1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES 4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27
28 /*
29 * Location of the first zone of superblock logging zone pairs.
30 *
31 * - primary superblock: 0B (zone 0)
32 * - first copy: 512G (zone starting at that offset)
33 * - second copy: 4T (zone starting at that offset)
34 */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G)
38
39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44
45 /*
46 * Minimum of active zones we need:
47 *
48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50 * - 1 zone for tree-log dedicated block group
51 * - 1 zone for relocation
52 */
53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5)
54
55 /*
56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58 * We do not expect the zone size to become larger than 8GiB or smaller than
59 * 4MiB in the near future.
60 */
61 #define BTRFS_MAX_ZONE_SIZE SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE SZ_4M
63
64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68
sb_zone_is_full(const struct blk_zone * zone)69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71 return (zone->cond == BLK_ZONE_COND_FULL) ||
72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77 struct blk_zone *zones = data;
78
79 memcpy(&zones[idx], zone, sizeof(*zone));
80
81 return 0;
82 }
83
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 u64 *wp_ret)
86 {
87 bool empty[BTRFS_NR_SB_LOG_ZONES];
88 bool full[BTRFS_NR_SB_LOG_ZONES];
89 sector_t sector;
90
91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 full[i] = sb_zone_is_full(&zones[i]);
95 }
96
97 /*
98 * Possible states of log buffer zones
99 *
100 * Empty[0] In use[0] Full[0]
101 * Empty[1] * 0 1
102 * In use[1] x x 1
103 * Full[1] 0 0 C
104 *
105 * Log position:
106 * *: Special case, no superblock is written
107 * 0: Use write pointer of zones[0]
108 * 1: Use write pointer of zones[1]
109 * C: Compare super blocks from zones[0] and zones[1], use the latest
110 * one determined by generation
111 * x: Invalid state
112 */
113
114 if (empty[0] && empty[1]) {
115 /* Special case to distinguish no superblock to read */
116 *wp_ret = zones[0].start << SECTOR_SHIFT;
117 return -ENOENT;
118 } else if (full[0] && full[1]) {
119 /* Compare two super blocks */
120 struct address_space *mapping = bdev->bd_mapping;
121 struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123
124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127 BTRFS_SUPER_INFO_SIZE;
128
129 page[i] = read_cache_page_gfp(mapping,
130 bytenr >> PAGE_SHIFT, GFP_NOFS);
131 if (IS_ERR(page[i])) {
132 if (i == 1)
133 btrfs_release_disk_super(super[0]);
134 return PTR_ERR(page[i]);
135 }
136 super[i] = page_address(page[i]);
137 }
138
139 if (btrfs_super_generation(super[0]) >
140 btrfs_super_generation(super[1]))
141 sector = zones[1].start;
142 else
143 sector = zones[0].start;
144
145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 btrfs_release_disk_super(super[i]);
147 } else if (!full[0] && (empty[1] || full[1])) {
148 sector = zones[0].wp;
149 } else if (full[0]) {
150 sector = zones[1].wp;
151 } else {
152 return -EUCLEAN;
153 }
154 *wp_ret = sector << SECTOR_SHIFT;
155 return 0;
156 }
157
158 /*
159 * Get the first zone number of the superblock mirror
160 */
sb_zone_number(int shift,int mirror)161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163 u64 zone = U64_MAX;
164
165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 switch (mirror) {
167 case 0: zone = 0; break;
168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 }
171
172 ASSERT(zone <= U32_MAX);
173
174 return (u32)zone;
175 }
176
zone_start_sector(u32 zone_number,struct block_device * bdev)177 static inline sector_t zone_start_sector(u32 zone_number,
178 struct block_device *bdev)
179 {
180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)183 static inline u64 zone_start_physical(u32 zone_number,
184 struct btrfs_zoned_device_info *zone_info)
185 {
186 return (u64)zone_number << zone_info->zone_size_shift;
187 }
188
189 /*
190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191 * device into static sized chunks and fake a conventional zone on each of
192 * them.
193 */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 struct blk_zone *zones, unsigned int nr_zones)
196 {
197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 unsigned int i;
200
201 pos >>= SECTOR_SHIFT;
202 for (i = 0; i < nr_zones; i++) {
203 zones[i].start = i * zone_sectors + pos;
204 zones[i].len = zone_sectors;
205 zones[i].capacity = zone_sectors;
206 zones[i].wp = zones[i].start + zone_sectors;
207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 zones[i].cond = BLK_ZONE_COND_NOT_WP;
209
210 if (zones[i].wp >= bdev_size) {
211 i++;
212 break;
213 }
214 }
215
216 return i;
217 }
218
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 struct blk_zone *zones, unsigned int *nr_zones)
221 {
222 struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 int ret;
224
225 if (!*nr_zones)
226 return 0;
227
228 if (!bdev_is_zoned(device->bdev)) {
229 ret = emulate_report_zones(device, pos, zones, *nr_zones);
230 *nr_zones = ret;
231 return 0;
232 }
233
234 /* Check cache */
235 if (zinfo->zone_cache) {
236 unsigned int i;
237 u32 zno;
238
239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 zno = pos >> zinfo->zone_size_shift;
241 /*
242 * We cannot report zones beyond the zone end. So, it is OK to
243 * cap *nr_zones to at the end.
244 */
245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246
247 for (i = 0; i < *nr_zones; i++) {
248 struct blk_zone *zone_info;
249
250 zone_info = &zinfo->zone_cache[zno + i];
251 if (!zone_info->len)
252 break;
253 }
254
255 if (i == *nr_zones) {
256 /* Cache hit on all the zones */
257 memcpy(zones, zinfo->zone_cache + zno,
258 sizeof(*zinfo->zone_cache) * *nr_zones);
259 return 0;
260 }
261 }
262
263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 copy_zone_info_cb, zones);
265 if (ret < 0) {
266 btrfs_err_in_rcu(device->fs_info,
267 "zoned: failed to read zone %llu on %s (devid %llu)",
268 pos, rcu_str_deref(device->name),
269 device->devid);
270 return ret;
271 }
272 *nr_zones = ret;
273 if (!ret)
274 return -EIO;
275
276 /* Populate cache */
277 if (zinfo->zone_cache) {
278 u32 zno = pos >> zinfo->zone_size_shift;
279
280 memcpy(zinfo->zone_cache + zno, zones,
281 sizeof(*zinfo->zone_cache) * *nr_zones);
282 }
283
284 return 0;
285 }
286
287 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
289 {
290 BTRFS_PATH_AUTO_FREE(path);
291 struct btrfs_root *root = fs_info->dev_root;
292 struct btrfs_key key;
293 struct extent_buffer *leaf;
294 struct btrfs_dev_extent *dext;
295 int ret = 0;
296
297 key.objectid = 1;
298 key.type = BTRFS_DEV_EXTENT_KEY;
299 key.offset = 0;
300
301 path = btrfs_alloc_path();
302 if (!path)
303 return -ENOMEM;
304
305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306 if (ret < 0)
307 return ret;
308
309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310 ret = btrfs_next_leaf(root, path);
311 if (ret < 0)
312 return ret;
313 /* No dev extents at all? Not good */
314 if (ret > 0)
315 return -EUCLEAN;
316 }
317
318 leaf = path->nodes[0];
319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
321 return 0;
322 }
323
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
325 {
326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
327 struct btrfs_device *device;
328 int ret = 0;
329
330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
331 if (!btrfs_fs_incompat(fs_info, ZONED))
332 return 0;
333
334 mutex_lock(&fs_devices->device_list_mutex);
335 list_for_each_entry(device, &fs_devices->devices, dev_list) {
336 /* We can skip reading of zone info for missing devices */
337 if (!device->bdev)
338 continue;
339
340 ret = btrfs_get_dev_zone_info(device, true);
341 if (ret)
342 break;
343 }
344 mutex_unlock(&fs_devices->device_list_mutex);
345
346 return ret;
347 }
348
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
350 {
351 struct btrfs_fs_info *fs_info = device->fs_info;
352 struct btrfs_zoned_device_info *zone_info = NULL;
353 struct block_device *bdev = device->bdev;
354 unsigned int max_active_zones;
355 unsigned int nactive;
356 sector_t nr_sectors;
357 sector_t sector = 0;
358 struct blk_zone *zones = NULL;
359 unsigned int i, nreported = 0, nr_zones;
360 sector_t zone_sectors;
361 char *model, *emulated;
362 int ret;
363
364 /*
365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 * yet be set.
367 */
368 if (!btrfs_fs_incompat(fs_info, ZONED))
369 return 0;
370
371 if (device->zone_info)
372 return 0;
373
374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 if (!zone_info)
376 return -ENOMEM;
377
378 device->zone_info = zone_info;
379
380 if (!bdev_is_zoned(bdev)) {
381 if (!fs_info->zone_size) {
382 ret = calculate_emulated_zone_size(fs_info);
383 if (ret)
384 goto out;
385 }
386
387 ASSERT(fs_info->zone_size);
388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 } else {
390 zone_sectors = bdev_zone_sectors(bdev);
391 }
392
393 ASSERT(is_power_of_two_u64(zone_sectors));
394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
395
396 /* We reject devices with a zone size larger than 8GB */
397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
398 btrfs_err_in_rcu(fs_info,
399 "zoned: %s: zone size %llu larger than supported maximum %llu",
400 rcu_str_deref(device->name),
401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
402 ret = -EINVAL;
403 goto out;
404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
405 btrfs_err_in_rcu(fs_info,
406 "zoned: %s: zone size %llu smaller than supported minimum %u",
407 rcu_str_deref(device->name),
408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
409 ret = -EINVAL;
410 goto out;
411 }
412
413 nr_sectors = bdev_nr_sectors(bdev);
414 zone_info->zone_size_shift = ilog2(zone_info->zone_size);
415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
416 if (!IS_ALIGNED(nr_sectors, zone_sectors))
417 zone_info->nr_zones++;
418
419 max_active_zones = bdev_max_active_zones(bdev);
420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
421 btrfs_err_in_rcu(fs_info,
422 "zoned: %s: max active zones %u is too small, need at least %u active zones",
423 rcu_str_deref(device->name), max_active_zones,
424 BTRFS_MIN_ACTIVE_ZONES);
425 ret = -EINVAL;
426 goto out;
427 }
428 zone_info->max_active_zones = max_active_zones;
429
430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 if (!zone_info->seq_zones) {
432 ret = -ENOMEM;
433 goto out;
434 }
435
436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 if (!zone_info->empty_zones) {
438 ret = -ENOMEM;
439 goto out;
440 }
441
442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 if (!zone_info->active_zones) {
444 ret = -ENOMEM;
445 goto out;
446 }
447
448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
449 if (!zones) {
450 ret = -ENOMEM;
451 goto out;
452 }
453
454 /*
455 * Enable zone cache only for a zoned device. On a non-zoned device, we
456 * fill the zone info with emulated CONVENTIONAL zones, so no need to
457 * use the cache.
