1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_CPUMASK_H
3 #define __LINUX_CPUMASK_H
4
5 /*
6 * Cpumasks provide a bitmap suitable for representing the
7 * set of CPUs in a system, one bit position per CPU number. In general,
8 * only nr_cpu_ids (<= NR_CPUS) bits are valid.
9 */
10 #include <linux/cleanup.h>
11 #include <linux/kernel.h>
12 #include <linux/bitmap.h>
13 #include <linux/cpumask_types.h>
14 #include <linux/atomic.h>
15 #include <linux/bug.h>
16 #include <linux/gfp_types.h>
17 #include <linux/numa.h>
18
19 /**
20 * cpumask_pr_args - printf args to output a cpumask
21 * @maskp: cpumask to be printed
22 *
23 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
24 */
25 #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
26
27 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
28 #define nr_cpu_ids ((unsigned int)NR_CPUS)
29 #else
30 extern unsigned int nr_cpu_ids;
31 #endif
32
set_nr_cpu_ids(unsigned int nr)33 static __always_inline void set_nr_cpu_ids(unsigned int nr)
34 {
35 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
36 WARN_ON(nr != nr_cpu_ids);
37 #else
38 nr_cpu_ids = nr;
39 #endif
40 }
41
42 /*
43 * We have several different "preferred sizes" for the cpumask
44 * operations, depending on operation.
45 *
46 * For example, the bitmap scanning and operating operations have
47 * optimized routines that work for the single-word case, but only when
48 * the size is constant. So if NR_CPUS fits in one single word, we are
49 * better off using that small constant, in order to trigger the
50 * optimized bit finding. That is 'small_cpumask_size'.
51 *
52 * The clearing and copying operations will similarly perform better
53 * with a constant size, but we limit that size arbitrarily to four
54 * words. We call this 'large_cpumask_size'.
55 *
56 * Finally, some operations just want the exact limit, either because
57 * they set bits or just don't have any faster fixed-sized versions. We
58 * call this just 'nr_cpumask_bits'.
59 *
60 * Note that these optional constants are always guaranteed to be at
61 * least as big as 'nr_cpu_ids' itself is, and all our cpumask
62 * allocations are at least that size (see cpumask_size()). The
63 * optimization comes from being able to potentially use a compile-time
64 * constant instead of a run-time generated exact number of CPUs.
65 */
66 #if NR_CPUS <= BITS_PER_LONG
67 #define small_cpumask_bits ((unsigned int)NR_CPUS)
68 #define large_cpumask_bits ((unsigned int)NR_CPUS)
69 #elif NR_CPUS <= 4*BITS_PER_LONG
70 #define small_cpumask_bits nr_cpu_ids
71 #define large_cpumask_bits ((unsigned int)NR_CPUS)
72 #else
73 #define small_cpumask_bits nr_cpu_ids
74 #define large_cpumask_bits nr_cpu_ids
75 #endif
76 #define nr_cpumask_bits nr_cpu_ids
77
78 /*
79 * The following particular system cpumasks and operations manage
80 * possible, present, active and online cpus.
81 *
82 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
83 * cpu_present_mask - has bit 'cpu' set iff cpu is populated
84 * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online
85 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
86 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration
87 *
88 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
89 *
90 * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs
91 * that it is possible might ever be plugged in at anytime during the
92 * life of that system boot. The cpu_present_mask is dynamic(*),
93 * representing which CPUs are currently plugged in. And
94 * cpu_online_mask is the dynamic subset of cpu_present_mask,
95 * indicating those CPUs available for scheduling.
96 *
97 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
98 * depending on what ACPI reports as currently plugged in, otherwise
99 * cpu_present_mask is just a copy of cpu_possible_mask.
100 *
101 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
102 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
103 *
104 * Subtleties:
105 * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
106 * assumption that their single CPU is online. The UP
107 * cpu_{online,possible,present}_masks are placebos. Changing them
108 * will have no useful affect on the following num_*_cpus()
109 * and cpu_*() macros in the UP case. This ugliness is a UP
110 * optimization - don't waste any instructions or memory references
111 * asking if you're online or how many CPUs there are if there is
112 * only one CPU.
113 */
114
115 extern struct cpumask __cpu_possible_mask;
116 extern struct cpumask __cpu_online_mask;
117 extern struct cpumask __cpu_enabled_mask;
118 extern struct cpumask __cpu_present_mask;
119 extern struct cpumask __cpu_active_mask;
120 extern struct cpumask __cpu_dying_mask;
121 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
122 #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
123 #define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask)
124 #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
125 #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
126 #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
127
128 extern atomic_t __num_online_cpus;
129
130 extern cpumask_t cpus_booted_once_mask;
131
cpu_max_bits_warn(unsigned int cpu,unsigned int bits)132 static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
133 {
134 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
135 WARN_ON_ONCE(cpu >= bits);
136 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */
137 }
138
139 /* verify cpu argument to cpumask_* operators */
cpumask_check(unsigned int cpu)140 static __always_inline unsigned int cpumask_check(unsigned int cpu)
141 {
142 cpu_max_bits_warn(cpu, small_cpumask_bits);
143 return cpu;
144 }
145
146 /**
147 * cpumask_first - get the first cpu in a cpumask
148 * @srcp: the cpumask pointer
149 *
150 * Return: >= nr_cpu_ids if no cpus set.
151 */
cpumask_first(const struct cpumask * srcp)152 static __always_inline unsigned int cpumask_first(const struct cpumask *srcp)
153 {
154 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
155 }
156
157 /**
158 * cpumask_first_zero - get the first unset cpu in a cpumask
159 * @srcp: the cpumask pointer
160 *
161 * Return: >= nr_cpu_ids if all cpus are set.
