1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "qemu/target-info.h"
23 #include "accel/tcg/cpu-ops.h"
24 #include "accel/tcg/iommu.h"
25 #include "accel/tcg/probe.h"
26 #include "exec/page-protection.h"
27 #include "system/memory.h"
28 #include "accel/tcg/cpu-ldst-common.h"
29 #include "accel/tcg/cpu-mmu-index.h"
30 #include "exec/cputlb.h"
31 #include "exec/tb-flush.h"
32 #include "system/ram_addr.h"
33 #include "exec/mmu-access-type.h"
34 #include "exec/tlb-common.h"
35 #include "exec/vaddr.h"
36 #include "tcg/tcg.h"
37 #include "qemu/error-report.h"
38 #include "exec/log.h"
39 #include "exec/helper-proto-common.h"
40 #include "exec/tlb-flags.h"
41 #include "qemu/atomic.h"
42 #include "qemu/atomic128.h"
43 #include "tb-internal.h"
44 #include "trace.h"
45 #include "tb-hash.h"
46 #include "tb-internal.h"
47 #include "tlb-bounds.h"
48 #include "internal-common.h"
49 #ifdef CONFIG_PLUGIN
50 #include "qemu/plugin-memory.h"
51 #endif
52 #include "tcg/tcg-ldst.h"
53 #include "backend-ldst.h"
54
55
56 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
57 /* #define DEBUG_TLB */
58 /* #define DEBUG_TLB_LOG */
59
60 #ifdef DEBUG_TLB
61 # define DEBUG_TLB_GATE 1
62 # ifdef DEBUG_TLB_LOG
63 # define DEBUG_TLB_LOG_GATE 1
64 # else
65 # define DEBUG_TLB_LOG_GATE 0
66 # endif
67 #else
68 # define DEBUG_TLB_GATE 0
69 # define DEBUG_TLB_LOG_GATE 0
70 #endif
71
72 #define tlb_debug(fmt, ...) do { \
73 if (DEBUG_TLB_LOG_GATE) { \
74 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
75 ## __VA_ARGS__); \
76 } else if (DEBUG_TLB_GATE) { \
77 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
78 } \
79 } while (0)
80
81 #define assert_cpu_is_self(cpu) do { \
82 if (DEBUG_TLB_GATE) { \
83 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
84 } \
85 } while (0)
86
87 /* run_on_cpu_data.target_ptr should always be big enough for a
88 * vaddr even on 32 bit builds
89 */
90 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
91
92 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
93 */
94 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
95 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
96
tlb_n_entries(CPUTLBDescFast * fast)97 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
98 {
99 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
100 }
101
sizeof_tlb(CPUTLBDescFast * fast)102 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
103 {
104 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
105 }
106
tlb_read_idx(const CPUTLBEntry * entry,MMUAccessType access_type)107 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry,
108 MMUAccessType access_type)
109 {
110 /* Do not rearrange the CPUTLBEntry structure members. */
111 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) !=
112 MMU_DATA_LOAD * sizeof(uintptr_t));
113 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) !=
114 MMU_DATA_STORE * sizeof(uintptr_t));
115 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) !=
116 MMU_INST_FETCH * sizeof(uintptr_t));
117
118 const uintptr_t *ptr = &entry->addr_idx[access_type];
119 /* ofs might correspond to .addr_write, so use qatomic_read */
120 return qatomic_read(ptr);
121 }
122
tlb_addr_write(const CPUTLBEntry * entry)123 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry)
124 {
125 return tlb_read_idx(entry, MMU_DATA_STORE);
126 }
127
128 /* Find the TLB index corresponding to the mmu_idx + address pair. */
tlb_index(CPUState * cpu,uintptr_t mmu_idx,vaddr addr)129 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx,
130 vaddr addr)
131 {
132 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
133
134 return (addr >> TARGET_PAGE_BITS) & size_mask;
135 }
136
137 /* Find the TLB entry corresponding to the mmu_idx + address pair. */
tlb_entry(CPUState * cpu,uintptr_t mmu_idx,vaddr addr)138 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx,
139 vaddr addr)
140 {
141 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)];
142 }
143
tlb_window_reset(CPUTLBDesc * desc,int64_t ns,size_t max_entries)144 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
145 size_t max_entries)
146 {
147 desc->window_begin_ns = ns;
148 desc->window_max_entries = max_entries;
149 }
150
tb_jmp_cache_clear_page(CPUState * cpu,vaddr page_addr)151 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
152 {
153 CPUJumpCache *jc = cpu->tb_jmp_cache;
154 int i, i0;
155
156 if (unlikely(!jc)) {
157 return;
158 }
159
160 i0 = tb_jmp_cache_hash_page(page_addr);
161 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
162 qatomic_set(&jc->array[i0 + i].tb, NULL);
163 }
164 }
165
166 /**
167 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
168 * @desc: The CPUTLBDesc portion of the TLB
169 * @fast: The CPUTLBDescFast portion of the same TLB
170 *
171 * Called with tlb_lock_held.
172 *
173 * We have two main constraints when resizing a TLB: (1) we only resize it
174 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
175 * the array or unnecessarily flushing it), which means we do not control how
176 * frequently the resizing can occur; (2) we don't have access to the guest's
177 * future scheduling decisions, and therefore have to decide the magnitude of
178 * the resize based on past observations.
179 *
180 * In general, a memory-hungry process can benefit greatly from an appropriately
181 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
182 * we just have to make the TLB as large as possible; while an oversized TLB
183 * results in minimal TLB miss rates, it also takes longer to be flushed
184 * (flushes can be _very_ frequent), and the reduced locality can also hurt
185 * performance.
186 *
187 * To achieve near-optimal performance for all kinds of workloads, we:
188 *
189 * 1. Aggressively increase the size of the TLB when the use rate of the
190 * TLB being flushed is high, since it is likely that in the near future this
191 * memory-hungry process will execute again, and its memory hungriness will
192 * probably be similar.
193 *
194 * 2. Slowly reduce the size of the TLB as the use rate declines over a
195 * reasonably large time window. The rationale is that if in such a time window
196 * we have not observed a high TLB use rate, it is likely that we won't observe
197 * it in the near future. In that case, once a time window expires we downsize
198 * the TLB to match the maximum use rate observed in the window.
199 *
200 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
201 * since in that range performance is likely near-optimal. Recall that the TLB
202 * is direct mapped, so we want the use rate to be low (or at least not too
203 * high), since otherwise we are likely to have a significant amount of
204 * conflict misses.
205 */
tlb_mmu_resize_locked(CPUTLBDesc * desc,CPUTLBDescFast * fast,int64_t now)206 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
207 int64_t now)
208 {
209 size_t old_size = tlb_n_entries(fast);
210 size_t rate;
211 size_t new_size = old_size;
212 int64_t window_len_ms = 100;
213 int64_t window_len_ns = window_len_ms * 1000 * 1000;
214 bool window_expired = now > desc->window_begin_ns + window_len_ns;
215
216 if (desc->n_used_entries > desc->window_max_entries) {
217 desc->window_max_entries = desc->n_used_entries;
218 }
219 rate = desc->window_max_entries * 100 / old_size;
220
221 if (rate > 70) {
222 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
223 } else if (rate < 30 && window_expired) {
224 size_t ceil = pow2ceil(desc->window_max_entries);
225 size_t expected_rate = desc->window_max_entries * 100 / ceil;
226
227 /*
228 * Avoid undersizing when the max number of entries seen is just below
229 * a pow2. For instance, if max_entries == 1025, the expected use rate
230 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
231 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
232 * later. Thus, make sure that the expected use rate remains below 70%.
233 * (and since we double the size, that means the lowest rate we'd
234 * expect to get is 35%, which is still in the 30-70% range where
235 * we consider that the size is appropriate.)
236 */
237 if (expected_rate > 70) {
238 ceil *= 2;
239 }
240 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
241 }
242
243 if (new_size == old_size) {
244 if (window_expired) {
245 tlb_window_reset(desc, now, desc->n_used_entries);
246 }
247 return;
248 }
249
250 g_free(fast->table);
251 g_free(desc->fulltlb);
252
253 tlb_window_reset(desc, now, 0);
254 /* desc->n_used_entries is cleared by the caller */
255 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
256 fast->table = g_try_new(CPUTLBEntry, new_size);
257 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
258
259 /*
260 * If the allocations fail, try smaller sizes. We just freed some
261 * memory, so going back to half of new_size has a good chance of working.
262 * Increased memory pressure elsewhere in the system might cause the
263 * allocations to fail though, so we progressively reduce the allocation
264 * size, aborting if we cannot even allocate the smallest TLB we support.
265 */
266 while (fast->table == NULL || desc->fulltlb == NULL) {
267 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
268 error_report("%s: %s", __func__, strerror(errno));
269 abort();
270 }
271 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
272 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
273
274 g_free(fast->table);
275 g_free(desc->fulltlb);
276 fast->table = g_try_new(CPUTLBEntry, new_size);
277 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
278 }
279 }
280
tlb_mmu_flush_locked(CPUTLBDesc * desc,CPUTLBDescFast * fast)281 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
282 {
283 desc->n_used_entries = 0;
284 desc->large_page_addr = -1;
285 desc->large_page_mask = -1;
286 desc->vindex = 0;
287 memset(fast->table, -1, sizeof_tlb(fast));
288 memset(desc->vtable, -1, sizeof(desc->vtable));
289 }
290
tlb_flush_one_mmuidx_locked(CPUState * cpu,int mmu_idx,int64_t now)291 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
292 int64_t now)
293 {
294 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
295 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
296
297 tlb_mmu_resize_locked(desc, fast, now);
298 tlb_mmu_flush_locked(desc, fast);
299 }
300
tlb_mmu_init(CPUTLBDesc * desc,CPUTLBDescFast * fast,int64_t now)301 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
302 {
303 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
304
305 tlb_window_reset(desc, now, 0);
306 desc->n_used_entries = 0;
307 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
308 fast->table = g_new(CPUTLBEntry, n_entries);
309 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
310 tlb_mmu_flush_locked(desc, fast);
311 }
312
tlb_n_used_entries_inc(CPUState * cpu,uintptr_t mmu_idx)313 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
314 {
315 cpu->neg.tlb.d[mmu_idx].n_used_entries++;
316 }
317
tlb_n_used_entries_dec(CPUState * cpu,uintptr_t mmu_idx)318 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
319 {
320 cpu->neg.tlb.d[mmu_idx].n_used_entries--;
321 }
322
tlb_init(CPUState * cpu)323 void tlb_init(CPUState *cpu)
324 {
325 int64_t now = get_clock_realtime();
326 int i;
327
328 qemu_spin_init(&cpu->neg.tlb.c.lock);
329
330 /* All tlbs are initialized flushed. */
331 cpu->neg.tlb.c.dirty = 0;
332
333 for (i = 0; i < NB_MMU_MODES; i++) {
334 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
335 }
336 }
337
tlb_destroy(CPUState * cpu)338 void tlb_destroy(CPUState *cpu)
339 {
340 int i;
341
342 qemu_spin_destroy(&cpu->neg.tlb.c.lock);
343 for (i = 0; i < NB_MMU_MODES; i++) {
344 CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
345 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
346
347 g_free(fast->table);
348 g_free(desc->fulltlb);
349 }
350 }
351
352 /* flush_all_helper: run fn across all cpus
353 *
354 * If the wait flag is set then the src cpu's helper will be queued as
355 * "safe" work and the loop exited creating a synchronisation point
356 * where all queued work will be finished before execution starts
357 * again.