458 */
459 if (populate_cache && bdev_is_zoned(device->bdev)) {
460 zone_info->zone_cache = vcalloc(zone_info->nr_zones,
461 sizeof(struct blk_zone));
462 if (!zone_info->zone_cache) {
463 btrfs_err_in_rcu(device->fs_info,
464 "zoned: failed to allocate zone cache for %s",
465 rcu_str_deref(device->name));
466 ret = -ENOMEM;
467 goto out;
468 }
469 }
470
471 /* Get zones type */
472 nactive = 0;
473 while (sector < nr_sectors) {
474 nr_zones = BTRFS_REPORT_NR_ZONES;
475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
476 &nr_zones);
477 if (ret)
478 goto out;
479
480 for (i = 0; i < nr_zones; i++) {
481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
482 __set_bit(nreported, zone_info->seq_zones);
483 switch (zones[i].cond) {
484 case BLK_ZONE_COND_EMPTY:
485 __set_bit(nreported, zone_info->empty_zones);
486 break;
487 case BLK_ZONE_COND_IMP_OPEN:
488 case BLK_ZONE_COND_EXP_OPEN:
489 case BLK_ZONE_COND_CLOSED:
490 __set_bit(nreported, zone_info->active_zones);
491 nactive++;
492 break;
493 }
494 nreported++;
495 }
496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
497 }
498
499 if (nreported != zone_info->nr_zones) {
500 btrfs_err_in_rcu(device->fs_info,
501 "inconsistent number of zones on %s (%u/%u)",
502 rcu_str_deref(device->name), nreported,
503 zone_info->nr_zones);
504 ret = -EIO;
505 goto out;
506 }
507
508 if (max_active_zones) {
509 if (nactive > max_active_zones) {
510 btrfs_err_in_rcu(device->fs_info,
511 "zoned: %u active zones on %s exceeds max_active_zones %u",
512 nactive, rcu_str_deref(device->name),
513 max_active_zones);
514 ret = -EIO;
515 goto out;
516 }
517 atomic_set(&zone_info->active_zones_left,
518 max_active_zones - nactive);
519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
520 }
521
522 /* Validate superblock log */
523 nr_zones = BTRFS_NR_SB_LOG_ZONES;
524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
525 u32 sb_zone;
526 u64 sb_wp;
527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
528
529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
530 if (sb_zone + 1 >= zone_info->nr_zones)
531 continue;
532
533 ret = btrfs_get_dev_zones(device,
534 zone_start_physical(sb_zone, zone_info),
535 &zone_info->sb_zones[sb_pos],
536 &nr_zones);
537 if (ret)
538 goto out;
539
540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
541 btrfs_err_in_rcu(device->fs_info,
542 "zoned: failed to read super block log zone info at devid %llu zone %u",
543 device->devid, sb_zone);
544 ret = -EUCLEAN;
545 goto out;
546 }
547
548 /*
549 * If zones[0] is conventional, always use the beginning of the
550 * zone to record superblock. No need to validate in that case.
551 */
552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
553 BLK_ZONE_TYPE_CONVENTIONAL)
554 continue;
555
556 ret = sb_write_pointer(device->bdev,
557 &zone_info->sb_zones[sb_pos], &sb_wp);
558 if (ret != -ENOENT && ret) {
559 btrfs_err_in_rcu(device->fs_info,
560 "zoned: super block log zone corrupted devid %llu zone %u",
561 device->devid, sb_zone);
562 ret = -EUCLEAN;
563 goto out;
564 }
565 }
566
567
568 kvfree(zones);
569
570 if (bdev_is_zoned(bdev)) {
571 model = "host-managed zoned";
572 emulated = "";
573 } else {
574 model = "regular";
575 emulated = "emulated ";
576 }
577
578 btrfs_info_in_rcu(fs_info,
579 "%s block device %s, %u %szones of %llu bytes",
580 model, rcu_str_deref(device->name), zone_info->nr_zones,
581 emulated, zone_info->zone_size);
582
583 return 0;
584
585 out:
586 kvfree(zones);
587 btrfs_destroy_dev_zone_info(device);
588 return ret;
589 }
590
btrfs_destroy_dev_zone_info(struct btrfs_device * device)591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
592 {
593 struct btrfs_zoned_device_info *zone_info = device->zone_info;
594
595 if (!zone_info)
596 return;
597
598 bitmap_free(zone_info->active_zones);
599 bitmap_free(zone_info->seq_zones);
600 bitmap_free(zone_info->empty_zones);
601 vfree(zone_info->zone_cache);
602 kfree(zone_info);
603 device->zone_info = NULL;
604 }
605
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
607 {
608 struct btrfs_zoned_device_info *zone_info;
609
610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
611 if (!zone_info)
612 return NULL;
613
614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
615 if (!zone_info->seq_zones)
616 goto out;
617
618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
619 zone_info->nr_zones);
620
621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622 if (!zone_info->empty_zones)
623 goto out;
624
625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
626 zone_info->nr_zones);
627
628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629 if (!zone_info->active_zones)
630 goto out;
631
632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
633 zone_info->nr_zones);
634 zone_info->zone_cache = NULL;
635
636 return zone_info;
637
638 out:
639 bitmap_free(zone_info->seq_zones);
640 bitmap_free(zone_info->empty_zones);
641 bitmap_free(zone_info->active_zones);
642 kfree(zone_info);
643 return NULL;
644 }
645
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
647 {
648 unsigned int nr_zones = 1;
649 int ret;
650
651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
652 if (ret != 0 || !nr_zones)
653 return ret ? ret : -EIO;
654
655 return 0;
656 }
657
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
659 {
660 struct btrfs_device *device;
661
662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
663 if (device->bdev && bdev_is_zoned(device->bdev)) {
664 btrfs_err(fs_info,
665 "zoned: mode not enabled but zoned device found: %pg",
666 device->bdev);
667 return -EINVAL;
668 }
669 }
670
671 return 0;
672 }
673
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
675 {
676 struct queue_limits *lim = &fs_info->limits;
677 struct btrfs_device *device;
678 u64 zone_size = 0;
679 int ret;
680
681 /*
682 * Host-Managed devices can't be used without the ZONED flag. With the
683 * ZONED all devices can be used, using zone emulation if required.
684 */
685 if (!btrfs_fs_incompat(fs_info, ZONED))
686 return btrfs_check_for_zoned_device(fs_info);
687
688 blk_set_stacking_limits(lim);
689
690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 struct btrfs_zoned_device_info *zone_info = device->zone_info;
692
693 if (!device->bdev)
694 continue;
695
696 if (!zone_size) {
697 zone_size = zone_info->zone_size;
698 } else if (zone_info->zone_size != zone_size) {
699 btrfs_err(fs_info,
700 "zoned: unequal block device zone sizes: have %llu found %llu",
701 zone_info->zone_size, zone_size);
702 return -EINVAL;
703 }
704
705 /*
706 * With the zoned emulation, we can have non-zoned device on the
707 * zoned mode. In this case, we don't have a valid max zone
708 * append size.
709 */
710 if (bdev_is_zoned(device->bdev))
711 blk_stack_limits(lim, bdev_limits(device->bdev), 0);
712 }
713
714 ret = blk_validate_limits(lim);
715 if (ret) {
716 btrfs_err(fs_info, "zoned: failed to validate queue limits");
717 return ret;
718 }
719
720 /*
721 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
722 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
723 * check the alignment here.
724 */
725 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
726 btrfs_err(fs_info,
727 "zoned: zone size %llu not aligned to stripe %u",
728 zone_size, BTRFS_STRIPE_LEN);
729 return -EINVAL;
730 }
731
732 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
733 btrfs_err(fs_info, "zoned: mixed block groups not supported");
734 return -EINVAL;
735 }
736
737 fs_info->zone_size = zone_size;
738 /*
739 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
740 * Technically, we can have multiple pages per segment. But, since
741 * we add the pages one by one to a bio, and cannot increase the
742 * metadata reservation even if it increases the number of extents, it
743 * is safe to stick with the limit.
744 */
745 fs_info->max_zone_append_size = ALIGN_DOWN(
746 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
747 (u64)lim->max_sectors << SECTOR_SHIFT,
748 (u64)lim->max_segments << PAGE_SHIFT),
749 fs_info->sectorsize);
750 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
751
752 fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
753 fs_info->max_zone_append_size);
754
755 /*
756 * Check mount options here, because we might change fs_info->zoned
757 * from fs_info->zone_size.
758 */
759 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
760 if (ret)
761 return ret;
762
763 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
764 return 0;
765 }
766
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)767 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
768 unsigned long long *mount_opt)
769 {
770 if (!btrfs_is_zoned(info))
771 return 0;
772
773 /*
774 * Space cache writing is not COWed. Disable that to avoid write errors
775 * in sequential zones.
