1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cadence CDNSP DRD Driver.
4 *
5 * Copyright (C) 2020 Cadence.
6 *
7 * Author: Pawel Laszczak <pawell@cadence.com>
8 *
9 */
10
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/pci.h>
20 #include <linux/irq.h>
21 #include <linux/dmi.h>
22
23 #include "core.h"
24 #include "gadget-export.h"
25 #include "drd.h"
26 #include "cdnsp-gadget.h"
27 #include "cdnsp-trace.h"
28
cdnsp_port_speed(unsigned int port_status)29 unsigned int cdnsp_port_speed(unsigned int port_status)
30 {
31 /*Detect gadget speed based on PORTSC register*/
32 if (DEV_SUPERSPEEDPLUS(port_status))
33 return USB_SPEED_SUPER_PLUS;
34 else if (DEV_SUPERSPEED(port_status))
35 return USB_SPEED_SUPER;
36 else if (DEV_HIGHSPEED(port_status))
37 return USB_SPEED_HIGH;
38 else if (DEV_FULLSPEED(port_status))
39 return USB_SPEED_FULL;
40
41 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
42 return USB_SPEED_UNKNOWN;
43 }
44
45 /*
46 * Given a port state, this function returns a value that would result in the
47 * port being in the same state, if the value was written to the port status
48 * control register.
49 * Save Read Only (RO) bits and save read/write bits where
50 * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
51 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
52 */
cdnsp_port_state_to_neutral(u32 state)53 u32 cdnsp_port_state_to_neutral(u32 state)
54 {
55 /* Save read-only status and port state. */
56 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
57 }
58
59 /**
60 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
61 * with capability ID id.
62 * @base: PCI MMIO registers base address.
63 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
64 * beginning of list)
65 * @id: Extended capability ID to search for.
66 *
67 * Returns the offset of the next matching extended capability structure.
68 * Some capabilities can occur several times,
69 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
70 */
cdnsp_find_next_ext_cap(void __iomem * base,u32 start,int id)71 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
72 {
73 u32 offset = start;
74 u32 next;
75 u32 val;
76
77 if (!start || start == HCC_PARAMS_OFFSET) {
78 val = readl(base + HCC_PARAMS_OFFSET);
79 if (val == ~0)
80 return 0;
81
82 offset = HCC_EXT_CAPS(val) << 2;
83 if (!offset)
84 return 0;
85 }
86
87 do {
88 val = readl(base + offset);
89 if (val == ~0)
90 return 0;
91
92 if (EXT_CAPS_ID(val) == id && offset != start)
93 return offset;
94
95 next = EXT_CAPS_NEXT(val);
96 offset += next << 2;
97 } while (next);
98
99 return 0;
100 }
101
cdnsp_set_link_state(struct cdnsp_device * pdev,__le32 __iomem * port_regs,u32 link_state)102 void cdnsp_set_link_state(struct cdnsp_device *pdev,
103 __le32 __iomem *port_regs,
104 u32 link_state)
105 {
106 int port_num = 0xFF;
107 u32 temp;
108
109 temp = readl(port_regs);
110 temp = cdnsp_port_state_to_neutral(temp);
111 temp |= PORT_WKCONN_E | PORT_WKDISC_E;
112 writel(temp, port_regs);
113
114 temp &= ~PORT_PLS_MASK;
115 temp |= PORT_LINK_STROBE | link_state;
116
117 if (pdev->active_port)
118 port_num = pdev->active_port->port_num;
119
120 trace_cdnsp_handle_port_status(port_num, readl(port_regs));
121 writel(temp, port_regs);
122 trace_cdnsp_link_state_changed(port_num, readl(port_regs));
123 }
124
cdnsp_disable_port(struct cdnsp_device * pdev,__le32 __iomem * port_regs)125 static void cdnsp_disable_port(struct cdnsp_device *pdev,
126 __le32 __iomem *port_regs)
127 {
128 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
129
130 writel(temp | PORT_PED, port_regs);
131 }
132
cdnsp_clear_port_change_bit(struct cdnsp_device * pdev,__le32 __iomem * port_regs)133 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
134 __le32 __iomem *port_regs)
135 {
136 u32 portsc = readl(port_regs);
137
138 writel(cdnsp_port_state_to_neutral(portsc) |
139 (portsc & PORT_CHANGE_BITS), port_regs);
140 }
141
cdnsp_set_apb_timeout_value(struct cdnsp_device * pdev)142 static void cdnsp_set_apb_timeout_value(struct cdnsp_device *pdev)
143 {
144 struct cdns *cdns = dev_get_drvdata(pdev->dev);
145 __le32 __iomem *reg;
146 void __iomem *base;
147 u32 offset = 0;
148 u32 val;
149
150 if (!cdns->override_apb_timeout)
151 return;
152
153 base = &pdev->cap_regs->hc_capbase;
154 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
155 reg = base + offset + REG_CHICKEN_BITS_3_OFFSET;
156
157 val = le32_to_cpu(readl(reg));
158 val = CHICKEN_APB_TIMEOUT_SET(val, cdns->override_apb_timeout);
159 writel(cpu_to_le32(val), reg);
160 }
161
cdnsp_set_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)162 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
163 {
164 __le32 __iomem *reg;
165 void __iomem *base;
166 u32 offset = 0;
167
168 base = &pdev->cap_regs->hc_capbase;
169 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
170 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
171
172 bit = readl(reg) | bit;
173 writel(bit, reg);
174 }
175
cdnsp_clear_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)176 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
177 {
178 __le32 __iomem *reg;
179 void __iomem *base;
180 u32 offset = 0;
181
182 base = &pdev->cap_regs->hc_capbase;
183 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
184 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
185
186 bit = readl(reg) & ~bit;
187 writel(bit, reg);
188 }
189
190 /*
191 * Disable interrupts and begin the controller halting process.
192 */
cdnsp_quiesce(struct cdnsp_device * pdev)193 static void cdnsp_quiesce(struct cdnsp_device *pdev)
194 {
195 u32 halted;
196 u32 mask;
197 u32 cmd;
198
199 mask = ~(u32)(CDNSP_IRQS);
200
201 halted = readl(&pdev->op_regs->status) & STS_HALT;
202 if (!halted)
203 mask &= ~(CMD_R_S | CMD_DEVEN);
204
205 cmd = readl(&pdev->op_regs->command);
206 cmd &= mask;
207 writel(cmd, &pdev->op_regs->command);
208 }
209
210 /*
211 * Force controller into halt state.
212 *
213 * Disable any IRQs and clear the run/stop bit.
214 * Controller will complete any current and actively pipelined transactions, and
215 * should halt within 16 ms of the run/stop bit being cleared.
216 * Read controller Halted bit in the status register to see when the
217 * controller is finished.
218 */
cdnsp_halt(struct cdnsp_device * pdev)219 int cdnsp_halt(struct cdnsp_device *pdev)
220 {
221 int ret;
222 u32 val;
223
224 cdnsp_quiesce(pdev);
225
226 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
227 val & STS_HALT, 1,
228 CDNSP_MAX_HALT_USEC);
229 if (ret) {
230 dev_err(pdev->dev, "ERROR: Device halt failed\n");
231 return ret;
232 }
233
234 pdev->cdnsp_state |= CDNSP_STATE_HALTED;
235
236 return 0;
237 }
238
239 /*
240 * device controller died, register read returns 0xffffffff, or command never
241 * ends.
242 */
cdnsp_died(struct cdnsp_device * pdev)243 void cdnsp_died(struct cdnsp_device *pdev)
244 {
245 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
246 pdev->cdnsp_state |= CDNSP_STATE_DYING;
247 cdnsp_halt(pdev);
248 }
249
250 /*
251 * Set the run bit and wait for the device to be running.
