xref: /linux/drivers/acpi/acpi_pad.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * acpi_pad.c ACPI Processor Aggregator Driver
4   *
5   * Copyright (c) 2009, Intel Corporation.
6   */
7  
8  #include <linux/kernel.h>
9  #include <linux/cpumask.h>
10  #include <linux/module.h>
11  #include <linux/init.h>
12  #include <linux/types.h>
13  #include <linux/kthread.h>
14  #include <uapi/linux/sched/types.h>
15  #include <linux/freezer.h>
16  #include <linux/cpu.h>
17  #include <linux/tick.h>
18  #include <linux/slab.h>
19  #include <linux/acpi.h>
20  #include <linux/perf_event.h>
21  #include <linux/platform_device.h>
22  #include <asm/cpuid/api.h>
23  #include <asm/mwait.h>
24  #include <xen/xen.h>
25  
26  #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
27  #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
28  #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
29  
30  #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS	0
31  #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION	1
32  
33  static DEFINE_MUTEX(isolated_cpus_lock);
34  static DEFINE_MUTEX(round_robin_lock);
35  
36  static unsigned int power_saving_mwait_eax;
37  
38  static unsigned char tsc_detected_unstable;
39  static unsigned char tsc_marked_unstable;
40  
power_saving_mwait_init(void)41  static void power_saving_mwait_init(void)
42  {
43  	unsigned int eax, ebx, ecx, edx;
44  	unsigned int highest_cstate = 0;
45  	unsigned int highest_subcstate = 0;
46  	int i;
47  
48  	if (!boot_cpu_has(X86_FEATURE_MWAIT))
49  		return;
50  
51  	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
52  
53  	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
54  	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
55  		return;
56  
57  	edx >>= MWAIT_SUBSTATE_SIZE;
58  	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
59  		if (edx & MWAIT_SUBSTATE_MASK) {
60  			highest_cstate = i;
61  			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
62  		}
63  	}
64  	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
65  		(highest_subcstate - 1);
66  
67  #if defined(CONFIG_X86)
68  	switch (boot_cpu_data.x86_vendor) {
69  	case X86_VENDOR_HYGON:
70  	case X86_VENDOR_AMD:
71  	case X86_VENDOR_INTEL:
72  	case X86_VENDOR_ZHAOXIN:
73  	case X86_VENDOR_CENTAUR:
74  		/*
75  		 * AMD Fam10h TSC will tick in all
76  		 * C/P/S0/S1 states when this bit is set.
77  		 */
78  		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
79  			tsc_detected_unstable = 1;
80  		break;
81  	default:
82  		/* TSC could halt in idle */
83  		tsc_detected_unstable = 1;
84  	}
85  #endif
86  }
87  
88  static unsigned long cpu_weight[NR_CPUS];
89  static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
90  static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)91  static void round_robin_cpu(unsigned int tsk_index)
92  {
93  	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
94  	cpumask_var_t tmp;
95  	int cpu;
96  	unsigned long min_weight = -1;
97  	unsigned long preferred_cpu;
98  
99  	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
100  		return;
101  
102  	mutex_lock(&round_robin_lock);
103  	cpumask_clear(tmp);
104  	for_each_cpu(cpu, pad_busy_cpus)
105  		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
106  	cpumask_andnot(tmp, cpu_online_mask, tmp);
107  	/* avoid HT siblings if possible */
108  	if (cpumask_empty(tmp))
109  		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
110  	if (cpumask_empty(tmp)) {
111  		mutex_unlock(&round_robin_lock);
112  		free_cpumask_var(tmp);
113  		return;
114  	}
115  	for_each_cpu(cpu, tmp) {
116  		if (cpu_weight[cpu] < min_weight) {
117  			min_weight = cpu_weight[cpu];
118  			preferred_cpu = cpu;
119  		}
120  	}
121  
122  	if (tsk_in_cpu[tsk_index] != -1)
123  		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124  	tsk_in_cpu[tsk_index] = preferred_cpu;
125  	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126  	cpu_weight[preferred_cpu]++;
127  	mutex_unlock(&round_robin_lock);
128  
129  	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130  
