xref: /linux/include/linux/crypto.h (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/completion.h>
16 #include <linux/errno.h>
17 #include <linux/refcount_types.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 
21 /*
22  * Algorithm masks and types.
23  */
24 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
25 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
26 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
27 #define CRYPTO_ALG_TYPE_LSKCIPHER	0x00000004
28 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
29 #define CRYPTO_ALG_TYPE_AKCIPHER	0x00000006
30 #define CRYPTO_ALG_TYPE_SIG		0x00000007
31 #define CRYPTO_ALG_TYPE_KPP		0x00000008
32 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
33 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
34 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
35 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
36 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
37 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
38 
39 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
40 
41 #define CRYPTO_ALG_LARVAL		0x00000010
42 #define CRYPTO_ALG_DEAD			0x00000020
43 #define CRYPTO_ALG_DYING		0x00000040
44 #define CRYPTO_ALG_ASYNC		0x00000080
45 
46 /*
47  * Set if the algorithm (or an algorithm which it uses) requires another
48  * algorithm of the same type to handle corner cases.
49  */
50 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
51 
52 /*
53  * Set if the algorithm data structure should be duplicated into
54  * kmalloc memory before registration.  This is useful for hardware
55  * that can be disconnected at will.  Do not use this if the data
56  * structure is embedded into a bigger one.  Duplicate the overall
57  * data structure in the driver in that case.
58  */
59 #define CRYPTO_ALG_DUP_FIRST		0x00000200
60 
61 /*
62  * Set if the algorithm has passed automated run-time testing.  Note that
63  * if there is no run-time testing for a given algorithm it is considered
64  * to have passed.
65  */
66 
67 #define CRYPTO_ALG_TESTED		0x00000400
68 
69 /*
70  * Set if the algorithm is an instance that is built from templates.
71  */
72 #define CRYPTO_ALG_INSTANCE		0x00000800
73 
74 /* Set this bit if the algorithm provided is hardware accelerated but
75  * not available to userspace via instruction set or so.
76  */
77 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
78 
79 /*
80  * Mark a cipher as a service implementation only usable by another
81  * cipher and never by a normal user of the kernel crypto API
82  */
83 #define CRYPTO_ALG_INTERNAL		0x00002000
84 
85 /*
86  * Set if the algorithm has a ->setkey() method but can be used without
87  * calling it first, i.e. there is a default key.
88  */
89 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
90 
91 /*
92  * Don't trigger module loading
93  */
94 #define CRYPTO_NOLOAD			0x00008000
95 
96 /*
97  * The algorithm may allocate memory during request processing, i.e. during
98  * encryption, decryption, or hashing.  Users can request an algorithm with this
99  * flag unset if they can't handle memory allocation failures.
100  *
101  * This flag is currently only implemented for algorithms of type "skcipher",
102  * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
103  * have this flag set even if they allocate memory.
104  *
105  * In some edge cases, algorithms can allocate memory regardless of this flag.
106  * To avoid these cases, users must obey the following usage constraints:
107  *    skcipher:
108  *	- The IV buffer and all scatterlist elements must be aligned to the
109  *	  algorithm's alignmask.
110  *	- If the data were to be divided into chunks of size
111  *	  crypto_skcipher_walksize() (with any remainder going at the end), no
112  *	  chunk can cross a page boundary or a scatterlist element boundary.
113  *    aead:
114  *	- The IV buffer and all scatterlist elements must be aligned to the
115  *	  algorithm's alignmask.
116  *	- The first scatterlist element must contain all the associated data,
117  *	  and its pages must be !PageHighMem.
118  *	- If the plaintext/ciphertext were to be divided into chunks of size
119  *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
120  *	  can cross a page boundary or a scatterlist element boundary.
121  *    ahash:
122  *	- crypto_ahash_finup() must not be used unless the algorithm implements
123  *	  ->finup() natively.
124  */
125 #define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
126 
127 /*
128  * Mark an algorithm as a service implementation only usable by a
129  * template and never by a normal user of the kernel crypto API.
130  * This is intended to be used by algorithms that are themselves
131  * not FIPS-approved but may instead be used to implement parts of
132  * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
133  */
134 #define CRYPTO_ALG_FIPS_INTERNAL	0x00020000
135 
136 /* Set if the algorithm supports virtual addresses. */
137 #define CRYPTO_ALG_REQ_VIRT		0x00040000
138 
139 /* Set if the algorithm cannot have a fallback (e.g., phmac). */
140 #define CRYPTO_ALG_NO_FALLBACK		0x00080000
141 
142 /* The high bits 0xff000000 are reserved for type-specific flags. */
143 
144 /*
145  * Transform masks and values (for crt_flags).
