1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10 
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/string_choices.h>
19 #include <linux/pci.h>
20 #include <linux/irq.h>
21 #include <linux/dmi.h>
22 
23 #include "core.h"
24 #include "gadget-export.h"
25 #include "drd.h"
26 #include "cdnsp-gadget.h"
27 #include "cdnsp-trace.h"
28 
cdnsp_port_speed(unsigned int port_status)29 unsigned int cdnsp_port_speed(unsigned int port_status)
30 {
31 	/*Detect gadget speed based on PORTSC register*/
32 	if (DEV_SUPERSPEEDPLUS(port_status))
33 		return USB_SPEED_SUPER_PLUS;
34 	else if (DEV_SUPERSPEED(port_status))
35 		return USB_SPEED_SUPER;
36 	else if (DEV_HIGHSPEED(port_status))
37 		return USB_SPEED_HIGH;
38 	else if (DEV_FULLSPEED(port_status))
39 		return USB_SPEED_FULL;
40 
41 	/* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
42 	return USB_SPEED_UNKNOWN;
43 }
44 
45 /*
46  * Given a port state, this function returns a value that would result in the
47  * port being in the same state, if the value was written to the port status
48  * control register.
49  * Save Read Only (RO) bits and save read/write bits where
50  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
51  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
52  */
cdnsp_port_state_to_neutral(u32 state)53 u32 cdnsp_port_state_to_neutral(u32 state)
54 {
55 	/* Save read-only status and port state. */
56 	return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
57 }
58 
59 /**
60  * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
61  *                           with capability ID id.
62  * @base: PCI MMIO registers base address.
63  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
64  *         beginning of list)
65  * @id: Extended capability ID to search for.
66  *
67  * Returns the offset of the next matching extended capability structure.
68  * Some capabilities can occur several times,
69  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
70  */
cdnsp_find_next_ext_cap(void __iomem * base,u32 start,int id)71 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
72 {
73 	u32 offset = start;
74 	u32 next;
75 	u32 val;
76 
77 	if (!start || start == HCC_PARAMS_OFFSET) {
78 		val = readl(base + HCC_PARAMS_OFFSET);
79 		if (val == ~0)
80 			return 0;
81 
82 		offset = HCC_EXT_CAPS(val) << 2;
83 		if (!offset)
84 			return 0;
85 	}
86 
87 	do {
88 		val = readl(base + offset);
89 		if (val == ~0)
90 			return 0;
91 
92 		if (EXT_CAPS_ID(val) == id && offset != start)
93 			return offset;
94 
95 		next = EXT_CAPS_NEXT(val);
96 		offset += next << 2;
97 	} while (next);
98 
99 	return 0;
100 }
101 
cdnsp_set_link_state(struct cdnsp_device * pdev,__le32 __iomem * port_regs,u32 link_state)102 void cdnsp_set_link_state(struct cdnsp_device *pdev,
103 			  __le32 __iomem *port_regs,
104 			  u32 link_state)
105 {
106 	int port_num = 0xFF;
107 	u32 temp;
108 
109 	temp = readl(port_regs);
110 	temp = cdnsp_port_state_to_neutral(temp);
111 	temp |= PORT_WKCONN_E | PORT_WKDISC_E;
112 	writel(temp, port_regs);
113 
114 	temp &= ~PORT_PLS_MASK;
115 	temp |= PORT_LINK_STROBE | link_state;
116 
117 	if (pdev->active_port)
118 		port_num = pdev->active_port->port_num;
119 
120 	trace_cdnsp_handle_port_status(port_num, readl(port_regs));
121 	writel(temp, port_regs);
122 	trace_cdnsp_link_state_changed(port_num, readl(port_regs));
123 }
124 
cdnsp_disable_port(struct cdnsp_device * pdev,__le32 __iomem * port_regs)125 static void cdnsp_disable_port(struct cdnsp_device *pdev,
126 			       __le32 __iomem *port_regs)
127 {
128 	u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
129 
130 	writel(temp | PORT_PED, port_regs);
131 }
132 
cdnsp_clear_port_change_bit(struct cdnsp_device * pdev,__le32 __iomem * port_regs)133 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
134 					__le32 __iomem *port_regs)
135 {
136 	u32 portsc = readl(port_regs);
137 
138 	writel(cdnsp_port_state_to_neutral(portsc) |
139 	       (portsc & PORT_CHANGE_BITS), port_regs);
140 }
141 
cdnsp_set_apb_timeout_value(struct cdnsp_device * pdev)142 static void cdnsp_set_apb_timeout_value(struct cdnsp_device *pdev)
143 {
144 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
145 	__le32 __iomem *reg;
146 	void __iomem *base;
147 	u32 offset = 0;
148 	u32 val;
149 
150 	if (!cdns->override_apb_timeout)
151 		return;
152 
153 	base = &pdev->cap_regs->hc_capbase;
154 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
155 	reg = base + offset + REG_CHICKEN_BITS_3_OFFSET;
156 
157 	val  = le32_to_cpu(readl(reg));
158 	val = CHICKEN_APB_TIMEOUT_SET(val, cdns->override_apb_timeout);
159 	writel(cpu_to_le32(val), reg);
160 }
161 
cdnsp_set_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)162 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
163 {
164 	__le32 __iomem *reg;
165 	void __iomem *base;
166 	u32 offset = 0;
167 
168 	base = &pdev->cap_regs->hc_capbase;
169 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
170 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
171 
172 	bit = readl(reg) | bit;
173 	writel(bit, reg);
174 }
175 
cdnsp_clear_chicken_bits_2(struct cdnsp_device * pdev,u32 bit)176 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
177 {
178 	__le32 __iomem *reg;
179 	void __iomem *base;
180 	u32 offset = 0;
181 
182 	base = &pdev->cap_regs->hc_capbase;
183 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
184 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
185 
186 	bit = readl(reg) & ~bit;
187 	writel(bit, reg);
188 }
189 
190 /*
191  * Disable interrupts and begin the controller halting process.
192  */
cdnsp_quiesce(struct cdnsp_device * pdev)193 static void cdnsp_quiesce(struct cdnsp_device *pdev)
194 {
195 	u32 halted;
196 	u32 mask;
197 	u32 cmd;
198 
199 	mask = ~(u32)(CDNSP_IRQS);
200 
201 	halted = readl(&pdev->op_regs->status) & STS_HALT;
202 	if (!halted)
203 		mask &= ~(CMD_R_S | CMD_DEVEN);
204 
205 	cmd = readl(&pdev->op_regs->command);
206 	cmd &= mask;
207 	writel(cmd, &pdev->op_regs->command);
208 }
209 
210 /*
211  * Force controller into halt state.
212  *
213  * Disable any IRQs and clear the run/stop bit.
214  * Controller will complete any current and actively pipelined transactions, and
215  * should halt within 16 ms of the run/stop bit being cleared.
216  * Read controller Halted bit in the status register to see when the
217  * controller is finished.
218  */
cdnsp_halt(struct cdnsp_device * pdev)219 int cdnsp_halt(struct cdnsp_device *pdev)
220 {
221 	int ret;
222 	u32 val;
223 
224 	cdnsp_quiesce(pdev);
225 
226 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
227 					val & STS_HALT, 1,
228 					CDNSP_MAX_HALT_USEC);
229 	if (ret) {
230 		dev_err(pdev->dev, "ERROR: Device halt failed\n");
231 		return ret;
232 	}
233 
234 	pdev->cdnsp_state |= CDNSP_STATE_HALTED;
235 
236 	return 0;
237 }
238 
239 /*
240  * device controller died, register read returns 0xffffffff, or command never
241  * ends.
242  */
cdnsp_died(struct cdnsp_device * pdev)243 void cdnsp_died(struct cdnsp_device *pdev)
244 {
245 	dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
246 	pdev->cdnsp_state |= CDNSP_STATE_DYING;
247 	cdnsp_halt(pdev);
248 }
249 
250 /*
251  * Set the run bit and wait for the device to be running.
252  */
cdnsp_start(struct cdnsp_device * pdev)253 static int cdnsp_start(struct cdnsp_device *pdev)
254 {
255 	u32 temp;
256 	int ret;
257 
258 	temp = readl(&pdev->op_regs->command);
259 	temp |= (CMD_R_S | CMD_DEVEN);
260 	writel(temp, &pdev->op_regs->command);
261 
262 	pdev->cdnsp_state = 0;
263 
264 	/*
265 	 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
266 	 * running.