776 */
777 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
778 btrfs_err(info, "zoned: space cache v1 is not supported");
779 return -EINVAL;
780 }
781
782 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
783 btrfs_err(info, "zoned: NODATACOW not supported");
784 return -EINVAL;
785 }
786
787 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
788 btrfs_info(info,
789 "zoned: async discard ignored and disabled for zoned mode");
790 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
791 }
792
793 return 0;
794 }
795
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)796 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
797 int rw, u64 *bytenr_ret)
798 {
799 u64 wp;
800 int ret;
801
802 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
803 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
804 return 0;
805 }
806
807 ret = sb_write_pointer(bdev, zones, &wp);
808 if (ret != -ENOENT && ret < 0)
809 return ret;
810
811 if (rw == WRITE) {
812 struct blk_zone *reset = NULL;
813
814 if (wp == zones[0].start << SECTOR_SHIFT)
815 reset = &zones[0];
816 else if (wp == zones[1].start << SECTOR_SHIFT)
817 reset = &zones[1];
818
819 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
820 unsigned int nofs_flags;
821
822 ASSERT(sb_zone_is_full(reset));
823
824 nofs_flags = memalloc_nofs_save();
825 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
826 reset->start, reset->len);
827 memalloc_nofs_restore(nofs_flags);
828 if (ret)
829 return ret;
830
831 reset->cond = BLK_ZONE_COND_EMPTY;
832 reset->wp = reset->start;
833 }
834 } else if (ret != -ENOENT) {
835 /*
836 * For READ, we want the previous one. Move write pointer to
837 * the end of a zone, if it is at the head of a zone.
838 */
839 u64 zone_end = 0;
840
841 if (wp == zones[0].start << SECTOR_SHIFT)
842 zone_end = zones[1].start + zones[1].capacity;
843 else if (wp == zones[1].start << SECTOR_SHIFT)
844 zone_end = zones[0].start + zones[0].capacity;
845 if (zone_end)
846 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
847 BTRFS_SUPER_INFO_SIZE);
848
849 wp -= BTRFS_SUPER_INFO_SIZE;
850 }
851
852 *bytenr_ret = wp;
853 return 0;
854
855 }
856
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)857 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
858 u64 *bytenr_ret)
859 {
860 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
861 sector_t zone_sectors;
862 u32 sb_zone;
863 int ret;
864 u8 zone_sectors_shift;
865 sector_t nr_sectors;
866 u32 nr_zones;
867
868 if (!bdev_is_zoned(bdev)) {
869 *bytenr_ret = btrfs_sb_offset(mirror);
870 return 0;
871 }
872
873 ASSERT(rw == READ || rw == WRITE);
874
875 zone_sectors = bdev_zone_sectors(bdev);
876 if (!is_power_of_2(zone_sectors))
877 return -EINVAL;
878 zone_sectors_shift = ilog2(zone_sectors);
879 nr_sectors = bdev_nr_sectors(bdev);
880 nr_zones = nr_sectors >> zone_sectors_shift;
881
882 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
883 if (sb_zone + 1 >= nr_zones)
884 return -ENOENT;
885
886 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
887 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
888 zones);
889 if (ret < 0)
890 return ret;
891 if (ret != BTRFS_NR_SB_LOG_ZONES)
892 return -EIO;
893
894 return sb_log_location(bdev, zones, rw, bytenr_ret);
895 }
896
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)897 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
898 u64 *bytenr_ret)
899 {
900 struct btrfs_zoned_device_info *zinfo = device->zone_info;
901 u32 zone_num;
902
903 /*
904 * For a zoned filesystem on a non-zoned block device, use the same
905 * super block locations as regular filesystem. Doing so, the super
906 * block can always be retrieved and the zoned flag of the volume
907 * detected from the super block information.
908 */
909 if (!bdev_is_zoned(device->bdev)) {
910 *bytenr_ret = btrfs_sb_offset(mirror);
911 return 0;
912 }
913
914 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
915 if (zone_num + 1 >= zinfo->nr_zones)
916 return -ENOENT;
917
918 return sb_log_location(device->bdev,
919 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
920 rw, bytenr_ret);
921 }
922
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)923 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
924 int mirror)
925 {
926 u32 zone_num;
927
928 if (!zinfo)
929 return false;
930
931 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
932 if (zone_num + 1 >= zinfo->nr_zones)
933 return false;
934
935 if (!test_bit(zone_num, zinfo->seq_zones))
936 return false;
937
938 return true;
939 }
940
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)941 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
942 {
943 struct btrfs_zoned_device_info *zinfo = device->zone_info;
944 struct blk_zone *zone;
945 int i;
946
947 if (!is_sb_log_zone(zinfo, mirror))
948 return 0;
949
950 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
951 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
952 /* Advance the next zone */
953 if (zone->cond == BLK_ZONE_COND_FULL) {
954 zone++;
955 continue;
956 }
957
958 if (zone->cond == BLK_ZONE_COND_EMPTY)
959 zone->cond = BLK_ZONE_COND_IMP_OPEN;
960
961 zone->wp += SUPER_INFO_SECTORS;
962
963 if (sb_zone_is_full(zone)) {
964 /*
965 * No room left to write new superblock. Since
966 * superblock is written with REQ_SYNC, it is safe to
967 * finish the zone now.
968 *
969 * If the write pointer is exactly at the capacity,
970 * explicit ZONE_FINISH is not necessary.
971 */
972 if (zone->wp != zone->start + zone->capacity) {
973 unsigned int nofs_flags;
974 int ret;
975
976 nofs_flags = memalloc_nofs_save();
977 ret = blkdev_zone_mgmt(device->bdev,
978 REQ_OP_ZONE_FINISH, zone->start,
979 zone->len);
980 memalloc_nofs_restore(nofs_flags);
981 if (ret)
982 return ret;
983 }
984
985 zone->wp = zone->start + zone->len;
986 zone->cond = BLK_ZONE_COND_FULL;
987 }
988 return 0;
989 }
990
991 /* All the zones are FULL. Should not reach here. */
992 ASSERT(0);
993 return -EIO;
994 }
995
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)996 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
997 {
998 unsigned int nofs_flags;
999 sector_t zone_sectors;
1000 sector_t nr_sectors;
1001 u8 zone_sectors_shift;
1002 u32 sb_zone;
1003 u32 nr_zones;
1004 int ret;
1005
1006 zone_sectors = bdev_zone_sectors(bdev);
1007 zone_sectors_shift = ilog2(zone_sectors);
1008 nr_sectors = bdev_nr_sectors(bdev);
1009 nr_zones = nr_sectors >> zone_sectors_shift;
1010
1011 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012 if (sb_zone + 1 >= nr_zones)
1013 return -ENOENT;
1014
1015 nofs_flags = memalloc_nofs_save();
1016 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1017 zone_start_sector(sb_zone, bdev),
1018 zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1019 memalloc_nofs_restore(nofs_flags);
1020 return ret;
1021 }
1022
1023 /*
1024 * Find allocatable zones within a given region.
1025 *
1026 * @device: the device to allocate a region on
1027 * @hole_start: the position of the hole to allocate the region
1028 * @num_bytes: size of wanted region
1029 * @hole_end: the end of the hole
1030 * @return: position of allocatable zones
1031 *
1032 * Allocatable region should not contain any superblock locations.
1033 */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1034 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1035 u64 hole_end, u64 num_bytes)
1036 {
1037 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1038 const u8 shift = zinfo->zone_size_shift;
1039 u64 nzones = num_bytes >> shift;
1040 u64 pos = hole_start;
1041 u64 begin, end;
1042 bool have_sb;
1043 int i;
1044
1045 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1046 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1047
1048 while (pos < hole_end) {
1049 begin = pos >> shift;
1050 end = begin + nzones;
1051
1052 if (end > zinfo->nr_zones)
1053 return hole_end;
1054
1055 /* Check if zones in the region are all empty */
1056 if (btrfs_dev_is_sequential(device, pos) &&
1057 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1058 pos += zinfo->zone_size;
1059 continue;
1060 }
1061
1062 have_sb = false;
1063 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1064 u32 sb_zone;
1065 u64 sb_pos;
1066
1067 sb_zone = sb_zone_number(shift, i);
1068 if (!(end <= sb_zone ||
1069 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1070 have_sb = true;
1071 pos = zone_start_physical(
1072 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1073 break;
1074 }
1075
1076 /* We also need to exclude regular superblock positions */
1077 sb_pos = btrfs_sb_offset(i);
1078 if (!(pos + num_bytes <= sb_pos ||
1079 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1080 have_sb = true;
1081 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1082 zinfo->zone_size);
1083 break;
1084 }
1085 }
1086 if (!have_sb)
1087 break;
1088 }
1089
1090 return pos;
1091 }
1092
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1093 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1094 {
1095 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1096 unsigned int zno = (pos >> zone_info->zone_size_shift);
1097
1098 /* We can use any number of zones */
1099 if (zone_info->max_active_zones == 0)
1100 return true;
1101
1102 if (!test_bit(zno, zone_info->active_zones)) {
1103 /* Active zone left? */
1104 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1105 return false;
1106 if (test_and_set_bit(zno, zone_info->active_zones)) {
1107 /* Someone already set the bit */
1108 atomic_inc(&zone_info->active_zones_left);
1109 }
1110 }
1111
1112 return true;
1113 }
1114
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1115 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1116 {
1117 struct btrfs_zoned_device_info *zone_info = device->zone_info;
1118 unsigned int zno = (pos >> zone_info->zone_size_shift);
1119
1120 /* We can use any number of zones */
1121 if (zone_info->max_active_zones == 0)
1122 return;
1123
1124 if (test_and_clear_bit(zno, zone_info->active_zones))
1125 atomic_inc(&zone_info->active_zones_left);
1126 }
1127
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1128 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1129 u64 length, u64 *bytes)
1130 {
1131 unsigned int nofs_flags;
1132 int ret;
1133
1134 *bytes = 0;
1135 nofs_flags = memalloc_nofs_save();
1136 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1137 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1138 memalloc_nofs_restore(nofs_flags);
1139 if (ret)
1140 return ret;
1141
1142 *bytes = length;
1143 while (length) {
1144 btrfs_dev_set_zone_empty(device, physical);
1145 btrfs_dev_clear_active_zone(device, physical);
1146 physical += device->zone_info->zone_size;
1147 length -= device->zone_info->zone_size;
1148 }
1149
1150 return 0;
1151 }
1152
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1153 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1154 {
1155 struct btrfs_zoned_device_info *zinfo = device->zone_info;
1156 const u8 shift = zinfo->zone_size_shift;
1157 unsigned long begin = start >> shift;
1158 unsigned long nbits = size >> shift;
1159 u64 pos;
1160 int ret;
1161
1162 ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1163 ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1164
1165 if (begin + nbits > zinfo->nr_zones)
1166 return -ERANGE;
1167
1168 /* All the zones are conventional */
1169 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1170 return 0;
1171
1172 /* All the zones are sequential and empty */
1173 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1174 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1175 return 0;
1176
1177 for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1178 u64 reset_bytes;
1179
1180 if (!btrfs_dev_is_sequential(device, pos) ||
1181 btrfs_dev_is_empty_zone(device, pos))
1182 continue;
1183
1184 /* Free regions should be empty */
1185 btrfs_warn_in_rcu(
1186 device->fs_info,
1187 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1188 rcu_str_deref(device->name), device->devid, pos >> shift);
1189 WARN_ON_ONCE(1);
1190
1191 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1192 &reset_bytes);
1193 if (ret)
1194 return ret;
1195 }
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * Calculate an allocation pointer from the extent allocation information
1202 * for a block group consist of conventional zones. It is pointed to the
1203 * end of the highest addressed extent in the block group as an allocation
1204 * offset.
