1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20 
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES   4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27 
28 /*
29  * Location of the first zone of superblock logging zone pairs.
30  *
31  * - primary superblock:    0B (zone 0)
32  * - first copy:          512G (zone starting at that offset)
33  * - second copy:           4T (zone starting at that offset)
34  */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
38 
39 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41 
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44 
45 /*
46  * Minimum of active zones we need:
47  *
48  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50  * - 1 zone for tree-log dedicated block group
51  * - 1 zone for relocation
52  */
53 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
54 
55 /*
56  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58  * We do not expect the zone size to become larger than 8GiB or smaller than
59  * 4MiB in the near future.
60  */
61 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
63 
64 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65 
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68 
sb_zone_is_full(const struct blk_zone * zone)69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71 	return (zone->cond == BLK_ZONE_COND_FULL) ||
72 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74 
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77 	struct blk_zone *zones = data;
78 
79 	memcpy(&zones[idx], zone, sizeof(*zone));
80 
81 	return 0;
82 }
83 
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 			    u64 *wp_ret)
86 {
87 	bool empty[BTRFS_NR_SB_LOG_ZONES];
88 	bool full[BTRFS_NR_SB_LOG_ZONES];
89 	sector_t sector;
90 
91 	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 		full[i] = sb_zone_is_full(&zones[i]);
95 	}
96 
97 	/*
98 	 * Possible states of log buffer zones
99 	 *
100 	 *           Empty[0]  In use[0]  Full[0]
101 	 * Empty[1]         *          0        1
102 	 * In use[1]        x          x        1
103 	 * Full[1]          0          0        C
104 	 *
105 	 * Log position:
106 	 *   *: Special case, no superblock is written
107 	 *   0: Use write pointer of zones[0]
108 	 *   1: Use write pointer of zones[1]
109 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
110 	 *      one determined by generation
111 	 *   x: Invalid state
112 	 */
113 
114 	if (empty[0] && empty[1]) {
115 		/* Special case to distinguish no superblock to read */
116 		*wp_ret = zones[0].start << SECTOR_SHIFT;
117 		return -ENOENT;
118 	} else if (full[0] && full[1]) {
119 		/* Compare two super blocks */
120 		struct address_space *mapping = bdev->bd_mapping;
121 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123 
124 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127 						BTRFS_SUPER_INFO_SIZE;
128 
129 			page[i] = read_cache_page_gfp(mapping,
130 					bytenr >> PAGE_SHIFT, GFP_NOFS);
131 			if (IS_ERR(page[i])) {
132 				if (i == 1)
133 					btrfs_release_disk_super(super[0]);
134 				return PTR_ERR(page[i]);
135 			}
136 			super[i] = page_address(page[i]);
137 		}
138 
139 		if (btrfs_super_generation(super[0]) >
140 		    btrfs_super_generation(super[1]))
141 			sector = zones[1].start;
142 		else
143 			sector = zones[0].start;
144 
145 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 			btrfs_release_disk_super(super[i]);
147 	} else if (!full[0] && (empty[1] || full[1])) {
148 		sector = zones[0].wp;
149 	} else if (full[0]) {
150 		sector = zones[1].wp;
151 	} else {
152 		return -EUCLEAN;
153 	}
154 	*wp_ret = sector << SECTOR_SHIFT;
155 	return 0;
156 }
157 
158 /*
159  * Get the first zone number of the superblock mirror
160  */
sb_zone_number(int shift,int mirror)161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163 	u64 zone = U64_MAX;
164 
165 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 	switch (mirror) {
167 	case 0: zone = 0; break;
168 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 	}
171 
172 	ASSERT(zone <= U32_MAX);
173 
174 	return (u32)zone;
175 }
176 
zone_start_sector(u32 zone_number,struct block_device * bdev)177 static inline sector_t zone_start_sector(u32 zone_number,
178 					 struct block_device *bdev)
179 {
180 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182 
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)183 static inline u64 zone_start_physical(u32 zone_number,
184 				      struct btrfs_zoned_device_info *zone_info)
185 {
186 	return (u64)zone_number << zone_info->zone_size_shift;
187 }
188 
189 /*
190  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191  * device into static sized chunks and fake a conventional zone on each of
192  * them.
193  */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 				struct blk_zone *zones, unsigned int nr_zones)
196 {
197 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 	unsigned int i;
200 
201 	pos >>= SECTOR_SHIFT;
202 	for (i = 0; i < nr_zones; i++) {
203 		zones[i].start = i * zone_sectors + pos;
204 		zones[i].len = zone_sectors;
205 		zones[i].capacity = zone_sectors;
206 		zones[i].wp = zones[i].start + zone_sectors;
207 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
209 
210 		if (zones[i].wp >= bdev_size) {
211 			i++;
212 			break;
213 		}
214 	}
215 
216 	return i;
217 }
218 
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 			       struct blk_zone *zones, unsigned int *nr_zones)
221 {
222 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 	int ret;
224 
225 	if (!*nr_zones)
226 		return 0;
227 
228 	if (!bdev_is_zoned(device->bdev)) {
229 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
230 		*nr_zones = ret;
231 		return 0;
232 	}
233 
234 	/* Check cache */
235 	if (zinfo->zone_cache) {
236 		unsigned int i;
237 		u32 zno;
238 
239 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 		zno = pos >> zinfo->zone_size_shift;
241 		/*
242 		 * We cannot report zones beyond the zone end. So, it is OK to
243 		 * cap *nr_zones to at the end.
244 		 */
245 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246 
247 		for (i = 0; i < *nr_zones; i++) {
248 			struct blk_zone *zone_info;
249 
250 			zone_info = &zinfo->zone_cache[zno + i];
251 			if (!zone_info->len)
252 				break;
253 		}
254 
255 		if (i == *nr_zones) {
256 			/* Cache hit on all the zones */
257 			memcpy(zones, zinfo->zone_cache + zno,
258 			       sizeof(*zinfo->zone_cache) * *nr_zones);
259 			return 0;
260 		}
261 	}
262 
263 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 				  copy_zone_info_cb, zones);
265 	if (ret < 0) {
266 		btrfs_err_in_rcu(device->fs_info,
267 				 "zoned: failed to read zone %llu on %s (devid %llu)",
268 				 pos, rcu_str_deref(device->name),
269 				 device->devid);
270 		return ret;
271 	}
272 	*nr_zones = ret;
273 	if (!ret)
274 		return -EIO;
275 
276 	/* Populate cache */
277 	if (zinfo->zone_cache) {
278 		u32 zno = pos >> zinfo->zone_size_shift;
279 
280 		memcpy(zinfo->zone_cache + zno, zones,
281 		       sizeof(*zinfo->zone_cache) * *nr_zones);
282 	}
283 
284 	return 0;
285 }
286 
287 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
289 {
290 	BTRFS_PATH_AUTO_FREE(path);
291 	struct btrfs_root *root = fs_info->dev_root;
292 	struct btrfs_key key;
293 	struct extent_buffer *leaf;
294 	struct btrfs_dev_extent *dext;
295 	int ret = 0;
296 
297 	key.objectid = 1;
298 	key.type = BTRFS_DEV_EXTENT_KEY;
299 	key.offset = 0;
300 
301 	path = btrfs_alloc_path();
302 	if (!path)
303 		return -ENOMEM;
304 
305 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306 	if (ret < 0)
307 		return ret;
308 
309 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310 		ret = btrfs_next_leaf(root, path);
311 		if (ret < 0)
312 			return ret;
313 		/* No dev extents at all? Not good */
314 		if (ret > 0)
315 			return -EUCLEAN;
316 	}
317 
318 	leaf = path->nodes[0];
319 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
320 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
321 	return 0;
322 }
323 
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
325 {
326 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
327 	struct btrfs_device *device;
328 	int ret = 0;
329 
330 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
331 	if (!btrfs_fs_incompat(fs_info, ZONED))
332 		return 0;
333 
334 	mutex_lock(&fs_devices->device_list_mutex);
335 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
336 		/* We can skip reading of zone info for missing devices */
337 		if (!device->bdev)
338 			continue;
339 
340 		ret = btrfs_get_dev_zone_info(device, true);
341 		if (ret)
342 			break;
343 	}
344 	mutex_unlock(&fs_devices->device_list_mutex);
345 
346 	return ret;
347 }
348 
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
350 {
351 	struct btrfs_fs_info *fs_info = device->fs_info;
352 	struct btrfs_zoned_device_info *zone_info = NULL;
353 	struct block_device *bdev = device->bdev;
354 	unsigned int max_active_zones;
355 	unsigned int nactive;
356 	sector_t nr_sectors;
357 	sector_t sector = 0;
358 	struct blk_zone *zones = NULL;
359 	unsigned int i, nreported = 0, nr_zones;
360 	sector_t zone_sectors;
361 	char *model, *emulated;
362 	int ret;
363 
364 	/*
365 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 	 * yet be set.
367 	 */
368 	if (!btrfs_fs_incompat(fs_info, ZONED))
369 		return 0;
370 
371 	if (device->zone_info)
372 		return 0;
373 
374 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 	if (!zone_info)
376 		return -ENOMEM;
377 
378 	device->zone_info = zone_info;
379 
380 	if (!bdev_is_zoned(bdev)) {
381 		if (!fs_info->zone_size) {
382 			ret = calculate_emulated_zone_size(fs_info);
383 			if (ret)
384 				goto out;
385 		}
386 
387 		ASSERT(fs_info->zone_size);
388 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 	} else {
390 		zone_sectors = bdev_zone_sectors(bdev);
391 	}
392 
393 	ASSERT(is_power_of_two_u64(zone_sectors));
394 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
395 
396 	/* We reject devices with a zone size larger than 8GB */
397 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
398 		btrfs_err_in_rcu(fs_info,
399 		"zoned: %s: zone size %llu larger than supported maximum %llu",
400 				 rcu_str_deref(device->name),
401 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
402 		ret = -EINVAL;
403 		goto out;
404 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
405 		btrfs_err_in_rcu(fs_info,
406 		"zoned: %s: zone size %llu smaller than supported minimum %u",
407 				 rcu_str_deref(device->name),
408 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
409 		ret = -EINVAL;
410 		goto out;
411 	}
412 
413 	nr_sectors = bdev_nr_sectors(bdev);
414 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
415 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
416 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
417 		zone_info->nr_zones++;
418 
419 	max_active_zones = bdev_max_active_zones(bdev);
420 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
421 		btrfs_err_in_rcu(fs_info,
422 "zoned: %s: max active zones %u is too small, need at least %u active zones",
423 				 rcu_str_deref(device->name), max_active_zones,
424 				 BTRFS_MIN_ACTIVE_ZONES);
425 		ret = -EINVAL;
426 		goto out;
427 	}
428 	zone_info->max_active_zones = max_active_zones;
429 
430 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 	if (!zone_info->seq_zones) {
432 		ret = -ENOMEM;
433 		goto out;
434 	}
435 
436 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 	if (!zone_info->empty_zones) {
438 		ret = -ENOMEM;
439 		goto out;
440 	}
441 
442 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 	if (!zone_info->active_zones) {
444 		ret = -ENOMEM;
445 		goto out;
446 	}
447 
448 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
449 	if (!zones) {
450 		ret = -ENOMEM;
451 		goto out;
452 	}
453 
454 	/*
455 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
456 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
457 	 * use the cache.