131  	free_cpumask_var(tmp);
132  }
133  
exit_round_robin(unsigned int tsk_index)134  static void exit_round_robin(unsigned int tsk_index)
135  {
136  	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
137  
138  	if (tsk_in_cpu[tsk_index] != -1) {
139  		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
140  		tsk_in_cpu[tsk_index] = -1;
141  	}
142  }
143  
144  static unsigned int idle_pct = 5; /* percentage */
145  static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)146  static int power_saving_thread(void *data)
147  {
148  	int do_sleep;
149  	unsigned int tsk_index = (unsigned long)data;
150  	u64 last_jiffies = 0;
151  
152  	sched_set_fifo_low(current);
153  
154  	while (!kthread_should_stop()) {
155  		unsigned long expire_time;
156  
157  		/* round robin to cpus */
158  		expire_time = last_jiffies + round_robin_time * HZ;
159  		if (time_before(expire_time, jiffies)) {
160  			last_jiffies = jiffies;
161  			round_robin_cpu(tsk_index);
162  		}
163  
164  		do_sleep = 0;
165  
166  		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
167  
168  		while (!need_resched()) {
169  			if (tsc_detected_unstable && !tsc_marked_unstable) {
170  				/* TSC could halt in idle, so notify users */
171  				mark_tsc_unstable("TSC halts in idle");
172  				tsc_marked_unstable = 1;
173  			}
174  			local_irq_disable();
175  
176  			perf_lopwr_cb(true);
177  
178  			tick_broadcast_enable();
179  			tick_broadcast_enter();
180  			stop_critical_timings();
181  
182  			mwait_idle_with_hints(power_saving_mwait_eax, 1);
183  
184  			start_critical_timings();
185  			tick_broadcast_exit();
186  
187  			perf_lopwr_cb(false);
188  
189  			local_irq_enable();
190  
191  			if (time_before(expire_time, jiffies)) {
192  				do_sleep = 1;
193  				break;
194  			}
195  		}
196  
197  		/*
198  		 * current sched_rt has threshold for rt task running time.
199  		 * When a rt task uses 95% CPU time, the rt thread will be
200  		 * scheduled out for 5% CPU time to not starve other tasks. But
201  		 * the mechanism only works when all CPUs have RT task running,
202  		 * as if one CPU hasn't RT task, RT task from other CPUs will
203  		 * borrow CPU time from this CPU and cause RT task use > 95%
204  		 * CPU time. To make 'avoid starvation' work, takes a nap here.
205  		 */
206  		if (unlikely(do_sleep))
207  			schedule_timeout_killable(HZ * idle_pct / 100);
208  
209  		/* If an external event has set the need_resched flag, then
210  		 * we need to deal with it, or this loop will continue to
211  		 * spin without calling __mwait().
212  		 */
213  		if (unlikely(need_resched()))
214  			schedule();
215  	}
216  
217  	exit_round_robin(tsk_index);
218  	return 0;
219  }
220  
221  static struct task_struct *ps_tsks[NR_CPUS];
222  static unsigned int ps_tsk_num;
create_power_saving_task(void)223  static int create_power_saving_task(void)
224  {
225  	int rc;
226  
227  	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
228  		(void *)(unsigned long)ps_tsk_num,
229  		"acpi_pad/%d", ps_tsk_num);
230  
231  	if (IS_ERR(ps_tsks[ps_tsk_num])) {
232  		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
233  		ps_tsks[ps_tsk_num] = NULL;
234  	} else {
235  		rc = 0;
236  		ps_tsk_num++;
237  	}
238  
239  	return rc;
240  }
241  
destroy_power_saving_task(void)242  static void destroy_power_saving_task(void)
243  {
244  	if (ps_tsk_num > 0) {
245  		ps_tsk_num--;
246  		kthread_stop(ps_tsks[ps_tsk_num]);
247  		ps_tsks[ps_tsk_num] = NULL;
248  	}
249  }
250  
set_power_saving_task_num(unsigned int num)251  static void set_power_saving_task_num(unsigned int num)
252  {
253  	if (num > ps_tsk_num) {
254  		while (ps_tsk_num < num) {
255  			if (create_power_saving_task())
256  				return;
257  		}
258  	} else if (num < ps_tsk_num) {
259  		while (ps_tsk_num > num)
260  			destroy_power_saving_task();
261  	}
262  }
263  
acpi_pad_idle_cpus(unsigned int num_cpus)264  static void acpi_pad_idle_cpus(unsigned int num_cpus)
265  {