267 	 */
268 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
269 					!(temp & STS_HALT), 1,
270 					CDNSP_MAX_HALT_USEC);
271 	if (ret) {
272 		pdev->cdnsp_state = CDNSP_STATE_DYING;
273 		dev_err(pdev->dev, "ERROR: Controller run failed\n");
274 	}
275 
276 	return ret;
277 }
278 
279 /*
280  * Reset a halted controller.
281  *
282  * This resets pipelines, timers, counters, state machines, etc.
283  * Transactions will be terminated immediately, and operational registers
284  * will be set to their defaults.
285  */
cdnsp_reset(struct cdnsp_device * pdev)286 int cdnsp_reset(struct cdnsp_device *pdev)
287 {
288 	u32 command;
289 	u32 temp;
290 	int ret;
291 
292 	temp = readl(&pdev->op_regs->status);
293 
294 	if (temp == ~(u32)0) {
295 		dev_err(pdev->dev, "Device not accessible, reset failed.\n");
296 		return -ENODEV;
297 	}
298 
299 	if ((temp & STS_HALT) == 0) {
300 		dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
301 		return -EINVAL;
302 	}
303 
304 	command = readl(&pdev->op_regs->command);
305 	command |= CMD_RESET;
306 	writel(command, &pdev->op_regs->command);
307 
308 	ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
309 					!(temp & CMD_RESET), 1,
310 					10 * 1000);
311 	if (ret) {
312 		dev_err(pdev->dev, "ERROR: Controller reset failed\n");
313 		return ret;
314 	}
315 
316 	/*
317 	 * CDNSP cannot write any doorbells or operational registers other
318 	 * than status until the "Controller Not Ready" flag is cleared.
319 	 */
320 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
321 					!(temp & STS_CNR), 1,
322 					10 * 1000);
323 
324 	if (ret) {
325 		dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
326 		return ret;
327 	}
328 
329 	dev_dbg(pdev->dev, "Controller ready to work");
330 
331 	return ret;
332 }
333 
334 /*
335  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
336  * descriptor.Use the return value to right shift 1 for the bitmask.
337  *
338  * Index = (epnum * 2) + direction - 1,
339  * where direction = 0 for OUT, 1 for IN.
340  * For control endpoints, the IN index is used (OUT index is unused), so
341  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
342  */
343 static unsigned int
cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor * desc)344 	cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
345 {
346 	unsigned int index = (unsigned int)usb_endpoint_num(desc);
347 
348 	if (usb_endpoint_xfer_control(desc))
349 		return index * 2;
350 
351 	return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
352 }
353 
354 /*
355  * Find the flag for this endpoint (for use in the control context). Use the
356  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
357  * bit 1, etc.
358  */
359 static unsigned int
cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor * desc)360 	cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
361 {
362 	return 1 << (cdnsp_get_endpoint_index(desc) + 1);
363 }
364 
cdnsp_ep_enqueue(struct cdnsp_ep * pep,struct cdnsp_request * preq)365 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
366 {
367 	struct cdnsp_device *pdev = pep->pdev;
368 	struct usb_request *request;
369 	int ret;
370 
371 	if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
372 		trace_cdnsp_request_enqueue_busy(preq);
373 		return -EBUSY;
374 	}
375 
376 	request = &preq->request;
377 	request->actual = 0;
378 	request->status = -EINPROGRESS;
379 	preq->direction = pep->direction;
380 	preq->epnum = pep->number;
381 	preq->td.drbl = 0;
382 
383 	ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
384 	if (ret) {
385 		trace_cdnsp_request_enqueue_error(preq);
386 		return ret;
387 	}
388 
389 	list_add_tail(&preq->list, &pep->pending_list);
390 
391 	trace_cdnsp_request_enqueue(preq);
392 
393 	switch (usb_endpoint_type(pep->endpoint.desc)) {
394 	case USB_ENDPOINT_XFER_CONTROL:
395 		ret = cdnsp_queue_ctrl_tx(pdev, preq);
396 		break;
397 	case USB_ENDPOINT_XFER_BULK:
398 	case USB_ENDPOINT_XFER_INT:
399 		ret = cdnsp_queue_bulk_tx(pdev, preq);
400 		break;
401 	case USB_ENDPOINT_XFER_ISOC:
402 		ret = cdnsp_queue_isoc_tx(pdev, preq);
403 	}
404 
405 	if (ret)
406 		goto unmap;
407 
408 	return 0;
409 
410 unmap:
411 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
412 					pep->direction);
413 	list_del(&preq->list);
414 	trace_cdnsp_request_enqueue_error(preq);
415 
416 	return ret;
417 }
418 
419 /*
420  * Remove the request's TD from the endpoint ring. This may cause the
421  * controller to stop USB transfers, potentially stopping in the middle of a
422  * TRB buffer. The controller should pick up where it left off in the TD,
423  * unless a Set Transfer Ring Dequeue Pointer is issued.
424  *
425  * The TRBs that make up the buffers for the canceled request will be "removed"
426  * from the ring. Since the ring is a contiguous structure, they can't be
427  * physically removed. Instead, there are two options:
428  *
429  *  1) If the controller is in the middle of processing the request to be
430  *     canceled, we simply move the ring's dequeue pointer past those TRBs
431  *     using the Set Transfer Ring Dequeue Pointer command. This will be
432  *     the common case, when drivers timeout on the last submitted request
433  *     and attempt to cancel.
434  *
435  *  2) If the controller is in the middle of a different TD, we turn the TRBs
436  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
437  *     The controller will need to invalidate the any TRBs it has cached after
438  *     the stop endpoint command.
439  *
440  *  3) The TD may have completed by the time the Stop Endpoint Command
441  *     completes, so software needs to handle that case too.
442  *
443  */
cdnsp_ep_dequeue(struct cdnsp_ep * pep,struct cdnsp_request * preq)444 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
445 {
446 	struct cdnsp_device *pdev = pep->pdev;
447 	int ret_stop = 0;
448 	int ret_rem;
449 
450 	trace_cdnsp_request_dequeue(preq);
451 
452 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
453 		ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
454 
455 	ret_rem = cdnsp_remove_request(pdev, preq, pep);
456 
457 	return ret_rem ? ret_rem : ret_stop;
458 }
459 
cdnsp_zero_in_ctx(struct cdnsp_device * pdev)460 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
461 {
462 	struct cdnsp_input_control_ctx *ctrl_ctx;
463 	struct cdnsp_slot_ctx *slot_ctx;
464 	struct cdnsp_ep_ctx *ep_ctx;
465 	int i;
466 
467 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
468 
469 	/*
470 	 * When a device's add flag and drop flag are zero, any subsequent
471 	 * configure endpoint command will leave that endpoint's state
472 	 * untouched. Make sure we don't leave any old state in the input
473 	 * endpoint contexts.
