(sizeof(*link), GFP_KERNEL);
563 		if (!link) {
564 			free_cg_links(tmp);
565 			return -ENOMEM;
566 		}
567 		list_add(&link->cgrp_link_list, tmp);
568 	}
569 	return 0;
570 }
571 
572 /**
573  * link_css_set - a helper function to link a css_set to a cgroup
574  * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575  * @cg: the css_set to be linked
576  * @cgrp: the destination cgroup
577  */
link_css_set(struct list_head * tmp_cg_links,struct css_set * cg,struct cgroup * cgrp)578 static void link_css_set(struct list_head *tmp_cg_links,
579 			 struct css_set *cg, struct cgroup *cgrp)
580 {
581 	struct cg_cgroup_link *link;
582 
583 	BUG_ON(list_empty(tmp_cg_links));
584 	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 				cgrp_link_list);
586 	link->cg = cg;
587 	link->cgrp = cgrp;
588 	atomic_inc(&cgrp->count);
589 	list_move(&link->cgrp_link_list, &cgrp->css_sets);
590 	/*
591 	 * Always add links to the tail of the list so that the list
592 	 * is sorted by order of hierarchy creation
593 	 */
594 	list_add_tail(&link->cg_link_list, &cg->cg_links);
595 }
596 
597 /*
598  * find_css_set() takes an existing cgroup group and a
599  * cgroup object, and returns a css_set object that's
600  * equivalent to the old group, but with the given cgroup
601  * substituted into the appropriate hierarchy. Must be called with
602  * cgroup_mutex held
603  */
find_css_set(struct css_set * oldcg,struct cgroup * cgrp)604 static struct css_set *find_css_set(
605 	struct css_set *oldcg, struct cgroup *cgrp)
606 {
607 	struct css_set *res;
608 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
609 
610 	struct list_head tmp_cg_links;
611 
612 	struct hlist_head *hhead;
613 	struct cg_cgroup_link *link;
614 
615 	/* First see if we already have a cgroup group that matches
616 	 * the desired set */
617 	read_lock(&css_set_lock);
618 	res = find_existing_css_set(oldcg, cgrp, template);
619 	if (res)
620 		get_css_set(res);
621 	read_unlock(&css_set_lock);
622 
623 	if (res)
624 		return res;
625 
626 	res = kmalloc(sizeof(*res), GFP_KERNEL);
627 	if (!res)
628 		return NULL;
629 
630 	/* Allocate all the cg_cgroup_link objects that we'll need */
631 	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 		kfree(res);
633 		return NULL;
634 	}
635 
636 	atomic_set(&res->refcount, 1);
637 	INIT_LIST_HEAD(&res->cg_links);
638 	INIT_LIST_HEAD(&res->tasks);
639 	INIT_HLIST_NODE(&res->hlist);
640 
641 	/* Copy the set of subsystem state objects generated in
642 	 * find_existing_css_set() */
643 	memcpy(res->subsys, template, sizeof(res->subsys));
644 
645 	write_lock(&css_set_lock);
646 	/* Add reference counts and links from the new css_set. */
647 	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 		struct cgroup *c = link->cgrp;
649 		if (c->root == cgrp->root)
650 			c = cgrp;
651 		link_css_set(&tmp_cg_links, res, c);
652 	}
653 
654 	BUG_ON(!list_empty(&tmp_cg_links));
655 
656 	css_set_count++;
657 
658 	/* Add this cgroup group to the hash table */
659 	hhead = css_set_hash(res->subsys);
660 	hlist_add_head(&res->hlist, hhead);
661 
662 	write_unlock(&css_set_lock);
663 
664 	return res;
665 }
666 
667 /*
668  * Return the cgroup for "task" from the given hierarchy. Must be
669  * called with cgroup_mutex held.
670  */
task_cgroup_from_root(struct task_struct * task,struct cgroupfs_root * root)671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 					    struct cgroupfs_root *root)
673 {
674 	struct css_set *css;
675 	struct cgroup *res = NULL;
676 
677 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 	read_lock(&css_set_lock);
679 	/*
680 	 * No need to lock the task - since we hold cgroup_mutex the
681 	 * task can't change groups, so the only thing that can happen
682 	 * is that it exits and its css is set back to init_css_set.
683 	 */
684 	css = task->cgroups;
685 	if (css == &init_css_set) {
686 		res = &root->top_cgroup;
687 	} else {
688 		struct cg_cgroup_link *link;
689 		list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 			struct cgroup *c = link->cgrp;
691 			if (c->root == root) {
692 				res = c;
693 				break;
694 			}
695 		}
696 	}
697 	read_unlock(&css_set_lock);
698 	BUG_ON(!res);
699 	return res;
700 }
701 
702 /*
703  * There is one global cgroup mutex. We also require taking
704  * task_lock() when dereferencing a task's cgroup subsys pointers.
705  * See "The task_lock() exception", at the end of this comment.
706  *
707  * A task must hold cgroup_mutex to modify cgroups.
708  *
709  * Any task can increment and decrement the count field without lock.
710  * So in general, code holding cgroup_mutex can't rely on the count
711  * field not changing.  However, if the count goes to zero, then only
712  * cgroup_attach_task() can increment it again.  Because a count of zero
713  * means that no tasks are currently attached, therefore there is no
714  * way a task attached to that cgroup can fork (the other way to
715  * increment the count).  So code holding cgroup_mutex can safely
716  * assume that if the count is zero, it will stay zero. Similarly, if
717  * a task holds cgroup_mutex on a cgroup with zero count, it
718  * knows that the cgroup won't be removed, as cgroup_rmdir()
719  * needs that mutex.
720  *
721  * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722  * (usually) take cgroup_mutex.  These are the two most performance
723  * critical pieces of code here.  The exception occurs on cgroup_exit(),
724  * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
725  * is taken, and if the cgroup count is zero, a usermode call made
726  * to the release agent with the name of the cgroup (path relative to
727  * the root of cgroup file system) as the argument.
728  *
729  * A cgroup can only be deleted if both its 'count' of using tasks
730  * is zero, and its list of 'children' cgroups is empty.  Since all
731  * tasks in the system use _some_ cgroup, and since there is always at
732  * least one task in the system (init, pid == 1), therefore, top_cgroup
733  * always has either children cgroups and/or using tasks.  So we don't
734  * need a special hack to ensure that top_cgroup cannot be deleted.
735  *
736  *	The task_lock() exception
737  *
738  * The need for this exception arises from the action of
739  * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740  * another.  It does so using cgroup_mutex, however there are
741  * several performance critical places that need to reference
742  * task->cgroup without the expense of grabbing a system global
743  * mutex.  Therefore except as noted below, when dereferencing or, as
744  * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745  * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746  * the task_struct routinely used for such matters.
747  *
748  * P.S.  One more locking exception.  RCU is used to guard the
749  * update of a tasks cgroup pointer by cgroup_attach_task()
750  */
751 
752 /**
753  * cgroup_lock - lock out any changes to cgroup structures
754  *
755  */
cgroup_lock(void)756 void cgroup_lock(void)
757 {
758 	mutex_lock(&cgroup_mutex);
759 }
760 EXPORT_SYMBOL_GPL(cgroup_lock);
761 
762 /**
763  * cgroup_unlock - release lock on cgroup changes
764  *
765  * Undo the lock taken in a previous cgroup_lock() call.
766  */
cgroup_unlock(void)767 void cgroup_unlock(void)
768 {
769 	mutex_unlock(&cgroup_mutex);
770 }
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
772 
773 /*
774  * A couple of forward declarations required, due to cyclic reference loop:
775  * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776  * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777  * -> cgroup_mkdir.
778  */
779 
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
786 
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 	.name		= "cgroup",
789 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
790 };
791 
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 			struct cgroup *parent, struct cgroup *child);
794 
cgroup_new_inode(umode_t mode,struct super_block * sb)795 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
796 {
797 	struct inode *inode = new_inode(sb);
798 
799 	if (inode) {
800 		inode->i_ino = get_next_ino();
801 		inode->i_mode = mode;
802 		inode->i_uid = current_fsuid();
803 		inode->i_gid = current_fsgid();
804 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 	}
807 	return inode;
808 }
809 
810 /*
811  * Call subsys's pre_destroy handler.
812  * This is called before css refcnt check.
813  */
cgroup_call_pre_destroy(struct cgroup * cgrp)814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
815 {
816 	struct cgroup_subsys *ss;
817 	int ret = 0;
818 
819 	for_each_subsys(cgrp->root, ss)
820 		if (ss->pre_destroy) {
821 			ret = ss->pre_destroy(ss, cgrp);
822 			if (ret)
823 				break;
824 		}
825 
826 	return ret;
827 }
828 
cgroup_diput(struct dentry * dentry,struct inode * inode)829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830 {
831 	/* is dentry a directory ? if so, kfree() associated cgroup */
832 	if (S_ISDIR(inode->i_mode)) {
833 		struct cgroup *cgrp = dentry->d_fsdata;
834 		struct cgroup_subsys *ss;
835 		BUG_ON(!(cgroup_is_removed(cgrp)));
836 		/* It's possible for external users to be holding css
837 		 * reference counts on a cgroup; css_put() needs to
838 		 * be able to access the cgroup after decrementing
839 		 * the reference count in order to know if it needs to
840 		 * queue the cgroup to be handled by the release
841 		 * agent */
842 		synchronize_rcu();
843 
844 		mutex_lock(&cgroup_mutex);
845 		/*
846 		 * Release the subsystem state objects.
847 		 */
848 		for_each_subsys(cgrp->root, ss)
849 			ss->destroy(ss, cgrp);
850 
851 		cgrp->root->number_of_cgroups--;
852 		mutex_unlock(&cgroup_mutex);
853 
854 		/*
855 		 * Drop the active superblock reference that we took when we
856 		 * created the cgroup
857 		 */
858 		deactivate_super(cgrp->root->sb);
859 
860 		/*
861 		 * if we're getting rid of the cgroup, refcount should ensure
862 		 * that there are no pidlists left.
863 		 */
864 		BUG_ON(!list_empty(&cgrp->pidlists));
865 
866 		kfree_rcu(cgrp, rcu_head);
867 	}
868 	iput(inode);
869 }
870 
cgroup_delete(const struct dentry * d)871 static int cgroup_delete(const struct dentry *d)
872 {
873 	return 1;
874 }
875 
remove_dir(struct dentry * d)876 static void remove_dir(struct dentry *d)
877 {
878 	struct dentry *parent = dget(d->d_parent);
879 
880 	d_delete(d);
881 	simple_rmdir(parent->d_inode, d);
882 	dput(parent);
883 }
884 
cgroup_clear_directory(struct dentry * dentry)885 static void cgroup_clear_directory(struct dentry *dentry)
886 {
887 	struct list_head *node;
888 
889 	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 	spin_lock(&dentry->d_lock);
891 	node = dentry->d_subdirs.next;
892 	while (node != &dentry->d_subdirs) {
893 		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
894 
895 		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 		list_del_init(node);
897 		if (d->d_inode) {
898 			/* This should never be called on a cgroup
899 			 * directory with child cgroups */
900 			BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 			dget_dlock(d);
902 			spin_unlock(&d->d_lock);
903 			spin_unlock(&dentry->d_lock);
904 			d_delete(d);
905 			simple_unlink(dentry->d_inode, d);
906 			dput(d);
907 			spin_lock(&dentry->d_lock);
908 		} else
909 			spin_unlock(&d->d_lock);
910 		node = dentry->d_subdirs.next;
911 	}
912 	spin_unlock(&dentry->d_lock);
913 }
914 
915 /*
916  * NOTE : the dentry must have been dget()'ed
917  */
cgroup_d_remove_dir(struct dentry * dentry)918 static void cgroup_d_remove_dir(struct dentry *dentry)
919 {
920 	struct dentry *parent;
921 
922 	cgroup_clear_directory(dentry);
923 
924 	parent = dentry->d_parent;
925 	spin_lock(&parent->d_lock);
926 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 	list_del_init(&dentry->d_u.d_child);
928 	spin_unlock(&dentry->d_lock);
929 	spin_unlock(&parent->d_lock);
930 	remove_dir(dentry);
931 }
932 
933 /*
934  * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935  * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936  * reference to css->refcnt. In general, this refcnt is expected to goes down
937  * to zero, soon.
938  *
939  * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
940  */
941 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942 
cgroup_wakeup_rmdir_waiter(struct cgroup * cgrp)943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
944 {
945 	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 		wake_up_all(&cgroup_rmdir_waitq);
947 }
948 
cgroup_exclude_rmdir(struct cgroup_subsys_state * css)949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950 {
951 	css_get(css);
952 }
953 
cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state * css)954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955 {
956 	cgroup_wakeup_rmdir_waiter(css->cgroup);
957 	css_put(css);
958 }
959 
960 /*
961  * Call with cgroup_mutex held. Drops reference counts on modules, including
962  * any duplicate ones that parse_cgroupfs_options took. If this function
963  * returns an error, no reference counts are touched.
964  */
rebind_subsystems(struct cgroupfs_root * root,unsigned long final_bits)965 static int rebind_subsystems(struct cgroupfs_root *root,
966 			      unsigned long final_bits)
967 {
968 	unsigned long added_bits, removed_bits;
969 	struct cgroup *cgrp = &root->top_cgroup;
970 	int i;
971 
972 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
974 
975 	removed_bits = root->actual_subsys_bits & ~final_bits;
976 	added_bits = final_bits & ~root->actual_subsys_bits;
977 	/* Check that any added subsystems are currently free */
978 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 		unsigned long bit = 1UL << i;
980 		struct cgroup_subsys *ss = subsys[i];
981 		if (!(bit & added_bits))
982 			continue;
983 		/*
984 		 * Nobody should tell us to do a subsys that doesn't exist:
985 		 * parse_cgroupfs_options should catch that case and refcounts
986 		 * ensure that subsystems won't disappear once selected.
987 		 */
988 		BUG_ON(ss == NULL);
989 		if (ss->root != &rootnode) {
990 			/* Subsystem isn't free */
991 			return -EBUSY;
992 		}
993 	}
994 
995 	/* Currently we don't handle adding/removing subsystems when
996 	 * any child cgroups exist. This is theoretically supportable
997 	 * but involves complex error handling, so it's being left until
998 	 * later */
999 	if (root->number_of_cgroups > 1)
1000 		return -EBUSY;
1001 
1002 	/* Process each subsystem */
1003 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 		struct cgroup_subsys *ss = subsys[i];
1005 		unsigned long bit = 1UL << i;
1006 		if (bit & added_bits) {
1007 			/* We're binding this subsystem to this hierarchy */
1008 			BUG_ON(ss == NULL);
1009 			BUG_ON(cgrp->subsys[i]);
1010 			BUG_ON(!dummytop->subsys[i]);
1011 			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 			mutex_lock(&ss->hierarchy_mutex);
1013 			cgrp->subsys[i] = dummytop->subsys[i];
1014 			cgrp->subsys[i]->cgroup = cgrp;
1015 			list_move(&ss->sibling, &root->subsys_list);
1016 			ss->root = root;
1017 			if (ss->bind)
1018 				ss->bind(ss, cgrp);
1019 			mutex_unlock(&ss->hierarchy_mutex);
1020 			/* refcount was already taken, and we're keeping it */
1021 		} else if (bit & removed_bits) {
1022 			/* We're removing this subsystem */
1023 			BUG_ON(ss == NULL);
1024 			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 			mutex_lock(&ss->hierarchy_mutex);
1027 			if (ss->bind)
1028 				ss->bind(ss, dummytop);
1029 			dummytop->subsys[i]->cgroup = dummytop;
1030 			cgrp->subsys[i] = NULL;
1031 			subsys[i]->root = &rootnode;
1032 			list_move(&ss->sibling, &rootnode.subsys_list);
1033 			mutex_unlock(&ss->hierarchy_mutex);
1034 			/* subsystem is now free - drop reference on module */
1035 			module_put(ss->module);
1036 		} else if (bit & final_bits) {
1037 			/* Subsystem state should already exist */
1038 			BUG_ON(ss == NULL);
1039 			BUG_ON(!cgrp->subsys[i]);
1040 			/*
1041 			 * a refcount was taken, but we already had one, so
1042 			 * drop the extra reference.
1043 			 */
1044 			module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 			BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 		} else {
1049 			/* Subsystem state shouldn't exist */
1050 			BUG_ON(cgrp->subsys[i]);
1051 		}
1052 	}
1053 	root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 	synchronize_rcu();
1055 
1056 	return 0;
1057 }
1058 
cgroup_show_options(struct seq_file * seq,struct dentry * dentry)1059 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1060 {
1061 	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1062 	struct cgroup_subsys *ss;
1063 
1064 	mutex_lock(&cgroup_root_mutex);
1065 	for_each_subsys(root, ss)
1066 		seq_printf(seq, ",%s", ss->name);
1067 	if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 		seq_puts(seq, ",noprefix");
1069 	if (strlen(root->release_agent_path))
1070 		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 	if (clone_children(&root->top_cgroup))
1072 		seq_puts(seq, ",clone_children");
1073 	if (strlen(root->name))
1074 		seq_printf(seq, ",name=%s", root->name);
1075 	mutex_unlock(&cgroup_root_mutex);
1076 	return 0;
1077 }
1078 
1079 struct cgroup_sb_opts {
1080 	unsigned long subsys_bits;
1081 	unsigned long flags;
1082 	char *release_agent;
1083 	bool clone_children;
1084 	char *name;
1085 	/* User explicitly requested empty subsystem */
1086 	bool none;
1087 
1088 	struct cgroupfs_root *new_root;
1089 
1090 };
1091 
1092 /*
1093  * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094  * with cgroup_mutex held to protect the subsys[] array. This function takes
1095  * refcounts on subsystems to be used, unless it returns error, in which case
1096  * no refcounts are taken.
1097  */
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1099 {
1100 	char *token, *o = data;
1101 	bool all_ss = false, one_ss = false;
1102 	unsigned long mask = (unsigned long)-1;
1103 	int i;
1104 	bool module_pin_failed = false;
1105 
1106 	BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107 
1108 #ifdef CONFIG_CPUSETS
1109 	mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1111 
1112 	memset(opts, 0, sizeof(*opts));
1113 
1114 	while ((token = strsep(&o, ",")) != NULL) {
1115 		if (!*token)
1116 			return -EINVAL;
1117 		if (!strcmp(token, "none")) {
1118 			/* Explicitly have no subsystems */
1119 			opts->none = true;
1120 			continue;
1121 		}
1122 		if (!strcmp(token, "all")) {
1123 			/* Mutually exclusive option 'all' + subsystem name */
1124 			if (one_ss)
1125 				return -EINVAL;
1126 			all_ss = true;
1127 			continue;
1128 		}
1129 		if (!strcmp(token, "noprefix")) {
1130 			set_bit(ROOT_NOPREFIX, &opts->flags);
1131 			continue;
1132 		}
1133 		if (!strcmp(token, "clone_children")) {
1134 			opts->clone_children = true;
1135 			continue;
1136 		}
1137 		if (!strncmp(token, "release_agent=", 14)) {
1138 			/* Specifying two release agents is forbidden */
1139 			if (opts->release_agent)
1140 				return -EINVAL;
1141 			opts->release_agent =
1142 				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 			if (!opts->release_agent)
1144 				return -ENOMEM;
1145 			continue;
1146 		}
1147 		if (!strncmp(token, "name=", 5)) {
1148 			const char *name = token + 5;
1149 			/* Can't specify an empty name */
1150 			if (!strlen(name))
1151 				return -EINVAL;
1152 			/* Must match [\w.-]+ */
1153 			for (i = 0; i < strlen(name); i++) {
1154 				char c = name[i];
1155 				if (isalnum(c))
1156 					continue;
1157 				if ((c == '.') || (c == '-') || (c == '_'))
1158 					continue;
1159 				return -EINVAL;
1160 			}
1161 			/* Specifying two names is forbidden */
1162 			if (opts->name)
1163 				return -EINVAL;
1164 			opts->name = kstrndup(name,
1165 					      MAX_CGROUP_ROOT_NAMELEN - 1,
1166 					      GFP_KERNEL);
1167 			if (!opts->name)
1168 				return -ENOMEM;
1169 
1170 			continue;
1171 		}
1172 
1173 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 			struct cgroup_subsys *ss = subsys[i];
1175 			if (ss == NULL)
1176 				continue;
1177 			if (strcmp(token, ss->name))
1178 				continue;
1179 			if (ss->disabled)
1180 				continue;
1181 
1182 			/* Mutually exclusive option 'all' + subsystem name */
1183 			if (all_ss)
1184 				return -EINVAL;
1185 			set_bit(i, &opts->subsys_bits);
1186 			one_ss = true;
1187 
1188 			break;
1189 		}
1190 		if (i == CGROUP_SUBSYS_COUNT)
1191 			return -ENOENT;
1192 	}
1193 
1194 	/*
1195 	 * If the 'all' option was specified select all the subsystems,
1196 	 * otherwise if 'none', 'name=' and a subsystem name options
1197 	 * were not specified, let's default to 'all'
1198 	 */
1199 	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1200 		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 			struct cgroup_subsys *ss = subsys[i];
1202 			if (ss == NULL)
1203 				continue;
1204 			if (ss->disabled)
1205 				continue;
1206 			set_bit(i, &opts->subsys_bits);
1207 		}
1208 	}
1209 
1210 	/* Consistency checks */
1211 
1212 	/*
1213 	 * Option noprefix was introduced just for backward compatibility
1214 	 * with the old cpuset, so we allow noprefix only if mounting just
1215 	 * the cpuset subsystem.
