1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Symmetric key ciphers.
4 *
5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/atomic.h>
12 #include <linux/container_of.h>
13 #include <linux/crypto.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17
18 /* Set this bit if the lskcipher operation is a continuation. */
19 #define CRYPTO_LSKCIPHER_FLAG_CONT 0x00000001
20 /* Set this bit if the lskcipher operation is final. */
21 #define CRYPTO_LSKCIPHER_FLAG_FINAL 0x00000002
22 /* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */
23
24 /* Set this bit if the skcipher operation is a continuation. */
25 #define CRYPTO_SKCIPHER_REQ_CONT 0x00000001
26 /* Set this bit if the skcipher operation is not final. */
27 #define CRYPTO_SKCIPHER_REQ_NOTFINAL 0x00000002
28
29 struct scatterlist;
30
31 /**
32 * struct skcipher_request - Symmetric key cipher request
33 * @cryptlen: Number of bytes to encrypt or decrypt
34 * @iv: Initialisation Vector
35 * @src: Source SG list
36 * @dst: Destination SG list
37 * @base: Underlying async request
38 * @__ctx: Start of private context data
39 */
40 struct skcipher_request {
41 unsigned int cryptlen;
42
43 u8 *iv;
44
45 struct scatterlist *src;
46 struct scatterlist *dst;
47
48 struct crypto_async_request base;
49
50 void *__ctx[] CRYPTO_MINALIGN_ATTR;
51 };
52
53 struct crypto_skcipher {
54 unsigned int reqsize;
55
56 struct crypto_tfm base;
57 };
58
59 struct crypto_sync_skcipher {
60 struct crypto_skcipher base;
61 };
62
63 struct crypto_lskcipher {
64 struct crypto_tfm base;
65 };
66
67 /*
68 * struct skcipher_alg_common - common properties of skcipher_alg
69 * @min_keysize: Minimum key size supported by the transformation. This is the
70 * smallest key length supported by this transformation algorithm.
71 * This must be set to one of the pre-defined values as this is
72 * not hardware specific. Possible values for this field can be
73 * found via git grep "_MIN_KEY_SIZE" include/crypto/
74 * @max_keysize: Maximum key size supported by the transformation. This is the
75 * largest key length supported by this transformation algorithm.
76 * This must be set to one of the pre-defined values as this is
77 * not hardware specific. Possible values for this field can be
78 * found via git grep "_MAX_KEY_SIZE" include/crypto/
79 * @ivsize: IV size applicable for transformation. The consumer must provide an
80 * IV of exactly that size to perform the encrypt or decrypt operation.
81 * @chunksize: Equal to the block size except for stream ciphers such as
82 * CTR where it is set to the underlying block size.
83 * @statesize: Size of the internal state for the algorithm.
84 * @base: Definition of a generic crypto algorithm.
85 */
86 #define SKCIPHER_ALG_COMMON { \
87 unsigned int min_keysize; \
88 unsigned int max_keysize; \
89 unsigned int ivsize; \
90 unsigned int chunksize; \
91 unsigned int statesize; \
92 \
93 struct crypto_alg base; \
94 }
95 struct skcipher_alg_common SKCIPHER_ALG_COMMON;
96
97 /**
98 * struct skcipher_alg - symmetric key cipher definition
99 * @setkey: Set key for the transformation. This function is used to either
100 * program a supplied key into the hardware or store the key in the
101 * transformation context for programming it later. Note that this
102 * function does modify the transformation context. This function can
103 * be called multiple times during the existence of the transformation
104 * object, so one must make sure the key is properly reprogrammed into
105 * the hardware. This function is also responsible for checking the key
106 * length for validity. In case a software fallback was put in place in
107 * the @cra_init call, this function might need to use the fallback if
108 * the algorithm doesn't support all of the key sizes.
109 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
110 * the supplied scatterlist containing the blocks of data. The crypto
111 * API consumer is responsible for aligning the entries of the
112 * scatterlist properly and making sure the chunks are correctly
113 * sized. In case a software fallback was put in place in the
114 * @cra_init call, this function might need to use the fallback if
115 * the algorithm doesn't support all of the key sizes. In case the
116 * key was stored in transformation context, the key might need to be
117 * re-programmed into the hardware in this function. This function
118 * shall not modify the transformation context, as this function may
119 * be called in parallel with the same transformation object.
120 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
121 * and the conditions are exactly the same.
