1 /*
2  * cxd2099.c: Driver for the CXD2099AR Common Interface Controller
3  *
4  * Copyright (C) 2010-2011 Digital Devices GmbH
5  *
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 only, as published by the Free Software Foundation.
10  *
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA
22  * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/init.h>
30 #include <linux/i2c.h>
31 #include <linux/wait.h>
32 #include <linux/delay.h>
33 #include <linux/mutex.h>
34 #include <linux/io.h>
35 
36 #include "cxd2099.h"
37 
38 #define MAX_BUFFER_SIZE 248
39 
40 struct cxd {
41 	struct dvb_ca_en50221 en;
42 
43 	struct i2c_adapter *i2c;
44 	struct cxd2099_cfg cfg;
45 
46 	u8     regs[0x23];
47 	u8     lastaddress;
48 	u8     clk_reg_f;
49 	u8     clk_reg_b;
50 	int    mode;
51 	int    ready;
52 	int    dr;
53 	int    slot_stat;
54 
55 	u8     amem[1024];
56 	int    amem_read;
57 
58 	int    cammode;
59 	struct mutex lock;
60 };
61 
i2c_write_reg(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 data)62 static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
63 			 u8 reg, u8 data)
64 {
65 	u8 m[2] = {reg, data};
66 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
67 
68 	if (i2c_transfer(adapter, &msg, 1) != 1) {
69 		printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n",
70 		       reg, adr);
71 		return -1;
72 	}
73 	return 0;
74 }
75 
i2c_write(struct i2c_adapter * adapter,u8 adr,u8 * data,u8 len)76 static int i2c_write(struct i2c_adapter *adapter, u8 adr,
77 		     u8 *data, u8 len)
78 {
79 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
80 
81 	if (i2c_transfer(adapter, &msg, 1) != 1) {
82 		printk(KERN_ERR "Failed to write to I2C!\n");
83 		return -1;
84 	}
85 	return 0;
86 }
87 
i2c_read_reg(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 * val)88 static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
89 			u8 reg, u8 *val)
90 {
91 	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
92 				   .buf = &reg, .len = 1},
93 				  {.addr = adr, .flags = I2C_M_RD,
94 				   .buf = val, .len = 1} };
95 
96 	if (i2c_transfer(adapter, msgs, 2) != 2) {
97 		printk(KERN_ERR "error in i2c_read_reg\n");
98 		return -1;
99 	}
100 	return 0;
101 }
102 
i2c_read(struct i2c_adapter * adapter,u8 adr,u8 reg,u8 * data,u8 n)103 static int i2c_read(struct i2c_adapter *adapter, u8 adr,
104 		    u8 reg, u8 *data, u8 n)
105 {
106 	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
107 				 .buf = &reg, .len = 1},
108 				{.addr = adr, .flags = I2C_M_RD,
109 				 .buf = data, .len = n} };
110 
111 	if (i2c_transfer(adapter, msgs, 2) != 2) {
112 		printk(KERN_ERR "error in i2c_read\n");
113 		return -1;
114 	}
115 	return 0;
116 }
117 
read_block(struct cxd * ci,u8 adr,u8 * data,u8 n)118 static int read_block(struct cxd *ci, u8 adr, u8 *data, u8 n)
119 {
120 	int status;
121 
122 	status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
123 	if (!status) {
124 		ci->lastaddress = adr;
125 		status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, n);
126 	}
127 	return status;
128 }
129 
read_reg(struct cxd * ci,u8 reg,u8 * val)130 static int read_reg(struct cxd *ci, u8 reg, u8 *val)
131 {
132 	return read_block(ci, reg, val, 1);
133 }
134 
135 
read_pccard(struct cxd * ci,u16 address,u8 * data,u8 n)136 static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
137 {
138 	int status;
139 	u8 addr[3] = {2, address & 0xff, address >> 8};
140 
141 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
142 	if (!status)
143 		status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
144 	return status;
145 }
146 
write_pccard(struct cxd * ci,u16 address,u8 * data,u8 n)147 static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
148 {
149 	int status;