266  	cpus_read_lock();
267  
268  	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
269  	set_power_saving_task_num(num_cpus);
270  
271  	cpus_read_unlock();
272  }
273  
acpi_pad_idle_cpus_num(void)274  static uint32_t acpi_pad_idle_cpus_num(void)
275  {
276  	return ps_tsk_num;
277  }
278  
rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)279  static ssize_t rrtime_store(struct device *dev,
280  	struct device_attribute *attr, const char *buf, size_t count)
281  {
282  	unsigned long num;
283  
284  	if (kstrtoul(buf, 0, &num))
285  		return -EINVAL;
286  	if (num < 1 || num >= 100)
287  		return -EINVAL;
288  	mutex_lock(&isolated_cpus_lock);
289  	round_robin_time = num;
290  	mutex_unlock(&isolated_cpus_lock);
291  	return count;
292  }
293  
rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)294  static ssize_t rrtime_show(struct device *dev,
295  	struct device_attribute *attr, char *buf)
296  {
297  	return sysfs_emit(buf, "%d\n", round_robin_time);
298  }
299  static DEVICE_ATTR_RW(rrtime);
300  
idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)301  static ssize_t idlepct_store(struct device *dev,
302  	struct device_attribute *attr, const char *buf, size_t count)
303  {
304  	unsigned long num;
305  
306  	if (kstrtoul(buf, 0, &num))
307  		return -EINVAL;
308  	if (num < 1 || num >= 100)
309  		return -EINVAL;
310  	mutex_lock(&isolated_cpus_lock);
311  	idle_pct = num;
312  	mutex_unlock(&isolated_cpus_lock);
313  	return count;
314  }
315  
idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)316  static ssize_t idlepct_show(struct device *dev,
317  	struct device_attribute *attr, char *buf)
318  {
319  	return sysfs_emit(buf, "%d\n", idle_pct);
320  }
321  static DEVICE_ATTR_RW(idlepct);
322  
idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)323  static ssize_t idlecpus_store(struct device *dev,
324  	struct device_attribute *attr, const char *buf, size_t count)
325  {
326  	unsigned long num;
327  
328  	if (kstrtoul(buf, 0, &num))
329  		return -EINVAL;
330  	mutex_lock(&isolated_cpus_lock);
331  	acpi_pad_idle_cpus(num);
332  	mutex_unlock(&isolated_cpus_lock);
333  	return count;
334  }
335  
idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)336  static ssize_t idlecpus_show(struct device *dev,
337  	struct device_attribute *attr, char *buf)
338  {
339  	return cpumap_print_to_pagebuf(false, buf,
340  				       to_cpumask(pad_busy_cpus_bits));
341  }
342  
343  static DEVICE_ATTR_RW(idlecpus);
344  
345  static struct attribute *acpi_pad_attrs[] = {
346  	&dev_attr_idlecpus.attr,
347  	&dev_attr_idlepct.attr,
348  	&dev_attr_rrtime.attr,
349  	NULL
350  };
351  
352  ATTRIBUTE_GROUPS(acpi_pad);
353  
354  /*
355   * Query firmware how many CPUs should be idle
356   * return -1 on failure
357   */
acpi_pad_pur(acpi_handle handle)358  static int acpi_pad_pur(acpi_handle handle)
359  {
360  	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
361  	union acpi_object *package;
362  	int num = -1;
363  
364  	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
365  		return num;
366  
367  	if (!buffer.length || !buffer.pointer)
368  		return num;
369  
370  	package = buffer.pointer;
371  
372  	if (package->type == ACPI_TYPE_PACKAGE &&
373  		package->package.count == 2 &&
374  		package->package.elements[0].integer.value == 1) /* rev 1 */
375  
376  		num = package->package.elements[1].integer.value;
377  
378  	kfree(buffer.pointer);
379  	return num;
380  }
381  
acpi_pad_handle_notify(acpi_handle handle)382  static void acpi_pad_handle_notify(acpi_handle handle)
383  {
384  	int num_cpus;
385  	uint32_t idle_cpus;
386  	struct acpi_buffer param = {
387  		.length = 4,
388  		.pointer = (void *)&idle_cpus,
389  	};
390  	u32 status;
391  
392  	mutex_lock(&isolated_cpus_lock);
393  	num_cpus = acpi_pad_pur(handle);
394  	if (num_cpus < 0) {
395  		/* The ACPI specification says that if no action was performed when
396  		 * processing the _PUR object, _OST should still be evaluated, albeit
397  		 * with a different status code.