162 */
cpumask_first_zero(const struct cpumask * srcp)163 static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
164 {
165 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
166 }
167
168 /**
169 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2
170 * @srcp1: the first input
171 * @srcp2: the second input
172 *
173 * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
174 */
175 static __always_inline
cpumask_first_and(const struct cpumask * srcp1,const struct cpumask * srcp2)176 unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
177 {
178 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
179 }
180
181 /**
182 * cpumask_first_andnot - return the first cpu from *srcp1 & ~*srcp2
183 * @srcp1: the first input
184 * @srcp2: the second input
185 *
186 * Return: >= nr_cpu_ids if no such cpu found.
187 */
188 static __always_inline
cpumask_first_andnot(const struct cpumask * srcp1,const struct cpumask * srcp2)189 unsigned int cpumask_first_andnot(const struct cpumask *srcp1, const struct cpumask *srcp2)
190 {
191 return find_first_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
192 }
193
194 /**
195 * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3
196 * @srcp1: the first input
197 * @srcp2: the second input
198 * @srcp3: the third input
199 *
200 * Return: >= nr_cpu_ids if no cpus set in all.
201 */
202 static __always_inline
cpumask_first_and_and(const struct cpumask * srcp1,const struct cpumask * srcp2,const struct cpumask * srcp3)203 unsigned int cpumask_first_and_and(const struct cpumask *srcp1,
204 const struct cpumask *srcp2,
205 const struct cpumask *srcp3)
206 {
207 return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
208 cpumask_bits(srcp3), small_cpumask_bits);
209 }
210
211 /**
212 * cpumask_last - get the last CPU in a cpumask
213 * @srcp: - the cpumask pointer
214 *
215 * Return: >= nr_cpumask_bits if no CPUs set.
216 */
cpumask_last(const struct cpumask * srcp)217 static __always_inline unsigned int cpumask_last(const struct cpumask *srcp)
218 {
219 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
220 }
221
222 /**
223 * cpumask_next - get the next cpu in a cpumask
224 * @n: the cpu prior to the place to search (i.e. return will be > @n)
225 * @srcp: the cpumask pointer
226 *
227 * Return: >= nr_cpu_ids if no further cpus set.
228 */
229 static __always_inline
cpumask_next(int n,const struct cpumask * srcp)230 unsigned int cpumask_next(int n, const struct cpumask *srcp)
231 {
232 /* -1 is a legal arg here. */
233 if (n != -1)
234 cpumask_check(n);
235 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
236 }
237
238 /**
239 * cpumask_next_zero - get the next unset cpu in a cpumask
240 * @n: the cpu prior to the place to search (i.e. return will be > @n)
241 * @srcp: the cpumask pointer
242 *
243 * Return: >= nr_cpu_ids if no further cpus unset.
244 */
245 static __always_inline
cpumask_next_zero(int n,const struct cpumask * srcp)246 unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
247 {
248 /* -1 is a legal arg here. */
249 if (n != -1)
250 cpumask_check(n);
251 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
252 }
253
254 #if NR_CPUS == 1
255 /* Uniprocessor: there is only one valid CPU */
256 static __always_inline
cpumask_local_spread(unsigned int i,int node)257 unsigned int cpumask_local_spread(unsigned int i, int node)
258 {
259 return 0;
260 }
261
262 static __always_inline
cpumask_any_and_distribute(const struct cpumask * src1p,const struct cpumask * src2p)263 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
264 const struct cpumask *src2p)
265 {
266 return cpumask_first_and(src1p, src2p);
267 }
268
269 static __always_inline
cpumask_any_distribute(const struct cpumask * srcp)270 unsigned int cpumask_any_distribute(const struct cpumask *srcp)
271 {
272 return cpumask_first(srcp);
273 }
274 #else
275 unsigned int cpumask_local_spread(unsigned int i, int node);
276 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
277 const struct cpumask *src2p);
278 unsigned int cpumask_any_distribute(const struct cpumask *srcp);
279 #endif /* NR_CPUS */
280
281 /**
282 * cpumask_next_and - get the next cpu in *src1p & *src2p
283 * @n: the cpu prior to the place to search (i.e. return will be > @n)
284 * @src1p: the first cpumask pointer
285 * @src2p: the second cpumask pointer
286 *
287 * Return: >= nr_cpu_ids if no further cpus set in both.
288 */
289 static __always_inline
cpumask_next_and(int n,const struct cpumask * src1p,const struct cpumask * src2p)290 unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
291 const struct cpumask *src2p)
292 {
293 /* -1 is a legal arg here. */
294 if (n != -1)
295 cpumask_check(n);
296 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
297 small_cpumask_bits, n + 1);
298 }
299
300 /**
301 * cpumask_next_andnot - get the next cpu in *src1p & ~*src2p
302 * @n: the cpu prior to the place to search (i.e. return will be > @n)
303 * @src1p: the first cpumask pointer
304 * @src2p: the second cpumask pointer
305 *
306 * Return: >= nr_cpu_ids if no further cpus set in both.
307 */
308 static __always_inline
cpumask_next_andnot(int n,const struct cpumask * src1p,const struct cpumask * src2p)309 unsigned int cpumask_next_andnot(int n, const struct cpumask *src1p,
310 const struct cpumask *src2p)
311 {
312 /* -1 is a legal arg here. */
313 if (n != -1)
314 cpumask_check(n);
315 return find_next_andnot_bit(cpumask_bits(src1p), cpumask_bits(src2p),
316 small_cpumask_bits, n + 1);
317 }
318
319 /**
320 * cpumask_next_and_wrap - get the next cpu in *src1p & *src2p, starting from
321 * @n+1. If nothing found, wrap around and start from
322 * the beginning
323 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
324 * @src1p: the first cpumask pointer
325 * @src2p: the second cpumask pointer
326 *
327 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src1p & @src2p is empty.
