1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/string_choices.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34
35 static LIST_HEAD(cpufreq_policy_list);
36
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active) \
39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 if ((__active) == !policy_is_inactive(__policy))
41
42 #define for_each_active_policy(__policy) \
43 for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy) \
45 for_each_suitable_policy(__policy, false)
46
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor) \
50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51
52 static char default_governor[CPUFREQ_NAME_LEN];
53
54 /*
55 * The "cpufreq driver" - the arch- or hardware-dependent low
56 * level driver of CPUFreq support, and its spinlock. This lock
57 * also protects the cpufreq_cpu_data array.
58 */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62
63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)64 bool cpufreq_supports_freq_invariance(void)
65 {
66 return static_branch_likely(&cpufreq_freq_invariance);
67 }
68
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71
has_target(void)72 static inline bool has_target(void)
73 {
74 return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76
has_target_index(void)77 bool has_target_index(void)
78 {
79 return !!cpufreq_driver->target_index;
80 }
81
82 /* internal prototypes */
83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84 static int cpufreq_init_governor(struct cpufreq_policy *policy);
85 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87 static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 struct cpufreq_governor *new_gov,
89 unsigned int new_pol);
90 static bool cpufreq_boost_supported(void);
91 static int cpufreq_boost_trigger_state(int state);
92
93 /*
94 * Two notifier lists: the "policy" list is involved in the
95 * validation process for a new CPU frequency policy; the
96 * "transition" list for kernel code that needs to handle
97 * changes to devices when the CPU clock speed changes.
98 * The mutex locks both lists.
99 */
100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
cpufreq_disabled(void)104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
disable_cpufreq(void)108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 EXPORT_SYMBOL_GPL(disable_cpufreq);
113
114 static DEFINE_MUTEX(cpufreq_governor_mutex);
115
have_governor_per_policy(void)116 bool have_governor_per_policy(void)
117 {
118 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119 }
120 EXPORT_SYMBOL_GPL(have_governor_per_policy);
121
122 static struct kobject *cpufreq_global_kobject;
123
get_governor_parent_kobj(struct cpufreq_policy * policy)124 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
125 {
126 if (have_governor_per_policy())
127 return &policy->kobj;
128 else
129 return cpufreq_global_kobject;
130 }
131 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
132
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)133 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
134 {
135 struct kernel_cpustat kcpustat;
136 u64 cur_wall_time;
137 u64 idle_time;
138 u64 busy_time;
139
140 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
141
142 kcpustat_cpu_fetch(&kcpustat, cpu);
143
144 busy_time = kcpustat.cpustat[CPUTIME_USER];
145 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
146 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
147 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
148 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
149 busy_time += kcpustat.cpustat[CPUTIME_NICE];
150
151 idle_time = cur_wall_time - busy_time;
152 if (wall)
153 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
154
155 return div_u64(idle_time, NSEC_PER_USEC);
156 }
157
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)158 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
159 {
160 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
161
162 if (idle_time == -1ULL)
163 return get_cpu_idle_time_jiffy(cpu, wall);
164 else if (!io_busy)
165 idle_time += get_cpu_iowait_time_us(cpu, wall);
166
167 return idle_time;
168 }
169 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
170
171 /*
172 * This is a generic cpufreq init() routine which can be used by cpufreq
173 * drivers of SMP systems. It will do following:
174 * - validate & show freq table passed
175 * - set policies transition latency
176 * - policy->cpus with all possible CPUs
177 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)178 void cpufreq_generic_init(struct cpufreq_policy *policy,
179 struct cpufreq_frequency_table *table,
180 unsigned int transition_latency)
181 {
182 policy->freq_table = table;
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
192
cpufreq_cpu_get_raw(unsigned int cpu)193 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
196
197 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
200
cpufreq_generic_get(unsigned int cpu)201 unsigned int cpufreq_generic_get(unsigned int cpu)
202 {
203 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
204
205 if (!policy || IS_ERR(policy->clk)) {
206 pr_err("%s: No %s associated to cpu: %d\n",
207 __func__, policy ? "clk" : "policy", cpu);
208 return 0;
209 }
210
211 return clk_get_rate(policy->clk) / 1000;
212 }
213 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
214
215 /**
216 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
217 * @cpu: CPU to find the policy for.
218 *
219 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
220 * the kobject reference counter of that policy. Return a valid policy on
221 * success or NULL on failure.
222 *
223 * The policy returned by this function has to be released with the help of
224 * cpufreq_cpu_put() to balance its kobject reference counter properly.
225 */
cpufreq_cpu_get(unsigned int cpu)226 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
227 {
228 struct cpufreq_policy *policy = NULL;
229 unsigned long flags;
230
231 if (WARN_ON(cpu >= nr_cpu_ids))
232 return NULL;
233
234 /* get the cpufreq driver */
235 read_lock_irqsave(&cpufreq_driver_lock, flags);
236
237 if (cpufreq_driver) {
238 /* get the CPU */
239 policy = cpufreq_cpu_get_raw(cpu);
240 if (policy)
241 kobject_get(&policy->kobj);
242 }
243
244 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
245
246 return policy;
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
249
250 /**
251 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
252 * @policy: cpufreq policy returned by cpufreq_cpu_get().
253 */
cpufreq_cpu_put(struct cpufreq_policy * policy)254 void cpufreq_cpu_put(struct cpufreq_policy *policy)
255 {
256 kobject_put(&policy->kobj);
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
259
260 /*********************************************************************
261 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
262 *********************************************************************/
263
264 /**
265 * adjust_jiffies - Adjust the system "loops_per_jiffy".
266 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
267 * @ci: Frequency change information.
268 *
269 * This function alters the system "loops_per_jiffy" for the clock
270 * speed change. Note that loops_per_jiffy cannot be updated on SMP
271 * systems as each CPU might be scaled differently. So, use the arch
272 * per-CPU loops_per_jiffy value wherever possible.
273 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
275 {
276 #ifndef CONFIG_SMP
277 static unsigned long l_p_j_ref;
278 static unsigned int l_p_j_ref_freq;
279
280 if (ci->flags & CPUFREQ_CONST_LOOPS)
281 return;
282
283 if (!l_p_j_ref_freq) {
284 l_p_j_ref = loops_per_jiffy;
285 l_p_j_ref_freq = ci->old;
286 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
287 l_p_j_ref, l_p_j_ref_freq);
288 }
289 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
290 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
291 ci->new);
292 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
293 loops_per_jiffy, ci->new);
294 }
295 #endif
296 }
297
298 /**
299 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
300 * @policy: cpufreq policy to enable fast frequency switching for.
301 * @freqs: contain details of the frequency update.
302 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
303 *
304 * This function calls the transition notifiers and adjust_jiffies().
305 *
306 * It is called twice on all CPU frequency changes that have external effects.
307 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)308 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
309 struct cpufreq_freqs *freqs,
310 unsigned int state)
311 {
312 int cpu;
313
314 BUG_ON(irqs_disabled());
315
316 if (cpufreq_disabled())
317 return;
318
319 freqs->policy = policy;
320 freqs->flags = cpufreq_driver->flags;
321 pr_debug("notification %u of frequency transition to %u kHz\n",
322 state, freqs->new);
323
324 switch (state) {
325 case CPUFREQ_PRECHANGE:
326 /*
327 * Detect if the driver reported a value as "old frequency"
328 * which is not equal to what the cpufreq core thinks is
329 * "old frequency".
330 */
331 if (policy->cur && policy->cur != freqs->old) {
332 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 freqs->old, policy->cur);
334 freqs->old = policy->cur;
335 }
336
337 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 CPUFREQ_PRECHANGE, freqs);
339
340 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
341 break;
342
343 case CPUFREQ_POSTCHANGE:
344 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
345 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
346 cpumask_pr_args(policy->cpus));
347
348 for_each_cpu(cpu, policy->cpus)
349 trace_cpu_frequency(freqs->new, cpu);
350
351 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
352 CPUFREQ_POSTCHANGE, freqs);
353
354 cpufreq_stats_record_transition(policy, freqs->new);
355 policy->cur = freqs->new;
356 }
357 }
358
359 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)360 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
361 struct cpufreq_freqs *freqs, int transition_failed)
362 {
363 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
364 if (!transition_failed)
365 return;
366
367 swap(freqs->old, freqs->new);
368 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 }
371
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)372 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
373 struct cpufreq_freqs *freqs)
374 {
375
376 /*
377 * Catch double invocations of _begin() which lead to self-deadlock.
378 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
379 * doesn't invoke _begin() on their behalf, and hence the chances of
380 * double invocations are very low. Moreover, there are scenarios
381 * where these checks can emit false-positive warnings in these
382 * drivers; so we avoid that by skipping them altogether.
383 */
384 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
385 && current == policy->transition_task);
386
387 wait:
388 wait_event(policy->transition_wait, !policy->transition_ongoing);
389
390 spin_lock(&policy->transition_lock);
391
392 if (unlikely(policy->transition_ongoing)) {
393 spin_unlock(&policy->transition_lock);
394 goto wait;
395 }
396
397 policy->transition_ongoing = true;
398 policy->transition_task = current;
399
400 spin_unlock(&policy->transition_lock);
401
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 }
404 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
405
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)406 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
407 struct cpufreq_freqs *freqs, int transition_failed)
408 {
409 if (WARN_ON(!policy->transition_ongoing))
410 return;
411
412 cpufreq_notify_post_transition(policy, freqs, transition_failed);
413
414 arch_set_freq_scale(policy->related_cpus,
415 policy->cur,
416 arch_scale_freq_ref(policy->cpu));
417
418 spin_lock(&policy->transition_lock);
419 policy->transition_ongoing = false;
420 policy->transition_task = NULL;
421 spin_unlock(&policy->transition_lock);
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
cpufreq_list_transition_notifiers(void)434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pS\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int min,unsigned int max,unsigned int relation)495 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
496 unsigned int target_freq,
497 unsigned int min, unsigned int max,
498 unsigned int relation)
499 {
500 unsigned int idx;
501
502 target_freq = clamp_val(target_freq, min, max);
503
504 if (!policy->freq_table)
505 return target_freq;
506
507 idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
508 policy->cached_resolved_idx = idx;
509 policy->cached_target_freq = target_freq;
510 return policy->freq_table[idx].frequency;
511 }
512
513 /**
514 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
515 * one.
516 * @policy: associated policy to interrogate
517 * @target_freq: target frequency to resolve.
518 *
519 * The target to driver frequency mapping is cached in the policy.
520 *
521 * Return: Lowest driver-supported frequency greater than or equal to the
522 * given target_freq, subject to policy (min/max) and driver limitations.