458 	 */
459 	if (populate_cache && bdev_is_zoned(device->bdev)) {
460 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
461 						sizeof(struct blk_zone));
462 		if (!zone_info->zone_cache) {
463 			btrfs_err_in_rcu(device->fs_info,
464 				"zoned: failed to allocate zone cache for %s",
465 				rcu_str_deref(device->name));
466 			ret = -ENOMEM;
467 			goto out;
468 		}
469 	}
470 
471 	/* Get zones type */
472 	nactive = 0;
473 	while (sector < nr_sectors) {
474 		nr_zones = BTRFS_REPORT_NR_ZONES;
475 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
476 					  &nr_zones);
477 		if (ret)
478 			goto out;
479 
480 		for (i = 0; i < nr_zones; i++) {
481 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
482 				__set_bit(nreported, zone_info->seq_zones);
483 			switch (zones[i].cond) {
484 			case BLK_ZONE_COND_EMPTY:
485 				__set_bit(nreported, zone_info->empty_zones);
486 				break;
487 			case BLK_ZONE_COND_IMP_OPEN:
488 			case BLK_ZONE_COND_EXP_OPEN:
489 			case BLK_ZONE_COND_CLOSED:
490 				__set_bit(nreported, zone_info->active_zones);
491 				nactive++;
492 				break;
493 			}
494 			nreported++;
495 		}
496 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
497 	}
498 
499 	if (nreported != zone_info->nr_zones) {
500 		btrfs_err_in_rcu(device->fs_info,
501 				 "inconsistent number of zones on %s (%u/%u)",
502 				 rcu_str_deref(device->name), nreported,
503 				 zone_info->nr_zones);
504 		ret = -EIO;
505 		goto out;
506 	}
507 
508 	if (max_active_zones) {
509 		if (nactive > max_active_zones) {
510 			btrfs_err_in_rcu(device->fs_info,
511 			"zoned: %u active zones on %s exceeds max_active_zones %u",
512 					 nactive, rcu_str_deref(device->name),
513 					 max_active_zones);
514 			ret = -EIO;
515 			goto out;
516 		}
517 		atomic_set(&zone_info->active_zones_left,
518 			   max_active_zones - nactive);
519 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
520 	}
521 
522 	/* Validate superblock log */
523 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
524 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
525 		u32 sb_zone;
526 		u64 sb_wp;
527 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
528 
529 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
530 		if (sb_zone + 1 >= zone_info->nr_zones)
531 			continue;
532 
533 		ret = btrfs_get_dev_zones(device,
534 					  zone_start_physical(sb_zone, zone_info),
535 					  &zone_info->sb_zones[sb_pos],
536 					  &nr_zones);
537 		if (ret)
538 			goto out;
539 
540 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
541 			btrfs_err_in_rcu(device->fs_info,
542 	"zoned: failed to read super block log zone info at devid %llu zone %u",
543 					 device->devid, sb_zone);
544 			ret = -EUCLEAN;
545 			goto out;
546 		}
547 
548 		/*
549 		 * If zones[0] is conventional, always use the beginning of the
550 		 * zone to record superblock. No need to validate in that case.
551 		 */
552 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
553 		    BLK_ZONE_TYPE_CONVENTIONAL)
554 			continue;
555 
556 		ret = sb_write_pointer(device->bdev,
557 				       &zone_info->sb_zones[sb_pos], &sb_wp);
558 		if (ret != -ENOENT && ret) {
559 			btrfs_err_in_rcu(device->fs_info,
560 			"zoned: super block log zone corrupted devid %llu zone %u",
561 					 device->devid, sb_zone);
562 			ret = -EUCLEAN;
563 			goto out;
564 		}
565 	}
566 
567 
568 	kvfree(zones);
569 
570 	if (bdev_is_zoned(bdev)) {
571 		model = "host-managed zoned";
572 		emulated = "";
573 	} else {
574 		model = "regular";
575 		emulated = "emulated ";
576 	}
577 
578 	btrfs_info_in_rcu(fs_info,
579 		"%s block device %s, %u %szones of %llu bytes",
580 		model, rcu_str_deref(device->name), zone_info->nr_zones,
581 		emulated, zone_info->zone_size);
582 
583 	return 0;
584 
585 out:
586 	kvfree(zones);
587 	btrfs_destroy_dev_zone_info(device);
588 	return ret;
589 }
590 
btrfs_destroy_dev_zone_info(struct btrfs_device * device)591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
592 {
593 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
594 
595 	if (!zone_info)
596 		return;
597 
598 	bitmap_free(zone_info->active_zones);
599 	bitmap_free(zone_info->seq_zones);
600 	bitmap_free(zone_info->empty_zones);
601 	vfree(zone_info->zone_cache);
602 	kfree(zone_info);
603 	device->zone_info = NULL;
604 }
605 
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
607 {
608 	struct btrfs_zoned_device_info *zone_info;
609 
610 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
611 	if (!zone_info)
612 		return NULL;
613 
614 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
615 	if (!zone_info->seq_zones)
616 		goto out;
617 
618 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
619 		    zone_info->nr_zones);
620 
621 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622 	if (!zone_info->empty_zones)
623 		goto out;
624 
625 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
626 		    zone_info->nr_zones);
627 
628 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629 	if (!zone_info->active_zones)
630 		goto out;
631 
632 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
633 		    zone_info->nr_zones);
634 	zone_info->zone_cache = NULL;
635 
636 	return zone_info;
637 
638 out:
639 	bitmap_free(zone_info->seq_zones);
640 	bitmap_free(zone_info->empty_zones);
641 	bitmap_free(zone_info->active_zones);
642 	kfree(zone_info);
643 	return NULL;
644 }
645 
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
647 {
648 	unsigned int nr_zones = 1;
649 	int ret;
650 
651 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
652 	if (ret != 0 || !nr_zones)
653 		return ret ? ret : -EIO;
654 
655 	return 0;
656 }
657 
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
659 {
660 	struct btrfs_device *device;
661 
662 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
663 		if (device->bdev && bdev_is_zoned(device->bdev)) {
664 			btrfs_err(fs_info,
665 				"zoned: mode not enabled but zoned device found: %pg",
666 				device->bdev);
667 			return -EINVAL;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
675 {
676 	struct queue_limits *lim = &fs_info->limits;
677 	struct btrfs_device *device;
678 	u64 zone_size = 0;
679 	int ret;
680 
681 	/*
682 	 * Host-Managed devices can't be used without the ZONED flag.  With the
683 	 * ZONED all devices can be used, using zone emulation if required.
684 	 */
685 	if (!btrfs_fs_incompat(fs_info, ZONED))
686 		return btrfs_check_for_zoned_device(fs_info);
687 
688 	blk_set_stacking_limits(lim);
689 
690 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
692 
693 		if (!device->bdev)
694 			continue;
695 
696 		if (!zone_size) {
697 			zone_size = zone_info->zone_size;
698 		} else if (zone_info->zone_size != zone_size) {
699 			btrfs_err(fs_info,
700 		"zoned: unequal block device zone sizes: have %llu found %llu",
701 				  zone_info->zone_size, zone_size);
702 			return -EINVAL;
703 		}
704 
705 		/*
706 		 * With the zoned emulation, we can have non-zoned device on the
707 		 * zoned mode. In this case, we don't have a valid max zone
708 		 * append size.
709 		 */
710 		if (bdev_is_zoned(device->bdev))
711 			blk_stack_limits(lim, bdev_limits(device->bdev), 0);
712 	}
713 
714 	ret = blk_validate_limits(lim);
715 	if (ret) {
716 		btrfs_err(fs_info, "zoned: failed to validate queue limits");
717 		return ret;
718 	}
719 
720 	/*
721 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
722 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
723 	 * check the alignment here.
724 	 */
725 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
726 		btrfs_err(fs_info,
727 			  "zoned: zone size %llu not aligned to stripe %u",
728 			  zone_size, BTRFS_STRIPE_LEN);
729 		return -EINVAL;
730 	}
731 
732 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
733 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
734 		return -EINVAL;
735 	}
736 
737 	fs_info->zone_size = zone_size;
738 	/*
739 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
740 	 * Technically, we can have multiple pages per segment. But, since
741 	 * we add the pages one by one to a bio, and cannot increase the
742 	 * metadata reservation even if it increases the number of extents, it
743 	 * is safe to stick with the limit.
744 	 */
745 	fs_info->max_zone_append_size = ALIGN_DOWN(
746 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
747 		     (u64)lim->max_sectors << SECTOR_SHIFT,
748 		     (u64)lim->max_segments << PAGE_SHIFT),
749 		fs_info->sectorsize);
750 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
751 
752 	fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
753 						fs_info->max_zone_append_size);
754 
755 	/*
756 	 * Check mount options here, because we might change fs_info->zoned
757 	 * from fs_info->zone_size.
758 	 */
759 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
760 	if (ret)
761 		return ret;
762 
763 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
764 	return 0;
765 }
766 
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)767 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
768 				unsigned long long *mount_opt)
769 {
770 	if (!btrfs_is_zoned(info))
771 		return 0;
772 
773 	/*
774 	 * Space cache writing is not COWed. Disable that to avoid write errors
775 	 * in sequential zones.