122 * @export: Export partial state of the transformation. This function dumps the
123 * entire state of the ongoing transformation into a provided block of
124 * data so it can be @import 'ed back later on. This is useful in case
125 * you want to save partial result of the transformation after
126 * processing certain amount of data and reload this partial result
127 * multiple times later on for multiple re-use. No data processing
128 * happens at this point.
129 * @import: Import partial state of the transformation. This function loads the
130 * entire state of the ongoing transformation from a provided block of
131 * data so the transformation can continue from this point onward. No
132 * data processing happens at this point.
133 * @init: Initialize the cryptographic transformation object. This function
134 * is used to initialize the cryptographic transformation object.
135 * This function is called only once at the instantiation time, right
136 * after the transformation context was allocated. In case the
137 * cryptographic hardware has some special requirements which need to
138 * be handled by software, this function shall check for the precise
139 * requirement of the transformation and put any software fallbacks
140 * in place.
141 * @exit: Deinitialize the cryptographic transformation object. This is a
142 * counterpart to @init, used to remove various changes set in
143 * @init.
144 * @walksize: Equal to the chunk size except in cases where the algorithm is
145 * considerably more efficient if it can operate on multiple chunks
146 * in parallel. Should be a multiple of chunksize.
147 * @co: see struct skcipher_alg_common
148 *
149 * All fields except @ivsize are mandatory and must be filled.
150 */
151 struct skcipher_alg {
152 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
153 unsigned int keylen);
154 int (*encrypt)(struct skcipher_request *req);
155 int (*decrypt)(struct skcipher_request *req);
156 int (*export)(struct skcipher_request *req, void *out);
157 int (*import)(struct skcipher_request *req, const void *in);
158 int (*init)(struct crypto_skcipher *tfm);
159 void (*exit)(struct crypto_skcipher *tfm);
160
161 unsigned int walksize;
162
163 union {
164 struct SKCIPHER_ALG_COMMON;
165 struct skcipher_alg_common co;
166 };
167 };
168
169 /**
170 * struct lskcipher_alg - linear symmetric key cipher definition
171 * @setkey: Set key for the transformation. This function is used to either
172 * program a supplied key into the hardware or store the key in the
173 * transformation context for programming it later. Note that this
174 * function does modify the transformation context. This function can
175 * be called multiple times during the existence of the transformation
176 * object, so one must make sure the key is properly reprogrammed into
177 * the hardware. This function is also responsible for checking the key
178 * length for validity. In case a software fallback was put in place in
179 * the @cra_init call, this function might need to use the fallback if
180 * the algorithm doesn't support all of the key sizes.
181 * @encrypt: Encrypt a number of bytes. This function is used to encrypt
182 * the supplied data. This function shall not modify
183 * the transformation context, as this function may be called
184 * in parallel with the same transformation object. Data
185 * may be left over if length is not a multiple of blocks
186 * and there is more to come (final == false). The number of
187 * left-over bytes should be returned in case of success.
188 * The siv field shall be as long as ivsize + statesize with
189 * the IV placed at the front. The state will be used by the
190 * algorithm internally.
191 * @decrypt: Decrypt a number of bytes. This is a reverse counterpart to
192 * @encrypt and the conditions are exactly the same.
193 * @init: Initialize the cryptographic transformation object. This function
194 * is used to initialize the cryptographic transformation object.
195 * This function is called only once at the instantiation time, right
196 * after the transformation context was allocated.
197 * @exit: Deinitialize the cryptographic transformation object. This is a
198 * counterpart to @init, used to remove various changes set in
199 * @init.
200 * @co: see struct skcipher_alg_common
201 */
202 struct lskcipher_alg {
203 int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key,
204 unsigned int keylen);
205 int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src,
206 u8 *dst, unsigned len, u8 *siv, u32 flags);
207 int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src,
208 u8 *dst, unsigned len, u8 *siv, u32 flags);
209 int (*init)(struct crypto_lskcipher *tfm);
210 void (*exit)(struct crypto_lskcipher *tfm);
211
212 struct skcipher_alg_common co;
213 };
214
215 #define MAX_SYNC_SKCIPHER_REQSIZE 384
216 /*
217 * This performs a type-check against the "_tfm" argument to make sure
218 * all users have the correct skcipher tfm for doing on-stack requests.