523 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)524 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
525 unsigned int target_freq)
526 {
527 unsigned int min = READ_ONCE(policy->min);
528 unsigned int max = READ_ONCE(policy->max);
529
530 /*
531 * If this function runs in parallel with cpufreq_set_policy(), it may
532 * read policy->min before the update and policy->max after the update
533 * or the other way around, so there is no ordering guarantee.
534 *
535 * Resolve this by always honoring the max (in case it comes from
536 * thermal throttling or similar).
537 */
538 if (unlikely(min > max))
539 min = max;
540
541 return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
544
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)545 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
546 {
547 unsigned int latency;
548
549 if (policy->transition_delay_us)
550 return policy->transition_delay_us;
551
552 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
553 if (latency)
554 /* Give a 50% breathing room between updates */
555 return latency + (latency >> 1);
556
557 return USEC_PER_MSEC;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
560
561 /*********************************************************************
562 * SYSFS INTERFACE *
563 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)564 static ssize_t show_boost(struct kobject *kobj,
565 struct kobj_attribute *attr, char *buf)
566 {
567 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
568 }
569
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)570 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
571 const char *buf, size_t count)
572 {
573 bool enable;
574
575 if (kstrtobool(buf, &enable))
576 return -EINVAL;
577
578 if (cpufreq_boost_trigger_state(enable)) {
579 pr_err("%s: Cannot %s BOOST!\n",
580 __func__, str_enable_disable(enable));
581 return -EINVAL;
582 }
583
584 pr_debug("%s: cpufreq BOOST %s\n",
585 __func__, str_enabled_disabled(enable));
586
587 return count;
588 }
589 define_one_global_rw(boost);
590
show_local_boost(struct cpufreq_policy * policy,char * buf)591 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
592 {
593 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
594 }
595
policy_set_boost(struct cpufreq_policy * policy,bool enable)596 static int policy_set_boost(struct cpufreq_policy *policy, bool enable)
597 {
598 int ret;
599
600 if (policy->boost_enabled == enable)
601 return 0;
602
603 policy->boost_enabled = enable;
604
605 ret = cpufreq_driver->set_boost(policy, enable);
606 if (ret)
607 policy->boost_enabled = !policy->boost_enabled;
608
609 return ret;
610 }
611
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)612 static ssize_t store_local_boost(struct cpufreq_policy *policy,
613 const char *buf, size_t count)
614 {
615 int ret;
616 bool enable;
617
618 if (kstrtobool(buf, &enable))
619 return -EINVAL;
620
621 if (!cpufreq_driver->boost_enabled)
622 return -EINVAL;
623
624 if (!policy->boost_supported)
625 return -EINVAL;
626
627 ret = policy_set_boost(policy, enable);
628 if (!ret)
629 return count;
630
631 return ret;
632 }
633
634 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
635
find_governor(const char * str_governor)636 static struct cpufreq_governor *find_governor(const char *str_governor)
637 {
638 struct cpufreq_governor *t;
639
640 for_each_governor(t)
641 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
642 return t;
643
644 return NULL;
645 }
646
get_governor(const char * str_governor)647 static struct cpufreq_governor *get_governor(const char *str_governor)
648 {
649 struct cpufreq_governor *t;
650
651 mutex_lock(&cpufreq_governor_mutex);
652 t = find_governor(str_governor);
653 if (!t)
654 goto unlock;
655
656 if (!try_module_get(t->owner))
657 t = NULL;
658
659 unlock:
660 mutex_unlock(&cpufreq_governor_mutex);
661
662 return t;
663 }
664
cpufreq_parse_policy(char * str_governor)665 static unsigned int cpufreq_parse_policy(char *str_governor)
666 {
667 if (!strncasecmp(str_governor, "performance", strlen("performance")))
668 return CPUFREQ_POLICY_PERFORMANCE;
669
670 if (!strncasecmp(str_governor, "powersave", strlen("powersave")))
671 return CPUFREQ_POLICY_POWERSAVE;
672
673 return CPUFREQ_POLICY_UNKNOWN;
674 }
675
676 /**
677 * cpufreq_parse_governor - parse a governor string only for has_target()
678 * @str_governor: Governor name.
679 */
cpufreq_parse_governor(char * str_governor)680 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
681 {
682 struct cpufreq_governor *t;
683
684 t = get_governor(str_governor);
685 if (t)
686 return t;
687
688 if (request_module("cpufreq_%s", str_governor))
689 return NULL;
690
691 return get_governor(str_governor);
692 }
693
694 /*
695 * cpufreq_per_cpu_attr_read() / show_##file_name() -
696 * print out cpufreq information
697 *
698 * Write out information from cpufreq_driver->policy[cpu]; object must be
699 * "unsigned int".
700 */
701
702 #define show_one(file_name, object) \
703 static ssize_t show_##file_name \
704 (struct cpufreq_policy *policy, char *buf) \
705 { \
706 return sysfs_emit(buf, "%u\n", policy->object); \
707 }
708
709 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
711 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
712 show_one(scaling_min_freq, min);
713 show_one(scaling_max_freq, max);
714
arch_freq_get_on_cpu(int cpu)715 __weak int arch_freq_get_on_cpu(int cpu)
716 {
717 return -EOPNOTSUPP;
718 }
719
cpufreq_avg_freq_supported(struct cpufreq_policy * policy)720 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
721 {
722 return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
723 }
724
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)725 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
726 {
727 ssize_t ret;
728 int freq;
729
730 freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
731 ? arch_freq_get_on_cpu(policy->cpu)
732 : 0;
733
734 if (freq > 0)
735 ret = sysfs_emit(buf, "%u\n", freq);
736 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
737 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
738 else
739 ret = sysfs_emit(buf, "%u\n", policy->cur);
740 return ret;
741 }
742
743 /*
744 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
745 */
746 #define store_one(file_name, object) \
747 static ssize_t store_##file_name \
748 (struct cpufreq_policy *policy, const char *buf, size_t count) \
749 { \
750 unsigned long val; \
751 int ret; \
752 \
753 ret = kstrtoul(buf, 0, &val); \
754 if (ret) \
755 return ret; \
756 \
757 ret = freq_qos_update_request(policy->object##_freq_req, val);\
758 return ret >= 0 ? count : ret; \
759 }
760
761 store_one(scaling_min_freq, min);
762 store_one(scaling_max_freq, max);
763
764 /*
765 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
766 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)767 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
768 char *buf)
769 {
770 unsigned int cur_freq = __cpufreq_get(policy);
771
772 if (cur_freq)
773 return sysfs_emit(buf, "%u\n", cur_freq);
774
775 return sysfs_emit(buf, "<unknown>\n");
776 }
777
778 /*
779 * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
780 */
show_cpuinfo_avg_freq(struct cpufreq_policy * policy,char * buf)781 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
782 char *buf)
783 {
784 int avg_freq = arch_freq_get_on_cpu(policy->cpu);
785
786 if (avg_freq > 0)
787 return sysfs_emit(buf, "%u\n", avg_freq);
788 return avg_freq != 0 ? avg_freq : -EINVAL;
789 }
790
791 /*
792 * show_scaling_governor - show the current policy for the specified CPU
793 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)794 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
795 {
796 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
797 return sysfs_emit(buf, "powersave\n");
798 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
799 return sysfs_emit(buf, "performance\n");
800 else if (policy->governor)
801 return sysfs_emit(buf, "%s\n", policy->governor->name);
802 return -EINVAL;
803 }
804
805 /*
806 * store_scaling_governor - store policy for the specified CPU
807 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)808 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
809 const char *buf, size_t count)
810 {
811 char str_governor[CPUFREQ_NAME_LEN];
812 int ret;
813
814 ret = sscanf(buf, "%15s", str_governor);
815 if (ret != 1)
816 return -EINVAL;
817
818 if (cpufreq_driver->setpolicy) {
819 unsigned int new_pol;
820
821 new_pol = cpufreq_parse_policy(str_governor);
822 if (!new_pol)
823 return -EINVAL;
824
825 ret = cpufreq_set_policy(policy, NULL, new_pol);
826 } else {
827 struct cpufreq_governor *new_gov;
828
829 new_gov = cpufreq_parse_governor(str_governor);
830 if (!new_gov)
831 return -EINVAL;
832
833 ret = cpufreq_set_policy(policy, new_gov,
834 CPUFREQ_POLICY_UNKNOWN);
835
836 module_put(new_gov->owner);
837 }
838
839 return ret ? ret : count;
840 }
841
842 /*
843 * show_scaling_driver - show the cpufreq driver currently loaded
844 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)845 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
846 {
847 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
848 }
849
850 /*
851 * show_scaling_available_governors - show the available CPUfreq governors
852 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)853 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
854 char *buf)
855 {
856 ssize_t i = 0;
857 struct cpufreq_governor *t;
858
859 if (!has_target()) {
860 i += sysfs_emit(buf, "performance powersave");
861 goto out;
862 }
863
864 mutex_lock(&cpufreq_governor_mutex);
865 for_each_governor(t) {
866 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
867 - (CPUFREQ_NAME_LEN + 2)))
868 break;
869 i += sysfs_emit_at(buf, i, "%s ", t->name);
870 }
871 mutex_unlock(&cpufreq_governor_mutex);
872 out:
873 i += sysfs_emit_at(buf, i, "\n");
874 return i;
875 }
876
cpufreq_show_cpus(const struct cpumask * mask,char * buf)877 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
878 {
879 ssize_t i = 0;
880 unsigned int cpu;
881
882 for_each_cpu(cpu, mask) {
883 i += sysfs_emit_at(buf, i, "%u ", cpu);
884 if (i >= (PAGE_SIZE - 5))
885 break;
886 }
887
888 /* Remove the extra space at the end */
889 i--;
890
891 i += sysfs_emit_at(buf, i, "\n");
892 return i;
893 }
894 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
895
896 /*
897 * show_related_cpus - show the CPUs affected by each transition even if
898 * hw coordination is in use
899 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)900 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
901 {
902 return cpufreq_show_cpus(policy->related_cpus, buf);
903 }
904
905 /*
906 * show_affected_cpus - show the CPUs affected by each transition
907 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)908 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
909 {
910 return cpufreq_show_cpus(policy->cpus, buf);
911 }