1205 */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1206 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1207 u64 *offset_ret, bool new)
1208 {
1209 struct btrfs_fs_info *fs_info = cache->fs_info;
1210 struct btrfs_root *root;
1211 BTRFS_PATH_AUTO_FREE(path);
1212 struct btrfs_key key;
1213 struct btrfs_key found_key;
1214 int ret;
1215 u64 length;
1216
1217 /*
1218 * Avoid tree lookups for a new block group, there's no use for it.
1219 * It must always be 0.
1220 *
1221 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1222 * For new a block group, this function is called from
1223 * btrfs_make_block_group() which is already taking the chunk mutex.
1224 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1225 * buffer locks to avoid deadlock.
1226 */
1227 if (new) {
1228 *offset_ret = 0;
1229 return 0;
1230 }
1231
1232 path = btrfs_alloc_path();
1233 if (!path)
1234 return -ENOMEM;
1235
1236 key.objectid = cache->start + cache->length;
1237 key.type = 0;
1238 key.offset = 0;
1239
1240 root = btrfs_extent_root(fs_info, key.objectid);
1241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1242 /* We should not find the exact match */
1243 if (!ret)
1244 ret = -EUCLEAN;
1245 if (ret < 0)
1246 return ret;
1247
1248 ret = btrfs_previous_extent_item(root, path, cache->start);
1249 if (ret) {
1250 if (ret == 1) {
1251 ret = 0;
1252 *offset_ret = 0;
1253 }
1254 return ret;
1255 }
1256
1257 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1258
1259 if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1260 length = found_key.offset;
1261 else
1262 length = fs_info->nodesize;
1263
1264 if (!(found_key.objectid >= cache->start &&
1265 found_key.objectid + length <= cache->start + cache->length)) {
1266 return -EUCLEAN;
1267 }
1268 *offset_ret = found_key.objectid + length - cache->start;
1269 return 0;
1270 }
1271
1272 struct zone_info {
1273 u64 physical;
1274 u64 capacity;
1275 u64 alloc_offset;
1276 };
1277
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map,bool new)1278 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1279 struct zone_info *info, unsigned long *active,
1280 struct btrfs_chunk_map *map, bool new)
1281 {
1282 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 struct btrfs_device *device;
1284 int dev_replace_is_ongoing = 0;
1285 unsigned int nofs_flag;
1286 struct blk_zone zone;
1287 int ret;
1288
1289 info->physical = map->stripes[zone_idx].physical;
1290
1291 down_read(&dev_replace->rwsem);
1292 device = map->stripes[zone_idx].dev;
1293
1294 if (!device->bdev) {
1295 up_read(&dev_replace->rwsem);
1296 info->alloc_offset = WP_MISSING_DEV;
1297 return 0;
1298 }
1299
1300 /* Consider a zone as active if we can allow any number of active zones. */
1301 if (!device->zone_info->max_active_zones)
1302 __set_bit(zone_idx, active);
1303
1304 if (!btrfs_dev_is_sequential(device, info->physical)) {
1305 up_read(&dev_replace->rwsem);
1306 info->alloc_offset = WP_CONVENTIONAL;
1307 return 0;
1308 }
1309
1310 ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical));
1311
1312 /* This zone will be used for allocation, so mark this zone non-empty. */
1313 btrfs_dev_clear_zone_empty(device, info->physical);
1314
1315 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1316 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1317 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1318
1319 /*
1320 * The group is mapped to a sequential zone. Get the zone write pointer
1321 * to determine the allocation offset within the zone.
1322 */
1323 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1324
1325 if (new) {
1326 sector_t capacity;
1327
1328 capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT);
1329 up_read(&dev_replace->rwsem);
1330 info->alloc_offset = 0;
1331 info->capacity = capacity << SECTOR_SHIFT;
1332
1333 return 0;
1334 }
1335
1336 nofs_flag = memalloc_nofs_save();
1337 ret = btrfs_get_dev_zone(device, info->physical, &zone);
1338 memalloc_nofs_restore(nofs_flag);
1339 if (ret) {
1340 up_read(&dev_replace->rwsem);
1341 if (ret != -EIO && ret != -EOPNOTSUPP)
1342 return ret;
1343 info->alloc_offset = WP_MISSING_DEV;
1344 return 0;
1345 }
1346
1347 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1348 btrfs_err_in_rcu(fs_info,
1349 "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1350 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1351 device->devid);
1352 up_read(&dev_replace->rwsem);
1353 return -EIO;
1354 }
1355
1356 info->capacity = (zone.capacity << SECTOR_SHIFT);
1357
1358 switch (zone.cond) {
1359 case BLK_ZONE_COND_OFFLINE:
1360 case BLK_ZONE_COND_READONLY:
1361 btrfs_err_in_rcu(fs_info,
1362 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1363 (info->physical >> device->zone_info->zone_size_shift),
1364 rcu_str_deref(device->name), device->devid);
1365 info->alloc_offset = WP_MISSING_DEV;
1366 break;
1367 case BLK_ZONE_COND_EMPTY:
1368 info->alloc_offset = 0;
1369 break;
1370 case BLK_ZONE_COND_FULL:
1371 info->alloc_offset = info->capacity;
1372 break;
1373 default:
1374 /* Partially used zone. */
1375 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1376 __set_bit(zone_idx, active);
1377 break;
1378 }
1379
1380 up_read(&dev_replace->rwsem);
1381
1382 return 0;
1383 }
1384
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1385 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1386 struct zone_info *info,
1387 unsigned long *active)
1388 {
1389 if (info->alloc_offset == WP_MISSING_DEV) {
1390 btrfs_err(bg->fs_info,
1391 "zoned: cannot recover write pointer for zone %llu",
1392 info->physical);
1393 return -EIO;
1394 }
1395
1396 bg->alloc_offset = info->alloc_offset;
1397 bg->zone_capacity = info->capacity;
1398 if (test_bit(0, active))
1399 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1400 return 0;
1401 }
1402
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1403 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1404 struct btrfs_chunk_map *map,
1405 struct zone_info *zone_info,
1406 unsigned long *active)
1407 {
1408 struct btrfs_fs_info *fs_info = bg->fs_info;
1409
1410 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1411 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1412 return -EINVAL;
1413 }
1414
1415 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1416
1417 if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1418 btrfs_err(bg->fs_info,
1419 "zoned: cannot recover write pointer for zone %llu",
1420 zone_info[0].physical);
1421 return -EIO;
1422 }
1423 if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1424 btrfs_err(bg->fs_info,
1425 "zoned: cannot recover write pointer for zone %llu",
1426 zone_info[1].physical);
1427 return -EIO;
1428 }
1429 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1430 btrfs_err(bg->fs_info,
1431 "zoned: write pointer offset mismatch of zones in DUP profile");
1432 return -EIO;
1433 }
1434
1435 if (test_bit(0, active) != test_bit(1, active)) {
1436 if (!btrfs_zone_activate(bg))
1437 return -EIO;
1438 } else if (test_bit(0, active)) {
1439 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1440 }
1441
1442 bg->alloc_offset = zone_info[0].alloc_offset;
1443 return 0;
1444 }
1445
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1446 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1447 struct btrfs_chunk_map *map,
1448 struct zone_info *zone_info,
1449 unsigned long *active)
1450 {
1451 struct btrfs_fs_info *fs_info = bg->fs_info;
1452 int i;
1453
1454 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1455 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1456 btrfs_bg_type_to_raid_name(map->type));
1457 return -EINVAL;
1458 }
1459
1460 /* In case a device is missing we have a cap of 0, so don't use it. */
1461 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1462
1463 for (i = 0; i < map->num_stripes; i++) {
1464 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1465 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1466 continue;
1467
1468 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1469 !btrfs_test_opt(fs_info, DEGRADED)) {
1470 btrfs_err(fs_info,
1471 "zoned: write pointer offset mismatch of zones in %s profile",
1472 btrfs_bg_type_to_raid_name(map->type));
1473 return -EIO;
1474 }
1475 if (test_bit(0, active) != test_bit(i, active)) {
1476 if (!btrfs_test_opt(fs_info, DEGRADED) &&
1477 !btrfs_zone_activate(bg)) {
1478 return -EIO;
1479 }
1480 } else {
1481 if (test_bit(0, active))
1482 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1483 }
1484 }
1485
1486 if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1487 bg->alloc_offset = zone_info[0].alloc_offset;
1488 else
1489 bg->alloc_offset = zone_info[i - 1].alloc_offset;
1490
1491 return 0;
1492 }
1493
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1494 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1495 struct btrfs_chunk_map *map,
1496 struct zone_info *zone_info,
1497 unsigned long *active)
1498 {
1499 struct btrfs_fs_info *fs_info = bg->fs_info;
1500
1501 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1502 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1503 btrfs_bg_type_to_raid_name(map->type));
1504 return -EINVAL;
1505 }
1506
1507 for (int i = 0; i < map->num_stripes; i++) {
1508 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1509 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1510 continue;
1511
1512 if (test_bit(0, active) != test_bit(i, active)) {
1513 if (!btrfs_zone_activate(bg))
1514 return -EIO;
1515 } else {
1516 if (test_bit(0, active))
1517 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1518 }
1519 bg->zone_capacity += zone_info[i].capacity;
1520 bg->alloc_offset += zone_info[i].alloc_offset;
1521 }
1522
1523 return 0;
1524 }
1525
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1526 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1527 struct btrfs_chunk_map *map,