776 	 */
777 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
778 		btrfs_err(info, "zoned: space cache v1 is not supported");
779 		return -EINVAL;
780 	}
781 
782 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
783 		btrfs_err(info, "zoned: NODATACOW not supported");
784 		return -EINVAL;
785 	}
786 
787 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
788 		btrfs_info(info,
789 			   "zoned: async discard ignored and disabled for zoned mode");
790 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
791 	}
792 
793 	return 0;
794 }
795 
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)796 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
797 			   int rw, u64 *bytenr_ret)
798 {
799 	u64 wp;
800 	int ret;
801 
802 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
803 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
804 		return 0;
805 	}
806 
807 	ret = sb_write_pointer(bdev, zones, &wp);
808 	if (ret != -ENOENT && ret < 0)
809 		return ret;
810 
811 	if (rw == WRITE) {
812 		struct blk_zone *reset = NULL;
813 
814 		if (wp == zones[0].start << SECTOR_SHIFT)
815 			reset = &zones[0];
816 		else if (wp == zones[1].start << SECTOR_SHIFT)
817 			reset = &zones[1];
818 
819 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
820 			unsigned int nofs_flags;
821 
822 			ASSERT(sb_zone_is_full(reset));
823 
824 			nofs_flags = memalloc_nofs_save();
825 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
826 					       reset->start, reset->len);
827 			memalloc_nofs_restore(nofs_flags);
828 			if (ret)
829 				return ret;
830 
831 			reset->cond = BLK_ZONE_COND_EMPTY;
832 			reset->wp = reset->start;
833 		}
834 	} else if (ret != -ENOENT) {
835 		/*
836 		 * For READ, we want the previous one. Move write pointer to
837 		 * the end of a zone, if it is at the head of a zone.
838 		 */
839 		u64 zone_end = 0;
840 
841 		if (wp == zones[0].start << SECTOR_SHIFT)
842 			zone_end = zones[1].start + zones[1].capacity;
843 		else if (wp == zones[1].start << SECTOR_SHIFT)
844 			zone_end = zones[0].start + zones[0].capacity;
845 		if (zone_end)
846 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
847 					BTRFS_SUPER_INFO_SIZE);
848 
849 		wp -= BTRFS_SUPER_INFO_SIZE;
850 	}
851 
852 	*bytenr_ret = wp;
853 	return 0;
854 
855 }
856 
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)857 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
858 			       u64 *bytenr_ret)
859 {
860 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
861 	sector_t zone_sectors;
862 	u32 sb_zone;
863 	int ret;
864 	u8 zone_sectors_shift;
865 	sector_t nr_sectors;
866 	u32 nr_zones;
867 
868 	if (!bdev_is_zoned(bdev)) {
869 		*bytenr_ret = btrfs_sb_offset(mirror);
870 		return 0;
871 	}
872 
873 	ASSERT(rw == READ || rw == WRITE);
874 
875 	zone_sectors = bdev_zone_sectors(bdev);
876 	if (!is_power_of_2(zone_sectors))
877 		return -EINVAL;
878 	zone_sectors_shift = ilog2(zone_sectors);
879 	nr_sectors = bdev_nr_sectors(bdev);
880 	nr_zones = nr_sectors >> zone_sectors_shift;
881 
882 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
883 	if (sb_zone + 1 >= nr_zones)
884 		return -ENOENT;
885 
886 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
887 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
888 				  zones);
889 	if (ret < 0)
890 		return ret;
891 	if (ret != BTRFS_NR_SB_LOG_ZONES)
892 		return -EIO;
893 
894 	return sb_log_location(bdev, zones, rw, bytenr_ret);
895 }
896 
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)897 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
898 			  u64 *bytenr_ret)
899 {
900 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
901 	u32 zone_num;
902 
903 	/*
904 	 * For a zoned filesystem on a non-zoned block device, use the same
905 	 * super block locations as regular filesystem. Doing so, the super
906 	 * block can always be retrieved and the zoned flag of the volume
907 	 * detected from the super block information.
908 	 */
909 	if (!bdev_is_zoned(device->bdev)) {
910 		*bytenr_ret = btrfs_sb_offset(mirror);
911 		return 0;
912 	}
913 
914 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
915 	if (zone_num + 1 >= zinfo->nr_zones)
916 		return -ENOENT;
917 
918 	return sb_log_location(device->bdev,
919 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
920 			       rw, bytenr_ret);
921 }
922 
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)923 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
924 				  int mirror)
925 {
926 	u32 zone_num;
927 
928 	if (!zinfo)
929 		return false;
930 
931 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
932 	if (zone_num + 1 >= zinfo->nr_zones)
933 		return false;
934 
935 	if (!test_bit(zone_num, zinfo->seq_zones))
936 		return false;
937 
938 	return true;
939 }
940 
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)941 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
942 {
943 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
944 	struct blk_zone *zone;
945 	int i;
946 
947 	if (!is_sb_log_zone(zinfo, mirror))
948 		return 0;
949 
950 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
951 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
952 		/* Advance the next zone */
953 		if (zone->cond == BLK_ZONE_COND_FULL) {
954 			zone++;
955 			continue;
956 		}
957 
958 		if (zone->cond == BLK_ZONE_COND_EMPTY)
959 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
960 
961 		zone->wp += SUPER_INFO_SECTORS;
962 
963 		if (sb_zone_is_full(zone)) {
964 			/*
965 			 * No room left to write new superblock. Since
966 			 * superblock is written with REQ_SYNC, it is safe to
967 			 * finish the zone now.
968 			 *
969 			 * If the write pointer is exactly at the capacity,
970 			 * explicit ZONE_FINISH is not necessary.
971 			 */
972 			if (zone->wp != zone->start + zone->capacity) {
973 				unsigned int nofs_flags;
974 				int ret;
975 
976 				nofs_flags = memalloc_nofs_save();
977 				ret = blkdev_zone_mgmt(device->bdev,
978 						REQ_OP_ZONE_FINISH, zone->start,
979 						zone->len);
980 				memalloc_nofs_restore(nofs_flags);
981 				if (ret)
982 					return ret;
983 			}
984 
985 			zone->wp = zone->start + zone->len;
986 			zone->cond = BLK_ZONE_COND_FULL;
987 		}
988 		return 0;
989 	}
990 
991 	/* All the zones are FULL. Should not reach here. */
992 	ASSERT(0);
993 	return -EIO;
994 }
995 
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)996 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
997 {
998 	unsigned int nofs_flags;
999 	sector_t zone_sectors;
1000 	sector_t nr_sectors;
1001 	u8 zone_sectors_shift;
1002 	u32 sb_zone;
1003 	u32 nr_zones;
1004 	int ret;
1005 
1006 	zone_sectors = bdev_zone_sectors(bdev);
1007 	zone_sectors_shift = ilog2(zone_sectors);
1008 	nr_sectors = bdev_nr_sectors(bdev);
1009 	nr_zones = nr_sectors >> zone_sectors_shift;
1010 
1011 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012 	if (sb_zone + 1 >= nr_zones)
1013 		return -ENOENT;
1014 
1015 	nofs_flags = memalloc_nofs_save();
1016 	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1017 			       zone_start_sector(sb_zone, bdev),
1018 			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1019 	memalloc_nofs_restore(nofs_flags);
1020 	return ret;
1021 }
1022 
1023 /*
1024  * Find allocatable zones within a given region.
1025  *
1026  * @device:	the device to allocate a region on
1027  * @hole_start: the position of the hole to allocate the region
1028  * @num_bytes:	size of wanted region
1029  * @hole_end:	the end of the hole
1030  * @return:	position of allocatable zones
1031  *
1032  * Allocatable region should not contain any superblock locations.
1033  */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1034 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1035 				 u64 hole_end, u64 num_bytes)
1036 {
1037 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1038 	const u8 shift = zinfo->zone_size_shift;
1039 	u64 nzones = num_bytes >> shift;
1040 	u64 pos = hole_start;
1041 	u64 begin, end;
1042 	bool have_sb;
1043 	int i;
1044 
1045 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1046 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1047 
1048 	while (pos < hole_end) {
1049 		begin = pos >> shift;
1050 		end = begin + nzones;
1051 
1052 		if (end > zinfo->nr_zones)
1053 			return hole_end;
1054 
1055 		/* Check if zones in the region are all empty */
1056 		if (btrfs_dev_is_sequential(device, pos) &&
1057 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1058 			pos += zinfo->zone_size;
1059 			continue;
1060 		}
1061 
1062 		have_sb = false;
1063 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1064 			u32 sb_zone;
1065 			u64 sb_pos;
1066 
1067 			sb_zone = sb_zone_number(shift, i);
1068 			if (!(end <= sb_zone ||
1069 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1070 				have_sb = true;
1071 				pos = zone_start_physical(
1072 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1073 				break;
1074 			}
1075 
1076 			/* We also need to exclude regular superblock positions */
1077 			sb_pos = btrfs_sb_offset(i);
1078 			if (!(pos + num_bytes <= sb_pos ||
1079 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1080 				have_sb = true;
1081 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1082 					    zinfo->zone_size);
1083 				break;
1084 			}
1085 		}
1086 		if (!have_sb)
1087 			break;
1088 	}
1089 
1090 	return pos;
1091 }
1092 
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1093 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1094 {
1095 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1096 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1097 
1098 	/* We can use any number of zones */
1099 	if (zone_info->max_active_zones == 0)
1100 		return true;
1101 
1102 	if (!test_bit(zno, zone_info->active_zones)) {
1103 		/* Active zone left? */
1104 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1105 			return false;
1106 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1107 			/* Someone already set the bit */
1108 			atomic_inc(&zone_info->active_zones_left);
1109 		}
1110 	}
1111 
1112 	return true;
1113 }
1114 
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1115 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1116 {
1117 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1118 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1119 
1120 	/* We can use any number of zones */
1121 	if (zone_info->max_active_zones == 0)
1122 		return;
1123 
1124 	if (test_and_clear_bit(zno, zone_info->active_zones))
1125 		atomic_inc(&zone_info->active_zones_left);
1126 }
1127 
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1128 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1129 			    u64 length, u64 *bytes)
1130 {
1131 	unsigned int nofs_flags;
1132 	int ret;
1133 
1134 	*bytes = 0;
1135 	nofs_flags = memalloc_nofs_save();
1136 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1137 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1138 	memalloc_nofs_restore(nofs_flags);
1139 	if (ret)
1140 		return ret;
1141 
1142 	*bytes = length;
1143 	while (length) {
1144 		btrfs_dev_set_zone_empty(device, physical);
1145 		btrfs_dev_clear_active_zone(device, physical);
1146 		physical += device->zone_info->zone_size;
1147 		length -= device->zone_info->zone_size;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1153 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1154 {
1155 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1156 	const u8 shift = zinfo->zone_size_shift;
1157 	unsigned long begin = start >> shift;
1158 	unsigned long nbits = size >> shift;
1159 	u64 pos;
1160 	int ret;
1161 
1162 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1163 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1164 
1165 	if (begin + nbits > zinfo->nr_zones)
1166 		return -ERANGE;
1167 
1168 	/* All the zones are conventional */
1169 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1170 		return 0;
1171 
1172 	/* All the zones are sequential and empty */
1173 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1174 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1175 		return 0;
1176 
1177 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1178 		u64 reset_bytes;
1179 
1180 		if (!btrfs_dev_is_sequential(device, pos) ||
1181 		    btrfs_dev_is_empty_zone(device, pos))
1182 			continue;
1183 
1184 		/* Free regions should be empty */
1185 		btrfs_warn_in_rcu(
1186 			device->fs_info,
1187 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1188 			rcu_str_deref(device->name), device->devid, pos >> shift);
1189 		WARN_ON_ONCE(1);
1190 
1191 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1192 					      &reset_bytes);
1193 		if (ret)
1194 			return ret;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Calculate an allocation pointer from the extent allocation information
1202  * for a block group consist of conventional zones. It is pointed to the
1203  * end of the highest addressed extent in the block group as an allocation
1204  * offset.