219 */
220 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, _tfm) \
221 char __##name##_desc[sizeof(struct skcipher_request) + \
222 MAX_SYNC_SKCIPHER_REQSIZE \
223 ] CRYPTO_MINALIGN_ATTR; \
224 struct skcipher_request *name = \
225 (((struct skcipher_request *)__##name##_desc)->base.tfm = \
226 crypto_sync_skcipher_tfm((_tfm)), \
227 (void *)__##name##_desc)
228
229 /**
230 * DOC: Symmetric Key Cipher API
231 *
232 * Symmetric key cipher API is used with the ciphers of type
233 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
234 *
235 * Asynchronous cipher operations imply that the function invocation for a
236 * cipher request returns immediately before the completion of the operation.
237 * The cipher request is scheduled as a separate kernel thread and therefore
238 * load-balanced on the different CPUs via the process scheduler. To allow
239 * the kernel crypto API to inform the caller about the completion of a cipher
240 * request, the caller must provide a callback function. That function is
241 * invoked with the cipher handle when the request completes.
242 *
243 * To support the asynchronous operation, additional information than just the
244 * cipher handle must be supplied to the kernel crypto API. That additional
245 * information is given by filling in the skcipher_request data structure.
246 *
247 * For the symmetric key cipher API, the state is maintained with the tfm
248 * cipher handle. A single tfm can be used across multiple calls and in
249 * parallel. For asynchronous block cipher calls, context data supplied and
250 * only used by the caller can be referenced the request data structure in
251 * addition to the IV used for the cipher request. The maintenance of such
252 * state information would be important for a crypto driver implementer to
253 * have, because when calling the callback function upon completion of the
254 * cipher operation, that callback function may need some information about
255 * which operation just finished if it invoked multiple in parallel. This
256 * state information is unused by the kernel crypto API.
257 */
258
__crypto_skcipher_cast(struct crypto_tfm * tfm)259 static inline struct crypto_skcipher *__crypto_skcipher_cast(
260 struct crypto_tfm *tfm)
261 {
262 return container_of(tfm, struct crypto_skcipher, base);
263 }
264
265 /**
266 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
267 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
268 * skcipher cipher
269 * @type: specifies the type of the cipher
270 * @mask: specifies the mask for the cipher
271 *
272 * Allocate a cipher handle for an skcipher. The returned struct
273 * crypto_skcipher is the cipher handle that is required for any subsequent
274 * API invocation for that skcipher.
275 *
276 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
277 * of an error, PTR_ERR() returns the error code.
278 */
279 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
280 u32 type, u32 mask);
281
282 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
283 u32 type, u32 mask);
284
285
286 /**
287 * crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle
288 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
289 * lskcipher
290 * @type: specifies the type of the cipher
291 * @mask: specifies the mask for the cipher
292 *
293 * Allocate a cipher handle for an lskcipher. The returned struct
294 * crypto_lskcipher is the cipher handle that is required for any subsequent
295 * API invocation for that lskcipher.
296 *
297 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
298 * of an error, PTR_ERR() returns the error code.
299 */
300 struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name,
301 u32 type, u32 mask);
302
crypto_skcipher_tfm(struct crypto_skcipher * tfm)303 static inline struct crypto_tfm *crypto_skcipher_tfm(
304 struct crypto_skcipher *tfm)
305 {
306 return &tfm->base;
307 }
308
crypto_lskcipher_tfm(struct crypto_lskcipher * tfm)309 static inline struct crypto_tfm *crypto_lskcipher_tfm(
310 struct crypto_lskcipher *tfm)
311 {
312 return &tfm->base;
313 }
314
crypto_sync_skcipher_tfm(struct crypto_sync_skcipher * tfm)315 static inline struct crypto_tfm *crypto_sync_skcipher_tfm(
316 struct crypto_sync_skcipher *tfm)
317 {
318 return crypto_skcipher_tfm(&tfm->base);
319 }
320
321 /**
322 * crypto_free_skcipher() - zeroize and free cipher handle
323 * @tfm: cipher handle to be freed
324 *
325 * If @tfm is a NULL or error pointer, this function does nothing.
326 */
crypto_free_skcipher(struct crypto_skcipher * tfm)327 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
328 {
329 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
330 }
331
crypto_free_sync_skcipher(struct crypto_sync_skcipher * tfm)332 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
333 {
334 crypto_free_skcipher(&tfm->base);
335 }
336
337 /**
338 * crypto_free_lskcipher() - zeroize and free cipher handle
339 * @tfm: cipher handle to be freed
340 *
341 * If @tfm is a NULL or error pointer, this function does nothing.