912
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)913 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
914 const char *buf, size_t count)
915 {
916 unsigned int freq = 0;
917 int ret;
918
919 if (!policy->governor || !policy->governor->store_setspeed)
920 return -EINVAL;
921
922 ret = kstrtouint(buf, 0, &freq);
923 if (ret)
924 return ret;
925
926 policy->governor->store_setspeed(policy, freq);
927
928 return count;
929 }
930
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)931 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
932 {
933 if (!policy->governor || !policy->governor->show_setspeed)
934 return sysfs_emit(buf, "<unsupported>\n");
935
936 return policy->governor->show_setspeed(policy, buf);
937 }
938
939 /*
940 * show_bios_limit - show the current cpufreq HW/BIOS limitation
941 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)942 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
943 {
944 unsigned int limit;
945 int ret;
946 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
947 if (!ret)
948 return sysfs_emit(buf, "%u\n", limit);
949 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
950 }
951
952 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
953 cpufreq_freq_attr_ro(cpuinfo_avg_freq);
954 cpufreq_freq_attr_ro(cpuinfo_min_freq);
955 cpufreq_freq_attr_ro(cpuinfo_max_freq);
956 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
957 cpufreq_freq_attr_ro(scaling_available_governors);
958 cpufreq_freq_attr_ro(scaling_driver);
959 cpufreq_freq_attr_ro(scaling_cur_freq);
960 cpufreq_freq_attr_ro(bios_limit);
961 cpufreq_freq_attr_ro(related_cpus);
962 cpufreq_freq_attr_ro(affected_cpus);
963 cpufreq_freq_attr_rw(scaling_min_freq);
964 cpufreq_freq_attr_rw(scaling_max_freq);
965 cpufreq_freq_attr_rw(scaling_governor);
966 cpufreq_freq_attr_rw(scaling_setspeed);
967
968 static struct attribute *cpufreq_attrs[] = {
969 &cpuinfo_min_freq.attr,
970 &cpuinfo_max_freq.attr,
971 &cpuinfo_transition_latency.attr,
972 &scaling_cur_freq.attr,
973 &scaling_min_freq.attr,
974 &scaling_max_freq.attr,
975 &affected_cpus.attr,
976 &related_cpus.attr,
977 &scaling_governor.attr,
978 &scaling_driver.attr,
979 &scaling_available_governors.attr,
980 &scaling_setspeed.attr,
981 NULL
982 };
983 ATTRIBUTE_GROUPS(cpufreq);
984
985 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
986 #define to_attr(a) container_of(a, struct freq_attr, attr)
987
show(struct kobject * kobj,struct attribute * attr,char * buf)988 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
989 {
990 struct cpufreq_policy *policy = to_policy(kobj);
991 struct freq_attr *fattr = to_attr(attr);
992
993 if (!fattr->show)
994 return -EIO;
995
996 guard(cpufreq_policy_read)(policy);
997
998 if (likely(!policy_is_inactive(policy)))
999 return fattr->show(policy, buf);
1000
1001 return -EBUSY;
1002 }
1003
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1004 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1005 const char *buf, size_t count)
1006 {
1007 struct cpufreq_policy *policy = to_policy(kobj);
1008 struct freq_attr *fattr = to_attr(attr);
1009
1010 if (!fattr->store)
1011 return -EIO;
1012
1013 guard(cpufreq_policy_write)(policy);
1014
1015 if (likely(!policy_is_inactive(policy)))
1016 return fattr->store(policy, buf, count);
1017
1018 return -EBUSY;
1019 }
1020
cpufreq_sysfs_release(struct kobject * kobj)1021 static void cpufreq_sysfs_release(struct kobject *kobj)
1022 {
1023 struct cpufreq_policy *policy = to_policy(kobj);
1024 pr_debug("last reference is dropped\n");
1025 complete(&policy->kobj_unregister);
1026 }
1027
1028 static const struct sysfs_ops sysfs_ops = {
1029 .show = show,
1030 .store = store,
1031 };
1032
1033 static const struct kobj_type ktype_cpufreq = {
1034 .sysfs_ops = &sysfs_ops,
1035 .default_groups = cpufreq_groups,
1036 .release = cpufreq_sysfs_release,
1037 };
1038
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1039 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1040 struct device *dev)
1041 {
1042 if (unlikely(!dev))
1043 return;
1044
1045 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1046 return;
1047
1048 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1049 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1050 dev_err(dev, "cpufreq symlink creation failed\n");
1051 }
1052
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1053 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1054 struct device *dev)
1055 {
1056 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1057 sysfs_remove_link(&dev->kobj, "cpufreq");
1058 cpumask_clear_cpu(cpu, policy->real_cpus);
1059 }
1060
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1061 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1062 {
1063 struct freq_attr **drv_attr;
1064 int ret = 0;
1065
1066 /* Attributes that need freq_table */
1067 if (policy->freq_table) {
1068 ret = sysfs_create_file(&policy->kobj,
1069 &cpufreq_freq_attr_scaling_available_freqs.attr);
1070 if (ret)
1071 return ret;
1072
1073 if (cpufreq_boost_supported()) {
1074 ret = sysfs_create_file(&policy->kobj,
1075 &cpufreq_freq_attr_scaling_boost_freqs.attr);
1076 if (ret)
1077 return ret;
1078 }
1079 }
1080
1081 /* set up files for this cpu device */
1082 drv_attr = cpufreq_driver->attr;
1083 while (drv_attr && *drv_attr) {
1084 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1085 if (ret)
1086 return ret;
1087 drv_attr++;
1088 }
1089 if (cpufreq_driver->get) {
1090 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1091 if (ret)
1092 return ret;
1093 }
1094
1095 if (cpufreq_avg_freq_supported(policy)) {
1096 ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1097 if (ret)
1098 return ret;
1099 }
1100
1101 if (cpufreq_driver->bios_limit) {
1102 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1103 if (ret)
1104 return ret;
1105 }
1106
1107 if (cpufreq_boost_supported()) {
1108 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1109 if (ret)
1110 return ret;
1111 }
1112
1113 return 0;
1114 }
1115
cpufreq_init_policy(struct cpufreq_policy * policy)1116 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1117 {
1118 struct cpufreq_governor *gov = NULL;
1119 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1120 int ret;
1121
1122 if (has_target()) {
1123 /* Update policy governor to the one used before hotplug. */
1124 if (policy->last_governor[0] != '\0')
1125 gov = get_governor(policy->last_governor);
1126 if (gov) {
1127 pr_debug("Restoring governor %s for cpu %d\n",
1128 gov->name, policy->cpu);
1129 } else {
1130 gov = get_governor(default_governor);
1131 }
1132
1133 if (!gov) {
1134 gov = cpufreq_default_governor();
1135 __module_get(gov->owner);
1136 }
1137
1138 } else {
1139
1140 /* Use the default policy if there is no last_policy. */
1141 if (policy->last_policy) {
1142 pol = policy->last_policy;
1143 } else {
1144 pol = cpufreq_parse_policy(default_governor);
1145 /*
1146 * In case the default governor is neither "performance"
1147 * nor "powersave", fall back to the initial policy
1148 * value set by the driver.
1149 */
1150 if (pol == CPUFREQ_POLICY_UNKNOWN)
1151 pol = policy->policy;
1152 }
1153 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1154 pol != CPUFREQ_POLICY_POWERSAVE)
1155 return -ENODATA;
1156 }
1157
1158 ret = cpufreq_set_policy(policy, gov, pol);
1159 if (gov)
1160 module_put(gov->owner);
1161
1162 return ret;
1163 }
1164
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1165 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1166 {
1167 int ret = 0;
1168
1169 /* Has this CPU been taken care of already? */
1170 if (cpumask_test_cpu(cpu, policy->cpus))
1171 return 0;
1172
1173 guard(cpufreq_policy_write)(policy);
1174
1175 if (has_target())
1176 cpufreq_stop_governor(policy);
1177
1178 cpumask_set_cpu(cpu, policy->cpus);
1179
1180 if (has_target()) {
1181 ret = cpufreq_start_governor(policy);
1182 if (ret)
1183 pr_err("%s: Failed to start governor\n", __func__);
1184 }
1185
1186 return ret;
1187 }
1188
refresh_frequency_limits(struct cpufreq_policy * policy)1189 void refresh_frequency_limits(struct cpufreq_policy *policy)
1190 {
1191 if (!policy_is_inactive(policy)) {
1192 pr_debug("updating policy for CPU %u\n", policy->cpu);
1193
1194 cpufreq_set_policy(policy, policy->governor, policy->policy);
1195 }
1196 }
1197 EXPORT_SYMBOL(refresh_frequency_limits);
1198
handle_update(struct work_struct * work)1199 static void handle_update(struct work_struct *work)
1200 {
1201 struct cpufreq_policy *policy =
1202 container_of(work, struct cpufreq_policy, update);
1203
1204 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1205
1206 guard(cpufreq_policy_write)(policy);
1207
1208 refresh_frequency_limits(policy);
1209 }
1210
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1211 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1212 void *data)
1213 {
1214 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1215
1216 schedule_work(&policy->update);
1217 return 0;
1218 }
1219
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1220 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1221 void *data)
1222 {
1223 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1224
1225 schedule_work(&policy->update);
1226 return 0;
1227 }
1228
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1229 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1230 {
1231 struct kobject *kobj;
1232 struct completion *cmp;
1233
1234 scoped_guard(cpufreq_policy_write, policy) {
1235 cpufreq_stats_free_table(policy);
1236 kobj = &policy->kobj;
1237 cmp = &policy->kobj_unregister;
1238 }
1239 kobject_put(kobj);
1240
1241 /*
1242 * We need to make sure that the underlying kobj is
1243 * actually not referenced anymore by anybody before we
1244 * proceed with unloading.
1245 */
1246 pr_debug("waiting for dropping of refcount\n");
1247 wait_for_completion(cmp);
1248 pr_debug("wait complete\n");
1249 }
1250
cpufreq_policy_alloc(unsigned int cpu)1251 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1252 {
1253 struct cpufreq_policy *policy;
1254 struct device *dev = get_cpu_device(cpu);
1255 int ret;
1256
1257 if (!dev)
1258 return NULL;
1259
1260 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1261 if (!policy)
1262 return NULL;
1263
1264 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1265 goto err_free_policy;
1266
1267 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1268 goto err_free_cpumask;
1269
1270 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1271 goto err_free_rcpumask;
1272
1273 init_completion(&policy->kobj_unregister);
1274 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1275 cpufreq_global_kobject, "policy%u", cpu);
1276 if (ret) {
1277 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1278 /*
1279 * The entire policy object will be freed below, but the extra
1280 * memory allocated for the kobject name needs to be freed by
1281 * releasing the kobject.