1216 	 */
1217 	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 	    (opts->subsys_bits & mask))
1219 		return -EINVAL;
1220 
1221 
1222 	/* Can't specify "none" and some subsystems */
1223 	if (opts->subsys_bits && opts->none)
1224 		return -EINVAL;
1225 
1226 	/*
1227 	 * We either have to specify by name or by subsystems. (So all
1228 	 * empty hierarchies must have a name).
1229 	 */
1230 	if (!opts->subsys_bits && !opts->name)
1231 		return -EINVAL;
1232 
1233 	/*
1234 	 * Grab references on all the modules we'll need, so the subsystems
1235 	 * don't dance around before rebind_subsystems attaches them. This may
1236 	 * take duplicate reference counts on a subsystem that's already used,
1237 	 * but rebind_subsystems handles this case.
1238 	 */
1239 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 		unsigned long bit = 1UL << i;
1241 
1242 		if (!(bit & opts->subsys_bits))
1243 			continue;
1244 		if (!try_module_get(subsys[i]->module)) {
1245 			module_pin_failed = true;
1246 			break;
1247 		}
1248 	}
1249 	if (module_pin_failed) {
1250 		/*
1251 		 * oops, one of the modules was going away. this means that we
1252 		 * raced with a module_delete call, and to the user this is
1253 		 * essentially a "subsystem doesn't exist" case.
1254 		 */
1255 		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 			/* drop refcounts only on the ones we took */
1257 			unsigned long bit = 1UL << i;
1258 
1259 			if (!(bit & opts->subsys_bits))
1260 				continue;
1261 			module_put(subsys[i]->module);
1262 		}
1263 		return -ENOENT;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
drop_parsed_module_refcounts(unsigned long subsys_bits)1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270 {
1271 	int i;
1272 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 		unsigned long bit = 1UL << i;
1274 
1275 		if (!(bit & subsys_bits))
1276 			continue;
1277 		module_put(subsys[i]->module);
1278 	}
1279 }
1280 
cgroup_remount(struct super_block * sb,int * flags,char * data)1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282 {
1283 	int ret = 0;
1284 	struct cgroupfs_root *root = sb->s_fs_info;
1285 	struct cgroup *cgrp = &root->top_cgroup;
1286 	struct cgroup_sb_opts opts;
1287 
1288 	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 	mutex_lock(&cgroup_mutex);
1290 	mutex_lock(&cgroup_root_mutex);
1291 
1292 	/* See what subsystems are wanted */
1293 	ret = parse_cgroupfs_options(data, &opts);
1294 	if (ret)
1295 		goto out_unlock;
1296 
1297 	/* Don't allow flags or name to change at remount */
1298 	if (opts.flags != root->flags ||
1299 	    (opts.name && strcmp(opts.name, root->name))) {
1300 		ret = -EINVAL;
1301 		drop_parsed_module_refcounts(opts.subsys_bits);
1302 		goto out_unlock;
1303 	}
1304 
1305 	ret = rebind_subsystems(root, opts.subsys_bits);
1306 	if (ret) {
1307 		drop_parsed_module_refcounts(opts.subsys_bits);
1308 		goto out_unlock;
1309 	}
1310 
1311 	/* (re)populate subsystem files */
1312 	cgroup_populate_dir(cgrp);
1313 
1314 	if (opts.release_agent)
1315 		strcpy(root->release_agent_path, opts.release_agent);
1316  out_unlock:
1317 	kfree(opts.release_agent);
1318 	kfree(opts.name);
1319 	mutex_unlock(&cgroup_root_mutex);
1320 	mutex_unlock(&cgroup_mutex);
1321 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 	return ret;
1323 }
1324 
1325 static const struct super_operations cgroup_ops = {
1326 	.statfs = simple_statfs,
1327 	.drop_inode = generic_delete_inode,
1328 	.show_options = cgroup_show_options,
1329 	.remount_fs = cgroup_remount,
1330 };
1331 
init_cgroup_housekeeping(struct cgroup * cgrp)1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333 {
1334 	INIT_LIST_HEAD(&cgrp->sibling);
1335 	INIT_LIST_HEAD(&cgrp->children);
1336 	INIT_LIST_HEAD(&cgrp->css_sets);
1337 	INIT_LIST_HEAD(&cgrp->release_list);
1338 	INIT_LIST_HEAD(&cgrp->pidlists);
1339 	mutex_init(&cgrp->pidlist_mutex);
1340 	INIT_LIST_HEAD(&cgrp->event_list);
1341 	spin_lock_init(&cgrp->event_list_lock);
1342 }
1343 
init_cgroup_root(struct cgroupfs_root * root)1344 static void init_cgroup_root(struct cgroupfs_root *root)
1345 {
1346 	struct cgroup *cgrp = &root->top_cgroup;
1347 	INIT_LIST_HEAD(&root->subsys_list);
1348 	INIT_LIST_HEAD(&root->root_list);
1349 	root->number_of_cgroups = 1;
1350 	cgrp->root = root;
1351 	cgrp->top_cgroup = cgrp;
1352 	init_cgroup_housekeeping(cgrp);
1353 }
1354 
init_root_id(struct cgroupfs_root * root)1355 static bool init_root_id(struct cgroupfs_root *root)
1356 {
1357 	int ret = 0;
1358 
1359 	do {
1360 		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 			return false;
1362 		spin_lock(&hierarchy_id_lock);
1363 		/* Try to allocate the next unused ID */
1364 		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 					&root->hierarchy_id);
1366 		if (ret == -ENOSPC)
1367 			/* Try again starting from 0 */
1368 			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 		if (!ret) {
1370 			next_hierarchy_id = root->hierarchy_id + 1;
1371 		} else if (ret != -EAGAIN) {
1372 			/* Can only get here if the 31-bit IDR is full ... */
1373 			BUG_ON(ret);
1374 		}
1375 		spin_unlock(&hierarchy_id_lock);
1376 	} while (ret);
1377 	return true;
1378 }
1379 
cgroup_test_super(struct super_block * sb,void * data)1380 static int cgroup_test_super(struct super_block *sb, void *data)
1381 {
1382 	struct cgroup_sb_opts *opts = data;
1383 	struct cgroupfs_root *root = sb->s_fs_info;
1384 
1385 	/* If we asked for a name then it must match */
1386 	if (opts->name && strcmp(opts->name, root->name))
1387 		return 0;
1388 
1389 	/*
1390 	 * If we asked for subsystems (or explicitly for no
1391 	 * subsystems) then they must match
1392 	 */
1393 	if ((opts->subsys_bits || opts->none)
1394 	    && (opts->subsys_bits != root->subsys_bits))
1395 		return 0;
1396 
1397 	return 1;
1398 }
1399 
cgroup_root_from_opts(struct cgroup_sb_opts * opts)1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401 {
1402 	struct cgroupfs_root *root;
1403 
1404 	if (!opts->subsys_bits && !opts->none)
1405 		return NULL;
1406 
1407 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 	if (!root)
1409 		return ERR_PTR(-ENOMEM);
1410 
1411 	if (!init_root_id(root)) {
1412 		kfree(root);
1413 		return ERR_PTR(-ENOMEM);
1414 	}
1415 	init_cgroup_root(root);
1416 
1417 	root->subsys_bits = opts->subsys_bits;
1418 	root->flags = opts->flags;
1419 	if (opts->release_agent)
1420 		strcpy(root->release_agent_path, opts->release_agent);
1421 	if (opts->name)
1422 		strcpy(root->name, opts->name);
1423 	if (opts->clone_children)
1424 		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 	return root;
1426 }
1427 
cgroup_drop_root(struct cgroupfs_root * root)1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1429 {
1430 	if (!root)
1431 		return;
1432 
1433 	BUG_ON(!root->hierarchy_id);
1434 	spin_lock(&hierarchy_id_lock);
1435 	ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 	spin_unlock(&hierarchy_id_lock);
1437 	kfree(root);
1438 }
1439 
cgroup_set_super(struct super_block * sb,void * data)1440 static int cgroup_set_super(struct super_block *sb, void *data)
1441 {
1442 	int ret;
1443 	struct cgroup_sb_opts *opts = data;
1444 
1445 	/* If we don't have a new root, we can't set up a new sb */
1446 	if (!opts->new_root)
1447 		return -EINVAL;
1448 
1449 	BUG_ON(!opts->subsys_bits && !opts->none);
1450 
1451 	ret = set_anon_super(sb, NULL);
1452 	if (ret)
1453 		return ret;
1454 
1455 	sb->s_fs_info = opts->new_root;
1456 	opts->new_root->sb = sb;
1457 
1458 	sb->s_blocksize = PAGE_CACHE_SIZE;
1459 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 	sb->s_magic = CGROUP_SUPER_MAGIC;
1461 	sb->s_op = &cgroup_ops;
1462 
1463 	return 0;
1464 }
1465 
cgroup_get_rootdir(struct super_block * sb)1466 static int cgroup_get_rootdir(struct super_block *sb)
1467 {
1468 	static const struct dentry_operations cgroup_dops = {
1469 		.d_iput = cgroup_diput,
1470 		.d_delete = cgroup_delete,
1471 	};
1472 
1473 	struct inode *inode =
1474 		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 	struct dentry *dentry;
1476 
1477 	if (!inode)
1478 		return -ENOMEM;
1479 
1480 	inode->i_fop = &simple_dir_operations;
1481 	inode->i_op = &cgroup_dir_inode_operations;
1482 	/* directories start off with i_nlink == 2 (for "." entry) */
1483 	inc_nlink(inode);
1484 	dentry = d_alloc_root(inode);
1485 	if (!dentry) {
1486 		iput(inode);
1487 		return -ENOMEM;
1488 	}
1489 	sb->s_root = dentry;
1490 	/* for everything else we want ->d_op set */
1491 	sb->s_d_op = &cgroup_dops;
1492 	return 0;
1493 }
1494 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1495 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496 			 int flags, const char *unused_dev_name,
1497 			 void *data)
1498 {
1499 	struct cgroup_sb_opts opts;
1500 	struct cgroupfs_root *root;
1501 	int ret = 0;
1502 	struct super_block *sb;
1503 	struct cgroupfs_root *new_root;
1504 	struct inode *inode;
1505 
1506 	/* First find the desired set of subsystems */
1507 	mutex_lock(&cgroup_mutex);
1508 	ret = parse_cgroupfs_options(data, &opts);
1509 	mutex_unlock(&cgroup_mutex);
1510 	if (ret)
1511 		goto out_err;
1512 
1513 	/*
1514 	 * Allocate a new cgroup root. We may not need it if we're
1515 	 * reusing an existing hierarchy.
1516 	 */
1517 	new_root = cgroup_root_from_opts(&opts);
1518 	if (IS_ERR(new_root)) {
1519 		ret = PTR_ERR(new_root);
1520 		goto drop_modules;
1521 	}
1522 	opts.new_root = new_root;
1523 
1524 	/* Locate an existing or new sb for this hierarchy */
1525 	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526 	if (IS_ERR(sb)) {
1527 		ret = PTR_ERR(sb);
1528 		cgroup_drop_root(opts.new_root);
1529 		goto drop_modules;
1530 	}
1531 
1532 	root = sb->s_fs_info;
1533 	BUG_ON(!root);
1534 	if (root == opts.new_root) {
1535 		/* We used the new root structure, so this is a new hierarchy */
1536 		struct list_head tmp_cg_links;
1537 		struct cgroup *root_cgrp = &root->top_cgroup;
1538 		struct cgroupfs_root *existing_root;
1539 		const struct cred *cred;
1540 		int i;
1541 
1542 		BUG_ON(sb->s_root != NULL);
1543 
1544 		ret = cgroup_get_rootdir(sb);
1545 		if (ret)
1546 			goto drop_new_super;
1547 		inode = sb->s_root->d_inode;
1548 
1549 		mutex_lock(&inode->i_mutex);
1550 		mutex_lock(&cgroup_mutex);
1551 		mutex_lock(&cgroup_root_mutex);
1552 
1553 		/* Check for name clashes with existing mounts */
1554 		ret = -EBUSY;
1555 		if (strlen(root->name))
1556 			for_each_active_root(existing_root)
1557 				if (!strcmp(existing_root->name, root->name))
1558 					goto unlock_drop;
1559 
1560 		/*
1561 		 * We're accessing css_set_count without locking
1562 		 * css_set_lock here, but that's OK - it can only be
1563 		 * increased by someone holding cgroup_lock, and
1564 		 * that's us. The worst that can happen is that we
1565 		 * have some link structures left over
1566 		 */
1567 		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1568 		if (ret)
1569 			goto unlock_drop;
1570 
1571 		ret = rebind_subsystems(root, root->subsys_bits);
1572 		if (ret == -EBUSY) {
1573 			free_cg_links(&tmp_cg_links);
1574 			goto unlock_drop;
1575 		}
1576 		/*
1577 		 * There must be no failure case after here, since rebinding
1578 		 * takes care of subsystems' refcounts, which are explicitly
1579 		 * dropped in the failure exit path.
1580 		 */
1581 
1582 		/* EBUSY should be the only error here */
1583 		BUG_ON(ret);
1584 
1585 		list_add(&root->root_list, &roots);
1586 		root_count++;
1587 
1588 		sb->s_root->d_fsdata = root_cgrp;
1589 		root->top_cgroup.dentry = sb->s_root;
1590 
1591 		/* Link the top cgroup in this hierarchy into all
1592 		 * the css_set objects */
1593 		write_lock(&css_set_lock);
1594 		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 			struct hlist_head *hhead = &css_set_table[i];
1596 			struct hlist_node *node;
1597 			struct css_set *cg;
1598 
1599 			hlist_for_each_entry(cg, node, hhead, hlist)
1600 				link_css_set(&tmp_cg_links, cg, root_cgrp);
1601 		}
1602 		write_unlock(&css_set_lock);
1603 
1604 		free_cg_links(&tmp_cg_links);
1605 
1606 		BUG_ON(!list_empty(&root_cgrp->sibling));
1607 		BUG_ON(!list_empty(&root_cgrp->children));
1608 		BUG_ON(root->number_of_cgroups != 1);
1609 
1610 		cred = override_creds(&init_cred);
1611 		cgroup_populate_dir(root_cgrp);
1612 		revert_creds(cred);
1613 		mutex_unlock(&cgroup_root_mutex);
1614 		mutex_unlock(&cgroup_mutex);
1615 		mutex_unlock(&inode->i_mutex);
1616 	} else {
1617 		/*
1618 		 * We re-used an existing hierarchy - the new root (if
1619 		 * any) is not needed
1620 		 */
1621 		cgroup_drop_root(opts.new_root);
1622 		/* no subsys rebinding, so refcounts don't change */
1623 		drop_parsed_module_refcounts(opts.subsys_bits);
1624 	}
1625 
1626 	kfree(opts.release_agent);
1627 	kfree(opts.name);
1628 	return dget(sb->s_root);
1629 
1630  unlock_drop:
1631 	mutex_unlock(&cgroup_root_mutex);
1632 	mutex_unlock(&cgroup_mutex);
1633 	mutex_unlock(&inode->i_mutex);
1634  drop_new_super:
1635 	deactivate_locked_super(sb);
1636  drop_modules:
1637 	drop_parsed_module_refcounts(opts.subsys_bits);
1638  out_err:
1639 	kfree(opts.release_agent);
1640 	kfree(opts.name);
1641 	return ERR_PTR(ret);
1642 }
1643 
cgroup_kill_sb(struct super_block * sb)1644 static void cgroup_kill_sb(struct super_block *sb) {
1645 	struct cgroupfs_root *root = sb->s_fs_info;
1646 	struct cgroup *cgrp = &root->top_cgroup;
1647 	int ret;
1648 	struct cg_cgroup_link *link;
1649 	struct cg_cgroup_link *saved_link;
1650 
1651 	BUG_ON(!root);
1652 
1653 	BUG_ON(root->number_of_cgroups != 1);
1654 	BUG_ON(!list_empty(&cgrp->children));
1655 	BUG_ON(!list_empty(&cgrp->sibling));
1656 
1657 	mutex_lock(&cgroup_mutex);
1658 	mutex_lock(&cgroup_root_mutex);
1659 
1660 	/* Rebind all subsystems back to the default hierarchy */
1661 	ret = rebind_subsystems(root, 0);
1662 	/* Shouldn't be able to fail ... */
1663 	BUG_ON(ret);
1664 
1665 	/*
1666 	 * Release all the links from css_sets to this hierarchy's
1667 	 * root cgroup
1668 	 */
1669 	write_lock(&css_set_lock);
1670 
1671 	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 				 cgrp_link_list) {
1673 		list_del(&link->cg_link_list);
1674 		list_del(&link->cgrp_link_list);
1675 		kfree(link);
1676 	}
1677 	write_unlock(&css_set_lock);
1678 
1679 	if (!list_empty(&root->root_list)) {
1680 		list_del(&root->root_list);
1681 		root_count--;
1682 	}
1683 
1684 	mutex_unlock(&cgroup_root_mutex);
1685 	mutex_unlock(&cgroup_mutex);
1686 
1687 	kill_litter_super(sb);
1688 	cgroup_drop_root(root);
1689 }
1690 
1691 static struct file_system_type cgroup_fs_type = {
1692 	.name = "cgroup",
1693 	.mount = cgroup_mount,
1694 	.kill_sb = cgroup_kill_sb,
1695 };
1696 
1697 static struct kobject *cgroup_kobj;
1698 
__d_cgrp(struct dentry * dentry)1699 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1700 {
1701 	return dentry->d_fsdata;
1702 }
1703 
__d_cft(struct dentry * dentry)1704 static inline struct cftype *__d_cft(struct dentry *dentry)
1705 {
1706 	return dentry->d_fsdata;
1707 }
1708 
1709 /**
1710  * cgroup_path - generate the path of a cgroup
1711  * @cgrp: the cgroup in question
1712  * @buf: the buffer to write the path into
1713  * @buflen: the length of the buffer
1714  *
1715  * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716  * reference.  Writes path of cgroup into buf.  Returns 0 on success,
1717  * -errno on error.
1718  */
cgroup_path(const struct cgroup * cgrp,char * buf,int buflen)1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1720 {
1721 	char *start;
1722 	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 						      cgroup_lock_is_held());
1724 
1725 	if (!dentry || cgrp == dummytop) {
1726 		/*
1727 		 * Inactive subsystems have no dentry for their root
1728 		 * cgroup
1729 		 */
1730 		strcpy(buf, "/");
1731 		return 0;
1732 	}
1733 
1734 	start = buf + buflen;
1735 
1736 	*--start = '\0';
1737 	for (;;) {
1738 		int len = dentry->d_name.len;
1739 
1740 		if ((start -= len) < buf)
1741 			return -ENAMETOOLONG;
1742 		memcpy(start, dentry->d_name.name, len);
1743 		cgrp = cgrp->parent;
1744 		if (!cgrp)
1745 			break;
1746 
1747 		dentry = rcu_dereference_check(cgrp->dentry,
1748 					       cgroup_lock_is_held());
1749 		if (!cgrp->parent)
1750 			continue;
1751 		if (--start < buf)
1752 			return -ENAMETOOLONG;
1753 		*start = '/';
1754 	}
1755 	memmove(buf, start, buf + buflen - start);
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1759 
1760 /*
1761  * Control Group taskset
1762  */
1763 struct task_and_cgroup {
1764 	struct task_struct	*task;
1765 	struct cgroup		*cgrp;
1766 };
1767 
1768 struct cgroup_taskset {
1769 	struct task_and_cgroup	single;
1770 	struct flex_array	*tc_array;
1771 	int			tc_array_len;
1772 	int			idx;
1773 	struct cgroup		*cur_cgrp;
1774 };
1775 
1776 /**
1777  * cgroup_taskset_first - reset taskset and return the first task
1778  * @tset: taskset of interest
1779  *
1780  * @tset iteration is initialized and the first task is returned.