150 	u8 addr[3] = {2, address & 0xff, address >> 8};
151 
152 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
153 	if (!status) {
154 		u8 buf[256] = {3};
155 		memcpy(buf+1, data, n);
156 		status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
157 	}
158 	return status;
159 }
160 
read_io(struct cxd * ci,u16 address,u8 * val)161 static int read_io(struct cxd *ci, u16 address, u8 *val)
162 {
163 	int status;
164 	u8 addr[3] = {2, address & 0xff, address >> 8};
165 
166 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
167 	if (!status)
168 		status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
169 	return status;
170 }
171 
write_io(struct cxd * ci,u16 address,u8 val)172 static int write_io(struct cxd *ci, u16 address, u8 val)
173 {
174 	int status;
175 	u8 addr[3] = {2, address & 0xff, address >> 8};
176 	u8 buf[2] = {3, val};
177 
178 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
179 	if (!status)
180 		status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
181 	return status;
182 }
183 
184 #if 0
185 static int read_io_data(struct cxd *ci, u8 *data, u8 n)
186 {
187 	int status;
188 	u8 addr[3] = { 2, 0, 0 };
189 
190 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
191 	if (!status)
192 		status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
193 	return 0;
194 }
195 
196 static int write_io_data(struct cxd *ci, u8 *data, u8 n)
197 {
198 	int status;
199 	u8 addr[3] = {2, 0, 0};
200 
201 	status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
202 	if (!status) {
203 		u8 buf[256] = {3};
204 		memcpy(buf+1, data, n);
205 		status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
206 	}
207 	return 0;
208 }
209 #endif
210 
write_regm(struct cxd * ci,u8 reg,u8 val,u8 mask)211 static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
212 {
213 	int status;
214 
215 	status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
216 	if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
217 		status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
218 	ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
219 	if (!status) {
220 		ci->lastaddress = reg;
221 		status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
222 	}
223 	if (reg == 0x20)
224 		ci->regs[reg] &= 0x7f;
225 	return status;
226 }
227 
write_reg(struct cxd * ci,u8 reg,u8 val)228 static int write_reg(struct cxd *ci, u8 reg, u8 val)
229 {
230 	return write_regm(ci, reg, val, 0xff);
231 }
232 
233 #ifdef BUFFER_MODE
write_block(struct cxd * ci,u8 adr,u8 * data,int n)234 static int write_block(struct cxd *ci, u8 adr, u8 *data, int n)
235 {
236 	int status;
237 	u8 buf[256] = {1};
238 
239 	status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
240 	if (!status) {
241 		ci->lastaddress = adr;
242 		memcpy(buf + 1, data, n);
243 		status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
244 	}
245 	return status;
246 }
247 #endif
248 
set_mode(struct cxd * ci,int mode)249 static void set_mode(struct cxd *ci, int mode)
250 {
251 	if (mode == ci->mode)
252 		return;
253 
254 	switch (mode) {
255 	case 0x00: /* IO mem */
256 		write_regm(ci, 0x06, 0x00, 0x07);
257 		break;
258 	case 0x01: /* ATT mem */
259 		write_regm(ci, 0x06, 0x02, 0x07);
260 		break;
261 	default:
262 		break;
263 	}
264 	ci->mode = mode;
265 }
266 
cam_mode(struct cxd * ci,int mode)267 static void cam_mode(struct cxd *ci, int mode)
268 {
269 	if (mode == ci->cammode)
270 		return;
271 
272 	switch (mode) {
273 	case 0x00:
274 		write_regm(ci, 0x20, 0x80, 0x80);
275 		break;
276 	case 0x01:
277 #ifdef BUFFER_MODE
278 		if (!ci->en.read_data)
279 			return;
280 		printk(KERN_INFO "enable cam buffer mode\n");
281 		/* write_reg(ci, 0x0d, 0x00); */
282 		/* write_reg(ci, 0x0e, 0x01); */