342 */
crypto_free_lskcipher(struct crypto_lskcipher * tfm)343 static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm)
344 {
345 crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm));
346 }
347
348 /**
349 * crypto_has_skcipher() - Search for the availability of an skcipher.
350 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
351 * skcipher
352 * @type: specifies the type of the skcipher
353 * @mask: specifies the mask for the skcipher
354 *
355 * Return: true when the skcipher is known to the kernel crypto API; false
356 * otherwise
357 */
358 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
359
crypto_skcipher_driver_name(struct crypto_skcipher * tfm)360 static inline const char *crypto_skcipher_driver_name(
361 struct crypto_skcipher *tfm)
362 {
363 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
364 }
365
crypto_lskcipher_driver_name(struct crypto_lskcipher * tfm)366 static inline const char *crypto_lskcipher_driver_name(
367 struct crypto_lskcipher *tfm)
368 {
369 return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm));
370 }
371
crypto_skcipher_alg_common(struct crypto_skcipher * tfm)372 static inline struct skcipher_alg_common *crypto_skcipher_alg_common(
373 struct crypto_skcipher *tfm)
374 {
375 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
376 struct skcipher_alg_common, base);
377 }
378
crypto_skcipher_alg(struct crypto_skcipher * tfm)379 static inline struct skcipher_alg *crypto_skcipher_alg(
380 struct crypto_skcipher *tfm)
381 {
382 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
383 struct skcipher_alg, base);
384 }
385
crypto_lskcipher_alg(struct crypto_lskcipher * tfm)386 static inline struct lskcipher_alg *crypto_lskcipher_alg(
387 struct crypto_lskcipher *tfm)
388 {
389 return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg,
390 struct lskcipher_alg, co.base);
391 }
392
393 /**
394 * crypto_skcipher_ivsize() - obtain IV size
395 * @tfm: cipher handle
396 *
397 * The size of the IV for the skcipher referenced by the cipher handle is
398 * returned. This IV size may be zero if the cipher does not need an IV.
399 *
400 * Return: IV size in bytes
401 */
crypto_skcipher_ivsize(struct crypto_skcipher * tfm)402 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
403 {
404 return crypto_skcipher_alg_common(tfm)->ivsize;
405 }
406
crypto_sync_skcipher_ivsize(struct crypto_sync_skcipher * tfm)407 static inline unsigned int crypto_sync_skcipher_ivsize(
408 struct crypto_sync_skcipher *tfm)
409 {
410 return crypto_skcipher_ivsize(&tfm->base);
411 }
412
413 /**
414 * crypto_lskcipher_ivsize() - obtain IV size
415 * @tfm: cipher handle
416 *
417 * The size of the IV for the lskcipher referenced by the cipher handle is
418 * returned. This IV size may be zero if the cipher does not need an IV.
419 *
420 * Return: IV size in bytes
421 */
crypto_lskcipher_ivsize(struct crypto_lskcipher * tfm)422 static inline unsigned int crypto_lskcipher_ivsize(
423 struct crypto_lskcipher *tfm)
424 {
425 return crypto_lskcipher_alg(tfm)->co.ivsize;
426 }
427
428 /**
429 * crypto_skcipher_blocksize() - obtain block size of cipher
430 * @tfm: cipher handle
431 *
432 * The block size for the skcipher referenced with the cipher handle is
433 * returned. The caller may use that information to allocate appropriate
434 * memory for the data returned by the encryption or decryption operation
435 *
436 * Return: block size of cipher
437 */
crypto_skcipher_blocksize(struct crypto_skcipher * tfm)438 static inline unsigned int crypto_skcipher_blocksize(
439 struct crypto_skcipher *tfm)
440 {
441 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
442 }
443
444 /**
445 * crypto_lskcipher_blocksize() - obtain block size of cipher
446 * @tfm: cipher handle
447 *
448 * The block size for the lskcipher referenced with the cipher handle is
449 * returned. The caller may use that information to allocate appropriate
450 * memory for the data returned by the encryption or decryption operation
451 *
452 * Return: block size of cipher
453 */
crypto_lskcipher_blocksize(struct crypto_lskcipher * tfm)454 static inline unsigned int crypto_lskcipher_blocksize(
455 struct crypto_lskcipher *tfm)
456 {
457 return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm));
458 }
459
460 /**
461 * crypto_skcipher_chunksize() - obtain chunk size
462 * @tfm: cipher handle
463 *
464 * The block size is set to one for ciphers such as CTR. However,
465 * you still need to provide incremental updates in multiples of
466 * the underlying block size as the IV does not have sub-block
467 * granularity. This is known in this API as the chunk size.