474 	 */
475 	ctrl_ctx->drop_flags = 0;
476 	ctrl_ctx->add_flags = 0;
477 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
478 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
479 
480 	/* Endpoint 0 is always valid */
481 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
482 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
483 		ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
484 		ep_ctx->ep_info = 0;
485 		ep_ctx->ep_info2 = 0;
486 		ep_ctx->deq = 0;
487 		ep_ctx->tx_info = 0;
488 	}
489 }
490 
491 /* Issue a configure endpoint command and wait for it to finish. */
cdnsp_configure_endpoint(struct cdnsp_device * pdev)492 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
493 {
494 	int ret;
495 
496 	cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
497 	cdnsp_ring_cmd_db(pdev);
498 	ret = cdnsp_wait_for_cmd_compl(pdev);
499 	if (ret) {
500 		dev_err(pdev->dev,
501 			"ERR: unexpected command completion code 0x%x.\n", ret);
502 		return -EINVAL;
503 	}
504 
505 	return ret;
506 }
507 
cdnsp_invalidate_ep_events(struct cdnsp_device * pdev,struct cdnsp_ep * pep)508 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
509 				       struct cdnsp_ep *pep)
510 {
511 	struct cdnsp_segment *segment;
512 	union cdnsp_trb *event;
513 	u32 cycle_state;
514 	u32  data;
515 
516 	event = pdev->event_ring->dequeue;
517 	segment = pdev->event_ring->deq_seg;
518 	cycle_state = pdev->event_ring->cycle_state;
519 
520 	while (1) {
521 		data = le32_to_cpu(event->trans_event.flags);
522 
523 		/* Check the owner of the TRB. */
524 		if ((data & TRB_CYCLE) != cycle_state)
525 			break;
526 
527 		if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
528 		    TRB_TO_EP_ID(data) == (pep->idx + 1)) {
529 			data |= TRB_EVENT_INVALIDATE;
530 			event->trans_event.flags = cpu_to_le32(data);
531 		}
532 
533 		if (cdnsp_last_trb_on_seg(segment, event)) {
534 			cycle_state ^= 1;
535 			segment = pdev->event_ring->deq_seg->next;
536 			event = segment->trbs;
537 		} else {
538 			event++;
539 		}
540 	}
541 }
542 
cdnsp_wait_for_cmd_compl(struct cdnsp_device * pdev)543 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
544 {
545 	struct cdnsp_segment *event_deq_seg;
546 	union cdnsp_trb *cmd_trb;
547 	dma_addr_t cmd_deq_dma;
548 	union cdnsp_trb *event;
549 	u32 cycle_state;
550 	int ret, val;
551 	u64 cmd_dma;
552 	u32  flags;
553 
554 	cmd_trb = pdev->cmd.command_trb;
555 	pdev->cmd.status = 0;
556 
557 	trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
558 
559 	ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
560 					!CMD_RING_BUSY(val), 1,
561 					CDNSP_CMD_TIMEOUT);
562 	if (ret) {
563 		dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
564 		trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
565 		pdev->cdnsp_state = CDNSP_STATE_DYING;
566 		return -ETIMEDOUT;
567 	}
568 
569 	event = pdev->event_ring->dequeue;
570 	event_deq_seg = pdev->event_ring->deq_seg;
571 	cycle_state = pdev->event_ring->cycle_state;
572 
573 	cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
574 	if (!cmd_deq_dma)
575 		return -EINVAL;
576 
577 	while (1) {
578 		flags = le32_to_cpu(event->event_cmd.flags);
579 
580 		/* Check the owner of the TRB. */
581 		if ((flags & TRB_CYCLE) != cycle_state)
582 			return -EINVAL;
583 
584 		cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
585 
586 		/*
587 		 * Check whether the completion event is for last queued
588 		 * command.
589 		 */
590 		if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
591 		    cmd_dma != (u64)cmd_deq_dma) {
592 			if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
593 				event++;
594 				continue;
595 			}
596 
597 			if (cdnsp_last_trb_on_ring(pdev->event_ring,
598 						   event_deq_seg, event))
599 				cycle_state ^= 1;
600 
601 			event_deq_seg = event_deq_seg->next;
602 			event = event_deq_seg->trbs;
603 			continue;
604 		}
605 
606 		trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
607 
608 		pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
609 		if (pdev->cmd.status == COMP_SUCCESS)
610 			return 0;
611 
612 		return -pdev->cmd.status;
613 	}
614 }
615 
cdnsp_halt_endpoint(struct cdnsp_device * pdev,struct cdnsp_ep * pep,int value)616 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
617 			struct cdnsp_ep *pep,
618 			int value)
619 {
620 	int ret;
621 
622 	trace_cdnsp_ep_halt(value ? "Set" : "Clear");
623 
624 	ret = cdnsp_cmd_stop_ep(pdev, pep);
625 	if (ret)
626 		return ret;
627 
628 	if (value) {
629 		if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
630 			cdnsp_queue_halt_endpoint(pdev, pep->idx);
631 			cdnsp_ring_cmd_db(pdev);
632 			ret = cdnsp_wait_for_cmd_compl(pdev);
633 		}
634 
635 		pep->ep_state |= EP_HALTED;
636 	} else {
637 		cdnsp_queue_reset_ep(pdev, pep->idx);
638 		cdnsp_ring_cmd_db(pdev);
639 		ret = cdnsp_wait_for_cmd_compl(pdev);
640 		trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
641 
642 		if (ret)
643 			return ret;
644 
645 		pep->ep_state &= ~EP_HALTED;
646 
647 		if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
648 			cdnsp_ring_doorbell_for_active_rings(pdev, pep);
649 
650 		pep->ep_state &= ~EP_WEDGE;
651 	}
652 
653 	return 0;
654 }
655 
cdnsp_update_eps_configuration(struct cdnsp_device * pdev,struct cdnsp_ep * pep)656 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
657 					  struct cdnsp_ep *pep)
658 {
659 	struct cdnsp_input_control_ctx *ctrl_ctx;
660 	struct cdnsp_slot_ctx *slot_ctx;
661 	int ret = 0;
662 	u32 ep_sts;
663 	int i;
664 
665 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
666 
667 	/* Don't issue the command if there's no endpoints to update. */
668 	if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
669 		return 0;
670 
671 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
672 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
673 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
674 
675 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
676 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
677 	for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
678 		__le32 le32 = cpu_to_le32(BIT(i));
679 
680 		if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
681 		    (ctrl_ctx->add_flags & le32) || i == 1) {
682 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
683 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
684 			break;
685 		}
686 	}
687 
688 	ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
689 
690 	if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
691 	     ep_sts == EP_STATE_DISABLED) ||
692 	    (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
693 		ret = cdnsp_configure_endpoint(pdev);
694 
695 	trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
696 	trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
697 
698 	cdnsp_zero_in_ctx(pdev);
699 
700 	return ret;
701 }
702 
703 /*
704  * This submits a Reset Device Command, which will set the device state to 0,
705  * set the device address to 0, and disable all the endpoints except the default
706  * control endpoint. The USB core should come back and call
707  * cdnsp_setup_device(), and then re-set up the configuration.
708  */
cdnsp_reset_device(struct cdnsp_device * pdev)709 int cdnsp_reset_device(struct cdnsp_device *pdev)
710 {
711 	struct cdnsp_slot_ctx *slot_ctx;
712 	int slot_state;
713 	int ret, i;
714 
715 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
716 	slot_ctx->dev_info = 0;
717 	pdev->device_address = 0;
718 
719 	/* If device is not setup, there is no point in resetting it. */
720 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
721 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
722 	trace_cdnsp_reset_device(slot_ctx);
723 
724 	if (slot_state <= SLOT_STATE_DEFAULT &&
725 	    pdev->eps[0].ep_state & EP_HALTED) {
726 		cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
727 	}
728 
729 	/*
730 	 * During Reset Device command controller shall transition the
731 	 * endpoint ep0 to the Running State.
732 	 */
733 	pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
734 	pdev->eps[0].ep_state |= EP_ENABLED;
735 
736 	if (slot_state <= SLOT_STATE_DEFAULT)
737 		return 0;
738 
739 	cdnsp_queue_reset_device(pdev);
740 	cdnsp_ring_cmd_db(pdev);
741 	ret = cdnsp_wait_for_cmd_compl(pdev);
742 
743 	/*
744 	 * After Reset Device command all not default endpoints
745 	 * are in Disabled state.
746 	 */
747 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
748 		pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
749 
750 	trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
751 
752 	if (ret)
753 		dev_err(pdev->dev, "Reset device failed with error code %d",
754 			ret);
755 
756 	return ret;
757 }
758 
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device * pdev,struct cdnsp_ep_ctx * ep_ctx,struct cdnsp_stream_info * stream_info)763 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
764 					     struct cdnsp_ep_ctx *ep_ctx,
765 					     struct cdnsp_stream_info *stream_info)
766 {
767 	u32 max_primary_streams;
768 
769 	/* MaxPStreams is the number of stream context array entries, not the
770 	 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
771 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
772 	 */
773 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
774 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
775 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
776 				       | EP_HAS_LSA);
777 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
778 }
779 
780 /*
781  * The drivers use this function to prepare a bulk endpoints to use streams.
782  *
783  * Don't allow the call to succeed if endpoint only supports one stream
784  * (which means it doesn't support streams at all).
785  */
cdnsp_alloc_streams(struct cdnsp_device * pdev,struct cdnsp_ep * pep)786 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
787 {
788 	unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
789 	unsigned int num_stream_ctxs;
790 	int ret;
791 
792 	if (num_streams ==  0)
793 		return 0;
794 
795 	if (num_streams > STREAM_NUM_STREAMS)
796 		return -EINVAL;
797 
798 	/*
799 	 * Add two to the number of streams requested to account for
800 	 * stream 0 that is reserved for controller usage and one additional
801 	 * for TASK SET FULL response.