146  */
147 #define CRYPTO_TFM_NEED_KEY		0x00000001
148 
149 #define CRYPTO_TFM_REQ_MASK		0x000fff00
150 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
151 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
152 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
153 #define CRYPTO_TFM_REQ_ON_STACK		0x00000800
154 
155 /*
156  * Miscellaneous stuff.
157  */
158 #define CRYPTO_MAX_ALG_NAME		128
159 
160 /*
161  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
162  * declaration) is used to ensure that the crypto_tfm context structure is
163  * aligned correctly for the given architecture so that there are no alignment
164  * faults for C data types.  On architectures that support non-cache coherent
165  * DMA, such as ARM or arm64, it also takes into account the minimal alignment
166  * that is required to ensure that the context struct member does not share any
167  * cachelines with the rest of the struct. This is needed to ensure that cache
168  * maintenance for non-coherent DMA (cache invalidation in particular) does not
169  * affect data that may be accessed by the CPU concurrently.
170  */
171 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
172 
173 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
174 
175 struct crypto_tfm;
176 struct crypto_type;
177 struct module;
178 
179 typedef void (*crypto_completion_t)(void *req, int err);
180 
181 /**
182  * DOC: Block Cipher Context Data Structures
183  *
184  * These data structures define the operating context for each block cipher
185  * type.
186  */
187 
188 struct crypto_async_request {
189 	struct list_head list;
190 	crypto_completion_t complete;
191 	void *data;
192 	struct crypto_tfm *tfm;
193 
194 	u32 flags;
195 };
196 
197 /**
198  * DOC: Block Cipher Algorithm Definitions
199  *
200  * These data structures define modular crypto algorithm implementations,
201  * managed via crypto_register_alg() and crypto_unregister_alg().
202  */
203 
204 /**
205  * struct cipher_alg - single-block symmetric ciphers definition
206  * @cia_min_keysize: Minimum key size supported by the transformation. This is
207  *		     the smallest key length supported by this transformation
208  *		     algorithm. This must be set to one of the pre-defined
209  *		     values as this is not hardware specific. Possible values
210  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
211  *		     include/crypto/
212  * @cia_max_keysize: Maximum key size supported by the transformation. This is
213  *		    the largest key length supported by this transformation
214  *		    algorithm. This must be set to one of the pre-defined values
215  *		    as this is not hardware specific. Possible values for this
216  *		    field can be found via git grep "_MAX_KEY_SIZE"
217  *		    include/crypto/
218  * @cia_setkey: Set key for the transformation. This function is used to either
219  *	        program a supplied key into the hardware or store the key in the
220  *	        transformation context for programming it later. Note that this
221  *	        function does modify the transformation context. This function
222  *	        can be called multiple times during the existence of the
223  *	        transformation object, so one must make sure the key is properly
224  *	        reprogrammed into the hardware. This function is also
225  *	        responsible for checking the key length for validity.
226  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
227  *		 single block of data, which must be @cra_blocksize big. This
228  *		 always operates on a full @cra_blocksize and it is not possible
229  *		 to encrypt a block of smaller size. The supplied buffers must
230  *		 therefore also be at least of @cra_blocksize size. Both the
231  *		 input and output buffers are always aligned to @cra_alignmask.
232  *		 In case either of the input or output buffer supplied by user
233  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
234  *		 API will re-align the buffers. The re-alignment means that a
235  *		 new buffer will be allocated, the data will be copied into the
236  *		 new buffer, then the processing will happen on the new buffer,
237  *		 then the data will be copied back into the original buffer and
238  *		 finally the new buffer will be freed. In case a software
239  *		 fallback was put in place in the @cra_init call, this function
240  *		 might need to use the fallback if the algorithm doesn't support
241  *		 all of the key sizes. In case the key was stored in
242  *		 transformation context, the key might need to be re-programmed
243  *		 into the hardware in this function. This function shall not
244  *		 modify the transformation context, as this function may be
245  *		 called in parallel with the same transformation object.
246  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
247  *		 @cia_encrypt, and the conditions are exactly the same.
248  *
249  * All fields are mandatory and must be filled.
250  */
251 struct cipher_alg {
252 	unsigned int cia_min_keysize;
253 	unsigned int cia_max_keysize;
254 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
255 	                  unsigned int keylen);
256 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
257 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
258 };
259 
260 #define cra_cipher	cra_u.cipher
261 
262 /**
263  * struct crypto_alg - definition of a cryptograpic cipher algorithm
264  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
265  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
266  *	       used for fine-tuning the description of the transformation
267  *	       algorithm.
268  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
269  *		   of the smallest possible unit which can be transformed with
270  *		   this algorithm. The users must respect this value.