283 		write_regm(ci, 0x08, 0x40, 0x40);
284 		/* read_reg(ci, 0x12, &dummy); */
285 		write_regm(ci, 0x08, 0x80, 0x80);
286 #endif
287 		break;
288 	default:
289 		break;
290 	}
291 	ci->cammode = mode;
292 }
293 
294 
295 
init(struct cxd * ci)296 static int init(struct cxd *ci)
297 {
298 	int status;
299 
300 	mutex_lock(&ci->lock);
301 	ci->mode = -1;
302 	do {
303 		status = write_reg(ci, 0x00, 0x00);
304 		if (status < 0)
305 			break;
306 		status = write_reg(ci, 0x01, 0x00);
307 		if (status < 0)
308 			break;
309 		status = write_reg(ci, 0x02, 0x10);
310 		if (status < 0)
311 			break;
312 		status = write_reg(ci, 0x03, 0x00);
313 		if (status < 0)
314 			break;
315 		status = write_reg(ci, 0x05, 0xFF);
316 		if (status < 0)
317 			break;
318 		status = write_reg(ci, 0x06, 0x1F);
319 		if (status < 0)
320 			break;
321 		status = write_reg(ci, 0x07, 0x1F);
322 		if (status < 0)
323 			break;
324 		status = write_reg(ci, 0x08, 0x28);
325 		if (status < 0)
326 			break;
327 		status = write_reg(ci, 0x14, 0x20);
328 		if (status < 0)
329 			break;
330 
331 #if 0
332 		status = write_reg(ci, 0x09, 0x4D); /* Input Mode C, BYPass Serial, TIVAL = low, MSB */
333 		if (status < 0)
334 			break;
335 #endif
336 		status = write_reg(ci, 0x0A, 0xA7); /* TOSTRT = 8, Mode B (gated clock), falling Edge, Serial, POL=HIGH, MSB */
337 		if (status < 0)
338 			break;
339 
340 		status = write_reg(ci, 0x0B, 0x33);
341 		if (status < 0)
342 			break;
343 		status = write_reg(ci, 0x0C, 0x33);
344 		if (status < 0)
345 			break;
346 
347 		status = write_regm(ci, 0x14, 0x00, 0x0F);
348 		if (status < 0)
349 			break;
350 		status = write_reg(ci, 0x15, ci->clk_reg_b);
351 		if (status < 0)
352 			break;
353 		status = write_regm(ci, 0x16, 0x00, 0x0F);
354 		if (status < 0)
355 			break;
356 		status = write_reg(ci, 0x17, ci->clk_reg_f);
357 		if (status < 0)
358 			break;
359 
360 		if (ci->cfg.clock_mode) {
361 			if (ci->cfg.polarity) {
362 				status = write_reg(ci, 0x09, 0x6f);
363 				if (status < 0)
364 					break;
365 			} else {
366 				status = write_reg(ci, 0x09, 0x6d);
367 				if (status < 0)
368 					break;
369 			}
370 			status = write_reg(ci, 0x20, 0x68);
371 			if (status < 0)
372 				break;
373 			status = write_reg(ci, 0x21, 0x00);
374 			if (status < 0)
375 				break;
376 			status = write_reg(ci, 0x22, 0x02);
377 			if (status < 0)
378 				break;
379 		} else {
380 			if (ci->cfg.polarity) {
381 				status = write_reg(ci, 0x09, 0x4f);
382 				if (status < 0)
383 					break;
384 			} else {
385 				status = write_reg(ci, 0x09, 0x4d);
386 				if (status < 0)
387 					break;
388 			}
389 
390 			status = write_reg(ci, 0x20, 0x28);
391 			if (status < 0)
392 				break;
393 			status = write_reg(ci, 0x21, 0x00);
394 			if (status < 0)
395 				break;
396 			status = write_reg(ci, 0x22, 0x07);
397 			if (status < 0)
398 				break;
399 		}
400 
401 		status = write_regm(ci, 0x20, 0x80, 0x80);
402 		if (status < 0)
403 			break;
404 		status = write_regm(ci, 0x03, 0x02, 0x02);
405 		if (status < 0)
406 			break;
407 		status = write_reg(ci, 0x01, 0x04);
408 		if (status < 0)
409 			break;
410 		status = write_reg(ci, 0x00, 0x31);
411 		if (status < 0)
412 			break;
413 
414 		/* Put TS in bypass */
415 		status = write_regm(ci, 0x09, 0x08, 0x08);
416 		if (status < 0)
417 			break;
418 		ci->cammode = -1;
419 		cam_mode(ci, 0);
420 	} while (0);
421 	mutex_unlock(&ci->lock);
422 
423 	return 0;
424 }
425 
read_attribute_mem(struct dvb_ca_en50221 * ca,int slot,int address)426 static int read_attribute_mem(struct dvb_ca_en50221 *ca,
427 			      int slot, int address)
428 {
429 	struct cxd *ci = ca->data;
430 #if 0
431 	if (ci->amem_read) {
432 		if (address <= 0 || address > 1024)
433 			return -EIO;