358 */
flush_all_helper(CPUState * src,run_on_cpu_func fn,run_on_cpu_data d)359 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
360 run_on_cpu_data d)
361 {
362 CPUState *cpu;
363
364 CPU_FOREACH(cpu) {
365 if (cpu != src) {
366 async_run_on_cpu(cpu, fn, d);
367 }
368 }
369 }
370
tlb_flush_by_mmuidx_async_work(CPUState * cpu,run_on_cpu_data data)371 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
372 {
373 uint16_t asked = data.host_int;
374 uint16_t all_dirty, work, to_clean;
375 int64_t now = get_clock_realtime();
376
377 assert_cpu_is_self(cpu);
378
379 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
380
381 qemu_spin_lock(&cpu->neg.tlb.c.lock);
382
383 all_dirty = cpu->neg.tlb.c.dirty;
384 to_clean = asked & all_dirty;
385 all_dirty &= ~to_clean;
386 cpu->neg.tlb.c.dirty = all_dirty;
387
388 for (work = to_clean; work != 0; work &= work - 1) {
389 int mmu_idx = ctz32(work);
390 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
391 }
392
393 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
394
395 tcg_flush_jmp_cache(cpu);
396
397 if (to_clean == ALL_MMUIDX_BITS) {
398 qatomic_set(&cpu->neg.tlb.c.full_flush_count,
399 cpu->neg.tlb.c.full_flush_count + 1);
400 } else {
401 qatomic_set(&cpu->neg.tlb.c.part_flush_count,
402 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
403 if (to_clean != asked) {
404 qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
405 cpu->neg.tlb.c.elide_flush_count +
406 ctpop16(asked & ~to_clean));
407 }
408 }
409 }
410
tlb_flush_by_mmuidx(CPUState * cpu,uint16_t idxmap)411 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
412 {
413 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
414
415 assert_cpu_is_self(cpu);
416
417 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
418 }
419
tlb_flush(CPUState * cpu)420 void tlb_flush(CPUState *cpu)
421 {
422 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
423 }
424
tlb_flush_by_mmuidx_all_cpus_synced(CPUState * src_cpu,uint16_t idxmap)425 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
426 {
427 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
428
429 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
430
431 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
432 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
433 }
434
tlb_flush_all_cpus_synced(CPUState * src_cpu)435 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
436 {
437 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
438 }
439
tlb_hit_page_mask_anyprot(CPUTLBEntry * tlb_entry,vaddr page,vaddr mask)440 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
441 vaddr page, vaddr mask)
442 {
443 page &= mask;
444 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
445
446 return (page == (tlb_entry->addr_read & mask) ||
447 page == (tlb_addr_write(tlb_entry) & mask) ||
448 page == (tlb_entry->addr_code & mask));
449 }
450
tlb_hit_page_anyprot(CPUTLBEntry * tlb_entry,vaddr page)451 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
452 {
453 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
454 }
455
456 /**
457 * tlb_entry_is_empty - return true if the entry is not in use
458 * @te: pointer to CPUTLBEntry
459 */
tlb_entry_is_empty(const CPUTLBEntry * te)460 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
461 {
462 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
463 }
464
465 /* Called with tlb_c.lock held */
tlb_flush_entry_mask_locked(CPUTLBEntry * tlb_entry,vaddr page,vaddr mask)466 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
467 vaddr page,
468 vaddr mask)
469 {
470 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
471 memset(tlb_entry, -1, sizeof(*tlb_entry));
472 return true;
473 }
474 return false;
475 }
476
tlb_flush_entry_locked(CPUTLBEntry * tlb_entry,vaddr page)477 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
478 {
479 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
480 }
481
482 /* Called with tlb_c.lock held */
tlb_flush_vtlb_page_mask_locked(CPUState * cpu,int mmu_idx,vaddr page,vaddr mask)483 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
484 vaddr page,
485 vaddr mask)
486 {
487 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
488 int k;
489
490 assert_cpu_is_self(cpu);
491 for (k = 0; k < CPU_VTLB_SIZE; k++) {
492 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
493 tlb_n_used_entries_dec(cpu, mmu_idx);
494 }
495 }
496 }
497
tlb_flush_vtlb_page_locked(CPUState * cpu,int mmu_idx,vaddr page)498 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
499 vaddr page)
500 {
501 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
502 }
503
tlb_flush_page_locked(CPUState * cpu,int midx,vaddr page)504 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
505 {
506 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
507 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
508
509 /* Check if we need to flush due to large pages. */
510 if ((page & lp_mask) == lp_addr) {
511 tlb_debug("forcing full flush midx %d (%016"
512 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
513 midx, lp_addr, lp_mask);
514 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
515 } else {
516 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
517 tlb_n_used_entries_dec(cpu, midx);
518 }
519 tlb_flush_vtlb_page_locked(cpu, midx, page);
520 }
521 }
522
523 /**
524 * tlb_flush_page_by_mmuidx_async_0:
525 * @cpu: cpu on which to flush
526 * @addr: page of virtual address to flush
527 * @idxmap: set of mmu_idx to flush
528 *
529 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
530 * at @addr from the tlbs indicated by @idxmap from @cpu.
531 */
tlb_flush_page_by_mmuidx_async_0(CPUState * cpu,vaddr addr,uint16_t idxmap)532 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
533 vaddr addr,
534 uint16_t idxmap)
535 {
536 int mmu_idx;
537
538 assert_cpu_is_self(cpu);
539
540 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
541
542 qemu_spin_lock(&cpu->neg.tlb.c.lock);
543 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
544 if ((idxmap >> mmu_idx) & 1) {
545 tlb_flush_page_locked(cpu, mmu_idx, addr);
546 }
547 }
548 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
549
550 /*
551 * Discard jump cache entries for any tb which might potentially
552 * overlap the flushed page, which includes the previous.
553 */
554 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
555 tb_jmp_cache_clear_page(cpu, addr);
556 }
557
558 /**
559 * tlb_flush_page_by_mmuidx_async_1:
560 * @cpu: cpu on which to flush
561 * @data: encoded addr + idxmap
562 *
563 * Helper for tlb_flush_page_by_mmuidx and friends, called through
564 * async_run_on_cpu. The idxmap parameter is encoded in the page
565 * offset of the target_ptr field. This limits the set of mmu_idx
566 * that can be passed via this method.
567 */
tlb_flush_page_by_mmuidx_async_1(CPUState * cpu,run_on_cpu_data data)568 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
569 run_on_cpu_data data)
570 {
571 vaddr addr_and_idxmap = data.target_ptr;
572 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
573 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
574
575 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
576 }
577
578 typedef struct {
579 vaddr addr;
580 uint16_t idxmap;
581 } TLBFlushPageByMMUIdxData;
582
583 /**
584 * tlb_flush_page_by_mmuidx_async_2:
585 * @cpu: cpu on which to flush
586 * @data: allocated addr + idxmap
587 *
588 * Helper for tlb_flush_page_by_mmuidx and friends, called through
589 * async_run_on_cpu. The addr+idxmap parameters are stored in a
590 * TLBFlushPageByMMUIdxData structure that has been allocated
591 * specifically for this helper. Free the structure when done.
592 */
tlb_flush_page_by_mmuidx_async_2(CPUState * cpu,run_on_cpu_data data)593 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
594 run_on_cpu_data data)
595 {
596 TLBFlushPageByMMUIdxData *d = data.host_ptr;
597
598 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
599 g_free(d);
600 }
601
tlb_flush_page_by_mmuidx(CPUState * cpu,vaddr addr,uint16_t idxmap)602 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
603 {
604 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
605
606 assert_cpu_is_self(cpu);
607
608 /* This should already be page aligned */
609 addr &= TARGET_PAGE_MASK;
610
611 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
612 }
613
tlb_flush_page(CPUState * cpu,vaddr addr)614 void tlb_flush_page(CPUState *cpu, vaddr addr)
615 {
616 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
617 }
618
tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,uint16_t idxmap)619 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
620 vaddr addr,
621 uint16_t idxmap)
622 {
623 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
624
625 /* This should already be page aligned */
626 addr &= TARGET_PAGE_MASK;
627
628 /*
629 * Allocate memory to hold addr+idxmap only when needed.
630 * See tlb_flush_page_by_mmuidx for details.
631 */
632 if (idxmap < TARGET_PAGE_SIZE) {
633 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
634 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
635 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
636 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
637 } else {
638 CPUState *dst_cpu;
639 TLBFlushPageByMMUIdxData *d;
640
641 /* Allocate a separate data block for each destination cpu. */
642 CPU_FOREACH(dst_cpu) {
643 if (dst_cpu != src_cpu) {
644 d = g_new(TLBFlushPageByMMUIdxData, 1);
645 d->addr = addr;
646 d->idxmap = idxmap;
647 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
648 RUN_ON_CPU_HOST_PTR(d));
649 }
650 }
651
652 d = g_new(TLBFlushPageByMMUIdxData, 1);
653 d->addr = addr;
654 d->idxmap = idxmap;
655 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
656 RUN_ON_CPU_HOST_PTR(d));
657 }
658 }
659
tlb_flush_page_all_cpus_synced(CPUState * src,vaddr addr)660 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
661 {
662 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
663 }
664
tlb_flush_range_locked(CPUState * cpu,int midx,vaddr addr,vaddr len,unsigned bits)665 static void tlb_flush_range_locked(CPUState *cpu, int midx,
666 vaddr addr, vaddr len,
667 unsigned bits)
668 {
669 CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
670 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
671 vaddr mask = MAKE_64BIT_MASK(0, bits);
672
673 /*
674 * If @bits is smaller than the tlb size, there may be multiple entries
675 * within the TLB; otherwise all addresses that match under @mask hit
676 * the same TLB entry.
677 * TODO: Perhaps allow bits to be a few bits less than the size.
678 * For now, just flush the entire TLB.
679 *
680 * If @len is larger than the tlb size, then it will take longer to
681 * test all of the entries in the TLB than it will to flush it all.
682 */
683 if (mask < f->mask || len > f->mask) {
684 tlb_debug("forcing full flush midx %d ("
685 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
686 midx, addr, mask, len);
687 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
688 return;
689 }
690
691 /*
692 * Check if we need to flush due to large pages.
693 * Because large_page_mask contains all 1's from the msb,
694 * we only need to test the end of the range.
695 */
696 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
697 tlb_debug("forcing full flush midx %d ("
698 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
699 midx, d->large_page_addr, d->large_page_mask);
700 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
701 return;
702 }
703
704 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
705 vaddr page = addr + i;
706 CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
707
708 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
709 tlb_n_used_entries_dec(cpu, midx);
710 }
711 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
712 }
713 }
714
715 typedef struct {
716 vaddr addr;
717 vaddr len;
718 uint16_t idxmap;
719 uint16_t bits;
720 } TLBFlushRangeData;
721
tlb_flush_range_by_mmuidx_async_0(CPUState * cpu,TLBFlushRangeData d)722 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
723 TLBFlushRangeData d)
724 {
725 int mmu_idx;
726
727 assert_cpu_is_self(cpu);
728
729 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
730 d.addr, d.bits, d.len, d.idxmap);
731
732 qemu_spin_lock(&cpu->neg.tlb.c.lock);
733 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
734 if ((d.idxmap >> mmu_idx) & 1) {
735 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
736 }
737 }
738 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
739
740 /*
741 * If the length is larger than the jump cache size, then it will take
742 * longer to clear each entry individually than it will to clear it all.
743 */
744 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
745 tcg_flush_jmp_cache(cpu);
746 return;
747 }
748
749 /*
750 * Discard jump cache entries for any tb which might potentially
751 * overlap the flushed pages, which includes the previous.
752 */
753 d.addr -= TARGET_PAGE_SIZE;
754 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
755 tb_jmp_cache_clear_page(cpu, d.addr);
756 d.addr += TARGET_PAGE_SIZE;
757 }
758 }
759
tlb_flush_range_by_mmuidx_async_1(CPUState * cpu,run_on_cpu_data data)760 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
761 run_on_cpu_data data)
762 {
763 TLBFlushRangeData *d = data.host_ptr;
764 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
765 g_free(d);
766 }
767
tlb_flush_range_by_mmuidx(CPUState * cpu,vaddr addr,vaddr len,uint16_t idxmap,unsigned bits)768 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
769 vaddr len, uint16_t idxmap,
770 unsigned bits)
771 {
772 TLBFlushRangeData d;
773
774 assert_cpu_is_self(cpu);
775
776 /* If no page bits are significant, this devolves to tlb_flush. */
777 if (bits < TARGET_PAGE_BITS) {
778 tlb_flush_by_mmuidx(cpu, idxmap);
779 return;
780 }
781 /*
782 * If all bits are significant, and len is small,
783 * this devolves to tlb_flush_page.