328 */
329 static __always_inline
cpumask_next_and_wrap(int n,const struct cpumask * src1p,const struct cpumask * src2p)330 unsigned int cpumask_next_and_wrap(int n, const struct cpumask *src1p,
331 const struct cpumask *src2p)
332 {
333 /* -1 is a legal arg here. */
334 if (n != -1)
335 cpumask_check(n);
336 return find_next_and_bit_wrap(cpumask_bits(src1p), cpumask_bits(src2p),
337 small_cpumask_bits, n + 1);
338 }
339
340 /**
341 * cpumask_next_wrap - get the next cpu in *src, starting from @n+1. If nothing
342 * found, wrap around and start from the beginning
343 * @n: the cpu prior to the place to search (i.e. search starts from @n+1)
344 * @src: cpumask pointer
345 *
346 * Return: next set bit, wrapped if needed, or >= nr_cpu_ids if @src is empty.
347 */
348 static __always_inline
cpumask_next_wrap(int n,const struct cpumask * src)349 unsigned int cpumask_next_wrap(int n, const struct cpumask *src)
350 {
351 /* -1 is a legal arg here. */
352 if (n != -1)
353 cpumask_check(n);
354 return find_next_bit_wrap(cpumask_bits(src), small_cpumask_bits, n + 1);
355 }
356
357 /**
358 * cpumask_random - get random cpu in *src.
359 * @src: cpumask pointer
360 *
361 * Return: random set bit, or >= nr_cpu_ids if @src is empty.
362 */
363 static __always_inline
cpumask_random(const struct cpumask * src)364 unsigned int cpumask_random(const struct cpumask *src)
365 {
366 return find_random_bit(cpumask_bits(src), nr_cpu_ids);
367 }
368
369 /**
370 * for_each_cpu - iterate over every cpu in a mask
371 * @cpu: the (optionally unsigned) integer iterator
372 * @mask: the cpumask pointer
373 *
374 * After the loop, cpu is >= nr_cpu_ids.
375 */
376 #define for_each_cpu(cpu, mask) \
377 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
378
379 /**
380 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
381 * @cpu: the (optionally unsigned) integer iterator
382 * @mask: the cpumask pointer
383 * @start: the start location
384 *
385 * The implementation does not assume any bit in @mask is set (including @start).
386 *
387 * After the loop, cpu is >= nr_cpu_ids.
388 */
389 #define for_each_cpu_wrap(cpu, mask, start) \
390 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
391
392 /**
393 * for_each_cpu_and - iterate over every cpu in both masks
394 * @cpu: the (optionally unsigned) integer iterator
395 * @mask1: the first cpumask pointer
396 * @mask2: the second cpumask pointer
397 *
398 * This saves a temporary CPU mask in many places. It is equivalent to:
399 * struct cpumask tmp;
400 * cpumask_and(&tmp, &mask1, &mask2);
401 * for_each_cpu(cpu, &tmp)
402 * ...
403 *
404 * After the loop, cpu is >= nr_cpu_ids.
405 */
406 #define for_each_cpu_and(cpu, mask1, mask2) \
407 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
408
409 /**
410 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
411 * those present in another.
412 * @cpu: the (optionally unsigned) integer iterator
413 * @mask1: the first cpumask pointer
414 * @mask2: the second cpumask pointer
415 *
416 * This saves a temporary CPU mask in many places. It is equivalent to:
417 * struct cpumask tmp;
418 * cpumask_andnot(&tmp, &mask1, &mask2);
419 * for_each_cpu(cpu, &tmp)
420 * ...
421 *
422 * After the loop, cpu is >= nr_cpu_ids.
423 */
424 #define for_each_cpu_andnot(cpu, mask1, mask2) \
425 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
426
427 /**
428 * for_each_cpu_or - iterate over every cpu present in either mask
429 * @cpu: the (optionally unsigned) integer iterator
430 * @mask1: the first cpumask pointer
431 * @mask2: the second cpumask pointer
432 *
433 * This saves a temporary CPU mask in many places. It is equivalent to:
434 * struct cpumask tmp;
435 * cpumask_or(&tmp, &mask1, &mask2);
436 * for_each_cpu(cpu, &tmp)
437 * ...
438 *
439 * After the loop, cpu is >= nr_cpu_ids.
440 */
441 #define for_each_cpu_or(cpu, mask1, mask2) \
442 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
443
444 /**
445 * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask.
446 * @cpu: the (optionally unsigned) integer iterator
447 * @mask: the cpumask pointer
448 *
449 * After the loop, cpu is >= nr_cpu_ids.
450 */
451 #define for_each_cpu_from(cpu, mask) \
452 for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits)
453
454 /**
455 * cpumask_any_but - return an arbitrary cpu in a cpumask, but not this one.
456 * @mask: the cpumask to search
457 * @cpu: the cpu to ignore.
458 *
459 * Often used to find any cpu but smp_processor_id() in a mask.
460 * If @cpu == -1, the function is equivalent to cpumask_any().
461 * Return: >= nr_cpu_ids if no cpus set.
462 */
463 static __always_inline
cpumask_any_but(const struct cpumask * mask,int cpu)464 unsigned int cpumask_any_but(const struct cpumask *mask, int cpu)
465 {
466 unsigned int i;
467
468 /* -1 is a legal arg here. */
469 if (cpu != -1)
470 cpumask_check(cpu);
471
472 for_each_cpu(i, mask)
473 if (i != cpu)
474 break;
475 return i;
476 }
477
478 /**
479 * cpumask_any_and_but - pick an arbitrary cpu from *mask1 & *mask2, but not this one.