252 */
cdnsp_start(struct cdnsp_device * pdev)253 static int cdnsp_start(struct cdnsp_device *pdev)
254 {
255 u32 temp;
256 int ret;
257
258 temp = readl(&pdev->op_regs->command);
259 temp |= (CMD_R_S | CMD_DEVEN);
260 writel(temp, &pdev->op_regs->command);
261
262 pdev->cdnsp_state = 0;
263
264 /*
265 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
266 * running.
267 */
268 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
269 !(temp & STS_HALT), 1,
270 CDNSP_MAX_HALT_USEC);
271 if (ret) {
272 pdev->cdnsp_state = CDNSP_STATE_DYING;
273 dev_err(pdev->dev, "ERROR: Controller run failed\n");
274 }
275
276 return ret;
277 }
278
279 /*
280 * Reset a halted controller.
281 *
282 * This resets pipelines, timers, counters, state machines, etc.
283 * Transactions will be terminated immediately, and operational registers
284 * will be set to their defaults.
285 */
cdnsp_reset(struct cdnsp_device * pdev)286 int cdnsp_reset(struct cdnsp_device *pdev)
287 {
288 u32 command;
289 u32 temp;
290 int ret;
291
292 temp = readl(&pdev->op_regs->status);
293
294 if (temp == ~(u32)0) {
295 dev_err(pdev->dev, "Device not accessible, reset failed.\n");
296 return -ENODEV;
297 }
298
299 if ((temp & STS_HALT) == 0) {
300 dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
301 return -EINVAL;
302 }
303
304 command = readl(&pdev->op_regs->command);
305 command |= CMD_RESET;
306 writel(command, &pdev->op_regs->command);
307
308 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
309 !(temp & CMD_RESET), 1,
310 10 * 1000);
311 if (ret) {
312 dev_err(pdev->dev, "ERROR: Controller reset failed\n");
313 return ret;
314 }
315
316 /*
317 * CDNSP cannot write any doorbells or operational registers other
318 * than status until the "Controller Not Ready" flag is cleared.
319 */
320 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
321 !(temp & STS_CNR), 1,
322 10 * 1000);
323
324 if (ret) {
325 dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
326 return ret;
327 }
328
329 dev_dbg(pdev->dev, "Controller ready to work");
330
331 return ret;
332 }
333
334 /*
335 * cdnsp_get_endpoint_index - Find the index for an endpoint given its
336 * descriptor.Use the return value to right shift 1 for the bitmask.
337 *
338 * Index = (epnum * 2) + direction - 1,
339 * where direction = 0 for OUT, 1 for IN.
340 * For control endpoints, the IN index is used (OUT index is unused), so
341 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
342 */
343 static unsigned int
cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor * desc)344 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
345 {
346 unsigned int index = (unsigned int)usb_endpoint_num(desc);
347
348 if (usb_endpoint_xfer_control(desc))
349 return index * 2;
350
351 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
352 }
353
354 /*
355 * Find the flag for this endpoint (for use in the control context). Use the
356 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
357 * bit 1, etc.
358 */
359 static unsigned int
cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor * desc)360 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
361 {
362 return 1 << (cdnsp_get_endpoint_index(desc) + 1);
363 }
364
cdnsp_ep_enqueue(struct cdnsp_ep * pep,struct cdnsp_request * preq)365 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
366 {
367 struct cdnsp_device *pdev = pep->pdev;
368 struct usb_request *request;
369 int ret;
370
371 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
372 trace_cdnsp_request_enqueue_busy(preq);
373 return -EBUSY;
374 }
375
376 request = &preq->request;
377 request->actual = 0;
378 request->status = -EINPROGRESS;
379 preq->direction = pep->direction;
380 preq->epnum = pep->number;
381 preq->td.drbl = 0;
382
383 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
384 if (ret) {
385 trace_cdnsp_request_enqueue_error(preq);
386 return ret;
387 }
388
389 list_add_tail(&preq->list, &pep->pending_list);
390
391 trace_cdnsp_request_enqueue(preq);
392
393 switch (usb_endpoint_type(pep->endpoint.desc)) {
394 case USB_ENDPOINT_XFER_CONTROL:
395 ret = cdnsp_queue_ctrl_tx(pdev, preq);
396 break;
397 case USB_ENDPOINT_XFER_BULK:
398 case USB_ENDPOINT_XFER_INT:
399 ret = cdnsp_queue_bulk_tx(pdev, preq);
400 break;
401 case USB_ENDPOINT_XFER_ISOC:
402 ret = cdnsp_queue_isoc_tx(pdev, preq);
403 }
404
405 if (ret)
406 goto unmap;
407
408 return 0;
409
410 unmap:
411 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
412 pep->direction);
413 list_del(&preq->list);
414 trace_cdnsp_request_enqueue_error(preq);
415
416 return ret;
417 }
418
419 /*
420 * Remove the request's TD from the endpoint ring. This may cause the
421 * controller to stop USB transfers, potentially stopping in the middle of a
422 * TRB buffer. The controller should pick up where it left off in the TD,
423 * unless a Set Transfer Ring Dequeue Pointer is issued.
424 *
425 * The TRBs that make up the buffers for the canceled request will be "removed"
426 * from the ring. Since the ring is a contiguous structure, they can't be
427 * physically removed. Instead, there are two options:
428 *
429 * 1) If the controller is in the middle of processing the request to be
430 * canceled, we simply move the ring's dequeue pointer past those TRBs
431 * using the Set Transfer Ring Dequeue Pointer command. This will be
432 * the common case, when drivers timeout on the last submitted request
433 * and attempt to cancel.
434 *
435 * 2) If the controller is in the middle of a different TD, we turn the TRBs
436 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
437 * The controller will need to invalidate the any TRBs it has cached after
438 * the stop endpoint command.
439 *
440 * 3) The TD may have completed by the time the Stop Endpoint Command
441 * completes, so software needs to handle that case too.
442 *
443 */
cdnsp_ep_dequeue(struct cdnsp_ep * pep,struct cdnsp_request * preq)444 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
445 {
446 struct cdnsp_device *pdev = pep->pdev;
447 int ret_stop = 0;
448 int ret_rem;
449
450 trace_cdnsp_request_dequeue(preq);
451
452 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
453 ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
454
455 ret_rem = cdnsp_remove_request(pdev, preq, pep);
456
457 return ret_rem ? ret_rem : ret_stop;
458 }
459
cdnsp_zero_in_ctx(struct cdnsp_device * pdev)460 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
461 {
462 struct cdnsp_input_control_ctx *ctrl_ctx;
463 struct cdnsp_slot_ctx *slot_ctx;
464 struct cdnsp_ep_ctx *ep_ctx;
465 int i;
466
467 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
468
469 /*
470 * When a device's add flag and drop flag are zero, any subsequent
471 * configure endpoint command will leave that endpoint's state
472 * untouched. Make sure we don't leave any old state in the input
473 * endpoint contexts.