784 */
785 if (len <= TARGET_PAGE_SIZE && bits >= target_long_bits()) {
786 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
787 return;
788 }
789
790 /* This should already be page aligned */
791 d.addr = addr & TARGET_PAGE_MASK;
792 d.len = len;
793 d.idxmap = idxmap;
794 d.bits = bits;
795
796 tlb_flush_range_by_mmuidx_async_0(cpu, d);
797 }
798
tlb_flush_page_bits_by_mmuidx(CPUState * cpu,vaddr addr,uint16_t idxmap,unsigned bits)799 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
800 uint16_t idxmap, unsigned bits)
801 {
802 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
803 }
804
tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,vaddr len,uint16_t idxmap,unsigned bits)805 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
806 vaddr addr,
807 vaddr len,
808 uint16_t idxmap,
809 unsigned bits)
810 {
811 TLBFlushRangeData d, *p;
812 CPUState *dst_cpu;
813
814 /* If no page bits are significant, this devolves to tlb_flush. */
815 if (bits < TARGET_PAGE_BITS) {
816 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
817 return;
818 }
819 /*
820 * If all bits are significant, and len is small,
821 * this devolves to tlb_flush_page.
822 */
823 if (len <= TARGET_PAGE_SIZE && bits >= target_long_bits()) {
824 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
825 return;
826 }
827
828 /* This should already be page aligned */
829 d.addr = addr & TARGET_PAGE_MASK;
830 d.len = len;
831 d.idxmap = idxmap;
832 d.bits = bits;
833
834 /* Allocate a separate data block for each destination cpu. */
835 CPU_FOREACH(dst_cpu) {
836 if (dst_cpu != src_cpu) {
837 p = g_memdup(&d, sizeof(d));
838 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
839 RUN_ON_CPU_HOST_PTR(p));
840 }
841 }
842
843 p = g_memdup(&d, sizeof(d));
844 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
845 RUN_ON_CPU_HOST_PTR(p));
846 }
847
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState * src_cpu,vaddr addr,uint16_t idxmap,unsigned bits)848 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
849 vaddr addr,
850 uint16_t idxmap,
851 unsigned bits)
852 {
853 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
854 idxmap, bits);
855 }
856
857 /* update the TLBs so that writes to code in the virtual page 'addr'
858 can be detected */
tlb_protect_code(ram_addr_t ram_addr)859 void tlb_protect_code(ram_addr_t ram_addr)
860 {
861 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
862 TARGET_PAGE_SIZE,
863 DIRTY_MEMORY_CODE);
864 }
865
866 /* update the TLB so that writes in physical page 'phys_addr' are no longer
867 tested for self modifying code */
tlb_unprotect_code(ram_addr_t ram_addr)868 void tlb_unprotect_code(ram_addr_t ram_addr)
869 {
870 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
871 }
872
873
874 /*
875 * Dirty write flag handling
876 *
877 * When the TCG code writes to a location it looks up the address in
878 * the TLB and uses that data to compute the final address. If any of
879 * the lower bits of the address are set then the slow path is forced.
880 * There are a number of reasons to do this but for normal RAM the
881 * most usual is detecting writes to code regions which may invalidate
882 * generated code.
883 *
884 * Other vCPUs might be reading their TLBs during guest execution, so we update
885 * te->addr_write with qatomic_set. We don't need to worry about this for
886 * oversized guests as MTTCG is disabled for them.
887 *
888 * Called with tlb_c.lock held.
889 */
tlb_reset_dirty_range_locked(CPUTLBEntryFull * full,CPUTLBEntry * ent,uintptr_t start,uintptr_t length)890 static void tlb_reset_dirty_range_locked(CPUTLBEntryFull *full, CPUTLBEntry *ent,
891 uintptr_t start, uintptr_t length)
892 {
893 const uintptr_t addr = ent->addr_write;
894 int flags = addr | full->slow_flags[MMU_DATA_STORE];
895
896 flags &= TLB_INVALID_MASK | TLB_MMIO | TLB_DISCARD_WRITE | TLB_NOTDIRTY;
897 if (flags == 0) {
898 uintptr_t host = (addr & TARGET_PAGE_MASK) + ent->addend;
899 if ((host - start) < length) {
900 qatomic_set(&ent->addr_write, addr | TLB_NOTDIRTY);
901 }
902 }
903 }
904
905 /*
906 * Called with tlb_c.lock held.
907 * Called only from the vCPU context, i.e. the TLB's owner thread.
908 */
copy_tlb_helper_locked(CPUTLBEntry * d,const CPUTLBEntry * s)909 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
910 {
911 *d = *s;
912 }
913
914 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
915 * the target vCPU).
916 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
917 * thing actually updated is the target TLB entry ->addr_write flags.
918 */
tlb_reset_dirty(CPUState * cpu,uintptr_t start,uintptr_t length)919 void tlb_reset_dirty(CPUState *cpu, uintptr_t start, uintptr_t length)
920 {
921 int mmu_idx;
922
923 qemu_spin_lock(&cpu->neg.tlb.c.lock);
924 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
925 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
926 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
927 unsigned int n = tlb_n_entries(fast);
928 unsigned int i;
929
930 for (i = 0; i < n; i++) {
931 tlb_reset_dirty_range_locked(&desc->fulltlb[i], &fast->table[i],
932 start, length);
933 }
934
935 for (i = 0; i < CPU_VTLB_SIZE; i++) {
936 tlb_reset_dirty_range_locked(&desc->vfulltlb[i], &desc->vtable[i],
937 start, length);
938 }
939 }
940 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
941 }
942
943 /* Called with tlb_c.lock held */
tlb_set_dirty1_locked(CPUTLBEntry * tlb_entry,vaddr addr)944 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
945 vaddr addr)
946 {
947 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
948 tlb_entry->addr_write = addr;
949 }
950 }
951
952 /* update the TLB corresponding to virtual page vaddr
953 so that it is no longer dirty */
tlb_set_dirty(CPUState * cpu,vaddr addr)954 static void tlb_set_dirty(CPUState *cpu, vaddr addr)
955 {
956 int mmu_idx;
957
958 assert_cpu_is_self(cpu);
959
960 addr &= TARGET_PAGE_MASK;
961 qemu_spin_lock(&cpu->neg.tlb.c.lock);
962 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
963 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
964 }
965
966 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
967 int k;
968 for (k = 0; k < CPU_VTLB_SIZE; k++) {
969 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
970 }
971 }
972 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
973 }
974
975 /* Our TLB does not support large pages, so remember the area covered by
976 large pages and trigger a full TLB flush if these are invalidated. */
tlb_add_large_page(CPUState * cpu,int mmu_idx,vaddr addr,uint64_t size)977 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
978 vaddr addr, uint64_t size)
979 {
980 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
981 vaddr lp_mask = ~(size - 1);
982
983 if (lp_addr == (vaddr)-1) {
984 /* No previous large page. */
985 lp_addr = addr;
986 } else {
987 /* Extend the existing region to include the new page.
988 This is a compromise between unnecessary flushes and
989 the cost of maintaining a full variable size TLB. */
990 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
991 while (((lp_addr ^ addr) & lp_mask) != 0) {
992 lp_mask <<= 1;
993 }
994 }
995 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
996 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
997 }
998
tlb_set_compare(CPUTLBEntryFull * full,CPUTLBEntry * ent,vaddr address,int flags,MMUAccessType access_type,bool enable)999 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1000 vaddr address, int flags,
1001 MMUAccessType access_type, bool enable)
1002 {
1003 if (enable) {
1004 address |= flags & TLB_FLAGS_MASK;
1005 flags &= TLB_SLOW_FLAGS_MASK;
1006 if (flags) {
1007 address |= TLB_FORCE_SLOW;
1008 }
1009 } else {
1010 address = -1;
1011 flags = 0;
1012 }
1013 ent->addr_idx[access_type] = address;
1014 full->slow_flags[access_type] = flags;
1015 }
1016
1017 /*
1018 * Add a new TLB entry. At most one entry for a given virtual address
1019 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1020 * supplied size is only used by tlb_flush_page.
1021 *
1022 * Called from TCG-generated code, which is under an RCU read-side
1023 * critical section.
1024 */
tlb_set_page_full(CPUState * cpu,int mmu_idx,vaddr addr,CPUTLBEntryFull * full)1025 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1026 vaddr addr, CPUTLBEntryFull *full)
1027 {
1028 CPUTLB *tlb = &cpu->neg.tlb;
1029 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1030 MemoryRegionSection *section;
1031 unsigned int index, read_flags, write_flags;
1032 uintptr_t addend;
1033 CPUTLBEntry *te, tn;
1034 hwaddr iotlb, xlat, sz, paddr_page;
1035 vaddr addr_page;
1036 int asidx, wp_flags, prot;
1037 bool is_ram, is_romd;
1038
1039 assert_cpu_is_self(cpu);
1040
1041 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1042 sz = TARGET_PAGE_SIZE;
1043 } else {
1044 sz = (hwaddr)1 << full->lg_page_size;
1045 tlb_add_large_page(cpu, mmu_idx, addr, sz);
1046 }
1047 addr_page = addr & TARGET_PAGE_MASK;
1048 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1049
1050 prot = full->prot;
1051 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1052 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1053 &xlat, &sz, full->attrs, &prot);
1054 assert(sz >= TARGET_PAGE_SIZE);
1055
1056 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1057 " prot=%x idx=%d\n",
1058 addr, full->phys_addr, prot, mmu_idx);
1059
1060 read_flags = full->tlb_fill_flags;
1061 if (full->lg_page_size < TARGET_PAGE_BITS) {
1062 /* Repeat the MMU check and TLB fill on every access. */
1063 read_flags |= TLB_INVALID_MASK;
1064 }
1065
1066 is_ram = memory_region_is_ram(section->mr);
1067 is_romd = memory_region_is_romd(section->mr);
1068
1069 if (is_ram || is_romd) {
1070 /* RAM and ROMD both have associated host memory. */
1071 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1072 } else {
1073 /* I/O does not; force the host address to NULL. */
1074 addend = 0;
1075 }
1076
1077 write_flags = read_flags;
1078 if (is_ram) {
1079 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1080 assert(!(iotlb & ~TARGET_PAGE_MASK));
1081 /*
1082 * Computing is_clean is expensive; avoid all that unless
1083 * the page is actually writable.
1084 */
1085 if (prot & PAGE_WRITE) {
1086 if (section->readonly) {
1087 write_flags |= TLB_DISCARD_WRITE;
1088 } else if (cpu_physical_memory_is_clean(iotlb)) {
1089 write_flags |= TLB_NOTDIRTY;
1090 }
1091 }
1092 } else {
1093 /* I/O or ROMD */
1094 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1095 /*
1096 * Writes to romd devices must go through MMIO to enable write.
1097 * Reads to romd devices go through the ram_ptr found above,
1098 * but of course reads to I/O must go through MMIO.
1099 */
1100 write_flags |= TLB_MMIO;
1101 if (!is_romd) {
1102 read_flags = write_flags;
1103 }
1104 }
1105
1106 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1107 TARGET_PAGE_SIZE);
1108
1109 index = tlb_index(cpu, mmu_idx, addr_page);
1110 te = tlb_entry(cpu, mmu_idx, addr_page);
1111
1112 /*
1113 * Hold the TLB lock for the rest of the function. We could acquire/release
1114 * the lock several times in the function, but it is faster to amortize the
1115 * acquisition cost by acquiring it just once. Note that this leads to
1116 * a longer critical section, but this is not a concern since the TLB lock
1117 * is unlikely to be contended.
1118 */
1119 qemu_spin_lock(&tlb->c.lock);
1120
1121 /* Note that the tlb is no longer clean. */
1122 tlb->c.dirty |= 1 << mmu_idx;
1123
1124 /* Make sure there's no cached translation for the new page. */
1125 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1126
1127 /*
1128 * Only evict the old entry to the victim tlb if it's for a
1129 * different page; otherwise just overwrite the stale data.
1130 */
1131 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1132 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1133 CPUTLBEntry *tv = &desc->vtable[vidx];
1134
1135 /* Evict the old entry into the victim tlb. */
1136 copy_tlb_helper_locked(tv, te);
1137 desc->vfulltlb[vidx] = desc->fulltlb[index];
1138 tlb_n_used_entries_dec(cpu, mmu_idx);
1139 }
1140
1141 /* refill the tlb */
1142 /*
1143 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1144 * aligned ram_addr_t of the page base of the target RAM.