1205  */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1206 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1207 				   u64 *offset_ret, bool new)
1208 {
1209 	struct btrfs_fs_info *fs_info = cache->fs_info;
1210 	struct btrfs_root *root;
1211 	BTRFS_PATH_AUTO_FREE(path);
1212 	struct btrfs_key key;
1213 	struct btrfs_key found_key;
1214 	int ret;
1215 	u64 length;
1216 
1217 	/*
1218 	 * Avoid  tree lookups for a new block group, there's no use for it.
1219 	 * It must always be 0.
1220 	 *
1221 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1222 	 * For new a block group, this function is called from
1223 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1224 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1225 	 * buffer locks to avoid deadlock.
1226 	 */
1227 	if (new) {
1228 		*offset_ret = 0;
1229 		return 0;
1230 	}
1231 
1232 	path = btrfs_alloc_path();
1233 	if (!path)
1234 		return -ENOMEM;
1235 
1236 	key.objectid = cache->start + cache->length;
1237 	key.type = 0;
1238 	key.offset = 0;
1239 
1240 	root = btrfs_extent_root(fs_info, key.objectid);
1241 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1242 	/* We should not find the exact match */
1243 	if (!ret)
1244 		ret = -EUCLEAN;
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	ret = btrfs_previous_extent_item(root, path, cache->start);
1249 	if (ret) {
1250 		if (ret == 1) {
1251 			ret = 0;
1252 			*offset_ret = 0;
1253 		}
1254 		return ret;
1255 	}
1256 
1257 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1258 
1259 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1260 		length = found_key.offset;
1261 	else
1262 		length = fs_info->nodesize;
1263 
1264 	if (!(found_key.objectid >= cache->start &&
1265 	       found_key.objectid + length <= cache->start + cache->length)) {
1266 		return -EUCLEAN;
1267 	}
1268 	*offset_ret = found_key.objectid + length - cache->start;
1269 	return 0;
1270 }
1271 
1272 struct zone_info {
1273 	u64 physical;
1274 	u64 capacity;
1275 	u64 alloc_offset;
1276 };
1277 
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map,bool new)1278 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1279 				struct zone_info *info, unsigned long *active,
1280 				struct btrfs_chunk_map *map, bool new)
1281 {
1282 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 	struct btrfs_device *device;
1284 	int dev_replace_is_ongoing = 0;
1285 	unsigned int nofs_flag;
1286 	struct blk_zone zone;
1287 	int ret;
1288 
1289 	info->physical = map->stripes[zone_idx].physical;
1290 
1291 	down_read(&dev_replace->rwsem);
1292 	device = map->stripes[zone_idx].dev;
1293 
1294 	if (!device->bdev) {
1295 		up_read(&dev_replace->rwsem);
1296 		info->alloc_offset = WP_MISSING_DEV;
1297 		return 0;
1298 	}
1299 
1300 	/* Consider a zone as active if we can allow any number of active zones. */
1301 	if (!device->zone_info->max_active_zones)
1302 		__set_bit(zone_idx, active);
1303 
1304 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1305 		up_read(&dev_replace->rwsem);
1306 		info->alloc_offset = WP_CONVENTIONAL;
1307 		return 0;
1308 	}
1309 
1310 	ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical));
1311 
1312 	/* This zone will be used for allocation, so mark this zone non-empty. */
1313 	btrfs_dev_clear_zone_empty(device, info->physical);
1314 
1315 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1316 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1317 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1318 
1319 	/*
1320 	 * The group is mapped to a sequential zone. Get the zone write pointer
1321 	 * to determine the allocation offset within the zone.
1322 	 */
1323 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1324 
1325 	if (new) {
1326 		sector_t capacity;
1327 
1328 		capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT);
1329 		up_read(&dev_replace->rwsem);
1330 		info->alloc_offset = 0;
1331 		info->capacity = capacity << SECTOR_SHIFT;
1332 
1333 		return 0;
1334 	}
1335 
1336 	nofs_flag = memalloc_nofs_save();
1337 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1338 	memalloc_nofs_restore(nofs_flag);
1339 	if (ret) {
1340 		up_read(&dev_replace->rwsem);
1341 		if (ret != -EIO && ret != -EOPNOTSUPP)
1342 			return ret;
1343 		info->alloc_offset = WP_MISSING_DEV;
1344 		return 0;
1345 	}
1346 
1347 	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1348 		btrfs_err_in_rcu(fs_info,
1349 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1350 			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1351 			device->devid);
1352 		up_read(&dev_replace->rwsem);
1353 		return -EIO;
1354 	}
1355 
1356 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1357 
1358 	switch (zone.cond) {
1359 	case BLK_ZONE_COND_OFFLINE:
1360 	case BLK_ZONE_COND_READONLY:
1361 		btrfs_err_in_rcu(fs_info,
1362 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1363 			  (info->physical >> device->zone_info->zone_size_shift),
1364 			  rcu_str_deref(device->name), device->devid);
1365 		info->alloc_offset = WP_MISSING_DEV;
1366 		break;
1367 	case BLK_ZONE_COND_EMPTY:
1368 		info->alloc_offset = 0;
1369 		break;
1370 	case BLK_ZONE_COND_FULL:
1371 		info->alloc_offset = info->capacity;
1372 		break;
1373 	default:
1374 		/* Partially used zone. */
1375 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1376 		__set_bit(zone_idx, active);
1377 		break;
1378 	}
1379 
1380 	up_read(&dev_replace->rwsem);
1381 
1382 	return 0;
1383 }
1384 
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1385 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1386 					 struct zone_info *info,
1387 					 unsigned long *active)
1388 {
1389 	if (info->alloc_offset == WP_MISSING_DEV) {
1390 		btrfs_err(bg->fs_info,
1391 			"zoned: cannot recover write pointer for zone %llu",
1392 			info->physical);
1393 		return -EIO;
1394 	}
1395 
1396 	bg->alloc_offset = info->alloc_offset;
1397 	bg->zone_capacity = info->capacity;
1398 	if (test_bit(0, active))
1399 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1400 	return 0;
1401 }
1402 
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1403 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1404 				      struct btrfs_chunk_map *map,
1405 				      struct zone_info *zone_info,
1406 				      unsigned long *active)
1407 {
1408 	struct btrfs_fs_info *fs_info = bg->fs_info;
1409 
1410 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1411 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1412 		return -EINVAL;
1413 	}
1414 
1415 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1416 
1417 	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1418 		btrfs_err(bg->fs_info,
1419 			  "zoned: cannot recover write pointer for zone %llu",
1420 			  zone_info[0].physical);
1421 		return -EIO;
1422 	}
1423 	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1424 		btrfs_err(bg->fs_info,
1425 			  "zoned: cannot recover write pointer for zone %llu",
1426 			  zone_info[1].physical);
1427 		return -EIO;
1428 	}
1429 	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1430 		btrfs_err(bg->fs_info,
1431 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1432 		return -EIO;
1433 	}
1434 
1435 	if (test_bit(0, active) != test_bit(1, active)) {
1436 		if (!btrfs_zone_activate(bg))
1437 			return -EIO;
1438 	} else if (test_bit(0, active)) {
1439 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1440 	}
1441 
1442 	bg->alloc_offset = zone_info[0].alloc_offset;
1443 	return 0;
1444 }
1445 
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1446 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1447 					struct btrfs_chunk_map *map,
1448 					struct zone_info *zone_info,
1449 					unsigned long *active)
1450 {
1451 	struct btrfs_fs_info *fs_info = bg->fs_info;
1452 	int i;
1453 
1454 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1455 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1456 			  btrfs_bg_type_to_raid_name(map->type));
1457 		return -EINVAL;
1458 	}
1459 
1460 	/* In case a device is missing we have a cap of 0, so don't use it. */
1461 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1462 
1463 	for (i = 0; i < map->num_stripes; i++) {
1464 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1465 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1466 			continue;
1467 
1468 		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1469 		    !btrfs_test_opt(fs_info, DEGRADED)) {
1470 			btrfs_err(fs_info,
1471 			"zoned: write pointer offset mismatch of zones in %s profile",
1472 				  btrfs_bg_type_to_raid_name(map->type));
1473 			return -EIO;
1474 		}
1475 		if (test_bit(0, active) != test_bit(i, active)) {
1476 			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1477 			    !btrfs_zone_activate(bg)) {
1478 				return -EIO;
1479 			}
1480 		} else {
1481 			if (test_bit(0, active))
1482 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1483 		}
1484 	}
1485 
1486 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1487 		bg->alloc_offset = zone_info[0].alloc_offset;
1488 	else
1489 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1490 
1491 	return 0;
1492 }
1493 
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1494 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1495 					struct btrfs_chunk_map *map,
1496 					struct zone_info *zone_info,
1497 					unsigned long *active)
1498 {
1499 	struct btrfs_fs_info *fs_info = bg->fs_info;
1500 
1501 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1502 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1503 			  btrfs_bg_type_to_raid_name(map->type));
1504 		return -EINVAL;
1505 	}
1506 
1507 	for (int i = 0; i < map->num_stripes; i++) {
1508 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1509 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1510 			continue;
1511 
1512 		if (test_bit(0, active) != test_bit(i, active)) {
1513 			if (!btrfs_zone_activate(bg))
1514 				return -EIO;
1515 		} else {
1516 			if (test_bit(0, active))
1517 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1518 		}
1519 		bg->zone_capacity += zone_info[i].capacity;
1520 		bg->alloc_offset += zone_info[i].alloc_offset;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active)1526 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1527 					 struct btrfs_chunk_map *map,