802 	 */
803 	num_streams += 2;
804 
805 	/* The stream context array size must be a power of two */
806 	num_stream_ctxs = roundup_pow_of_two(num_streams);
807 
808 	trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
809 
810 	ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
811 	if (ret)
812 		return ret;
813 
814 	cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
815 
816 	pep->ep_state |= EP_HAS_STREAMS;
817 	pep->stream_info.td_count = 0;
818 	pep->stream_info.first_prime_det = 0;
819 
820 	/* Subtract 1 for stream 0, which drivers can't use. */
821 	return num_streams - 1;
822 }
823 
cdnsp_disable_slot(struct cdnsp_device * pdev)824 int cdnsp_disable_slot(struct cdnsp_device *pdev)
825 {
826 	int ret;
827 
828 	cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
829 	cdnsp_ring_cmd_db(pdev);
830 	ret = cdnsp_wait_for_cmd_compl(pdev);
831 
832 	pdev->slot_id = 0;
833 	pdev->active_port = NULL;
834 
835 	trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
836 
837 	memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
838 	memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
839 
840 	return ret;
841 }
842 
cdnsp_enable_slot(struct cdnsp_device * pdev)843 int cdnsp_enable_slot(struct cdnsp_device *pdev)
844 {
845 	struct cdnsp_slot_ctx *slot_ctx;
846 	int slot_state;
847 	int ret;
848 
849 	/* If device is not setup, there is no point in resetting it */
850 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
851 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
852 
853 	if (slot_state != SLOT_STATE_DISABLED)
854 		return 0;
855 
856 	cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
857 	cdnsp_ring_cmd_db(pdev);
858 	ret = cdnsp_wait_for_cmd_compl(pdev);
859 	if (ret)
860 		goto show_trace;
861 
862 	pdev->slot_id = 1;
863 
864 show_trace:
865 	trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
866 
867 	return ret;
868 }
869 
870 /*
871  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
872  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
873  */
cdnsp_setup_device(struct cdnsp_device * pdev,enum cdnsp_setup_dev setup)874 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
875 {
876 	struct cdnsp_input_control_ctx *ctrl_ctx;
877 	struct cdnsp_slot_ctx *slot_ctx;
878 	int dev_state = 0;
879 	int ret;
880 
881 	if (!pdev->slot_id) {
882 		trace_cdnsp_slot_id("incorrect");
883 		return -EINVAL;
884 	}
885 
886 	if (!pdev->active_port->port_num)
887 		return -EINVAL;
888 
889 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
890 	dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
891 
892 	if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
893 		trace_cdnsp_slot_already_in_default(slot_ctx);
894 		return 0;
895 	}
896 
897 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
898 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
899 
900 	if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
901 		ret = cdnsp_setup_addressable_priv_dev(pdev);
902 		if (ret)
903 			return ret;
904 	}
905 
906 	cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
907 
908 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
909 	ctrl_ctx->drop_flags = 0;
910 
911 	trace_cdnsp_setup_device_slot(slot_ctx);
912 
913 	cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
914 	cdnsp_ring_cmd_db(pdev);
915 	ret = cdnsp_wait_for_cmd_compl(pdev);
916 
917 	trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
918 
919 	/* Zero the input context control for later use. */
920 	ctrl_ctx->add_flags = 0;
921 	ctrl_ctx->drop_flags = 0;
922 
923 	return ret;
924 }
925 
cdnsp_set_usb2_hardware_lpm(struct cdnsp_device * pdev,struct usb_request * req,int enable)926 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
927 				 struct usb_request *req,
928 				 int enable)
929 {
930 	if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
931 		return;
932 
933 	trace_cdnsp_lpm(enable);
934 
935 	if (enable)
936 		writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
937 		       &pdev->active_port->regs->portpmsc);
938 	else
939 		writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
940 }
941 
cdnsp_get_frame(struct cdnsp_device * pdev)942 static int cdnsp_get_frame(struct cdnsp_device *pdev)
943 {
944 	return readl(&pdev->run_regs->microframe_index) >> 3;
945 }
946 
cdnsp_gadget_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)947 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
948 				  const struct usb_endpoint_descriptor *desc)
949 {
950 	struct cdnsp_input_control_ctx *ctrl_ctx;
951 	struct cdnsp_device *pdev;
952 	struct cdnsp_ep *pep;
953 	unsigned long flags;
954 	u32 added_ctxs;
955 	int ret;
956 
957 	if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
958 	    !desc->wMaxPacketSize)
959 		return -EINVAL;
960 
961 	pep = to_cdnsp_ep(ep);
962 	pdev = pep->pdev;
963 	pep->ep_state &= ~EP_UNCONFIGURED;
964 
965 	if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
966 			  "%s is already enabled\n", pep->name))
967 		return 0;
968 
969 	spin_lock_irqsave(&pdev->lock, flags);
970 
971 	added_ctxs = cdnsp_get_endpoint_flag(desc);
972 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
973 		dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
974 		ret = -EINVAL;
975 		goto unlock;
976 	}
977 
978 	pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
979 
980 	if (pdev->gadget.speed == USB_SPEED_FULL) {
981 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
982 			pep->interval = desc->bInterval << 3;
983 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
984 			pep->interval = BIT(desc->bInterval - 1) << 3;
985 	}
986 
987 	if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
988 		if (pep->interval > BIT(12)) {
989 			dev_err(pdev->dev, "bInterval %d not supported\n",
990 				desc->bInterval);
991 			ret = -EINVAL;
992 			goto unlock;
993 		}
994 		cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
995 	}
996 
997 	ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
998 	if (ret)
999 		goto unlock;
1000 
1001 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1002 	ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
1003 	ctrl_ctx->drop_flags = 0;
1004 
1005 	ret = cdnsp_update_eps_configuration(pdev, pep);
1006 	if (ret) {
1007 		cdnsp_free_endpoint_rings(pdev, pep);
1008 		goto unlock;
1009 	}
1010 
1011 	pep->ep_state |= EP_ENABLED;
1012 	pep->ep_state &= ~EP_STOPPED;
1013 
1014 unlock:
1015 	trace_cdnsp_ep_enable_end(pep, 0);
1016 	spin_unlock_irqrestore(&pdev->lock, flags);
1017 
1018 	return ret;
1019 }
1020 
cdnsp_gadget_ep_disable(struct usb_ep * ep)1021 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1022 {
1023 	struct cdnsp_input_control_ctx *ctrl_ctx;
1024 	struct cdnsp_request *preq;
1025 	struct cdnsp_device *pdev;
1026 	struct cdnsp_ep *pep;
1027 	unsigned long flags;
1028 	u32 drop_flag;
1029 	int ret = 0;
1030 
1031 	if (!ep)
1032 		return -EINVAL;
1033 
1034 	pep = to_cdnsp_ep(ep);
1035 	pdev = pep->pdev;
1036 
1037 	spin_lock_irqsave(&pdev->lock, flags);
1038 
1039 	if (!(pep->ep_state & EP_ENABLED)) {
1040 		dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1041 		ret = -EINVAL;
1042 		goto finish;
1043 	}
1044 
1045 	pep->ep_state |= EP_DIS_IN_RROGRESS;
1046 
1047 	/* Endpoint was unconfigured by Reset Device command. */
1048 	if (!(pep->ep_state & EP_UNCONFIGURED))
1049 		cdnsp_cmd_stop_ep(pdev, pep);
1050 
1051 	/* Remove all queued USB requests. */
1052 	while (!list_empty(&pep->pending_list)) {
1053 		preq = next_request(&pep->pending_list);
1054 		cdnsp_ep_dequeue(pep, preq);
1055 	}
1056 
1057 	cdnsp_invalidate_ep_events(pdev, pep);
1058 
1059 	pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1060 	drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1061 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1062 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1063 	ctrl_ctx->add_flags = 0;