1145 * Otherwise, iotlb contains
1146 * - a physical section number in the lower TARGET_PAGE_BITS
1147 * - the offset within section->mr of the page base (I/O, ROMD) with the
1148 * TARGET_PAGE_BITS masked off.
1149 * We subtract addr_page (which is page aligned and thus won't
1150 * disturb the low bits) to give an offset which can be added to the
1151 * (non-page-aligned) vaddr of the eventual memory access to get
1152 * the MemoryRegion offset for the access. Note that the vaddr we
1153 * subtract here is that of the page base, and not the same as the
1154 * vaddr we add back in io_prepare()/get_page_addr_code().
1155 */
1156 desc->fulltlb[index] = *full;
1157 full = &desc->fulltlb[index];
1158 full->xlat_section = iotlb - addr_page;
1159 full->phys_addr = paddr_page;
1160
1161 /* Now calculate the new entry */
1162 tn.addend = addend - addr_page;
1163
1164 tlb_set_compare(full, &tn, addr_page, read_flags,
1165 MMU_INST_FETCH, prot & PAGE_EXEC);
1166
1167 if (wp_flags & BP_MEM_READ) {
1168 read_flags |= TLB_WATCHPOINT;
1169 }
1170 tlb_set_compare(full, &tn, addr_page, read_flags,
1171 MMU_DATA_LOAD, prot & PAGE_READ);
1172
1173 if (prot & PAGE_WRITE_INV) {
1174 write_flags |= TLB_INVALID_MASK;
1175 }
1176 if (wp_flags & BP_MEM_WRITE) {
1177 write_flags |= TLB_WATCHPOINT;
1178 }
1179 tlb_set_compare(full, &tn, addr_page, write_flags,
1180 MMU_DATA_STORE, prot & PAGE_WRITE);
1181
1182 copy_tlb_helper_locked(te, &tn);
1183 tlb_n_used_entries_inc(cpu, mmu_idx);
1184 qemu_spin_unlock(&tlb->c.lock);
1185 }
1186
tlb_set_page_with_attrs(CPUState * cpu,vaddr addr,hwaddr paddr,MemTxAttrs attrs,int prot,int mmu_idx,vaddr size)1187 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1188 hwaddr paddr, MemTxAttrs attrs, int prot,
1189 int mmu_idx, vaddr size)
1190 {
1191 CPUTLBEntryFull full = {
1192 .phys_addr = paddr,
1193 .attrs = attrs,
1194 .prot = prot,
1195 .lg_page_size = ctz64(size)
1196 };
1197
1198 assert(is_power_of_2(size));
1199 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1200 }
1201
tlb_set_page(CPUState * cpu,vaddr addr,hwaddr paddr,int prot,int mmu_idx,vaddr size)1202 void tlb_set_page(CPUState *cpu, vaddr addr,
1203 hwaddr paddr, int prot,
1204 int mmu_idx, vaddr size)
1205 {
1206 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1207 prot, mmu_idx, size);
1208 }
1209
1210 /**
1211 * tlb_hit_page: return true if page aligned @addr is a hit against the
1212 * TLB entry @tlb_addr
1213 *
1214 * @addr: virtual address to test (must be page aligned)
1215 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1216 */
tlb_hit_page(uint64_t tlb_addr,vaddr addr)1217 static inline bool tlb_hit_page(uint64_t tlb_addr, vaddr addr)
1218 {
1219 return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
1220 }
1221
1222 /**
1223 * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
1224 *
1225 * @addr: virtual address to test (need not be page aligned)
1226 * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
1227 */
tlb_hit(uint64_t tlb_addr,vaddr addr)1228 static inline bool tlb_hit(uint64_t tlb_addr, vaddr addr)
1229 {
1230 return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
1231 }
1232
1233 /*
1234 * Note: tlb_fill_align() can trigger a resize of the TLB.
1235 * This means that all of the caller's prior references to the TLB table
1236 * (e.g. CPUTLBEntry pointers) must be discarded and looked up again
1237 * (e.g. via tlb_entry()).
1238 */
tlb_fill_align(CPUState * cpu,vaddr addr,MMUAccessType type,int mmu_idx,MemOp memop,int size,bool probe,uintptr_t ra)1239 static bool tlb_fill_align(CPUState *cpu, vaddr addr, MMUAccessType type,
1240 int mmu_idx, MemOp memop, int size,
1241 bool probe, uintptr_t ra)
1242 {
1243 const TCGCPUOps *ops = cpu->cc->tcg_ops;
1244 CPUTLBEntryFull full;
1245
1246 if (ops->tlb_fill_align) {
1247 if (ops->tlb_fill_align(cpu, &full, addr, type, mmu_idx,
1248 memop, size, probe, ra)) {
1249 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1250 return true;
1251 }
1252 } else {
1253 /* Legacy behaviour is alignment before paging. */
1254 if (addr & ((1u << memop_alignment_bits(memop)) - 1)) {
1255 ops->do_unaligned_access(cpu, addr, type, mmu_idx, ra);
1256 }
1257 if (ops->tlb_fill(cpu, addr, size, type, mmu_idx, probe, ra)) {
1258 return true;
1259 }
1260 }
1261 assert(probe);
1262 return false;
1263 }
1264
cpu_unaligned_access(CPUState * cpu,vaddr addr,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1265 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1266 MMUAccessType access_type,
1267 int mmu_idx, uintptr_t retaddr)
1268 {
1269 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1270 mmu_idx, retaddr);
1271 }
1272
1273 static MemoryRegionSection *
io_prepare(hwaddr * out_offset,CPUState * cpu,hwaddr xlat,MemTxAttrs attrs,vaddr addr,uintptr_t retaddr)1274 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1275 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1276 {
1277 MemoryRegionSection *section;
1278 hwaddr mr_offset;
1279
1280 section = iotlb_to_section(cpu, xlat, attrs);
1281 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1282 cpu->mem_io_pc = retaddr;
1283 if (!cpu->neg.can_do_io) {
1284 cpu_io_recompile(cpu, retaddr);
1285 }
1286
1287 *out_offset = mr_offset;
1288 return section;
1289 }
1290
io_failed(CPUState * cpu,CPUTLBEntryFull * full,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxResult response,uintptr_t retaddr)1291 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1292 unsigned size, MMUAccessType access_type, int mmu_idx,
1293 MemTxResult response, uintptr_t retaddr)
1294 {
1295 if (!cpu->ignore_memory_transaction_failures
1296 && cpu->cc->tcg_ops->do_transaction_failed) {
1297 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1298
1299 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1300 access_type, mmu_idx,
1301 full->attrs, response, retaddr);
1302 }
1303 }
1304
1305 /* Return true if ADDR is present in the victim tlb, and has been copied
1306 back to the main tlb. */
victim_tlb_hit(CPUState * cpu,size_t mmu_idx,size_t index,MMUAccessType access_type,vaddr page)1307 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1308 MMUAccessType access_type, vaddr page)
1309 {
1310 size_t vidx;
1311
1312 assert_cpu_is_self(cpu);
1313 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1314 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1315 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1316
1317 if (cmp == page) {
1318 /* Found entry in victim tlb, swap tlb and iotlb. */
1319 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1320
1321 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1322 copy_tlb_helper_locked(&tmptlb, tlb);
1323 copy_tlb_helper_locked(tlb, vtlb);
1324 copy_tlb_helper_locked(vtlb, &tmptlb);
1325 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1326
1327 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1328 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1329 CPUTLBEntryFull tmpf;
1330 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1331 return true;
1332 }
1333 }
1334 return false;
1335 }
1336
notdirty_write(CPUState * cpu,vaddr mem_vaddr,unsigned size,CPUTLBEntryFull * full,uintptr_t retaddr)1337 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1338 CPUTLBEntryFull *full, uintptr_t retaddr)
1339 {
1340 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1341
1342 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1343
1344 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1345 tb_invalidate_phys_range_fast(cpu, ram_addr, size, retaddr);
1346 }
1347
1348 /*
1349 * Set both VGA and migration bits for simplicity and to remove
1350 * the notdirty callback faster.
1351 */
1352 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1353
1354 /* We remove the notdirty callback only if the code has been flushed. */
1355 if (!cpu_physical_memory_is_clean(ram_addr)) {
1356 trace_memory_notdirty_set_dirty(mem_vaddr);
1357 tlb_set_dirty(cpu, mem_vaddr);
1358 }
1359 }
1360
probe_access_internal(CPUState * cpu,vaddr addr,int fault_size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,CPUTLBEntryFull ** pfull,uintptr_t retaddr,bool check_mem_cbs)1361 static int probe_access_internal(CPUState *cpu, vaddr addr,
1362 int fault_size, MMUAccessType access_type,
1363 int mmu_idx, bool nonfault,
1364 void **phost, CPUTLBEntryFull **pfull,
1365 uintptr_t retaddr, bool check_mem_cbs)
1366 {
1367 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1368 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1369 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1370 vaddr page_addr = addr & TARGET_PAGE_MASK;
1371 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1372 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1373 CPUTLBEntryFull *full;
1374
1375 if (!tlb_hit_page(tlb_addr, page_addr)) {
1376 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1377 if (!tlb_fill_align(cpu, addr, access_type, mmu_idx,
1378 0, fault_size, nonfault, retaddr)) {
1379 /* Non-faulting page table read failed. */
1380 *phost = NULL;
1381 *pfull = NULL;
1382 return TLB_INVALID_MASK;
1383 }
1384
1385 /* TLB resize via tlb_fill_align may have moved the entry. */
1386 index = tlb_index(cpu, mmu_idx, addr);
1387 entry = tlb_entry(cpu, mmu_idx, addr);
1388
1389 /*
1390 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1391 * to force the next access through tlb_fill_align. We've just
1392 * called tlb_fill_align, so we know that this entry *is* valid.
1393 */
1394 flags &= ~TLB_INVALID_MASK;
1395 }
1396 tlb_addr = tlb_read_idx(entry, access_type);
1397 }
1398 flags &= tlb_addr;
1399
1400 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1401 flags |= full->slow_flags[access_type];
1402
1403 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1404 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED))
1405 || (access_type != MMU_INST_FETCH && force_mmio)) {
1406 *phost = NULL;
1407 return TLB_MMIO;
1408 }
1409
1410 /* Everything else is RAM. */
1411 *phost = (void *)((uintptr_t)addr + entry->addend);
1412 return flags;
1413 }
1414
probe_access_full(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,CPUTLBEntryFull ** pfull,uintptr_t retaddr)1415 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1416 MMUAccessType access_type, int mmu_idx,
1417 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1418 uintptr_t retaddr)
1419 {
1420 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1421 mmu_idx, nonfault, phost, pfull, retaddr,
1422 true);
1423
1424 /* Handle clean RAM pages. */
1425 if (unlikely(flags & TLB_NOTDIRTY)) {
1426 int dirtysize = size == 0 ? 1 : size;
1427 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr);
1428 flags &= ~TLB_NOTDIRTY;
1429 }
1430
1431 return flags;
1432 }
1433
probe_access_full_mmu(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,void ** phost,CPUTLBEntryFull ** pfull)1434 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1435 MMUAccessType access_type, int mmu_idx,
1436 void **phost, CPUTLBEntryFull **pfull)
1437 {
1438 void *discard_phost;
1439 CPUTLBEntryFull *discard_tlb;
1440
1441 /* privately handle users that don't need full results */
1442 phost = phost ? phost : &discard_phost;
1443 pfull = pfull ? pfull : &discard_tlb;
1444
1445 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1446 mmu_idx, true, phost, pfull, 0, false);
1447
1448 /* Handle clean RAM pages. */
1449 if (unlikely(flags & TLB_NOTDIRTY)) {
1450 int dirtysize = size == 0 ? 1 : size;
1451 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0);
1452 flags &= ~TLB_NOTDIRTY;
1453 }
1454
1455 return flags;
1456 }
1457
probe_access_flags(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,bool nonfault,void ** phost,uintptr_t retaddr)1458 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1459 MMUAccessType access_type, int mmu_idx,
1460 bool nonfault, void **phost, uintptr_t retaddr)
1461 {
1462 CPUTLBEntryFull *full;
1463 int flags;
1464
1465 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1466
1467 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1468 mmu_idx, nonfault, phost, &full, retaddr,
1469 true);
1470
1471 /* Handle clean RAM pages. */
1472 if (unlikely(flags & TLB_NOTDIRTY)) {
1473 int dirtysize = size == 0 ? 1 : size;
1474 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr);
1475 flags &= ~TLB_NOTDIRTY;
1476 }
1477
1478 return flags;
1479 }
1480
probe_access(CPUArchState * env,vaddr addr,int size,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1481 void *probe_access(CPUArchState *env, vaddr addr, int size,
1482 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1483 {
1484 CPUTLBEntryFull *full;
1485 void *host;
1486 int flags;
1487
1488 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1489
1490 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1491 mmu_idx, false, &host, &full, retaddr,
1492 true);
1493
1494 /* Per the interface, size == 0 merely faults the access. */
1495 if (size == 0) {
1496 return NULL;
1497 }
1498
1499 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1500 /* Handle watchpoints. */
1501 if (flags & TLB_WATCHPOINT) {
1502 int wp_access = (access_type == MMU_DATA_STORE
1503 ? BP_MEM_WRITE : BP_MEM_READ);
1504 cpu_check_watchpoint(env_cpu(env), addr, size,
1505 full->attrs, wp_access, retaddr);
1506 }
1507
1508 /* Handle clean RAM pages. */
1509 if (flags & TLB_NOTDIRTY) {
1510 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1511 }
1512 }
1513
1514 return host;
1515 }
1516
tlb_vaddr_to_host(CPUArchState * env,vaddr addr,MMUAccessType access_type,int mmu_idx)1517 void *tlb_vaddr_to_host(CPUArchState *env, vaddr addr,
1518 MMUAccessType access_type, int mmu_idx)
1519 {
1520 CPUTLBEntryFull *full;
1521 void *host;
1522 int flags;
1523
1524 flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1525 mmu_idx, true, &host, &full, 0, false);
1526
1527 /* No combination of flags are expected by the caller. */
1528 return flags ? NULL : host;
1529 }
1530
1531 /*
1532 * Return a ram_addr_t for the virtual address for execution.