1528 					 struct zone_info *zone_info,
1529 					 unsigned long *active)
1530 {
1531 	struct btrfs_fs_info *fs_info = bg->fs_info;
1532 
1533 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1534 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1535 			  btrfs_bg_type_to_raid_name(map->type));
1536 		return -EINVAL;
1537 	}
1538 
1539 	for (int i = 0; i < map->num_stripes; i++) {
1540 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1541 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1542 			continue;
1543 
1544 		if (test_bit(0, active) != test_bit(i, active)) {
1545 			if (!btrfs_zone_activate(bg))
1546 				return -EIO;
1547 		} else {
1548 			if (test_bit(0, active))
1549 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1550 		}
1551 
1552 		if ((i % map->sub_stripes) == 0) {
1553 			bg->zone_capacity += zone_info[i].capacity;
1554 			bg->alloc_offset += zone_info[i].alloc_offset;
1555 		}
1556 	}
1557 
1558 	return 0;
1559 }
1560 
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1561 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1562 {
1563 	struct btrfs_fs_info *fs_info = cache->fs_info;
1564 	struct btrfs_chunk_map *map;
1565 	u64 logical = cache->start;
1566 	u64 length = cache->length;
1567 	struct zone_info *zone_info = NULL;
1568 	int ret;
1569 	int i;
1570 	unsigned long *active = NULL;
1571 	u64 last_alloc = 0;
1572 	u32 num_sequential = 0, num_conventional = 0;
1573 	u64 profile;
1574 
1575 	if (!btrfs_is_zoned(fs_info))
1576 		return 0;
1577 
1578 	/* Sanity check */
1579 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1580 		btrfs_err(fs_info,
1581 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1582 			  logical, length, fs_info->zone_size);
1583 		return -EIO;
1584 	}
1585 
1586 	map = btrfs_find_chunk_map(fs_info, logical, length);
1587 	if (!map)
1588 		return -EINVAL;
1589 
1590 	cache->physical_map = map;
1591 
1592 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1593 	if (!zone_info) {
1594 		ret = -ENOMEM;
1595 		goto out;
1596 	}
1597 
1598 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1599 	if (!active) {
1600 		ret = -ENOMEM;
1601 		goto out;
1602 	}
1603 
1604 	for (i = 0; i < map->num_stripes; i++) {
1605 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new);
1606 		if (ret)
1607 			goto out;
1608 
1609 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1610 			num_conventional++;
1611 		else
1612 			num_sequential++;
1613 	}
1614 
1615 	if (num_sequential > 0)
1616 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1617 
1618 	if (num_conventional > 0) {
1619 		/* Zone capacity is always zone size in emulation */
1620 		cache->zone_capacity = cache->length;
1621 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1622 		if (ret) {
1623 			btrfs_err(fs_info,
1624 			"zoned: failed to determine allocation offset of bg %llu",
1625 				  cache->start);
1626 			goto out;
1627 		} else if (map->num_stripes == num_conventional) {
1628 			cache->alloc_offset = last_alloc;
1629 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1630 			goto out;
1631 		}
1632 	}
1633 
1634 	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1635 	switch (profile) {
1636 	case 0: /* single */
1637 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1638 		break;
1639 	case BTRFS_BLOCK_GROUP_DUP:
1640 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1641 		break;
1642 	case BTRFS_BLOCK_GROUP_RAID1:
1643 	case BTRFS_BLOCK_GROUP_RAID1C3:
1644 	case BTRFS_BLOCK_GROUP_RAID1C4:
1645 		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1646 		break;
1647 	case BTRFS_BLOCK_GROUP_RAID0:
1648 		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1649 		break;
1650 	case BTRFS_BLOCK_GROUP_RAID10:
1651 		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1652 		break;
1653 	case BTRFS_BLOCK_GROUP_RAID5:
1654 	case BTRFS_BLOCK_GROUP_RAID6:
1655 	default:
1656 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1657 			  btrfs_bg_type_to_raid_name(map->type));
1658 		ret = -EINVAL;
1659 		goto out;
1660 	}
1661 
1662 	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1663 	    profile != BTRFS_BLOCK_GROUP_RAID10) {
1664 		/*
1665 		 * Detected broken write pointer.  Make this block group
1666 		 * unallocatable by setting the allocation pointer at the end of
1667 		 * allocatable region. Relocating this block group will fix the
1668 		 * mismatch.
1669 		 *
1670 		 * Currently, we cannot handle RAID0 or RAID10 case like this
1671 		 * because we don't have a proper zone_capacity value. But,
1672 		 * reading from this block group won't work anyway by a missing
1673 		 * stripe.
1674 		 */
1675 		cache->alloc_offset = cache->zone_capacity;
1676 	}
1677 
1678 out:
1679 	/* Reject non SINGLE data profiles without RST */
1680 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1681 	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1682 	    !fs_info->stripe_root) {
1683 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1684 			  btrfs_bg_type_to_raid_name(map->type));
1685 		return -EINVAL;
1686 	}
1687 
1688 	if (cache->alloc_offset > cache->zone_capacity) {
1689 		btrfs_err(fs_info,
1690 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1691 			  cache->alloc_offset, cache->zone_capacity,
1692 			  cache->start);
1693 		ret = -EIO;
1694 	}
1695 
1696 	/* An extent is allocated after the write pointer */
1697 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1698 		btrfs_err(fs_info,
1699 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1700 			  logical, last_alloc, cache->alloc_offset);
1701 		ret = -EIO;
1702 	}
1703 
1704 	if (!ret) {
1705 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1706 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1707 			btrfs_get_block_group(cache);
1708 			spin_lock(&fs_info->zone_active_bgs_lock);
1709 			list_add_tail(&cache->active_bg_list,
1710 				      &fs_info->zone_active_bgs);
1711 			spin_unlock(&fs_info->zone_active_bgs_lock);
1712 		}
1713 	} else {
1714 		btrfs_free_chunk_map(cache->physical_map);
1715 		cache->physical_map = NULL;
1716 	}
1717 	bitmap_free(active);
1718 	kfree(zone_info);
1719 
1720 	return ret;
1721 }
1722 
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1723 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1724 {
1725 	u64 unusable, free;
1726 
1727 	if (!btrfs_is_zoned(cache->fs_info))
1728 		return;
1729 
1730 	WARN_ON(cache->bytes_super != 0);
1731 	unusable = (cache->alloc_offset - cache->used) +
1732 		   (cache->length - cache->zone_capacity);
1733 	free = cache->zone_capacity - cache->alloc_offset;
1734 
1735 	/* We only need ->free_space in ALLOC_SEQ block groups */
1736 	cache->cached = BTRFS_CACHE_FINISHED;
1737 	cache->free_space_ctl->free_space = free;
1738 	cache->zone_unusable = unusable;
1739 }
1740 
btrfs_use_zone_append(struct btrfs_bio * bbio)1741 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1742 {
1743 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1744 	struct btrfs_inode *inode = bbio->inode;
1745 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1746 	struct btrfs_block_group *cache;
1747 	bool ret = false;
1748 
1749 	if (!btrfs_is_zoned(fs_info))
1750 		return false;
1751 
1752 	if (!inode || !is_data_inode(inode))
1753 		return false;
1754 
1755 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1756 		return false;
1757 
1758 	/*
1759 	 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1760 	 * extent layout the relocation code has.
1761 	 * Furthermore we have set aside own block-group from which only the
1762 	 * relocation "process" can allocate and make sure only one process at a
1763 	 * time can add pages to an extent that gets relocated, so it's safe to
1764 	 * use regular REQ_OP_WRITE for this special case.
1765 	 */
1766 	if (btrfs_is_data_reloc_root(inode->root))
1767 		return false;
1768 
1769 	cache = btrfs_lookup_block_group(fs_info, start);
1770 	ASSERT(cache);
1771 	if (!cache)
1772 		return false;
1773 
1774 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1775 	btrfs_put_block_group(cache);
1776 
1777 	return ret;
1778 }
1779 
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1780 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1781 {
1782 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1783 	struct btrfs_ordered_sum *sum = bbio->sums;
1784 
1785 	if (physical < bbio->orig_physical)
1786 		sum->logical -= bbio->orig_physical - physical;
1787 	else
1788 		sum->logical += physical - bbio->orig_physical;
1789 }
1790 
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1791 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1792 					u64 logical)
1793 {
1794 	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1795 	struct extent_map *em;
1796 
1797 	ordered->disk_bytenr = logical;
1798 
1799 	write_lock(&em_tree->lock);
1800 	em = search_extent_mapping(em_tree, ordered->file_offset,
1801 				   ordered->num_bytes);
1802 	/* The em should be a new COW extent, thus it should not have an offset. */
1803 	ASSERT(em->offset == 0);
1804 	em->disk_bytenr = logical;
1805 	free_extent_map(em);
1806 	write_unlock(&em_tree->lock);
1807 }
1808 
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1809 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1810 				      u64 logical, u64 len)
1811 {
1812 	struct btrfs_ordered_extent *new;
1813 
1814 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1815 	    split_extent_map(ordered->inode, ordered->file_offset,
1816 			     ordered->num_bytes, len, logical))
1817 		return false;
1818 
1819 	new = btrfs_split_ordered_extent(ordered, len);
1820 	if (IS_ERR(new))
1821 		return false;
1822 	new->disk_bytenr = logical;
1823 	btrfs_finish_one_ordered(new);
1824 	return true;
1825 }
1826 
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1827 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1828 {
1829 	struct btrfs_inode *inode = ordered->inode;
1830 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1831 	struct btrfs_ordered_sum *sum;
1832 	u64 logical, len;
1833 
1834 	/*
1835 	 * Write to pre-allocated region is for the data relocation, and so
1836 	 * it should use WRITE operation. No split/rewrite are necessary.