1781  */
cgroup_taskset_first(struct cgroup_taskset * tset)1782 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1783 {
1784 	if (tset->tc_array) {
1785 		tset->idx = 0;
1786 		return cgroup_taskset_next(tset);
1787 	} else {
1788 		tset->cur_cgrp = tset->single.cgrp;
1789 		return tset->single.task;
1790 	}
1791 }
1792 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1793 
1794 /**
1795  * cgroup_taskset_next - iterate to the next task in taskset
1796  * @tset: taskset of interest
1797  *
1798  * Return the next task in @tset.  Iteration must have been initialized
1799  * with cgroup_taskset_first().
1800  */
cgroup_taskset_next(struct cgroup_taskset * tset)1801 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1802 {
1803 	struct task_and_cgroup *tc;
1804 
1805 	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1806 		return NULL;
1807 
1808 	tc = flex_array_get(tset->tc_array, tset->idx++);
1809 	tset->cur_cgrp = tc->cgrp;
1810 	return tc->task;
1811 }
1812 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1813 
1814 /**
1815  * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1816  * @tset: taskset of interest
1817  *
1818  * Return the cgroup for the current (last returned) task of @tset.  This
1819  * function must be preceded by either cgroup_taskset_first() or
1820  * cgroup_taskset_next().
1821  */
cgroup_taskset_cur_cgroup(struct cgroup_taskset * tset)1822 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1823 {
1824 	return tset->cur_cgrp;
1825 }
1826 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1827 
1828 /**
1829  * cgroup_taskset_size - return the number of tasks in taskset
1830  * @tset: taskset of interest
1831  */
cgroup_taskset_size(struct cgroup_taskset * tset)1832 int cgroup_taskset_size(struct cgroup_taskset *tset)
1833 {
1834 	return tset->tc_array ? tset->tc_array_len : 1;
1835 }
1836 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1837 
1838 
1839 /*
1840  * cgroup_task_migrate - move a task from one cgroup to another.
1841  *
1842  * 'guarantee' is set if the caller promises that a new css_set for the task
1843  * will already exist. If not set, this function might sleep, and can fail with
1844  * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1845  */
cgroup_task_migrate(struct cgroup * cgrp,struct cgroup * oldcgrp,struct task_struct * tsk,bool guarantee)1846 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1847 			       struct task_struct *tsk, bool guarantee)
1848 {
1849 	struct css_set *oldcg;
1850 	struct css_set *newcg;
1851 
1852 	/*
1853 	 * We are synchronized through threadgroup_lock() against PF_EXITING
1854 	 * setting such that we can't race against cgroup_exit() changing the
1855 	 * css_set to init_css_set and dropping the old one.
1856 	 */
1857 	WARN_ON_ONCE(tsk->flags & PF_EXITING);
1858 	oldcg = tsk->cgroups;
1859 
1860 	/* locate or allocate a new css_set for this task. */
1861 	if (guarantee) {
1862 		/* we know the css_set we want already exists. */
1863 		struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1864 		read_lock(&css_set_lock);
1865 		newcg = find_existing_css_set(oldcg, cgrp, template);
1866 		BUG_ON(!newcg);
1867 		get_css_set(newcg);
1868 		read_unlock(&css_set_lock);
1869 	} else {
1870 		might_sleep();
1871 		/* find_css_set will give us newcg already referenced. */
1872 		newcg = find_css_set(oldcg, cgrp);
1873 		if (!newcg)
1874 			return -ENOMEM;
1875 	}
1876 
1877 	task_lock(tsk);
1878 	rcu_assign_pointer(tsk->cgroups, newcg);
1879 	task_unlock(tsk);
1880 
1881 	/* Update the css_set linked lists if we're using them */
1882 	write_lock(&css_set_lock);
1883 	if (!list_empty(&tsk->cg_list))
1884 		list_move(&tsk->cg_list, &newcg->tasks);
1885 	write_unlock(&css_set_lock);
1886 
1887 	/*
1888 	 * We just gained a reference on oldcg by taking it from the task. As
1889 	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1890 	 * it here; it will be freed under RCU.
1891 	 */
1892 	put_css_set(oldcg);
1893 
1894 	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1895 	return 0;
1896 }
1897 
1898 /**
1899  * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1900  * @cgrp: the cgroup the task is attaching to
1901  * @tsk: the task to be attached
1902  *
1903  * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1904  * @tsk during call.
1905  */
cgroup_attach_task(struct cgroup * cgrp,struct task_struct * tsk)1906 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1907 {
1908 	int retval;
1909 	struct cgroup_subsys *ss, *failed_ss = NULL;
1910 	struct cgroup *oldcgrp;
1911 	struct cgroupfs_root *root = cgrp->root;
1912 	struct cgroup_taskset tset = { };
1913 
1914 	/* @tsk either already exited or can't exit until the end */
1915 	if (tsk->flags & PF_EXITING)
1916 		return -ESRCH;
1917 
1918 	/* Nothing to do if the task is already in that cgroup */
1919 	oldcgrp = task_cgroup_from_root(tsk, root);
1920 	if (cgrp == oldcgrp)
1921 		return 0;
1922 
1923 	tset.single.task = tsk;
1924 	tset.single.cgrp = oldcgrp;
1925 
1926 	for_each_subsys(root, ss) {
1927 		if (ss->can_attach) {
1928 			retval = ss->can_attach(ss, cgrp, &tset);
1929 			if (retval) {
1930 				/*
1931 				 * Remember on which subsystem the can_attach()
1932 				 * failed, so that we only call cancel_attach()
1933 				 * against the subsystems whose can_attach()
1934 				 * succeeded. (See below)
1935 				 */
1936 				failed_ss = ss;
1937 				goto out;
1938 			}
1939 		}
1940 	}
1941 
1942 	retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1943 	if (retval)
1944 		goto out;
1945 
1946 	for_each_subsys(root, ss) {
1947 		if (ss->attach)
1948 			ss->attach(ss, cgrp, &tset);
1949 	}
1950 
1951 	synchronize_rcu();
1952 
1953 	/*
1954 	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1955 	 * is no longer empty.
1956 	 */
1957 	cgroup_wakeup_rmdir_waiter(cgrp);
1958 out:
1959 	if (retval) {
1960 		for_each_subsys(root, ss) {
1961 			if (ss == failed_ss)
1962 				/*
1963 				 * This subsystem was the one that failed the
1964 				 * can_attach() check earlier, so we don't need
1965 				 * to call cancel_attach() against it or any
1966 				 * remaining subsystems.
1967 				 */
1968 				break;
1969 			if (ss->cancel_attach)
1970 				ss->cancel_attach(ss, cgrp, &tset);
1971 		}
1972 	}
1973 	return retval;
1974 }
1975 
1976 /**
1977  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1978  * @from: attach to all cgroups of a given task
1979  * @tsk: the task to be attached
1980  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)1981 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1982 {
1983 	struct cgroupfs_root *root;
1984 	int retval = 0;
1985 
1986 	cgroup_lock();
1987 	for_each_active_root(root) {
1988 		struct cgroup *from_cg = task_cgroup_from_root(from, root);
1989 
1990 		retval = cgroup_attach_task(from_cg, tsk);
1991 		if (retval)
1992 			break;
1993 	}
1994 	cgroup_unlock();
1995 
1996 	return retval;
1997 }
1998 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1999 
2000 /*
2001  * cgroup_attach_proc works in two stages, the first of which prefetches all
2002  * new css_sets needed (to make sure we have enough memory before committing
2003  * to the move) and stores them in a list of entries of the following type.
2004  * TODO: possible optimization: use css_set->rcu_head for chaining instead
2005  */
2006 struct cg_list_entry {
2007 	struct css_set *cg;
2008 	struct list_head links;
2009 };
2010 
css_set_check_fetched(struct cgroup * cgrp,struct task_struct * tsk,struct css_set * cg,struct list_head * newcg_list)2011 static bool css_set_check_fetched(struct cgroup *cgrp,
2012 				  struct task_struct *tsk, struct css_set *cg,
2013 				  struct list_head *newcg_list)
2014 {
2015 	struct css_set *newcg;
2016 	struct cg_list_entry *cg_entry;
2017 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
2018 
2019 	read_lock(&css_set_lock);
2020 	newcg = find_existing_css_set(cg, cgrp, template);
2021 	read_unlock(&css_set_lock);
2022 
2023 	/* doesn't exist at all? */
2024 	if (!newcg)
2025 		return false;
2026 	/* see if it's already in the list */
2027 	list_for_each_entry(cg_entry, newcg_list, links)
2028 		if (cg_entry->cg == newcg)
2029 			return true;
2030 
2031 	/* not found */
2032 	return false;
2033 }
2034 
2035 /*
2036  * Find the new css_set and store it in the list in preparation for moving the
2037  * given task to the given cgroup. Returns 0 or -ENOMEM.
2038  */
css_set_prefetch(struct cgroup * cgrp,struct css_set * cg,struct list_head * newcg_list)2039 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
2040 			    struct list_head *newcg_list)
2041 {
2042 	struct css_set *newcg;
2043 	struct cg_list_entry *cg_entry;
2044 
2045 	/* ensure a new css_set will exist for this thread */
2046 	newcg = find_css_set(cg, cgrp);
2047 	if (!newcg)
2048 		return -ENOMEM;
2049 	/* add it to the list */
2050 	cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
2051 	if (!cg_entry) {
2052 		put_css_set(newcg);
2053 		return -ENOMEM;
2054 	}
2055 	cg_entry->cg = newcg;
2056 	list_add(&cg_entry->links, newcg_list);
2057 	return 0;
2058 }
2059 
2060 /**
2061  * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2062  * @cgrp: the cgroup to attach to
2063  * @leader: the threadgroup leader task_struct of the group to be attached
2064  *
2065  * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2066  * task_lock of each thread in leader's threadgroup individually in turn.
2067  */
cgroup_attach_proc(struct cgroup * cgrp,struct task_struct * leader)2068 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2069 {
2070 	int retval, i, group_size;
2071 	struct cgroup_subsys *ss, *failed_ss = NULL;
2072 	/* guaranteed to be initialized later, but the compiler needs this */
2073 	struct css_set *oldcg;
2074 	struct cgroupfs_root *root = cgrp->root;
2075 	/* threadgroup list cursor and array */
2076 	struct task_struct *tsk;
2077 	struct task_and_cgroup *tc;
2078 	struct flex_array *group;
2079 	struct cgroup_taskset tset = { };
2080 	/*
2081 	 * we need to make sure we have css_sets for all the tasks we're
2082 	 * going to move -before- we actually start moving them, so that in
2083 	 * case we get an ENOMEM we can bail out before making any changes.
2084 	 */
2085 	struct list_head newcg_list;
2086 	struct cg_list_entry *cg_entry, *temp_nobe;
2087 
2088 	/*
2089 	 * step 0: in order to do expensive, possibly blocking operations for
2090 	 * every thread, we cannot iterate the thread group list, since it needs
2091 	 * rcu or tasklist locked. instead, build an array of all threads in the
2092 	 * group - group_rwsem prevents new threads from appearing, and if
2093 	 * threads exit, this will just be an over-estimate.
2094 	 */
2095 	group_size = get_nr_threads(leader);
2096 	/* flex_array supports very large thread-groups better than kmalloc. */
2097 	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2098 	if (!group)
2099 		return -ENOMEM;
2100 	/* pre-allocate to guarantee space while iterating in rcu read-side. */
2101 	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2102 	if (retval)
2103 		goto out_free_group_list;
2104 
2105 	/* prevent changes to the threadgroup list while we take a snapshot. */
2106 	read_lock(&tasklist_lock);
2107 	if (!thread_group_leader(leader)) {
2108 		/*
2109 		 * a race with de_thread from another thread's exec() may strip
2110 		 * us of our leadership, making while_each_thread unsafe to use
2111 		 * on this task. if this happens, there is no choice but to
2112 		 * throw this task away and try again (from cgroup_procs_write);
2113 		 * this is "double-double-toil-and-trouble-check locking".
2114 		 */
2115 		read_unlock(&tasklist_lock);
2116 		retval = -EAGAIN;
2117 		goto out_free_group_list;
2118 	}
2119 
2120 	tsk = leader;
2121 	i = 0;
2122 	do {
2123 		struct task_and_cgroup ent;
2124 
2125 		/* @tsk either already exited or can't exit until the end */
2126 		if (tsk->flags & PF_EXITING)
2127 			continue;
2128 
2129 		/* as per above, nr_threads may decrease, but not increase. */
2130 		BUG_ON(i >= group_size);
2131 		/*
2132 		 * saying GFP_ATOMIC has no effect here because we did prealloc
2133 		 * earlier, but it's good form to communicate our expectations.
2134 		 */
2135 		ent.task = tsk;
2136 		ent.cgrp = task_cgroup_from_root(tsk, root);
2137 		/* nothing to do if this task is already in the cgroup */
2138 		if (ent.cgrp == cgrp)
2139 			continue;
2140 		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2141 		BUG_ON(retval != 0);
2142 		i++;
2143 	} while_each_thread(leader, tsk);
2144 	/* remember the number of threads in the array for later. */
2145 	group_size = i;
2146 	tset.tc_array = group;
2147 	tset.tc_array_len = group_size;
2148 	read_unlock(&tasklist_lock);
2149 
2150 	/* methods shouldn't be called if no task is actually migrating */
2151 	retval = 0;
2152 	if (!group_size)
2153 		goto out_free_group_list;
2154 
2155 	/*
2156 	 * step 1: check that we can legitimately attach to the cgroup.
2157 	 */
2158 	for_each_subsys(root, ss) {
2159 		if (ss->can_attach) {
2160 			retval = ss->can_attach(ss, cgrp, &tset);
2161 			if (retval) {
2162 				failed_ss = ss;
2163 				goto out_cancel_attach;
2164 			}
2165 		}
2166 	}
2167 
2168 	/*
2169 	 * step 2: make sure css_sets exist for all threads to be migrated.
2170 	 * we use find_css_set, which allocates a new one if necessary.
2171 	 */
2172 	INIT_LIST_HEAD(&newcg_list);
2173 	for (i = 0; i < group_size; i++) {
2174 		tc = flex_array_get(group, i);
2175 		oldcg = tc->task->cgroups;
2176 
2177 		/* if we don't already have it in the list get a new one */
2178 		if (!css_set_check_fetched(cgrp, tc->task, oldcg,
2179 					   &newcg_list)) {
2180 			retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2181 			if (retval)
2182 				goto out_list_teardown;
2183 		}
2184 	}
2185 
2186 	/*
2187 	 * step 3: now that we're guaranteed success wrt the css_sets,
2188 	 * proceed to move all tasks to the new cgroup.  There are no
2189 	 * failure cases after here, so this is the commit point.
2190 	 */
2191 	for (i = 0; i < group_size; i++) {
2192 		tc = flex_array_get(group, i);
2193 		retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
2194 		BUG_ON(retval);
2195 	}
2196 	/* nothing is sensitive to fork() after this point. */
2197 
2198 	/*
2199 	 * step 4: do subsystem attach callbacks.
2200 	 */
2201 	for_each_subsys(root, ss) {
2202 		if (ss->attach)
2203 			ss->attach(ss, cgrp, &tset);
2204 	}
2205 
2206 	/*
2207 	 * step 5: success! and cleanup
2208 	 */
2209 	synchronize_rcu();
2210 	cgroup_wakeup_rmdir_waiter(cgrp);
2211 	retval = 0;
2212 out_list_teardown:
2213 	/* clean up the list of prefetched css_sets. */
2214 	list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2215 		list_del(&cg_entry->links);
2216 		put_css_set(cg_entry->cg);
2217 		kfree(cg_entry);
2218 	}
2219 out_cancel_attach:
2220 	/* same deal as in cgroup_attach_task */
2221 	if (retval) {
2222 		for_each_subsys(root, ss) {
2223 			if (ss == failed_ss)
2224 				break;
2225 			if (ss->cancel_attach)
2226 				ss->cancel_attach(ss, cgrp, &tset);
2227 		}
2228 	}
2229 out_free_group_list:
2230 	flex_array_free(group);
2231 	return retval;
2232 }
2233 
2234 /*
2235  * Find the task_struct of the task to attach by vpid and pass it along to the
2236  * function to attach either it or all tasks in its threadgroup. Will lock
2237  * cgroup_mutex and threadgroup; may take task_lock of task.
2238  */
attach_task_by_pid(struct cgroup * cgrp,u64 pid,bool threadgroup)2239 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2240 {
2241 	struct task_struct *tsk;
2242 	const struct cred *cred = current_cred(), *tcred;
2243 	int ret;
2244 
2245 	if (!cgroup_lock_live_group(cgrp))
2246 		return -ENODEV;
2247 
2248 	if (pid) {
2249 		rcu_read_lock();
2250 		tsk = find_task_by_vpid(pid);
2251 		if (!tsk) {
2252 			rcu_read_unlock();
2253 			cgroup_unlock();
2254 			return -ESRCH;
2255 		}
2256 		if (threadgroup) {
2257 			/*
2258 			 * RCU protects this access, since tsk was found in the
2259 			 * tid map. a race with de_thread may cause group_leader
2260 			 * to stop being the leader, but cgroup_attach_proc will
2261 			 * detect it later.
2262 			 */
2263 			tsk = tsk->group_leader;
2264 		}
2265 		/*
2266 		 * even if we're attaching all tasks in the thread group, we
2267 		 * only need to check permissions on one of them.
2268 		 */
2269 		tcred = __task_cred(tsk);
2270 		if (cred->euid &&
2271 		    cred->euid != tcred->uid &&
2272 		    cred->euid != tcred->suid) {
2273 			rcu_read_unlock();
2274 			cgroup_unlock();
2275 			return -EACCES;
2276 		}
2277 		get_task_struct(tsk);
2278 		rcu_read_unlock();
2279 	} else {
2280 		if (threadgroup)
2281 			tsk = current->group_leader;
2282 		else
2283 			tsk = current;
2284 		get_task_struct(tsk);
2285 	}
2286 
2287 	threadgroup_lock(tsk);
2288 
2289 	if (threadgroup)
2290 		ret = cgroup_attach_proc(cgrp, tsk);
2291 	else
2292 		ret = cgroup_attach_task(cgrp, tsk);
2293 
2294 	threadgroup_unlock(tsk);
2295 
2296 	put_task_struct(tsk);
2297 	cgroup_unlock();
2298 	return ret;
2299 }
2300 
cgroup_tasks_write(struct cgroup * cgrp,struct cftype * cft,u64 pid)2301 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2302 {
2303 	return attach_task_by_pid(cgrp, pid, false);
2304 }
2305 
cgroup_procs_write(struct cgroup * cgrp,struct cftype * cft,u64 tgid)2306 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2307 {
2308 	int ret;
2309 	do {
2310 		/*
2311 		 * attach_proc fails with -EAGAIN if threadgroup leadership
2312 		 * changes in the middle of the operation, in which case we need
2313 		 * to find the task_struct for the new leader and start over.
2314 		 */
2315 		ret = attach_task_by_pid(cgrp, tgid, true);
2316 	} while (ret == -EAGAIN);
2317 	return ret;
2318 }
2319 
2320 /**
2321  * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2322  * @cgrp: the cgroup to be checked for liveness
2323  *
2324  * On success, returns true; the lock should be later released with
2325  * cgroup_unlock(). On failure returns false with no lock held.