474 */
475 ctrl_ctx->drop_flags = 0;
476 ctrl_ctx->add_flags = 0;
477 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
478 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
479
480 /* Endpoint 0 is always valid */
481 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
482 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
483 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
484 ep_ctx->ep_info = 0;
485 ep_ctx->ep_info2 = 0;
486 ep_ctx->deq = 0;
487 ep_ctx->tx_info = 0;
488 }
489 }
490
491 /* Issue a configure endpoint command and wait for it to finish. */
cdnsp_configure_endpoint(struct cdnsp_device * pdev)492 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
493 {
494 int ret;
495
496 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
497 cdnsp_ring_cmd_db(pdev);
498 ret = cdnsp_wait_for_cmd_compl(pdev);
499 if (ret) {
500 dev_err(pdev->dev,
501 "ERR: unexpected command completion code 0x%x.\n", ret);
502 return -EINVAL;
503 }
504
505 return ret;
506 }
507
cdnsp_invalidate_ep_events(struct cdnsp_device * pdev,struct cdnsp_ep * pep)508 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
509 struct cdnsp_ep *pep)
510 {
511 struct cdnsp_segment *segment;
512 union cdnsp_trb *event;
513 u32 cycle_state;
514 u32 data;
515
516 event = pdev->event_ring->dequeue;
517 segment = pdev->event_ring->deq_seg;
518 cycle_state = pdev->event_ring->cycle_state;
519
520 while (1) {
521 data = le32_to_cpu(event->trans_event.flags);
522
523 /* Check the owner of the TRB. */
524 if ((data & TRB_CYCLE) != cycle_state)
525 break;
526
527 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
528 TRB_TO_EP_ID(data) == (pep->idx + 1)) {
529 data |= TRB_EVENT_INVALIDATE;
530 event->trans_event.flags = cpu_to_le32(data);
531 }
532
533 if (cdnsp_last_trb_on_seg(segment, event)) {
534 cycle_state ^= 1;
535 segment = pdev->event_ring->deq_seg->next;
536 event = segment->trbs;
537 } else {
538 event++;
539 }
540 }
541 }
542
cdnsp_wait_for_cmd_compl(struct cdnsp_device * pdev)543 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
544 {
545 struct cdnsp_segment *event_deq_seg;
546 union cdnsp_trb *cmd_trb;
547 dma_addr_t cmd_deq_dma;
548 union cdnsp_trb *event;
549 u32 cycle_state;
550 int ret, val;
551 u64 cmd_dma;
552 u32 flags;
553
554 cmd_trb = pdev->cmd.command_trb;
555 pdev->cmd.status = 0;
556
557 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
558
559 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
560 !CMD_RING_BUSY(val), 1,
561 CDNSP_CMD_TIMEOUT);
562 if (ret) {
563 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
564 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
565 pdev->cdnsp_state = CDNSP_STATE_DYING;
566 return -ETIMEDOUT;
567 }
568
569 event = pdev->event_ring->dequeue;
570 event_deq_seg = pdev->event_ring->deq_seg;
571 cycle_state = pdev->event_ring->cycle_state;
572
573 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
574 if (!cmd_deq_dma)
575 return -EINVAL;
576
577 while (1) {
578 flags = le32_to_cpu(event->event_cmd.flags);
579
580 /* Check the owner of the TRB. */
581 if ((flags & TRB_CYCLE) != cycle_state)
582 return -EINVAL;
583
584 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
585
586 /*
587 * Check whether the completion event is for last queued
588 * command.
589 */
590 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
591 cmd_dma != (u64)cmd_deq_dma) {
592 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
593 event++;
594 continue;
595 }
596
597 if (cdnsp_last_trb_on_ring(pdev->event_ring,
598 event_deq_seg, event))
599 cycle_state ^= 1;
600
601 event_deq_seg = event_deq_seg->next;
602 event = event_deq_seg->trbs;
603 continue;
604 }
605
606 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
607
608 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
609 if (pdev->cmd.status == COMP_SUCCESS)
610 return 0;
611
612 return -pdev->cmd.status;
613 }
614 }
615
cdnsp_halt_endpoint(struct cdnsp_device * pdev,struct cdnsp_ep * pep,int value)616 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
617 struct cdnsp_ep *pep,
618 int value)
619 {
620 int ret;
621
622 trace_cdnsp_ep_halt(value ? "Set" : "Clear");
623
624 ret = cdnsp_cmd_stop_ep(pdev, pep);
625 if (ret)
626 return ret;
627
628 if (value) {
629 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
630 cdnsp_queue_halt_endpoint(pdev, pep->idx);
631 cdnsp_ring_cmd_db(pdev);
632 ret = cdnsp_wait_for_cmd_compl(pdev);
633 }
634
635 pep->ep_state |= EP_HALTED;
636 } else {
637 cdnsp_queue_reset_ep(pdev, pep->idx);
638 cdnsp_ring_cmd_db(pdev);
639 ret = cdnsp_wait_for_cmd_compl(pdev);
640 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
641
642 if (ret)
643 return ret;
644
645 pep->ep_state &= ~EP_HALTED;
646
647 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
648 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
649
650 pep->ep_state &= ~EP_WEDGE;
651 }
652
653 return 0;
654 }
655
cdnsp_update_eps_configuration(struct cdnsp_device * pdev,struct cdnsp_ep * pep)656 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
657 struct cdnsp_ep *pep)
658 {
659 struct cdnsp_input_control_ctx *ctrl_ctx;
660 struct cdnsp_slot_ctx *slot_ctx;
661 int ret = 0;
662 u32 ep_sts;
663 int i;
664
665 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
666
667 /* Don't issue the command if there's no endpoints to update. */
668 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
669 return 0;
670
671 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
672 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
673 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
674
675 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
676 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
677 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
678 __le32 le32 = cpu_to_le32(BIT(i));
679
680 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
681 (ctrl_ctx->add_flags & le32) || i == 1) {
682 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
683 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
684 break;
685 }
686 }
687
688 ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
689
690 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
691 ep_sts == EP_STATE_DISABLED) ||
692 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
693 ret = cdnsp_configure_endpoint(pdev);
694
695 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
696 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
697
698 cdnsp_zero_in_ctx(pdev);
699
700 return ret;
701 }
702
703 /*
704 * This submits a Reset Device Command, which will set the device state to 0,
705 * set the device address to 0, and disable all the endpoints except the default
706 * control endpoint. The USB core should come back and call
707 * cdnsp_setup_device(), and then re-set up the configuration.
708 */
cdnsp_reset_device(struct cdnsp_device * pdev)709 int cdnsp_reset_device(struct cdnsp_device *pdev)
710 {
711 struct cdnsp_slot_ctx *slot_ctx;
712 int slot_state;
713 int ret, i;
714
715 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
716 slot_ctx->dev_info = 0;
717 pdev->device_address = 0;
718
719 /* If device is not setup, there is no point in resetting it. */
720 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
721 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
722 trace_cdnsp_reset_device(slot_ctx);
723
724 if (slot_state <= SLOT_STATE_DEFAULT &&
725 pdev->eps[0].ep_state & EP_HALTED) {
726 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
727 }
728
729 /*
730 * During Reset Device command controller shall transition the
731 * endpoint ep0 to the Running State.
732 */
733 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
734 pdev->eps[0].ep_state |= EP_ENABLED;
735
736 if (slot_state <= SLOT_STATE_DEFAULT)
737 return 0;
738
739 cdnsp_queue_reset_device(pdev);
740 cdnsp_ring_cmd_db(pdev);
741 ret = cdnsp_wait_for_cmd_compl(pdev);
742
743 /*
744 * After Reset Device command all not default endpoints
745 * are in Disabled state.
746 */
747 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
748 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
749
750 trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
751
752 if (ret)
753 dev_err(pdev->dev, "Reset device failed with error code %d",
754 ret);
755
756 return ret;
757 }
758
759 /*
760 * Sets the MaxPStreams field and the Linear Stream Array field.
761 * Sets the dequeue pointer to the stream context array.
762 */
cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device * pdev,struct cdnsp_ep_ctx * ep_ctx,struct cdnsp_stream_info * stream_info)763 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
764 struct cdnsp_ep_ctx *ep_ctx,
765 struct cdnsp_stream_info *stream_info)
766 {
767 u32 max_primary_streams;
768
769 /* MaxPStreams is the number of stream context array entries, not the
770 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
771 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
772 */
773 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
774 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
775 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
776 | EP_HAS_LSA);
777 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
778 }
779
780 /*
781 * The drivers use this function to prepare a bulk endpoints to use streams.
782 *
783 * Don't allow the call to succeed if endpoint only supports one stream
784 * (which means it doesn't support streams at all).
785 */
cdnsp_alloc_streams(struct cdnsp_device * pdev,struct cdnsp_ep * pep)786 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
787 {
788 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
789 unsigned int num_stream_ctxs;
790 int ret;
791
792 if (num_streams == 0)
793 return 0;
794
795 if (num_streams > STREAM_NUM_STREAMS)
796 return -EINVAL;
797
798 /*
799 * Add two to the number of streams requested to account for
800 * stream 0 that is reserved for controller usage and one additional
801 * for TASK SET FULL response.