1837 	 */
1838 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1839 		return;
1840 
1841 	ASSERT(!list_empty(&ordered->list));
1842 	/* The ordered->list can be empty in the above pre-alloc case. */
1843 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1844 	logical = sum->logical;
1845 	len = sum->len;
1846 
1847 	while (len < ordered->disk_num_bytes) {
1848 		sum = list_next_entry(sum, list);
1849 		if (sum->logical == logical + len) {
1850 			len += sum->len;
1851 			continue;
1852 		}
1853 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1854 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1855 			btrfs_err(fs_info, "failed to split ordered extent");
1856 			goto out;
1857 		}
1858 		logical = sum->logical;
1859 		len = sum->len;
1860 	}
1861 
1862 	if (ordered->disk_bytenr != logical)
1863 		btrfs_rewrite_logical_zoned(ordered, logical);
1864 
1865 out:
1866 	/*
1867 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1868 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1869 	 * addresses and don't contain actual checksums.  We thus must free them
1870 	 * here so that we don't attempt to log the csums later.
1871 	 */
1872 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1873 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1874 		while ((sum = list_first_entry_or_null(&ordered->list,
1875 						       typeof(*sum), list))) {
1876 			list_del(&sum->list);
1877 			kfree(sum);
1878 		}
1879 	}
1880 }
1881 
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1882 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1883 			       struct btrfs_block_group **active_bg)
1884 {
1885 	const struct writeback_control *wbc = ctx->wbc;
1886 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1887 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1888 
1889 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1890 		return true;
1891 
1892 	if (fs_info->treelog_bg == block_group->start) {
1893 		if (!btrfs_zone_activate(block_group)) {
1894 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1895 
1896 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1897 				return false;
1898 		}
1899 	} else if (*active_bg != block_group) {
1900 		struct btrfs_block_group *tgt = *active_bg;
1901 
1902 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1903 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1904 
1905 		if (tgt) {
1906 			/*
1907 			 * If there is an unsent IO left in the allocated area,
1908 			 * we cannot wait for them as it may cause a deadlock.
1909 			 */
1910 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1911 				if (wbc->sync_mode == WB_SYNC_NONE ||
1912 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1913 					return false;
1914 			}
1915 
1916 			/* Pivot active metadata/system block group. */
1917 			btrfs_zoned_meta_io_unlock(fs_info);
1918 			wait_eb_writebacks(tgt);
1919 			do_zone_finish(tgt, true);
1920 			btrfs_zoned_meta_io_lock(fs_info);
1921 			if (*active_bg == tgt) {
1922 				btrfs_put_block_group(tgt);
1923 				*active_bg = NULL;
1924 			}
1925 		}
1926 		if (!btrfs_zone_activate(block_group))
1927 			return false;
1928 		if (*active_bg != block_group) {
1929 			ASSERT(*active_bg == NULL);
1930 			*active_bg = block_group;
1931 			btrfs_get_block_group(block_group);
1932 		}
1933 	}
1934 
1935 	return true;
1936 }
1937 
1938 /*
1939  * Check if @ctx->eb is aligned to the write pointer.
1940  *
1941  * Return:
1942  *   0:        @ctx->eb is at the write pointer. You can write it.
1943  *   -EAGAIN:  There is a hole. The caller should handle the case.
1944  *   -EBUSY:   There is a hole, but the caller can just bail out.
1945  */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)1946 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1947 				   struct btrfs_eb_write_context *ctx)
1948 {
1949 	const struct writeback_control *wbc = ctx->wbc;
1950 	const struct extent_buffer *eb = ctx->eb;
1951 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1952 
1953 	if (!btrfs_is_zoned(fs_info))
1954 		return 0;
1955 
1956 	if (block_group) {
1957 		if (block_group->start > eb->start ||
1958 		    block_group->start + block_group->length <= eb->start) {
1959 			btrfs_put_block_group(block_group);
1960 			block_group = NULL;
1961 			ctx->zoned_bg = NULL;
1962 		}
1963 	}
1964 
1965 	if (!block_group) {
1966 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1967 		if (!block_group)
1968 			return 0;
1969 		ctx->zoned_bg = block_group;
1970 	}
1971 
1972 	if (block_group->meta_write_pointer == eb->start) {
1973 		struct btrfs_block_group **tgt;
1974 
1975 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1976 			return 0;
1977 
1978 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1979 			tgt = &fs_info->active_system_bg;
1980 		else
1981 			tgt = &fs_info->active_meta_bg;
1982 		if (check_bg_is_active(ctx, tgt))
1983 			return 0;
1984 	}
1985 
1986 	/*
1987 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1988 	 * start writing this eb. In that case, we can just bail out.
1989 	 */
1990 	if (block_group->meta_write_pointer > eb->start)
1991 		return -EBUSY;
1992 
1993 	/* If for_sync, this hole will be filled with transaction commit. */
1994 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1995 		return -EAGAIN;
1996 	return -EBUSY;
1997 }
1998 
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)1999 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
2000 {
2001 	if (!btrfs_dev_is_sequential(device, physical))
2002 		return -EOPNOTSUPP;
2003 
2004 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2005 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
2006 }
2007 
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)2008 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2009 			  struct blk_zone *zone)
2010 {
2011 	struct btrfs_io_context *bioc = NULL;
2012 	u64 mapped_length = PAGE_SIZE;
2013 	unsigned int nofs_flag;
2014 	int nmirrors;
2015 	int i, ret;
2016 
2017 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2018 			      &mapped_length, &bioc, NULL, NULL);
2019 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
2020 		ret = -EIO;
2021 		goto out_put_bioc;
2022 	}
2023 
2024 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2025 		ret = -EINVAL;
2026 		goto out_put_bioc;
2027 	}
2028 
2029 	nofs_flag = memalloc_nofs_save();
2030 	nmirrors = (int)bioc->num_stripes;
2031 	for (i = 0; i < nmirrors; i++) {
2032 		u64 physical = bioc->stripes[i].physical;
2033 		struct btrfs_device *dev = bioc->stripes[i].dev;
2034 
2035 		/* Missing device */
2036 		if (!dev->bdev)
2037 			continue;
2038 
2039 		ret = btrfs_get_dev_zone(dev, physical, zone);
2040 		/* Failing device */
2041 		if (ret == -EIO || ret == -EOPNOTSUPP)
2042 			continue;
2043 		break;
2044 	}
2045 	memalloc_nofs_restore(nofs_flag);
2046 out_put_bioc:
2047 	btrfs_put_bioc(bioc);
2048 	return ret;
2049 }
2050 
2051 /*
2052  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2053  * filling zeros between @physical_pos to a write pointer of dev-replace
2054  * source device.
2055  */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2056 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2057 				    u64 physical_start, u64 physical_pos)
2058 {
2059 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2060 	struct blk_zone zone;
2061 	u64 length;
2062 	u64 wp;
2063 	int ret;
2064 
2065 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2066 		return 0;
2067 
2068 	ret = read_zone_info(fs_info, logical, &zone);
2069 	if (ret)
2070 		return ret;
2071 
2072 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2073 
2074 	if (physical_pos == wp)
2075 		return 0;
2076 
2077 	if (physical_pos > wp)
2078 		return -EUCLEAN;
2079 
2080 	length = wp - physical_pos;
2081 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2082 }
2083 
2084 /*
2085  * Activate block group and underlying device zones
2086  *
2087  * @block_group: the block group to activate
2088  *
2089  * Return: true on success, false otherwise
2090  */
btrfs_zone_activate(struct btrfs_block_group * block_group)2091 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2092 {
2093 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2094 	struct btrfs_chunk_map *map;
2095 	struct btrfs_device *device;
2096 	u64 physical;
2097 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2098 	bool ret;
2099 	int i;
2100 
2101 	if (!btrfs_is_zoned(block_group->fs_info))
2102 		return true;
2103 
2104 	map = block_group->physical_map;
2105 
2106 	spin_lock(&fs_info->zone_active_bgs_lock);
2107 	spin_lock(&block_group->lock);
2108 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2109 		ret = true;
2110 		goto out_unlock;
2111 	}
2112 
2113 	/* No space left */
2114 	if (btrfs_zoned_bg_is_full(block_group)) {
2115 		ret = false;
2116 		goto out_unlock;
2117 	}
2118 
2119 	for (i = 0; i < map->num_stripes; i++) {
2120 		struct btrfs_zoned_device_info *zinfo;
2121 		int reserved = 0;
2122 
2123 		device = map->stripes[i].dev;
2124 		physical = map->stripes[i].physical;
2125 		zinfo = device->zone_info;
2126 
2127 		if (!device->bdev)
2128 			continue;
2129 
2130 		if (zinfo->max_active_zones == 0)
2131 			continue;
2132 
2133 		if (is_data)
2134 			reserved = zinfo->reserved_active_zones;
2135 		/*
2136 		 * For the data block group, leave active zones for one
2137 		 * metadata block group and one system block group.