468 *
469 * Return: chunk size in bytes
470 */
crypto_skcipher_chunksize(struct crypto_skcipher * tfm)471 static inline unsigned int crypto_skcipher_chunksize(
472 struct crypto_skcipher *tfm)
473 {
474 return crypto_skcipher_alg_common(tfm)->chunksize;
475 }
476
477 /**
478 * crypto_lskcipher_chunksize() - obtain chunk size
479 * @tfm: cipher handle
480 *
481 * The block size is set to one for ciphers such as CTR. However,
482 * you still need to provide incremental updates in multiples of
483 * the underlying block size as the IV does not have sub-block
484 * granularity. This is known in this API as the chunk size.
485 *
486 * Return: chunk size in bytes
487 */
crypto_lskcipher_chunksize(struct crypto_lskcipher * tfm)488 static inline unsigned int crypto_lskcipher_chunksize(
489 struct crypto_lskcipher *tfm)
490 {
491 return crypto_lskcipher_alg(tfm)->co.chunksize;
492 }
493
494 /**
495 * crypto_skcipher_statesize() - obtain state size
496 * @tfm: cipher handle
497 *
498 * Some algorithms cannot be chained with the IV alone. They carry
499 * internal state which must be replicated if data is to be processed
500 * incrementally. The size of that state can be obtained with this
501 * function.
502 *
503 * Return: state size in bytes
504 */
crypto_skcipher_statesize(struct crypto_skcipher * tfm)505 static inline unsigned int crypto_skcipher_statesize(
506 struct crypto_skcipher *tfm)
507 {
508 return crypto_skcipher_alg_common(tfm)->statesize;
509 }
510
511 /**
512 * crypto_lskcipher_statesize() - obtain state size
513 * @tfm: cipher handle
514 *
515 * Some algorithms cannot be chained with the IV alone. They carry
516 * internal state which must be replicated if data is to be processed
517 * incrementally. The size of that state can be obtained with this
518 * function.
519 *
520 * Return: state size in bytes
521 */
crypto_lskcipher_statesize(struct crypto_lskcipher * tfm)522 static inline unsigned int crypto_lskcipher_statesize(
523 struct crypto_lskcipher *tfm)
524 {
525 return crypto_lskcipher_alg(tfm)->co.statesize;
526 }
527
crypto_sync_skcipher_blocksize(struct crypto_sync_skcipher * tfm)528 static inline unsigned int crypto_sync_skcipher_blocksize(
529 struct crypto_sync_skcipher *tfm)
530 {
531 return crypto_skcipher_blocksize(&tfm->base);
532 }
533
crypto_skcipher_alignmask(struct crypto_skcipher * tfm)534 static inline unsigned int crypto_skcipher_alignmask(
535 struct crypto_skcipher *tfm)
536 {
537 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
538 }
539
crypto_lskcipher_alignmask(struct crypto_lskcipher * tfm)540 static inline unsigned int crypto_lskcipher_alignmask(
541 struct crypto_lskcipher *tfm)
542 {
543 return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm));
544 }
545
crypto_skcipher_get_flags(struct crypto_skcipher * tfm)546 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
547 {
548 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
549 }
550
crypto_skcipher_set_flags(struct crypto_skcipher * tfm,u32 flags)551 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
552 u32 flags)
553 {
554 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
555 }
556
crypto_skcipher_clear_flags(struct crypto_skcipher * tfm,u32 flags)557 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
558 u32 flags)
559 {
560 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
561 }
562
crypto_sync_skcipher_get_flags(struct crypto_sync_skcipher * tfm)563 static inline u32 crypto_sync_skcipher_get_flags(
564 struct crypto_sync_skcipher *tfm)
565 {
566 return crypto_skcipher_get_flags(&tfm->base);
567 }
568
crypto_sync_skcipher_set_flags(struct crypto_sync_skcipher * tfm,u32 flags)569 static inline void crypto_sync_skcipher_set_flags(
570 struct crypto_sync_skcipher *tfm, u32 flags)
571 {
572 crypto_skcipher_set_flags(&tfm->base, flags);
573 }
574
crypto_sync_skcipher_clear_flags(struct crypto_sync_skcipher * tfm,u32 flags)575 static inline void crypto_sync_skcipher_clear_flags(
576 struct crypto_sync_skcipher *tfm, u32 flags)
577 {
578 crypto_skcipher_clear_flags(&tfm->base, flags);
579 }
580
crypto_lskcipher_get_flags(struct crypto_lskcipher * tfm)581 static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm)
582 {
583 return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm));
584 }
585
crypto_lskcipher_set_flags(struct crypto_lskcipher * tfm,u32 flags)586 static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm,
587 u32 flags)
588 {
589 crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags);
590 }
591
crypto_lskcipher_clear_flags(struct crypto_lskcipher * tfm,u32 flags)592 static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm,
593 u32 flags)
594 {
595 crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags);
596 }
597
598 /**
599 * crypto_skcipher_setkey() - set key for cipher
600 * @tfm: cipher handle
601 * @key: buffer holding the key
602 * @keylen: length of the key in bytes
603 *
604 * The caller provided key is set for the skcipher referenced by the cipher
605 * handle.