802 */
803 num_streams += 2;
804
805 /* The stream context array size must be a power of two */
806 num_stream_ctxs = roundup_pow_of_two(num_streams);
807
808 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
809
810 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
811 if (ret)
812 return ret;
813
814 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
815
816 pep->ep_state |= EP_HAS_STREAMS;
817 pep->stream_info.td_count = 0;
818 pep->stream_info.first_prime_det = 0;
819
820 /* Subtract 1 for stream 0, which drivers can't use. */
821 return num_streams - 1;
822 }
823
cdnsp_disable_slot(struct cdnsp_device * pdev)824 int cdnsp_disable_slot(struct cdnsp_device *pdev)
825 {
826 int ret;
827
828 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
829 cdnsp_ring_cmd_db(pdev);
830 ret = cdnsp_wait_for_cmd_compl(pdev);
831
832 pdev->slot_id = 0;
833 pdev->active_port = NULL;
834
835 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
836
837 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
838 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
839
840 return ret;
841 }
842
cdnsp_enable_slot(struct cdnsp_device * pdev)843 int cdnsp_enable_slot(struct cdnsp_device *pdev)
844 {
845 struct cdnsp_slot_ctx *slot_ctx;
846 int slot_state;
847 int ret;
848
849 /* If device is not setup, there is no point in resetting it */
850 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
851 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
852
853 if (slot_state != SLOT_STATE_DISABLED)
854 return 0;
855
856 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
857 cdnsp_ring_cmd_db(pdev);
858 ret = cdnsp_wait_for_cmd_compl(pdev);
859 if (ret)
860 goto show_trace;
861
862 pdev->slot_id = 1;
863
864 show_trace:
865 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
866
867 return ret;
868 }
869
870 /*
871 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
872 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
873 */
cdnsp_setup_device(struct cdnsp_device * pdev,enum cdnsp_setup_dev setup)874 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
875 {
876 struct cdnsp_input_control_ctx *ctrl_ctx;
877 struct cdnsp_slot_ctx *slot_ctx;
878 int dev_state = 0;
879 int ret;
880
881 if (!pdev->slot_id) {
882 trace_cdnsp_slot_id("incorrect");
883 return -EINVAL;
884 }
885
886 if (!pdev->active_port->port_num)
887 return -EINVAL;
888
889 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
890 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
891
892 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
893 trace_cdnsp_slot_already_in_default(slot_ctx);
894 return 0;
895 }
896
897 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
898 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
899
900 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
901 ret = cdnsp_setup_addressable_priv_dev(pdev);
902 if (ret)
903 return ret;
904 }
905
906 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
907
908 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
909 ctrl_ctx->drop_flags = 0;
910
911 trace_cdnsp_setup_device_slot(slot_ctx);
912
913 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
914 cdnsp_ring_cmd_db(pdev);
915 ret = cdnsp_wait_for_cmd_compl(pdev);
916
917 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
918
919 /* Zero the input context control for later use. */
920 ctrl_ctx->add_flags = 0;
921 ctrl_ctx->drop_flags = 0;
922
923 return ret;
924 }
925
cdnsp_set_usb2_hardware_lpm(struct cdnsp_device * pdev,struct usb_request * req,int enable)926 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
927 struct usb_request *req,
928 int enable)
929 {
930 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
931 return;
932
933 trace_cdnsp_lpm(enable);
934
935 if (enable)
936 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
937 &pdev->active_port->regs->portpmsc);
938 else
939 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
940 }
941
cdnsp_get_frame(struct cdnsp_device * pdev)942 static int cdnsp_get_frame(struct cdnsp_device *pdev)
943 {
944 return readl(&pdev->run_regs->microframe_index) >> 3;
945 }
946
cdnsp_gadget_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)947 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
948 const struct usb_endpoint_descriptor *desc)
949 {
950 struct cdnsp_input_control_ctx *ctrl_ctx;
951 struct cdnsp_device *pdev;
952 struct cdnsp_ep *pep;
953 unsigned long flags;
954 u32 added_ctxs;
955 int ret;
956
957 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
958 !desc->wMaxPacketSize)
959 return -EINVAL;
960
961 pep = to_cdnsp_ep(ep);
962 pdev = pep->pdev;
963 pep->ep_state &= ~EP_UNCONFIGURED;
964
965 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
966 "%s is already enabled\n", pep->name))
967 return 0;
968
969 spin_lock_irqsave(&pdev->lock, flags);
970
971 added_ctxs = cdnsp_get_endpoint_flag(desc);
972 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
973 dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
974 ret = -EINVAL;
975 goto unlock;
976 }
977
978 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
979
980 if (pdev->gadget.speed == USB_SPEED_FULL) {
981 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
982 pep->interval = desc->bInterval << 3;
983 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
984 pep->interval = BIT(desc->bInterval - 1) << 3;
985 }
986
987 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
988 if (pep->interval > BIT(12)) {
989 dev_err(pdev->dev, "bInterval %d not supported\n",
990 desc->bInterval);
991 ret = -EINVAL;
992 goto unlock;
993 }
994 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
995 }
996
997 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
998 if (ret)
999 goto unlock;
1000
1001 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1002 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
1003 ctrl_ctx->drop_flags = 0;
1004
1005 ret = cdnsp_update_eps_configuration(pdev, pep);
1006 if (ret) {
1007 cdnsp_free_endpoint_rings(pdev, pep);
1008 goto unlock;
1009 }
1010
1011 pep->ep_state |= EP_ENABLED;
1012 pep->ep_state &= ~EP_STOPPED;
1013
1014 unlock:
1015 trace_cdnsp_ep_enable_end(pep, 0);
1016 spin_unlock_irqrestore(&pdev->lock, flags);
1017
1018 return ret;
1019 }
1020
cdnsp_gadget_ep_disable(struct usb_ep * ep)1021 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1022 {
1023 struct cdnsp_input_control_ctx *ctrl_ctx;
1024 struct cdnsp_request *preq;
1025 struct cdnsp_device *pdev;
1026 struct cdnsp_ep *pep;
1027 unsigned long flags;
1028 u32 drop_flag;
1029 int ret = 0;
1030
1031 if (!ep)
1032 return -EINVAL;
1033
1034 pep = to_cdnsp_ep(ep);
1035 pdev = pep->pdev;
1036
1037 spin_lock_irqsave(&pdev->lock, flags);
1038
1039 if (!(pep->ep_state & EP_ENABLED)) {
1040 dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1041 ret = -EINVAL;
1042 goto finish;
1043 }
1044
1045 pep->ep_state |= EP_DIS_IN_RROGRESS;
1046
1047 /* Endpoint was unconfigured by Reset Device command. */
1048 if (!(pep->ep_state & EP_UNCONFIGURED))
1049 cdnsp_cmd_stop_ep(pdev, pep);
1050
1051 /* Remove all queued USB requests. */
1052 while (!list_empty(&pep->pending_list)) {
1053 preq = next_request(&pep->pending_list);
1054 cdnsp_ep_dequeue(pep, preq);
1055 }
1056
1057 cdnsp_invalidate_ep_events(pdev, pep);
1058
1059 pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1060 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1061 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1062 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1063 ctrl_ctx->add_flags = 0;