1064 
1065 	cdnsp_endpoint_zero(pdev, pep);
1066 
1067 	if (!(pep->ep_state & EP_UNCONFIGURED))
1068 		ret = cdnsp_update_eps_configuration(pdev, pep);
1069 
1070 	cdnsp_free_endpoint_rings(pdev, pep);
1071 
1072 	pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1073 	pep->ep_state |= EP_STOPPED;
1074 
1075 finish:
1076 	trace_cdnsp_ep_disable_end(pep, 0);
1077 	spin_unlock_irqrestore(&pdev->lock, flags);
1078 
1079 	return ret;
1080 }
1081 
cdnsp_gadget_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)1082 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1083 							 gfp_t gfp_flags)
1084 {
1085 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1086 	struct cdnsp_request *preq;
1087 
1088 	preq = kzalloc(sizeof(*preq), gfp_flags);
1089 	if (!preq)
1090 		return NULL;
1091 
1092 	preq->epnum = pep->number;
1093 	preq->pep = pep;
1094 
1095 	trace_cdnsp_alloc_request(preq);
1096 
1097 	return &preq->request;
1098 }
1099 
cdnsp_gadget_ep_free_request(struct usb_ep * ep,struct usb_request * request)1100 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1101 					 struct usb_request *request)
1102 {
1103 	struct cdnsp_request *preq = to_cdnsp_request(request);
1104 
1105 	trace_cdnsp_free_request(preq);
1106 	kfree(preq);
1107 }
1108 
cdnsp_gadget_ep_queue(struct usb_ep * ep,struct usb_request * request,gfp_t gfp_flags)1109 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1110 				 struct usb_request *request,
1111 				 gfp_t gfp_flags)
1112 {
1113 	struct cdnsp_request *preq;
1114 	struct cdnsp_device *pdev;
1115 	struct cdnsp_ep *pep;
1116 	unsigned long flags;
1117 	int ret;
1118 
1119 	if (!request || !ep)
1120 		return -EINVAL;
1121 
1122 	pep = to_cdnsp_ep(ep);
1123 	pdev = pep->pdev;
1124 
1125 	if (!(pep->ep_state & EP_ENABLED)) {
1126 		dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1127 			pep->name);
1128 		return -EINVAL;
1129 	}
1130 
1131 	preq = to_cdnsp_request(request);
1132 	spin_lock_irqsave(&pdev->lock, flags);
1133 	ret = cdnsp_ep_enqueue(pep, preq);
1134 	spin_unlock_irqrestore(&pdev->lock, flags);
1135 
1136 	return ret;
1137 }
1138 
cdnsp_gadget_ep_dequeue(struct usb_ep * ep,struct usb_request * request)1139 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1140 				   struct usb_request *request)
1141 {
1142 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1143 	struct cdnsp_device *pdev = pep->pdev;
1144 	unsigned long flags;
1145 	int ret;
1146 
1147 	if (request->status != -EINPROGRESS)
1148 		return 0;
1149 
1150 	if (!pep->endpoint.desc) {
1151 		dev_err(pdev->dev,
1152 			"%s: can't dequeue to disabled endpoint\n",
1153 			pep->name);
1154 		return -ESHUTDOWN;
1155 	}
1156 
1157 	/* Requests has been dequeued during disabling endpoint. */
1158 	if (!(pep->ep_state & EP_ENABLED))
1159 		return 0;
1160 
1161 	spin_lock_irqsave(&pdev->lock, flags);
1162 	ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1163 	spin_unlock_irqrestore(&pdev->lock, flags);
1164 
1165 	return ret;
1166 }
1167 
cdnsp_gadget_ep_set_halt(struct usb_ep * ep,int value)1168 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1169 {
1170 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1171 	struct cdnsp_device *pdev = pep->pdev;
1172 	struct cdnsp_request *preq;
1173 	unsigned long flags;
1174 	int ret;
1175 
1176 	spin_lock_irqsave(&pdev->lock, flags);
1177 
1178 	preq = next_request(&pep->pending_list);
1179 	if (value) {
1180 		if (preq) {
1181 			trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1182 			ret = -EAGAIN;
1183 			goto done;
1184 		}
1185 	}
1186 
1187 	ret = cdnsp_halt_endpoint(pdev, pep, value);
1188 
1189 done:
1190 	spin_unlock_irqrestore(&pdev->lock, flags);
1191 	return ret;
1192 }
1193 
cdnsp_gadget_ep_set_wedge(struct usb_ep * ep)1194 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1195 {
1196 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1197 	struct cdnsp_device *pdev = pep->pdev;
1198 	unsigned long flags;
1199 	int ret;
1200 
1201 	spin_lock_irqsave(&pdev->lock, flags);
1202 	pep->ep_state |= EP_WEDGE;
1203 	ret = cdnsp_halt_endpoint(pdev, pep, 1);
1204 	spin_unlock_irqrestore(&pdev->lock, flags);
1205 
1206 	return ret;
1207 }
1208 
1209 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1210 	.enable		= cdnsp_gadget_ep_enable,
1211 	.disable	= cdnsp_gadget_ep_disable,
1212 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1213 	.free_request	= cdnsp_gadget_ep_free_request,
1214 	.queue		= cdnsp_gadget_ep_queue,
1215 	.dequeue	= cdnsp_gadget_ep_dequeue,
1216 	.set_halt	= cdnsp_gadget_ep_set_halt,
1217 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1218 };
1219 
1220 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1221 	.enable		= cdnsp_gadget_ep_enable,
1222 	.disable	= cdnsp_gadget_ep_disable,
1223 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1224 	.free_request	= cdnsp_gadget_ep_free_request,
1225 	.queue		= cdnsp_gadget_ep_queue,
1226 	.dequeue	= cdnsp_gadget_ep_dequeue,
1227 	.set_halt	= cdnsp_gadget_ep_set_halt,
1228 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1229 };
1230 
cdnsp_gadget_giveback(struct cdnsp_ep * pep,struct cdnsp_request * preq,int status)1231 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1232 			   struct cdnsp_request *preq,
1233 			   int status)
1234 {
1235 	struct cdnsp_device *pdev = pep->pdev;
1236 
1237 	list_del(&preq->list);
1238 
1239 	if (preq->request.status == -EINPROGRESS)
1240 		preq->request.status = status;
1241 
1242 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1243 					preq->direction);
1244 
1245 	trace_cdnsp_request_giveback(preq);
1246 
1247 	if (preq != &pdev->ep0_preq) {
1248 		spin_unlock(&pdev->lock);
1249 		usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1250 		spin_lock(&pdev->lock);
1251 	}
1252 }
1253 
1254 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1255 	.bLength =		USB_DT_ENDPOINT_SIZE,
1256 	.bDescriptorType =	USB_DT_ENDPOINT,
1257 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
1258 };
1259 
cdnsp_run(struct cdnsp_device * pdev,enum usb_device_speed speed)1260 static int cdnsp_run(struct cdnsp_device *pdev,
1261 		     enum usb_device_speed speed)
1262 {
1263 	u32 fs_speed = 0;
1264 	u32 temp;
1265 	int ret;
1266 
1267 	temp = readl(&pdev->ir_set->irq_control);
1268 	temp &= ~IMOD_INTERVAL_MASK;
1269 	temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1270 	writel(temp, &pdev->ir_set->irq_control);
1271 
1272 	temp = readl(&pdev->port3x_regs->mode_addr);
1273 
1274 	switch (speed) {
1275 	case USB_SPEED_SUPER_PLUS:
1276 		temp |= CFG_3XPORT_SSP_SUPPORT;
1277 		break;
1278 	case USB_SPEED_SUPER:
1279 		temp &= ~CFG_3XPORT_SSP_SUPPORT;
1280 		break;
1281 	case USB_SPEED_HIGH:
1282 		break;
1283 	case USB_SPEED_FULL:
1284 		fs_speed = PORT_REG6_FORCE_FS;
1285 		break;
1286 	default:
1287 		dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1288 			speed);
1289 		fallthrough;
1290 	case USB_SPEED_UNKNOWN:
1291 		/* Default to superspeed. */
1292 		speed = USB_SPEED_SUPER;
1293 		break;
1294 	}
1295 
1296 	if (speed >= USB_SPEED_SUPER) {
1297 		writel(temp, &pdev->port3x_regs->mode_addr);
1298 		cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1299 				     XDEV_RXDETECT);
1300 	} else {
1301 		cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1302 	}
1303 
1304 	cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1305 			     XDEV_RXDETECT);
1306 
1307 	cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1308 
1309 	writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1310 
1311 	ret = cdnsp_start(pdev);
1312 	if (ret) {
1313 		ret = -ENODEV;
1314 		goto err;
1315 	}
1316 
1317 	temp = readl(&pdev->op_regs->command);
1318 	temp |= (CMD_INTE);
1319 	writel(temp, &pdev->op_regs->command);
1320 
1321 	temp = readl(&pdev->ir_set->irq_pending);