434 		return ci->amem[address];
435 	}
436 
437 	mutex_lock(&ci->lock);
438 	write_regm(ci, 0x06, 0x00, 0x05);
439 	read_pccard(ci, 0, &ci->amem[0], 128);
440 	read_pccard(ci, 128, &ci->amem[0], 128);
441 	read_pccard(ci, 256, &ci->amem[0], 128);
442 	read_pccard(ci, 384, &ci->amem[0], 128);
443 	write_regm(ci, 0x06, 0x05, 0x05);
444 	mutex_unlock(&ci->lock);
445 	return ci->amem[address];
446 #else
447 	u8 val;
448 	mutex_lock(&ci->lock);
449 	set_mode(ci, 1);
450 	read_pccard(ci, address, &val, 1);
451 	mutex_unlock(&ci->lock);
452 	/* printk(KERN_INFO "%02x:%02x\n", address,val); */
453 	return val;
454 #endif
455 }
456 
write_attribute_mem(struct dvb_ca_en50221 * ca,int slot,int address,u8 value)457 static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
458 			       int address, u8 value)
459 {
460 	struct cxd *ci = ca->data;
461 
462 	mutex_lock(&ci->lock);
463 	set_mode(ci, 1);
464 	write_pccard(ci, address, &value, 1);
465 	mutex_unlock(&ci->lock);
466 	return 0;
467 }
468 
read_cam_control(struct dvb_ca_en50221 * ca,int slot,u8 address)469 static int read_cam_control(struct dvb_ca_en50221 *ca,
470 			    int slot, u8 address)
471 {
472 	struct cxd *ci = ca->data;
473 	u8 val;
474 
475 	mutex_lock(&ci->lock);
476 	set_mode(ci, 0);
477 	read_io(ci, address, &val);
478 	mutex_unlock(&ci->lock);
479 	return val;
480 }
481 
write_cam_control(struct dvb_ca_en50221 * ca,int slot,u8 address,u8 value)482 static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
483 			     u8 address, u8 value)
484 {
485 	struct cxd *ci = ca->data;
486 
487 	mutex_lock(&ci->lock);
488 	set_mode(ci, 0);
489 	write_io(ci, address, value);
490 	mutex_unlock(&ci->lock);
491 	return 0;
492 }
493 
slot_reset(struct dvb_ca_en50221 * ca,int slot)494 static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
495 {
496 	struct cxd *ci = ca->data;
497 
498 	mutex_lock(&ci->lock);
499 #if 0
500 	write_reg(ci, 0x00, 0x21);
501 	write_reg(ci, 0x06, 0x1F);
502 	write_reg(ci, 0x00, 0x31);
503 #else
504 #if 0
505 	write_reg(ci, 0x06, 0x1F);
506 	write_reg(ci, 0x06, 0x2F);
507 #else
508 	cam_mode(ci, 0);
509 	write_reg(ci, 0x00, 0x21);
510 	write_reg(ci, 0x06, 0x1F);
511 	write_reg(ci, 0x00, 0x31);
512 	write_regm(ci, 0x20, 0x80, 0x80);
513 	write_reg(ci, 0x03, 0x02);
514 	ci->ready = 0;
515 #endif
516 #endif
517 	ci->mode = -1;
518 	{
519 		int i;
520 #if 0
521 		u8 val;
522 #endif
523 		for (i = 0; i < 100; i++) {
524 			msleep(10);
525 #if 0
526 			read_reg(ci, 0x06, &val);
527 			printk(KERN_INFO "%d:%02x\n", i, val);
528 			if (!(val&0x10))
529 				break;
530 #else
531 			if (ci->ready)
532 				break;
533 #endif
534 		}
535 	}
536 	mutex_unlock(&ci->lock);
537 	/* msleep(500); */
538 	return 0;
539 }
540 
slot_shutdown(struct dvb_ca_en50221 * ca,int slot)541 static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
542 {
543 	struct cxd *ci = ca->data;
544 
545 	printk(KERN_INFO "slot_shutdown\n");
546 	mutex_lock(&ci->lock);
547 	write_regm(ci, 0x09, 0x08, 0x08);
548 	write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
549 	write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
550 	ci->mode = -1;
551 	mutex_unlock(&ci->lock);
552 	return 0;
553 }
554 
slot_ts_enable(struct dvb_ca_en50221 * ca,int slot)555 static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
556 {
557 	struct cxd *ci = ca->data;
558 
559 	mutex_lock(&ci->lock);
560 	write_regm(ci, 0x09, 0x00, 0x08);
561 	set_mode(ci, 0);
562 #ifdef BUFFER_MODE
563 	cam_mode(ci, 1);
564 #endif
565 	mutex_unlock(&ci->lock);
566 	return 0;
567 }
568 
569 
campoll(struct cxd * ci)570 static int campoll(struct cxd *ci)
571 {
572 	u8 istat;
573 
574 	read_reg(ci, 0x04, &istat);
575 	if (!istat)
576 		return 0;
577 	write_reg(ci, 0x05, istat);
578 
579 	if (istat&0x40) {