2326  */
cgroup_lock_live_group(struct cgroup * cgrp)2327 bool cgroup_lock_live_group(struct cgroup *cgrp)
2328 {
2329 	mutex_lock(&cgroup_mutex);
2330 	if (cgroup_is_removed(cgrp)) {
2331 		mutex_unlock(&cgroup_mutex);
2332 		return false;
2333 	}
2334 	return true;
2335 }
2336 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2337 
cgroup_release_agent_write(struct cgroup * cgrp,struct cftype * cft,const char * buffer)2338 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2339 				      const char *buffer)
2340 {
2341 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2342 	if (strlen(buffer) >= PATH_MAX)
2343 		return -EINVAL;
2344 	if (!cgroup_lock_live_group(cgrp))
2345 		return -ENODEV;
2346 	mutex_lock(&cgroup_root_mutex);
2347 	strcpy(cgrp->root->release_agent_path, buffer);
2348 	mutex_unlock(&cgroup_root_mutex);
2349 	cgroup_unlock();
2350 	return 0;
2351 }
2352 
cgroup_release_agent_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)2353 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2354 				     struct seq_file *seq)
2355 {
2356 	if (!cgroup_lock_live_group(cgrp))
2357 		return -ENODEV;
2358 	seq_puts(seq, cgrp->root->release_agent_path);
2359 	seq_putc(seq, '\n');
2360 	cgroup_unlock();
2361 	return 0;
2362 }
2363 
2364 /* A buffer size big enough for numbers or short strings */
2365 #define CGROUP_LOCAL_BUFFER_SIZE 64
2366 
cgroup_write_X64(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2367 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2368 				struct file *file,
2369 				const char __user *userbuf,
2370 				size_t nbytes, loff_t *unused_ppos)
2371 {
2372 	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2373 	int retval = 0;
2374 	char *end;
2375 
2376 	if (!nbytes)
2377 		return -EINVAL;
2378 	if (nbytes >= sizeof(buffer))
2379 		return -E2BIG;
2380 	if (copy_from_user(buffer, userbuf, nbytes))
2381 		return -EFAULT;
2382 
2383 	buffer[nbytes] = 0;     /* nul-terminate */
2384 	if (cft->write_u64) {
2385 		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2386 		if (*end)
2387 			return -EINVAL;
2388 		retval = cft->write_u64(cgrp, cft, val);
2389 	} else {
2390 		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2391 		if (*end)
2392 			return -EINVAL;
2393 		retval = cft->write_s64(cgrp, cft, val);
2394 	}
2395 	if (!retval)
2396 		retval = nbytes;
2397 	return retval;
2398 }
2399 
cgroup_write_string(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2400 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2401 				   struct file *file,
2402 				   const char __user *userbuf,
2403 				   size_t nbytes, loff_t *unused_ppos)
2404 {
2405 	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2406 	int retval = 0;
2407 	size_t max_bytes = cft->max_write_len;
2408 	char *buffer = local_buffer;
2409 
2410 	if (!max_bytes)
2411 		max_bytes = sizeof(local_buffer) - 1;
2412 	if (nbytes >= max_bytes)
2413 		return -E2BIG;
2414 	/* Allocate a dynamic buffer if we need one */
2415 	if (nbytes >= sizeof(local_buffer)) {
2416 		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2417 		if (buffer == NULL)
2418 			return -ENOMEM;
2419 	}
2420 	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2421 		retval = -EFAULT;
2422 		goto out;
2423 	}
2424 
2425 	buffer[nbytes] = 0;     /* nul-terminate */
2426 	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2427 	if (!retval)
2428 		retval = nbytes;
2429 out:
2430 	if (buffer != local_buffer)
2431 		kfree(buffer);
2432 	return retval;
2433 }
2434 
cgroup_file_write(struct file * file,const char __user * buf,size_t nbytes,loff_t * ppos)2435 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2436 						size_t nbytes, loff_t *ppos)
2437 {
2438 	struct cftype *cft = __d_cft(file->f_dentry);
2439 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2440 
2441 	if (cgroup_is_removed(cgrp))
2442 		return -ENODEV;
2443 	if (cft->write)
2444 		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2445 	if (cft->write_u64 || cft->write_s64)
2446 		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2447 	if (cft->write_string)
2448 		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2449 	if (cft->trigger) {
2450 		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2451 		return ret ? ret : nbytes;
2452 	}
2453 	return -EINVAL;
2454 }
2455 
cgroup_read_u64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2456 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2457 			       struct file *file,
2458 			       char __user *buf, size_t nbytes,
2459 			       loff_t *ppos)
2460 {
2461 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2462 	u64 val = cft->read_u64(cgrp, cft);
2463 	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2464 
2465 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2466 }
2467 
cgroup_read_s64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2468 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2469 			       struct file *file,
2470 			       char __user *buf, size_t nbytes,
2471 			       loff_t *ppos)
2472 {
2473 	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2474 	s64 val = cft->read_s64(cgrp, cft);
2475 	int len = sprintf(tmp, "%lld\n", (long long) val);
2476 
2477 	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2478 }
2479 
cgroup_file_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2480 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2481 				   size_t nbytes, loff_t *ppos)
2482 {
2483 	struct cftype *cft = __d_cft(file->f_dentry);
2484 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2485 
2486 	if (cgroup_is_removed(cgrp))
2487 		return -ENODEV;
2488 
2489 	if (cft->read)
2490 		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2491 	if (cft->read_u64)
2492 		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2493 	if (cft->read_s64)
2494 		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2495 	return -EINVAL;
2496 }
2497 
2498 /*
2499  * seqfile ops/methods for returning structured data. Currently just
2500  * supports string->u64 maps, but can be extended in future.
2501  */
2502 
2503 struct cgroup_seqfile_state {
2504 	struct cftype *cft;
2505 	struct cgroup *cgroup;
2506 };
2507 
cgroup_map_add(struct cgroup_map_cb * cb,const char * key,u64 value)2508 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2509 {
2510 	struct seq_file *sf = cb->state;
2511 	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2512 }
2513 
cgroup_seqfile_show(struct seq_file * m,void * arg)2514 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2515 {
2516 	struct cgroup_seqfile_state *state = m->private;
2517 	struct cftype *cft = state->cft;
2518 	if (cft->read_map) {
2519 		struct cgroup_map_cb cb = {
2520 			.fill = cgroup_map_add,
2521 			.state = m,
2522 		};
2523 		return cft->read_map(state->cgroup, cft, &cb);
2524 	}
2525 	return cft->read_seq_string(state->cgroup, cft, m);
2526 }
2527 
cgroup_seqfile_release(struct inode * inode,struct file * file)2528 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2529 {
2530 	struct seq_file *seq = file->private_data;
2531 	kfree(seq->private);
2532 	return single_release(inode, file);
2533 }
2534 
2535 static const struct file_operations cgroup_seqfile_operations = {
2536 	.read = seq_read,
2537 	.write = cgroup_file_write,
2538 	.llseek = seq_lseek,
2539 	.release = cgroup_seqfile_release,
2540 };
2541 
cgroup_file_open(struct inode * inode,struct file * file)2542 static int cgroup_file_open(struct inode *inode, struct file *file)
2543 {
2544 	int err;
2545 	struct cftype *cft;
2546 
2547 	err = generic_file_open(inode, file);
2548 	if (err)
2549 		return err;
2550 	cft = __d_cft(file->f_dentry);
2551 
2552 	if (cft->read_map || cft->read_seq_string) {
2553 		struct cgroup_seqfile_state *state =
2554 			kzalloc(sizeof(*state), GFP_USER);
2555 		if (!state)
2556 			return -ENOMEM;
2557 		state->cft = cft;
2558 		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2559 		file->f_op = &cgroup_seqfile_operations;
2560 		err = single_open(file, cgroup_seqfile_show, state);
2561 		if (err < 0)
2562 			kfree(state);
2563 	} else if (cft->open)
2564 		err = cft->open(inode, file);
2565 	else
2566 		err = 0;
2567 
2568 	return err;
2569 }
2570 
cgroup_file_release(struct inode * inode,struct file * file)2571 static int cgroup_file_release(struct inode *inode, struct file *file)
2572 {
2573 	struct cftype *cft = __d_cft(file->f_dentry);
2574 	if (cft->release)
2575 		return cft->release(inode, file);
2576 	return 0;
2577 }
2578 
2579 /*
2580  * cgroup_rename - Only allow simple rename of directories in place.
2581  */
cgroup_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2582 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2583 			    struct inode *new_dir, struct dentry *new_dentry)
2584 {
2585 	if (!S_ISDIR(old_dentry->d_inode->i_mode))
2586 		return -ENOTDIR;
2587 	if (new_dentry->d_inode)
2588 		return -EEXIST;
2589 	if (old_dir != new_dir)
2590 		return -EIO;
2591 	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2592 }
2593 
2594 static const struct file_operations cgroup_file_operations = {
2595 	.read = cgroup_file_read,
2596 	.write = cgroup_file_write,
2597 	.llseek = generic_file_llseek,
2598 	.open = cgroup_file_open,
2599 	.release = cgroup_file_release,
2600 };
2601 
2602 static const struct inode_operations cgroup_dir_inode_operations = {
2603 	.lookup = cgroup_lookup,
2604 	.mkdir = cgroup_mkdir,
2605 	.rmdir = cgroup_rmdir,
2606 	.rename = cgroup_rename,
2607 };
2608 
cgroup_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2609 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2610 {
2611 	if (dentry->d_name.len > NAME_MAX)
2612 		return ERR_PTR(-ENAMETOOLONG);
2613 	d_add(dentry, NULL);
2614 	return NULL;
2615 }
2616 
2617 /*
2618  * Check if a file is a control file
2619  */
__file_cft(struct file * file)2620 static inline struct cftype *__file_cft(struct file *file)
2621 {
2622 	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2623 		return ERR_PTR(-EINVAL);
2624 	return __d_cft(file->f_dentry);
2625 }
2626 
cgroup_create_file(struct dentry * dentry,umode_t mode,struct super_block * sb)2627 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2628 				struct super_block *sb)
2629 {
2630 	struct inode *inode;
2631 
2632 	if (!dentry)
2633 		return -ENOENT;
2634 	if (dentry->d_inode)
2635 		return -EEXIST;
2636 
2637 	inode = cgroup_new_inode(mode, sb);
2638 	if (!inode)
2639 		return -ENOMEM;
2640 
2641 	if (S_ISDIR(mode)) {
2642 		inode->i_op = &cgroup_dir_inode_operations;
2643 		inode->i_fop = &simple_dir_operations;
2644 
2645 		/* start off with i_nlink == 2 (for "." entry) */
2646 		inc_nlink(inode);
2647 
2648 		/* start with the directory inode held, so that we can
2649 		 * populate it without racing with another mkdir */
2650 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2651 	} else if (S_ISREG(mode)) {
2652 		inode->i_size = 0;
2653 		inode->i_fop = &cgroup_file_operations;
2654 	}
2655 	d_instantiate(dentry, inode);
2656 	dget(dentry);	/* Extra count - pin the dentry in core */
2657 	return 0;
2658 }
2659 
2660 /*
2661  * cgroup_create_dir - create a directory for an object.
2662  * @cgrp: the cgroup we create the directory for. It must have a valid
2663  *        ->parent field. And we are going to fill its ->dentry field.
2664  * @dentry: dentry of the new cgroup
2665  * @mode: mode to set on new directory.
2666  */
cgroup_create_dir(struct cgroup * cgrp,struct dentry * dentry,umode_t mode)2667 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2668 				umode_t mode)
2669 {
2670 	struct dentry *parent;
2671 	int error = 0;
2672 
2673 	parent = cgrp->parent->dentry;
2674 	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2675 	if (!error) {
2676 		dentry->d_fsdata = cgrp;
2677 		inc_nlink(parent->d_inode);
2678 		rcu_assign_pointer(cgrp->dentry, dentry);
2679 		dget(dentry);
2680 	}
2681 	dput(dentry);
2682 
2683 	return error;
2684 }
2685 
2686 /**
2687  * cgroup_file_mode - deduce file mode of a control file
2688  * @cft: the control file in question
2689  *
2690  * returns cft->mode if ->mode is not 0
2691  * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2692  * returns S_IRUGO if it has only a read handler
2693  * returns S_IWUSR if it has only a write hander
2694  */
cgroup_file_mode(const struct cftype * cft)2695 static umode_t cgroup_file_mode(const struct cftype *cft)
2696 {
2697 	umode_t mode = 0;
2698 
2699 	if (cft->mode)
2700 		return cft->mode;
2701 
2702 	if (cft->read || cft->read_u64 || cft->read_s64 ||
2703 	    cft->read_map || cft->read_seq_string)
2704 		mode |= S_IRUGO;
2705 
2706 	if (cft->write || cft->write_u64 || cft->write_s64 ||
2707 	    cft->write_string || cft->trigger)
2708 		mode |= S_IWUSR;
2709 
2710 	return mode;
2711 }
2712 
cgroup_add_file(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype * cft)2713 int cgroup_add_file(struct cgroup *cgrp,
2714 		       struct cgroup_subsys *subsys,
2715 		       const struct cftype *cft)
2716 {
2717 	struct dentry *dir = cgrp->dentry;
2718 	struct dentry *dentry;
2719 	int error;
2720 	umode_t mode;
2721 
2722 	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2723 	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2724 		strcpy(name, subsys->name);
2725 		strcat(name, ".");
2726 	}
2727 	strcat(name, cft->name);
2728 	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2729 	dentry = lookup_one_len(name, dir, strlen(name));
2730 	if (!IS_ERR(dentry)) {
2731 		mode = cgroup_file_mode(cft);
2732 		error = cgroup_create_file(dentry, mode | S_IFREG,
2733 						cgrp->root->sb);
2734 		if (!error)
2735 			dentry->d_fsdata = (void *)cft;
2736 		dput(dentry);
2737 	} else
2738 		error = PTR_ERR(dentry);
2739 	return error;
2740 }
2741 EXPORT_SYMBOL_GPL(cgroup_add_file);
2742 
cgroup_add_files(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype cft[],int count)2743 int cgroup_add_files(struct cgroup *cgrp,
2744 			struct cgroup_subsys *subsys,
2745 			const struct cftype cft[],
2746 			int count)
2747 {
2748 	int i, err;
2749 	for (i = 0; i < count; i++) {
2750 		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2751 		if (err)
2752 			return err;
2753 	}
2754 	return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(cgroup_add_files);
2757 
2758 /**
2759  * cgroup_task_count - count the number of tasks in a cgroup.
2760  * @cgrp: the cgroup in question
2761  *
2762  * Return the number of tasks in the cgroup.
2763  */
cgroup_task_count(const struct cgroup * cgrp)2764 int cgroup_task_count(const struct cgroup *cgrp)
2765 {
2766 	int count = 0;
2767 	struct cg_cgroup_link *link;
2768 
2769 	read_lock(&css_set_lock);
2770 	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2771 		count += atomic_read(&link->cg->refcount);
2772 	}
2773 	read_unlock(&css_set_lock);
2774 	return count;
2775 }
2776 
2777 /*
2778  * Advance a list_head iterator.  The iterator should be positioned at
2779  * the start of a css_set
2780  */
cgroup_advance_iter(struct cgroup * cgrp,struct cgroup_iter * it)2781 static void cgroup_advance_iter(struct cgroup *cgrp,
2782 				struct cgroup_iter *it)
2783 {
2784 	struct list_head *l = it->cg_link;
2785 	struct cg_cgroup_link *link;
2786 	struct css_set *cg;
2787 
2788 	/* Advance to the next non-empty css_set */
2789 	do {
2790 		l = l->next;
2791 		if (l == &cgrp->css_sets) {
2792 			it->cg_link = NULL;
2793 			return;
2794 		}
2795 		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2796 		cg = link->cg;
2797 	} while (list_empty(&cg->tasks));
2798 	it->cg_link = l;
2799 	it->task = cg->tasks.next;
2800 }
2801 
2802 /*
2803  * To reduce the fork() overhead for systems that are not actually
2804  * using their cgroups capability, we don't maintain the lists running
2805  * through each css_set to its tasks until we see the list actually
2806  * used - in other words after the first call to cgroup_iter_start().
2807  *
2808  * The tasklist_lock is not held here, as do_each_thread() and
2809  * while_each_thread() are protected by RCU.
2810  */
cgroup_enable_task_cg_lists(void)2811 static void cgroup_enable_task_cg_lists(void)
2812 {
2813 	struct task_struct *p, *g;
2814 	write_lock(&css_set_lock);
2815 	use_task_css_set_links = 1;
2816 	do_each_thread(g, p) {
2817 		task_lock(p);
2818 		/*
2819 		 * We should check if the process is exiting, otherwise
2820 		 * it will race with cgroup_exit() in that the list
2821 		 * entry won't be deleted though the process has exited.
2822 		 */
2823 		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2824 			list_add(&p->cg_list, &p->cgroups->tasks);
2825 		task_unlock(p);
2826 	} while_each_thread(g, p);
2827 	write_unlock(&css_set_lock);
2828 }
2829 
cgroup_iter_start(struct cgroup * cgrp,struct cgroup_iter * it)2830 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2831 	__acquires(css_set_lock)
2832 {
2833 	/*
2834 	 * The first time anyone tries to iterate across a cgroup,
2835 	 * we need to enable the list linking each css_set to its
2836 	 * tasks, and fix up all existing tasks.
2837 	 */
2838 	if (!use_task_css_set_links)
2839 		cgroup_enable_task_cg_lists();
2840 
2841 	read_lock(&css_set_lock);
2842 	it->cg_link = &cgrp->css_sets;
2843 	cgroup_advance_iter(cgrp, it);
2844 }
2845 
cgroup_iter_next(struct cgroup * cgrp,struct cgroup_iter * it)2846 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2847 					struct cgroup_iter *it)
2848 {
2849 	struct task_struct *res;
2850 	struct list_head *l = it->task;
2851 	struct cg_cgroup_link *link;
2852 
2853 	/* If the iterator cg is NULL, we have no tasks */
2854 	if (!it->cg_link)
2855 		return NULL;
2856 	res = list_entry(l, struct task_struct, cg_list);
2857 	/* Advance iterator to find next entry */
2858 	l = l->next;
2859 	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2860 	if (l == &link->cg->tasks) {
2861 		/* We reached the end of this task list - move on to
2862 		 * the next cg_cgroup_link */
2863 		cgroup_advance_iter(cgrp, it);
2864 	} else {
2865 		it->task = l;
2866 	}
2867 	return res;
2868 }
2869 
cgroup_iter_end(struct cgroup * cgrp,struct cgroup_iter * it)2870 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2871 	__releases(css_set_lock)
2872 {
2873 	read_unlock(&css_set_lock);
2874 }
2875 
started_after_time(struct task_struct * t1,struct timespec * time,struct task_struct * t2)2876 static inline int started_after_time(struct task_struct *t1,
2877 				     struct timespec *time,
2878 				     struct task_struct *t2)
2879 {
2880 	int start_diff = timespec_compare(&t1->start_time, time);
2881 	if (start_diff > 0) {
2882 		return 1;
2883 	} else if (start_diff < 0) {
2884 		return 0;
2885 	} else {
2886 		/*
2887 		 * Arbitrarily, if two processes started at the same
2888 		 * time, we'll say that the lower pointer value
2889 		 * started first. Note that t2 may have exited by now
2890 		 * so this may not be a valid pointer any longer, but
2891 		 * that's fine - it still serves to distinguish
2892 		 * between two tasks started (effectively) simultaneously.
2893 		 */
2894 		return t1 > t2;
2895 	}
2896 }
2897 
2898 /*
2899  * This function is a callback from heap_insert() and is used to order
2900  * the heap.
2901  * In this case we order the heap in descending task start time.
2902  */
started_after(void * p1,void * p2)2903 static inline int started_after(void *p1, void *p2)
2904 {
2905 	struct task_struct *t1 = p1;
2906 	struct task_struct *t2 = p2;
2907 	return started_after_time(t1, &t2->start_time, t2);
2908 }
2909 
2910 /**
2911  * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2912  * @scan: struct cgroup_scanner containing arguments for the scan
2913  *
2914  * Arguments include pointers to callback functions test_task() and
2915  * process_task().
2916  * Iterate through all the tasks in a cgroup, calling test_task() for each,
2917  * and if it returns true, call process_task() for it also.
2918  * The test_task pointer may be NULL, meaning always true (select all tasks).
2919  * Effectively duplicates cgroup_iter_{start,next,end}()
2920  * but does not lock css_set_lock for the call to process_task().
2921  * The struct cgroup_scanner may be embedded in any structure of the caller's
2922  * creation.
2923  * It is guaranteed that process_task() will act on every task that
2924  * is a member of the cgroup for the duration of this call. This
2925  * function may or may not call process_task() for tasks that exit
2926  * or move to a different cgroup during the call, or are forked or
2927  * move into the cgroup during the call.
2928  *
2929  * Note that test_task() may be called with locks held, and may in some
2930  * situations be called multiple times for the same task, so it should
2931  * be cheap.
2932  * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2933  * pre-allocated and will be used for heap operations (and its "gt" member will
2934  * be overwritten), else a temporary heap will be used (allocation of which
2935  * may cause this function to fail).