1528 struct zone_info *zone_info,
1529 unsigned long *active)
1530 {
1531 struct btrfs_fs_info *fs_info = bg->fs_info;
1532
1533 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1534 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1535 btrfs_bg_type_to_raid_name(map->type));
1536 return -EINVAL;
1537 }
1538
1539 for (int i = 0; i < map->num_stripes; i++) {
1540 if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1541 zone_info[i].alloc_offset == WP_CONVENTIONAL)
1542 continue;
1543
1544 if (test_bit(0, active) != test_bit(i, active)) {
1545 if (!btrfs_zone_activate(bg))
1546 return -EIO;
1547 } else {
1548 if (test_bit(0, active))
1549 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1550 }
1551
1552 if ((i % map->sub_stripes) == 0) {
1553 bg->zone_capacity += zone_info[i].capacity;
1554 bg->alloc_offset += zone_info[i].alloc_offset;
1555 }
1556 }
1557
1558 return 0;
1559 }
1560
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1561 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1562 {
1563 struct btrfs_fs_info *fs_info = cache->fs_info;
1564 struct btrfs_chunk_map *map;
1565 u64 logical = cache->start;
1566 u64 length = cache->length;
1567 struct zone_info *zone_info = NULL;
1568 int ret;
1569 int i;
1570 unsigned long *active = NULL;
1571 u64 last_alloc = 0;
1572 u32 num_sequential = 0, num_conventional = 0;
1573 u64 profile;
1574
1575 if (!btrfs_is_zoned(fs_info))
1576 return 0;
1577
1578 /* Sanity check */
1579 if (!IS_ALIGNED(length, fs_info->zone_size)) {
1580 btrfs_err(fs_info,
1581 "zoned: block group %llu len %llu unaligned to zone size %llu",
1582 logical, length, fs_info->zone_size);
1583 return -EIO;
1584 }
1585
1586 map = btrfs_find_chunk_map(fs_info, logical, length);
1587 if (!map)
1588 return -EINVAL;
1589
1590 cache->physical_map = map;
1591
1592 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1593 if (!zone_info) {
1594 ret = -ENOMEM;
1595 goto out;
1596 }
1597
1598 active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1599 if (!active) {
1600 ret = -ENOMEM;
1601 goto out;
1602 }
1603
1604 for (i = 0; i < map->num_stripes; i++) {
1605 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new);
1606 if (ret)
1607 goto out;
1608
1609 if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1610 num_conventional++;
1611 else
1612 num_sequential++;
1613 }
1614
1615 if (num_sequential > 0)
1616 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1617
1618 if (num_conventional > 0) {
1619 /* Zone capacity is always zone size in emulation */
1620 cache->zone_capacity = cache->length;
1621 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1622 if (ret) {
1623 btrfs_err(fs_info,
1624 "zoned: failed to determine allocation offset of bg %llu",
1625 cache->start);
1626 goto out;
1627 } else if (map->num_stripes == num_conventional) {
1628 cache->alloc_offset = last_alloc;
1629 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1630 goto out;
1631 }
1632 }
1633
1634 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1635 switch (profile) {
1636 case 0: /* single */
1637 ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1638 break;
1639 case BTRFS_BLOCK_GROUP_DUP:
1640 ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1641 break;
1642 case BTRFS_BLOCK_GROUP_RAID1:
1643 case BTRFS_BLOCK_GROUP_RAID1C3:
1644 case BTRFS_BLOCK_GROUP_RAID1C4:
1645 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1646 break;
1647 case BTRFS_BLOCK_GROUP_RAID0:
1648 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1649 break;
1650 case BTRFS_BLOCK_GROUP_RAID10:
1651 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1652 break;
1653 case BTRFS_BLOCK_GROUP_RAID5:
1654 case BTRFS_BLOCK_GROUP_RAID6:
1655 default:
1656 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1657 btrfs_bg_type_to_raid_name(map->type));
1658 ret = -EINVAL;
1659 goto out;
1660 }
1661
1662 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1663 profile != BTRFS_BLOCK_GROUP_RAID10) {
1664 /*
1665 * Detected broken write pointer. Make this block group
1666 * unallocatable by setting the allocation pointer at the end of
1667 * allocatable region. Relocating this block group will fix the
1668 * mismatch.
1669 *
1670 * Currently, we cannot handle RAID0 or RAID10 case like this
1671 * because we don't have a proper zone_capacity value. But,
1672 * reading from this block group won't work anyway by a missing
1673 * stripe.
1674 */
1675 cache->alloc_offset = cache->zone_capacity;
1676 }
1677
1678 out:
1679 /* Reject non SINGLE data profiles without RST */
1680 if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1681 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1682 !fs_info->stripe_root) {
1683 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1684 btrfs_bg_type_to_raid_name(map->type));
1685 return -EINVAL;
1686 }
1687
1688 if (cache->alloc_offset > cache->zone_capacity) {
1689 btrfs_err(fs_info,
1690 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1691 cache->alloc_offset, cache->zone_capacity,
1692 cache->start);
1693 ret = -EIO;
1694 }
1695
1696 /* An extent is allocated after the write pointer */
1697 if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1698 btrfs_err(fs_info,
1699 "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1700 logical, last_alloc, cache->alloc_offset);
1701 ret = -EIO;
1702 }
1703
1704 if (!ret) {
1705 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1706 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1707 btrfs_get_block_group(cache);
1708 spin_lock(&fs_info->zone_active_bgs_lock);
1709 list_add_tail(&cache->active_bg_list,
1710 &fs_info->zone_active_bgs);
1711 spin_unlock(&fs_info->zone_active_bgs_lock);
1712 }
1713 } else {
1714 btrfs_free_chunk_map(cache->physical_map);
1715 cache->physical_map = NULL;
1716 }
1717 bitmap_free(active);
1718 kfree(zone_info);
1719
1720 return ret;
1721 }
1722
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1723 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1724 {
1725 u64 unusable, free;
1726
1727 if (!btrfs_is_zoned(cache->fs_info))
1728 return;
1729
1730 WARN_ON(cache->bytes_super != 0);
1731 unusable = (cache->alloc_offset - cache->used) +
1732 (cache->length - cache->zone_capacity);
1733 free = cache->zone_capacity - cache->alloc_offset;
1734
1735 /* We only need ->free_space in ALLOC_SEQ block groups */
1736 cache->cached = BTRFS_CACHE_FINISHED;
1737 cache->free_space_ctl->free_space = free;
1738 cache->zone_unusable = unusable;
1739 }
1740
btrfs_use_zone_append(struct btrfs_bio * bbio)1741 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1742 {
1743 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1744 struct btrfs_inode *inode = bbio->inode;
1745 struct btrfs_fs_info *fs_info = bbio->fs_info;
1746 struct btrfs_block_group *cache;
1747 bool ret = false;
1748
1749 if (!btrfs_is_zoned(fs_info))
1750 return false;
1751
1752 if (!inode || !is_data_inode(inode))
1753 return false;
1754
1755 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1756 return false;
1757
1758 /*
1759 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1760 * extent layout the relocation code has.
1761 * Furthermore we have set aside own block-group from which only the
1762 * relocation "process" can allocate and make sure only one process at a
1763 * time can add pages to an extent that gets relocated, so it's safe to
1764 * use regular REQ_OP_WRITE for this special case.
1765 */
1766 if (btrfs_is_data_reloc_root(inode->root))
1767 return false;
1768
1769 cache = btrfs_lookup_block_group(fs_info, start);
1770 ASSERT(cache);
1771 if (!cache)
1772 return false;
1773
1774 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1775 btrfs_put_block_group(cache);
1776
1777 return ret;
1778 }
1779
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1780 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1781 {
1782 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1783 struct btrfs_ordered_sum *sum = bbio->sums;
1784
1785 if (physical < bbio->orig_physical)
1786 sum->logical -= bbio->orig_physical - physical;
1787 else
1788 sum->logical += physical - bbio->orig_physical;
1789 }
1790
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1791 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1792 u64 logical)
1793 {
1794 struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1795 struct extent_map *em;
1796
1797 ordered->disk_bytenr = logical;
1798
1799 write_lock(&em_tree->lock);
1800 em = search_extent_mapping(em_tree, ordered->file_offset,
1801 ordered->num_bytes);
1802 /* The em should be a new COW extent, thus it should not have an offset. */
1803 ASSERT(em->offset == 0);
1804 em->disk_bytenr = logical;
1805 free_extent_map(em);
1806 write_unlock(&em_tree->lock);
1807 }
1808
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1809 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1810 u64 logical, u64 len)
1811 {
1812 struct btrfs_ordered_extent *new;
1813
1814 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1815 split_extent_map(ordered->inode, ordered->file_offset,
1816 ordered->num_bytes, len, logical))
1817 return false;
1818
1819 new = btrfs_split_ordered_extent(ordered, len);
1820 if (IS_ERR(new))
1821 return false;
1822 new->disk_bytenr = logical;
1823 btrfs_finish_one_ordered(new);
1824 return true;
1825 }
1826
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1827 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1828 {
1829 struct btrfs_inode *inode = ordered->inode;
1830 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1831 struct btrfs_ordered_sum *sum;
1832 u64 logical, len;
1833
1834 /*
1835 * Write to pre-allocated region is for the data relocation, and so
1836 * it should use WRITE operation. No split/rewrite are necessary.