1064
1065 cdnsp_endpoint_zero(pdev, pep);
1066
1067 if (!(pep->ep_state & EP_UNCONFIGURED))
1068 ret = cdnsp_update_eps_configuration(pdev, pep);
1069
1070 cdnsp_free_endpoint_rings(pdev, pep);
1071
1072 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1073 pep->ep_state |= EP_STOPPED;
1074
1075 finish:
1076 trace_cdnsp_ep_disable_end(pep, 0);
1077 spin_unlock_irqrestore(&pdev->lock, flags);
1078
1079 return ret;
1080 }
1081
cdnsp_gadget_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1082 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1083 gfp_t gfp_flags)
1084 {
1085 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1086 struct cdnsp_request *preq;
1087
1088 preq = kzalloc(sizeof(*preq), gfp_flags);
1089 if (!preq)
1090 return NULL;
1091
1092 preq->epnum = pep->number;
1093 preq->pep = pep;
1094
1095 trace_cdnsp_alloc_request(preq);
1096
1097 return &preq->request;
1098 }
1099
cdnsp_gadget_ep_free_request(struct usb_ep * ep,struct usb_request * request)1100 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1101 struct usb_request *request)
1102 {
1103 struct cdnsp_request *preq = to_cdnsp_request(request);
1104
1105 trace_cdnsp_free_request(preq);
1106 kfree(preq);
1107 }
1108
cdnsp_gadget_ep_queue(struct usb_ep * ep,struct usb_request * request,gfp_t gfp_flags)1109 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1110 struct usb_request *request,
1111 gfp_t gfp_flags)
1112 {
1113 struct cdnsp_request *preq;
1114 struct cdnsp_device *pdev;
1115 struct cdnsp_ep *pep;
1116 unsigned long flags;
1117 int ret;
1118
1119 if (!request || !ep)
1120 return -EINVAL;
1121
1122 pep = to_cdnsp_ep(ep);
1123 pdev = pep->pdev;
1124
1125 if (!(pep->ep_state & EP_ENABLED)) {
1126 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1127 pep->name);
1128 return -EINVAL;
1129 }
1130
1131 preq = to_cdnsp_request(request);
1132 spin_lock_irqsave(&pdev->lock, flags);
1133 ret = cdnsp_ep_enqueue(pep, preq);
1134 spin_unlock_irqrestore(&pdev->lock, flags);
1135
1136 return ret;
1137 }
1138
cdnsp_gadget_ep_dequeue(struct usb_ep * ep,struct usb_request * request)1139 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1140 struct usb_request *request)
1141 {
1142 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1143 struct cdnsp_device *pdev = pep->pdev;
1144 unsigned long flags;
1145 int ret;
1146
1147 if (request->status != -EINPROGRESS)
1148 return 0;
1149
1150 if (!pep->endpoint.desc) {
1151 dev_err(pdev->dev,
1152 "%s: can't dequeue to disabled endpoint\n",
1153 pep->name);
1154 return -ESHUTDOWN;
1155 }
1156
1157 /* Requests has been dequeued during disabling endpoint. */
1158 if (!(pep->ep_state & EP_ENABLED))
1159 return 0;
1160
1161 spin_lock_irqsave(&pdev->lock, flags);
1162 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1163 spin_unlock_irqrestore(&pdev->lock, flags);
1164
1165 return ret;
1166 }
1167
cdnsp_gadget_ep_set_halt(struct usb_ep * ep,int value)1168 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1169 {
1170 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1171 struct cdnsp_device *pdev = pep->pdev;
1172 struct cdnsp_request *preq;
1173 unsigned long flags;
1174 int ret;
1175
1176 spin_lock_irqsave(&pdev->lock, flags);
1177
1178 preq = next_request(&pep->pending_list);
1179 if (value) {
1180 if (preq) {
1181 trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1182 ret = -EAGAIN;
1183 goto done;
1184 }
1185 }
1186
1187 ret = cdnsp_halt_endpoint(pdev, pep, value);
1188
1189 done:
1190 spin_unlock_irqrestore(&pdev->lock, flags);
1191 return ret;
1192 }
1193
cdnsp_gadget_ep_set_wedge(struct usb_ep * ep)1194 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1195 {
1196 struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1197 struct cdnsp_device *pdev = pep->pdev;
1198 unsigned long flags;
1199 int ret;
1200
1201 spin_lock_irqsave(&pdev->lock, flags);
1202 pep->ep_state |= EP_WEDGE;
1203 ret = cdnsp_halt_endpoint(pdev, pep, 1);
1204 spin_unlock_irqrestore(&pdev->lock, flags);
1205
1206 return ret;
1207 }
1208
1209 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1210 .enable = cdnsp_gadget_ep_enable,
1211 .disable = cdnsp_gadget_ep_disable,
1212 .alloc_request = cdnsp_gadget_ep_alloc_request,
1213 .free_request = cdnsp_gadget_ep_free_request,
1214 .queue = cdnsp_gadget_ep_queue,
1215 .dequeue = cdnsp_gadget_ep_dequeue,
1216 .set_halt = cdnsp_gadget_ep_set_halt,
1217 .set_wedge = cdnsp_gadget_ep_set_wedge,
1218 };
1219
1220 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1221 .enable = cdnsp_gadget_ep_enable,
1222 .disable = cdnsp_gadget_ep_disable,
1223 .alloc_request = cdnsp_gadget_ep_alloc_request,
1224 .free_request = cdnsp_gadget_ep_free_request,
1225 .queue = cdnsp_gadget_ep_queue,
1226 .dequeue = cdnsp_gadget_ep_dequeue,
1227 .set_halt = cdnsp_gadget_ep_set_halt,
1228 .set_wedge = cdnsp_gadget_ep_set_wedge,
1229 };
1230
cdnsp_gadget_giveback(struct cdnsp_ep * pep,struct cdnsp_request * preq,int status)1231 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1232 struct cdnsp_request *preq,
1233 int status)
1234 {
1235 struct cdnsp_device *pdev = pep->pdev;
1236
1237 list_del(&preq->list);
1238
1239 if (preq->request.status == -EINPROGRESS)
1240 preq->request.status = status;
1241
1242 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1243 preq->direction);
1244
1245 trace_cdnsp_request_giveback(preq);
1246
1247 if (preq != &pdev->ep0_preq) {
1248 spin_unlock(&pdev->lock);
1249 usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1250 spin_lock(&pdev->lock);
1251 }
1252 }
1253
1254 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1255 .bLength = USB_DT_ENDPOINT_SIZE,
1256 .bDescriptorType = USB_DT_ENDPOINT,
1257 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
1258 };
1259
cdnsp_run(struct cdnsp_device * pdev,enum usb_device_speed speed)1260 static int cdnsp_run(struct cdnsp_device *pdev,
1261 enum usb_device_speed speed)
1262 {
1263 u32 fs_speed = 0;
1264 u32 temp;
1265 int ret;
1266
1267 temp = readl(&pdev->ir_set->irq_control);
1268 temp &= ~IMOD_INTERVAL_MASK;
1269 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1270 writel(temp, &pdev->ir_set->irq_control);
1271
1272 temp = readl(&pdev->port3x_regs->mode_addr);
1273
1274 switch (speed) {
1275 case USB_SPEED_SUPER_PLUS:
1276 temp |= CFG_3XPORT_SSP_SUPPORT;
1277 break;
1278 case USB_SPEED_SUPER:
1279 temp &= ~CFG_3XPORT_SSP_SUPPORT;
1280 break;
1281 case USB_SPEED_HIGH:
1282 break;
1283 case USB_SPEED_FULL:
1284 fs_speed = PORT_REG6_FORCE_FS;
1285 break;
1286 default:
1287 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1288 speed);
1289 fallthrough;
1290 case USB_SPEED_UNKNOWN:
1291 /* Default to superspeed. */
1292 speed = USB_SPEED_SUPER;
1293 break;
1294 }
1295
1296 if (speed >= USB_SPEED_SUPER) {
1297 writel(temp, &pdev->port3x_regs->mode_addr);
1298 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1299 XDEV_RXDETECT);
1300 } else {
1301 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1302 }
1303
1304 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1305 XDEV_RXDETECT);
1306
1307 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1308
1309 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1310
1311 ret = cdnsp_start(pdev);
1312 if (ret) {
1313 ret = -ENODEV;
1314 goto err;
1315 }
1316
1317 temp = readl(&pdev->op_regs->command);
1318 temp |= (CMD_INTE);