1322 	writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1323 
1324 	trace_cdnsp_init("Controller ready to work");
1325 	return 0;
1326 err:
1327 	cdnsp_halt(pdev);
1328 	return ret;
1329 }
1330 
cdnsp_gadget_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1331 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1332 				  struct usb_gadget_driver *driver)
1333 {
1334 	enum usb_device_speed max_speed = driver->max_speed;
1335 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1336 	unsigned long flags;
1337 	int ret;
1338 
1339 	spin_lock_irqsave(&pdev->lock, flags);
1340 	pdev->gadget_driver = driver;
1341 
1342 	/* limit speed if necessary */
1343 	max_speed = min(driver->max_speed, g->max_speed);
1344 	ret = cdnsp_run(pdev, max_speed);
1345 
1346 	spin_unlock_irqrestore(&pdev->lock, flags);
1347 
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Update Event Ring Dequeue Pointer:
1353  * - When all events have finished
1354  * - To avoid "Event Ring Full Error" condition
1355  */
cdnsp_update_erst_dequeue(struct cdnsp_device * pdev,union cdnsp_trb * event_ring_deq,u8 clear_ehb)1356 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1357 			       union cdnsp_trb *event_ring_deq,
1358 			       u8 clear_ehb)
1359 {
1360 	u64 temp_64;
1361 	dma_addr_t deq;
1362 
1363 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1364 
1365 	/* If necessary, update the HW's version of the event ring deq ptr. */
1366 	if (event_ring_deq != pdev->event_ring->dequeue) {
1367 		deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1368 					    pdev->event_ring->dequeue);
1369 		temp_64 &= ERST_PTR_MASK;
1370 		temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1371 	}
1372 
1373 	/* Clear the event handler busy flag (RW1C). */
1374 	if (clear_ehb)
1375 		temp_64 |= ERST_EHB;
1376 	else
1377 		temp_64 &= ~ERST_EHB;
1378 
1379 	cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1380 }
1381 
cdnsp_clear_cmd_ring(struct cdnsp_device * pdev)1382 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1383 {
1384 	struct cdnsp_segment *seg;
1385 	u64 val_64;
1386 	int i;
1387 
1388 	cdnsp_initialize_ring_info(pdev->cmd_ring);
1389 
1390 	seg = pdev->cmd_ring->first_seg;
1391 	for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1392 		memset(seg->trbs, 0,
1393 		       sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1394 		seg = seg->next;
1395 	}
1396 
1397 	/* Set the address in the Command Ring Control register. */
1398 	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1399 	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1400 		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1401 		 pdev->cmd_ring->cycle_state;
1402 	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1403 }
1404 
cdnsp_consume_all_events(struct cdnsp_device * pdev)1405 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1406 {
1407 	struct cdnsp_segment *event_deq_seg;
1408 	union cdnsp_trb *event_ring_deq;
1409 	union cdnsp_trb *event;
1410 	u32 cycle_bit;
1411 
1412 	event_ring_deq = pdev->event_ring->dequeue;
1413 	event_deq_seg = pdev->event_ring->deq_seg;
1414 	event = pdev->event_ring->dequeue;
1415 
1416 	/* Update ring dequeue pointer. */
1417 	while (1) {
1418 		cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1419 
1420 		/* Does the controller or driver own the TRB? */
1421 		if (cycle_bit != pdev->event_ring->cycle_state)
1422 			break;
1423 
1424 		cdnsp_inc_deq(pdev, pdev->event_ring);
1425 
1426 		if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1427 			event++;
1428 			continue;
1429 		}
1430 
1431 		if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1432 					   event))
1433 			cycle_bit ^= 1;
1434 
1435 		event_deq_seg = event_deq_seg->next;
1436 		event = event_deq_seg->trbs;
1437 	}
1438 
1439 	cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1440 }
1441 
cdnsp_stop(struct cdnsp_device * pdev)1442 static void cdnsp_stop(struct cdnsp_device *pdev)
1443 {
1444 	u32 temp;
1445 
1446 	/* Remove internally queued request for ep0. */
1447 	if (!list_empty(&pdev->eps[0].pending_list)) {
1448 		struct cdnsp_request *req;
1449 
1450 		req = next_request(&pdev->eps[0].pending_list);
1451 		if (req == &pdev->ep0_preq)
1452 			cdnsp_ep_dequeue(&pdev->eps[0], req);
1453 	}
1454 
1455 	cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1456 	cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1457 	cdnsp_disable_slot(pdev);
1458 	cdnsp_halt(pdev);
1459 
1460 	temp = readl(&pdev->op_regs->status);
1461 	writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1462 	temp = readl(&pdev->ir_set->irq_pending);
1463 	writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1464 
1465 	cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1466 	cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1467 
1468 	/* Clear interrupt line */
1469 	temp = readl(&pdev->ir_set->irq_pending);
1470 	temp |= IMAN_IP;
1471 	writel(temp, &pdev->ir_set->irq_pending);
1472 
1473 	cdnsp_consume_all_events(pdev);
1474 	cdnsp_clear_cmd_ring(pdev);
1475 
1476 	trace_cdnsp_exit("Controller stopped.");
1477 }
1478 
1479 /*
1480  * Stop controller.
1481  * This function is called by the gadget core when the driver is removed.
1482  * Disable slot, disable IRQs, and quiesce the controller.
1483  */
cdnsp_gadget_udc_stop(struct usb_gadget * g)1484 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1485 {
1486 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1487 	unsigned long flags;
1488 
1489 	spin_lock_irqsave(&pdev->lock, flags);
1490 	cdnsp_stop(pdev);
1491 	pdev->gadget_driver = NULL;
1492 	spin_unlock_irqrestore(&pdev->lock, flags);
1493 
1494 	return 0;
1495 }
1496 
cdnsp_gadget_get_frame(struct usb_gadget * g)1497 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1498 {
1499 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1500 
1501 	return cdnsp_get_frame(pdev);
1502 }
1503 
__cdnsp_gadget_wakeup(struct cdnsp_device * pdev)1504 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1505 {
1506 	struct cdnsp_port_regs __iomem *port_regs;
1507 	u32 portpm, portsc;
1508 
1509 	port_regs = pdev->active_port->regs;
1510 	portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1511 
1512 	/* Remote wakeup feature is not enabled by host. */
1513 	if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1514 		portpm = readl(&port_regs->portpmsc);
1515 
1516 		if (!(portpm & PORT_RWE))
1517 			return;
1518 	}
1519 
1520 	if (portsc == XDEV_U3 && !pdev->may_wakeup)
1521 		return;
1522 
1523 	cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1524 
1525 	pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1526 }
1527 
cdnsp_gadget_wakeup(struct usb_gadget * g)1528 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1529 {
1530 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1531 	unsigned long flags;
1532 
1533 	spin_lock_irqsave(&pdev->lock, flags);
1534 	__cdnsp_gadget_wakeup(pdev);
1535 	spin_unlock_irqrestore(&pdev->lock, flags);
1536 
1537 	return 0;
1538 }
1539 
cdnsp_gadget_set_selfpowered(struct usb_gadget * g,int is_selfpowered)1540 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1541 					int is_selfpowered)
1542 {
1543 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1544 	unsigned long flags;
1545 
1546 	spin_lock_irqsave(&pdev->lock, flags);
1547 	g->is_selfpowered = !!is_selfpowered;
1548 	spin_unlock_irqrestore(&pdev->lock, flags);
1549 
1550 	return 0;
1551 }
1552 
cdnsp_gadget_pullup(struct usb_gadget * gadget,int is_on)1553 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1554 {
1555 	struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1556 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
1557 	unsigned long flags;
1558 
1559 	trace_cdnsp_pullup(is_on);
1560 
1561 	/*
1562 	 * Disable events handling while controller is being
1563 	 * enabled/disabled.