1282 */
1283 kobject_put(&policy->kobj);
1284 goto err_free_real_cpus;
1285 }
1286
1287 init_rwsem(&policy->rwsem);
1288
1289 freq_constraints_init(&policy->constraints);
1290
1291 policy->nb_min.notifier_call = cpufreq_notifier_min;
1292 policy->nb_max.notifier_call = cpufreq_notifier_max;
1293
1294 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1295 &policy->nb_min);
1296 if (ret) {
1297 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1298 ret, cpu);
1299 goto err_kobj_remove;
1300 }
1301
1302 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1303 &policy->nb_max);
1304 if (ret) {
1305 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1306 ret, cpu);
1307 goto err_min_qos_notifier;
1308 }
1309
1310 INIT_LIST_HEAD(&policy->policy_list);
1311 spin_lock_init(&policy->transition_lock);
1312 init_waitqueue_head(&policy->transition_wait);
1313 INIT_WORK(&policy->update, handle_update);
1314
1315 return policy;
1316
1317 err_min_qos_notifier:
1318 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1319 &policy->nb_min);
1320 err_kobj_remove:
1321 cpufreq_policy_put_kobj(policy);
1322 err_free_real_cpus:
1323 free_cpumask_var(policy->real_cpus);
1324 err_free_rcpumask:
1325 free_cpumask_var(policy->related_cpus);
1326 err_free_cpumask:
1327 free_cpumask_var(policy->cpus);
1328 err_free_policy:
1329 kfree(policy);
1330
1331 return NULL;
1332 }
1333
cpufreq_policy_free(struct cpufreq_policy * policy)1334 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1335 {
1336 unsigned long flags;
1337 int cpu;
1338
1339 /*
1340 * The callers must ensure the policy is inactive by now, to avoid any
1341 * races with show()/store() callbacks.
1342 */
1343 if (unlikely(!policy_is_inactive(policy)))
1344 pr_warn("%s: Freeing active policy\n", __func__);
1345
1346 /* Remove policy from list */
1347 write_lock_irqsave(&cpufreq_driver_lock, flags);
1348 list_del(&policy->policy_list);
1349
1350 for_each_cpu(cpu, policy->related_cpus)
1351 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1352 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1353
1354 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1355 &policy->nb_max);
1356 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1357 &policy->nb_min);
1358
1359 /* Cancel any pending policy->update work before freeing the policy. */
1360 cancel_work_sync(&policy->update);
1361
1362 if (policy->max_freq_req) {
1363 /*
1364 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1365 * notification, since CPUFREQ_CREATE_POLICY notification was
1366 * sent after adding max_freq_req earlier.
1367 */
1368 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1369 CPUFREQ_REMOVE_POLICY, policy);
1370 freq_qos_remove_request(policy->max_freq_req);
1371 }
1372
1373 freq_qos_remove_request(policy->min_freq_req);
1374 kfree(policy->min_freq_req);
1375
1376 cpufreq_policy_put_kobj(policy);
1377 free_cpumask_var(policy->real_cpus);
1378 free_cpumask_var(policy->related_cpus);
1379 free_cpumask_var(policy->cpus);
1380 kfree(policy);
1381 }
1382
cpufreq_policy_online(struct cpufreq_policy * policy,unsigned int cpu,bool new_policy)1383 static int cpufreq_policy_online(struct cpufreq_policy *policy,
1384 unsigned int cpu, bool new_policy)
1385 {
1386 unsigned long flags;
1387 unsigned int j;
1388 int ret;
1389
1390 guard(cpufreq_policy_write)(policy);
1391
1392 policy->cpu = cpu;
1393 policy->governor = NULL;
1394
1395 if (!new_policy && cpufreq_driver->online) {
1396 /* Recover policy->cpus using related_cpus */
1397 cpumask_copy(policy->cpus, policy->related_cpus);
1398
1399 ret = cpufreq_driver->online(policy);
1400 if (ret) {
1401 pr_debug("%s: %d: initialization failed\n", __func__,
1402 __LINE__);
1403 goto out_exit_policy;
1404 }
1405 } else {
1406 cpumask_copy(policy->cpus, cpumask_of(cpu));
1407
1408 /*
1409 * Call driver. From then on the cpufreq must be able
1410 * to accept all calls to ->verify and ->setpolicy for this CPU.
1411 */
1412 ret = cpufreq_driver->init(policy);
1413 if (ret) {
1414 pr_debug("%s: %d: initialization failed\n", __func__,
1415 __LINE__);
1416 goto out_clear_policy;
1417 }
1418
1419 /*
1420 * The initialization has succeeded and the policy is online.
1421 * If there is a problem with its frequency table, take it
1422 * offline and drop it.
1423 */
1424 ret = cpufreq_table_validate_and_sort(policy);
1425 if (ret)
1426 goto out_offline_policy;
1427
1428 /* related_cpus should at least include policy->cpus. */
1429 cpumask_copy(policy->related_cpus, policy->cpus);
1430 }
1431
1432 /*
1433 * affected cpus must always be the one, which are online. We aren't
1434 * managing offline cpus here.
1435 */
1436 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1437
1438 if (new_policy) {
1439 for_each_cpu(j, policy->related_cpus) {
1440 per_cpu(cpufreq_cpu_data, j) = policy;
1441 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1442 }
1443
1444 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1445 GFP_KERNEL);
1446 if (!policy->min_freq_req) {
1447 ret = -ENOMEM;
1448 goto out_destroy_policy;
1449 }
1450
1451 ret = freq_qos_add_request(&policy->constraints,
1452 policy->min_freq_req, FREQ_QOS_MIN,
1453 FREQ_QOS_MIN_DEFAULT_VALUE);
1454 if (ret < 0) {
1455 /*
1456 * So we don't call freq_qos_remove_request() for an
1457 * uninitialized request.
1458 */
1459 kfree(policy->min_freq_req);
1460 policy->min_freq_req = NULL;
1461 goto out_destroy_policy;
1462 }
1463
1464 /*
1465 * This must be initialized right here to avoid calling
1466 * freq_qos_remove_request() on uninitialized request in case
1467 * of errors.
1468 */
1469 policy->max_freq_req = policy->min_freq_req + 1;
1470
1471 ret = freq_qos_add_request(&policy->constraints,
1472 policy->max_freq_req, FREQ_QOS_MAX,
1473 FREQ_QOS_MAX_DEFAULT_VALUE);
1474 if (ret < 0) {
1475 policy->max_freq_req = NULL;
1476 goto out_destroy_policy;
1477 }
1478
1479 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1480 CPUFREQ_CREATE_POLICY, policy);
1481 } else {
1482 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1483 if (ret < 0)
1484 goto out_destroy_policy;
1485 }
1486
1487 if (cpufreq_driver->get && has_target()) {
1488 policy->cur = cpufreq_driver->get(policy->cpu);
1489 if (!policy->cur) {
1490 ret = -EIO;
1491 pr_err("%s: ->get() failed\n", __func__);
1492 goto out_destroy_policy;
1493 }
1494 }
1495
1496 /*
1497 * Sometimes boot loaders set CPU frequency to a value outside of
1498 * frequency table present with cpufreq core. In such cases CPU might be
1499 * unstable if it has to run on that frequency for long duration of time
1500 * and so its better to set it to a frequency which is specified in
1501 * freq-table. This also makes cpufreq stats inconsistent as
1502 * cpufreq-stats would fail to register because current frequency of CPU
1503 * isn't found in freq-table.
1504 *
1505 * Because we don't want this change to effect boot process badly, we go
1506 * for the next freq which is >= policy->cur ('cur' must be set by now,
1507 * otherwise we will end up setting freq to lowest of the table as 'cur'
1508 * is initialized to zero).
1509 *
1510 * We are passing target-freq as "policy->cur - 1" otherwise
1511 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1512 * equal to target-freq.
1513 */
1514 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1515 && has_target()) {
1516 unsigned int old_freq = policy->cur;
1517
1518 /* Are we running at unknown frequency ? */
1519 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1520 if (ret == -EINVAL) {
1521 ret = __cpufreq_driver_target(policy, old_freq - 1,
1522 CPUFREQ_RELATION_L);
1523
1524 /*
1525 * Reaching here after boot in a few seconds may not
1526 * mean that system will remain stable at "unknown"
1527 * frequency for longer duration. Hence, a BUG_ON().
1528 */
1529 BUG_ON(ret);
1530 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1531 __func__, policy->cpu, old_freq, policy->cur);
1532 }
1533 }
1534
1535 if (new_policy) {
1536 ret = cpufreq_add_dev_interface(policy);
1537 if (ret)
1538 goto out_destroy_policy;
1539
1540 cpufreq_stats_create_table(policy);
1541
1542 write_lock_irqsave(&cpufreq_driver_lock, flags);
1543 list_add(&policy->policy_list, &cpufreq_policy_list);
1544 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1545
1546 /*
1547 * Register with the energy model before
1548 * em_rebuild_sched_domains() is called, which will result
1549 * in rebuilding of the sched domains, which should only be done
1550 * once the energy model is properly initialized for the policy
1551 * first.
1552 *
1553 * Also, this should be called before the policy is registered
1554 * with cooling framework.
1555 */
1556 if (cpufreq_driver->register_em)
1557 cpufreq_driver->register_em(policy);
1558 }
1559
1560 ret = cpufreq_init_policy(policy);
1561 if (ret) {
1562 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1563 __func__, cpu, ret);
1564 goto out_destroy_policy;
1565 }
1566
1567 return 0;
1568
1569 out_destroy_policy:
1570 for_each_cpu(j, policy->real_cpus)
1571 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1572
1573 out_offline_policy:
1574 if (cpufreq_driver->offline)
1575 cpufreq_driver->offline(policy);
1576
1577 out_exit_policy:
1578 if (cpufreq_driver->exit)
1579 cpufreq_driver->exit(policy);
1580
1581 out_clear_policy:
1582 cpumask_clear(policy->cpus);
1583
1584 return ret;
1585 }
1586
cpufreq_online(unsigned int cpu)1587 static int cpufreq_online(unsigned int cpu)
1588 {
1589 struct cpufreq_policy *policy;
1590 bool new_policy;
1591 int ret;
1592
1593 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1594
1595 /* Check if this CPU already has a policy to manage it */
1596 policy = per_cpu(cpufreq_cpu_data, cpu);
1597 if (policy) {
1598 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1599 if (!policy_is_inactive(policy))
1600 return cpufreq_add_policy_cpu(policy, cpu);
1601
1602 /* This is the only online CPU for the policy. Start over. */
1603 new_policy = false;
1604 } else {
1605 new_policy = true;
1606 policy = cpufreq_policy_alloc(cpu);
1607 if (!policy)
1608 return -ENOMEM;
1609 }
1610
1611 ret = cpufreq_policy_online(policy, cpu, new_policy);
1612 if (ret) {
1613 cpufreq_policy_free(policy);
1614 return ret;
1615 }
1616
1617 kobject_uevent(&policy->kobj, KOBJ_ADD);
1618
1619 /* Callback for handling stuff after policy is ready */
1620 if (cpufreq_driver->ready)
1621 cpufreq_driver->ready(policy);
1622
1623 /* Register cpufreq cooling only for a new policy */
1624 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1625 policy->cdev = of_cpufreq_cooling_register(policy);
1626
1627 /*
1628 * Let the per-policy boost flag mirror the cpufreq_driver boost during
1629 * initialization for a new policy. For an existing policy, maintain the
1630 * previous boost value unless global boost is disabled.