1319 writel(temp, &pdev->op_regs->command);
1320
1321 temp = readl(&pdev->ir_set->irq_pending);
1322 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1323
1324 trace_cdnsp_init("Controller ready to work");
1325 return 0;
1326 err:
1327 cdnsp_halt(pdev);
1328 return ret;
1329 }
1330
cdnsp_gadget_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1331 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1332 struct usb_gadget_driver *driver)
1333 {
1334 enum usb_device_speed max_speed = driver->max_speed;
1335 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1336 unsigned long flags;
1337 int ret;
1338
1339 spin_lock_irqsave(&pdev->lock, flags);
1340 pdev->gadget_driver = driver;
1341
1342 /* limit speed if necessary */
1343 max_speed = min(driver->max_speed, g->max_speed);
1344 ret = cdnsp_run(pdev, max_speed);
1345
1346 spin_unlock_irqrestore(&pdev->lock, flags);
1347
1348 return ret;
1349 }
1350
1351 /*
1352 * Update Event Ring Dequeue Pointer:
1353 * - When all events have finished
1354 * - To avoid "Event Ring Full Error" condition
1355 */
cdnsp_update_erst_dequeue(struct cdnsp_device * pdev,union cdnsp_trb * event_ring_deq,u8 clear_ehb)1356 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1357 union cdnsp_trb *event_ring_deq,
1358 u8 clear_ehb)
1359 {
1360 u64 temp_64;
1361 dma_addr_t deq;
1362
1363 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1364
1365 /* If necessary, update the HW's version of the event ring deq ptr. */
1366 if (event_ring_deq != pdev->event_ring->dequeue) {
1367 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1368 pdev->event_ring->dequeue);
1369 temp_64 &= ERST_PTR_MASK;
1370 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1371 }
1372
1373 /* Clear the event handler busy flag (RW1C). */
1374 if (clear_ehb)
1375 temp_64 |= ERST_EHB;
1376 else
1377 temp_64 &= ~ERST_EHB;
1378
1379 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1380 }
1381
cdnsp_clear_cmd_ring(struct cdnsp_device * pdev)1382 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1383 {
1384 struct cdnsp_segment *seg;
1385 u64 val_64;
1386 int i;
1387
1388 cdnsp_initialize_ring_info(pdev->cmd_ring);
1389
1390 seg = pdev->cmd_ring->first_seg;
1391 for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1392 memset(seg->trbs, 0,
1393 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1394 seg = seg->next;
1395 }
1396
1397 /* Set the address in the Command Ring Control register. */
1398 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1399 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1400 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1401 pdev->cmd_ring->cycle_state;
1402 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1403 }
1404
cdnsp_consume_all_events(struct cdnsp_device * pdev)1405 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1406 {
1407 struct cdnsp_segment *event_deq_seg;
1408 union cdnsp_trb *event_ring_deq;
1409 union cdnsp_trb *event;
1410 u32 cycle_bit;
1411
1412 event_ring_deq = pdev->event_ring->dequeue;
1413 event_deq_seg = pdev->event_ring->deq_seg;
1414 event = pdev->event_ring->dequeue;
1415
1416 /* Update ring dequeue pointer. */
1417 while (1) {
1418 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1419
1420 /* Does the controller or driver own the TRB? */
1421 if (cycle_bit != pdev->event_ring->cycle_state)
1422 break;
1423
1424 cdnsp_inc_deq(pdev, pdev->event_ring);
1425
1426 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1427 event++;
1428 continue;
1429 }
1430
1431 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1432 event))
1433 cycle_bit ^= 1;
1434
1435 event_deq_seg = event_deq_seg->next;
1436 event = event_deq_seg->trbs;
1437 }
1438
1439 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1440 }
1441
cdnsp_stop(struct cdnsp_device * pdev)1442 static void cdnsp_stop(struct cdnsp_device *pdev)
1443 {
1444 u32 temp;
1445
1446 /* Remove internally queued request for ep0. */
1447 if (!list_empty(&pdev->eps[0].pending_list)) {
1448 struct cdnsp_request *req;
1449
1450 req = next_request(&pdev->eps[0].pending_list);
1451 if (req == &pdev->ep0_preq)
1452 cdnsp_ep_dequeue(&pdev->eps[0], req);
1453 }
1454
1455 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1456 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1457 cdnsp_disable_slot(pdev);
1458 cdnsp_halt(pdev);
1459
1460 temp = readl(&pdev->op_regs->status);
1461 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1462 temp = readl(&pdev->ir_set->irq_pending);
1463 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1464
1465 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1466 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1467
1468 /* Clear interrupt line */
1469 temp = readl(&pdev->ir_set->irq_pending);
1470 temp |= IMAN_IP;
1471 writel(temp, &pdev->ir_set->irq_pending);
1472
1473 cdnsp_consume_all_events(pdev);
1474 cdnsp_clear_cmd_ring(pdev);
1475
1476 trace_cdnsp_exit("Controller stopped.");
1477 }
1478
1479 /*
1480 * Stop controller.
1481 * This function is called by the gadget core when the driver is removed.
1482 * Disable slot, disable IRQs, and quiesce the controller.
1483 */
cdnsp_gadget_udc_stop(struct usb_gadget * g)1484 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1485 {
1486 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(&pdev->lock, flags);
1490 cdnsp_stop(pdev);
1491 pdev->gadget_driver = NULL;
1492 spin_unlock_irqrestore(&pdev->lock, flags);
1493
1494 return 0;
1495 }
1496
cdnsp_gadget_get_frame(struct usb_gadget * g)1497 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1498 {
1499 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1500
1501 return cdnsp_get_frame(pdev);
1502 }
1503
__cdnsp_gadget_wakeup(struct cdnsp_device * pdev)1504 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1505 {
1506 struct cdnsp_port_regs __iomem *port_regs;
1507 u32 portpm, portsc;
1508
1509 port_regs = pdev->active_port->regs;
1510 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1511
1512 /* Remote wakeup feature is not enabled by host. */
1513 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1514 portpm = readl(&port_regs->portpmsc);
1515
1516 if (!(portpm & PORT_RWE))
1517 return;
1518 }
1519
1520 if (portsc == XDEV_U3 && !pdev->may_wakeup)
1521 return;
1522
1523 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1524
1525 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1526 }
1527
cdnsp_gadget_wakeup(struct usb_gadget * g)1528 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1529 {
1530 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&pdev->lock, flags);
1534 __cdnsp_gadget_wakeup(pdev);
1535 spin_unlock_irqrestore(&pdev->lock, flags);
1536
1537 return 0;
1538 }
1539
cdnsp_gadget_set_selfpowered(struct usb_gadget * g,int is_selfpowered)1540 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1541 int is_selfpowered)
1542 {
1543 struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&pdev->lock, flags);
1547 g->is_selfpowered = !!is_selfpowered;
1548 spin_unlock_irqrestore(&pdev->lock, flags);
1549
1550 return 0;
1551 }
1552
cdnsp_gadget_pullup(struct usb_gadget * gadget,int is_on)1553 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1554 {
1555 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1556 struct cdns *cdns = dev_get_drvdata(pdev->dev);
1557 unsigned long flags;
1558
1559 trace_cdnsp_pullup(is_on);
1560
1561 /*
1562 * Disable events handling while controller is being
1563 * enabled/disabled.