271  *		   In case of HASH transformation, it is possible for a smaller
272  *		   block than @cra_blocksize to be passed to the crypto API for
273  *		   transformation, in case of any other transformation type, an
274  * 		   error will be returned upon any attempt to transform smaller
275  *		   than @cra_blocksize chunks.
276  * @cra_ctxsize: Size of the operational context of the transformation. This
277  *		 value informs the kernel crypto API about the memory size
278  *		 needed to be allocated for the transformation context.
279  * @cra_alignmask: For cipher, skcipher, lskcipher, and aead algorithms this is
280  *		   1 less than the alignment, in bytes, that the algorithm
281  *		   implementation requires for input and output buffers.  When
282  *		   the crypto API is invoked with buffers that are not aligned
283  *		   to this alignment, the crypto API automatically utilizes
284  *		   appropriately aligned temporary buffers to comply with what
285  *		   the algorithm needs.  (For scatterlists this happens only if
286  *		   the algorithm uses the skcipher_walk helper functions.)  This
287  *		   misalignment handling carries a performance penalty, so it is
288  *		   preferred that algorithms do not set a nonzero alignmask.
289  *		   Also, crypto API users may wish to allocate buffers aligned
290  *		   to the alignmask of the algorithm being used, in order to
291  *		   avoid the API having to realign them.  Note: the alignmask is
292  *		   not supported for hash algorithms and is always 0 for them.
293  * @cra_reqsize: Size of the request context for this algorithm.
294  * @cra_priority: Priority of this transformation implementation. In case
295  *		  multiple transformations with same @cra_name are available to
296  *		  the Crypto API, the kernel will use the one with highest
297  *		  @cra_priority.
298  * @cra_name: Generic name (usable by multiple implementations) of the
299  *	      transformation algorithm. This is the name of the transformation
300  *	      itself. This field is used by the kernel when looking up the
301  *	      providers of particular transformation.
302  * @cra_driver_name: Unique name of the transformation provider. This is the
303  *		     name of the provider of the transformation. This can be any
304  *		     arbitrary value, but in the usual case, this contains the
305  *		     name of the chip or provider and the name of the
306  *		     transformation algorithm.
307  * @cra_type: Type of the cryptographic transformation. This is a pointer to
308  *	      struct crypto_type, which implements callbacks common for all
309  *	      transformation types. There are multiple options, such as
310  *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
311  *	      This field might be empty. In that case, there are no common
312  *	      callbacks. This is the case for: cipher.
313  * @cra_u: Callbacks implementing the transformation. This is a union of
314  *	   multiple structures. Depending on the type of transformation selected
315  *	   by @cra_type and @cra_flags above, the associated structure must be
316  *	   filled with callbacks. This field might be empty. This is the case
317  *	   for ahash, shash.
318  * @cra_init: Deprecated, do not use.
319  * @cra_exit: Deprecated, do not use.
320  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
321  *		  definition. See @struct @cipher_alg.
322  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
323  * @cra_list: internally used
324  * @cra_users: internally used
325  * @cra_refcnt: internally used
326  * @cra_destroy: internally used
327  *
328  * The struct crypto_alg describes a generic Crypto API algorithm and is common
329  * for all of the transformations. Any variable not documented here shall not
330  * be used by a cipher implementation as it is internal to the Crypto API.
331  */
332 struct crypto_alg {
333 	struct list_head cra_list;
334 	struct list_head cra_users;
335 
336 	u32 cra_flags;
337 	unsigned int cra_blocksize;
338 	unsigned int cra_ctxsize;
339 	unsigned int cra_alignmask;
340 	unsigned int cra_reqsize;
341 
342 	int cra_priority;
343 	refcount_t cra_refcnt;
344 
345 	char cra_name[CRYPTO_MAX_ALG_NAME];
346 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
347 
348 	const struct crypto_type *cra_type;
349 
350 	union {
351 		struct cipher_alg cipher;
352 	} cra_u;
353 
354 	int (*cra_init)(struct crypto_tfm *tfm);
355 	void (*cra_exit)(struct crypto_tfm *tfm);
356 	void (*cra_destroy)(struct crypto_alg *alg);
357 
358 	struct module *cra_module;
359 } CRYPTO_MINALIGN_ATTR;
360 
361 /*
362  * A helper struct for waiting for completion of async crypto ops
363  */
364 struct crypto_wait {
365 	struct completion completion;
366 	int err;
367 };
368 
369 /*
370  * Macro for declaring a crypto op async wait object on stack
371  */
372 #define DECLARE_CRYPTO_WAIT(_wait) \
373 	struct crypto_wait _wait = { \
374 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
375 
376 /*
377  * Async ops completion helper functioons
378  */
379 void crypto_req_done(void *req, int err);
380 
crypto_wait_req(int err,struct crypto_wait * wait)381 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
382 {
383 	switch (err) {
384 	case -EINPROGRESS:
385 	case -EBUSY:
386 		wait_for_completion(&wait->completion);
387 		reinit_completion(&wait->completion);
388 		err = wait->err;
389 		break;
390 	}
391 
392 	return err;
393 }
394 
crypto_init_wait(struct crypto_wait * wait)395 static inline void crypto_init_wait(struct crypto_wait *wait)
396 {
397 	init_completion(&wait->completion);
398 }
399 
400 /*
401  * Algorithm query interface.