1533 *
1534 * Return -1 if we can't translate and execute from an entire page
1535 * of RAM. This will force us to execute by loading and translating
1536 * one insn at a time, without caching.
1537 *
1538 * NOTE: This function will trigger an exception if the page is
1539 * not executable.
1540 */
get_page_addr_code_hostp(CPUArchState * env,vaddr addr,void ** hostp)1541 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1542 void **hostp)
1543 {
1544 CPUTLBEntryFull *full;
1545 void *p;
1546
1547 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1548 cpu_mmu_index(env_cpu(env), true), false,
1549 &p, &full, 0, false);
1550 if (p == NULL) {
1551 return -1;
1552 }
1553
1554 if (full->lg_page_size < TARGET_PAGE_BITS) {
1555 return -1;
1556 }
1557
1558 if (hostp) {
1559 *hostp = p;
1560 }
1561 return qemu_ram_addr_from_host_nofail(p);
1562 }
1563
1564 /* Load/store with atomicity primitives. */
1565 #include "ldst_atomicity.c.inc"
1566
1567 #ifdef CONFIG_PLUGIN
1568 /*
1569 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1570 * This should be a hot path as we will have just looked this path up
1571 * in the softmmu lookup code (or helper). We don't handle re-fills or
1572 * checking the victim table. This is purely informational.
1573 *
1574 * The one corner case is i/o write, which can cause changes to the
1575 * address space. Those changes, and the corresponding tlb flush,
1576 * should be delayed until the next TB, so even then this ought not fail.
1577 * But check, Just in Case.
1578 */
tlb_plugin_lookup(CPUState * cpu,vaddr addr,int mmu_idx,bool is_store,struct qemu_plugin_hwaddr * data)1579 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1580 bool is_store, struct qemu_plugin_hwaddr *data)
1581 {
1582 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1583 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1584 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1585 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1586 CPUTLBEntryFull *full;
1587
1588 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1589 return false;
1590 }
1591
1592 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1593 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1594
1595 /* We must have an iotlb entry for MMIO */
1596 if (tlb_addr & TLB_MMIO) {
1597 MemoryRegionSection *section =
1598 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1599 full->attrs);
1600 data->is_io = true;
1601 data->mr = section->mr;
1602 } else {
1603 data->is_io = false;
1604 data->mr = NULL;
1605 }
1606 return true;
1607 }
1608 #endif
1609
1610 /*
1611 * Probe for a load/store operation.
1612 * Return the host address and into @flags.
1613 */
1614
1615 typedef struct MMULookupPageData {
1616 CPUTLBEntryFull *full;
1617 void *haddr;
1618 vaddr addr;
1619 int flags;
1620 int size;
1621 } MMULookupPageData;
1622
1623 typedef struct MMULookupLocals {
1624 MMULookupPageData page[2];
1625 MemOp memop;
1626 int mmu_idx;
1627 } MMULookupLocals;
1628
1629 /**
1630 * mmu_lookup1: translate one page
1631 * @cpu: generic cpu state
1632 * @data: lookup parameters
1633 * @memop: memory operation for the access, or 0
1634 * @mmu_idx: virtual address context
1635 * @access_type: load/store/code
1636 * @ra: return address into tcg generated code, or 0
1637 *
1638 * Resolve the translation for the one page at @data.addr, filling in
1639 * the rest of @data with the results. If the translation fails,
1640 * tlb_fill_align will longjmp out. Return true if the softmmu tlb for
1641 * @mmu_idx may have resized.
1642 */
mmu_lookup1(CPUState * cpu,MMULookupPageData * data,MemOp memop,int mmu_idx,MMUAccessType access_type,uintptr_t ra)1643 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, MemOp memop,
1644 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1645 {
1646 vaddr addr = data->addr;
1647 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1648 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1649 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1650 bool maybe_resized = false;
1651 CPUTLBEntryFull *full;
1652 int flags;
1653
1654 /* If the TLB entry is for a different page, reload and try again. */
1655 if (!tlb_hit(tlb_addr, addr)) {
1656 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1657 addr & TARGET_PAGE_MASK)) {
1658 tlb_fill_align(cpu, addr, access_type, mmu_idx,
1659 memop, data->size, false, ra);
1660 maybe_resized = true;
1661 index = tlb_index(cpu, mmu_idx, addr);
1662 entry = tlb_entry(cpu, mmu_idx, addr);
1663 }
1664 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1665 }
1666
1667 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1668 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1669 flags |= full->slow_flags[access_type];
1670
1671 if (likely(!maybe_resized)) {
1672 /* Alignment has not been checked by tlb_fill_align. */
1673 int a_bits = memop_alignment_bits(memop);
1674
1675 /*
1676 * This alignment check differs from the one above, in that this is
1677 * based on the atomicity of the operation. The intended use case is
1678 * the ARM memory type field of each PTE, where access to pages with
1679 * Device memory type require alignment.
1680 */
1681 if (unlikely(flags & TLB_CHECK_ALIGNED)) {
1682 int at_bits = memop_atomicity_bits(memop);
1683 a_bits = MAX(a_bits, at_bits);
1684 }
1685 if (unlikely(addr & ((1 << a_bits) - 1))) {
1686 cpu_unaligned_access(cpu, addr, access_type, mmu_idx, ra);
1687 }
1688 }
1689
1690 data->full = full;
1691 data->flags = flags;
1692 /* Compute haddr speculatively; depending on flags it might be invalid. */
1693 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1694
1695 return maybe_resized;
1696 }
1697
1698 /**
1699 * mmu_watch_or_dirty
1700 * @cpu: generic cpu state
1701 * @data: lookup parameters
1702 * @access_type: load/store/code
1703 * @ra: return address into tcg generated code, or 0
1704 *
1705 * Trigger watchpoints for @data.addr:@data.size;
1706 * record writes to protected clean pages.
1707 */
mmu_watch_or_dirty(CPUState * cpu,MMULookupPageData * data,MMUAccessType access_type,uintptr_t ra)1708 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1709 MMUAccessType access_type, uintptr_t ra)
1710 {
1711 CPUTLBEntryFull *full = data->full;
1712 vaddr addr = data->addr;
1713 int flags = data->flags;
1714 int size = data->size;
1715
1716 /* On watchpoint hit, this will longjmp out. */
1717 if (flags & TLB_WATCHPOINT) {
1718 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1719 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1720 flags &= ~TLB_WATCHPOINT;
1721 }
1722
1723 /* Note that notdirty is only set for writes. */
1724 if (flags & TLB_NOTDIRTY) {
1725 notdirty_write(cpu, addr, size, full, ra);
1726 flags &= ~TLB_NOTDIRTY;
1727 }
1728 data->flags = flags;
1729 }
1730
1731 /**
1732 * mmu_lookup: translate page(s)
1733 * @cpu: generic cpu state
1734 * @addr: virtual address
1735 * @oi: combined mmu_idx and MemOp
1736 * @ra: return address into tcg generated code, or 0
1737 * @access_type: load/store/code
1738 * @l: output result
1739 *
1740 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1741 * bytes. Return true if the lookup crosses a page boundary.
1742 */
mmu_lookup(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType type,MMULookupLocals * l)1743 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1744 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1745 {
1746 bool crosspage;
1747 int flags;
1748
1749 l->memop = get_memop(oi);
1750 l->mmu_idx = get_mmuidx(oi);
1751
1752 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1753
1754 l->page[0].addr = addr;
1755 l->page[0].size = memop_size(l->memop);
1756 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1757 l->page[1].size = 0;
1758 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1759
1760 if (likely(!crosspage)) {
1761 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1762
1763 flags = l->page[0].flags;
1764 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1765 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1766 }
1767 if (unlikely(flags & TLB_BSWAP)) {
1768 l->memop ^= MO_BSWAP;
1769 }
1770 } else {
1771 /* Finish compute of page crossing. */
1772 int size0 = l->page[1].addr - addr;
1773 l->page[1].size = l->page[0].size - size0;
1774 l->page[0].size = size0;
1775
1776 l->page[1].addr = cpu->cc->tcg_ops->pointer_wrap(cpu, l->mmu_idx,
1777 l->page[1].addr, addr);
1778
1779 /*
1780 * Lookup both pages, recognizing exceptions from either. If the
1781 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1782 */
1783 mmu_lookup1(cpu, &l->page[0], l->memop, l->mmu_idx, type, ra);
1784 if (mmu_lookup1(cpu, &l->page[1], 0, l->mmu_idx, type, ra)) {
1785 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1786 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1787 }
1788
1789 flags = l->page[0].flags | l->page[1].flags;
1790 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1791 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1792 mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1793 }
1794
1795 /*
1796 * Since target/sparc is the only user of TLB_BSWAP, and all
1797 * Sparc accesses are aligned, any treatment across two pages
1798 * would be arbitrary. Refuse it until there's a use.
1799 */
1800 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1801 }
1802
1803 return crosspage;
1804 }
1805
1806 /*
1807 * Probe for an atomic operation. Do not allow unaligned operations,
1808 * or io operations to proceed. Return the host address.
1809 */
atomic_mmu_lookup(CPUState * cpu,vaddr addr,MemOpIdx oi,int size,uintptr_t retaddr)1810 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1811 int size, uintptr_t retaddr)
1812 {
1813 uintptr_t mmu_idx = get_mmuidx(oi);
1814 MemOp mop = get_memop(oi);
1815 uintptr_t index;
1816 CPUTLBEntry *tlbe;
1817 vaddr tlb_addr;
1818 void *hostaddr;
1819 CPUTLBEntryFull *full;
1820 bool did_tlb_fill = false;
1821
1822 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1823
1824 /* Adjust the given return address. */
1825 retaddr -= GETPC_ADJ;
1826
1827 index = tlb_index(cpu, mmu_idx, addr);
1828 tlbe = tlb_entry(cpu, mmu_idx, addr);
1829
1830 /* Check TLB entry and enforce page permissions. */
1831 tlb_addr = tlb_addr_write(tlbe);
1832 if (!tlb_hit(tlb_addr, addr)) {
1833 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1834 addr & TARGET_PAGE_MASK)) {
1835 tlb_fill_align(cpu, addr, MMU_DATA_STORE, mmu_idx,
1836 mop, size, false, retaddr);
1837 did_tlb_fill = true;
1838 index = tlb_index(cpu, mmu_idx, addr);
1839 tlbe = tlb_entry(cpu, mmu_idx, addr);
1840 }
1841 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1842 }
1843
1844 /*
1845 * Let the guest notice RMW on a write-only page.