1564 	 */
1565 	disable_irq(cdns->dev_irq);
1566 	spin_lock_irqsave(&pdev->lock, flags);
1567 
1568 	if (!is_on) {
1569 		cdnsp_reset_device(pdev);
1570 		cdns_clear_vbus(cdns);
1571 	} else {
1572 		cdns_set_vbus(cdns);
1573 	}
1574 
1575 	spin_unlock_irqrestore(&pdev->lock, flags);
1576 	enable_irq(cdns->dev_irq);
1577 
1578 	return 0;
1579 }
1580 
1581 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1582 	.get_frame		= cdnsp_gadget_get_frame,
1583 	.wakeup			= cdnsp_gadget_wakeup,
1584 	.set_selfpowered	= cdnsp_gadget_set_selfpowered,
1585 	.pullup			= cdnsp_gadget_pullup,
1586 	.udc_start		= cdnsp_gadget_udc_start,
1587 	.udc_stop		= cdnsp_gadget_udc_stop,
1588 };
1589 
cdnsp_get_ep_buffering(struct cdnsp_device * pdev,struct cdnsp_ep * pep)1590 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1591 				   struct cdnsp_ep *pep)
1592 {
1593 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1594 	int endpoints;
1595 
1596 	reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1597 
1598 	if (!pep->direction) {
1599 		pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1600 		pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1601 		pep->buffering = (pep->buffering + 1) / 2;
1602 		pep->buffering_period = (pep->buffering_period + 1) / 2;
1603 		return;
1604 	}
1605 
1606 	endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1607 
1608 	/* Set to XBUF_TX_TAG_MASK_0 register. */
1609 	reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1610 	/* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1611 	reg += pep->number * sizeof(u32) * 2;
1612 
1613 	pep->buffering = (readl(reg) + 1) / 2;
1614 	pep->buffering_period = pep->buffering;
1615 }
1616 
cdnsp_gadget_init_endpoints(struct cdnsp_device * pdev)1617 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1618 {
1619 	int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1620 	struct cdnsp_ep *pep;
1621 	int i;
1622 
1623 	INIT_LIST_HEAD(&pdev->gadget.ep_list);
1624 
1625 	if (max_streams < STREAM_LOG_STREAMS) {
1626 		dev_err(pdev->dev, "Stream size %d not supported\n",
1627 			max_streams);
1628 		return -EINVAL;
1629 	}
1630 
1631 	max_streams = STREAM_LOG_STREAMS;
1632 
1633 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1634 		bool direction = !(i & 1); /* Start from OUT endpoint. */
1635 		u8 epnum = ((i + 1) >> 1);
1636 
1637 		if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1638 			continue;
1639 
1640 		pep = &pdev->eps[i];
1641 		pep->pdev = pdev;
1642 		pep->number = epnum;
1643 		pep->direction = direction; /* 0 for OUT, 1 for IN. */
1644 
1645 		/*
1646 		 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1647 		 * pdev->eps[0]
1648 		 */
1649 		if (epnum == 0) {
1650 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1651 				 epnum, "BiDir");
1652 
1653 			pep->idx = 0;
1654 			usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1655 			pep->endpoint.maxburst = 1;
1656 			pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1657 			pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1658 			pep->endpoint.comp_desc = NULL;
1659 			pep->endpoint.caps.type_control = true;
1660 			pep->endpoint.caps.dir_in = true;
1661 			pep->endpoint.caps.dir_out = true;
1662 
1663 			pdev->ep0_preq.epnum = pep->number;
1664 			pdev->ep0_preq.pep = pep;
1665 			pdev->gadget.ep0 = &pep->endpoint;
1666 		} else {
1667 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1668 				 epnum, (pep->direction) ? "in" : "out");
1669 
1670 			pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1671 			usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1672 
1673 			pep->endpoint.max_streams = max_streams;
1674 			pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1675 			list_add_tail(&pep->endpoint.ep_list,
1676 				      &pdev->gadget.ep_list);
1677 
1678 			pep->endpoint.caps.type_iso = true;
1679 			pep->endpoint.caps.type_bulk = true;
1680 			pep->endpoint.caps.type_int = true;
1681 
1682 			pep->endpoint.caps.dir_in = direction;
1683 			pep->endpoint.caps.dir_out = !direction;
1684 		}
1685 
1686 		pep->endpoint.name = pep->name;
1687 		pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1688 		pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1689 		cdnsp_get_ep_buffering(pdev, pep);
1690 
1691 		dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1692 			"CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1693 			"SupDir IN: %s, OUT: %s\n",
1694 			pep->name, 1024,
1695 			str_yes_no(pep->endpoint.caps.type_control),
1696 			str_yes_no(pep->endpoint.caps.type_int),
1697 			str_yes_no(pep->endpoint.caps.type_bulk),
1698 			str_yes_no(pep->endpoint.caps.type_iso),
1699 			str_yes_no(pep->endpoint.caps.dir_in),
1700 			str_yes_no(pep->endpoint.caps.dir_out));
1701 
1702 		INIT_LIST_HEAD(&pep->pending_list);
1703 	}
1704 
1705 	return 0;
1706 }
1707 
cdnsp_gadget_free_endpoints(struct cdnsp_device * pdev)1708 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1709 {
1710 	struct cdnsp_ep *pep;
1711 	int i;
1712 
1713 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1714 		pep = &pdev->eps[i];
1715 		if (pep->number != 0 && pep->out_ctx)
1716 			list_del(&pep->endpoint.ep_list);
1717 	}
1718 }
1719 
cdnsp_disconnect_gadget(struct cdnsp_device * pdev)1720 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1721 {
1722 	pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1723 
1724 	if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1725 		spin_unlock(&pdev->lock);
1726 		pdev->gadget_driver->disconnect(&pdev->gadget);
1727 		spin_lock(&pdev->lock);
1728 	}
1729 
1730 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1731 	usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1732 
1733 	pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1734 }
1735 
cdnsp_suspend_gadget(struct cdnsp_device * pdev)1736 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1737 {
1738 	if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1739 		spin_unlock(&pdev->lock);
1740 		pdev->gadget_driver->suspend(&pdev->gadget);
1741 		spin_lock(&pdev->lock);
1742 	}
1743 }
1744 
cdnsp_resume_gadget(struct cdnsp_device * pdev)1745 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1746 {
1747 	if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1748 		spin_unlock(&pdev->lock);
1749 		pdev->gadget_driver->resume(&pdev->gadget);
1750 		spin_lock(&pdev->lock);
1751 	}
1752 }
1753 
cdnsp_irq_reset(struct cdnsp_device * pdev)1754 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1755 {
1756 	struct cdnsp_port_regs __iomem *port_regs;
1757 
1758 	cdnsp_reset_device(pdev);
1759 
1760 	port_regs = pdev->active_port->regs;
1761 	pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1762 
1763 	spin_unlock(&pdev->lock);
1764 	usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1765 	spin_lock(&pdev->lock);
1766 
1767 	switch (pdev->gadget.speed) {
1768 	case USB_SPEED_SUPER_PLUS:
1769 	case USB_SPEED_SUPER:
1770 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1771 		pdev->gadget.ep0->maxpacket = 512;
1772 		break;
1773 	case USB_SPEED_HIGH:
1774 	case USB_SPEED_FULL:
1775 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1776 		pdev->gadget.ep0->maxpacket = 64;
1777 		break;
1778 	default:
1779 		/* Low speed is not supported. */
1780 		dev_err(pdev->dev, "Unknown device speed\n");
1781 		break;
1782 	}
1783 
1784 	cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1785 	cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1786 	usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1787 }
1788 
cdnsp_get_rev_cap(struct cdnsp_device * pdev)1789 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1790 {
1791 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1792 
1793 	reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1794 	pdev->rev_cap  = reg;
1795 
1796 	pdev->rtl_revision = readl(&pdev->rev_cap->rtl_revision);
1797 
1798 	dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1799 		 readl(&pdev->rev_cap->ctrl_revision),
1800 		 readl(&pdev->rev_cap->rtl_revision),
1801 		 readl(&pdev->rev_cap->ep_supported),
1802 		 readl(&pdev->rev_cap->rx_buff_size),
1803 		 readl(&pdev->rev_cap->tx_buff_size));
1804 }
1805 
cdnsp_gen_setup(struct cdnsp_device * pdev)1806 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1807 {
1808 	int ret;
1809 	u32 reg;
1810 
1811 	pdev->cap_regs = pdev->regs;
1812 	pdev->op_regs = pdev->regs +
1813 		HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1814 	pdev->run_regs = pdev->regs +
1815 		(readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1816 
1817 	/* Cache read-only capability registers */
1818 	pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1819 	pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1820 	pdev->hci_version = HC_VERSION(pdev->hcc_params);
1821 	pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1822 
1823 	/*
1824 	 * Override the APB timeout value to give the controller more time for
1825 	 * enabling UTMI clock and synchronizing APB and UTMI clock domains.