606 *
607 * Note, the key length determines the cipher type. Many block ciphers implement
608 * different cipher modes depending on the key size, such as AES-128 vs AES-192
609 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
610 * is performed.
611 *
612 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
613 */
614 int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
615 const u8 *key, unsigned int keylen);
616
crypto_sync_skcipher_setkey(struct crypto_sync_skcipher * tfm,const u8 * key,unsigned int keylen)617 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
618 const u8 *key, unsigned int keylen)
619 {
620 return crypto_skcipher_setkey(&tfm->base, key, keylen);
621 }
622
623 /**
624 * crypto_lskcipher_setkey() - set key for cipher
625 * @tfm: cipher handle
626 * @key: buffer holding the key
627 * @keylen: length of the key in bytes
628 *
629 * The caller provided key is set for the lskcipher referenced by the cipher
630 * handle.
631 *
632 * Note, the key length determines the cipher type. Many block ciphers implement
633 * different cipher modes depending on the key size, such as AES-128 vs AES-192
634 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
635 * is performed.
636 *
637 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
638 */
639 int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm,
640 const u8 *key, unsigned int keylen);
641
crypto_skcipher_min_keysize(struct crypto_skcipher * tfm)642 static inline unsigned int crypto_skcipher_min_keysize(
643 struct crypto_skcipher *tfm)
644 {
645 return crypto_skcipher_alg_common(tfm)->min_keysize;
646 }
647
crypto_skcipher_max_keysize(struct crypto_skcipher * tfm)648 static inline unsigned int crypto_skcipher_max_keysize(
649 struct crypto_skcipher *tfm)
650 {
651 return crypto_skcipher_alg_common(tfm)->max_keysize;
652 }
653
crypto_lskcipher_min_keysize(struct crypto_lskcipher * tfm)654 static inline unsigned int crypto_lskcipher_min_keysize(
655 struct crypto_lskcipher *tfm)
656 {
657 return crypto_lskcipher_alg(tfm)->co.min_keysize;
658 }
659
crypto_lskcipher_max_keysize(struct crypto_lskcipher * tfm)660 static inline unsigned int crypto_lskcipher_max_keysize(
661 struct crypto_lskcipher *tfm)
662 {
663 return crypto_lskcipher_alg(tfm)->co.max_keysize;
664 }
665
666 /**
667 * crypto_skcipher_reqtfm() - obtain cipher handle from request
668 * @req: skcipher_request out of which the cipher handle is to be obtained
669 *
670 * Return the crypto_skcipher handle when furnishing an skcipher_request
671 * data structure.
672 *
673 * Return: crypto_skcipher handle
674 */
crypto_skcipher_reqtfm(struct skcipher_request * req)675 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
676 struct skcipher_request *req)
677 {
678 return __crypto_skcipher_cast(req->base.tfm);
679 }
680
crypto_sync_skcipher_reqtfm(struct skcipher_request * req)681 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
682 struct skcipher_request *req)
683 {
684 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
685
686 return container_of(tfm, struct crypto_sync_skcipher, base);
687 }
688
689 /**
690 * crypto_skcipher_encrypt() - encrypt plaintext
691 * @req: reference to the skcipher_request handle that holds all information
692 * needed to perform the cipher operation
693 *
694 * Encrypt plaintext data using the skcipher_request handle. That data
695 * structure and how it is filled with data is discussed with the
696 * skcipher_request_* functions.
697 *
698 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
699 */
700 int crypto_skcipher_encrypt(struct skcipher_request *req);
701
702 /**
703 * crypto_skcipher_decrypt() - decrypt ciphertext
704 * @req: reference to the skcipher_request handle that holds all information
705 * needed to perform the cipher operation
706 *
707 * Decrypt ciphertext data using the skcipher_request handle. That data
708 * structure and how it is filled with data is discussed with the
709 * skcipher_request_* functions.
