1 /*
2  * Copyright 1999 - 2003 ARM Limited
3  * Copyright 2000 Deep Blue Solutions Ltd
4  * Copyright 2008 Cavium Networks
5  *
6  * This file is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, Version 2, as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/clockchips.h>
14 #include <linux/io.h>
15 #include <asm/mach/map.h>
16 #include <asm/mach/time.h>
17 #include <asm/mach/irq.h>
18 #include <asm/hardware/gic.h>
19 #include <asm/hardware/cache-l2x0.h>
20 #include <mach/cns3xxx.h>
21 #include "core.h"
22 
23 static struct map_desc cns3xxx_io_desc[] __initdata = {
24 	{
25 		.virtual	= CNS3XXX_TC11MP_TWD_BASE_VIRT,
26 		.pfn		= __phys_to_pfn(CNS3XXX_TC11MP_TWD_BASE),
27 		.length		= SZ_4K,
28 		.type		= MT_DEVICE,
29 	}, {
30 		.virtual	= CNS3XXX_TC11MP_GIC_CPU_BASE_VIRT,
31 		.pfn		= __phys_to_pfn(CNS3XXX_TC11MP_GIC_CPU_BASE),
32 		.length		= SZ_4K,
33 		.type		= MT_DEVICE,
34 	}, {
35 		.virtual	= CNS3XXX_TC11MP_GIC_DIST_BASE_VIRT,
36 		.pfn		= __phys_to_pfn(CNS3XXX_TC11MP_GIC_DIST_BASE),
37 		.length		= SZ_4K,
38 		.type		= MT_DEVICE,
39 	}, {
40 		.virtual	= CNS3XXX_TIMER1_2_3_BASE_VIRT,
41 		.pfn		= __phys_to_pfn(CNS3XXX_TIMER1_2_3_BASE),
42 		.length		= SZ_4K,
43 		.type		= MT_DEVICE,
44 	}, {
45 		.virtual	= CNS3XXX_GPIOA_BASE_VIRT,
46 		.pfn		= __phys_to_pfn(CNS3XXX_GPIOA_BASE),
47 		.length		= SZ_4K,
48 		.type		= MT_DEVICE,
49 	}, {
50 		.virtual	= CNS3XXX_GPIOB_BASE_VIRT,
51 		.pfn		= __phys_to_pfn(CNS3XXX_GPIOB_BASE),
52 		.length		= SZ_4K,
53 		.type		= MT_DEVICE,
54 	}, {
55 		.virtual	= CNS3XXX_MISC_BASE_VIRT,
56 		.pfn		= __phys_to_pfn(CNS3XXX_MISC_BASE),
57 		.length		= SZ_4K,
58 		.type		= MT_DEVICE,
59 	}, {
60 		.virtual	= CNS3XXX_PM_BASE_VIRT,
61 		.pfn		= __phys_to_pfn(CNS3XXX_PM_BASE),
62 		.length		= SZ_4K,
63 		.type		= MT_DEVICE,
64 	},
65 };
66 
cns3xxx_map_io(void)67 void __init cns3xxx_map_io(void)
68 {
69 	iotable_init(cns3xxx_io_desc, ARRAY_SIZE(cns3xxx_io_desc));
70 }
71 
72 /* used by entry-macro.S */
cns3xxx_init_irq(void)73 void __init cns3xxx_init_irq(void)
74 {
75 	gic_init(0, 29, __io(CNS3XXX_TC11MP_GIC_DIST_BASE_VIRT),
76 		 __io(CNS3XXX_TC11MP_GIC_CPU_BASE_VIRT));
77 }
78 
cns3xxx_power_off(void)79 void cns3xxx_power_off(void)
80 {
81 	u32 __iomem *pm_base = __io(CNS3XXX_PM_BASE_VIRT);
82 	u32 clkctrl;
83 
84 	printk(KERN_INFO "powering system down...\n");
85 
86 	clkctrl = readl(pm_base + PM_SYS_CLK_CTRL_OFFSET);
87 	clkctrl &= 0xfffff1ff;
88 	clkctrl |= (0x5 << 9);		/* Hibernate */
89 	writel(clkctrl, pm_base + PM_SYS_CLK_CTRL_OFFSET);
90 
91 }
92 
93 /*
94  * Timer
95  */
96 static void __iomem *cns3xxx_tmr1;
97 
cns3xxx_timer_set_mode(enum clock_event_mode mode,struct clock_event_device * clk)98 static void cns3xxx_timer_set_mode(enum clock_event_mode mode,
99 				   struct clock_event_device *clk)
100 {
101 	unsigned long ctrl = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
102 	int pclk = cns3xxx_cpu_clock() / 8;
103 	int reload;
104 
105 	switch (mode) {
106 	case CLOCK_EVT_MODE_PERIODIC:
107 		reload = pclk * 20 / (3 * HZ) * 0x25000;
108 		writel(reload, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET);
109 		ctrl |= (1 << 0) | (1 << 2) | (1 << 9);
110 		break;
111 	case CLOCK_EVT_MODE_ONESHOT:
112 		/* period set, and timer enabled in 'next_event' hook */
113 		ctrl |= (1 << 2) | (1 << 9);
114 		break;
115 	case CLOCK_EVT_MODE_UNUSED:
116 	case CLOCK_EVT_MODE_SHUTDOWN:
117 	default:
118 		ctrl = 0;
119 	}
120 
121 	writel(ctrl, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
122 }
123 
cns3xxx_timer_set_next_event(unsigned long evt,struct clock_event_device * unused)124 static int cns3xxx_timer_set_next_event(unsigned long evt,
125 					struct clock_event_device *unused)
126 {
127 	unsigned long ctrl = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
128 
129 	writel(evt, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET);
130 	writel(ctrl | (1 << 0), cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
131 
132 	return 0;
133 }
134 
135 static struct clock_event_device cns3xxx_tmr1_clockevent = {
136 	.name		= "cns3xxx timer1",
137 	.shift		= 8,
138 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
139 	.set_mode	= cns3xxx_timer_set_mode,
140 	.set_next_event	= cns3xxx_timer_set_next_event,
141 	.rating		= 350,
142 	.cpumask	= cpu_all_mask,
143 };
144 
cns3xxx_clockevents_init(unsigned int timer_irq)145 static void __init cns3xxx_clockevents_init(unsigned int timer_irq)
146 {
147 	cns3xxx_tmr1_clockevent.irq = timer_irq;
148 	cns3xxx_tmr1_clockevent.mult =
149 		div_sc((cns3xxx_cpu_clock() >> 3) * 1000000, NSEC_PER_SEC,
150 		       cns3xxx_tmr1_clockevent.shift);
151 	cns3xxx_tmr1_clockevent.max_delta_ns =
152 		clockevent_delta2ns(0xffffffff, &cns3xxx_tmr1_clockevent);
153 	cns3xxx_tmr1_clockevent.min_delta_ns =
154 		clockevent_delta2ns(0xf, &cns3xxx_tmr1_clockevent);
155 
156 	clockevents_register_device(&cns3xxx_tmr1_clockevent);
157 }
158 
159 /*
160  * IRQ handler for the timer
161  */
cns3xxx_timer_interrupt(int irq,void * dev_id)162 static irqreturn_t cns3xxx_timer_interrupt(int irq, void *dev_id)
163 {
164 	struct clock_event_device *evt = &cns3xxx_tmr1_clockevent;
165 	u32 __iomem *stat = cns3xxx_tmr1 + TIMER1_2_INTERRUPT_STATUS_OFFSET;
166 	u32 val;
167 
168 	/* Clear the interrupt */
169 	val = readl(stat);
170 	writel(val & ~(1 << 2), stat);
171 
172 	evt->event_handler(evt);
173 
174 	return IRQ_HANDLED;
175 }
176 
177 static struct irqaction cns3xxx_timer_irq = {
178 	.name		= "timer",
179 	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
180 	.handler	= cns3xxx_timer_interrupt,
181 };
182 
183 /*
184  * Set up the clock source and clock events devices
185  */
__cns3xxx_timer_init(unsigned int timer_irq)186 static void __init __cns3xxx_timer_init(unsigned int timer_irq)
187 {
188 	u32 val;
189 	u32 irq_mask;
190 
191 	/*
192 	 * Initialise to a known state (all timers off)
193 	 */
194 
195 	/* disable timer1 and timer2 */
196 	writel(0, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