2936  */
cgroup_scan_tasks(struct cgroup_scanner * scan)2937 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2938 {
2939 	int retval, i;
2940 	struct cgroup_iter it;
2941 	struct task_struct *p, *dropped;
2942 	/* Never dereference latest_task, since it's not refcounted */
2943 	struct task_struct *latest_task = NULL;
2944 	struct ptr_heap tmp_heap;
2945 	struct ptr_heap *heap;
2946 	struct timespec latest_time = { 0, 0 };
2947 
2948 	if (scan->heap) {
2949 		/* The caller supplied our heap and pre-allocated its memory */
2950 		heap = scan->heap;
2951 		heap->gt = &started_after;
2952 	} else {
2953 		/* We need to allocate our own heap memory */
2954 		heap = &tmp_heap;
2955 		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2956 		if (retval)
2957 			/* cannot allocate the heap */
2958 			return retval;
2959 	}
2960 
2961  again:
2962 	/*
2963 	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2964 	 * to determine which are of interest, and using the scanner's
2965 	 * "process_task" callback to process any of them that need an update.
2966 	 * Since we don't want to hold any locks during the task updates,
2967 	 * gather tasks to be processed in a heap structure.
2968 	 * The heap is sorted by descending task start time.
2969 	 * If the statically-sized heap fills up, we overflow tasks that
2970 	 * started later, and in future iterations only consider tasks that
2971 	 * started after the latest task in the previous pass. This
2972 	 * guarantees forward progress and that we don't miss any tasks.
2973 	 */
2974 	heap->size = 0;
2975 	cgroup_iter_start(scan->cg, &it);
2976 	while ((p = cgroup_iter_next(scan->cg, &it))) {
2977 		/*
2978 		 * Only affect tasks that qualify per the caller's callback,
2979 		 * if he provided one
2980 		 */
2981 		if (scan->test_task && !scan->test_task(p, scan))
2982 			continue;
2983 		/*
2984 		 * Only process tasks that started after the last task
2985 		 * we processed
2986 		 */
2987 		if (!started_after_time(p, &latest_time, latest_task))
2988 			continue;
2989 		dropped = heap_insert(heap, p);
2990 		if (dropped == NULL) {
2991 			/*
2992 			 * The new task was inserted; the heap wasn't
2993 			 * previously full
2994 			 */
2995 			get_task_struct(p);
2996 		} else if (dropped != p) {
2997 			/*
2998 			 * The new task was inserted, and pushed out a
2999 			 * different task
3000 			 */
3001 			get_task_struct(p);
3002 			put_task_struct(dropped);
3003 		}
3004 		/*
3005 		 * Else the new task was newer than anything already in
3006 		 * the heap and wasn't inserted
3007 		 */
3008 	}
3009 	cgroup_iter_end(scan->cg, &it);
3010 
3011 	if (heap->size) {
3012 		for (i = 0; i < heap->size; i++) {
3013 			struct task_struct *q = heap->ptrs[i];
3014 			if (i == 0) {
3015 				latest_time = q->start_time;
3016 				latest_task = q;
3017 			}
3018 			/* Process the task per the caller's callback */
3019 			scan->process_task(q, scan);
3020 			put_task_struct(q);
3021 		}
3022 		/*
3023 		 * If we had to process any tasks at all, scan again
3024 		 * in case some of them were in the middle of forking
3025 		 * children that didn't get processed.
3026 		 * Not the most efficient way to do it, but it avoids
3027 		 * having to take callback_mutex in the fork path
3028 		 */
3029 		goto again;
3030 	}
3031 	if (heap == &tmp_heap)
3032 		heap_free(&tmp_heap);
3033 	return 0;
3034 }
3035 
3036 /*
3037  * Stuff for reading the 'tasks'/'procs' files.
3038  *
3039  * Reading this file can return large amounts of data if a cgroup has
3040  * *lots* of attached tasks. So it may need several calls to read(),
3041  * but we cannot guarantee that the information we produce is correct
3042  * unless we produce it entirely atomically.
3043  *
3044  */
3045 
3046 /*
3047  * The following two functions "fix" the issue where there are more pids
3048  * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3049  * TODO: replace with a kernel-wide solution to this problem
3050  */
3051 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)3052 static void *pidlist_allocate(int count)
3053 {
3054 	if (PIDLIST_TOO_LARGE(count))
3055 		return vmalloc(count * sizeof(pid_t));
3056 	else
3057 		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3058 }
pidlist_free(void * p)3059 static void pidlist_free(void *p)
3060 {
3061 	if (is_vmalloc_addr(p))
3062 		vfree(p);
3063 	else
3064 		kfree(p);
3065 }
pidlist_resize(void * p,int newcount)3066 static void *pidlist_resize(void *p, int newcount)
3067 {
3068 	void *newlist;
3069 	/* note: if new alloc fails, old p will still be valid either way */
3070 	if (is_vmalloc_addr(p)) {
3071 		newlist = vmalloc(newcount * sizeof(pid_t));
3072 		if (!newlist)
3073 			return NULL;
3074 		memcpy(newlist, p, newcount * sizeof(pid_t));
3075 		vfree(p);
3076 	} else {
3077 		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3078 	}
3079 	return newlist;
3080 }
3081 
3082 /*
3083  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3084  * If the new stripped list is sufficiently smaller and there's enough memory
3085  * to allocate a new buffer, will let go of the unneeded memory. Returns the
3086  * number of unique elements.
3087  */
3088 /* is the size difference enough that we should re-allocate the array? */
3089 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
pidlist_uniq(pid_t ** p,int length)3090 static int pidlist_uniq(pid_t **p, int length)
3091 {
3092 	int src, dest = 1;
3093 	pid_t *list = *p;
3094 	pid_t *newlist;
3095 
3096 	/*
3097 	 * we presume the 0th element is unique, so i starts at 1. trivial
3098 	 * edge cases first; no work needs to be done for either
3099 	 */
3100 	if (length == 0 || length == 1)
3101 		return length;
3102 	/* src and dest walk down the list; dest counts unique elements */
3103 	for (src = 1; src < length; src++) {
3104 		/* find next unique element */
3105 		while (list[src] == list[src-1]) {
3106 			src++;
3107 			if (src == length)
3108 				goto after;
3109 		}
3110 		/* dest always points to where the next unique element goes */
3111 		list[dest] = list[src];
3112 		dest++;
3113 	}
3114 after:
3115 	/*
3116 	 * if the length difference is large enough, we want to allocate a
3117 	 * smaller buffer to save memory. if this fails due to out of memory,
3118 	 * we'll just stay with what we've got.
3119 	 */
3120 	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3121 		newlist = pidlist_resize(list, dest);
3122 		if (newlist)
3123 			*p = newlist;
3124 	}
3125 	return dest;
3126 }
3127 
cmppid(const void * a,const void * b)3128 static int cmppid(const void *a, const void *b)
3129 {
3130 	return *(pid_t *)a - *(pid_t *)b;
3131 }
3132 
3133 /*
3134  * find the appropriate pidlist for our purpose (given procs vs tasks)
3135  * returns with the lock on that pidlist already held, and takes care
3136  * of the use count, or returns NULL with no locks held if we're out of
3137  * memory.
3138  */
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)3139 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3140 						  enum cgroup_filetype type)
3141 {
3142 	struct cgroup_pidlist *l;
3143 	/* don't need task_nsproxy() if we're looking at ourself */
3144 	struct pid_namespace *ns = current->nsproxy->pid_ns;
3145 
3146 	/*
3147 	 * We can't drop the pidlist_mutex before taking the l->mutex in case
3148 	 * the last ref-holder is trying to remove l from the list at the same
3149 	 * time. Holding the pidlist_mutex precludes somebody taking whichever
3150 	 * list we find out from under us - compare release_pid_array().
3151 	 */
3152 	mutex_lock(&cgrp->pidlist_mutex);
3153 	list_for_each_entry(l, &cgrp->pidlists, links) {
3154 		if (l->key.type == type && l->key.ns == ns) {
3155 			/* make sure l doesn't vanish out from under us */
3156 			down_write(&l->mutex);
3157 			mutex_unlock(&cgrp->pidlist_mutex);
3158 			return l;
3159 		}
3160 	}
3161 	/* entry not found; create a new one */
3162 	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3163 	if (!l) {
3164 		mutex_unlock(&cgrp->pidlist_mutex);
3165 		return l;
3166 	}
3167 	init_rwsem(&l->mutex);
3168 	down_write(&l->mutex);
3169 	l->key.type = type;
3170 	l->key.ns = get_pid_ns(ns);
3171 	l->use_count = 0; /* don't increment here */
3172 	l->list = NULL;
3173 	l->owner = cgrp;
3174 	list_add(&l->links, &cgrp->pidlists);
3175 	mutex_unlock(&cgrp->pidlist_mutex);
3176 	return l;
3177 }
3178 
3179 /*
3180  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3181  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)3182 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3183 			      struct cgroup_pidlist **lp)
3184 {
3185 	pid_t *array;
3186 	int length;
3187 	int pid, n = 0; /* used for populating the array */
3188 	struct cgroup_iter it;
3189 	struct task_struct *tsk;
3190 	struct cgroup_pidlist *l;
3191 
3192 	/*
3193 	 * If cgroup gets more users after we read count, we won't have
3194 	 * enough space - tough.  This race is indistinguishable to the
3195 	 * caller from the case that the additional cgroup users didn't
3196 	 * show up until sometime later on.
3197 	 */
3198 	length = cgroup_task_count(cgrp);
3199 	array = pidlist_allocate(length);
3200 	if (!array)
3201 		return -ENOMEM;
3202 	/* now, populate the array */
3203 	cgroup_iter_start(cgrp, &it);
3204 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3205 		if (unlikely(n == length))
3206 			break;
3207 		/* get tgid or pid for procs or tasks file respectively */
3208 		if (type == CGROUP_FILE_PROCS)
3209 			pid = task_tgid_vnr(tsk);
3210 		else
3211 			pid = task_pid_vnr(tsk);
3212 		if (pid > 0) /* make sure to only use valid results */
3213 			array[n++] = pid;
3214 	}
3215 	cgroup_iter_end(cgrp, &it);
3216 	length = n;
3217 	/* now sort & (if procs) strip out duplicates */
3218 	sort(array, length, sizeof(pid_t), cmppid, NULL);
3219 	if (type == CGROUP_FILE_PROCS)
3220 		length = pidlist_uniq(&array, length);
3221 	l = cgroup_pidlist_find(cgrp, type);
3222 	if (!l) {
3223 		pidlist_free(array);
3224 		return -ENOMEM;
3225 	}
3226 	/* store array, freeing old if necessary - lock already held */
3227 	pidlist_free(l->list);
3228 	l->list = array;
3229 	l->length = length;
3230 	l->use_count++;
3231 	up_write(&l->mutex);
3232 	*lp = l;
3233 	return 0;
3234 }
3235 
3236 /**
3237  * cgroupstats_build - build and fill cgroupstats
3238  * @stats: cgroupstats to fill information into
3239  * @dentry: A dentry entry belonging to the cgroup for which stats have
3240  * been requested.
3241  *
3242  * Build and fill cgroupstats so that taskstats can export it to user
3243  * space.
3244  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)3245 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3246 {
3247 	int ret = -EINVAL;
3248 	struct cgroup *cgrp;
3249 	struct cgroup_iter it;
3250 	struct task_struct *tsk;
3251 
3252 	/*
3253 	 * Validate dentry by checking the superblock operations,
3254 	 * and make sure it's a directory.
3255 	 */
3256 	if (dentry->d_sb->s_op != &cgroup_ops ||
3257 	    !S_ISDIR(dentry->d_inode->i_mode))
3258 		 goto err;
3259 
3260 	ret = 0;
3261 	cgrp = dentry->d_fsdata;
3262 
3263 	cgroup_iter_start(cgrp, &it);
3264 	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3265 		switch (tsk->state) {
3266 		case TASK_RUNNING:
3267 			stats->nr_running++;
3268 			break;
3269 		case TASK_INTERRUPTIBLE:
3270 			stats->nr_sleeping++;
3271 			break;
3272 		case TASK_UNINTERRUPTIBLE:
3273 			stats->nr_uninterruptible++;
3274 			break;
3275 		case TASK_STOPPED:
3276 			stats->nr_stopped++;
3277 			break;
3278 		default:
3279 			if (delayacct_is_task_waiting_on_io(tsk))
3280 				stats->nr_io_wait++;
3281 			break;
3282 		}
3283 	}
3284 	cgroup_iter_end(cgrp, &it);
3285 
3286 err:
3287 	return ret;
3288 }
3289 
3290 
3291 /*
3292  * seq_file methods for the tasks/procs files. The seq_file position is the
3293  * next pid to display; the seq_file iterator is a pointer to the pid
3294  * in the cgroup->l->list array.
3295  */
3296 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)3297 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3298 {
3299 	/*
3300 	 * Initially we receive a position value that corresponds to
3301 	 * one more than the last pid shown (or 0 on the first call or
3302 	 * after a seek to the start). Use a binary-search to find the
3303 	 * next pid to display, if any
3304 	 */
3305 	struct cgroup_pidlist *l = s->private;
3306 	int index = 0, pid = *pos;
3307 	int *iter;
3308 
3309 	down_read(&l->mutex);
3310 	if (pid) {
3311 		int end = l->length;
3312 
3313 		while (index < end) {
3314 			int mid = (index + end) / 2;
3315 			if (l->list[mid] == pid) {
3316 				index = mid;
3317 				break;
3318 			} else if (l->list[mid] <= pid)
3319 				index = mid + 1;
3320 			else
3321 				end = mid;
3322 		}
3323 	}
3324 	/* If we're off the end of the array, we're done */
3325 	if (index >= l->length)
3326 		return NULL;
3327 	/* Update the abstract position to be the actual pid that we found */
3328 	iter = l->list + index;
3329 	*pos = *iter;
3330 	return iter;
3331 }
3332 
cgroup_pidlist_stop(struct seq_file * s,void * v)3333 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3334 {
3335 	struct cgroup_pidlist *l = s->private;
3336 	up_read(&l->mutex);
3337 }
3338 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)3339 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3340 {
3341 	struct cgroup_pidlist *l = s->private;
3342 	pid_t *p = v;
3343 	pid_t *end = l->list + l->length;
3344 	/*
3345 	 * Advance to the next pid in the array. If this goes off the
3346 	 * end, we're done
3347 	 */
3348 	p++;
3349 	if (p >= end) {
3350 		return NULL;
3351 	} else {
3352 		*pos = *p;
3353 		return p;
3354 	}
3355 }
3356 
cgroup_pidlist_show(struct seq_file * s,void * v)3357 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3358 {
3359 	return seq_printf(s, "%d\n", *(int *)v);
3360 }
3361 
3362 /*
3363  * seq_operations functions for iterating on pidlists through seq_file -
3364  * independent of whether it's tasks or procs
3365  */
3366 static const struct seq_operations cgroup_pidlist_seq_operations = {
3367 	.start = cgroup_pidlist_start,
3368 	.stop = cgroup_pidlist_stop,
3369 	.next = cgroup_pidlist_next,
3370 	.show = cgroup_pidlist_show,
3371 };
3372 
cgroup_release_pid_array(struct cgroup_pidlist * l)3373 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3374 {
3375 	/*
3376 	 * the case where we're the last user of this particular pidlist will
3377 	 * have us remove it from the cgroup's list, which entails taking the
3378 	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3379 	 * pidlist_mutex, we have to take pidlist_mutex first.
3380 	 */
3381 	mutex_lock(&l->owner->pidlist_mutex);
3382 	down_write(&l->mutex);
3383 	BUG_ON(!l->use_count);
3384 	if (!--l->use_count) {
3385 		/* we're the last user if refcount is 0; remove and free */
3386 		list_del(&l->links);
3387 		mutex_unlock(&l->owner->pidlist_mutex);
3388 		pidlist_free(l->list);
3389 		put_pid_ns(l->key.ns);
3390 		up_write(&l->mutex);
3391 		kfree(l);
3392 		return;
3393 	}
3394 	mutex_unlock(&l->owner->pidlist_mutex);
3395 	up_write(&l->mutex);
3396 }
3397 
cgroup_pidlist_release(struct inode * inode,struct file * file)3398 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3399 {
3400 	struct cgroup_pidlist *l;
3401 	if (!(file->f_mode & FMODE_READ))
3402 		return 0;
3403 	/*
3404 	 * the seq_file will only be initialized if the file was opened for
3405 	 * reading; hence we check if it's not null only in that case.
3406 	 */
3407 	l = ((struct seq_file *)file->private_data)->private;
3408 	cgroup_release_pid_array(l);
3409 	return seq_release(inode, file);
3410 }
3411 
3412 static const struct file_operations cgroup_pidlist_operations = {
3413 	.read = seq_read,
3414 	.llseek = seq_lseek,
3415 	.write = cgroup_file_write,
3416 	.release = cgroup_pidlist_release,
3417 };
3418 
3419 /*
3420  * The following functions handle opens on a file that displays a pidlist
3421  * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3422  * in the cgroup.
3423  */
3424 /* helper function for the two below it */
cgroup_pidlist_open(struct file * file,enum cgroup_filetype type)3425 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3426 {
3427 	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3428 	struct cgroup_pidlist *l;
3429 	int retval;
3430 
3431 	/* Nothing to do for write-only files */
3432 	if (!(file->f_mode & FMODE_READ))
3433 		return 0;
3434 
3435 	/* have the array populated */
3436 	retval = pidlist_array_load(cgrp, type, &l);
3437 	if (retval)
3438 		return retval;
3439 	/* configure file information */
3440 	file->f_op = &cgroup_pidlist_operations;
3441 
3442 	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3443 	if (retval) {
3444 		cgroup_release_pid_array(l);
3445 		return retval;
3446 	}
3447 	((struct seq_file *)file->private_data)->private = l;
3448 	return 0;
3449 }
cgroup_tasks_open(struct inode * unused,struct file * file)3450 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3451 {
3452 	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3453 }
cgroup_procs_open(struct inode * unused,struct file * file)3454 static int cgroup_procs_open(struct inode *unused, struct file *file)
3455 {
3456 	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3457 }
3458 
cgroup_read_notify_on_release(struct cgroup * cgrp,struct cftype * cft)3459 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3460 					    struct cftype *cft)
3461 {
3462 	return notify_on_release(cgrp);
3463 }
3464 
cgroup_write_notify_on_release(struct cgroup * cgrp,struct cftype * cft,u64 val)3465 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3466 					  struct cftype *cft,
3467 					  u64 val)
3468 {
3469 	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3470 	if (val)
3471 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3472 	else
3473 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3474 	return 0;
3475 }
3476 
3477 /*
3478  * Unregister event and free resources.
3479  *
3480  * Gets called from workqueue.
3481  */
cgroup_event_remove(struct work_struct * work)3482 static void cgroup_event_remove(struct work_struct *work)
3483 {
3484 	struct cgroup_event *event = container_of(work, struct cgroup_event,
3485 			remove);
3486 	struct cgroup *cgrp = event->cgrp;
3487 
3488 	event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3489 
3490 	eventfd_ctx_put(event->eventfd);
3491 	kfree(event);
3492 	dput(cgrp->dentry);
3493 }
3494 
3495 /*
3496  * Gets called on POLLHUP on eventfd when user closes it.
3497  *
3498  * Called with wqh->lock held and interrupts disabled.
3499  */
cgroup_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3500 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3501 		int sync, void *key)
3502 {
3503 	struct cgroup_event *event = container_of(wait,
3504 			struct cgroup_event, wait);
3505 	struct cgroup *cgrp = event->cgrp;
3506 	unsigned long flags = (unsigned long)key;
3507 
3508 	if (flags & POLLHUP) {
3509 		__remove_wait_queue(event->wqh, &event->wait);
3510 		spin_lock(&cgrp->event_list_lock);
3511 		list_del(&event->list);
3512 		spin_unlock(&cgrp->event_list_lock);
3513 		/*
3514 		 * We are in atomic context, but cgroup_event_remove() may
3515 		 * sleep, so we have to call it in workqueue.
3516 		 */
3517 		schedule_work(&event->remove);
3518 	}
3519 
3520 	return 0;
3521 }
3522 
cgroup_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3523 static void cgroup_event_ptable_queue_proc(struct file *file,
3524 		wait_queue_head_t *wqh, poll_table *pt)
3525 {
3526 	struct cgroup_event *event = container_of(pt,
3527 			struct cgroup_event, pt);
3528 
3529 	event->wqh = wqh;
3530 	add_wait_queue(wqh, &event->wait);
3531 }
3532 
3533 /*
3534  * Parse input and register new cgroup event handler.
3535  *
3536  * Input must be in format '<event_fd> <control_fd> <args>'.
3537  * Interpretation of args is defined by control file implementation.