1846 * We have just verified that the page is writable.
1847 * Subpage lookups may have left TLB_INVALID_MASK set,
1848 * but addr_read will only be -1 if PAGE_READ was unset.
1849 */
1850 if (unlikely(tlbe->addr_read == -1)) {
1851 tlb_fill_align(cpu, addr, MMU_DATA_LOAD, mmu_idx,
1852 0, size, false, retaddr);
1853 /*
1854 * Since we don't support reads and writes to different
1855 * addresses, and we do have the proper page loaded for
1856 * write, this shouldn't ever return.
1857 */
1858 g_assert_not_reached();
1859 }
1860
1861 /* Enforce guest required alignment, if not handled by tlb_fill_align. */
1862 if (!did_tlb_fill && (addr & ((1 << memop_alignment_bits(mop)) - 1))) {
1863 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, mmu_idx, retaddr);
1864 }
1865
1866 /* Enforce qemu required alignment. */
1867 if (unlikely(addr & (size - 1))) {
1868 /*
1869 * We get here if guest alignment was not requested, or was not
1870 * enforced by cpu_unaligned_access or tlb_fill_align above.
1871 * We might widen the access and emulate, but for now
1872 * mark an exception and exit the cpu loop.
1873 */
1874 goto stop_the_world;
1875 }
1876
1877 /* Finish collecting tlb flags for both read and write. */
1878 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1879 tlb_addr |= tlbe->addr_read;
1880 tlb_addr &= TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1881 tlb_addr |= full->slow_flags[MMU_DATA_STORE];
1882 tlb_addr |= full->slow_flags[MMU_DATA_LOAD];
1883
1884 /* Notice an IO access or a needs-MMU-lookup access */
1885 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1886 /* There's really nothing that can be done to
1887 support this apart from stop-the-world. */
1888 goto stop_the_world;
1889 }
1890
1891 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1892
1893 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1894 notdirty_write(cpu, addr, size, full, retaddr);
1895 }
1896
1897 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1898 int wp_flags = 0;
1899
1900 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1901 wp_flags |= BP_MEM_WRITE;
1902 }
1903 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1904 wp_flags |= BP_MEM_READ;
1905 }
1906 cpu_check_watchpoint(cpu, addr, size,
1907 full->attrs, wp_flags, retaddr);
1908 }
1909
1910 return hostaddr;
1911
1912 stop_the_world:
1913 cpu_loop_exit_atomic(cpu, retaddr);
1914 }
1915
1916 /*
1917 * Load Helpers
1918 *
1919 * We support two different access types. SOFTMMU_CODE_ACCESS is
1920 * specifically for reading instructions from system memory. It is
1921 * called by the translation loop and in some helpers where the code
1922 * is disassembled. It shouldn't be called directly by guest code.
1923 *
1924 * For the benefit of TCG generated code, we want to avoid the
1925 * complication of ABI-specific return type promotion and always
1926 * return a value extended to the register size of the host. This is
1927 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1928 * data, and for that we always have uint64_t.
1929 *
1930 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1931 */
1932
1933 /**
1934 * do_ld_mmio_beN:
1935 * @cpu: generic cpu state
1936 * @full: page parameters
1937 * @ret_be: accumulated data
1938 * @addr: virtual address
1939 * @size: number of bytes
1940 * @mmu_idx: virtual address context
1941 * @ra: return address into tcg generated code, or 0
1942 * Context: BQL held
1943 *
1944 * Load @size bytes from @addr, which is memory-mapped i/o.
1945 * The bytes are concatenated in big-endian order with @ret_be.
1946 */
int_ld_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,MMUAccessType type,uintptr_t ra,MemoryRegion * mr,hwaddr mr_offset)1947 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1948 uint64_t ret_be, vaddr addr, int size,
1949 int mmu_idx, MMUAccessType type, uintptr_t ra,
1950 MemoryRegion *mr, hwaddr mr_offset)
1951 {
1952 do {
1953 MemOp this_mop;
1954 unsigned this_size;
1955 uint64_t val;
1956 MemTxResult r;
1957
1958 /* Read aligned pieces up to 8 bytes. */
1959 this_mop = ctz32(size | (int)addr | 8);
1960 this_size = 1 << this_mop;
1961 this_mop |= MO_BE;
1962
1963 r = memory_region_dispatch_read(mr, mr_offset, &val,
1964 this_mop, full->attrs);
1965 if (unlikely(r != MEMTX_OK)) {
1966 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
1967 }
1968 if (this_size == 8) {
1969 return val;
1970 }
1971
1972 ret_be = (ret_be << (this_size * 8)) | val;
1973 addr += this_size;
1974 mr_offset += this_size;
1975 size -= this_size;
1976 } while (size);
1977
1978 return ret_be;
1979 }
1980
do_ld_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,MMUAccessType type,uintptr_t ra)1981 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1982 uint64_t ret_be, vaddr addr, int size,
1983 int mmu_idx, MMUAccessType type, uintptr_t ra)
1984 {
1985 MemoryRegionSection *section;
1986 MemoryRegion *mr;
1987 hwaddr mr_offset;
1988 MemTxAttrs attrs;
1989
1990 tcg_debug_assert(size > 0 && size <= 8);
1991
1992 attrs = full->attrs;
1993 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
1994 mr = section->mr;
1995
1996 BQL_LOCK_GUARD();
1997 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
1998 type, ra, mr, mr_offset);
1999 }
2000
do_ld16_mmio_beN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t ret_be,vaddr addr,int size,int mmu_idx,uintptr_t ra)2001 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2002 uint64_t ret_be, vaddr addr, int size,
2003 int mmu_idx, uintptr_t ra)
2004 {
2005 MemoryRegionSection *section;
2006 MemoryRegion *mr;
2007 hwaddr mr_offset;
2008 MemTxAttrs attrs;
2009 uint64_t a, b;
2010
2011 tcg_debug_assert(size > 8 && size <= 16);
2012
2013 attrs = full->attrs;
2014 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2015 mr = section->mr;
2016
2017 BQL_LOCK_GUARD();
2018 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2019 MMU_DATA_LOAD, ra, mr, mr_offset);
2020 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2021 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2022 return int128_make128(b, a);
2023 }
2024
2025 /**
2026 * do_ld_bytes_beN
2027 * @p: translation parameters
2028 * @ret_be: accumulated data
2029 *
2030 * Load @p->size bytes from @p->haddr, which is RAM.
2031 * The bytes to concatenated in big-endian order with @ret_be.
2032 */
do_ld_bytes_beN(MMULookupPageData * p,uint64_t ret_be)2033 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2034 {
2035 uint8_t *haddr = p->haddr;
2036 int i, size = p->size;
2037
2038 for (i = 0; i < size; i++) {
2039 ret_be = (ret_be << 8) | haddr[i];
2040 }
2041 return ret_be;
2042 }
2043
2044 /**
2045 * do_ld_parts_beN
2046 * @p: translation parameters
2047 * @ret_be: accumulated data
2048 *
2049 * As do_ld_bytes_beN, but atomically on each aligned part.
2050 */
do_ld_parts_beN(MMULookupPageData * p,uint64_t ret_be)2051 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2052 {
2053 void *haddr = p->haddr;
2054 int size = p->size;
2055
2056 do {
2057 uint64_t x;
2058 int n;
2059
2060 /*
2061 * Find minimum of alignment and size.
2062 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2063 * would have only checked the low bits of addr|size once at the start,
2064 * but is just as easy.
2065 */
2066 switch (((uintptr_t)haddr | size) & 7) {
2067 case 4:
2068 x = cpu_to_be32(load_atomic4(haddr));
2069 ret_be = (ret_be << 32) | x;
2070 n = 4;
2071 break;
2072 case 2:
2073 case 6:
2074 x = cpu_to_be16(load_atomic2(haddr));
2075 ret_be = (ret_be << 16) | x;
2076 n = 2;
2077 break;
2078 default:
2079 x = *(uint8_t *)haddr;
2080 ret_be = (ret_be << 8) | x;
2081 n = 1;
2082 break;
2083 case 0:
2084 g_assert_not_reached();
2085 }
2086 haddr += n;
2087 size -= n;
2088 } while (size != 0);
2089 return ret_be;
2090 }
2091
2092 /**
2093 * do_ld_parts_be4
2094 * @p: translation parameters
2095 * @ret_be: accumulated data
2096 *
2097 * As do_ld_bytes_beN, but with one atomic load.
2098 * Four aligned bytes are guaranteed to cover the load.
2099 */
do_ld_whole_be4(MMULookupPageData * p,uint64_t ret_be)2100 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2101 {
2102 int o = p->addr & 3;
2103 uint32_t x = load_atomic4(p->haddr - o);
2104
2105 x = cpu_to_be32(x);
2106 x <<= o * 8;
2107 x >>= (4 - p->size) * 8;
2108 return (ret_be << (p->size * 8)) | x;
2109 }
2110
2111 /**
2112 * do_ld_parts_be8
2113 * @p: translation parameters
2114 * @ret_be: accumulated data
2115 *
2116 * As do_ld_bytes_beN, but with one atomic load.
2117 * Eight aligned bytes are guaranteed to cover the load.
2118 */
do_ld_whole_be8(CPUState * cpu,uintptr_t ra,MMULookupPageData * p,uint64_t ret_be)2119 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2120 MMULookupPageData *p, uint64_t ret_be)
2121 {
2122 int o = p->addr & 7;
2123 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2124
2125 x = cpu_to_be64(x);
2126 x <<= o * 8;
2127 x >>= (8 - p->size) * 8;
2128 return (ret_be << (p->size * 8)) | x;
2129 }
2130
2131 /**
2132 * do_ld_parts_be16
2133 * @p: translation parameters
2134 * @ret_be: accumulated data
2135 *
2136 * As do_ld_bytes_beN, but with one atomic load.
2137 * 16 aligned bytes are guaranteed to cover the load.
2138 */
do_ld_whole_be16(CPUState * cpu,uintptr_t ra,MMULookupPageData * p,uint64_t ret_be)2139 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2140 MMULookupPageData *p, uint64_t ret_be)
2141 {
2142 int o = p->addr & 15;
2143 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2144 int size = p->size;
2145
2146 if (!HOST_BIG_ENDIAN) {
2147 y = bswap128(y);
2148 }
2149 y = int128_lshift(y, o * 8);
2150 y = int128_urshift(y, (16 - size) * 8);
2151 x = int128_make64(ret_be);
2152 x = int128_lshift(x, size * 8);
2153 return int128_or(x, y);
2154 }
2155
2156 /*
2157 * Wrapper for the above.
2158 */
do_ld_beN(CPUState * cpu,MMULookupPageData * p,uint64_t ret_be,int mmu_idx,MMUAccessType type,MemOp mop,uintptr_t ra)2159 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2160 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2161 MemOp mop, uintptr_t ra)
2162 {
2163 MemOp atom;
2164 unsigned tmp, half_size;
2165
2166 if (unlikely(p->flags & TLB_MMIO)) {
2167 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2168 mmu_idx, type, ra);
2169 }
2170
2171 /*
2172 * It is a given that we cross a page and therefore there is no
2173 * atomicity for the load as a whole, but subobjects may need attention.
2174 */
2175 atom = mop & MO_ATOM_MASK;
2176 switch (atom) {
2177 case MO_ATOM_SUBALIGN:
2178 return do_ld_parts_beN(p, ret_be);
2179
2180 case MO_ATOM_IFALIGN_PAIR:
2181 case MO_ATOM_WITHIN16_PAIR:
2182 tmp = mop & MO_SIZE;
2183 tmp = tmp ? tmp - 1 : 0;
2184 half_size = 1 << tmp;
2185 if (atom == MO_ATOM_IFALIGN_PAIR
2186 ? p->size == half_size
2187 : p->size >= half_size) {
2188 if (!HAVE_al8_fast && p->size < 4) {
2189 return do_ld_whole_be4(p, ret_be);
2190 } else {
2191 return do_ld_whole_be8(cpu, ra, p, ret_be);
2192 }
2193 }
2194 /* fall through */
2195
2196 case MO_ATOM_IFALIGN:
2197 case MO_ATOM_WITHIN16:
2198 case MO_ATOM_NONE:
2199 return do_ld_bytes_beN(p, ret_be);
2200
2201 default:
2202 g_assert_not_reached();
2203 }
2204 }
2205
2206 /*
2207 * Wrapper for the above, for 8 < size < 16.