197 	/* stop free running timer3 */
198 	writel(0, cns3xxx_tmr1 + TIMER_FREERUN_CONTROL_OFFSET);
199 
200 	/* timer1 */
201 	writel(0x5C800, cns3xxx_tmr1 + TIMER1_COUNTER_OFFSET);
202 	writel(0x5C800, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET);
203 
204 	writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V1_OFFSET);
205 	writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V2_OFFSET);
206 
207 	/* mask irq, non-mask timer1 overflow */
208 	irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET);
209 	irq_mask &= ~(1 << 2);
210 	irq_mask |= 0x03;
211 	writel(irq_mask, cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET);
212 
213 	/* down counter */
214 	val = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
215 	val |= (1 << 9);
216 	writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
217 
218 	/* timer2 */
219 	writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V1_OFFSET);
220 	writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V2_OFFSET);
221 
222 	/* mask irq */
223 	irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET);
224 	irq_mask |= ((1 << 3) | (1 << 4) | (1 << 5));
225 	writel(irq_mask, cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET);
226 
227 	/* down counter */
228 	val = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
229 	val |= (1 << 10);
230 	writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET);
231 
232 	/* Make irqs happen for the system timer */
233 	setup_irq(timer_irq, &cns3xxx_timer_irq);
234 
235 	cns3xxx_clockevents_init(timer_irq);
236 }
237 
cns3xxx_timer_init(void)238 static void __init cns3xxx_timer_init(void)
239 {
240 	cns3xxx_tmr1 = __io(CNS3XXX_TIMER1_2_3_BASE_VIRT);
241 
242 	__cns3xxx_timer_init(IRQ_CNS3XXX_TIMER0);
243 }
244 
245 struct sys_timer cns3xxx_timer = {
246 	.init = cns3xxx_timer_init,
247 };
248 
249 #ifdef CONFIG_CACHE_L2X0
250 
cns3xxx_l2x0_init(void)251 void __init cns3xxx_l2x0_init(void)
252 {
253 	void __iomem *base = ioremap(CNS3XXX_L2C_BASE, SZ_4K);
254 	u32 val;
255 
256 	if (WARN_ON(!base))
257 		return;
258 
259 	/*
260 	 * Tag RAM Control register
261 	 *
262 	 * bit[10:8]	- 1 cycle of write accesses latency
263 	 * bit[6:4]	- 1 cycle of read accesses latency
264 	 * bit[3:0]	- 1 cycle of setup latency
265 	 *
266 	 * 1 cycle of latency for setup, read and write accesses
267 	 */
268 	val = readl(base + L2X0_TAG_LATENCY_CTRL);
269 	val &= 0xfffff888;
270 	writel(val, base + L2X0_TAG_LATENCY_CTRL);
271 
272 	/*
273 	 * Data RAM Control register
274 	 *
275 	 * bit[10:8]	- 1 cycles of write accesses latency
276 	 * bit[6:4]	- 1 cycles of read accesses latency
277 	 * bit[3:0]	- 1 cycle of setup latency
278 	 *
279 	 * 1 cycle of latency for setup, read and write accesses
280 	 */
281 	val = readl(base + L2X0_DATA_LATENCY_CTRL);
282 	val &= 0xfffff888;
283 	writel(val, base + L2X0_DATA_LATENCY_CTRL);
284 
285 	/* 32 KiB, 8-way, parity disable */
286 	l2x0_init(base, 0x00540000, 0xfe000fff);
287 }
288 
289 #endif /* CONFIG_CACHE_L2X0 */
290