3538  */
cgroup_write_event_control(struct cgroup * cgrp,struct cftype * cft,const char * buffer)3539 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3540 				      const char *buffer)
3541 {
3542 	struct cgroup_event *event = NULL;
3543 	unsigned int efd, cfd;
3544 	struct file *efile = NULL;
3545 	struct file *cfile = NULL;
3546 	char *endp;
3547 	int ret;
3548 
3549 	efd = simple_strtoul(buffer, &endp, 10);
3550 	if (*endp != ' ')
3551 		return -EINVAL;
3552 	buffer = endp + 1;
3553 
3554 	cfd = simple_strtoul(buffer, &endp, 10);
3555 	if ((*endp != ' ') && (*endp != '\0'))
3556 		return -EINVAL;
3557 	buffer = endp + 1;
3558 
3559 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3560 	if (!event)
3561 		return -ENOMEM;
3562 	event->cgrp = cgrp;
3563 	INIT_LIST_HEAD(&event->list);
3564 	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3565 	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3566 	INIT_WORK(&event->remove, cgroup_event_remove);
3567 
3568 	efile = eventfd_fget(efd);
3569 	if (IS_ERR(efile)) {
3570 		ret = PTR_ERR(efile);
3571 		goto fail;
3572 	}
3573 
3574 	event->eventfd = eventfd_ctx_fileget(efile);
3575 	if (IS_ERR(event->eventfd)) {
3576 		ret = PTR_ERR(event->eventfd);
3577 		goto fail;
3578 	}
3579 
3580 	cfile = fget(cfd);
3581 	if (!cfile) {
3582 		ret = -EBADF;
3583 		goto fail;
3584 	}
3585 
3586 	/* the process need read permission on control file */
3587 	/* AV: shouldn't we check that it's been opened for read instead? */
3588 	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3589 	if (ret < 0)
3590 		goto fail;
3591 
3592 	event->cft = __file_cft(cfile);
3593 	if (IS_ERR(event->cft)) {
3594 		ret = PTR_ERR(event->cft);
3595 		goto fail;
3596 	}
3597 
3598 	if (!event->cft->register_event || !event->cft->unregister_event) {
3599 		ret = -EINVAL;
3600 		goto fail;
3601 	}
3602 
3603 	ret = event->cft->register_event(cgrp, event->cft,
3604 			event->eventfd, buffer);
3605 	if (ret)
3606 		goto fail;
3607 
3608 	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3609 		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3610 		ret = 0;
3611 		goto fail;
3612 	}
3613 
3614 	/*
3615 	 * Events should be removed after rmdir of cgroup directory, but before
3616 	 * destroying subsystem state objects. Let's take reference to cgroup
3617 	 * directory dentry to do that.
3618 	 */
3619 	dget(cgrp->dentry);
3620 
3621 	spin_lock(&cgrp->event_list_lock);
3622 	list_add(&event->list, &cgrp->event_list);
3623 	spin_unlock(&cgrp->event_list_lock);
3624 
3625 	fput(cfile);
3626 	fput(efile);
3627 
3628 	return 0;
3629 
3630 fail:
3631 	if (cfile)
3632 		fput(cfile);
3633 
3634 	if (event && event->eventfd && !IS_ERR(event->eventfd))
3635 		eventfd_ctx_put(event->eventfd);
3636 
3637 	if (!IS_ERR_OR_NULL(efile))
3638 		fput(efile);
3639 
3640 	kfree(event);
3641 
3642 	return ret;
3643 }
3644 
cgroup_clone_children_read(struct cgroup * cgrp,struct cftype * cft)3645 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3646 				    struct cftype *cft)
3647 {
3648 	return clone_children(cgrp);
3649 }
3650 
cgroup_clone_children_write(struct cgroup * cgrp,struct cftype * cft,u64 val)3651 static int cgroup_clone_children_write(struct cgroup *cgrp,
3652 				     struct cftype *cft,
3653 				     u64 val)
3654 {
3655 	if (val)
3656 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3657 	else
3658 		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3659 	return 0;
3660 }
3661 
3662 /*
3663  * for the common functions, 'private' gives the type of file
3664  */
3665 /* for hysterical raisins, we can't put this on the older files */
3666 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3667 static struct cftype files[] = {
3668 	{
3669 		.name = "tasks",
3670 		.open = cgroup_tasks_open,
3671 		.write_u64 = cgroup_tasks_write,
3672 		.release = cgroup_pidlist_release,
3673 		.mode = S_IRUGO | S_IWUSR,
3674 	},
3675 	{
3676 		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
3677 		.open = cgroup_procs_open,
3678 		.write_u64 = cgroup_procs_write,
3679 		.release = cgroup_pidlist_release,
3680 		.mode = S_IRUGO | S_IWUSR,
3681 	},
3682 	{
3683 		.name = "notify_on_release",
3684 		.read_u64 = cgroup_read_notify_on_release,
3685 		.write_u64 = cgroup_write_notify_on_release,
3686 	},
3687 	{
3688 		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3689 		.write_string = cgroup_write_event_control,
3690 		.mode = S_IWUGO,
3691 	},
3692 	{
3693 		.name = "cgroup.clone_children",
3694 		.read_u64 = cgroup_clone_children_read,
3695 		.write_u64 = cgroup_clone_children_write,
3696 	},
3697 };
3698 
3699 static struct cftype cft_release_agent = {
3700 	.name = "release_agent",
3701 	.read_seq_string = cgroup_release_agent_show,
3702 	.write_string = cgroup_release_agent_write,
3703 	.max_write_len = PATH_MAX,
3704 };
3705 
cgroup_populate_dir(struct cgroup * cgrp)3706 static int cgroup_populate_dir(struct cgroup *cgrp)
3707 {
3708 	int err;
3709 	struct cgroup_subsys *ss;
3710 
3711 	/* First clear out any existing files */
3712 	cgroup_clear_directory(cgrp->dentry);
3713 
3714 	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3715 	if (err < 0)
3716 		return err;
3717 
3718 	if (cgrp == cgrp->top_cgroup) {
3719 		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3720 			return err;
3721 	}
3722 
3723 	for_each_subsys(cgrp->root, ss) {
3724 		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3725 			return err;
3726 	}
3727 	/* This cgroup is ready now */
3728 	for_each_subsys(cgrp->root, ss) {
3729 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3730 		/*
3731 		 * Update id->css pointer and make this css visible from
3732 		 * CSS ID functions. This pointer will be dereferened
3733 		 * from RCU-read-side without locks.
3734 		 */
3735 		if (css->id)
3736 			rcu_assign_pointer(css->id->css, css);
3737 	}
3738 
3739 	return 0;
3740 }
3741 
init_cgroup_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)3742 static void init_cgroup_css(struct cgroup_subsys_state *css,
3743 			       struct cgroup_subsys *ss,
3744 			       struct cgroup *cgrp)
3745 {
3746 	css->cgroup = cgrp;
3747 	atomic_set(&css->refcnt, 1);
3748 	css->flags = 0;
3749 	css->id = NULL;
3750 	if (cgrp == dummytop)
3751 		set_bit(CSS_ROOT, &css->flags);
3752 	BUG_ON(cgrp->subsys[ss->subsys_id]);
3753 	cgrp->subsys[ss->subsys_id] = css;
3754 }
3755 
cgroup_lock_hierarchy(struct cgroupfs_root * root)3756 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3757 {
3758 	/* We need to take each hierarchy_mutex in a consistent order */
3759 	int i;
3760 
3761 	/*
3762 	 * No worry about a race with rebind_subsystems that might mess up the
3763 	 * locking order, since both parties are under cgroup_mutex.
3764 	 */
3765 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3766 		struct cgroup_subsys *ss = subsys[i];
3767 		if (ss == NULL)
3768 			continue;
3769 		if (ss->root == root)
3770 			mutex_lock(&ss->hierarchy_mutex);
3771 	}
3772 }
3773 
cgroup_unlock_hierarchy(struct cgroupfs_root * root)3774 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3775 {
3776 	int i;
3777 
3778 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3779 		struct cgroup_subsys *ss = subsys[i];
3780 		if (ss == NULL)
3781 			continue;
3782 		if (ss->root == root)
3783 			mutex_unlock(&ss->hierarchy_mutex);
3784 	}
3785 }
3786 
3787 /*
3788  * cgroup_create - create a cgroup
3789  * @parent: cgroup that will be parent of the new cgroup
3790  * @dentry: dentry of the new cgroup
3791  * @mode: mode to set on new inode
3792  *
3793  * Must be called with the mutex on the parent inode held
3794  */
cgroup_create(struct cgroup * parent,struct dentry * dentry,umode_t mode)3795 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3796 			     umode_t mode)
3797 {
3798 	struct cgroup *cgrp;
3799 	struct cgroupfs_root *root = parent->root;
3800 	int err = 0;
3801 	struct cgroup_subsys *ss;
3802 	struct super_block *sb = root->sb;
3803 
3804 	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3805 	if (!cgrp)
3806 		return -ENOMEM;
3807 
3808 	/* Grab a reference on the superblock so the hierarchy doesn't
3809 	 * get deleted on unmount if there are child cgroups.  This
3810 	 * can be done outside cgroup_mutex, since the sb can't
3811 	 * disappear while someone has an open control file on the
3812 	 * fs */
3813 	atomic_inc(&sb->s_active);
3814 
3815 	mutex_lock(&cgroup_mutex);
3816 
3817 	init_cgroup_housekeeping(cgrp);
3818 
3819 	cgrp->parent = parent;
3820 	cgrp->root = parent->root;
3821 	cgrp->top_cgroup = parent->top_cgroup;
3822 
3823 	if (notify_on_release(parent))
3824 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3825 
3826 	if (clone_children(parent))
3827 		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3828 
3829 	for_each_subsys(root, ss) {
3830 		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3831 
3832 		if (IS_ERR(css)) {
3833 			err = PTR_ERR(css);
3834 			goto err_destroy;
3835 		}
3836 		init_cgroup_css(css, ss, cgrp);
3837 		if (ss->use_id) {
3838 			err = alloc_css_id(ss, parent, cgrp);
3839 			if (err)
3840 				goto err_destroy;
3841 		}
3842 		/* At error, ->destroy() callback has to free assigned ID. */
3843 		if (clone_children(parent) && ss->post_clone)
3844 			ss->post_clone(ss, cgrp);
3845 	}
3846 
3847 	cgroup_lock_hierarchy(root);
3848 	list_add(&cgrp->sibling, &cgrp->parent->children);
3849 	cgroup_unlock_hierarchy(root);
3850 	root->number_of_cgroups++;
3851 
3852 	err = cgroup_create_dir(cgrp, dentry, mode);
3853 	if (err < 0)
3854 		goto err_remove;
3855 
3856 	/* The cgroup directory was pre-locked for us */
3857 	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3858 
3859 	err = cgroup_populate_dir(cgrp);
3860 	/* If err < 0, we have a half-filled directory - oh well ;) */
3861 
3862 	mutex_unlock(&cgroup_mutex);
3863 	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3864 
3865 	return 0;
3866 
3867  err_remove:
3868 
3869 	cgroup_lock_hierarchy(root);
3870 	list_del(&cgrp->sibling);
3871 	cgroup_unlock_hierarchy(root);
3872 	root->number_of_cgroups--;
3873 
3874  err_destroy:
3875 
3876 	for_each_subsys(root, ss) {
3877 		if (cgrp->subsys[ss->subsys_id])
3878 			ss->destroy(ss, cgrp);
3879 	}
3880 
3881 	mutex_unlock(&cgroup_mutex);
3882 
3883 	/* Release the reference count that we took on the superblock */
3884 	deactivate_super(sb);
3885 
3886 	kfree(cgrp);
3887 	return err;
3888 }
3889 
cgroup_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3890 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3891 {
3892 	struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3893 
3894 	/* the vfs holds inode->i_mutex already */
3895 	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3896 }
3897 
cgroup_has_css_refs(struct cgroup * cgrp)3898 static int cgroup_has_css_refs(struct cgroup *cgrp)
3899 {
3900 	/* Check the reference count on each subsystem. Since we
3901 	 * already established that there are no tasks in the
3902 	 * cgroup, if the css refcount is also 1, then there should
3903 	 * be no outstanding references, so the subsystem is safe to
3904 	 * destroy. We scan across all subsystems rather than using
3905 	 * the per-hierarchy linked list of mounted subsystems since
3906 	 * we can be called via check_for_release() with no
3907 	 * synchronization other than RCU, and the subsystem linked
3908 	 * list isn't RCU-safe */
3909 	int i;
3910 	/*
3911 	 * We won't need to lock the subsys array, because the subsystems
3912 	 * we're concerned about aren't going anywhere since our cgroup root
3913 	 * has a reference on them.
3914 	 */
3915 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3916 		struct cgroup_subsys *ss = subsys[i];
3917 		struct cgroup_subsys_state *css;
3918 		/* Skip subsystems not present or not in this hierarchy */
3919 		if (ss == NULL || ss->root != cgrp->root)
3920 			continue;
3921 		css = cgrp->subsys[ss->subsys_id];
3922 		/* When called from check_for_release() it's possible
3923 		 * that by this point the cgroup has been removed
3924 		 * and the css deleted. But a false-positive doesn't
3925 		 * matter, since it can only happen if the cgroup
3926 		 * has been deleted and hence no longer needs the
3927 		 * release agent to be called anyway. */
3928 		if (css && (atomic_read(&css->refcnt) > 1))
3929 			return 1;
3930 	}
3931 	return 0;
3932 }
3933 
3934 /*
3935  * Atomically mark all (or else none) of the cgroup's CSS objects as
3936  * CSS_REMOVED. Return true on success, or false if the cgroup has
3937  * busy subsystems. Call with cgroup_mutex held
3938  */
3939 
cgroup_clear_css_refs(struct cgroup * cgrp)3940 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3941 {
3942 	struct cgroup_subsys *ss;
3943 	unsigned long flags;
3944 	bool failed = false;
3945 	local_irq_save(flags);
3946 	for_each_subsys(cgrp->root, ss) {
3947 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3948 		int refcnt;
3949 		while (1) {
3950 			/* We can only remove a CSS with a refcnt==1 */
3951 			refcnt = atomic_read(&css->refcnt);
3952 			if (refcnt > 1) {
3953 				failed = true;
3954 				goto done;
3955 			}
3956 			BUG_ON(!refcnt);
3957 			/*
3958 			 * Drop the refcnt to 0 while we check other
3959 			 * subsystems. This will cause any racing
3960 			 * css_tryget() to spin until we set the
3961 			 * CSS_REMOVED bits or abort
3962 			 */
3963 			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3964 				break;
3965 			cpu_relax();
3966 		}
3967 	}
3968  done:
3969 	for_each_subsys(cgrp->root, ss) {
3970 		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3971 		if (failed) {
3972 			/*
3973 			 * Restore old refcnt if we previously managed
3974 			 * to clear it from 1 to 0
3975 			 */
3976 			if (!atomic_read(&css->refcnt))
3977 				atomic_set(&css->refcnt, 1);
3978 		} else {
3979 			/* Commit the fact that the CSS is removed */
3980 			set_bit(CSS_REMOVED, &css->flags);
3981 		}
3982 	}
3983 	local_irq_restore(flags);
3984 	return !failed;
3985 }
3986 
cgroup_rmdir(struct inode * unused_dir,struct dentry * dentry)3987 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3988 {
3989 	struct cgroup *cgrp = dentry->d_fsdata;
3990 	struct dentry *d;
3991 	struct cgroup *parent;
3992 	DEFINE_WAIT(wait);
3993 	struct cgroup_event *event, *tmp;
3994 	int ret;
3995 
3996 	/* the vfs holds both inode->i_mutex already */
3997 again:
3998 	mutex_lock(&cgroup_mutex);
3999 	if (atomic_read(&cgrp->count) != 0) {
4000 		mutex_unlock(&cgroup_mutex);
4001 		return -EBUSY;
4002 	}
4003 	if (!list_empty(&cgrp->children)) {
4004 		mutex_unlock(&cgroup_mutex);
4005 		return -EBUSY;
4006 	}
4007 	mutex_unlock(&cgroup_mutex);
4008 
4009 	/*
4010 	 * In general, subsystem has no css->refcnt after pre_destroy(). But
4011 	 * in racy cases, subsystem may have to get css->refcnt after
4012 	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4013 	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4014 	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4015 	 * and subsystem's reference count handling. Please see css_get/put
4016 	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4017 	 */
4018 	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4019 
4020 	/*
4021 	 * Call pre_destroy handlers of subsys. Notify subsystems
4022 	 * that rmdir() request comes.
4023 	 */
4024 	ret = cgroup_call_pre_destroy(cgrp);
4025 	if (ret) {
4026 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4027 		return ret;
4028 	}
4029 
4030 	mutex_lock(&cgroup_mutex);
4031 	parent = cgrp->parent;
4032 	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4033 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4034 		mutex_unlock(&cgroup_mutex);
4035 		return -EBUSY;
4036 	}
4037 	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4038 	if (!cgroup_clear_css_refs(cgrp)) {
4039 		mutex_unlock(&cgroup_mutex);
4040 		/*
4041 		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4042 		 * prepare_to_wait(), we need to check this flag.
4043 		 */
4044 		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4045 			schedule();
4046 		finish_wait(&cgroup_rmdir_waitq, &wait);
4047 		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4048 		if (signal_pending(current))
4049 			return -EINTR;
4050 		goto again;
4051 	}
4052 	/* NO css_tryget() can success after here. */
4053 	finish_wait(&cgroup_rmdir_waitq, &wait);
4054 	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4055 
4056 	raw_spin_lock(&release_list_lock);
4057 	set_bit(CGRP_REMOVED, &cgrp->flags);
4058 	if (!list_empty(&cgrp->release_list))
4059 		list_del_init(&cgrp->release_list);
4060 	raw_spin_unlock(&release_list_lock);
4061 
4062 	cgroup_lock_hierarchy(cgrp->root);
4063 	/* delete this cgroup from parent->children */
4064 	list_del_init(&cgrp->sibling);
4065 	cgroup_unlock_hierarchy(cgrp->root);
4066 
4067 	d = dget(cgrp->dentry);
4068 
4069 	cgroup_d_remove_dir(d);
4070 	dput(d);
4071 
4072 	set_bit(CGRP_RELEASABLE, &parent->flags);
4073 	check_for_release(parent);
4074 
4075 	/*
4076 	 * Unregister events and notify userspace.
4077 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4078 	 * directory to avoid race between userspace and kernelspace
4079 	 */
4080 	spin_lock(&cgrp->event_list_lock);
4081 	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4082 		list_del(&event->list);
4083 		remove_wait_queue(event->wqh, &event->wait);
4084 		eventfd_signal(event->eventfd, 1);
4085 		schedule_work(&event->remove);
4086 	}
4087 	spin_unlock(&cgrp->event_list_lock);
4088 
4089 	mutex_unlock(&cgroup_mutex);
4090 	return 0;
4091 }
4092 
cgroup_init_subsys(struct cgroup_subsys * ss)4093 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4094 {
4095 	struct cgroup_subsys_state *css;
4096 
4097 	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4098 
4099 	/* Create the top cgroup state for this subsystem */
4100 	list_add(&ss->sibling, &rootnode.subsys_list);
4101 	ss->root = &rootnode;
4102 	css = ss->create(ss, dummytop);
4103 	/* We don't handle early failures gracefully */
4104 	BUG_ON(IS_ERR(css));
4105 	init_cgroup_css(css, ss, dummytop);
4106 
4107 	/* Update the init_css_set to contain a subsys
4108 	 * pointer to this state - since the subsystem is
4109 	 * newly registered, all tasks and hence the
4110 	 * init_css_set is in the subsystem's top cgroup. */
4111 	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4112 
4113 	need_forkexit_callback |= ss->fork || ss->exit;
4114 
4115 	/* At system boot, before all subsystems have been
4116 	 * registered, no tasks have been forked, so we don't
4117 	 * need to invoke fork callbacks here. */
4118 	BUG_ON(!list_empty(&init_task.tasks));
4119 
4120 	mutex_init(&ss->hierarchy_mutex);
4121 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4122 	ss->active = 1;
4123 
4124 	/* this function shouldn't be used with modular subsystems, since they
4125 	 * need to register a subsys_id, among other things */
4126 	BUG_ON(ss->module);
4127 }
4128 
4129 /**
4130  * cgroup_load_subsys: load and register a modular subsystem at runtime
4131  * @ss: the subsystem to load
4132  *
4133  * This function should be called in a modular subsystem's initcall. If the
4134  * subsystem is built as a module, it will be assigned a new subsys_id and set
4135  * up for use. If the subsystem is built-in anyway, work is delegated to the
4136  * simpler cgroup_init_subsys.