2208 */
do_ld16_beN(CPUState * cpu,MMULookupPageData * p,uint64_t a,int mmu_idx,MemOp mop,uintptr_t ra)2209 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2210 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2211 {
2212 int size = p->size;
2213 uint64_t b;
2214 MemOp atom;
2215
2216 if (unlikely(p->flags & TLB_MMIO)) {
2217 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2218 }
2219
2220 /*
2221 * It is a given that we cross a page and therefore there is no
2222 * atomicity for the load as a whole, but subobjects may need attention.
2223 */
2224 atom = mop & MO_ATOM_MASK;
2225 switch (atom) {
2226 case MO_ATOM_SUBALIGN:
2227 p->size = size - 8;
2228 a = do_ld_parts_beN(p, a);
2229 p->haddr += size - 8;
2230 p->size = 8;
2231 b = do_ld_parts_beN(p, 0);
2232 break;
2233
2234 case MO_ATOM_WITHIN16_PAIR:
2235 /* Since size > 8, this is the half that must be atomic. */
2236 return do_ld_whole_be16(cpu, ra, p, a);
2237
2238 case MO_ATOM_IFALIGN_PAIR:
2239 /*
2240 * Since size > 8, both halves are misaligned,
2241 * and so neither is atomic.
2242 */
2243 case MO_ATOM_IFALIGN:
2244 case MO_ATOM_WITHIN16:
2245 case MO_ATOM_NONE:
2246 p->size = size - 8;
2247 a = do_ld_bytes_beN(p, a);
2248 b = ldq_be_p(p->haddr + size - 8);
2249 break;
2250
2251 default:
2252 g_assert_not_reached();
2253 }
2254
2255 return int128_make128(b, a);
2256 }
2257
do_ld_1(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,uintptr_t ra)2258 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2259 MMUAccessType type, uintptr_t ra)
2260 {
2261 if (unlikely(p->flags & TLB_MMIO)) {
2262 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2263 } else {
2264 return *(uint8_t *)p->haddr;
2265 }
2266 }
2267
do_ld_2(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2268 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2269 MMUAccessType type, MemOp memop, uintptr_t ra)
2270 {
2271 uint16_t ret;
2272
2273 if (unlikely(p->flags & TLB_MMIO)) {
2274 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2275 if ((memop & MO_BSWAP) == MO_LE) {
2276 ret = bswap16(ret);
2277 }
2278 } else {
2279 /* Perform the load host endian, then swap if necessary. */
2280 ret = load_atom_2(cpu, ra, p->haddr, memop);
2281 if (memop & MO_BSWAP) {
2282 ret = bswap16(ret);
2283 }
2284 }
2285 return ret;
2286 }
2287
do_ld_4(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2288 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2289 MMUAccessType type, MemOp memop, uintptr_t ra)
2290 {
2291 uint32_t ret;
2292
2293 if (unlikely(p->flags & TLB_MMIO)) {
2294 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2295 if ((memop & MO_BSWAP) == MO_LE) {
2296 ret = bswap32(ret);
2297 }
2298 } else {
2299 /* Perform the load host endian. */
2300 ret = load_atom_4(cpu, ra, p->haddr, memop);
2301 if (memop & MO_BSWAP) {
2302 ret = bswap32(ret);
2303 }
2304 }
2305 return ret;
2306 }
2307
do_ld_8(CPUState * cpu,MMULookupPageData * p,int mmu_idx,MMUAccessType type,MemOp memop,uintptr_t ra)2308 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2309 MMUAccessType type, MemOp memop, uintptr_t ra)
2310 {
2311 uint64_t ret;
2312
2313 if (unlikely(p->flags & TLB_MMIO)) {
2314 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2315 if ((memop & MO_BSWAP) == MO_LE) {
2316 ret = bswap64(ret);
2317 }
2318 } else {
2319 /* Perform the load host endian. */
2320 ret = load_atom_8(cpu, ra, p->haddr, memop);
2321 if (memop & MO_BSWAP) {
2322 ret = bswap64(ret);
2323 }
2324 }
2325 return ret;
2326 }
2327
do_ld1_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2328 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2329 uintptr_t ra, MMUAccessType access_type)
2330 {
2331 MMULookupLocals l;
2332 bool crosspage;
2333
2334 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2335 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2336 tcg_debug_assert(!crosspage);
2337
2338 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2339 }
2340
do_ld2_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2341 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2342 uintptr_t ra, MMUAccessType access_type)
2343 {
2344 MMULookupLocals l;
2345 bool crosspage;
2346 uint16_t ret;
2347 uint8_t a, b;
2348
2349 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2350 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2351 if (likely(!crosspage)) {
2352 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2353 }
2354
2355 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2356 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2357
2358 if ((l.memop & MO_BSWAP) == MO_LE) {
2359 ret = a | (b << 8);
2360 } else {
2361 ret = b | (a << 8);
2362 }
2363 return ret;
2364 }
2365
do_ld4_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2366 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2367 uintptr_t ra, MMUAccessType access_type)
2368 {
2369 MMULookupLocals l;
2370 bool crosspage;
2371 uint32_t ret;
2372
2373 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2374 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2375 if (likely(!crosspage)) {
2376 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2377 }
2378
2379 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2380 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2381 if ((l.memop & MO_BSWAP) == MO_LE) {
2382 ret = bswap32(ret);
2383 }
2384 return ret;
2385 }
2386
do_ld8_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra,MMUAccessType access_type)2387 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2388 uintptr_t ra, MMUAccessType access_type)
2389 {
2390 MMULookupLocals l;
2391 bool crosspage;
2392 uint64_t ret;
2393
2394 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2395 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2396 if (likely(!crosspage)) {
2397 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2398 }
2399
2400 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2401 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2402 if ((l.memop & MO_BSWAP) == MO_LE) {
2403 ret = bswap64(ret);
2404 }
2405 return ret;
2406 }
2407
do_ld16_mmu(CPUState * cpu,vaddr addr,MemOpIdx oi,uintptr_t ra)2408 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2409 MemOpIdx oi, uintptr_t ra)
2410 {
2411 MMULookupLocals l;
2412 bool crosspage;
2413 uint64_t a, b;
2414 Int128 ret;
2415 int first;
2416
2417 cpu_req_mo(cpu, TCG_MO_LD_LD | TCG_MO_ST_LD);
2418 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2419 if (likely(!crosspage)) {
2420 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2421 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2422 l.mmu_idx, ra);
2423 if ((l.memop & MO_BSWAP) == MO_LE) {
2424 ret = bswap128(ret);
2425 }
2426 } else {
2427 /* Perform the load host endian. */
2428 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2429 if (l.memop & MO_BSWAP) {
2430 ret = bswap128(ret);
2431 }
2432 }
2433 return ret;
2434 }
2435
2436 first = l.page[0].size;
2437 if (first == 8) {
2438 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2439
2440 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2441 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2442 if ((mop8 & MO_BSWAP) == MO_LE) {
2443 ret = int128_make128(a, b);
2444 } else {
2445 ret = int128_make128(b, a);
2446 }
2447 return ret;
2448 }
2449
2450 if (first < 8) {
2451 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2452 MMU_DATA_LOAD, l.memop, ra);
2453 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2454 } else {
2455 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2456 b = int128_getlo(ret);
2457 ret = int128_lshift(ret, l.page[1].size * 8);
2458 a = int128_gethi(ret);
2459 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2460 MMU_DATA_LOAD, l.memop, ra);
2461 ret = int128_make128(b, a);
2462 }
2463 if ((l.memop & MO_BSWAP) == MO_LE) {
2464 ret = bswap128(ret);
2465 }
2466 return ret;
2467 }
2468
2469 /*
2470 * Store Helpers
2471 */
2472
2473 /**
2474 * do_st_mmio_leN:
2475 * @cpu: generic cpu state
2476 * @full: page parameters
2477 * @val_le: data to store
2478 * @addr: virtual address
2479 * @size: number of bytes
2480 * @mmu_idx: virtual address context
2481 * @ra: return address into tcg generated code, or 0
2482 * Context: BQL held
2483 *
2484 * Store @size bytes at @addr, which is memory-mapped i/o.
2485 * The bytes to store are extracted in little-endian order from @val_le;
2486 * return the bytes of @val_le beyond @p->size that have not been stored.
2487 */
int_st_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra,MemoryRegion * mr,hwaddr mr_offset)2488 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2489 uint64_t val_le, vaddr addr, int size,
2490 int mmu_idx, uintptr_t ra,
2491 MemoryRegion *mr, hwaddr mr_offset)
2492 {
2493 do {
2494 MemOp this_mop;
2495 unsigned this_size;
2496 MemTxResult r;
2497
2498 /* Store aligned pieces up to 8 bytes. */
2499 this_mop = ctz32(size | (int)addr | 8);
2500 this_size = 1 << this_mop;
2501 this_mop |= MO_LE;
2502
2503 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2504 this_mop, full->attrs);
2505 if (unlikely(r != MEMTX_OK)) {
2506 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2507 mmu_idx, r, ra);
2508 }
2509 if (this_size == 8) {
2510 return 0;
2511 }
2512
2513 val_le >>= this_size * 8;
2514 addr += this_size;
2515 mr_offset += this_size;
2516 size -= this_size;
2517 } while (size);
2518
2519 return val_le;
2520 }
2521
do_st_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,uint64_t val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra)2522 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2523 uint64_t val_le, vaddr addr, int size,
2524 int mmu_idx, uintptr_t ra)
2525 {
2526 MemoryRegionSection *section;
2527 hwaddr mr_offset;
2528 MemoryRegion *mr;
2529 MemTxAttrs attrs;
2530
2531 tcg_debug_assert(size > 0 && size <= 8);
2532
2533 attrs = full->attrs;
2534 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2535 mr = section->mr;
2536
2537 BQL_LOCK_GUARD();
2538 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2539 ra, mr, mr_offset);
2540 }
2541
do_st16_mmio_leN(CPUState * cpu,CPUTLBEntryFull * full,Int128 val_le,vaddr addr,int size,int mmu_idx,uintptr_t ra)2542 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2543 Int128 val_le, vaddr addr, int size,
2544 int mmu_idx, uintptr_t ra)
2545 {
2546 MemoryRegionSection *section;
2547 MemoryRegion *mr;
2548 hwaddr mr_offset;
2549 MemTxAttrs attrs;
2550
2551 tcg_debug_assert(size > 8 && size <= 16);
2552
2553 attrs = full->attrs;
2554 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2555 mr = section->mr;
2556
2557 BQL_LOCK_GUARD();
2558 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2559 mmu_idx, ra, mr, mr_offset);
2560 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2561 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2562 }
2563
2564 /*
2565 * Wrapper for the above.
2566 */
do_st_leN(CPUState * cpu,MMULookupPageData * p,uint64_t val_le,int mmu_idx,MemOp mop,uintptr_t ra)2567 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2568 uint64_t val_le, int mmu_idx,
2569 MemOp mop, uintptr_t ra)
2570 {
2571 MemOp atom;
2572 unsigned tmp, half_size;
2573
2574 if (unlikely(p->flags & TLB_MMIO)) {
2575 return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2576 p->size, mmu_idx, ra);
2577 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2578 return val_le >> (p->size * 8);
2579 }
2580
2581 /*
2582 * It is a given that we cross a page and therefore there is no atomicity
2583 * for the store as a whole, but subobjects may need attention.