2138 		 */
2139 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2140 			ret = false;
2141 			goto out_unlock;
2142 		}
2143 
2144 		if (!btrfs_dev_set_active_zone(device, physical)) {
2145 			/* Cannot activate the zone */
2146 			ret = false;
2147 			goto out_unlock;
2148 		}
2149 		if (!is_data)
2150 			zinfo->reserved_active_zones--;
2151 	}
2152 
2153 	/* Successfully activated all the zones */
2154 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2155 	spin_unlock(&block_group->lock);
2156 
2157 	/* For the active block group list */
2158 	btrfs_get_block_group(block_group);
2159 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2160 	spin_unlock(&fs_info->zone_active_bgs_lock);
2161 
2162 	return true;
2163 
2164 out_unlock:
2165 	spin_unlock(&block_group->lock);
2166 	spin_unlock(&fs_info->zone_active_bgs_lock);
2167 	return ret;
2168 }
2169 
wait_eb_writebacks(struct btrfs_block_group * block_group)2170 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2171 {
2172 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2173 	const u64 end = block_group->start + block_group->length;
2174 	struct radix_tree_iter iter;
2175 	struct extent_buffer *eb;
2176 	void __rcu **slot;
2177 
2178 	rcu_read_lock();
2179 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2180 				 block_group->start >> fs_info->sectorsize_bits) {
2181 		eb = radix_tree_deref_slot(slot);
2182 		if (!eb)
2183 			continue;
2184 		if (radix_tree_deref_retry(eb)) {
2185 			slot = radix_tree_iter_retry(&iter);
2186 			continue;
2187 		}
2188 
2189 		if (eb->start < block_group->start)
2190 			continue;
2191 		if (eb->start >= end)
2192 			break;
2193 
2194 		slot = radix_tree_iter_resume(slot, &iter);
2195 		rcu_read_unlock();
2196 		wait_on_extent_buffer_writeback(eb);
2197 		rcu_read_lock();
2198 	}
2199 	rcu_read_unlock();
2200 }
2201 
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2202 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2203 {
2204 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2205 	struct btrfs_chunk_map *map;
2206 	const bool is_metadata = (block_group->flags &
2207 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2208 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2209 	int ret = 0;
2210 	int i;
2211 
2212 	spin_lock(&block_group->lock);
2213 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2214 		spin_unlock(&block_group->lock);
2215 		return 0;
2216 	}
2217 
2218 	/* Check if we have unwritten allocated space */
2219 	if (is_metadata &&
2220 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2221 		spin_unlock(&block_group->lock);
2222 		return -EAGAIN;
2223 	}
2224 
2225 	/*
2226 	 * If we are sure that the block group is full (= no more room left for
2227 	 * new allocation) and the IO for the last usable block is completed, we
2228 	 * don't need to wait for the other IOs. This holds because we ensure
2229 	 * the sequential IO submissions using the ZONE_APPEND command for data
2230 	 * and block_group->meta_write_pointer for metadata.
2231 	 */
2232 	if (!fully_written) {
2233 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2234 			spin_unlock(&block_group->lock);
2235 			return -EAGAIN;
2236 		}
2237 		spin_unlock(&block_group->lock);
2238 
2239 		ret = btrfs_inc_block_group_ro(block_group, false);
2240 		if (ret)
2241 			return ret;
2242 
2243 		/* Ensure all writes in this block group finish */
2244 		btrfs_wait_block_group_reservations(block_group);
2245 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2246 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2247 		/* Wait for extent buffers to be written. */
2248 		if (is_metadata)
2249 			wait_eb_writebacks(block_group);
2250 
2251 		spin_lock(&block_group->lock);
2252 
2253 		/*
2254 		 * Bail out if someone already deactivated the block group, or
2255 		 * allocated space is left in the block group.
2256 		 */
2257 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2258 			      &block_group->runtime_flags)) {
2259 			spin_unlock(&block_group->lock);
2260 			btrfs_dec_block_group_ro(block_group);
2261 			return 0;
2262 		}
2263 
2264 		if (block_group->reserved ||
2265 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2266 			     &block_group->runtime_flags)) {
2267 			spin_unlock(&block_group->lock);
2268 			btrfs_dec_block_group_ro(block_group);
2269 			return -EAGAIN;
2270 		}
2271 	}
2272 
2273 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2274 	block_group->alloc_offset = block_group->zone_capacity;
2275 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2276 		block_group->meta_write_pointer = block_group->start +
2277 						  block_group->zone_capacity;
2278 	block_group->free_space_ctl->free_space = 0;
2279 	btrfs_clear_treelog_bg(block_group);
2280 	btrfs_clear_data_reloc_bg(block_group);
2281 	spin_unlock(&block_group->lock);
2282 
2283 	down_read(&dev_replace->rwsem);
2284 	map = block_group->physical_map;
2285 	for (i = 0; i < map->num_stripes; i++) {
2286 		struct btrfs_device *device = map->stripes[i].dev;
2287 		const u64 physical = map->stripes[i].physical;
2288 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2289 		unsigned int nofs_flags;
2290 
2291 		if (!device->bdev)
2292 			continue;
2293 
2294 		if (zinfo->max_active_zones == 0)
2295 			continue;
2296 
2297 		nofs_flags = memalloc_nofs_save();
2298 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2299 				       physical >> SECTOR_SHIFT,
2300 				       zinfo->zone_size >> SECTOR_SHIFT);
2301 		memalloc_nofs_restore(nofs_flags);
2302 
2303 		if (ret) {
2304 			up_read(&dev_replace->rwsem);
2305 			return ret;
2306 		}
2307 
2308 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2309 			zinfo->reserved_active_zones++;
2310 		btrfs_dev_clear_active_zone(device, physical);
2311 	}
2312 	up_read(&dev_replace->rwsem);
2313 
2314 	if (!fully_written)
2315 		btrfs_dec_block_group_ro(block_group);
2316 
2317 	spin_lock(&fs_info->zone_active_bgs_lock);
2318 	ASSERT(!list_empty(&block_group->active_bg_list));
2319 	list_del_init(&block_group->active_bg_list);
2320 	spin_unlock(&fs_info->zone_active_bgs_lock);
2321 
2322 	/* For active_bg_list */
2323 	btrfs_put_block_group(block_group);
2324 
2325 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2326 
2327 	return 0;
2328 }
2329 
btrfs_zone_finish(struct btrfs_block_group * block_group)2330 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2331 {
2332 	if (!btrfs_is_zoned(block_group->fs_info))
2333 		return 0;
2334 
2335 	return do_zone_finish(block_group, false);
2336 }
2337 
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2338 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2339 {
2340 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2341 	struct btrfs_device *device;
2342 	bool ret = false;
2343 
2344 	if (!btrfs_is_zoned(fs_info))
2345 		return true;
2346 
2347 	if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags))
2348 		return false;
2349 
2350 	/* Check if there is a device with active zones left */
2351 	mutex_lock(&fs_info->chunk_mutex);
2352 	spin_lock(&fs_info->zone_active_bgs_lock);
2353 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2354 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2355 		int reserved = 0;
2356 
2357 		if (!device->bdev)
2358 			continue;
2359 
2360 		if (!zinfo->max_active_zones) {
2361 			ret = true;
2362 			break;
2363 		}
2364 
2365 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2366 			reserved = zinfo->reserved_active_zones;
2367 
2368 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2369 		case 0: /* single */
2370 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2371 			break;
2372 		case BTRFS_BLOCK_GROUP_DUP:
2373 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2374 			break;
2375 		}
2376 		if (ret)
2377 			break;
2378 	}
2379 	spin_unlock(&fs_info->zone_active_bgs_lock);
2380 	mutex_unlock(&fs_info->chunk_mutex);
2381 
2382 	if (!ret)
2383 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2384 
2385 	return ret;
2386 }
2387 
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2388 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2389 {
2390 	struct btrfs_block_group *block_group;
2391 	u64 min_alloc_bytes;
2392 
2393 	if (!btrfs_is_zoned(fs_info))
2394 		return;
2395 
2396 	block_group = btrfs_lookup_block_group(fs_info, logical);
2397 	ASSERT(block_group);
2398 
2399 	/* No MIXED_BG on zoned btrfs. */
2400 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2401 		min_alloc_bytes = fs_info->sectorsize;
2402 	else
2403 		min_alloc_bytes = fs_info->nodesize;
2404 
2405 	/* Bail out if we can allocate more data from this block group. */
2406 	if (logical + length + min_alloc_bytes <=
2407 	    block_group->start + block_group->zone_capacity)
2408 		goto out;
2409 
2410 	do_zone_finish(block_group, true);
2411 
2412 out:
2413 	btrfs_put_block_group(block_group);
2414 }
2415 
btrfs_zone_finish_endio_workfn(struct work_struct * work)2416 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2417 {
2418 	struct btrfs_block_group *bg =
2419 		container_of(work, struct btrfs_block_group, zone_finish_work);
2420 
2421 	wait_on_extent_buffer_writeback(bg->last_eb);
2422 	free_extent_buffer(bg->last_eb);
2423 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2424 	btrfs_put_block_group(bg);
2425 }
2426 
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2427 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2428 				   struct extent_buffer *eb)
2429 {
2430 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2431 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2432 		return;
2433 
2434 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2435 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2436 			  bg->start);
2437 		return;
2438 	}
2439 
2440 	/* For the work */
2441 	btrfs_get_block_group(bg);
2442 	atomic_inc(&eb->refs);
2443 	bg->last_eb = eb;
2444 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2445 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2446 }
2447 
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2448 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2449 {
2450 	struct btrfs_fs_info *fs_info = bg->fs_info;
2451 
2452 	spin_lock(&fs_info->relocation_bg_lock);
2453 	if (fs_info->data_reloc_bg == bg->start)
2454 		fs_info->data_reloc_bg = 0;
2455 	spin_unlock(&fs_info->relocation_bg_lock);
2456 }
2457 
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2458 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2459 {
2460 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2461 	struct btrfs_device *device;
2462 
2463 	if (!btrfs_is_zoned(fs_info))
2464 		return;
2465 
2466 	mutex_lock(&fs_devices->device_list_mutex);
2467 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2468 		if (device->zone_info) {
2469 			vfree(device->zone_info->zone_cache);
2470 			device->zone_info->zone_cache = NULL;
2471 		}
2472 	}
2473 	mutex_unlock(&fs_devices->device_list_mutex);
2474 }
2475 
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2476 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2477 {
2478 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2479 	struct btrfs_device *device;
2480 	u64 used = 0;
2481 	u64 total = 0;
2482 	u64 factor;
2483 
2484 	ASSERT(btrfs_is_zoned(fs_info));
2485 
2486 	if (fs_info->bg_reclaim_threshold == 0)
2487 		return false;
2488 
2489 	mutex_lock(&fs_devices->device_list_mutex);
2490 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2491 		if (!device->bdev)
2492 			continue;
2493 
2494 		total += device->disk_total_bytes;
2495 		used += device->bytes_used;
2496 	}
2497 	mutex_unlock(&fs_devices->device_list_mutex);
2498 
2499 	factor = div64_u64(used * 100, total);
2500 	return factor >= fs_info->bg_reclaim_threshold;
2501 }
2502 
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2503 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2504 				       u64 length)
2505 {
2506 	struct btrfs_block_group *block_group;
2507 
2508 	if (!btrfs_is_zoned(fs_info))
2509 		return;
2510 
2511 	block_group = btrfs_lookup_block_group(fs_info, logical);
2512 	/* It should be called on a previous data relocation block group. */
2513 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2514 
2515 	spin_lock(&block_group->lock);
2516 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2517 		goto out;
2518 
2519 	/* All relocation extents are written. */
2520 	if (block_group->start + block_group->alloc_offset == logical + length) {
2521 		/*
2522 		 * Now, release this block group for further allocations and
2523 		 * zone finish.