480 * @mask1: the first input cpumask
481 * @mask2: the second input cpumask
482 * @cpu: the cpu to ignore
483 *
484 * If @cpu == -1, the function is equivalent to cpumask_any_and().
485 * Returns >= nr_cpu_ids if no cpus set.
486 */
487 static __always_inline
cpumask_any_and_but(const struct cpumask * mask1,const struct cpumask * mask2,int cpu)488 unsigned int cpumask_any_and_but(const struct cpumask *mask1,
489 const struct cpumask *mask2,
490 int cpu)
491 {
492 unsigned int i;
493
494 /* -1 is a legal arg here. */
495 if (cpu != -1)
496 cpumask_check(cpu);
497
498 i = cpumask_first_and(mask1, mask2);
499 if (i != cpu)
500 return i;
501
502 return cpumask_next_and(cpu, mask1, mask2);
503 }
504
505 /**
506 * cpumask_any_andnot_but - pick an arbitrary cpu from *mask1 & ~*mask2, but not this one.
507 * @mask1: the first input cpumask
508 * @mask2: the second input cpumask
509 * @cpu: the cpu to ignore
510 *
511 * If @cpu == -1, the function returns the first matching cpu.
512 * Returns >= nr_cpu_ids if no cpus set.
513 */
514 static __always_inline
cpumask_any_andnot_but(const struct cpumask * mask1,const struct cpumask * mask2,int cpu)515 unsigned int cpumask_any_andnot_but(const struct cpumask *mask1,
516 const struct cpumask *mask2,
517 int cpu)
518 {
519 unsigned int i;
520
521 /* -1 is a legal arg here. */
522 if (cpu != -1)
523 cpumask_check(cpu);
524
525 i = cpumask_first_andnot(mask1, mask2);
526 if (i != cpu)
527 return i;
528
529 return cpumask_next_andnot(cpu, mask1, mask2);
530 }
531
532 /**
533 * cpumask_nth - get the Nth cpu in a cpumask
534 * @srcp: the cpumask pointer
535 * @cpu: the Nth cpu to find, starting from 0
536 *
537 * Return: >= nr_cpu_ids if such cpu doesn't exist.
538 */
539 static __always_inline
cpumask_nth(unsigned int cpu,const struct cpumask * srcp)540 unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
541 {
542 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
543 }
544
545 /**
546 * cpumask_nth_and - get the Nth cpu in 2 cpumasks
547 * @srcp1: the cpumask pointer
548 * @srcp2: the cpumask pointer
549 * @cpu: the Nth cpu to find, starting from 0
550 *
551 * Return: >= nr_cpu_ids if such cpu doesn't exist.
552 */
553 static __always_inline
cpumask_nth_and(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2)554 unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
555 const struct cpumask *srcp2)
556 {
557 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
558 small_cpumask_bits, cpumask_check(cpu));
559 }
560
561 /**
562 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
563 * @srcp1: the cpumask pointer
564 * @srcp2: the cpumask pointer
565 * @srcp3: the cpumask pointer
566 * @cpu: the Nth cpu to find, starting from 0
567 *
568 * Return: >= nr_cpu_ids if such cpu doesn't exist.
569 */
570 static __always_inline
cpumask_nth_and_andnot(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2,const struct cpumask * srcp3)571 unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
572 const struct cpumask *srcp2,
573 const struct cpumask *srcp3)
574 {
575 return find_nth_and_andnot_bit(cpumask_bits(srcp1),
576 cpumask_bits(srcp2),
577 cpumask_bits(srcp3),
578 small_cpumask_bits, cpumask_check(cpu));
579 }
580
581 #define CPU_BITS_NONE \
582 { \
583 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
584 }
585
586 #define CPU_BITS_CPU0 \
587 { \
588 [0] = 1UL \
589 }
590
591 /**
592 * cpumask_set_cpu - set a cpu in a cpumask
593 * @cpu: cpu number (< nr_cpu_ids)
594 * @dstp: the cpumask pointer
595 */
596 static __always_inline
cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)597 void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
598 {
599 set_bit(cpumask_check(cpu), cpumask_bits(dstp));
600 }
601
602 static __always_inline
__cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)603 void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
604 {
605 __set_bit(cpumask_check(cpu), cpumask_bits(dstp));
606 }
607
608 /**
609 * cpumask_clear_cpus - clear cpus in a cpumask
610 * @dstp: the cpumask pointer
611 * @cpu: cpu number (< nr_cpu_ids)
612 * @ncpus: number of cpus to clear (< nr_cpu_ids)
613 */
cpumask_clear_cpus(struct cpumask * dstp,unsigned int cpu,unsigned int ncpus)614 static __always_inline void cpumask_clear_cpus(struct cpumask *dstp,
615 unsigned int cpu, unsigned int ncpus)
616 {
617 cpumask_check(cpu + ncpus - 1);
618 bitmap_clear(cpumask_bits(dstp), cpumask_check(cpu), ncpus);
619 }
620
621 /**
622 * cpumask_clear_cpu - clear a cpu in a cpumask
623 * @cpu: cpu number (< nr_cpu_ids)
624 * @dstp: the cpumask pointer
625 */
cpumask_clear_cpu(int cpu,struct cpumask * dstp)626 static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
627 {
628 clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
629 }
630
__cpumask_clear_cpu(int cpu,struct cpumask * dstp)631 static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
632 {
633 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
634 }
635
636 /**
637 * cpumask_test_cpu - test for a cpu in a cpumask
638 * @cpu: cpu number (< nr_cpu_ids)
639 * @cpumask: the cpumask pointer
640 *
641 * Return: true if @cpu is set in @cpumask, else returns false
642 */
643 static __always_inline
cpumask_test_cpu(int cpu,const struct cpumask * cpumask)644 bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
645 {
646 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
647 }
648
649 /**
650 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
651 * @cpu: cpu number (< nr_cpu_ids)
652 * @cpumask: the cpumask pointer
653 *
654 * test_and_set_bit wrapper for cpumasks.