1837 */
1838 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1839 return;
1840
1841 ASSERT(!list_empty(&ordered->list));
1842 /* The ordered->list can be empty in the above pre-alloc case. */
1843 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1844 logical = sum->logical;
1845 len = sum->len;
1846
1847 while (len < ordered->disk_num_bytes) {
1848 sum = list_next_entry(sum, list);
1849 if (sum->logical == logical + len) {
1850 len += sum->len;
1851 continue;
1852 }
1853 if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1854 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1855 btrfs_err(fs_info, "failed to split ordered extent");
1856 goto out;
1857 }
1858 logical = sum->logical;
1859 len = sum->len;
1860 }
1861
1862 if (ordered->disk_bytenr != logical)
1863 btrfs_rewrite_logical_zoned(ordered, logical);
1864
1865 out:
1866 /*
1867 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1868 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1869 * addresses and don't contain actual checksums. We thus must free them
1870 * here so that we don't attempt to log the csums later.
1871 */
1872 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1873 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1874 while ((sum = list_first_entry_or_null(&ordered->list,
1875 typeof(*sum), list))) {
1876 list_del(&sum->list);
1877 kfree(sum);
1878 }
1879 }
1880 }
1881
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1882 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1883 struct btrfs_block_group **active_bg)
1884 {
1885 const struct writeback_control *wbc = ctx->wbc;
1886 struct btrfs_block_group *block_group = ctx->zoned_bg;
1887 struct btrfs_fs_info *fs_info = block_group->fs_info;
1888
1889 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1890 return true;
1891
1892 if (fs_info->treelog_bg == block_group->start) {
1893 if (!btrfs_zone_activate(block_group)) {
1894 int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1895
1896 if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1897 return false;
1898 }
1899 } else if (*active_bg != block_group) {
1900 struct btrfs_block_group *tgt = *active_bg;
1901
1902 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1903 lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1904
1905 if (tgt) {
1906 /*
1907 * If there is an unsent IO left in the allocated area,
1908 * we cannot wait for them as it may cause a deadlock.
1909 */
1910 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1911 if (wbc->sync_mode == WB_SYNC_NONE ||
1912 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1913 return false;
1914 }
1915
1916 /* Pivot active metadata/system block group. */
1917 btrfs_zoned_meta_io_unlock(fs_info);
1918 wait_eb_writebacks(tgt);
1919 do_zone_finish(tgt, true);
1920 btrfs_zoned_meta_io_lock(fs_info);
1921 if (*active_bg == tgt) {
1922 btrfs_put_block_group(tgt);
1923 *active_bg = NULL;
1924 }
1925 }
1926 if (!btrfs_zone_activate(block_group))
1927 return false;
1928 if (*active_bg != block_group) {
1929 ASSERT(*active_bg == NULL);
1930 *active_bg = block_group;
1931 btrfs_get_block_group(block_group);
1932 }
1933 }
1934
1935 return true;
1936 }
1937
1938 /*
1939 * Check if @ctx->eb is aligned to the write pointer.
1940 *
1941 * Return:
1942 * 0: @ctx->eb is at the write pointer. You can write it.
1943 * -EAGAIN: There is a hole. The caller should handle the case.
1944 * -EBUSY: There is a hole, but the caller can just bail out.
1945 */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)1946 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1947 struct btrfs_eb_write_context *ctx)
1948 {
1949 const struct writeback_control *wbc = ctx->wbc;
1950 const struct extent_buffer *eb = ctx->eb;
1951 struct btrfs_block_group *block_group = ctx->zoned_bg;
1952
1953 if (!btrfs_is_zoned(fs_info))
1954 return 0;
1955
1956 if (block_group) {
1957 if (block_group->start > eb->start ||
1958 block_group->start + block_group->length <= eb->start) {
1959 btrfs_put_block_group(block_group);
1960 block_group = NULL;
1961 ctx->zoned_bg = NULL;
1962 }
1963 }
1964
1965 if (!block_group) {
1966 block_group = btrfs_lookup_block_group(fs_info, eb->start);
1967 if (!block_group)
1968 return 0;
1969 ctx->zoned_bg = block_group;
1970 }
1971
1972 if (block_group->meta_write_pointer == eb->start) {
1973 struct btrfs_block_group **tgt;
1974
1975 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1976 return 0;
1977
1978 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1979 tgt = &fs_info->active_system_bg;
1980 else
1981 tgt = &fs_info->active_meta_bg;
1982 if (check_bg_is_active(ctx, tgt))
1983 return 0;
1984 }
1985
1986 /*
1987 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1988 * start writing this eb. In that case, we can just bail out.
1989 */
1990 if (block_group->meta_write_pointer > eb->start)
1991 return -EBUSY;
1992
1993 /* If for_sync, this hole will be filled with transaction commit. */
1994 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1995 return -EAGAIN;
1996 return -EBUSY;
1997 }
1998
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)1999 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
2000 {
2001 if (!btrfs_dev_is_sequential(device, physical))
2002 return -EOPNOTSUPP;
2003
2004 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2005 length >> SECTOR_SHIFT, GFP_NOFS, 0);
2006 }
2007
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)2008 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2009 struct blk_zone *zone)
2010 {
2011 struct btrfs_io_context *bioc = NULL;
2012 u64 mapped_length = PAGE_SIZE;
2013 unsigned int nofs_flag;
2014 int nmirrors;
2015 int i, ret;
2016
2017 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2018 &mapped_length, &bioc, NULL, NULL);
2019 if (ret || !bioc || mapped_length < PAGE_SIZE) {
2020 ret = -EIO;
2021 goto out_put_bioc;
2022 }
2023
2024 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2025 ret = -EINVAL;
2026 goto out_put_bioc;
2027 }
2028
2029 nofs_flag = memalloc_nofs_save();
2030 nmirrors = (int)bioc->num_stripes;
2031 for (i = 0; i < nmirrors; i++) {
2032 u64 physical = bioc->stripes[i].physical;
2033 struct btrfs_device *dev = bioc->stripes[i].dev;
2034
2035 /* Missing device */
2036 if (!dev->bdev)
2037 continue;
2038
2039 ret = btrfs_get_dev_zone(dev, physical, zone);
2040 /* Failing device */
2041 if (ret == -EIO || ret == -EOPNOTSUPP)
2042 continue;
2043 break;
2044 }
2045 memalloc_nofs_restore(nofs_flag);
2046 out_put_bioc:
2047 btrfs_put_bioc(bioc);
2048 return ret;
2049 }
2050
2051 /*
2052 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2053 * filling zeros between @physical_pos to a write pointer of dev-replace
2054 * source device.
2055 */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2056 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2057 u64 physical_start, u64 physical_pos)
2058 {
2059 struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2060 struct blk_zone zone;
2061 u64 length;
2062 u64 wp;
2063 int ret;
2064
2065 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2066 return 0;
2067
2068 ret = read_zone_info(fs_info, logical, &zone);
2069 if (ret)
2070 return ret;
2071
2072 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2073
2074 if (physical_pos == wp)
2075 return 0;
2076
2077 if (physical_pos > wp)
2078 return -EUCLEAN;
2079
2080 length = wp - physical_pos;
2081 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2082 }
2083
2084 /*
2085 * Activate block group and underlying device zones
2086 *
2087 * @block_group: the block group to activate
2088 *
2089 * Return: true on success, false otherwise
2090 */
btrfs_zone_activate(struct btrfs_block_group * block_group)2091 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2092 {
2093 struct btrfs_fs_info *fs_info = block_group->fs_info;
2094 struct btrfs_chunk_map *map;
2095 struct btrfs_device *device;
2096 u64 physical;
2097 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2098 bool ret;
2099 int i;
2100
2101 if (!btrfs_is_zoned(block_group->fs_info))
2102 return true;
2103
2104 map = block_group->physical_map;
2105
2106 spin_lock(&fs_info->zone_active_bgs_lock);
2107 spin_lock(&block_group->lock);
2108 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2109 ret = true;
2110 goto out_unlock;
2111 }
2112
2113 /* No space left */
2114 if (btrfs_zoned_bg_is_full(block_group)) {
2115 ret = false;
2116 goto out_unlock;
2117 }
2118
2119 for (i = 0; i < map->num_stripes; i++) {
2120 struct btrfs_zoned_device_info *zinfo;
2121 int reserved = 0;
2122
2123 device = map->stripes[i].dev;
2124 physical = map->stripes[i].physical;
2125 zinfo = device->zone_info;
2126
2127 if (!device->bdev)
2128 continue;
2129
2130 if (zinfo->max_active_zones == 0)
2131 continue;
2132
2133 if (is_data)
2134 reserved = zinfo->reserved_active_zones;
2135 /*
2136 * For the data block group, leave active zones for one
2137 * metadata block group and one system block group.