580 		ci->dr = 1;
581 		printk(KERN_INFO "DR\n");
582 	}
583 	if (istat&0x20)
584 		printk(KERN_INFO "WC\n");
585 
586 	if (istat&2) {
587 		u8 slotstat;
588 
589 		read_reg(ci, 0x01, &slotstat);
590 		if (!(2&slotstat)) {
591 			if (!ci->slot_stat) {
592 				ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT;
593 				write_regm(ci, 0x03, 0x08, 0x08);
594 			}
595 
596 		} else {
597 			if (ci->slot_stat) {
598 				ci->slot_stat = 0;
599 				write_regm(ci, 0x03, 0x00, 0x08);
600 				printk(KERN_INFO "NO CAM\n");
601 				ci->ready = 0;
602 			}
603 		}
604 		if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
605 			ci->ready = 1;
606 			ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
607 		}
608 	}
609 	return 0;
610 }
611 
612 
poll_slot_status(struct dvb_ca_en50221 * ca,int slot,int open)613 static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
614 {
615 	struct cxd *ci = ca->data;
616 	u8 slotstat;
617 
618 	mutex_lock(&ci->lock);
619 	campoll(ci);
620 	read_reg(ci, 0x01, &slotstat);
621 	mutex_unlock(&ci->lock);
622 
623 	return ci->slot_stat;
624 }
625 
626 #ifdef BUFFER_MODE
read_data(struct dvb_ca_en50221 * ca,int slot,u8 * ebuf,int ecount)627 static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
628 {
629 	struct cxd *ci = ca->data;
630 	u8 msb, lsb;
631 	u16 len;
632 
633 	mutex_lock(&ci->lock);
634 	campoll(ci);
635 	mutex_unlock(&ci->lock);
636 
637 	printk(KERN_INFO "read_data\n");
638 	if (!ci->dr)
639 		return 0;
640 
641 	mutex_lock(&ci->lock);
642 	read_reg(ci, 0x0f, &msb);
643 	read_reg(ci, 0x10, &lsb);
644 	len = (msb<<8)|lsb;
645 	read_block(ci, 0x12, ebuf, len);
646 	ci->dr = 0;
647 	mutex_unlock(&ci->lock);
648 
649 	return len;
650 }
651 
write_data(struct dvb_ca_en50221 * ca,int slot,u8 * ebuf,int ecount)652 static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
653 {
654 	struct cxd *ci = ca->data;
655 
656 	mutex_lock(&ci->lock);
657 	printk(kern_INFO "write_data %d\n", ecount);
658 	write_reg(ci, 0x0d, ecount>>8);
659 	write_reg(ci, 0x0e, ecount&0xff);
660 	write_block(ci, 0x11, ebuf, ecount);
661 	mutex_unlock(&ci->lock);
662 	return ecount;
663 }
664 #endif
665 
666 static struct dvb_ca_en50221 en_templ = {
667 	.read_attribute_mem  = read_attribute_mem,
668 	.write_attribute_mem = write_attribute_mem,
669 	.read_cam_control    = read_cam_control,
670 	.write_cam_control   = write_cam_control,
671 	.slot_reset          = slot_reset,
672 	.slot_shutdown       = slot_shutdown,
673 	.slot_ts_enable      = slot_ts_enable,
674 	.poll_slot_status    = poll_slot_status,
675 #ifdef BUFFER_MODE
676 	.read_data           = read_data,
677 	.write_data          = write_data,
678 #endif
679 
680 };
681 
cxd2099_attach(struct cxd2099_cfg * cfg,void * priv,struct i2c_adapter * i2c)682 struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
683 				      void *priv,
684 				      struct i2c_adapter *i2c)
685 {
686 	struct cxd *ci = 0;
687 	u8 val;
688 
689 	if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
690 		printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr);
691 		return 0;
692 	}
693 
694 	ci = kmalloc(sizeof(struct cxd), GFP_KERNEL);
695 	if (!ci)
696 		return 0;
697 	memset(ci, 0, sizeof(*ci));
698 
699 	mutex_init(&ci->lock);
700 	memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
701 	ci->i2c = i2c;
702 	ci->lastaddress = 0xff;
703 	ci->clk_reg_b = 0x4a;
704 	ci->clk_reg_f = 0x1b;
705 
706 	memcpy(&ci->en, &en_templ, sizeof(en_templ));
707 	ci->en.data = ci;
708 	init(ci);
709 	printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr);
710 	return &ci->en;
711 }
712 EXPORT_SYMBOL(cxd2099_attach);
713 
714 MODULE_DESCRIPTION("cxd2099");
715 MODULE_AUTHOR("Ralph Metzler");
716 MODULE_LICENSE("GPL");
717