655 *
656 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
657 */
658 static __always_inline
cpumask_test_and_set_cpu(int cpu,struct cpumask * cpumask)659 bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
660 {
661 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
662 }
663
664 /**
665 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
666 * @cpu: cpu number (< nr_cpu_ids)
667 * @cpumask: the cpumask pointer
668 *
669 * test_and_clear_bit wrapper for cpumasks.
670 *
671 * Return: true if @cpu is set in old bitmap of @cpumask, else returns false
672 */
673 static __always_inline
cpumask_test_and_clear_cpu(int cpu,struct cpumask * cpumask)674 bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
675 {
676 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
677 }
678
679 /**
680 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
681 * @dstp: the cpumask pointer
682 */
cpumask_setall(struct cpumask * dstp)683 static __always_inline void cpumask_setall(struct cpumask *dstp)
684 {
685 if (small_const_nbits(small_cpumask_bits)) {
686 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
687 return;
688 }
689 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
690 }
691
692 /**
693 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
694 * @dstp: the cpumask pointer
695 */
cpumask_clear(struct cpumask * dstp)696 static __always_inline void cpumask_clear(struct cpumask *dstp)
697 {
698 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
699 }
700
701 /**
702 * cpumask_and - *dstp = *src1p & *src2p
703 * @dstp: the cpumask result
704 * @src1p: the first input
705 * @src2p: the second input
706 *
707 * Return: false if *@dstp is empty, else returns true
708 */
709 static __always_inline
cpumask_and(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)710 bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p,
711 const struct cpumask *src2p)
712 {
713 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
714 cpumask_bits(src2p), small_cpumask_bits);
715 }
716
717 /**
718 * cpumask_or - *dstp = *src1p | *src2p
719 * @dstp: the cpumask result
720 * @src1p: the first input
721 * @src2p: the second input
722 */
723 static __always_inline
cpumask_or(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)724 void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
725 const struct cpumask *src2p)
726 {
727 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
728 cpumask_bits(src2p), small_cpumask_bits);
729 }
730
731 /**
732 * cpumask_xor - *dstp = *src1p ^ *src2p
733 * @dstp: the cpumask result
734 * @src1p: the first input
735 * @src2p: the second input
736 */
737 static __always_inline
cpumask_xor(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)738 void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p,
739 const struct cpumask *src2p)
740 {
741 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
742 cpumask_bits(src2p), small_cpumask_bits);
743 }
744
745 /**
746 * cpumask_andnot - *dstp = *src1p & ~*src2p
747 * @dstp: the cpumask result
748 * @src1p: the first input
749 * @src2p: the second input
750 *
751 * Return: false if *@dstp is empty, else returns true
752 */
753 static __always_inline
cpumask_andnot(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)754 bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p,
755 const struct cpumask *src2p)
756 {
757 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
758 cpumask_bits(src2p), small_cpumask_bits);
759 }
760
761 /**
762 * cpumask_equal - *src1p == *src2p
763 * @src1p: the first input
764 * @src2p: the second input
765 *
766 * Return: true if the cpumasks are equal, false if not
767 */
768 static __always_inline
cpumask_equal(const struct cpumask * src1p,const struct cpumask * src2p)769 bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p)
770 {
771 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
772 small_cpumask_bits);
773 }
774
775 /**
776 * cpumask_or_equal - *src1p | *src2p == *src3p
777 * @src1p: the first input
778 * @src2p: the second input
779 * @src3p: the third input
780 *
781 * Return: true if first cpumask ORed with second cpumask == third cpumask,
782 * otherwise false
783 */
784 static __always_inline
cpumask_or_equal(const struct cpumask * src1p,const struct cpumask * src2p,const struct cpumask * src3p)785 bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p,
786 const struct cpumask *src3p)
787 {
788 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
789 cpumask_bits(src3p), small_cpumask_bits);
790 }
791
792 /**
793 * cpumask_intersects - (*src1p & *src2p) != 0
794 * @src1p: the first input
795 * @src2p: the second input
796 *
797 * Return: true if first cpumask ANDed with second cpumask is non-empty,
798 * otherwise false
799 */
800 static __always_inline
cpumask_intersects(const struct cpumask * src1p,const struct cpumask * src2p)801 bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p)
802 {
803 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
804 small_cpumask_bits);
805 }
806
807 /**
808 * cpumask_subset - (*src1p & ~*src2p) == 0
809 * @src1p: the first input
810 * @src2p: the second input
811 *
812 * Return: true if *@src1p is a subset of *@src2p, else returns false
813 */
814 static __always_inline
cpumask_subset(const struct cpumask * src1p,const struct cpumask * src2p)815 bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p)
816 {
817 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
818 small_cpumask_bits);
819 }
820
821 /**
822 * cpumask_empty - *srcp == 0
823 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
824 *
825 * Return: true if srcp is empty (has no bits set), else false
826 */
cpumask_empty(const struct cpumask * srcp)827 static __always_inline bool cpumask_empty(const struct cpumask *srcp)
828 {
829 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
830 }
831
832 /**
833 * cpumask_full - *srcp == 0xFFFFFFFF...
834 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
835 *
836 * Return: true if srcp is full (has all bits set), else false
837 */
cpumask_full(const struct cpumask * srcp)838 static __always_inline bool cpumask_full(const struct cpumask *srcp)
839 {
840 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
841 }
842
843 /**
844 * cpumask_weight - Count of bits in *srcp
845 * @srcp: the cpumask to count bits (< nr_cpu_ids) in.