2138 */
2139 if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2140 ret = false;
2141 goto out_unlock;
2142 }
2143
2144 if (!btrfs_dev_set_active_zone(device, physical)) {
2145 /* Cannot activate the zone */
2146 ret = false;
2147 goto out_unlock;
2148 }
2149 if (!is_data)
2150 zinfo->reserved_active_zones--;
2151 }
2152
2153 /* Successfully activated all the zones */
2154 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2155 spin_unlock(&block_group->lock);
2156
2157 /* For the active block group list */
2158 btrfs_get_block_group(block_group);
2159 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2160 spin_unlock(&fs_info->zone_active_bgs_lock);
2161
2162 return true;
2163
2164 out_unlock:
2165 spin_unlock(&block_group->lock);
2166 spin_unlock(&fs_info->zone_active_bgs_lock);
2167 return ret;
2168 }
2169
wait_eb_writebacks(struct btrfs_block_group * block_group)2170 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2171 {
2172 struct btrfs_fs_info *fs_info = block_group->fs_info;
2173 const u64 end = block_group->start + block_group->length;
2174 struct radix_tree_iter iter;
2175 struct extent_buffer *eb;
2176 void __rcu **slot;
2177
2178 rcu_read_lock();
2179 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2180 block_group->start >> fs_info->sectorsize_bits) {
2181 eb = radix_tree_deref_slot(slot);
2182 if (!eb)
2183 continue;
2184 if (radix_tree_deref_retry(eb)) {
2185 slot = radix_tree_iter_retry(&iter);
2186 continue;
2187 }
2188
2189 if (eb->start < block_group->start)
2190 continue;
2191 if (eb->start >= end)
2192 break;
2193
2194 slot = radix_tree_iter_resume(slot, &iter);
2195 rcu_read_unlock();
2196 wait_on_extent_buffer_writeback(eb);
2197 rcu_read_lock();
2198 }
2199 rcu_read_unlock();
2200 }
2201
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2202 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2203 {
2204 struct btrfs_fs_info *fs_info = block_group->fs_info;
2205 struct btrfs_chunk_map *map;
2206 const bool is_metadata = (block_group->flags &
2207 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2208 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2209 int ret = 0;
2210 int i;
2211
2212 spin_lock(&block_group->lock);
2213 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2214 spin_unlock(&block_group->lock);
2215 return 0;
2216 }
2217
2218 /* Check if we have unwritten allocated space */
2219 if (is_metadata &&
2220 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2221 spin_unlock(&block_group->lock);
2222 return -EAGAIN;
2223 }
2224
2225 /*
2226 * If we are sure that the block group is full (= no more room left for
2227 * new allocation) and the IO for the last usable block is completed, we
2228 * don't need to wait for the other IOs. This holds because we ensure
2229 * the sequential IO submissions using the ZONE_APPEND command for data
2230 * and block_group->meta_write_pointer for metadata.
2231 */
2232 if (!fully_written) {
2233 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2234 spin_unlock(&block_group->lock);
2235 return -EAGAIN;
2236 }
2237 spin_unlock(&block_group->lock);
2238
2239 ret = btrfs_inc_block_group_ro(block_group, false);
2240 if (ret)
2241 return ret;
2242
2243 /* Ensure all writes in this block group finish */
2244 btrfs_wait_block_group_reservations(block_group);
2245 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2246 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2247 /* Wait for extent buffers to be written. */
2248 if (is_metadata)
2249 wait_eb_writebacks(block_group);
2250
2251 spin_lock(&block_group->lock);
2252
2253 /*
2254 * Bail out if someone already deactivated the block group, or
2255 * allocated space is left in the block group.
2256 */
2257 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2258 &block_group->runtime_flags)) {
2259 spin_unlock(&block_group->lock);
2260 btrfs_dec_block_group_ro(block_group);
2261 return 0;
2262 }
2263
2264 if (block_group->reserved ||
2265 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2266 &block_group->runtime_flags)) {
2267 spin_unlock(&block_group->lock);
2268 btrfs_dec_block_group_ro(block_group);
2269 return -EAGAIN;
2270 }
2271 }
2272
2273 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2274 block_group->alloc_offset = block_group->zone_capacity;
2275 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2276 block_group->meta_write_pointer = block_group->start +
2277 block_group->zone_capacity;
2278 block_group->free_space_ctl->free_space = 0;
2279 btrfs_clear_treelog_bg(block_group);
2280 btrfs_clear_data_reloc_bg(block_group);
2281 spin_unlock(&block_group->lock);
2282
2283 down_read(&dev_replace->rwsem);
2284 map = block_group->physical_map;
2285 for (i = 0; i < map->num_stripes; i++) {
2286 struct btrfs_device *device = map->stripes[i].dev;
2287 const u64 physical = map->stripes[i].physical;
2288 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2289 unsigned int nofs_flags;
2290
2291 if (!device->bdev)
2292 continue;
2293
2294 if (zinfo->max_active_zones == 0)
2295 continue;
2296
2297 nofs_flags = memalloc_nofs_save();
2298 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2299 physical >> SECTOR_SHIFT,
2300 zinfo->zone_size >> SECTOR_SHIFT);
2301 memalloc_nofs_restore(nofs_flags);
2302
2303 if (ret) {
2304 up_read(&dev_replace->rwsem);
2305 return ret;
2306 }
2307
2308 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2309 zinfo->reserved_active_zones++;
2310 btrfs_dev_clear_active_zone(device, physical);
2311 }
2312 up_read(&dev_replace->rwsem);
2313
2314 if (!fully_written)
2315 btrfs_dec_block_group_ro(block_group);
2316
2317 spin_lock(&fs_info->zone_active_bgs_lock);
2318 ASSERT(!list_empty(&block_group->active_bg_list));
2319 list_del_init(&block_group->active_bg_list);
2320 spin_unlock(&fs_info->zone_active_bgs_lock);
2321
2322 /* For active_bg_list */
2323 btrfs_put_block_group(block_group);
2324
2325 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2326
2327 return 0;
2328 }
2329
btrfs_zone_finish(struct btrfs_block_group * block_group)2330 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2331 {
2332 if (!btrfs_is_zoned(block_group->fs_info))
2333 return 0;
2334
2335 return do_zone_finish(block_group, false);
2336 }
2337
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2338 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2339 {
2340 struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2341 struct btrfs_device *device;
2342 bool ret = false;
2343
2344 if (!btrfs_is_zoned(fs_info))
2345 return true;
2346
2347 if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags))
2348 return false;
2349
2350 /* Check if there is a device with active zones left */
2351 mutex_lock(&fs_info->chunk_mutex);
2352 spin_lock(&fs_info->zone_active_bgs_lock);
2353 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2354 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2355 int reserved = 0;
2356
2357 if (!device->bdev)
2358 continue;
2359
2360 if (!zinfo->max_active_zones) {
2361 ret = true;
2362 break;
2363 }
2364
2365 if (flags & BTRFS_BLOCK_GROUP_DATA)
2366 reserved = zinfo->reserved_active_zones;
2367
2368 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2369 case 0: /* single */
2370 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2371 break;
2372 case BTRFS_BLOCK_GROUP_DUP:
2373 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2374 break;
2375 }
2376 if (ret)
2377 break;
2378 }
2379 spin_unlock(&fs_info->zone_active_bgs_lock);
2380 mutex_unlock(&fs_info->chunk_mutex);
2381
2382 if (!ret)
2383 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2384
2385 return ret;
2386 }
2387
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2388 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2389 {
2390 struct btrfs_block_group *block_group;
2391 u64 min_alloc_bytes;
2392
2393 if (!btrfs_is_zoned(fs_info))
2394 return;
2395
2396 block_group = btrfs_lookup_block_group(fs_info, logical);
2397 ASSERT(block_group);
2398
2399 /* No MIXED_BG on zoned btrfs. */
2400 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2401 min_alloc_bytes = fs_info->sectorsize;
2402 else
2403 min_alloc_bytes = fs_info->nodesize;
2404
2405 /* Bail out if we can allocate more data from this block group. */
2406 if (logical + length + min_alloc_bytes <=
2407 block_group->start + block_group->zone_capacity)
2408 goto out;
2409
2410 do_zone_finish(block_group, true);
2411
2412 out:
2413 btrfs_put_block_group(block_group);
2414 }
2415
btrfs_zone_finish_endio_workfn(struct work_struct * work)2416 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2417 {
2418 struct btrfs_block_group *bg =
2419 container_of(work, struct btrfs_block_group, zone_finish_work);
2420
2421 wait_on_extent_buffer_writeback(bg->last_eb);
2422 free_extent_buffer(bg->last_eb);
2423 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2424 btrfs_put_block_group(bg);
2425 }
2426
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2427 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2428 struct extent_buffer *eb)
2429 {
2430 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2431 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2432 return;
2433
2434 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2435 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2436 bg->start);
2437 return;
2438 }
2439
2440 /* For the work */
2441 btrfs_get_block_group(bg);
2442 atomic_inc(&eb->refs);
2443 bg->last_eb = eb;
2444 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2445 queue_work(system_unbound_wq, &bg->zone_finish_work);
2446 }
2447
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2448 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2449 {
2450 struct btrfs_fs_info *fs_info = bg->fs_info;
2451
2452 spin_lock(&fs_info->relocation_bg_lock);
2453 if (fs_info->data_reloc_bg == bg->start)
2454 fs_info->data_reloc_bg = 0;
2455 spin_unlock(&fs_info->relocation_bg_lock);
2456 }
2457
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2458 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2459 {
2460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2461 struct btrfs_device *device;
2462
2463 if (!btrfs_is_zoned(fs_info))
2464 return;
2465
2466 mutex_lock(&fs_devices->device_list_mutex);
2467 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2468 if (device->zone_info) {
2469 vfree(device->zone_info->zone_cache);
2470 device->zone_info->zone_cache = NULL;
2471 }
2472 }
2473 mutex_unlock(&fs_devices->device_list_mutex);
2474 }
2475
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2476 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2477 {
2478 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2479 struct btrfs_device *device;
2480 u64 used = 0;
2481 u64 total = 0;
2482 u64 factor;
2483
2484 ASSERT(btrfs_is_zoned(fs_info));
2485
2486 if (fs_info->bg_reclaim_threshold == 0)
2487 return false;
2488
2489 mutex_lock(&fs_devices->device_list_mutex);
2490 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2491 if (!device->bdev)
2492 continue;
2493
2494 total += device->disk_total_bytes;
2495 used += device->bytes_used;
2496 }
2497 mutex_unlock(&fs_devices->device_list_mutex);
2498
2499 factor = div64_u64(used * 100, total);
2500 return factor >= fs_info->bg_reclaim_threshold;
2501 }
2502
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2503 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2504 u64 length)
2505 {
2506 struct btrfs_block_group *block_group;
2507
2508 if (!btrfs_is_zoned(fs_info))
2509 return;
2510
2511 block_group = btrfs_lookup_block_group(fs_info, logical);
2512 /* It should be called on a previous data relocation block group. */
2513 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2514
2515 spin_lock(&block_group->lock);
2516 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2517 goto out;
2518
2519 /* All relocation extents are written. */
2520 if (block_group->start + block_group->alloc_offset == logical + length) {
2521 /*
2522 * Now, release this block group for further allocations and
2523 * zone finish.