1631 */
1632 if (cpufreq_driver->set_boost && policy->boost_supported &&
1633 (new_policy || !cpufreq_boost_enabled())) {
1634 ret = policy_set_boost(policy, cpufreq_boost_enabled());
1635 if (ret) {
1636 /* If the set_boost fails, the online operation is not affected */
1637 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1638 str_enable_disable(cpufreq_boost_enabled()));
1639 }
1640 }
1641
1642 pr_debug("initialization complete\n");
1643
1644 return 0;
1645 }
1646
1647 /**
1648 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1649 * @dev: CPU device.
1650 * @sif: Subsystem interface structure pointer (not used)
1651 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1652 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1653 {
1654 struct cpufreq_policy *policy;
1655 unsigned cpu = dev->id;
1656 int ret;
1657
1658 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1659
1660 if (cpu_online(cpu)) {
1661 ret = cpufreq_online(cpu);
1662 if (ret)
1663 return ret;
1664 }
1665
1666 /* Create sysfs link on CPU registration */
1667 policy = per_cpu(cpufreq_cpu_data, cpu);
1668 if (policy)
1669 add_cpu_dev_symlink(policy, cpu, dev);
1670
1671 return 0;
1672 }
1673
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1674 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1675 {
1676 int ret;
1677
1678 if (has_target())
1679 cpufreq_stop_governor(policy);
1680
1681 cpumask_clear_cpu(cpu, policy->cpus);
1682
1683 if (!policy_is_inactive(policy)) {
1684 /* Nominate a new CPU if necessary. */
1685 if (cpu == policy->cpu)
1686 policy->cpu = cpumask_any(policy->cpus);
1687
1688 /* Start the governor again for the active policy. */
1689 if (has_target()) {
1690 ret = cpufreq_start_governor(policy);
1691 if (ret)
1692 pr_err("%s: Failed to start governor\n", __func__);
1693 }
1694
1695 return;
1696 }
1697
1698 if (has_target()) {
1699 strscpy(policy->last_governor, policy->governor->name,
1700 CPUFREQ_NAME_LEN);
1701 cpufreq_exit_governor(policy);
1702 } else {
1703 policy->last_policy = policy->policy;
1704 }
1705
1706 /*
1707 * Perform the ->offline() during light-weight tear-down, as
1708 * that allows fast recovery when the CPU comes back.
1709 */
1710 if (cpufreq_driver->offline) {
1711 cpufreq_driver->offline(policy);
1712 return;
1713 }
1714
1715 if (cpufreq_driver->exit)
1716 cpufreq_driver->exit(policy);
1717
1718 policy->freq_table = NULL;
1719 }
1720
cpufreq_offline(unsigned int cpu)1721 static int cpufreq_offline(unsigned int cpu)
1722 {
1723 struct cpufreq_policy *policy;
1724
1725 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1726
1727 policy = cpufreq_cpu_get_raw(cpu);
1728 if (!policy) {
1729 pr_debug("%s: No cpu_data found\n", __func__);
1730 return 0;
1731 }
1732
1733 guard(cpufreq_policy_write)(policy);
1734
1735 __cpufreq_offline(cpu, policy);
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * cpufreq_remove_dev - remove a CPU device
1742 *
1743 * Removes the cpufreq interface for a CPU device.
1744 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1745 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1746 {
1747 unsigned int cpu = dev->id;
1748 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1749
1750 if (!policy)
1751 return;
1752
1753 scoped_guard(cpufreq_policy_write, policy) {
1754 if (cpu_online(cpu))
1755 __cpufreq_offline(cpu, policy);
1756
1757 remove_cpu_dev_symlink(policy, cpu, dev);
1758
1759 if (!cpumask_empty(policy->real_cpus))
1760 return;
1761
1762 /*
1763 * Unregister cpufreq cooling once all the CPUs of the policy
1764 * are removed.
1765 */
1766 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1767 cpufreq_cooling_unregister(policy->cdev);
1768 policy->cdev = NULL;
1769 }
1770
1771 /* We did light-weight exit earlier, do full tear down now */
1772 if (cpufreq_driver->offline && cpufreq_driver->exit)
1773 cpufreq_driver->exit(policy);
1774 }
1775
1776 cpufreq_policy_free(policy);
1777 }
1778
1779 /**
1780 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1781 * @policy: Policy managing CPUs.
1782 * @new_freq: New CPU frequency.
1783 *
1784 * Adjust to the current frequency first and clean up later by either calling
1785 * cpufreq_update_policy(), or scheduling handle_update().
1786 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1787 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1788 unsigned int new_freq)
1789 {
1790 struct cpufreq_freqs freqs;
1791
1792 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1793 policy->cur, new_freq);
1794
1795 freqs.old = policy->cur;
1796 freqs.new = new_freq;
1797
1798 cpufreq_freq_transition_begin(policy, &freqs);
1799 cpufreq_freq_transition_end(policy, &freqs, 0);
1800 }
1801
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1802 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1803 {
1804 unsigned int new_freq;
1805
1806 if (!cpufreq_driver->get)
1807 return 0;
1808
1809 new_freq = cpufreq_driver->get(policy->cpu);
1810 if (!new_freq)
1811 return 0;
1812
1813 /*
1814 * If fast frequency switching is used with the given policy, the check
1815 * against policy->cur is pointless, so skip it in that case.
1816 */
1817 if (policy->fast_switch_enabled || !has_target())
1818 return new_freq;
1819
1820 if (policy->cur != new_freq) {
1821 /*
1822 * For some platforms, the frequency returned by hardware may be
1823 * slightly different from what is provided in the frequency
1824 * table, for example hardware may return 499 MHz instead of 500
1825 * MHz. In such cases it is better to avoid getting into
1826 * unnecessary frequency updates.
1827 */
1828 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1829 return policy->cur;
1830
1831 cpufreq_out_of_sync(policy, new_freq);
1832 if (update)
1833 schedule_work(&policy->update);
1834 }
1835
1836 return new_freq;
1837 }
1838
1839 /**
1840 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1841 * @cpu: CPU number
1842 *
1843 * This is the last known freq, without actually getting it from the driver.
1844 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1845 */
cpufreq_quick_get(unsigned int cpu)1846 unsigned int cpufreq_quick_get(unsigned int cpu)
1847 {
1848 unsigned long flags;
1849
1850 read_lock_irqsave(&cpufreq_driver_lock, flags);
1851
1852 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1853 unsigned int ret_freq = cpufreq_driver->get(cpu);
1854
1855 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1856
1857 return ret_freq;
1858 }
1859
1860 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1861
1862 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1863 if (policy)
1864 return policy->cur;
1865
1866 return 0;
1867 }
1868 EXPORT_SYMBOL(cpufreq_quick_get);
1869
1870 /**
1871 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1872 * @cpu: CPU number
1873 *
1874 * Just return the max possible frequency for a given CPU.
1875 */
cpufreq_quick_get_max(unsigned int cpu)1876 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1877 {
1878 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1879 if (policy)
1880 return policy->max;
1881
1882 return 0;
1883 }
1884 EXPORT_SYMBOL(cpufreq_quick_get_max);
1885
1886 /**
1887 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1888 * @cpu: CPU number
1889 *
1890 * The default return value is the max_freq field of cpuinfo.
1891 */
cpufreq_get_hw_max_freq(unsigned int cpu)1892 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1893 {
1894 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1895 if (policy)
1896 return policy->cpuinfo.max_freq;
1897
1898 return 0;
1899 }
1900 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1901
__cpufreq_get(struct cpufreq_policy * policy)1902 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1903 {
1904 if (unlikely(policy_is_inactive(policy)))
1905 return 0;
1906
1907 return cpufreq_verify_current_freq(policy, true);
1908 }
1909
1910 /**
1911 * cpufreq_get - get the current CPU frequency (in kHz)
1912 * @cpu: CPU number
1913 *
1914 * Get the CPU current (static) CPU frequency
1915 */
cpufreq_get(unsigned int cpu)1916 unsigned int cpufreq_get(unsigned int cpu)
1917 {
1918 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1919 if (!policy)
1920 return 0;
1921
1922 guard(cpufreq_policy_read)(policy);
1923
1924 return __cpufreq_get(policy);
1925 }
1926 EXPORT_SYMBOL(cpufreq_get);
1927
1928 static struct subsys_interface cpufreq_interface = {
1929 .name = "cpufreq",
1930 .subsys = &cpu_subsys,
1931 .add_dev = cpufreq_add_dev,
1932 .remove_dev = cpufreq_remove_dev,
1933 };
1934
1935 /*
1936 * In case platform wants some specific frequency to be configured
1937 * during suspend..
1938 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1939 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1940 {
1941 int ret;
1942
1943 if (!policy->suspend_freq) {
1944 pr_debug("%s: suspend_freq not defined\n", __func__);
1945 return 0;
1946 }
1947
1948 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1949 policy->suspend_freq);
1950
1951 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1952 CPUFREQ_RELATION_H);
1953 if (ret)
1954 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1955 __func__, policy->suspend_freq, ret);
1956
1957 return ret;
1958 }
1959 EXPORT_SYMBOL(cpufreq_generic_suspend);
1960
1961 /**
1962 * cpufreq_suspend() - Suspend CPUFreq governors.
1963 *
1964 * Called during system wide Suspend/Hibernate cycles for suspending governors
1965 * as some platforms can't change frequency after this point in suspend cycle.
1966 * Because some of the devices (like: i2c, regulators, etc) they use for
1967 * changing frequency are suspended quickly after this point.
1968 */
cpufreq_suspend(void)1969 void cpufreq_suspend(void)
1970 {
1971 struct cpufreq_policy *policy;
1972
1973 if (!cpufreq_driver)
1974 return;
1975
1976 if (!has_target() && !cpufreq_driver->suspend)
1977 goto suspend;
1978
1979 pr_debug("%s: Suspending Governors\n", __func__);
1980
1981 for_each_active_policy(policy) {
1982 if (has_target()) {
1983 scoped_guard(cpufreq_policy_write, policy) {
1984 cpufreq_stop_governor(policy);
1985 }
1986 }
1987
1988 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1989 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1990 cpufreq_driver->name);
1991 }
1992
1993 suspend:
1994 cpufreq_suspended = true;
1995 }
1996
1997 /**
1998 * cpufreq_resume() - Resume CPUFreq governors.
1999 *
2000 * Called during system wide Suspend/Hibernate cycle for resuming governors that
2001 * are suspended with cpufreq_suspend().