1564 */
1565 disable_irq(cdns->dev_irq);
1566 spin_lock_irqsave(&pdev->lock, flags);
1567
1568 if (!is_on) {
1569 cdnsp_reset_device(pdev);
1570 cdns_clear_vbus(cdns);
1571 } else {
1572 cdns_set_vbus(cdns);
1573 }
1574
1575 spin_unlock_irqrestore(&pdev->lock, flags);
1576 enable_irq(cdns->dev_irq);
1577
1578 return 0;
1579 }
1580
1581 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1582 .get_frame = cdnsp_gadget_get_frame,
1583 .wakeup = cdnsp_gadget_wakeup,
1584 .set_selfpowered = cdnsp_gadget_set_selfpowered,
1585 .pullup = cdnsp_gadget_pullup,
1586 .udc_start = cdnsp_gadget_udc_start,
1587 .udc_stop = cdnsp_gadget_udc_stop,
1588 };
1589
cdnsp_get_ep_buffering(struct cdnsp_device * pdev,struct cdnsp_ep * pep)1590 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1591 struct cdnsp_ep *pep)
1592 {
1593 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1594 int endpoints;
1595
1596 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1597
1598 if (!pep->direction) {
1599 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1600 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1601 pep->buffering = (pep->buffering + 1) / 2;
1602 pep->buffering_period = (pep->buffering_period + 1) / 2;
1603 return;
1604 }
1605
1606 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1607
1608 /* Set to XBUF_TX_TAG_MASK_0 register. */
1609 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1610 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1611 reg += pep->number * sizeof(u32) * 2;
1612
1613 pep->buffering = (readl(reg) + 1) / 2;
1614 pep->buffering_period = pep->buffering;
1615 }
1616
cdnsp_gadget_init_endpoints(struct cdnsp_device * pdev)1617 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1618 {
1619 int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1620 struct cdnsp_ep *pep;
1621 int i;
1622
1623 INIT_LIST_HEAD(&pdev->gadget.ep_list);
1624
1625 if (max_streams < STREAM_LOG_STREAMS) {
1626 dev_err(pdev->dev, "Stream size %d not supported\n",
1627 max_streams);
1628 return -EINVAL;
1629 }
1630
1631 max_streams = STREAM_LOG_STREAMS;
1632
1633 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1634 bool direction = !(i & 1); /* Start from OUT endpoint. */
1635 u8 epnum = ((i + 1) >> 1);
1636
1637 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1638 continue;
1639
1640 pep = &pdev->eps[i];
1641 pep->pdev = pdev;
1642 pep->number = epnum;
1643 pep->direction = direction; /* 0 for OUT, 1 for IN. */
1644
1645 /*
1646 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1647 * pdev->eps[0]
1648 */
1649 if (epnum == 0) {
1650 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1651 epnum, "BiDir");
1652
1653 pep->idx = 0;
1654 usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1655 pep->endpoint.maxburst = 1;
1656 pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1657 pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1658 pep->endpoint.comp_desc = NULL;
1659 pep->endpoint.caps.type_control = true;
1660 pep->endpoint.caps.dir_in = true;
1661 pep->endpoint.caps.dir_out = true;
1662
1663 pdev->ep0_preq.epnum = pep->number;
1664 pdev->ep0_preq.pep = pep;
1665 pdev->gadget.ep0 = &pep->endpoint;
1666 } else {
1667 snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1668 epnum, (pep->direction) ? "in" : "out");
1669
1670 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1;
1671 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1672
1673 pep->endpoint.max_streams = max_streams;
1674 pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1675 list_add_tail(&pep->endpoint.ep_list,
1676 &pdev->gadget.ep_list);
1677
1678 pep->endpoint.caps.type_iso = true;
1679 pep->endpoint.caps.type_bulk = true;
1680 pep->endpoint.caps.type_int = true;
1681
1682 pep->endpoint.caps.dir_in = direction;
1683 pep->endpoint.caps.dir_out = !direction;
1684 }
1685
1686 pep->endpoint.name = pep->name;
1687 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1688 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1689 cdnsp_get_ep_buffering(pdev, pep);
1690
1691 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1692 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1693 "SupDir IN: %s, OUT: %s\n",
1694 pep->name, 1024,
1695 str_yes_no(pep->endpoint.caps.type_control),
1696 str_yes_no(pep->endpoint.caps.type_int),
1697 str_yes_no(pep->endpoint.caps.type_bulk),
1698 str_yes_no(pep->endpoint.caps.type_iso),
1699 str_yes_no(pep->endpoint.caps.dir_in),
1700 str_yes_no(pep->endpoint.caps.dir_out));
1701
1702 INIT_LIST_HEAD(&pep->pending_list);
1703 }
1704
1705 return 0;
1706 }
1707
cdnsp_gadget_free_endpoints(struct cdnsp_device * pdev)1708 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1709 {
1710 struct cdnsp_ep *pep;
1711 int i;
1712
1713 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1714 pep = &pdev->eps[i];
1715 if (pep->number != 0 && pep->out_ctx)
1716 list_del(&pep->endpoint.ep_list);
1717 }
1718 }
1719
cdnsp_disconnect_gadget(struct cdnsp_device * pdev)1720 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1721 {
1722 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1723
1724 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1725 spin_unlock(&pdev->lock);
1726 pdev->gadget_driver->disconnect(&pdev->gadget);
1727 spin_lock(&pdev->lock);
1728 }
1729
1730 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1731 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1732
1733 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1734 }
1735
cdnsp_suspend_gadget(struct cdnsp_device * pdev)1736 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1737 {
1738 if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1739 spin_unlock(&pdev->lock);
1740 pdev->gadget_driver->suspend(&pdev->gadget);
1741 spin_lock(&pdev->lock);
1742 }
1743 }
1744
cdnsp_resume_gadget(struct cdnsp_device * pdev)1745 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1746 {
1747 if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1748 spin_unlock(&pdev->lock);
1749 pdev->gadget_driver->resume(&pdev->gadget);
1750 spin_lock(&pdev->lock);
1751 }
1752 }
1753
cdnsp_irq_reset(struct cdnsp_device * pdev)1754 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1755 {
1756 struct cdnsp_port_regs __iomem *port_regs;
1757
1758 cdnsp_reset_device(pdev);
1759
1760 port_regs = pdev->active_port->regs;
1761 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1762
1763 spin_unlock(&pdev->lock);
1764 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1765 spin_lock(&pdev->lock);
1766
1767 switch (pdev->gadget.speed) {
1768 case USB_SPEED_SUPER_PLUS:
1769 case USB_SPEED_SUPER:
1770 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1771 pdev->gadget.ep0->maxpacket = 512;
1772 break;
1773 case USB_SPEED_HIGH:
1774 case USB_SPEED_FULL:
1775 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1776 pdev->gadget.ep0->maxpacket = 64;
1777 break;
1778 default:
1779 /* Low speed is not supported. */
1780 dev_err(pdev->dev, "Unknown device speed\n");
1781 break;
1782 }
1783
1784 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1785 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1786 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1787 }
1788
cdnsp_get_rev_cap(struct cdnsp_device * pdev)1789 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1790 {
1791 void __iomem *reg = &pdev->cap_regs->hc_capbase;
1792
1793 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1794 pdev->rev_cap = reg;
1795
1796 pdev->rtl_revision = readl(&pdev->rev_cap->rtl_revision);
1797
1798 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1799 readl(&pdev->rev_cap->ctrl_revision),
1800 readl(&pdev->rev_cap->rtl_revision),
1801 readl(&pdev->rev_cap->ep_supported),
1802 readl(&pdev->rev_cap->rx_buff_size),
1803 readl(&pdev->rev_cap->tx_buff_size));
1804 }
1805
cdnsp_gen_setup(struct cdnsp_device * pdev)1806 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1807 {
1808 int ret;
1809 u32 reg;
1810
1811 pdev->cap_regs = pdev->regs;
1812 pdev->op_regs = pdev->regs +
1813 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1814 pdev->run_regs = pdev->regs +
1815 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1816
1817 /* Cache read-only capability registers */
1818 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1819 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1820 pdev->hci_version = HC_VERSION(pdev->hcc_params);
1821 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1822
1823 /*
1824 * Override the APB timeout value to give the controller more time for
1825 * enabling UTMI clock and synchronizing APB and UTMI clock domains.