4137  */
cgroup_load_subsys(struct cgroup_subsys * ss)4138 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4139 {
4140 	int i;
4141 	struct cgroup_subsys_state *css;
4142 
4143 	/* check name and function validity */
4144 	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4145 	    ss->create == NULL || ss->destroy == NULL)
4146 		return -EINVAL;
4147 
4148 	/*
4149 	 * we don't support callbacks in modular subsystems. this check is
4150 	 * before the ss->module check for consistency; a subsystem that could
4151 	 * be a module should still have no callbacks even if the user isn't
4152 	 * compiling it as one.
4153 	 */
4154 	if (ss->fork || ss->exit)
4155 		return -EINVAL;
4156 
4157 	/*
4158 	 * an optionally modular subsystem is built-in: we want to do nothing,
4159 	 * since cgroup_init_subsys will have already taken care of it.
4160 	 */
4161 	if (ss->module == NULL) {
4162 		/* a few sanity checks */
4163 		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4164 		BUG_ON(subsys[ss->subsys_id] != ss);
4165 		return 0;
4166 	}
4167 
4168 	/*
4169 	 * need to register a subsys id before anything else - for example,
4170 	 * init_cgroup_css needs it.
4171 	 */
4172 	mutex_lock(&cgroup_mutex);
4173 	/* find the first empty slot in the array */
4174 	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4175 		if (subsys[i] == NULL)
4176 			break;
4177 	}
4178 	if (i == CGROUP_SUBSYS_COUNT) {
4179 		/* maximum number of subsystems already registered! */
4180 		mutex_unlock(&cgroup_mutex);
4181 		return -EBUSY;
4182 	}
4183 	/* assign ourselves the subsys_id */
4184 	ss->subsys_id = i;
4185 	subsys[i] = ss;
4186 
4187 	/*
4188 	 * no ss->create seems to need anything important in the ss struct, so
4189 	 * this can happen first (i.e. before the rootnode attachment).
4190 	 */
4191 	css = ss->create(ss, dummytop);
4192 	if (IS_ERR(css)) {
4193 		/* failure case - need to deassign the subsys[] slot. */
4194 		subsys[i] = NULL;
4195 		mutex_unlock(&cgroup_mutex);
4196 		return PTR_ERR(css);
4197 	}
4198 
4199 	list_add(&ss->sibling, &rootnode.subsys_list);
4200 	ss->root = &rootnode;
4201 
4202 	/* our new subsystem will be attached to the dummy hierarchy. */
4203 	init_cgroup_css(css, ss, dummytop);
4204 	/* init_idr must be after init_cgroup_css because it sets css->id. */
4205 	if (ss->use_id) {
4206 		int ret = cgroup_init_idr(ss, css);
4207 		if (ret) {
4208 			dummytop->subsys[ss->subsys_id] = NULL;
4209 			ss->destroy(ss, dummytop);
4210 			subsys[i] = NULL;
4211 			mutex_unlock(&cgroup_mutex);
4212 			return ret;
4213 		}
4214 	}
4215 
4216 	/*
4217 	 * Now we need to entangle the css into the existing css_sets. unlike
4218 	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4219 	 * will need a new pointer to it; done by iterating the css_set_table.
4220 	 * furthermore, modifying the existing css_sets will corrupt the hash
4221 	 * table state, so each changed css_set will need its hash recomputed.
4222 	 * this is all done under the css_set_lock.
4223 	 */
4224 	write_lock(&css_set_lock);
4225 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4226 		struct css_set *cg;
4227 		struct hlist_node *node, *tmp;
4228 		struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4229 
4230 		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4231 			/* skip entries that we already rehashed */
4232 			if (cg->subsys[ss->subsys_id])
4233 				continue;
4234 			/* remove existing entry */
4235 			hlist_del(&cg->hlist);
4236 			/* set new value */
4237 			cg->subsys[ss->subsys_id] = css;
4238 			/* recompute hash and restore entry */
4239 			new_bucket = css_set_hash(cg->subsys);
4240 			hlist_add_head(&cg->hlist, new_bucket);
4241 		}
4242 	}
4243 	write_unlock(&css_set_lock);
4244 
4245 	mutex_init(&ss->hierarchy_mutex);
4246 	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4247 	ss->active = 1;
4248 
4249 	/* success! */
4250 	mutex_unlock(&cgroup_mutex);
4251 	return 0;
4252 }
4253 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4254 
4255 /**
4256  * cgroup_unload_subsys: unload a modular subsystem
4257  * @ss: the subsystem to unload
4258  *
4259  * This function should be called in a modular subsystem's exitcall. When this
4260  * function is invoked, the refcount on the subsystem's module will be 0, so
4261  * the subsystem will not be attached to any hierarchy.
4262  */
cgroup_unload_subsys(struct cgroup_subsys * ss)4263 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4264 {
4265 	struct cg_cgroup_link *link;
4266 	struct hlist_head *hhead;
4267 
4268 	BUG_ON(ss->module == NULL);
4269 
4270 	/*
4271 	 * we shouldn't be called if the subsystem is in use, and the use of
4272 	 * try_module_get in parse_cgroupfs_options should ensure that it
4273 	 * doesn't start being used while we're killing it off.
4274 	 */
4275 	BUG_ON(ss->root != &rootnode);
4276 
4277 	mutex_lock(&cgroup_mutex);
4278 	/* deassign the subsys_id */
4279 	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4280 	subsys[ss->subsys_id] = NULL;
4281 
4282 	/* remove subsystem from rootnode's list of subsystems */
4283 	list_del_init(&ss->sibling);
4284 
4285 	/*
4286 	 * disentangle the css from all css_sets attached to the dummytop. as
4287 	 * in loading, we need to pay our respects to the hashtable gods.
4288 	 */
4289 	write_lock(&css_set_lock);
4290 	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4291 		struct css_set *cg = link->cg;
4292 
4293 		hlist_del(&cg->hlist);
4294 		BUG_ON(!cg->subsys[ss->subsys_id]);
4295 		cg->subsys[ss->subsys_id] = NULL;
4296 		hhead = css_set_hash(cg->subsys);
4297 		hlist_add_head(&cg->hlist, hhead);
4298 	}
4299 	write_unlock(&css_set_lock);
4300 
4301 	/*
4302 	 * remove subsystem's css from the dummytop and free it - need to free
4303 	 * before marking as null because ss->destroy needs the cgrp->subsys
4304 	 * pointer to find their state. note that this also takes care of
4305 	 * freeing the css_id.
4306 	 */
4307 	ss->destroy(ss, dummytop);
4308 	dummytop->subsys[ss->subsys_id] = NULL;
4309 
4310 	mutex_unlock(&cgroup_mutex);
4311 }
4312 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4313 
4314 /**
4315  * cgroup_init_early - cgroup initialization at system boot
4316  *
4317  * Initialize cgroups at system boot, and initialize any
4318  * subsystems that request early init.
4319  */
cgroup_init_early(void)4320 int __init cgroup_init_early(void)
4321 {
4322 	int i;
4323 	atomic_set(&init_css_set.refcount, 1);
4324 	INIT_LIST_HEAD(&init_css_set.cg_links);
4325 	INIT_LIST_HEAD(&init_css_set.tasks);
4326 	INIT_HLIST_NODE(&init_css_set.hlist);
4327 	css_set_count = 1;
4328 	init_cgroup_root(&rootnode);
4329 	root_count = 1;
4330 	init_task.cgroups = &init_css_set;
4331 
4332 	init_css_set_link.cg = &init_css_set;
4333 	init_css_set_link.cgrp = dummytop;
4334 	list_add(&init_css_set_link.cgrp_link_list,
4335 		 &rootnode.top_cgroup.css_sets);
4336 	list_add(&init_css_set_link.cg_link_list,
4337 		 &init_css_set.cg_links);
4338 
4339 	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4340 		INIT_HLIST_HEAD(&css_set_table[i]);
4341 
4342 	/* at bootup time, we don't worry about modular subsystems */
4343 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4344 		struct cgroup_subsys *ss = subsys[i];
4345 
4346 		BUG_ON(!ss->name);
4347 		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4348 		BUG_ON(!ss->create);
4349 		BUG_ON(!ss->destroy);
4350 		if (ss->subsys_id != i) {
4351 			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4352 			       ss->name, ss->subsys_id);
4353 			BUG();
4354 		}
4355 
4356 		if (ss->early_init)
4357 			cgroup_init_subsys(ss);
4358 	}
4359 	return 0;
4360 }
4361 
4362 /**
4363  * cgroup_init - cgroup initialization
4364  *
4365  * Register cgroup filesystem and /proc file, and initialize
4366  * any subsystems that didn't request early init.
4367  */
cgroup_init(void)4368 int __init cgroup_init(void)
4369 {
4370 	int err;
4371 	int i;
4372 	struct hlist_head *hhead;
4373 
4374 	err = bdi_init(&cgroup_backing_dev_info);
4375 	if (err)
4376 		return err;
4377 
4378 	/* at bootup time, we don't worry about modular subsystems */
4379 	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4380 		struct cgroup_subsys *ss = subsys[i];
4381 		if (!ss->early_init)
4382 			cgroup_init_subsys(ss);
4383 		if (ss->use_id)
4384 			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4385 	}
4386 
4387 	/* Add init_css_set to the hash table */
4388 	hhead = css_set_hash(init_css_set.subsys);
4389 	hlist_add_head(&init_css_set.hlist, hhead);
4390 	BUG_ON(!init_root_id(&rootnode));
4391 
4392 	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4393 	if (!cgroup_kobj) {
4394 		err = -ENOMEM;
4395 		goto out;
4396 	}
4397 
4398 	err = register_filesystem(&cgroup_fs_type);
4399 	if (err < 0) {
4400 		kobject_put(cgroup_kobj);
4401 		goto out;
4402 	}
4403 
4404 	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4405 
4406 out:
4407 	if (err)
4408 		bdi_destroy(&cgroup_backing_dev_info);
4409 
4410 	return err;
4411 }
4412 
4413 /*
4414  * proc_cgroup_show()
4415  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
4416  *  - Used for /proc/<pid>/cgroup.
4417  *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4418  *    doesn't really matter if tsk->cgroup changes after we read it,
4419  *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4420  *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
4421  *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4422  *    cgroup to top_cgroup.
4423  */
4424 
4425 /* TODO: Use a proper seq_file iterator */
proc_cgroup_show(struct seq_file * m,void * v)4426 static int proc_cgroup_show(struct seq_file *m, void *v)
4427 {
4428 	struct pid *pid;
4429 	struct task_struct *tsk;
4430 	char *buf;
4431 	int retval;
4432 	struct cgroupfs_root *root;
4433 
4434 	retval = -ENOMEM;
4435 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4436 	if (!buf)
4437 		goto out;
4438 
4439 	retval = -ESRCH;
4440 	pid = m->private;
4441 	tsk = get_pid_task(pid, PIDTYPE_PID);
4442 	if (!tsk)
4443 		goto out_free;
4444 
4445 	retval = 0;
4446 
4447 	mutex_lock(&cgroup_mutex);
4448 
4449 	for_each_active_root(root) {
4450 		struct cgroup_subsys *ss;
4451 		struct cgroup *cgrp;
4452 		int count = 0;
4453 
4454 		seq_printf(m, "%d:", root->hierarchy_id);
4455 		for_each_subsys(root, ss)
4456 			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4457 		if (strlen(root->name))
4458 			seq_printf(m, "%sname=%s", count ? "," : "",
4459 				   root->name);
4460 		seq_putc(m, ':');
4461 		cgrp = task_cgroup_from_root(tsk, root);
4462 		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4463 		if (retval < 0)
4464 			goto out_unlock;
4465 		seq_puts(m, buf);
4466 		seq_putc(m, '\n');
4467 	}
4468 
4469 out_unlock:
4470 	mutex_unlock(&cgroup_mutex);
4471 	put_task_struct(tsk);
4472 out_free:
4473 	kfree(buf);
4474 out:
4475 	return retval;
4476 }
4477 
cgroup_open(struct inode * inode,struct file * file)4478 static int cgroup_open(struct inode *inode, struct file *file)
4479 {
4480 	struct pid *pid = PROC_I(inode)->pid;
4481 	return single_open(file, proc_cgroup_show, pid);
4482 }
4483 
4484 const struct file_operations proc_cgroup_operations = {
4485 	.open		= cgroup_open,
4486 	.read		= seq_read,
4487 	.llseek		= seq_lseek,
4488 	.release	= single_release,
4489 };
4490 
4491 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)4492 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4493 {
4494 	int i;
4495 
4496 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4497 	/*
4498 	 * ideally we don't want subsystems moving around while we do this.
4499 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4500 	 * subsys/hierarchy state.
4501 	 */
4502 	mutex_lock(&cgroup_mutex);
4503 	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4504 		struct cgroup_subsys *ss = subsys[i];
4505 		if (ss == NULL)
4506 			continue;
4507 		seq_printf(m, "%s\t%d\t%d\t%d\n",
4508 			   ss->name, ss->root->hierarchy_id,
4509 			   ss->root->number_of_cgroups, !ss->disabled);
4510 	}
4511 	mutex_unlock(&cgroup_mutex);
4512 	return 0;
4513 }
4514 
cgroupstats_open(struct inode * inode,struct file * file)4515 static int cgroupstats_open(struct inode *inode, struct file *file)
4516 {
4517 	return single_open(file, proc_cgroupstats_show, NULL);
4518 }
4519 
4520 static const struct file_operations proc_cgroupstats_operations = {
4521 	.open = cgroupstats_open,
4522 	.read = seq_read,
4523 	.llseek = seq_lseek,
4524 	.release = single_release,
4525 };
4526 
4527 /**
4528  * cgroup_fork - attach newly forked task to its parents cgroup.
4529  * @child: pointer to task_struct of forking parent process.
4530  *
4531  * Description: A task inherits its parent's cgroup at fork().
4532  *
4533  * A pointer to the shared css_set was automatically copied in
4534  * fork.c by dup_task_struct().  However, we ignore that copy, since
4535  * it was not made under the protection of RCU, cgroup_mutex or
4536  * threadgroup_change_begin(), so it might no longer be a valid
4537  * cgroup pointer.  cgroup_attach_task() might have already changed
4538  * current->cgroups, allowing the previously referenced cgroup
4539  * group to be removed and freed.
4540  *
4541  * Outside the pointer validity we also need to process the css_set
4542  * inheritance between threadgoup_change_begin() and
4543  * threadgoup_change_end(), this way there is no leak in any process
4544  * wide migration performed by cgroup_attach_proc() that could otherwise
4545  * miss a thread because it is too early or too late in the fork stage.
4546  *
4547  * At the point that cgroup_fork() is called, 'current' is the parent
4548  * task, and the passed argument 'child' points to the child task.
4549  */
cgroup_fork(struct task_struct * child)4550 void cgroup_fork(struct task_struct *child)
4551 {
4552 	/*
4553 	 * We don't need to task_lock() current because current->cgroups
4554 	 * can't be changed concurrently here. The parent obviously hasn't
4555 	 * exited and called cgroup_exit(), and we are synchronized against
4556 	 * cgroup migration through threadgroup_change_begin().
4557 	 */
4558 	child->cgroups = current->cgroups;
4559 	get_css_set(child->cgroups);
4560 	INIT_LIST_HEAD(&child->cg_list);
4561 }
4562 
4563 /**
4564  * cgroup_fork_callbacks - run fork callbacks
4565  * @child: the new task
4566  *
4567  * Called on a new task very soon before adding it to the
4568  * tasklist. No need to take any locks since no-one can
4569  * be operating on this task.
4570  */
cgroup_fork_callbacks(struct task_struct * child)4571 void cgroup_fork_callbacks(struct task_struct *child)
4572 {
4573 	if (need_forkexit_callback) {
4574 		int i;
4575 		/*
4576 		 * forkexit callbacks are only supported for builtin
4577 		 * subsystems, and the builtin section of the subsys array is
4578 		 * immutable, so we don't need to lock the subsys array here.
4579 		 */
4580 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4581 			struct cgroup_subsys *ss = subsys[i];
4582 			if (ss->fork)
4583 				ss->fork(ss, child);
4584 		}
4585 	}
4586 }
4587 
4588 /**
4589  * cgroup_post_fork - called on a new task after adding it to the task list
4590  * @child: the task in question
4591  *
4592  * Adds the task to the list running through its css_set if necessary.
4593  * Has to be after the task is visible on the task list in case we race
4594  * with the first call to cgroup_iter_start() - to guarantee that the
4595  * new task ends up on its list.
4596  */
cgroup_post_fork(struct task_struct * child)4597 void cgroup_post_fork(struct task_struct *child)
4598 {
4599 	if (use_task_css_set_links) {
4600 		write_lock(&css_set_lock);
4601 		if (list_empty(&child->cg_list)) {
4602 			/*
4603 			 * It's safe to use child->cgroups without task_lock()
4604 			 * here because we are protected through
4605 			 * threadgroup_change_begin() against concurrent
4606 			 * css_set change in cgroup_task_migrate(). Also
4607 			 * the task can't exit at that point until
4608 			 * wake_up_new_task() is called, so we are protected
4609 			 * against cgroup_exit() setting child->cgroup to
4610 			 * init_css_set.
4611 			 */
4612 			list_add(&child->cg_list, &child->cgroups->tasks);
4613 		}
4614 		write_unlock(&css_set_lock);
4615 	}
4616 }
4617 /**
4618  * cgroup_exit - detach cgroup from exiting task
4619  * @tsk: pointer to task_struct of exiting process
4620  * @run_callback: run exit callbacks?
4621  *
4622  * Description: Detach cgroup from @tsk and release it.
4623  *
4624  * Note that cgroups marked notify_on_release force every task in
4625  * them to take the global cgroup_mutex mutex when exiting.
4626  * This could impact scaling on very large systems.  Be reluctant to
4627  * use notify_on_release cgroups where very high task exit scaling
4628  * is required on large systems.
4629  *
4630  * the_top_cgroup_hack:
4631  *
4632  *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4633  *
4634  *    We call cgroup_exit() while the task is still competent to
4635  *    handle notify_on_release(), then leave the task attached to the
4636  *    root cgroup in each hierarchy for the remainder of its exit.
4637  *
4638  *    To do this properly, we would increment the reference count on
4639  *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
4640  *    code we would add a second cgroup function call, to drop that
4641  *    reference.  This would just create an unnecessary hot spot on
4642  *    the top_cgroup reference count, to no avail.
4643  *
4644  *    Normally, holding a reference to a cgroup without bumping its
4645  *    count is unsafe.   The cgroup could go away, or someone could
4646  *    attach us to a different cgroup, decrementing the count on
4647  *    the first cgroup that we never incremented.  But in this case,
4648  *    top_cgroup isn't going away, and either task has PF_EXITING set,
4649  *    which wards off any cgroup_attach_task() attempts, or task is a failed
4650  *    fork, never visible to cgroup_attach_task.
4651  */
cgroup_exit(struct task_struct * tsk,int run_callbacks)4652 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4653 {
4654 	struct css_set *cg;
4655 	int i;
4656 
4657 	/*
4658 	 * Unlink from the css_set task list if necessary.
4659 	 * Optimistically check cg_list before taking
4660 	 * css_set_lock
4661 	 */
4662 	if (!list_empty(&tsk->cg_list)) {
4663 		write_lock(&css_set_lock);
4664 		if (!list_empty(&tsk->cg_list))
4665 			list_del_init(&tsk->cg_list);
4666 		write_unlock(&css_set_lock);
4667 	}
4668 
4669 	/* Reassign the task to the init_css_set. */
4670 	task_lock(tsk);
4671 	cg = tsk->cgroups;
4672 	tsk->cgroups = &init_css_set;
4673 
4674 	if (run_callbacks && need_forkexit_callback) {
4675 		/*
4676 		 * modular subsystems can't use callbacks, so no need to lock
4677 		 * the subsys array
4678 		 */
4679 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4680 			struct cgroup_subsys *ss = subsys[i];
4681 			if (ss->exit) {
4682 				struct cgroup *old_cgrp =
4683 					rcu_dereference_raw(cg->subsys[i])->cgroup;
4684 				struct cgroup *cgrp = task_cgroup(tsk, i);
4685 				ss->exit(ss, cgrp, old_cgrp, tsk);
4686 			}
4687 		}
4688 	}
4689 	task_unlock(tsk);
4690 
4691 	if (cg)
4692 		put_css_set_taskexit(cg);
4693 }
4694 
4695 /**
4696  * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4697  * @cgrp: the cgroup in question
4698  * @task: the task in question
4699  *
4700  * See if @cgrp is a descendant of @task's cgroup in the appropriate
4701  * hierarchy.