710 *
711 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
712 */
713 int crypto_skcipher_decrypt(struct skcipher_request *req);
714
715 /**
716 * crypto_skcipher_export() - export partial state
717 * @req: reference to the skcipher_request handle that holds all information
718 * needed to perform the operation
719 * @out: output buffer of sufficient size that can hold the state
720 *
721 * Export partial state of the transformation. This function dumps the
722 * entire state of the ongoing transformation into a provided block of
723 * data so it can be @import 'ed back later on. This is useful in case
724 * you want to save partial result of the transformation after
725 * processing certain amount of data and reload this partial result
726 * multiple times later on for multiple re-use. No data processing
727 * happens at this point.
728 *
729 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
730 */
731 int crypto_skcipher_export(struct skcipher_request *req, void *out);
732
733 /**
734 * crypto_skcipher_import() - import partial state
735 * @req: reference to the skcipher_request handle that holds all information
736 * needed to perform the operation
737 * @in: buffer holding the state
738 *
739 * Import partial state of the transformation. This function loads the
740 * entire state of the ongoing transformation from a provided block of
741 * data so the transformation can continue from this point onward. No
742 * data processing happens at this point.
743 *
744 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
745 */
746 int crypto_skcipher_import(struct skcipher_request *req, const void *in);
747
748 /**
749 * crypto_lskcipher_encrypt() - encrypt plaintext
750 * @tfm: lskcipher handle
751 * @src: source buffer
752 * @dst: destination buffer
753 * @len: number of bytes to process
754 * @siv: IV + state for the cipher operation. The length of the IV must
755 * comply with the IV size defined by crypto_lskcipher_ivsize. The
756 * IV is then followed with a buffer with the length as specified by
757 * crypto_lskcipher_statesize.
758 * Encrypt plaintext data using the lskcipher handle.
759 *
760 * Return: >=0 if the cipher operation was successful, if positive
761 * then this many bytes have been left unprocessed;
762 * < 0 if an error occurred
763 */
764 int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src,
765 u8 *dst, unsigned len, u8 *siv);
766
767 /**
768 * crypto_lskcipher_decrypt() - decrypt ciphertext
769 * @tfm: lskcipher handle
770 * @src: source buffer
771 * @dst: destination buffer
772 * @len: number of bytes to process
773 * @siv: IV + state for the cipher operation. The length of the IV must
774 * comply with the IV size defined by crypto_lskcipher_ivsize. The
775 * IV is then followed with a buffer with the length as specified by
776 * crypto_lskcipher_statesize.
777 *
778 * Decrypt ciphertext data using the lskcipher handle.
779 *
780 * Return: >=0 if the cipher operation was successful, if positive
781 * then this many bytes have been left unprocessed;
782 * < 0 if an error occurred
783 */
784 int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src,
785 u8 *dst, unsigned len, u8 *siv);
786
787 /**
788 * DOC: Symmetric Key Cipher Request Handle
789 *
790 * The skcipher_request data structure contains all pointers to data
791 * required for the symmetric key cipher operation. This includes the cipher
792 * handle (which can be used by multiple skcipher_request instances), pointer
793 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
794 * as a handle to the skcipher_request_* API calls in a similar way as
795 * skcipher handle to the crypto_skcipher_* API calls.
796 */
797
798 /**
799 * crypto_skcipher_reqsize() - obtain size of the request data structure
800 * @tfm: cipher handle
801 *
802 * Return: number of bytes
803 */
crypto_skcipher_reqsize(struct crypto_skcipher * tfm)804 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
805 {
806 return tfm->reqsize;
807 }
808
809 /**
810 * skcipher_request_set_tfm() - update cipher handle reference in request
811 * @req: request handle to be modified
812 * @tfm: cipher handle that shall be added to the request handle
813 *
814 * Allow the caller to replace the existing skcipher handle in the request
815 * data structure with a different one.