2524 */
2525 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2526 &block_group->runtime_flags);
2527 }
2528
2529 out:
2530 spin_unlock(&block_group->lock);
2531 btrfs_put_block_group(block_group);
2532 }
2533
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2534 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2535 {
2536 struct btrfs_block_group *block_group;
2537 struct btrfs_block_group *min_bg = NULL;
2538 u64 min_avail = U64_MAX;
2539 int ret;
2540
2541 spin_lock(&fs_info->zone_active_bgs_lock);
2542 list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2543 active_bg_list) {
2544 u64 avail;
2545
2546 spin_lock(&block_group->lock);
2547 if (block_group->reserved || block_group->alloc_offset == 0 ||
2548 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2549 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2550 spin_unlock(&block_group->lock);
2551 continue;
2552 }
2553
2554 avail = block_group->zone_capacity - block_group->alloc_offset;
2555 if (min_avail > avail) {
2556 if (min_bg)
2557 btrfs_put_block_group(min_bg);
2558 min_bg = block_group;
2559 min_avail = avail;
2560 btrfs_get_block_group(min_bg);
2561 }
2562 spin_unlock(&block_group->lock);
2563 }
2564 spin_unlock(&fs_info->zone_active_bgs_lock);
2565
2566 if (!min_bg)
2567 return 0;
2568
2569 ret = btrfs_zone_finish(min_bg);
2570 btrfs_put_block_group(min_bg);
2571
2572 return ret < 0 ? ret : 1;
2573 }
2574
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2575 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2576 struct btrfs_space_info *space_info,
2577 bool do_finish)
2578 {
2579 struct btrfs_block_group *bg;
2580 int index;
2581
2582 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2583 return 0;
2584
2585 for (;;) {
2586 int ret;
2587 bool need_finish = false;
2588
2589 down_read(&space_info->groups_sem);
2590 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2591 list_for_each_entry(bg, &space_info->block_groups[index],
2592 list) {
2593 if (!spin_trylock(&bg->lock))
2594 continue;
2595 if (btrfs_zoned_bg_is_full(bg) ||
2596 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2597 &bg->runtime_flags)) {
2598 spin_unlock(&bg->lock);
2599 continue;
2600 }
2601 spin_unlock(&bg->lock);
2602
2603 if (btrfs_zone_activate(bg)) {
2604 up_read(&space_info->groups_sem);
2605 return 1;
2606 }
2607
2608 need_finish = true;
2609 }
2610 }
2611 up_read(&space_info->groups_sem);
2612
2613 if (!do_finish || !need_finish)
2614 break;
2615
2616 ret = btrfs_zone_finish_one_bg(fs_info);
2617 if (ret == 0)
2618 break;
2619 if (ret < 0)
2620 return ret;
2621 }
2622
2623 return 0;
2624 }
2625
2626 /*
2627 * Reserve zones for one metadata block group, one tree-log block group, and one
2628 * system block group.
2629 */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2630 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2631 {
2632 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2633 struct btrfs_block_group *block_group;
2634 struct btrfs_device *device;
2635 /* Reserve zones for normal SINGLE metadata and tree-log block group. */
2636 unsigned int metadata_reserve = 2;
2637 /* Reserve a zone for SINGLE system block group. */
2638 unsigned int system_reserve = 1;
2639
2640 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2641 return;
2642
2643 /*
2644 * This function is called from the mount context. So, there is no
2645 * parallel process touching the bits. No need for read_seqretry().
2646 */
2647 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2648 metadata_reserve = 4;
2649 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2650 system_reserve = 2;
2651
2652 /* Apply the reservation on all the devices. */
2653 mutex_lock(&fs_devices->device_list_mutex);
2654 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2655 if (!device->bdev)
2656 continue;
2657
2658 device->zone_info->reserved_active_zones =
2659 metadata_reserve + system_reserve;
2660 }
2661 mutex_unlock(&fs_devices->device_list_mutex);
2662
2663 /* Release reservation for currently active block groups. */
2664 spin_lock(&fs_info->zone_active_bgs_lock);
2665 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2666 struct btrfs_chunk_map *map = block_group->physical_map;
2667
2668 if (!(block_group->flags &
2669 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2670 continue;
2671
2672 for (int i = 0; i < map->num_stripes; i++)
2673 map->stripes[i].dev->zone_info->reserved_active_zones--;
2674 }
2675 spin_unlock(&fs_info->zone_active_bgs_lock);
2676 }
2677
2678 /*
2679 * Reset the zones of unused block groups from @space_info->bytes_zone_unusable.
2680 *
2681 * @space_info: the space to work on
2682 * @num_bytes: targeting reclaim bytes
2683 *
2684 * This one resets the zones of a block group, so we can reuse the region
2685 * without removing the block group. On the other hand, btrfs_delete_unused_bgs()
2686 * just removes a block group and frees up the underlying zones. So, we still
2687 * need to allocate a new block group to reuse the zones.
2688 *
2689 * Resetting is faster than deleting/recreating a block group. It is similar
2690 * to freeing the logical space on the regular mode. However, we cannot change
2691 * the block group's profile with this operation.
2692 */
btrfs_reset_unused_block_groups(struct btrfs_space_info * space_info,u64 num_bytes)2693 int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes)
2694 {
2695 struct btrfs_fs_info *fs_info = space_info->fs_info;
2696 const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT;
2697
2698 if (!btrfs_is_zoned(fs_info))
2699 return 0;
2700
2701 while (num_bytes > 0) {
2702 struct btrfs_chunk_map *map;
2703 struct btrfs_block_group *bg = NULL;
2704 bool found = false;
2705 u64 reclaimed = 0;
2706
2707 /*
2708 * Here, we choose a fully zone_unusable block group. It's
2709 * technically possible to reset a partly zone_unusable block
2710 * group, which still has some free space left. However,
2711 * handling that needs to cope with the allocation side, which
2712 * makes the logic more complex. So, let's handle the easy case
2713 * for now.
2714 */
2715 spin_lock(&fs_info->unused_bgs_lock);
2716 list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) {
2717 if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags)
2718 continue;
2719
2720 /*
2721 * Use trylock to avoid locking order violation. In
2722 * btrfs_reclaim_bgs_work(), the lock order is
2723 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a
2724 * block group if we cannot take its lock.
2725 */
2726 if (!spin_trylock(&bg->lock))
2727 continue;
2728 if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) {
2729 spin_unlock(&bg->lock);
2730 continue;
2731 }
2732 spin_unlock(&bg->lock);
2733 found = true;
2734 break;
2735 }
2736 if (!found) {
2737 spin_unlock(&fs_info->unused_bgs_lock);
2738 return 0;
2739 }
2740
2741 list_del_init(&bg->bg_list);
2742 btrfs_put_block_group(bg);
2743 spin_unlock(&fs_info->unused_bgs_lock);
2744
2745 /*
2746 * Since the block group is fully zone_unusable and we cannot
2747 * allocate from this block group anymore, we don't need to set
2748 * this block group read-only.
2749 */
2750
2751 down_read(&fs_info->dev_replace.rwsem);
2752 map = bg->physical_map;
2753 for (int i = 0; i < map->num_stripes; i++) {
2754 struct btrfs_io_stripe *stripe = &map->stripes[i];
2755 unsigned int nofs_flags;
2756 int ret;
2757
2758 nofs_flags = memalloc_nofs_save();
2759 ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET,
2760 stripe->physical >> SECTOR_SHIFT,
2761 zone_size_sectors);
2762 memalloc_nofs_restore(nofs_flags);
2763
2764 if (ret) {
2765 up_read(&fs_info->dev_replace.rwsem);
2766 return ret;
2767 }
2768 }
2769 up_read(&fs_info->dev_replace.rwsem);
2770
2771 spin_lock(&space_info->lock);
2772 spin_lock(&bg->lock);
2773 ASSERT(!btrfs_is_block_group_used(bg));
2774 if (bg->ro) {
2775 spin_unlock(&bg->lock);
2776 spin_unlock(&space_info->lock);
2777 continue;
2778 }
2779
2780 reclaimed = bg->alloc_offset;
2781 bg->zone_unusable = bg->length - bg->zone_capacity;
2782 bg->alloc_offset = 0;
2783 /*
2784 * This holds because we currently reset fully used then freed
2785 * block group.
2786 */
2787 ASSERT(reclaimed == bg->zone_capacity);
2788 bg->free_space_ctl->free_space += reclaimed;
2789 space_info->bytes_zone_unusable -= reclaimed;
2790 spin_unlock(&bg->lock);
2791 btrfs_return_free_space(space_info, reclaimed);
2792 spin_unlock(&space_info->lock);
2793
2794 if (num_bytes <= reclaimed)
2795 break;
2796 num_bytes -= reclaimed;
2797 }
2798
2799 return 0;
2800 }
2801