2002 */
cpufreq_resume(void)2003 void cpufreq_resume(void)
2004 {
2005 struct cpufreq_policy *policy;
2006 int ret;
2007
2008 if (!cpufreq_driver)
2009 return;
2010
2011 if (unlikely(!cpufreq_suspended))
2012 return;
2013
2014 cpufreq_suspended = false;
2015
2016 if (!has_target() && !cpufreq_driver->resume)
2017 return;
2018
2019 pr_debug("%s: Resuming Governors\n", __func__);
2020
2021 for_each_active_policy(policy) {
2022 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2023 pr_err("%s: Failed to resume driver: %s\n", __func__,
2024 cpufreq_driver->name);
2025 } else if (has_target()) {
2026 scoped_guard(cpufreq_policy_write, policy) {
2027 ret = cpufreq_start_governor(policy);
2028 }
2029
2030 if (ret)
2031 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2032 __func__, policy->cpu);
2033 }
2034 }
2035 }
2036
2037 /**
2038 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2039 * @flags: Flags to test against the current cpufreq driver's flags.
2040 *
2041 * Assumes that the driver is there, so callers must ensure that this is the
2042 * case.
2043 */
cpufreq_driver_test_flags(u16 flags)2044 bool cpufreq_driver_test_flags(u16 flags)
2045 {
2046 return !!(cpufreq_driver->flags & flags);
2047 }
2048
2049 /**
2050 * cpufreq_get_current_driver - Return the current driver's name.
2051 *
2052 * Return the name string of the currently registered cpufreq driver or NULL if
2053 * none.
2054 */
cpufreq_get_current_driver(void)2055 const char *cpufreq_get_current_driver(void)
2056 {
2057 if (cpufreq_driver)
2058 return cpufreq_driver->name;
2059
2060 return NULL;
2061 }
2062 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2063
2064 /**
2065 * cpufreq_get_driver_data - Return current driver data.
2066 *
2067 * Return the private data of the currently registered cpufreq driver, or NULL
2068 * if no cpufreq driver has been registered.
2069 */
cpufreq_get_driver_data(void)2070 void *cpufreq_get_driver_data(void)
2071 {
2072 if (cpufreq_driver)
2073 return cpufreq_driver->driver_data;
2074
2075 return NULL;
2076 }
2077 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2078
2079 /*********************************************************************
2080 * NOTIFIER LISTS INTERFACE *
2081 *********************************************************************/
2082
2083 /**
2084 * cpufreq_register_notifier - Register a notifier with cpufreq.
2085 * @nb: notifier function to register.
2086 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2087 *
2088 * Add a notifier to one of two lists: either a list of notifiers that run on
2089 * clock rate changes (once before and once after every transition), or a list
2090 * of notifiers that ron on cpufreq policy changes.
2091 *
2092 * This function may sleep and it has the same return values as
2093 * blocking_notifier_chain_register().
2094 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2095 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2096 {
2097 int ret;
2098
2099 if (cpufreq_disabled())
2100 return -EINVAL;
2101
2102 switch (list) {
2103 case CPUFREQ_TRANSITION_NOTIFIER:
2104 mutex_lock(&cpufreq_fast_switch_lock);
2105
2106 if (cpufreq_fast_switch_count > 0) {
2107 mutex_unlock(&cpufreq_fast_switch_lock);
2108 return -EBUSY;
2109 }
2110 ret = srcu_notifier_chain_register(
2111 &cpufreq_transition_notifier_list, nb);
2112 if (!ret)
2113 cpufreq_fast_switch_count--;
2114
2115 mutex_unlock(&cpufreq_fast_switch_lock);
2116 break;
2117 case CPUFREQ_POLICY_NOTIFIER:
2118 ret = blocking_notifier_chain_register(
2119 &cpufreq_policy_notifier_list, nb);
2120 break;
2121 default:
2122 ret = -EINVAL;
2123 }
2124
2125 return ret;
2126 }
2127 EXPORT_SYMBOL(cpufreq_register_notifier);
2128
2129 /**
2130 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2131 * @nb: notifier block to be unregistered.
2132 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2133 *
2134 * Remove a notifier from one of the cpufreq notifier lists.
2135 *
2136 * This function may sleep and it has the same return values as
2137 * blocking_notifier_chain_unregister().
2138 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2139 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2140 {
2141 int ret;
2142
2143 if (cpufreq_disabled())
2144 return -EINVAL;
2145
2146 switch (list) {
2147 case CPUFREQ_TRANSITION_NOTIFIER:
2148 mutex_lock(&cpufreq_fast_switch_lock);
2149
2150 ret = srcu_notifier_chain_unregister(
2151 &cpufreq_transition_notifier_list, nb);
2152 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2153 cpufreq_fast_switch_count++;
2154
2155 mutex_unlock(&cpufreq_fast_switch_lock);
2156 break;
2157 case CPUFREQ_POLICY_NOTIFIER:
2158 ret = blocking_notifier_chain_unregister(
2159 &cpufreq_policy_notifier_list, nb);
2160 break;
2161 default:
2162 ret = -EINVAL;
2163 }
2164
2165 return ret;
2166 }
2167 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2168
2169
2170 /*********************************************************************
2171 * GOVERNORS *
2172 *********************************************************************/
2173
2174 /**
2175 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2176 * @policy: cpufreq policy to switch the frequency for.
2177 * @target_freq: New frequency to set (may be approximate).
2178 *
2179 * Carry out a fast frequency switch without sleeping.
2180 *
2181 * The driver's ->fast_switch() callback invoked by this function must be
2182 * suitable for being called from within RCU-sched read-side critical sections
2183 * and it is expected to select the minimum available frequency greater than or
2184 * equal to @target_freq (CPUFREQ_RELATION_L).
2185 *
2186 * This function must not be called if policy->fast_switch_enabled is unset.
2187 *
2188 * Governors calling this function must guarantee that it will never be invoked
2189 * twice in parallel for the same policy and that it will never be called in
2190 * parallel with either ->target() or ->target_index() for the same policy.
2191 *
2192 * Returns the actual frequency set for the CPU.
2193 *
2194 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2195 * error condition, the hardware configuration must be preserved.
2196 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2197 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2198 unsigned int target_freq)
2199 {
2200 unsigned int freq;
2201 int cpu;
2202
2203 target_freq = clamp_val(target_freq, policy->min, policy->max);
2204 freq = cpufreq_driver->fast_switch(policy, target_freq);
2205
2206 if (!freq)
2207 return 0;
2208
2209 policy->cur = freq;
2210 arch_set_freq_scale(policy->related_cpus, freq,
2211 arch_scale_freq_ref(policy->cpu));
2212 cpufreq_stats_record_transition(policy, freq);
2213
2214 if (trace_cpu_frequency_enabled()) {
2215 for_each_cpu(cpu, policy->cpus)
2216 trace_cpu_frequency(freq, cpu);
2217 }
2218
2219 return freq;
2220 }
2221 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2222
2223 /**
2224 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2225 * @cpu: Target CPU.
2226 * @min_perf: Minimum (required) performance level (units of @capacity).
2227 * @target_perf: Target (desired) performance level (units of @capacity).
2228 * @capacity: Capacity of the target CPU.
2229 *
2230 * Carry out a fast performance level switch of @cpu without sleeping.
2231 *
2232 * The driver's ->adjust_perf() callback invoked by this function must be
2233 * suitable for being called from within RCU-sched read-side critical sections
2234 * and it is expected to select a suitable performance level equal to or above
2235 * @min_perf and preferably equal to or below @target_perf.
2236 *
2237 * This function must not be called if policy->fast_switch_enabled is unset.
2238 *
2239 * Governors calling this function must guarantee that it will never be invoked
2240 * twice in parallel for the same CPU and that it will never be called in
2241 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2242 * the same CPU.
2243 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2244 void cpufreq_driver_adjust_perf(unsigned int cpu,
2245 unsigned long min_perf,
2246 unsigned long target_perf,
2247 unsigned long capacity)
2248 {
2249 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2250 }
2251
2252 /**
2253 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2254 *
2255 * Return 'true' if the ->adjust_perf callback is present for the
2256 * current driver or 'false' otherwise.
2257 */
cpufreq_driver_has_adjust_perf(void)2258 bool cpufreq_driver_has_adjust_perf(void)
2259 {
2260 return !!cpufreq_driver->adjust_perf;
2261 }
2262
2263 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2264 static int __target_intermediate(struct cpufreq_policy *policy,
2265 struct cpufreq_freqs *freqs, int index)
2266 {
2267 int ret;
2268
2269 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2270
2271 /* We don't need to switch to intermediate freq */
2272 if (!freqs->new)
2273 return 0;
2274
2275 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2276 __func__, policy->cpu, freqs->old, freqs->new);
2277
2278 cpufreq_freq_transition_begin(policy, freqs);
2279 ret = cpufreq_driver->target_intermediate(policy, index);
2280 cpufreq_freq_transition_end(policy, freqs, ret);
2281
2282 if (ret)
2283 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2284 __func__, ret);
2285
2286 return ret;
2287 }
2288
__target_index(struct cpufreq_policy * policy,int index)2289 static int __target_index(struct cpufreq_policy *policy, int index)
2290 {
2291 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2292 unsigned int restore_freq, intermediate_freq = 0;
2293 unsigned int newfreq = policy->freq_table[index].frequency;
2294 int retval = -EINVAL;
2295 bool notify;
2296
2297 if (newfreq == policy->cur)
2298 return 0;
2299
2300 /* Save last value to restore later on errors */
2301 restore_freq = policy->cur;
2302
2303 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2304 if (notify) {
2305 /* Handle switching to intermediate frequency */
2306 if (cpufreq_driver->get_intermediate) {
2307 retval = __target_intermediate(policy, &freqs, index);
2308 if (retval)
2309 return retval;
2310
2311 intermediate_freq = freqs.new;
2312 /* Set old freq to intermediate */
2313 if (intermediate_freq)
2314 freqs.old = freqs.new;
2315 }
2316
2317 freqs.new = newfreq;
2318 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2319 __func__, policy->cpu, freqs.old, freqs.new);
2320
2321 cpufreq_freq_transition_begin(policy, &freqs);
2322 }
2323
2324 retval = cpufreq_driver->target_index(policy, index);
2325 if (retval)
2326 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2327 retval);
2328
2329 if (notify) {
2330 cpufreq_freq_transition_end(policy, &freqs, retval);
2331
2332 /*
2333 * Failed after setting to intermediate freq? Driver should have
2334 * reverted back to initial frequency and so should we. Check
2335 * here for intermediate_freq instead of get_intermediate, in
2336 * case we haven't switched to intermediate freq at all.