816 */
skcipher_request_set_tfm(struct skcipher_request * req,struct crypto_skcipher * tfm)817 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
818 struct crypto_skcipher *tfm)
819 {
820 req->base.tfm = crypto_skcipher_tfm(tfm);
821 }
822
skcipher_request_set_sync_tfm(struct skcipher_request * req,struct crypto_sync_skcipher * tfm)823 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
824 struct crypto_sync_skcipher *tfm)
825 {
826 skcipher_request_set_tfm(req, &tfm->base);
827 }
828
skcipher_request_cast(struct crypto_async_request * req)829 static inline struct skcipher_request *skcipher_request_cast(
830 struct crypto_async_request *req)
831 {
832 return container_of(req, struct skcipher_request, base);
833 }
834
835 /**
836 * skcipher_request_alloc() - allocate request data structure
837 * @tfm: cipher handle to be registered with the request
838 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
839 *
840 * Allocate the request data structure that must be used with the skcipher
841 * encrypt and decrypt API calls. During the allocation, the provided skcipher
842 * handle is registered in the request data structure.
843 *
844 * Return: allocated request handle in case of success, or NULL if out of memory
845 */
skcipher_request_alloc_noprof(struct crypto_skcipher * tfm,gfp_t gfp)846 static inline struct skcipher_request *skcipher_request_alloc_noprof(
847 struct crypto_skcipher *tfm, gfp_t gfp)
848 {
849 struct skcipher_request *req;
850
851 req = kmalloc_noprof(sizeof(struct skcipher_request) +
852 crypto_skcipher_reqsize(tfm), gfp);
853
854 if (likely(req))
855 skcipher_request_set_tfm(req, tfm);
856
857 return req;
858 }
859 #define skcipher_request_alloc(...) alloc_hooks(skcipher_request_alloc_noprof(__VA_ARGS__))
860
861 /**
862 * skcipher_request_free() - zeroize and free request data structure
863 * @req: request data structure cipher handle to be freed
864 */
skcipher_request_free(struct skcipher_request * req)865 static inline void skcipher_request_free(struct skcipher_request *req)
866 {
867 kfree_sensitive(req);
868 }
869
skcipher_request_zero(struct skcipher_request * req)870 static inline void skcipher_request_zero(struct skcipher_request *req)
871 {
872 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
873
874 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
875 }
876
877 /**
878 * skcipher_request_set_callback() - set asynchronous callback function
879 * @req: request handle
880 * @flags: specify zero or an ORing of the flags
881 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
882 * increase the wait queue beyond the initial maximum size;
883 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
884 * @compl: callback function pointer to be registered with the request handle
885 * @data: The data pointer refers to memory that is not used by the kernel
886 * crypto API, but provided to the callback function for it to use. Here,
887 * the caller can provide a reference to memory the callback function can
888 * operate on. As the callback function is invoked asynchronously to the
889 * related functionality, it may need to access data structures of the
890 * related functionality which can be referenced using this pointer. The
891 * callback function can access the memory via the "data" field in the
892 * crypto_async_request data structure provided to the callback function.
893 *
894 * This function allows setting the callback function that is triggered once the
895 * cipher operation completes.
896 *
897 * The callback function is registered with the skcipher_request handle and
898 * must comply with the following template::
899 *
900 * void callback_function(struct crypto_async_request *req, int error)
901 */
skcipher_request_set_callback(struct skcipher_request * req,u32 flags,crypto_completion_t compl,void * data)902 static inline void skcipher_request_set_callback(struct skcipher_request *req,
903 u32 flags,
904 crypto_completion_t compl,
905 void *data)
906 {
907 req->base.complete = compl;
908 req->base.data = data;
909 req->base.flags = flags;
910 }
911
912 /**
913 * skcipher_request_set_crypt() - set data buffers
914 * @req: request handle
915 * @src: source scatter / gather list
916 * @dst: destination scatter / gather list
917 * @cryptlen: number of bytes to process from @src
918 * @iv: IV for the cipher operation which must comply with the IV size defined
919 * by crypto_skcipher_ivsize
920 *
921 * This function allows setting of the source data and destination data
922 * scatter / gather lists.
923 *
924 * For encryption, the source is treated as the plaintext and the
925 * destination is the ciphertext. For a decryption operation, the use is
926 * reversed - the source is the ciphertext and the destination is the plaintext.
927 */
skcipher_request_set_crypt(struct skcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,void * iv)928 static inline void skcipher_request_set_crypt(
929 struct skcipher_request *req,
930 struct scatterlist *src, struct scatterlist *dst,
931 unsigned int cryptlen, void *iv)
932 {
933 req->src = src;
934 req->dst = dst;
935 req->cryptlen = cryptlen;
936 req->iv = iv;
937 }
938
939 #endif /* _CRYPTO_SKCIPHER_H */
940
941