846 *
847 * Return: count of bits set in *srcp
848 */
cpumask_weight(const struct cpumask * srcp)849 static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp)
850 {
851 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
852 }
853
854 /**
855 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
856 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
857 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
858 *
859 * Return: count of bits set in both *srcp1 and *srcp2
860 */
861 static __always_inline
cpumask_weight_and(const struct cpumask * srcp1,const struct cpumask * srcp2)862 unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
863 {
864 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
865 }
866
867 /**
868 * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2)
869 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
870 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
871 *
872 * Return: count of bits set in both *srcp1 and *srcp2
873 */
874 static __always_inline
cpumask_weight_andnot(const struct cpumask * srcp1,const struct cpumask * srcp2)875 unsigned int cpumask_weight_andnot(const struct cpumask *srcp1,
876 const struct cpumask *srcp2)
877 {
878 return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
879 }
880
881 /**
882 * cpumask_shift_right - *dstp = *srcp >> n
883 * @dstp: the cpumask result
884 * @srcp: the input to shift
885 * @n: the number of bits to shift by
886 */
887 static __always_inline
cpumask_shift_right(struct cpumask * dstp,const struct cpumask * srcp,int n)888 void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n)
889 {
890 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
891 small_cpumask_bits);
892 }
893
894 /**
895 * cpumask_shift_left - *dstp = *srcp << n
896 * @dstp: the cpumask result
897 * @srcp: the input to shift
898 * @n: the number of bits to shift by
899 */
900 static __always_inline
cpumask_shift_left(struct cpumask * dstp,const struct cpumask * srcp,int n)901 void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n)
902 {
903 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
904 nr_cpumask_bits);
905 }
906
907 /**
908 * cpumask_copy - *dstp = *srcp
909 * @dstp: the result
910 * @srcp: the input cpumask
911 */
912 static __always_inline
cpumask_copy(struct cpumask * dstp,const struct cpumask * srcp)913 void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp)
914 {
915 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
916 }
917
918 /**
919 * cpumask_any - pick an arbitrary cpu from *srcp
920 * @srcp: the input cpumask
921 *
922 * Return: >= nr_cpu_ids if no cpus set.
923 */
924 #define cpumask_any(srcp) cpumask_first(srcp)
925
926 /**
927 * cpumask_any_and - pick an arbitrary cpu from *mask1 & *mask2
928 * @mask1: the first input cpumask
929 * @mask2: the second input cpumask
930 *
931 * Return: >= nr_cpu_ids if no cpus set.
932 */
933 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
934
935 /**
936 * cpumask_of - the cpumask containing just a given cpu
937 * @cpu: the cpu (<= nr_cpu_ids)
938 */
939 #define cpumask_of(cpu) (get_cpu_mask(cpu))
940
941 /**
942 * cpumask_parse_user - extract a cpumask from a user string
943 * @buf: the buffer to extract from
944 * @len: the length of the buffer
945 * @dstp: the cpumask to set.
946 *
947 * Return: -errno, or 0 for success.
948 */
949 static __always_inline
cpumask_parse_user(const char __user * buf,int len,struct cpumask * dstp)950 int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp)
951 {
952 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
953 }
954
955 /**
956 * cpumask_parselist_user - extract a cpumask from a user string
957 * @buf: the buffer to extract from
958 * @len: the length of the buffer
959 * @dstp: the cpumask to set.
960 *
961 * Return: -errno, or 0 for success.
962 */
963 static __always_inline
cpumask_parselist_user(const char __user * buf,int len,struct cpumask * dstp)964 int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp)
965 {
966 return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
967 nr_cpumask_bits);
968 }
969
970 /**
971 * cpumask_parse - extract a cpumask from a string
972 * @buf: the buffer to extract from
973 * @dstp: the cpumask to set.
974 *
975 * Return: -errno, or 0 for success.
976 */
cpumask_parse(const char * buf,struct cpumask * dstp)977 static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp)
978 {
979 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
980 }
981
982 /**
983 * cpulist_parse - extract a cpumask from a user string of ranges
984 * @buf: the buffer to extract from
985 * @dstp: the cpumask to set.
986 *
987 * Return: -errno, or 0 for success.
988 */
cpulist_parse(const char * buf,struct cpumask * dstp)989 static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp)
990 {
991 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
992 }
993
994 /**
995 * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes
996 *
997 * Return: size to allocate for a &struct cpumask in bytes
998 */
cpumask_size(void)999 static __always_inline unsigned int cpumask_size(void)
1000 {
1001 return bitmap_size(large_cpumask_bits);
1002 }
1003
1004 #ifdef CONFIG_CPUMASK_OFFSTACK
1005
1006 #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
1007 #define __cpumask_var_read_mostly __read_mostly
1008
1009 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
1010
1011 static __always_inline
zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)1012 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
1013 {
1014 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
1015 }
1016
1017 /**
1018 * alloc_cpumask_var - allocate a struct cpumask
1019 * @mask: pointer to cpumask_var_t where the cpumask is returned
1020 * @flags: GFP_ flags
1021 *
1022 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
1023 * a nop returning a constant 1 (in <linux/cpumask.h>).
1024 *
1025 * See alloc_cpumask_var_node.