2584 */
2585 atom = mop & MO_ATOM_MASK;
2586 switch (atom) {
2587 case MO_ATOM_SUBALIGN:
2588 return store_parts_leN(p->haddr, p->size, val_le);
2589
2590 case MO_ATOM_IFALIGN_PAIR:
2591 case MO_ATOM_WITHIN16_PAIR:
2592 tmp = mop & MO_SIZE;
2593 tmp = tmp ? tmp - 1 : 0;
2594 half_size = 1 << tmp;
2595 if (atom == MO_ATOM_IFALIGN_PAIR
2596 ? p->size == half_size
2597 : p->size >= half_size) {
2598 if (!HAVE_al8_fast && p->size <= 4) {
2599 return store_whole_le4(p->haddr, p->size, val_le);
2600 } else if (HAVE_al8) {
2601 return store_whole_le8(p->haddr, p->size, val_le);
2602 } else {
2603 cpu_loop_exit_atomic(cpu, ra);
2604 }
2605 }
2606 /* fall through */
2607
2608 case MO_ATOM_IFALIGN:
2609 case MO_ATOM_WITHIN16:
2610 case MO_ATOM_NONE:
2611 return store_bytes_leN(p->haddr, p->size, val_le);
2612
2613 default:
2614 g_assert_not_reached();
2615 }
2616 }
2617
2618 /*
2619 * Wrapper for the above, for 8 < size < 16.
2620 */
do_st16_leN(CPUState * cpu,MMULookupPageData * p,Int128 val_le,int mmu_idx,MemOp mop,uintptr_t ra)2621 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2622 Int128 val_le, int mmu_idx,
2623 MemOp mop, uintptr_t ra)
2624 {
2625 int size = p->size;
2626 MemOp atom;
2627
2628 if (unlikely(p->flags & TLB_MMIO)) {
2629 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2630 size, mmu_idx, ra);
2631 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2632 return int128_gethi(val_le) >> ((size - 8) * 8);
2633 }
2634
2635 /*
2636 * It is a given that we cross a page and therefore there is no atomicity
2637 * for the store as a whole, but subobjects may need attention.
2638 */
2639 atom = mop & MO_ATOM_MASK;
2640 switch (atom) {
2641 case MO_ATOM_SUBALIGN:
2642 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2643 return store_parts_leN(p->haddr + 8, p->size - 8,
2644 int128_gethi(val_le));
2645
2646 case MO_ATOM_WITHIN16_PAIR:
2647 /* Since size > 8, this is the half that must be atomic. */
2648 if (!HAVE_CMPXCHG128) {
2649 cpu_loop_exit_atomic(cpu, ra);
2650 }
2651 return store_whole_le16(p->haddr, p->size, val_le);
2652
2653 case MO_ATOM_IFALIGN_PAIR:
2654 /*
2655 * Since size > 8, both halves are misaligned,
2656 * and so neither is atomic.
2657 */
2658 case MO_ATOM_IFALIGN:
2659 case MO_ATOM_WITHIN16:
2660 case MO_ATOM_NONE:
2661 stq_le_p(p->haddr, int128_getlo(val_le));
2662 return store_bytes_leN(p->haddr + 8, p->size - 8,
2663 int128_gethi(val_le));
2664
2665 default:
2666 g_assert_not_reached();
2667 }
2668 }
2669
do_st_1(CPUState * cpu,MMULookupPageData * p,uint8_t val,int mmu_idx,uintptr_t ra)2670 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2671 int mmu_idx, uintptr_t ra)
2672 {
2673 if (unlikely(p->flags & TLB_MMIO)) {
2674 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2675 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2676 /* nothing */
2677 } else {
2678 *(uint8_t *)p->haddr = val;
2679 }
2680 }
2681
do_st_2(CPUState * cpu,MMULookupPageData * p,uint16_t val,int mmu_idx,MemOp memop,uintptr_t ra)2682 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2683 int mmu_idx, MemOp memop, uintptr_t ra)
2684 {
2685 if (unlikely(p->flags & TLB_MMIO)) {
2686 if ((memop & MO_BSWAP) != MO_LE) {
2687 val = bswap16(val);
2688 }
2689 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2690 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2691 /* nothing */
2692 } else {
2693 /* Swap to host endian if necessary, then store. */
2694 if (memop & MO_BSWAP) {
2695 val = bswap16(val);
2696 }
2697 store_atom_2(cpu, ra, p->haddr, memop, val);
2698 }
2699 }
2700
do_st_4(CPUState * cpu,MMULookupPageData * p,uint32_t val,int mmu_idx,MemOp memop,uintptr_t ra)2701 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2702 int mmu_idx, MemOp memop, uintptr_t ra)
2703 {
2704 if (unlikely(p->flags & TLB_MMIO)) {
2705 if ((memop & MO_BSWAP) != MO_LE) {
2706 val = bswap32(val);
2707 }
2708 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2709 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2710 /* nothing */
2711 } else {
2712 /* Swap to host endian if necessary, then store. */
2713 if (memop & MO_BSWAP) {
2714 val = bswap32(val);
2715 }
2716 store_atom_4(cpu, ra, p->haddr, memop, val);
2717 }
2718 }
2719
do_st_8(CPUState * cpu,MMULookupPageData * p,uint64_t val,int mmu_idx,MemOp memop,uintptr_t ra)2720 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2721 int mmu_idx, MemOp memop, uintptr_t ra)
2722 {
2723 if (unlikely(p->flags & TLB_MMIO)) {
2724 if ((memop & MO_BSWAP) != MO_LE) {
2725 val = bswap64(val);
2726 }
2727 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2728 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2729 /* nothing */
2730 } else {
2731 /* Swap to host endian if necessary, then store. */
2732 if (memop & MO_BSWAP) {
2733 val = bswap64(val);
2734 }
2735 store_atom_8(cpu, ra, p->haddr, memop, val);
2736 }
2737 }
2738
do_st1_mmu(CPUState * cpu,vaddr addr,uint8_t val,MemOpIdx oi,uintptr_t ra)2739 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2740 MemOpIdx oi, uintptr_t ra)
2741 {
2742 MMULookupLocals l;
2743 bool crosspage;
2744
2745 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2746 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2747 tcg_debug_assert(!crosspage);
2748
2749 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2750 }
2751
do_st2_mmu(CPUState * cpu,vaddr addr,uint16_t val,MemOpIdx oi,uintptr_t ra)2752 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2753 MemOpIdx oi, uintptr_t ra)
2754 {
2755 MMULookupLocals l;
2756 bool crosspage;
2757 uint8_t a, b;
2758
2759 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2760 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2761 if (likely(!crosspage)) {
2762 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2763 return;
2764 }
2765
2766 if ((l.memop & MO_BSWAP) == MO_LE) {
2767 a = val, b = val >> 8;
2768 } else {
2769 b = val, a = val >> 8;
2770 }
2771 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2772 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2773 }
2774
do_st4_mmu(CPUState * cpu,vaddr addr,uint32_t val,MemOpIdx oi,uintptr_t ra)2775 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2776 MemOpIdx oi, uintptr_t ra)
2777 {
2778 MMULookupLocals l;
2779 bool crosspage;
2780
2781 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2782 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2783 if (likely(!crosspage)) {
2784 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2785 return;
2786 }
2787
2788 /* Swap to little endian for simplicity, then store by bytes. */
2789 if ((l.memop & MO_BSWAP) != MO_LE) {
2790 val = bswap32(val);
2791 }
2792 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2793 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2794 }
2795
do_st8_mmu(CPUState * cpu,vaddr addr,uint64_t val,MemOpIdx oi,uintptr_t ra)2796 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
2797 MemOpIdx oi, uintptr_t ra)
2798 {
2799 MMULookupLocals l;
2800 bool crosspage;
2801
2802 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2803 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2804 if (likely(!crosspage)) {
2805 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2806 return;
2807 }
2808
2809 /* Swap to little endian for simplicity, then store by bytes. */
2810 if ((l.memop & MO_BSWAP) != MO_LE) {
2811 val = bswap64(val);
2812 }
2813 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2814 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2815 }
2816
do_st16_mmu(CPUState * cpu,vaddr addr,Int128 val,MemOpIdx oi,uintptr_t ra)2817 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
2818 MemOpIdx oi, uintptr_t ra)
2819 {
2820 MMULookupLocals l;
2821 bool crosspage;
2822 uint64_t a, b;
2823 int first;
2824
2825 cpu_req_mo(cpu, TCG_MO_LD_ST | TCG_MO_ST_ST);
2826 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2827 if (likely(!crosspage)) {
2828 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2829 if ((l.memop & MO_BSWAP) != MO_LE) {
2830 val = bswap128(val);
2831 }
2832 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
2833 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2834 /* nothing */
2835 } else {
2836 /* Swap to host endian if necessary, then store. */
2837 if (l.memop & MO_BSWAP) {
2838 val = bswap128(val);
2839 }
2840 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
2841 }
2842 return;
2843 }
2844
2845 first = l.page[0].size;
2846 if (first == 8) {
2847 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2848
2849 if (l.memop & MO_BSWAP) {
2850 val = bswap128(val);
2851 }
2852 if (HOST_BIG_ENDIAN) {
2853 b = int128_getlo(val), a = int128_gethi(val);
2854 } else {
2855 a = int128_getlo(val), b = int128_gethi(val);
2856 }
2857 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
2858 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
2859 return;
2860 }
2861
2862 if ((l.memop & MO_BSWAP) != MO_LE) {
2863 val = bswap128(val);
2864 }
2865 if (first < 8) {
2866 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2867 val = int128_urshift(val, first * 8);
2868 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2869 } else {
2870 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2871 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
2872 }
2873 }
2874
2875 #include "ldst_common.c.inc"
2876
2877 /*
2878 * First set of functions passes in OI and RETADDR.
2879 * This makes them callable from other helpers.
2880 */
2881
2882 #define ATOMIC_NAME(X) \
2883 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2884
2885 #define ATOMIC_MMU_CLEANUP
2886
2887 #include "atomic_common.c.inc"
2888
2889 #define DATA_SIZE 1
2890 #include "atomic_template.h"
2891
2892 #define DATA_SIZE 2
2893 #include "atomic_template.h"
2894
2895 #define DATA_SIZE 4
2896 #include "atomic_template.h"
2897
2898 #ifdef CONFIG_ATOMIC64
2899 #define DATA_SIZE 8
2900 #include "atomic_template.h"
2901 #endif
2902
2903 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
2904 #define DATA_SIZE 16
2905 #include "atomic_template.h"
2906 #endif
2907
2908 /* Code access functions. */
2909
cpu_ldb_code_mmu(CPUArchState * env,vaddr addr,MemOpIdx oi,uintptr_t retaddr)2910 uint8_t cpu_ldb_code_mmu(CPUArchState *env, vaddr addr,
2911 MemOpIdx oi, uintptr_t retaddr)
2912 {
2913 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2914 }
2915
cpu_ldw_code_mmu(CPUArchState * env,vaddr addr,MemOpIdx oi,uintptr_t retaddr)2916 uint16_t cpu_ldw_code_mmu(CPUArchState *env, vaddr addr,
2917 MemOpIdx oi, uintptr_t retaddr)
2918 {
2919 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2920 }
2921
cpu_ldl_code_mmu(CPUArchState * env,vaddr addr,MemOpIdx oi,uintptr_t retaddr)2922 uint32_t cpu_ldl_code_mmu(CPUArchState *env, vaddr addr,
2923 MemOpIdx oi, uintptr_t retaddr)
2924 {
2925 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2926 }
2927
cpu_ldq_code_mmu(CPUArchState * env,vaddr addr,MemOpIdx oi,uintptr_t retaddr)2928 uint64_t cpu_ldq_code_mmu(CPUArchState *env, vaddr addr,
2929 MemOpIdx oi, uintptr_t retaddr)
2930 {
2931 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
2932 }
2933
2934 /*
2935 * Common pointer_wrap implementations.
2936 */
2937
2938 /*
2939 * To be used for strict alignment targets.
2940 * Because no accesses are unaligned, no accesses wrap either.
2941 */
cpu_pointer_wrap_notreached(CPUState * cs,int idx,vaddr res,vaddr base)2942 vaddr cpu_pointer_wrap_notreached(CPUState *cs, int idx, vaddr res, vaddr base)
2943 {
2944 g_assert_not_reached();
2945 }
2946
2947 /* To be used for strict 32-bit targets. */
cpu_pointer_wrap_uint32(CPUState * cs,int idx,vaddr res,vaddr base)2948 vaddr cpu_pointer_wrap_uint32(CPUState *cs, int idx, vaddr res, vaddr base)
2949 {
2950 return (uint32_t)res;
2951 }
2952