2337 */
2338 if (unlikely(retval && intermediate_freq)) {
2339 freqs.old = intermediate_freq;
2340 freqs.new = restore_freq;
2341 cpufreq_freq_transition_begin(policy, &freqs);
2342 cpufreq_freq_transition_end(policy, &freqs, 0);
2343 }
2344 }
2345
2346 return retval;
2347 }
2348
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2349 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2350 unsigned int target_freq,
2351 unsigned int relation)
2352 {
2353 unsigned int old_target_freq = target_freq;
2354
2355 if (cpufreq_disabled())
2356 return -ENODEV;
2357
2358 target_freq = __resolve_freq(policy, target_freq, policy->min,
2359 policy->max, relation);
2360
2361 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2362 policy->cpu, target_freq, relation, old_target_freq);
2363
2364 /*
2365 * This might look like a redundant call as we are checking it again
2366 * after finding index. But it is left intentionally for cases where
2367 * exactly same freq is called again and so we can save on few function
2368 * calls.
2369 */
2370 if (target_freq == policy->cur &&
2371 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2372 return 0;
2373
2374 if (cpufreq_driver->target) {
2375 /*
2376 * If the driver hasn't setup a single inefficient frequency,
2377 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2378 */
2379 if (!policy->efficiencies_available)
2380 relation &= ~CPUFREQ_RELATION_E;
2381
2382 return cpufreq_driver->target(policy, target_freq, relation);
2383 }
2384
2385 if (!cpufreq_driver->target_index)
2386 return -EINVAL;
2387
2388 return __target_index(policy, policy->cached_resolved_idx);
2389 }
2390 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2391
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2392 int cpufreq_driver_target(struct cpufreq_policy *policy,
2393 unsigned int target_freq,
2394 unsigned int relation)
2395 {
2396 guard(cpufreq_policy_write)(policy);
2397
2398 return __cpufreq_driver_target(policy, target_freq, relation);
2399 }
2400 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2401
cpufreq_fallback_governor(void)2402 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2403 {
2404 return NULL;
2405 }
2406
cpufreq_init_governor(struct cpufreq_policy * policy)2407 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2408 {
2409 int ret;
2410
2411 /* Don't start any governor operations if we are entering suspend */
2412 if (cpufreq_suspended)
2413 return 0;
2414 /*
2415 * Governor might not be initiated here if ACPI _PPC changed
2416 * notification happened, so check it.
2417 */
2418 if (!policy->governor)
2419 return -EINVAL;
2420
2421 /* Platform doesn't want dynamic frequency switching ? */
2422 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2423 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2424 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2425
2426 if (gov) {
2427 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2428 policy->governor->name, gov->name);
2429 policy->governor = gov;
2430 } else {
2431 return -EINVAL;
2432 }
2433 }
2434
2435 if (!try_module_get(policy->governor->owner))
2436 return -EINVAL;
2437
2438 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2439
2440 if (policy->governor->init) {
2441 ret = policy->governor->init(policy);
2442 if (ret) {
2443 module_put(policy->governor->owner);
2444 return ret;
2445 }
2446 }
2447
2448 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2449
2450 return 0;
2451 }
2452
cpufreq_exit_governor(struct cpufreq_policy * policy)2453 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2454 {
2455 if (cpufreq_suspended || !policy->governor)
2456 return;
2457
2458 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2459
2460 if (policy->governor->exit)
2461 policy->governor->exit(policy);
2462
2463 module_put(policy->governor->owner);
2464 }
2465
cpufreq_start_governor(struct cpufreq_policy * policy)2466 int cpufreq_start_governor(struct cpufreq_policy *policy)
2467 {
2468 int ret;
2469
2470 if (cpufreq_suspended)
2471 return 0;
2472
2473 if (!policy->governor)
2474 return -EINVAL;
2475
2476 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2477
2478 cpufreq_verify_current_freq(policy, false);
2479
2480 if (policy->governor->start) {
2481 ret = policy->governor->start(policy);
2482 if (ret)
2483 return ret;
2484 }
2485
2486 if (policy->governor->limits)
2487 policy->governor->limits(policy);
2488
2489 return 0;
2490 }
2491
cpufreq_stop_governor(struct cpufreq_policy * policy)2492 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2493 {
2494 if (cpufreq_suspended || !policy->governor)
2495 return;
2496
2497 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2498
2499 if (policy->governor->stop)
2500 policy->governor->stop(policy);
2501 }
2502
cpufreq_governor_limits(struct cpufreq_policy * policy)2503 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2504 {
2505 if (cpufreq_suspended || !policy->governor)
2506 return;
2507
2508 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2509
2510 if (policy->governor->limits)
2511 policy->governor->limits(policy);
2512 }
2513
cpufreq_register_governor(struct cpufreq_governor * governor)2514 int cpufreq_register_governor(struct cpufreq_governor *governor)
2515 {
2516 int err;
2517
2518 if (!governor)
2519 return -EINVAL;
2520
2521 if (cpufreq_disabled())
2522 return -ENODEV;
2523
2524 mutex_lock(&cpufreq_governor_mutex);
2525
2526 err = -EBUSY;
2527 if (!find_governor(governor->name)) {
2528 err = 0;
2529 list_add(&governor->governor_list, &cpufreq_governor_list);
2530 }
2531
2532 mutex_unlock(&cpufreq_governor_mutex);
2533 return err;
2534 }
2535 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2536
cpufreq_unregister_governor(struct cpufreq_governor * governor)2537 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2538 {
2539 struct cpufreq_policy *policy;
2540 unsigned long flags;
2541
2542 if (!governor)
2543 return;
2544
2545 if (cpufreq_disabled())
2546 return;
2547
2548 /* clear last_governor for all inactive policies */
2549 read_lock_irqsave(&cpufreq_driver_lock, flags);
2550 for_each_inactive_policy(policy) {
2551 if (!strcmp(policy->last_governor, governor->name)) {
2552 policy->governor = NULL;
2553 strcpy(policy->last_governor, "\0");
2554 }
2555 }
2556 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2557
2558 mutex_lock(&cpufreq_governor_mutex);
2559 list_del(&governor->governor_list);
2560 mutex_unlock(&cpufreq_governor_mutex);
2561 }
2562 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2563
2564
2565 /*********************************************************************
2566 * POLICY INTERFACE *
2567 *********************************************************************/
2568
2569 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2570
2571 /**
2572 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2573 * @policy: cpufreq policy of the CPUs.
2574 *
2575 * Update the value of cpufreq pressure for all @cpus in the policy.
2576 */
cpufreq_update_pressure(struct cpufreq_policy * policy)2577 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2578 {
2579 unsigned long max_capacity, capped_freq, pressure;
2580 u32 max_freq;
2581 int cpu;
2582
2583 cpu = cpumask_first(policy->related_cpus);
2584 max_freq = arch_scale_freq_ref(cpu);
2585 capped_freq = policy->max;
2586
2587 /*
2588 * Handle properly the boost frequencies, which should simply clean
2589 * the cpufreq pressure value.
2590 */
2591 if (max_freq <= capped_freq) {
2592 pressure = 0;
2593 } else {
2594 max_capacity = arch_scale_cpu_capacity(cpu);
2595 pressure = max_capacity -
2596 mult_frac(max_capacity, capped_freq, max_freq);
2597 }
2598
2599 for_each_cpu(cpu, policy->related_cpus)
2600 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2601 }
2602
2603 /**
2604 * cpufreq_set_policy - Modify cpufreq policy parameters.
2605 * @policy: Policy object to modify.
2606 * @new_gov: Policy governor pointer.
2607 * @new_pol: Policy value (for drivers with built-in governors).
2608 *
2609 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2610 * limits to be set for the policy, update @policy with the verified limits
2611 * values and either invoke the driver's ->setpolicy() callback (if present) or
2612 * carry out a governor update for @policy. That is, run the current governor's
2613 * ->limits() callback (if @new_gov points to the same object as the one in
2614 * @policy) or replace the governor for @policy with @new_gov.
2615 *
2616 * The cpuinfo part of @policy is not updated by this function.
2617 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2618 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2619 struct cpufreq_governor *new_gov,
2620 unsigned int new_pol)
2621 {
2622 struct cpufreq_policy_data new_data;
2623 struct cpufreq_governor *old_gov;
2624 int ret;
2625
2626 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2627 new_data.freq_table = policy->freq_table;
2628 new_data.cpu = policy->cpu;
2629 /*
2630 * PM QoS framework collects all the requests from users and provide us
2631 * the final aggregated value here.
2632 */
2633 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2634 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2635
2636 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2637 new_data.cpu, new_data.min, new_data.max);
2638
2639 /*
2640 * Verify that the CPU speed can be set within these limits and make sure
2641 * that min <= max.
2642 */
2643 ret = cpufreq_driver->verify(&new_data);
2644 if (ret)
2645 return ret;
2646
2647 /*
2648 * Resolve policy min/max to available frequencies. It ensures
2649 * no frequency resolution will neither overshoot the requested maximum
2650 * nor undershoot the requested minimum.
2651 *
2652 * Avoid storing intermediate values in policy->max or policy->min and
2653 * compiler optimizations around them because they may be accessed
2654 * concurrently by cpufreq_driver_resolve_freq() during the update.
2655 */
2656 WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2657 new_data.min, new_data.max,
2658 CPUFREQ_RELATION_H));
2659 new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2660 new_data.max, CPUFREQ_RELATION_L);
2661 WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2662
2663 trace_cpu_frequency_limits(policy);
2664
2665 cpufreq_update_pressure(policy);
2666
2667 policy->cached_target_freq = UINT_MAX;
2668
2669 pr_debug("new min and max freqs are %u - %u kHz\n",
2670 policy->min, policy->max);
2671
2672 if (cpufreq_driver->setpolicy) {
2673 policy->policy = new_pol;
2674 pr_debug("setting range\n");
2675 return cpufreq_driver->setpolicy(policy);
2676 }
2677
2678 if (new_gov == policy->governor) {
2679 pr_debug("governor limits update\n");
2680 cpufreq_governor_limits(policy);
2681 return 0;
2682 }
2683
2684 pr_debug("governor switch\n");
2685
2686 /* save old, working values */
2687 old_gov = policy->governor;
2688 /* end old governor */
2689 if (old_gov) {
2690 cpufreq_stop_governor(policy);
2691 cpufreq_exit_governor(policy);
2692 }
2693
2694 /* start new governor */
2695 policy->governor = new_gov;
2696 ret = cpufreq_init_governor(policy);
2697 if (!ret) {
2698 ret = cpufreq_start_governor(policy);
2699 if (!ret) {
2700 pr_debug("governor change\n");
2701 return 0;
2702 }
2703 cpufreq_exit_governor(policy);
2704 }
2705
2706 /* new governor failed, so re-start old one */
2707 pr_debug("starting governor %s failed\n", policy->governor->name);
2708 if (old_gov) {
2709 policy->governor = old_gov;
2710 if (cpufreq_init_governor(policy)) {
2711 policy->governor = NULL;
2712 } else if (cpufreq_start_governor(policy)) {
2713 cpufreq_exit_governor(policy);
2714 policy->governor = NULL;
2715 }
2716 }
2717
2718 return ret;
2719 }
2720
cpufreq_policy_refresh(struct cpufreq_policy * policy)2721 static void cpufreq_policy_refresh(struct cpufreq_policy *policy)
2722 {
2723 guard(cpufreq_policy_write)(policy);
2724
2725 /*
2726 * BIOS might change freq behind our back
2727 * -> ask driver for current freq and notify governors about a change
2728 */
2729 if (cpufreq_driver->get && has_target() &&
2730 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2731 return;
2732
2733 refresh_frequency_limits(policy);
2734 }
2735
2736 /**
2737 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2738 * @cpu: CPU to re-evaluate the policy for.