1026 *
1027 * Return: %true if allocation succeeded, %false if not
1028 */
1029 static __always_inline
alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)1030 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1031 {
1032 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
1033 }
1034
1035 static __always_inline
zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)1036 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1037 {
1038 return alloc_cpumask_var(mask, flags | __GFP_ZERO);
1039 }
1040
1041 void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
1042 void free_cpumask_var(cpumask_var_t mask);
1043 void free_bootmem_cpumask_var(cpumask_var_t mask);
1044
cpumask_available(cpumask_var_t mask)1045 static __always_inline bool cpumask_available(cpumask_var_t mask)
1046 {
1047 return mask != NULL;
1048 }
1049
1050 #else
1051
1052 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
1053 #define __cpumask_var_read_mostly
1054
alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)1055 static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1056 {
1057 return true;
1058 }
1059
alloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)1060 static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1061 int node)
1062 {
1063 return true;
1064 }
1065
zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)1066 static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
1067 {
1068 cpumask_clear(*mask);
1069 return true;
1070 }
1071
zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)1072 static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
1073 int node)
1074 {
1075 cpumask_clear(*mask);
1076 return true;
1077 }
1078
alloc_bootmem_cpumask_var(cpumask_var_t * mask)1079 static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
1080 {
1081 }
1082
free_cpumask_var(cpumask_var_t mask)1083 static __always_inline void free_cpumask_var(cpumask_var_t mask)
1084 {
1085 }
1086
free_bootmem_cpumask_var(cpumask_var_t mask)1087 static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask)
1088 {
1089 }
1090
cpumask_available(cpumask_var_t mask)1091 static __always_inline bool cpumask_available(cpumask_var_t mask)
1092 {
1093 return true;
1094 }
1095 #endif /* CONFIG_CPUMASK_OFFSTACK */
1096
1097 DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T));
1098
1099 /* It's common to want to use cpu_all_mask in struct member initializers,
1100 * so it has to refer to an address rather than a pointer. */
1101 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
1102 #define cpu_all_mask to_cpumask(cpu_all_bits)
1103
1104 /* First bits of cpu_bit_bitmap are in fact unset. */
1105 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
1106
1107 #if NR_CPUS == 1
1108 /* Uniprocessor: the possible/online/present masks are always "1" */
1109 #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1110 #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1111 #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
1112
1113 #define for_each_possible_cpu_wrap(cpu, start) \
1114 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1115 #define for_each_online_cpu_wrap(cpu, start) \
1116 for ((void)(start), (cpu) = 0; (cpu) < 1; (cpu)++)
1117 #else
1118 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
1119 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
1120 #define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask)
1121 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
1122
1123 #define for_each_possible_cpu_wrap(cpu, start) \
1124 for_each_cpu_wrap((cpu), cpu_possible_mask, (start))
1125 #define for_each_online_cpu_wrap(cpu, start) \
1126 for_each_cpu_wrap((cpu), cpu_online_mask, (start))
1127 #endif
1128
1129 /* Wrappers for arch boot code to manipulate normally-constant masks */
1130 void init_cpu_present(const struct cpumask *src);
1131 void init_cpu_possible(const struct cpumask *src);
1132
1133 #define assign_cpu(cpu, mask, val) \
1134 assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val))
1135
1136 #define __assign_cpu(cpu, mask, val) \
1137 __assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val))
1138
1139 #define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible))
1140 #define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled))
1141 #define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present))
1142 #define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active))
1143 #define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying))
1144
1145 void set_cpu_online(unsigned int cpu, bool online);
1146
1147 /**
1148 * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask *
1149 * @bitmap: the bitmap
1150 *
1151 * There are a few places where cpumask_var_t isn't appropriate and
1152 * static cpumasks must be used (eg. very early boot), yet we don't
1153 * expose the definition of 'struct cpumask'.
1154 *
1155 * This does the conversion, and can be used as a constant initializer.
1156 */
1157 #define to_cpumask(bitmap) \
1158 ((struct cpumask *)(1 ? (bitmap) \
1159 : (void *)sizeof(__check_is_bitmap(bitmap))))
1160
__check_is_bitmap(const unsigned long * bitmap)1161 static __always_inline int __check_is_bitmap(const unsigned long *bitmap)
1162 {
1163 return 1;
1164 }
1165
1166 /*
1167 * Special-case data structure for "single bit set only" constant CPU masks.
1168 *
1169 * We pre-generate all the 64 (or 32) possible bit positions, with enough
1170 * padding to the left and the right, and return the constant pointer
1171 * appropriately offset.
1172 */
1173 extern const unsigned long
1174 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
1175
get_cpu_mask(unsigned int cpu)1176 static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu)
1177 {
1178 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
1179 p -= cpu / BITS_PER_LONG;
1180 return to_cpumask(p);
1181 }
1182
1183 #if NR_CPUS > 1
1184 /**
1185 * num_online_cpus() - Read the number of online CPUs
1186 *
1187 * Despite the fact that __num_online_cpus is of type atomic_t, this
1188 * interface gives only a momentary snapshot and is not protected against
1189 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
1190 * region.