402  */
403 int crypto_has_alg(const char *name, u32 type, u32 mask);
404 
405 /*
406  * Transforms: user-instantiated objects which encapsulate algorithms
407  * and core processing logic.  Managed via crypto_alloc_*() and
408  * crypto_free_*(), as well as the various helpers below.
409  */
410 
411 struct crypto_tfm {
412 	refcount_t refcnt;
413 
414 	u32 crt_flags;
415 
416 	int node;
417 
418 	struct crypto_tfm *fb;
419 
420 	void (*exit)(struct crypto_tfm *tfm);
421 
422 	struct crypto_alg *__crt_alg;
423 
424 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
425 };
426 
427 /*
428  * Transform user interface.
429  */
430 
431 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
432 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
433 
crypto_free_tfm(struct crypto_tfm * tfm)434 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
435 {
436 	return crypto_destroy_tfm(tfm, tfm);
437 }
438 
439 /*
440  * Transform helpers which query the underlying algorithm.
441  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)442 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
443 {
444 	return tfm->__crt_alg->cra_name;
445 }
446 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)447 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
448 {
449 	return tfm->__crt_alg->cra_driver_name;
450 }
451 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)452 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
453 {
454 	return tfm->__crt_alg->cra_blocksize;
455 }
456 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)457 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
458 {
459 	return tfm->__crt_alg->cra_alignmask;
460 }
461 
crypto_tfm_alg_reqsize(struct crypto_tfm * tfm)462 static inline unsigned int crypto_tfm_alg_reqsize(struct crypto_tfm *tfm)
463 {
464 	return tfm->__crt_alg->cra_reqsize;
465 }
466 
crypto_tfm_get_flags(struct crypto_tfm * tfm)467 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
468 {
469 	return tfm->crt_flags;
470 }
471 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)472 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
473 {
474 	tfm->crt_flags |= flags;
475 }
476 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)477 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
478 {
479 	tfm->crt_flags &= ~flags;
480 }
481 
crypto_tfm_ctx_alignment(void)482 static inline unsigned int crypto_tfm_ctx_alignment(void)
483 {
484 	struct crypto_tfm *tfm;
485 	return __alignof__(tfm->__crt_ctx);
486 }
487 
crypto_tfm_is_async(struct crypto_tfm * tfm)488 static inline bool crypto_tfm_is_async(struct crypto_tfm *tfm)
489 {
490 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
491 }
492 
crypto_req_on_stack(struct crypto_async_request * req)493 static inline bool crypto_req_on_stack(struct crypto_async_request *req)
494 {
495 	return req->flags & CRYPTO_TFM_REQ_ON_STACK;
496 }
497 
crypto_request_set_callback(struct crypto_async_request * req,u32 flags,crypto_completion_t compl,void * data)498 static inline void crypto_request_set_callback(
499 	struct crypto_async_request *req, u32 flags,
500 	crypto_completion_t compl, void *data)
501 {
502 	u32 keep = CRYPTO_TFM_REQ_ON_STACK;
503 
504 	req->complete = compl;
505 	req->data = data;
506 	req->flags &= keep;
507 	req->flags |= flags & ~keep;
508 }
509 
crypto_request_set_tfm(struct crypto_async_request * req,struct crypto_tfm * tfm)510 static inline void crypto_request_set_tfm(struct crypto_async_request *req,
511 					  struct crypto_tfm *tfm)
512 {
513 	req->tfm = tfm;
514 	req->flags &= ~CRYPTO_TFM_REQ_ON_STACK;
515 }
516 
517 struct crypto_async_request *crypto_request_clone(
518 	struct crypto_async_request *req, size_t total, gfp_t gfp);
519 
crypto_stack_request_init(struct crypto_async_request * req,struct crypto_tfm * tfm)520 static inline void crypto_stack_request_init(struct crypto_async_request *req,
521 					     struct crypto_tfm *tfm)
522 {
523 	req->flags = 0;
524 	crypto_request_set_tfm(req, tfm);
525 	req->flags |= CRYPTO_TFM_REQ_ON_STACK;
526 }
527 
528 #endif	/* _LINUX_CRYPTO_H */
529 
530