398  		 */
399  		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION;
400  	} else {
401  		status = ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS;
402  		acpi_pad_idle_cpus(num_cpus);
403  	}
404  
405  	idle_cpus = acpi_pad_idle_cpus_num();
406  	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, status, &param);
407  	mutex_unlock(&isolated_cpus_lock);
408  }
409  
acpi_pad_notify(acpi_handle handle,u32 event,void * data)410  static void acpi_pad_notify(acpi_handle handle, u32 event,
411  	void *data)
412  {
413  	struct acpi_device *adev = data;
414  
415  	switch (event) {
416  	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
417  		acpi_pad_handle_notify(handle);
418  		acpi_bus_generate_netlink_event(adev->pnp.device_class,
419  			dev_name(&adev->dev), event, 0);
420  		break;
421  	default:
422  		pr_warn("Unsupported event [0x%x]\n", event);
423  		break;
424  	}
425  }
426  
acpi_pad_probe(struct platform_device * pdev)427  static int acpi_pad_probe(struct platform_device *pdev)
428  {
429  	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
430  	acpi_status status;
431  
432  	strscpy(acpi_device_name(adev), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
433  	strscpy(acpi_device_class(adev), ACPI_PROCESSOR_AGGREGATOR_CLASS);
434  
435  	status = acpi_install_notify_handler(adev->handle,
436  		ACPI_DEVICE_NOTIFY, acpi_pad_notify, adev);
437  
438  	if (ACPI_FAILURE(status))
439  		return -ENODEV;
440  
441  	return 0;
442  }
443  
acpi_pad_remove(struct platform_device * pdev)444  static void acpi_pad_remove(struct platform_device *pdev)
445  {
446  	struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
447  
448  	mutex_lock(&isolated_cpus_lock);
449  	acpi_pad_idle_cpus(0);
450  	mutex_unlock(&isolated_cpus_lock);
451  
452  	acpi_remove_notify_handler(adev->handle,
453  		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
454  }
455  
456  static const struct acpi_device_id pad_device_ids[] = {
457  	{"ACPI000C", 0},
458  	{"", 0},
459  };
460  MODULE_DEVICE_TABLE(acpi, pad_device_ids);
461  
462  static struct platform_driver acpi_pad_driver = {
463  	.probe = acpi_pad_probe,
464  	.remove = acpi_pad_remove,
465  	.driver = {
466  		.dev_groups = acpi_pad_groups,
467  		.name = "processor_aggregator",
468  		.acpi_match_table = pad_device_ids,
469  	},
470  };
471  
acpi_pad_init(void)472  static int __init acpi_pad_init(void)
473  {
474  	/* Xen ACPI PAD is used when running as Xen Dom0. */
475  	if (xen_initial_domain())
476  		return -ENODEV;
477  
478  	power_saving_mwait_init();
479  	if (power_saving_mwait_eax == 0)
480  		return -EINVAL;
481  
482  	return platform_driver_register(&acpi_pad_driver);
483  }
484  
acpi_pad_exit(void)485  static void __exit acpi_pad_exit(void)
486  {
487  	platform_driver_unregister(&acpi_pad_driver);
488  }
489  
490  module_init(acpi_pad_init);
491  module_exit(acpi_pad_exit);
492  MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
493  MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
494  MODULE_LICENSE("GPL");
495