1191 *
1192 * Return: momentary snapshot of the number of online CPUs
1193 */
num_online_cpus(void)1194 static __always_inline unsigned int num_online_cpus(void)
1195 {
1196 return raw_atomic_read(&__num_online_cpus);
1197 }
1198 #define num_possible_cpus() cpumask_weight(cpu_possible_mask)
1199 #define num_enabled_cpus() cpumask_weight(cpu_enabled_mask)
1200 #define num_present_cpus() cpumask_weight(cpu_present_mask)
1201 #define num_active_cpus() cpumask_weight(cpu_active_mask)
1202
cpu_online(unsigned int cpu)1203 static __always_inline bool cpu_online(unsigned int cpu)
1204 {
1205 return cpumask_test_cpu(cpu, cpu_online_mask);
1206 }
1207
cpu_enabled(unsigned int cpu)1208 static __always_inline bool cpu_enabled(unsigned int cpu)
1209 {
1210 return cpumask_test_cpu(cpu, cpu_enabled_mask);
1211 }
1212
cpu_possible(unsigned int cpu)1213 static __always_inline bool cpu_possible(unsigned int cpu)
1214 {
1215 return cpumask_test_cpu(cpu, cpu_possible_mask);
1216 }
1217
cpu_present(unsigned int cpu)1218 static __always_inline bool cpu_present(unsigned int cpu)
1219 {
1220 return cpumask_test_cpu(cpu, cpu_present_mask);
1221 }
1222
cpu_active(unsigned int cpu)1223 static __always_inline bool cpu_active(unsigned int cpu)
1224 {
1225 return cpumask_test_cpu(cpu, cpu_active_mask);
1226 }
1227
cpu_dying(unsigned int cpu)1228 static __always_inline bool cpu_dying(unsigned int cpu)
1229 {
1230 return cpumask_test_cpu(cpu, cpu_dying_mask);
1231 }
1232
1233 #else
1234
1235 #define num_online_cpus() 1U
1236 #define num_possible_cpus() 1U
1237 #define num_enabled_cpus() 1U
1238 #define num_present_cpus() 1U
1239 #define num_active_cpus() 1U
1240
cpu_online(unsigned int cpu)1241 static __always_inline bool cpu_online(unsigned int cpu)
1242 {
1243 return cpu == 0;
1244 }
1245
cpu_possible(unsigned int cpu)1246 static __always_inline bool cpu_possible(unsigned int cpu)
1247 {
1248 return cpu == 0;
1249 }
1250
cpu_enabled(unsigned int cpu)1251 static __always_inline bool cpu_enabled(unsigned int cpu)
1252 {
1253 return cpu == 0;
1254 }
1255
cpu_present(unsigned int cpu)1256 static __always_inline bool cpu_present(unsigned int cpu)
1257 {
1258 return cpu == 0;
1259 }
1260
cpu_active(unsigned int cpu)1261 static __always_inline bool cpu_active(unsigned int cpu)
1262 {
1263 return cpu == 0;
1264 }
1265
cpu_dying(unsigned int cpu)1266 static __always_inline bool cpu_dying(unsigned int cpu)
1267 {
1268 return false;
1269 }
1270
1271 #endif /* NR_CPUS > 1 */
1272
1273 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
1274
1275 #if NR_CPUS <= BITS_PER_LONG
1276 #define CPU_BITS_ALL \
1277 { \
1278 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1279 }
1280
1281 #else /* NR_CPUS > BITS_PER_LONG */
1282
1283 #define CPU_BITS_ALL \
1284 { \
1285 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1286 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1287 }
1288 #endif /* NR_CPUS > BITS_PER_LONG */
1289
1290 /**
1291 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either
1292 * as comma-separated list of cpus or hex values of cpumask
1293 * @list: indicates whether the cpumap must be list
1294 * @mask: the cpumask to copy
1295 * @buf: the buffer to copy into
1296 *
1297 * Return: the length of the (null-terminated) @buf string, zero if
1298 * nothing is copied.
1299 */
1300 static __always_inline ssize_t
cpumap_print_to_pagebuf(bool list,char * buf,const struct cpumask * mask)1301 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
1302 {
1303 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
1304 nr_cpu_ids);
1305 }
1306
1307 /**
1308 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
1309 * hex values of cpumask
1310 *
1311 * @buf: the buffer to copy into
1312 * @mask: the cpumask to copy
1313 * @off: in the string from which we are copying, we copy to @buf
1314 * @count: the maximum number of bytes to print
1315 *
1316 * The function prints the cpumask into the buffer as hex values of
1317 * cpumask; Typically used by bin_attribute to export cpumask bitmask
1318 * ABI.
1319 *
1320 * Return: the length of how many bytes have been copied, excluding
1321 * terminating '\0'.
1322 */
1323 static __always_inline
cpumap_print_bitmask_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1324 ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
1325 loff_t off, size_t count)
1326 {
1327 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
1328 nr_cpu_ids, off, count) - 1;
1329 }
1330
1331 /**
1332 * cpumap_print_list_to_buf - copies the cpumask into the buffer as
1333 * comma-separated list of cpus
1334 * @buf: the buffer to copy into
1335 * @mask: the cpumask to copy
1336 * @off: in the string from which we are copying, we copy to @buf
1337 * @count: the maximum number of bytes to print
1338 *
1339 * Everything is same with the above cpumap_print_bitmask_to_buf()
1340 * except the print format.
1341 *
1342 * Return: the length of how many bytes have been copied, excluding
1343 * terminating '\0'.
1344 */
1345 static __always_inline
cpumap_print_list_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1346 ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
1347 loff_t off, size_t count)
1348 {
1349 return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
1350 nr_cpu_ids, off, count) - 1;
1351 }
1352
1353 #if NR_CPUS <= BITS_PER_LONG
1354 #define CPU_MASK_ALL \
1355 (cpumask_t) { { \
1356 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1357 } }
1358 #else
1359 #define CPU_MASK_ALL \
1360 (cpumask_t) { { \
1361 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
1362 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
1363 } }
1364 #endif /* NR_CPUS > BITS_PER_LONG */
1365
1366 #define CPU_MASK_NONE \
1367 (cpumask_t) { { \
1368 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
1369 } }
1370
1371 #define CPU_MASK_CPU0 \
1372 (cpumask_t) { { \
1373 [0] = 1UL \
1374 } }
1375
1376 /*
1377 * Provide a valid theoretical max size for cpumap and cpulist sysfs files
1378 * to avoid breaking userspace which may allocate a buffer based on the size
1379 * reported by e.g. fstat.
1380 *
1381 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
1382 *
1383 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
1384 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to
1385 * cover a worst-case of every other cpu being on one of two nodes for a
1386 * very large NR_CPUS.
1387 *
1388 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding
1389 * unsigned comparison to -1.
1390 */
1391 #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
1392 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
1393 #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
1394
1395 #endif /* __LINUX_CPUMASK_H */
1396