2524 		 */
2525 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2526 			  &block_group->runtime_flags);
2527 	}
2528 
2529 out:
2530 	spin_unlock(&block_group->lock);
2531 	btrfs_put_block_group(block_group);
2532 }
2533 
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2534 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2535 {
2536 	struct btrfs_block_group *block_group;
2537 	struct btrfs_block_group *min_bg = NULL;
2538 	u64 min_avail = U64_MAX;
2539 	int ret;
2540 
2541 	spin_lock(&fs_info->zone_active_bgs_lock);
2542 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2543 			    active_bg_list) {
2544 		u64 avail;
2545 
2546 		spin_lock(&block_group->lock);
2547 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2548 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2549 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2550 			spin_unlock(&block_group->lock);
2551 			continue;
2552 		}
2553 
2554 		avail = block_group->zone_capacity - block_group->alloc_offset;
2555 		if (min_avail > avail) {
2556 			if (min_bg)
2557 				btrfs_put_block_group(min_bg);
2558 			min_bg = block_group;
2559 			min_avail = avail;
2560 			btrfs_get_block_group(min_bg);
2561 		}
2562 		spin_unlock(&block_group->lock);
2563 	}
2564 	spin_unlock(&fs_info->zone_active_bgs_lock);
2565 
2566 	if (!min_bg)
2567 		return 0;
2568 
2569 	ret = btrfs_zone_finish(min_bg);
2570 	btrfs_put_block_group(min_bg);
2571 
2572 	return ret < 0 ? ret : 1;
2573 }
2574 
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2575 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2576 				struct btrfs_space_info *space_info,
2577 				bool do_finish)
2578 {
2579 	struct btrfs_block_group *bg;
2580 	int index;
2581 
2582 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2583 		return 0;
2584 
2585 	for (;;) {
2586 		int ret;
2587 		bool need_finish = false;
2588 
2589 		down_read(&space_info->groups_sem);
2590 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2591 			list_for_each_entry(bg, &space_info->block_groups[index],
2592 					    list) {
2593 				if (!spin_trylock(&bg->lock))
2594 					continue;
2595 				if (btrfs_zoned_bg_is_full(bg) ||
2596 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2597 					     &bg->runtime_flags)) {
2598 					spin_unlock(&bg->lock);
2599 					continue;
2600 				}
2601 				spin_unlock(&bg->lock);
2602 
2603 				if (btrfs_zone_activate(bg)) {
2604 					up_read(&space_info->groups_sem);
2605 					return 1;
2606 				}
2607 
2608 				need_finish = true;
2609 			}
2610 		}
2611 		up_read(&space_info->groups_sem);
2612 
2613 		if (!do_finish || !need_finish)
2614 			break;
2615 
2616 		ret = btrfs_zone_finish_one_bg(fs_info);
2617 		if (ret == 0)
2618 			break;
2619 		if (ret < 0)
2620 			return ret;
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 /*
2627  * Reserve zones for one metadata block group, one tree-log block group, and one
2628  * system block group.
2629  */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2630 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2631 {
2632 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2633 	struct btrfs_block_group *block_group;
2634 	struct btrfs_device *device;
2635 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2636 	unsigned int metadata_reserve = 2;
2637 	/* Reserve a zone for SINGLE system block group. */
2638 	unsigned int system_reserve = 1;
2639 
2640 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2641 		return;
2642 
2643 	/*
2644 	 * This function is called from the mount context. So, there is no
2645 	 * parallel process touching the bits. No need for read_seqretry().
2646 	 */
2647 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2648 		metadata_reserve = 4;
2649 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2650 		system_reserve = 2;
2651 
2652 	/* Apply the reservation on all the devices. */
2653 	mutex_lock(&fs_devices->device_list_mutex);
2654 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2655 		if (!device->bdev)
2656 			continue;
2657 
2658 		device->zone_info->reserved_active_zones =
2659 			metadata_reserve + system_reserve;
2660 	}
2661 	mutex_unlock(&fs_devices->device_list_mutex);
2662 
2663 	/* Release reservation for currently active block groups. */
2664 	spin_lock(&fs_info->zone_active_bgs_lock);
2665 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2666 		struct btrfs_chunk_map *map = block_group->physical_map;
2667 
2668 		if (!(block_group->flags &
2669 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2670 			continue;
2671 
2672 		for (int i = 0; i < map->num_stripes; i++)
2673 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2674 	}
2675 	spin_unlock(&fs_info->zone_active_bgs_lock);
2676 }
2677 
2678 /*
2679  * Reset the zones of unused block groups from @space_info->bytes_zone_unusable.
2680  *
2681  * @space_info:	the space to work on
2682  * @num_bytes:	targeting reclaim bytes
2683  *
2684  * This one resets the zones of a block group, so we can reuse the region
2685  * without removing the block group. On the other hand, btrfs_delete_unused_bgs()
2686  * just removes a block group and frees up the underlying zones. So, we still
2687  * need to allocate a new block group to reuse the zones.
2688  *
2689  * Resetting is faster than deleting/recreating a block group. It is similar
2690  * to freeing the logical space on the regular mode. However, we cannot change
2691  * the block group's profile with this operation.
2692  */
btrfs_reset_unused_block_groups(struct btrfs_space_info * space_info,u64 num_bytes)2693 int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes)
2694 {
2695 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2696 	const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT;
2697 
2698 	if (!btrfs_is_zoned(fs_info))
2699 		return 0;
2700 
2701 	while (num_bytes > 0) {
2702 		struct btrfs_chunk_map *map;
2703 		struct btrfs_block_group *bg = NULL;
2704 		bool found = false;
2705 		u64 reclaimed = 0;
2706 
2707 		/*
2708 		 * Here, we choose a fully zone_unusable block group. It's
2709 		 * technically possible to reset a partly zone_unusable block
2710 		 * group, which still has some free space left. However,
2711 		 * handling that needs to cope with the allocation side, which
2712 		 * makes the logic more complex. So, let's handle the easy case
2713 		 * for now.
2714 		 */
2715 		spin_lock(&fs_info->unused_bgs_lock);
2716 		list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) {
2717 			if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags)
2718 				continue;
2719 
2720 			/*
2721 			 * Use trylock to avoid locking order violation. In
2722 			 * btrfs_reclaim_bgs_work(), the lock order is
2723 			 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a
2724 			 * block group if we cannot take its lock.
2725 			 */
2726 			if (!spin_trylock(&bg->lock))
2727 				continue;
2728 			if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) {
2729 				spin_unlock(&bg->lock);
2730 				continue;
2731 			}
2732 			spin_unlock(&bg->lock);
2733 			found = true;
2734 			break;
2735 		}
2736 		if (!found) {
2737 			spin_unlock(&fs_info->unused_bgs_lock);
2738 			return 0;
2739 		}
2740 
2741 		list_del_init(&bg->bg_list);
2742 		btrfs_put_block_group(bg);
2743 		spin_unlock(&fs_info->unused_bgs_lock);
2744 
2745 		/*
2746 		 * Since the block group is fully zone_unusable and we cannot
2747 		 * allocate from this block group anymore, we don't need to set
2748 		 * this block group read-only.
2749 		 */
2750 
2751 		down_read(&fs_info->dev_replace.rwsem);
2752 		map = bg->physical_map;
2753 		for (int i = 0; i < map->num_stripes; i++) {
2754 			struct btrfs_io_stripe *stripe = &map->stripes[i];
2755 			unsigned int nofs_flags;
2756 			int ret;
2757 
2758 			nofs_flags = memalloc_nofs_save();
2759 			ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET,
2760 					       stripe->physical >> SECTOR_SHIFT,
2761 					       zone_size_sectors);
2762 			memalloc_nofs_restore(nofs_flags);
2763 
2764 			if (ret) {
2765 				up_read(&fs_info->dev_replace.rwsem);
2766 				return ret;
2767 			}
2768 		}
2769 		up_read(&fs_info->dev_replace.rwsem);
2770 
2771 		spin_lock(&space_info->lock);
2772 		spin_lock(&bg->lock);
2773 		ASSERT(!btrfs_is_block_group_used(bg));
2774 		if (bg->ro) {
2775 			spin_unlock(&bg->lock);
2776 			spin_unlock(&space_info->lock);
2777 			continue;
2778 		}
2779 
2780 		reclaimed = bg->alloc_offset;
2781 		bg->zone_unusable = bg->length - bg->zone_capacity;
2782 		bg->alloc_offset = 0;
2783 		/*
2784 		 * This holds because we currently reset fully used then freed
2785 		 * block group.
2786 		 */
2787 		ASSERT(reclaimed == bg->zone_capacity);
2788 		bg->free_space_ctl->free_space += reclaimed;
2789 		space_info->bytes_zone_unusable -= reclaimed;
2790 		spin_unlock(&bg->lock);
2791 		btrfs_return_free_space(space_info, reclaimed);
2792 		spin_unlock(&space_info->lock);
2793 
2794 		if (num_bytes <= reclaimed)
2795 			break;
2796 		num_bytes -= reclaimed;
2797 	}
2798 
2799 	return 0;
2800 }
2801