4702  *
4703  * If we are sending in dummytop, then presumably we are creating
4704  * the top cgroup in the subsystem.
4705  *
4706  * Called only by the ns (nsproxy) cgroup.
4707  */
cgroup_is_descendant(const struct cgroup * cgrp,struct task_struct * task)4708 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4709 {
4710 	int ret;
4711 	struct cgroup *target;
4712 
4713 	if (cgrp == dummytop)
4714 		return 1;
4715 
4716 	target = task_cgroup_from_root(task, cgrp->root);
4717 	while (cgrp != target && cgrp!= cgrp->top_cgroup)
4718 		cgrp = cgrp->parent;
4719 	ret = (cgrp == target);
4720 	return ret;
4721 }
4722 
check_for_release(struct cgroup * cgrp)4723 static void check_for_release(struct cgroup *cgrp)
4724 {
4725 	/* All of these checks rely on RCU to keep the cgroup
4726 	 * structure alive */
4727 	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4728 	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4729 		/* Control Group is currently removeable. If it's not
4730 		 * already queued for a userspace notification, queue
4731 		 * it now */
4732 		int need_schedule_work = 0;
4733 		raw_spin_lock(&release_list_lock);
4734 		if (!cgroup_is_removed(cgrp) &&
4735 		    list_empty(&cgrp->release_list)) {
4736 			list_add(&cgrp->release_list, &release_list);
4737 			need_schedule_work = 1;
4738 		}
4739 		raw_spin_unlock(&release_list_lock);
4740 		if (need_schedule_work)
4741 			schedule_work(&release_agent_work);
4742 	}
4743 }
4744 
4745 /* Caller must verify that the css is not for root cgroup */
__css_put(struct cgroup_subsys_state * css,int count)4746 void __css_put(struct cgroup_subsys_state *css, int count)
4747 {
4748 	struct cgroup *cgrp = css->cgroup;
4749 	int val;
4750 	rcu_read_lock();
4751 	val = atomic_sub_return(count, &css->refcnt);
4752 	if (val == 1) {
4753 		if (notify_on_release(cgrp)) {
4754 			set_bit(CGRP_RELEASABLE, &cgrp->flags);
4755 			check_for_release(cgrp);
4756 		}
4757 		cgroup_wakeup_rmdir_waiter(cgrp);
4758 	}
4759 	rcu_read_unlock();
4760 	WARN_ON_ONCE(val < 1);
4761 }
4762 EXPORT_SYMBOL_GPL(__css_put);
4763 
4764 /*
4765  * Notify userspace when a cgroup is released, by running the
4766  * configured release agent with the name of the cgroup (path
4767  * relative to the root of cgroup file system) as the argument.
4768  *
4769  * Most likely, this user command will try to rmdir this cgroup.
4770  *
4771  * This races with the possibility that some other task will be
4772  * attached to this cgroup before it is removed, or that some other
4773  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
4774  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4775  * unused, and this cgroup will be reprieved from its death sentence,
4776  * to continue to serve a useful existence.  Next time it's released,
4777  * we will get notified again, if it still has 'notify_on_release' set.
4778  *
4779  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4780  * means only wait until the task is successfully execve()'d.  The
4781  * separate release agent task is forked by call_usermodehelper(),
4782  * then control in this thread returns here, without waiting for the
4783  * release agent task.  We don't bother to wait because the caller of
4784  * this routine has no use for the exit status of the release agent
4785  * task, so no sense holding our caller up for that.
4786  */
cgroup_release_agent(struct work_struct * work)4787 static void cgroup_release_agent(struct work_struct *work)
4788 {
4789 	BUG_ON(work != &release_agent_work);
4790 	mutex_lock(&cgroup_mutex);
4791 	raw_spin_lock(&release_list_lock);
4792 	while (!list_empty(&release_list)) {
4793 		char *argv[3], *envp[3];
4794 		int i;
4795 		char *pathbuf = NULL, *agentbuf = NULL;
4796 		struct cgroup *cgrp = list_entry(release_list.next,
4797 						    struct cgroup,
4798 						    release_list);
4799 		list_del_init(&cgrp->release_list);
4800 		raw_spin_unlock(&release_list_lock);
4801 		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4802 		if (!pathbuf)
4803 			goto continue_free;
4804 		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4805 			goto continue_free;
4806 		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4807 		if (!agentbuf)
4808 			goto continue_free;
4809 
4810 		i = 0;
4811 		argv[i++] = agentbuf;
4812 		argv[i++] = pathbuf;
4813 		argv[i] = NULL;
4814 
4815 		i = 0;
4816 		/* minimal command environment */
4817 		envp[i++] = "HOME=/";
4818 		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4819 		envp[i] = NULL;
4820 
4821 		/* Drop the lock while we invoke the usermode helper,
4822 		 * since the exec could involve hitting disk and hence
4823 		 * be a slow process */
4824 		mutex_unlock(&cgroup_mutex);
4825 		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4826 		mutex_lock(&cgroup_mutex);
4827  continue_free:
4828 		kfree(pathbuf);
4829 		kfree(agentbuf);
4830 		raw_spin_lock(&release_list_lock);
4831 	}
4832 	raw_spin_unlock(&release_list_lock);
4833 	mutex_unlock(&cgroup_mutex);
4834 }
4835 
cgroup_disable(char * str)4836 static int __init cgroup_disable(char *str)
4837 {
4838 	int i;
4839 	char *token;
4840 
4841 	while ((token = strsep(&str, ",")) != NULL) {
4842 		if (!*token)
4843 			continue;
4844 		/*
4845 		 * cgroup_disable, being at boot time, can't know about module
4846 		 * subsystems, so we don't worry about them.
4847 		 */
4848 		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4849 			struct cgroup_subsys *ss = subsys[i];
4850 
4851 			if (!strcmp(token, ss->name)) {
4852 				ss->disabled = 1;
4853 				printk(KERN_INFO "Disabling %s control group"
4854 					" subsystem\n", ss->name);
4855 				break;
4856 			}
4857 		}
4858 	}
4859 	return 1;
4860 }
4861 __setup("cgroup_disable=", cgroup_disable);
4862 
4863 /*
4864  * Functons for CSS ID.
4865  */
4866 
4867 /*
4868  *To get ID other than 0, this should be called when !cgroup_is_removed().
4869  */
css_id(struct cgroup_subsys_state * css)4870 unsigned short css_id(struct cgroup_subsys_state *css)
4871 {
4872 	struct css_id *cssid;
4873 
4874 	/*
4875 	 * This css_id() can return correct value when somone has refcnt
4876 	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4877 	 * it's unchanged until freed.
4878 	 */
4879 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4880 
4881 	if (cssid)
4882 		return cssid->id;
4883 	return 0;
4884 }
4885 EXPORT_SYMBOL_GPL(css_id);
4886 
css_depth(struct cgroup_subsys_state * css)4887 unsigned short css_depth(struct cgroup_subsys_state *css)
4888 {
4889 	struct css_id *cssid;
4890 
4891 	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4892 
4893 	if (cssid)
4894 		return cssid->depth;
4895 	return 0;
4896 }
4897 EXPORT_SYMBOL_GPL(css_depth);
4898 
4899 /**
4900  *  css_is_ancestor - test "root" css is an ancestor of "child"
4901  * @child: the css to be tested.
4902  * @root: the css supporsed to be an ancestor of the child.
4903  *
4904  * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4905  * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4906  * But, considering usual usage, the csses should be valid objects after test.
4907  * Assuming that the caller will do some action to the child if this returns
4908  * returns true, the caller must take "child";s reference count.
4909  * If "child" is valid object and this returns true, "root" is valid, too.
4910  */
4911 
css_is_ancestor(struct cgroup_subsys_state * child,const struct cgroup_subsys_state * root)4912 bool css_is_ancestor(struct cgroup_subsys_state *child,
4913 		    const struct cgroup_subsys_state *root)
4914 {
4915 	struct css_id *child_id;
4916 	struct css_id *root_id;
4917 	bool ret = true;
4918 
4919 	rcu_read_lock();
4920 	child_id  = rcu_dereference(child->id);
4921 	root_id = rcu_dereference(root->id);
4922 	if (!child_id
4923 	    || !root_id
4924 	    || (child_id->depth < root_id->depth)
4925 	    || (child_id->stack[root_id->depth] != root_id->id))
4926 		ret = false;
4927 	rcu_read_unlock();
4928 	return ret;
4929 }
4930 
free_css_id(struct cgroup_subsys * ss,struct cgroup_subsys_state * css)4931 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4932 {
4933 	struct css_id *id = css->id;
4934 	/* When this is called before css_id initialization, id can be NULL */
4935 	if (!id)
4936 		return;
4937 
4938 	BUG_ON(!ss->use_id);
4939 
4940 	rcu_assign_pointer(id->css, NULL);
4941 	rcu_assign_pointer(css->id, NULL);
4942 	write_lock(&ss->id_lock);
4943 	idr_remove(&ss->idr, id->id);
4944 	write_unlock(&ss->id_lock);
4945 	kfree_rcu(id, rcu_head);
4946 }
4947 EXPORT_SYMBOL_GPL(free_css_id);
4948 
4949 /*
4950  * This is called by init or create(). Then, calls to this function are
4951  * always serialized (By cgroup_mutex() at create()).
4952  */
4953 
get_new_cssid(struct cgroup_subsys * ss,int depth)4954 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4955 {
4956 	struct css_id *newid;
4957 	int myid, error, size;
4958 
4959 	BUG_ON(!ss->use_id);
4960 
4961 	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4962 	newid = kzalloc(size, GFP_KERNEL);
4963 	if (!newid)
4964 		return ERR_PTR(-ENOMEM);
4965 	/* get id */
4966 	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4967 		error = -ENOMEM;
4968 		goto err_out;
4969 	}
4970 	write_lock(&ss->id_lock);
4971 	/* Don't use 0. allocates an ID of 1-65535 */
4972 	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4973 	write_unlock(&ss->id_lock);
4974 
4975 	/* Returns error when there are no free spaces for new ID.*/
4976 	if (error) {
4977 		error = -ENOSPC;
4978 		goto err_out;
4979 	}
4980 	if (myid > CSS_ID_MAX)
4981 		goto remove_idr;
4982 
4983 	newid->id = myid;
4984 	newid->depth = depth;
4985 	return newid;
4986 remove_idr:
4987 	error = -ENOSPC;
4988 	write_lock(&ss->id_lock);
4989 	idr_remove(&ss->idr, myid);
4990 	write_unlock(&ss->id_lock);
4991 err_out:
4992 	kfree(newid);
4993 	return ERR_PTR(error);
4994 
4995 }
4996 
cgroup_init_idr(struct cgroup_subsys * ss,struct cgroup_subsys_state * rootcss)4997 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4998 					    struct cgroup_subsys_state *rootcss)
4999 {
5000 	struct css_id *newid;
5001 
5002 	rwlock_init(&ss->id_lock);
5003 	idr_init(&ss->idr);
5004 
5005 	newid = get_new_cssid(ss, 0);
5006 	if (IS_ERR(newid))
5007 		return PTR_ERR(newid);
5008 
5009 	newid->stack[0] = newid->id;
5010 	newid->css = rootcss;
5011 	rootcss->id = newid;
5012 	return 0;
5013 }
5014 
alloc_css_id(struct cgroup_subsys * ss,struct cgroup * parent,struct cgroup * child)5015 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5016 			struct cgroup *child)
5017 {
5018 	int subsys_id, i, depth = 0;
5019 	struct cgroup_subsys_state *parent_css, *child_css;
5020 	struct css_id *child_id, *parent_id;
5021 
5022 	subsys_id = ss->subsys_id;
5023 	parent_css = parent->subsys[subsys_id];
5024 	child_css = child->subsys[subsys_id];
5025 	parent_id = parent_css->id;
5026 	depth = parent_id->depth + 1;
5027 
5028 	child_id = get_new_cssid(ss, depth);
5029 	if (IS_ERR(child_id))
5030 		return PTR_ERR(child_id);
5031 
5032 	for (i = 0; i < depth; i++)
5033 		child_id->stack[i] = parent_id->stack[i];
5034 	child_id->stack[depth] = child_id->id;
5035 	/*
5036 	 * child_id->css pointer will be set after this cgroup is available
5037 	 * see cgroup_populate_dir()
5038 	 */
5039 	rcu_assign_pointer(child_css->id, child_id);
5040 
5041 	return 0;
5042 }
5043 
5044 /**
5045  * css_lookup - lookup css by id
5046  * @ss: cgroup subsys to be looked into.
5047  * @id: the id
5048  *
5049  * Returns pointer to cgroup_subsys_state if there is valid one with id.
5050  * NULL if not. Should be called under rcu_read_lock()
5051  */
css_lookup(struct cgroup_subsys * ss,int id)5052 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5053 {
5054 	struct css_id *cssid = NULL;
5055 
5056 	BUG_ON(!ss->use_id);
5057 	cssid = idr_find(&ss->idr, id);
5058 
5059 	if (unlikely(!cssid))
5060 		return NULL;
5061 
5062 	return rcu_dereference(cssid->css);
5063 }
5064 EXPORT_SYMBOL_GPL(css_lookup);
5065 
5066 /**
5067  * css_get_next - lookup next cgroup under specified hierarchy.
5068  * @ss: pointer to subsystem
5069  * @id: current position of iteration.
5070  * @root: pointer to css. search tree under this.
5071  * @foundid: position of found object.
5072  *
5073  * Search next css under the specified hierarchy of rootid. Calling under
5074  * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5075  */
5076 struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys * ss,int id,struct cgroup_subsys_state * root,int * foundid)5077 css_get_next(struct cgroup_subsys *ss, int id,
5078 	     struct cgroup_subsys_state *root, int *foundid)
5079 {
5080 	struct cgroup_subsys_state *ret = NULL;
5081 	struct css_id *tmp;
5082 	int tmpid;
5083 	int rootid = css_id(root);
5084 	int depth = css_depth(root);
5085 
5086 	if (!rootid)
5087 		return NULL;
5088 
5089 	BUG_ON(!ss->use_id);
5090 	/* fill start point for scan */
5091 	tmpid = id;
5092 	while (1) {
5093 		/*
5094 		 * scan next entry from bitmap(tree), tmpid is updated after
5095 		 * idr_get_next().
5096 		 */
5097 		read_lock(&ss->id_lock);
5098 		tmp = idr_get_next(&ss->idr, &tmpid);
5099 		read_unlock(&ss->id_lock);
5100 
5101 		if (!tmp)
5102 			break;
5103 		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5104 			ret = rcu_dereference(tmp->css);
5105 			if (ret) {
5106 				*foundid = tmpid;
5107 				break;
5108 			}
5109 		}
5110 		/* continue to scan from next id */
5111 		tmpid = tmpid + 1;
5112 	}
5113 	return ret;
5114 }
5115 
5116 /*
5117  * get corresponding css from file open on cgroupfs directory
5118  */
cgroup_css_from_dir(struct file * f,int id)5119 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5120 {
5121 	struct cgroup *cgrp;
5122 	struct inode *inode;
5123 	struct cgroup_subsys_state *css;
5124 
5125 	inode = f->f_dentry->d_inode;
5126 	/* check in cgroup filesystem dir */
5127 	if (inode->i_op != &cgroup_dir_inode_operations)
5128 		return ERR_PTR(-EBADF);
5129 
5130 	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5131 		return ERR_PTR(-EINVAL);
5132 
5133 	/* get cgroup */
5134 	cgrp = __d_cgrp(f->f_dentry);
5135 	css = cgrp->subsys[id];
5136 	return css ? css : ERR_PTR(-ENOENT);
5137 }
5138 
5139 #ifdef CONFIG_CGROUP_DEBUG
debug_create(struct cgroup_subsys * ss,struct cgroup * cont)5140 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5141 						   struct cgroup *cont)
5142 {
5143 	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5144 
5145 	if (!css)
5146 		return ERR_PTR(-ENOMEM);
5147 
5148 	return css;
5149 }
5150 
debug_destroy(struct cgroup_subsys * ss,struct cgroup * cont)5151 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5152 {
5153 	kfree(cont->subsys[debug_subsys_id]);
5154 }
5155 
cgroup_refcount_read(struct cgroup * cont,struct cftype * cft)5156 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5157 {
5158 	return atomic_read(&cont->count);
5159 }
5160 
debug_taskcount_read(struct cgroup * cont,struct cftype * cft)5161 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5162 {
5163 	return cgroup_task_count(cont);
5164 }
5165 
current_css_set_read(struct cgroup * cont,struct cftype * cft)5166 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5167 {
5168 	return (u64)(unsigned long)current->cgroups;
5169 }
5170 
current_css_set_refcount_read(struct cgroup * cont,struct cftype * cft)5171 static u64 current_css_set_refcount_read(struct cgroup *cont,
5172 					   struct cftype *cft)
5173 {
5174 	u64 count;
5175 
5176 	rcu_read_lock();
5177 	count = atomic_read(&current->cgroups->refcount);
5178 	rcu_read_unlock();
5179 	return count;
5180 }
5181 
current_css_set_cg_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5182 static int current_css_set_cg_links_read(struct cgroup *cont,
5183 					 struct cftype *cft,
5184 					 struct seq_file *seq)
5185 {
5186 	struct cg_cgroup_link *link;
5187 	struct css_set *cg;
5188 
5189 	read_lock(&css_set_lock);
5190 	rcu_read_lock();
5191 	cg = rcu_dereference(current->cgroups);
5192 	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5193 		struct cgroup *c = link->cgrp;
5194 		const char *name;
5195 
5196 		if (c->dentry)
5197 			name = c->dentry->d_name.name;
5198 		else
5199 			name = "?";
5200 		seq_printf(seq, "Root %d group %s\n",
5201 			   c->root->hierarchy_id, name);
5202 	}
5203 	rcu_read_unlock();
5204 	read_unlock(&css_set_lock);
5205 	return 0;
5206 }
5207 
5208 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)5209 static int cgroup_css_links_read(struct cgroup *cont,
5210 				 struct cftype *cft,
5211 				 struct seq_file *seq)
5212 {
5213 	struct cg_cgroup_link *link;
5214 
5215 	read_lock(&css_set_lock);
5216 	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5217 		struct css_set *cg = link->cg;
5218 		struct task_struct *task;
5219 		int count = 0;
5220 		seq_printf(seq, "css_set %p\n", cg);
5221 		list_for_each_entry(task, &cg->tasks, cg_list) {
5222 			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5223 				seq_puts(seq, "  ...\n");
5224 				break;
5225 			} else {
5226 				seq_printf(seq, "  task %d\n",
5227 					   task_pid_vnr(task));
5228 			}
5229 		}
5230 	}
5231 	read_unlock(&css_set_lock);
5232 	return 0;
5233 }
5234 
releasable_read(struct cgroup * cgrp,struct cftype * cft)5235 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5236 {
5237 	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5238 }
5239 
5240 static struct cftype debug_files[] =  {
5241 	{
5242 		.name = "cgroup_refcount",
5243 		.read_u64 = cgroup_refcount_read,
5244 	},
5245 	{
5246 		.name = "taskcount",
5247 		.read_u64 = debug_taskcount_read,
5248 	},
5249 
5250 	{
5251 		.name = "current_css_set",
5252 		.read_u64 = current_css_set_read,
5253 	},
5254 
5255 	{
5256 		.name = "current_css_set_refcount",
5257 		.read_u64 = current_css_set_refcount_read,
5258 	},
5259 
5260 	{
5261 		.name = "current_css_set_cg_links",
5262 		.read_seq_string = current_css_set_cg_links_read,
5263 	},
5264 
5265 	{
5266 		.name = "cgroup_css_links",
5267 		.read_seq_string = cgroup_css_links_read,
5268 	},
5269 
5270 	{
5271 		.name = "releasable",
5272 		.read_u64 = releasable_read,
5273 	},
5274 };
5275 
debug_populate(struct cgroup_subsys * ss,struct cgroup * cont)5276 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5277 {
5278 	return cgroup_add_files(cont, ss, debug_files,
5279 				ARRAY_SIZE(debug_files));
5280 }
5281 
5282 struct cgroup_subsys debug_subsys = {
5283 	.name = "debug",
5284 	.create = debug_create,
5285 	.destroy = debug_destroy,
5286 	.populate = debug_populate,
5287 	.subsys_id = debug_subsys_id,
5288 };
5289 #endif /* CONFIG_CGROUP_DEBUG */
5290