1826 	 * This fix is platform specific and is required to fixes issue with
1827 	 * reading incorrect value from PORTSC register after resuming
1828 	 * from L1 state.
1829 	 */
1830 	cdnsp_set_apb_timeout_value(pdev);
1831 
1832 	cdnsp_get_rev_cap(pdev);
1833 
1834 	/* Make sure the Device Controller is halted. */
1835 	ret = cdnsp_halt(pdev);
1836 	if (ret)
1837 		return ret;
1838 
1839 	/* Reset the internal controller memory state and registers. */
1840 	ret = cdnsp_reset(pdev);
1841 	if (ret)
1842 		return ret;
1843 
1844 	/*
1845 	 * Set dma_mask and coherent_dma_mask to 64-bits,
1846 	 * if controller supports 64-bit addressing.
1847 	 */
1848 	if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1849 	    !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1850 		dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1851 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1852 	} else {
1853 		/*
1854 		 * This is to avoid error in cases where a 32-bit USB
1855 		 * controller is used on a 64-bit capable system.
1856 		 */
1857 		ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1858 		if (ret)
1859 			return ret;
1860 
1861 		dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1862 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1863 	}
1864 
1865 	spin_lock_init(&pdev->lock);
1866 
1867 	ret = cdnsp_mem_init(pdev);
1868 	if (ret)
1869 		return ret;
1870 
1871 	/*
1872 	 * Software workaround for U1: after transition
1873 	 * to U1 the controller starts gating clock, and in some cases,
1874 	 * it causes that controller stack.
1875 	 */
1876 	reg = readl(&pdev->port3x_regs->mode_2);
1877 	reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1878 	writel(reg, &pdev->port3x_regs->mode_2);
1879 
1880 	return 0;
1881 }
1882 
__cdnsp_gadget_init(struct cdns * cdns)1883 static int __cdnsp_gadget_init(struct cdns *cdns)
1884 {
1885 	struct cdnsp_device *pdev;
1886 	u32 max_speed;
1887 	int ret = -ENOMEM;
1888 
1889 	cdns_drd_gadget_on(cdns);
1890 
1891 	pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1892 	if (!pdev)
1893 		return -ENOMEM;
1894 
1895 	pm_runtime_get_sync(cdns->dev);
1896 
1897 	cdns->gadget_dev = pdev;
1898 	pdev->dev = cdns->dev;
1899 	pdev->regs = cdns->dev_regs;
1900 	max_speed = usb_get_maximum_speed(cdns->dev);
1901 
1902 	switch (max_speed) {
1903 	case USB_SPEED_FULL:
1904 	case USB_SPEED_HIGH:
1905 	case USB_SPEED_SUPER:
1906 	case USB_SPEED_SUPER_PLUS:
1907 		break;
1908 	default:
1909 		dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1910 		fallthrough;
1911 	case USB_SPEED_UNKNOWN:
1912 		/* Default to SSP */
1913 		max_speed = USB_SPEED_SUPER_PLUS;
1914 		break;
1915 	}
1916 
1917 	pdev->gadget.ops = &cdnsp_gadget_ops;
1918 	pdev->gadget.name = "cdnsp-gadget";
1919 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1920 	pdev->gadget.sg_supported = 1;
1921 	pdev->gadget.max_speed = max_speed;
1922 	pdev->gadget.lpm_capable = 1;
1923 
1924 	pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1925 	if (!pdev->setup_buf)
1926 		goto free_pdev;
1927 
1928 	/*
1929 	 * Controller supports not aligned buffer but it should improve
1930 	 * performance.
1931 	 */
1932 	pdev->gadget.quirk_ep_out_aligned_size = true;
1933 
1934 	ret = cdnsp_gen_setup(pdev);
1935 	if (ret) {
1936 		dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1937 		goto free_setup;
1938 	}
1939 
1940 	ret = cdnsp_gadget_init_endpoints(pdev);
1941 	if (ret) {
1942 		dev_err(pdev->dev, "failed to initialize endpoints\n");
1943 		goto halt_pdev;
1944 	}
1945 
1946 	ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1947 	if (ret) {
1948 		dev_err(pdev->dev, "failed to register udc\n");
1949 		goto free_endpoints;
1950 	}
1951 
1952 	ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1953 					cdnsp_irq_handler,
1954 					cdnsp_thread_irq_handler, IRQF_SHARED,
1955 					dev_name(pdev->dev), pdev);
1956 	if (ret)
1957 		goto del_gadget;
1958 
1959 	return 0;
1960 
1961 del_gadget:
1962 	usb_del_gadget_udc(&pdev->gadget);
1963 free_endpoints:
1964 	cdnsp_gadget_free_endpoints(pdev);
1965 halt_pdev:
1966 	cdnsp_halt(pdev);
1967 	cdnsp_reset(pdev);
1968 	cdnsp_mem_cleanup(pdev);
1969 free_setup:
1970 	kfree(pdev->setup_buf);
1971 free_pdev:
1972 	kfree(pdev);
1973 
1974 	return ret;
1975 }
1976 
cdnsp_gadget_exit(struct cdns * cdns)1977 static void cdnsp_gadget_exit(struct cdns *cdns)
1978 {
1979 	struct cdnsp_device *pdev = cdns->gadget_dev;
1980 
1981 	devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1982 	pm_runtime_mark_last_busy(cdns->dev);
1983 	pm_runtime_put_autosuspend(cdns->dev);
1984 	usb_del_gadget_udc(&pdev->gadget);
1985 	cdnsp_gadget_free_endpoints(pdev);
1986 	cdnsp_mem_cleanup(pdev);
1987 	kfree(pdev);
1988 	cdns->gadget_dev = NULL;
1989 	cdns_drd_gadget_off(cdns);
1990 }
1991 
cdnsp_gadget_suspend(struct cdns * cdns,bool do_wakeup)1992 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1993 {
1994 	struct cdnsp_device *pdev = cdns->gadget_dev;
1995 	unsigned long flags;
1996 
1997 	if (pdev->link_state == XDEV_U3)
1998 		return 0;
1999 
2000 	spin_lock_irqsave(&pdev->lock, flags);
2001 	cdnsp_disconnect_gadget(pdev);
2002 	cdnsp_stop(pdev);
2003 	spin_unlock_irqrestore(&pdev->lock, flags);
2004 
2005 	return 0;
2006 }
2007 
cdnsp_gadget_resume(struct cdns * cdns,bool lost_power)2008 static int cdnsp_gadget_resume(struct cdns *cdns, bool lost_power)
2009 {
2010 	struct cdnsp_device *pdev = cdns->gadget_dev;
2011 	enum usb_device_speed max_speed;
2012 	unsigned long flags;
2013 	int ret;
2014 
2015 	if (!pdev->gadget_driver)
2016 		return 0;
2017 
2018 	spin_lock_irqsave(&pdev->lock, flags);
2019 	max_speed = pdev->gadget_driver->max_speed;
2020 
2021 	/* Limit speed if necessary. */
2022 	max_speed = min(max_speed, pdev->gadget.max_speed);
2023 
2024 	ret = cdnsp_run(pdev, max_speed);
2025 
2026 	if (pdev->link_state == XDEV_U3)
2027 		__cdnsp_gadget_wakeup(pdev);
2028 
2029 	spin_unlock_irqrestore(&pdev->lock, flags);
2030 
2031 	return ret;
2032 }
2033 
2034 /**
2035  * cdnsp_gadget_init - initialize device structure
2036  * @cdns: cdnsp instance
2037  *
2038  * This function initializes the gadget.
2039  */
cdnsp_gadget_init(struct cdns * cdns)2040 int cdnsp_gadget_init(struct cdns *cdns)
2041 {
2042 	struct cdns_role_driver *rdrv;
2043 
2044 	rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2045 	if (!rdrv)
2046 		return -ENOMEM;
2047 
2048 	rdrv->start	= __cdnsp_gadget_init;
2049 	rdrv->stop	= cdnsp_gadget_exit;
2050 	rdrv->suspend	= cdnsp_gadget_suspend;
2051 	rdrv->resume	= cdnsp_gadget_resume;
2052 	rdrv->state	= CDNS_ROLE_STATE_INACTIVE;
2053 	rdrv->name	= "gadget";
2054 	cdns->roles[USB_ROLE_DEVICE] = rdrv;
2055 
2056 	return 0;
2057 }
2058