2739 *
2740 * Update the current frequency for the cpufreq policy of @cpu and use
2741 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2742 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2743 * for the policy in question, among other things.
2744 */
cpufreq_update_policy(unsigned int cpu)2745 void cpufreq_update_policy(unsigned int cpu)
2746 {
2747 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2748 if (!policy)
2749 return;
2750
2751 cpufreq_policy_refresh(policy);
2752 }
2753 EXPORT_SYMBOL(cpufreq_update_policy);
2754
2755 /**
2756 * cpufreq_update_limits - Update policy limits for a given CPU.
2757 * @cpu: CPU to update the policy limits for.
2758 *
2759 * Invoke the driver's ->update_limits callback if present or call
2760 * cpufreq_policy_refresh() for @cpu.
2761 */
cpufreq_update_limits(unsigned int cpu)2762 void cpufreq_update_limits(unsigned int cpu)
2763 {
2764 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2765 if (!policy)
2766 return;
2767
2768 if (cpufreq_driver->update_limits)
2769 cpufreq_driver->update_limits(policy);
2770 else
2771 cpufreq_policy_refresh(policy);
2772 }
2773 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2774
2775 /*********************************************************************
2776 * BOOST *
2777 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2778 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2779 {
2780 int ret;
2781
2782 if (!policy->freq_table)
2783 return -ENXIO;
2784
2785 ret = cpufreq_frequency_table_cpuinfo(policy);
2786 if (ret) {
2787 pr_err("%s: Policy frequency update failed\n", __func__);
2788 return ret;
2789 }
2790
2791 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2792 if (ret < 0)
2793 return ret;
2794
2795 return 0;
2796 }
2797 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2798
cpufreq_boost_trigger_state(int state)2799 static int cpufreq_boost_trigger_state(int state)
2800 {
2801 struct cpufreq_policy *policy;
2802 unsigned long flags;
2803 int ret = 0;
2804
2805 /*
2806 * Don't compare 'cpufreq_driver->boost_enabled' with 'state' here to
2807 * make sure all policies are in sync with global boost flag.
2808 */
2809
2810 write_lock_irqsave(&cpufreq_driver_lock, flags);
2811 cpufreq_driver->boost_enabled = state;
2812 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813
2814 cpus_read_lock();
2815 for_each_active_policy(policy) {
2816 if (!policy->boost_supported)
2817 continue;
2818
2819 ret = policy_set_boost(policy, state);
2820 if (ret)
2821 goto err_reset_state;
2822 }
2823 cpus_read_unlock();
2824
2825 return 0;
2826
2827 err_reset_state:
2828 cpus_read_unlock();
2829
2830 write_lock_irqsave(&cpufreq_driver_lock, flags);
2831 cpufreq_driver->boost_enabled = !state;
2832 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2833
2834 pr_err("%s: Cannot %s BOOST\n",
2835 __func__, str_enable_disable(state));
2836
2837 return ret;
2838 }
2839
cpufreq_boost_supported(void)2840 static bool cpufreq_boost_supported(void)
2841 {
2842 return cpufreq_driver->set_boost;
2843 }
2844
create_boost_sysfs_file(void)2845 static int create_boost_sysfs_file(void)
2846 {
2847 int ret;
2848
2849 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2850 if (ret)
2851 pr_err("%s: cannot register global BOOST sysfs file\n",
2852 __func__);
2853
2854 return ret;
2855 }
2856
remove_boost_sysfs_file(void)2857 static void remove_boost_sysfs_file(void)
2858 {
2859 if (cpufreq_boost_supported())
2860 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2861 }
2862
cpufreq_boost_enabled(void)2863 bool cpufreq_boost_enabled(void)
2864 {
2865 return cpufreq_driver->boost_enabled;
2866 }
2867 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2868
2869 /*********************************************************************
2870 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2871 *********************************************************************/
2872 static enum cpuhp_state hp_online;
2873
cpuhp_cpufreq_online(unsigned int cpu)2874 static int cpuhp_cpufreq_online(unsigned int cpu)
2875 {
2876 cpufreq_online(cpu);
2877
2878 return 0;
2879 }
2880
cpuhp_cpufreq_offline(unsigned int cpu)2881 static int cpuhp_cpufreq_offline(unsigned int cpu)
2882 {
2883 cpufreq_offline(cpu);
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * cpufreq_register_driver - register a CPU Frequency driver
2890 * @driver_data: A struct cpufreq_driver containing the values#
2891 * submitted by the CPU Frequency driver.
2892 *
2893 * Registers a CPU Frequency driver to this core code. This code
2894 * returns zero on success, -EEXIST when another driver got here first
2895 * (and isn't unregistered in the meantime).
2896 *
2897 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2898 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2899 {
2900 unsigned long flags;
2901 int ret;
2902
2903 if (cpufreq_disabled())
2904 return -ENODEV;
2905
2906 /*
2907 * The cpufreq core depends heavily on the availability of device
2908 * structure, make sure they are available before proceeding further.
2909 */
2910 if (!get_cpu_device(0))
2911 return -EPROBE_DEFER;
2912
2913 if (!driver_data || !driver_data->verify || !driver_data->init ||
2914 (driver_data->target_index && driver_data->target) ||
2915 (!!driver_data->setpolicy == (driver_data->target_index || driver_data->target)) ||
2916 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2917 (!driver_data->online != !driver_data->offline) ||
2918 (driver_data->adjust_perf && !driver_data->fast_switch))
2919 return -EINVAL;
2920
2921 pr_debug("trying to register driver %s\n", driver_data->name);
2922
2923 /* Protect against concurrent CPU online/offline. */
2924 cpus_read_lock();
2925
2926 write_lock_irqsave(&cpufreq_driver_lock, flags);
2927 if (cpufreq_driver) {
2928 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2929 ret = -EEXIST;
2930 goto out;
2931 }
2932 cpufreq_driver = driver_data;
2933 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2934
2935 if (driver_data->setpolicy)
2936 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2937
2938 if (cpufreq_boost_supported()) {
2939 ret = create_boost_sysfs_file();
2940 if (ret)
2941 goto err_null_driver;
2942 }
2943
2944 /*
2945 * Mark support for the scheduler's frequency invariance engine for
2946 * drivers that implement target(), target_index() or fast_switch().
2947 */
2948 if (!cpufreq_driver->setpolicy) {
2949 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2950 pr_debug("cpufreq: supports frequency invariance\n");
2951 }
2952
2953 ret = subsys_interface_register(&cpufreq_interface);
2954 if (ret)
2955 goto err_boost_unreg;
2956
2957 if (unlikely(list_empty(&cpufreq_policy_list))) {
2958 /* if all ->init() calls failed, unregister */
2959 ret = -ENODEV;
2960 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2961 driver_data->name);
2962 goto err_if_unreg;
2963 }
2964
2965 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2966 "cpufreq:online",
2967 cpuhp_cpufreq_online,
2968 cpuhp_cpufreq_offline);
2969 if (ret < 0)
2970 goto err_if_unreg;
2971 hp_online = ret;
2972 ret = 0;
2973
2974 pr_debug("driver %s up and running\n", driver_data->name);
2975 goto out;
2976
2977 err_if_unreg:
2978 subsys_interface_unregister(&cpufreq_interface);
2979 err_boost_unreg:
2980 if (!cpufreq_driver->setpolicy)
2981 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2982 remove_boost_sysfs_file();
2983 err_null_driver:
2984 write_lock_irqsave(&cpufreq_driver_lock, flags);
2985 cpufreq_driver = NULL;
2986 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2987 out:
2988 cpus_read_unlock();
2989 return ret;
2990 }
2991 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2992
2993 /*
2994 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2995 *
2996 * Unregister the current CPUFreq driver. Only call this if you have
2997 * the right to do so, i.e. if you have succeeded in initialising before!
2998 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2999 * currently not initialised.
3000 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)3001 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3002 {
3003 unsigned long flags;
3004
3005 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3006 return;
3007
3008 pr_debug("unregistering driver %s\n", driver->name);
3009
3010 /* Protect against concurrent cpu hotplug */
3011 cpus_read_lock();
3012 subsys_interface_unregister(&cpufreq_interface);
3013 remove_boost_sysfs_file();
3014 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3015 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3016
3017 write_lock_irqsave(&cpufreq_driver_lock, flags);
3018
3019 cpufreq_driver = NULL;
3020
3021 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3022 cpus_read_unlock();
3023 }
3024 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3025
cpufreq_core_init(void)3026 static int __init cpufreq_core_init(void)
3027 {
3028 struct cpufreq_governor *gov = cpufreq_default_governor();
3029 struct device *dev_root;
3030
3031 if (cpufreq_disabled())
3032 return -ENODEV;
3033
3034 dev_root = bus_get_dev_root(&cpu_subsys);
3035 if (dev_root) {
3036 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3037 put_device(dev_root);
3038 }
3039 BUG_ON(!cpufreq_global_kobject);
3040
3041 if (!strlen(default_governor))
3042 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3043
3044 return 0;
3045 }
3046
cpufreq_policy_is_good_for_eas(unsigned int cpu)3047 static bool cpufreq_policy_is_good_for_eas(unsigned int cpu)
3048 {
3049 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
3050 if (!policy) {
3051 pr_debug("cpufreq policy not set for CPU: %d\n", cpu);
3052 return false;
3053 }
3054
3055 return sugov_is_governor(policy);
3056 }
3057
cpufreq_ready_for_eas(const struct cpumask * cpu_mask)3058 bool cpufreq_ready_for_eas(const struct cpumask *cpu_mask)
3059 {
3060 unsigned int cpu;
3061
3062 /* Do not attempt EAS if schedutil is not being used. */
3063 for_each_cpu(cpu, cpu_mask) {
3064 if (!cpufreq_policy_is_good_for_eas(cpu)) {
3065 pr_debug("rd %*pbl: schedutil is mandatory for EAS\n",
3066 cpumask_pr_args(cpu_mask));
3067 return false;
3068 }
3069 }
3070
3071 return true;
3072 }
3073
3074 module_param(off, int, 0444);
3075 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3076 core_initcall(cpufreq_core_init);
3077