1826 * This fix is platform specific and is required to fixes issue with
1827 * reading incorrect value from PORTSC register after resuming
1828 * from L1 state.
1829 */
1830 cdnsp_set_apb_timeout_value(pdev);
1831
1832 cdnsp_get_rev_cap(pdev);
1833
1834 /* Make sure the Device Controller is halted. */
1835 ret = cdnsp_halt(pdev);
1836 if (ret)
1837 return ret;
1838
1839 /* Reset the internal controller memory state and registers. */
1840 ret = cdnsp_reset(pdev);
1841 if (ret)
1842 return ret;
1843
1844 /*
1845 * Set dma_mask and coherent_dma_mask to 64-bits,
1846 * if controller supports 64-bit addressing.
1847 */
1848 if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1849 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1850 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1851 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1852 } else {
1853 /*
1854 * This is to avoid error in cases where a 32-bit USB
1855 * controller is used on a 64-bit capable system.
1856 */
1857 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1858 if (ret)
1859 return ret;
1860
1861 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1862 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1863 }
1864
1865 spin_lock_init(&pdev->lock);
1866
1867 ret = cdnsp_mem_init(pdev);
1868 if (ret)
1869 return ret;
1870
1871 /*
1872 * Software workaround for U1: after transition
1873 * to U1 the controller starts gating clock, and in some cases,
1874 * it causes that controller stack.
1875 */
1876 reg = readl(&pdev->port3x_regs->mode_2);
1877 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1878 writel(reg, &pdev->port3x_regs->mode_2);
1879
1880 return 0;
1881 }
1882
__cdnsp_gadget_init(struct cdns * cdns)1883 static int __cdnsp_gadget_init(struct cdns *cdns)
1884 {
1885 struct cdnsp_device *pdev;
1886 u32 max_speed;
1887 int ret = -ENOMEM;
1888
1889 cdns_drd_gadget_on(cdns);
1890
1891 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1892 if (!pdev)
1893 return -ENOMEM;
1894
1895 pm_runtime_get_sync(cdns->dev);
1896
1897 cdns->gadget_dev = pdev;
1898 pdev->dev = cdns->dev;
1899 pdev->regs = cdns->dev_regs;
1900 max_speed = usb_get_maximum_speed(cdns->dev);
1901
1902 switch (max_speed) {
1903 case USB_SPEED_FULL:
1904 case USB_SPEED_HIGH:
1905 case USB_SPEED_SUPER:
1906 case USB_SPEED_SUPER_PLUS:
1907 break;
1908 default:
1909 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1910 fallthrough;
1911 case USB_SPEED_UNKNOWN:
1912 /* Default to SSP */
1913 max_speed = USB_SPEED_SUPER_PLUS;
1914 break;
1915 }
1916
1917 pdev->gadget.ops = &cdnsp_gadget_ops;
1918 pdev->gadget.name = "cdnsp-gadget";
1919 pdev->gadget.speed = USB_SPEED_UNKNOWN;
1920 pdev->gadget.sg_supported = 1;
1921 pdev->gadget.max_speed = max_speed;
1922 pdev->gadget.lpm_capable = 1;
1923
1924 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1925 if (!pdev->setup_buf)
1926 goto free_pdev;
1927
1928 /*
1929 * Controller supports not aligned buffer but it should improve
1930 * performance.
1931 */
1932 pdev->gadget.quirk_ep_out_aligned_size = true;
1933
1934 ret = cdnsp_gen_setup(pdev);
1935 if (ret) {
1936 dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1937 goto free_setup;
1938 }
1939
1940 ret = cdnsp_gadget_init_endpoints(pdev);
1941 if (ret) {
1942 dev_err(pdev->dev, "failed to initialize endpoints\n");
1943 goto halt_pdev;
1944 }
1945
1946 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1947 if (ret) {
1948 dev_err(pdev->dev, "failed to register udc\n");
1949 goto free_endpoints;
1950 }
1951
1952 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1953 cdnsp_irq_handler,
1954 cdnsp_thread_irq_handler, IRQF_SHARED,
1955 dev_name(pdev->dev), pdev);
1956 if (ret)
1957 goto del_gadget;
1958
1959 return 0;
1960
1961 del_gadget:
1962 usb_del_gadget_udc(&pdev->gadget);
1963 free_endpoints:
1964 cdnsp_gadget_free_endpoints(pdev);
1965 halt_pdev:
1966 cdnsp_halt(pdev);
1967 cdnsp_reset(pdev);
1968 cdnsp_mem_cleanup(pdev);
1969 free_setup:
1970 kfree(pdev->setup_buf);
1971 free_pdev:
1972 kfree(pdev);
1973
1974 return ret;
1975 }
1976
cdnsp_gadget_exit(struct cdns * cdns)1977 static void cdnsp_gadget_exit(struct cdns *cdns)
1978 {
1979 struct cdnsp_device *pdev = cdns->gadget_dev;
1980
1981 devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1982 pm_runtime_mark_last_busy(cdns->dev);
1983 pm_runtime_put_autosuspend(cdns->dev);
1984 usb_del_gadget_udc(&pdev->gadget);
1985 cdnsp_gadget_free_endpoints(pdev);
1986 cdnsp_mem_cleanup(pdev);
1987 kfree(pdev);
1988 cdns->gadget_dev = NULL;
1989 cdns_drd_gadget_off(cdns);
1990 }
1991
cdnsp_gadget_suspend(struct cdns * cdns,bool do_wakeup)1992 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1993 {
1994 struct cdnsp_device *pdev = cdns->gadget_dev;
1995 unsigned long flags;
1996
1997 if (pdev->link_state == XDEV_U3)
1998 return 0;
1999
2000 spin_lock_irqsave(&pdev->lock, flags);
2001 cdnsp_disconnect_gadget(pdev);
2002 cdnsp_stop(pdev);
2003 spin_unlock_irqrestore(&pdev->lock, flags);
2004
2005 return 0;
2006 }
2007
cdnsp_gadget_resume(struct cdns * cdns,bool lost_power)2008 static int cdnsp_gadget_resume(struct cdns *cdns, bool lost_power)
2009 {
2010 struct cdnsp_device *pdev = cdns->gadget_dev;
2011 enum usb_device_speed max_speed;
2012 unsigned long flags;
2013 int ret;
2014
2015 if (!pdev->gadget_driver)
2016 return 0;
2017
2018 spin_lock_irqsave(&pdev->lock, flags);
2019 max_speed = pdev->gadget_driver->max_speed;
2020
2021 /* Limit speed if necessary. */
2022 max_speed = min(max_speed, pdev->gadget.max_speed);
2023
2024 ret = cdnsp_run(pdev, max_speed);
2025
2026 if (pdev->link_state == XDEV_U3)
2027 __cdnsp_gadget_wakeup(pdev);
2028
2029 spin_unlock_irqrestore(&pdev->lock, flags);
2030
2031 return ret;
2032 }
2033
2034 /**
2035 * cdnsp_gadget_init - initialize device structure
2036 * @cdns: cdnsp instance
2037 *
2038 * This function initializes the gadget.
2039 */
cdnsp_gadget_init(struct cdns * cdns)2040 int cdnsp_gadget_init(struct cdns *cdns)
2041 {
2042 struct cdns_role_driver *rdrv;
2043
2044 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2045 if (!rdrv)
2046 return -ENOMEM;
2047
2048 rdrv->start = __cdnsp_gadget_init;
2049 rdrv->stop = cdnsp_gadget_exit;
2050 rdrv->suspend = cdnsp_gadget_suspend;
2051 rdrv->resume = cdnsp_gadget_resume;
2052 rdrv->state = CDNS_ROLE_STATE_INACTIVE;
2053 rdrv->name = "gadget";
2054 cdns->roles[USB_ROLE_DEVICE] = rdrv;
2055
2056 return 0;
2057 }
2058